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Network Structure and Design in the Deregulated U.S. Airline

Industry: an Argument for Re-Regulation?

Sayed Ajaz Hussain∗ Serkan Bahçeci†

This paper develops a model to explain and analyze the evolution of network structure (con-

nectivity) and design (flight frequency, aircraft size, prices) in the post-deregulation U.S. airline

industry. We show that legacy carriers choice of Hub-and-Spoke networks and the emergence of

low cost carriers (LCCs) operating Point-to-Point networks were optimal choices. We demon-

strate that LCCs need not necessarily charge lower prices, and their entry impacted legacy

carriers’ prices in all markets, even those where there is no direct competition. We show that

in response to entry, legacy carriers optimally lower flight frequency, leading to longer wait

times between flights for which passengers are compensated by lower prices; conversely, if the

entrant later exits, legacy carriers raise flight frequency and therefore prices, which may erro-

neously appear to be predatory pricing when in fact it is the consequence of optimal network

redesign. Finally, we demonstrate that even though low cost carriers lower prices, total social

welfare with competing network structures can also be lowered. In other words, the poor finan-

cial performance of legacy carriers is not due to their inefficiency per se but due to an efficient

Hub-and-Spoke network undermined by competition from inefficient Point-to-Point networks.

We argue that social welfare may have been, and still can be, higher if entry and exit in air

passenger travel industry is regulated.

1 Introduction

Seventy years ago, in an effort to protect airlines from the ‘deleterious effects of excessive com-
petition’, Congress passed the Civil Aviation Act to regulate the industry.1 The regulatory body,
the Civil Aviation Board (CAB), grandfathered all trunk (medium and long distance) routes and
for the next forty years, regulated fares, entry/exit, route structure and the degree of rivalry over
trunk routes.2. By 1978, the combination of high oil prices, popular and political dissatisfaction
with regulation and the emergence of the contestable markets theory led to deregulation of the
industry.

On the 30th anniversary of deregulation, we ask– like many others– whether deregulation has
been ‘successful’ ? For many, the proof is in the pudding: the current juxtaposition of legacy
carriers– plagued with chronic losses, saddled with high costs, and shrinking market shares– and
the so called low cost carriers (LCCs)– blessed with profits year after year, low costs and ever

∗Department of Economics University of Toronto. Email: sayed.hussainutoronto.ca. We thank: Shoaib Zaidi,
Ivor Morgan, the late Hsiang-Ling Han, Kyung-won Min and Amar Sahay for research assistance with the empirics.
The usual disclaimers apply.

†JPMorgan Asset Management. The views expressed in this paper are the views of the authors and do not
necessarily reflect the views or policies of JPMorgan Asset Management (JPMAM). JPMAM does not guarantee the
accuracy of the data included in this paper and accepts no responsibility for it use. The Matlab code for the model
is available at http://www.economics.utoronto.ca/ahussain/papers/hussainbahceci.m

1For excellent overviews and analyses see: Meyer et al (1981), McCraw (1984), Borenstein (1992), McGahan
(1995), Morrison and Winston (1995), Brueckner et al (1997), Doganis (1993), Lee (2006).

2The CAB allowed entry into ‘local’ (short distance) routes.
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expanding market shares. Not surprisingly, the popular press and the business literature tout
the “LCC business model” as the future of air travel. According to these, legacy carriers will
ultimately exit the industry, to be replaced by LCCs which will bring consumers lower prices and
direct connections. It has been argued, that competition by LCCs has had a salubrious impact on
social welfare.

While these claims may be valid, we argue that a closer look at the evolution of the U.S. airline
industry since 1978 and the LCC business model raises more questions than answers about whether
deregulation was “successful”. In the years after deregulation in 1978, new carriers poured in,
driving down prices and concentration levels. By the mid-80s, many of these new carriers exited,
raising concentration levels3 and prices, leading some to wonder whether deregulation had been a
failure. This prompted a closer scrutiny of legacy carriers’ dominance.

One explanation was that legacy carriers’ computer reservation systems, frequent flyer mile
programs and larger networks were endogenous barriers to entry (McGahan (1995), Banerjee and
Summers (1987)). Another explanation focused on the validity of applying contestable market
theory to airlines – ‘marginal costs with wings’ (Alfred Kahn, CAB chief, in McCraw (1984)). But
perhaps the most influential explanation was based on the stylistic fact that following deregulation,
legacy carriers– now able to enter and exit any route– formed Hub-and-Spoke (HS) networks. In
turn, this spawned investigations of why legacy carriers formed HS networks.

Explanations abound for the emergence of HS networks. One is that the hub-dominant carrier
has market power on ‘spoke’ routes to/from the hub, which allows it to charge “hub premiums’.
Studies by the U.S. General Accounting Office (1990, 1999), U.S. Department of Transportation
(1990, 2001), Borenstein (1989), and Evans and Kessides (1993) provide evidence of these hub
premiums. The counter-argument is that the hub premiums may be due to omitted variables such
as higher flight frequencies at hubs or a greater proportion of business passengers who are willing to
pay higher prices traveling to/through/from hubs (Lee and Luengo-Prado (2005); Berry, Carnall,
Spiller (2006)) or that hub airports have barriers to entry (Abramowitz and Brown (1990))4.

A second argument is that HS networks may offer strategic advantages in accommodating/deterring
entrants5 . A third argument is that under general demand and cost assumptions, HS networks are
more efficient than, say, Point-to-Point (P2P) networks due to economies of density and scale. For
example: if demand between Origin-Destination (O-D) city pairs is low relative to aircraft size, it is
cheaper to take passengers from all origin cities– irrespective of their destination– to a hub, where
they– irrespective of their origins– they are placed on flights to destination cities. Such a routing
allows for greater aircraft utilization compared to if carriers operated direct flights6. The efficiency
of HS networks is underscored by its prevalence in a range of transport systems ranging from trains
and mail to power and overnight packages. Economists have long recognized the ‘efficiency’ of HS
networks, to the extent that currently, papers are still being written about why these networks
emerged after deregulation.

However, the almost singular focus on HS networks in the economics literature runs into a
problematic counter-fact: the recent emergence of carriers operating Point-to-Point (P2P) networks.
These P2P carriers such Southwest and Jet Blue are apparently also “low cost carriers (LCCs)”,
which as Borenstein (1992) noted, presents a paradox for airline economics:

The cost heterogeneity [between legacy and low cost carriers] appears to be as significant

3For example, by 1988 92% of the industry was served by eight carriers with the ‘big three’– American, Delta and
United– holding 50% of the market (McGahan (1995). See also Borenstein (1992).

4In this paper, we contribute to this debate by identifying two omitted variables: network structure and whether
travel is between major or secondary airports.

5Hendricks, Piccione and Tan (1997), Oum, Zhang, and Zhang (1995), Shy (2001). Aguirregabiria and Ho (2007)
estimate a dynamic oligopoly model in which passengers benefit from the scale of a hub and where HS networks
deters entrants.

6See (Berechman and Shy (1996, 1998), Bittlingmayer (1990), Caves, Christensen and Tretheway (1984), Brueck-
ner and Spiller (1997).
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as ever, with the highest cost airline, US Air, exhibiting unit costs about 64 percent
above Southwest’s. Caves, Christensen, and Tretheway [1984] identify average flight
length as the most significant cause of costs heterogeneity, but Southwest actually has
a shorter average flight length than US Air, implying that Southwest should exhibit
higher costs. America West, which operates a more traditional hub-and-spoke system
than Southwest .. has much lower costs than the other major airlines while flying shorter
average trips than most of the others. What is the source of these cost differences?

Borenstein (1992) argued that Southwest’s cost advantage stems from better management.7 In
addition to better management, the business literature and Wall Street attributes LCC’s lower cost
to their business model: a P2P network and a fleet consisting of homogeneous aircraft types, where
the latter is credited for economies of scale in purchasing, maintenance and operations 8. The
lower fares ushered by the success of LCCs– operating P2P networks with a homogeneous fleet–
juxtaposed with the increasingly weak performance of legacy carriers– operating HS networks with
heterogeneous fleet– has led some economic pundits to applaud LCCs as proof that competition is
(finally) working and led to management gurus touting P2P networks as the future of air travel. This
paper examines these claims: are LCCs really low cost carriers? Do LCCs really charge lower fares?
Is deregulation (finally) a success due to low fare, low cost carriers? Answers to these questions
require a model of endogenous network structure– connectivity– and design– frequencies, aircraft
sizes, prices– which explains why legacy carriers chose HS networks, why LCCs chose (apparently
inefficient) P2P networks, and the source of LCC’s low fares, and an analysis of social welfare.

The starting point of our analysis is to note that intuitively with high demand, short route-
length, small aircrafts, high passenger premium for frequent flights and direct connections, low
flight operational costs, a P2P network may be superior to a HS network. Clearly, a complete in-
vestigation requires a model of endogenous network structure– connectivity– and network design–
flight frequency, aircraft size, prices. While there are a number of papers in economics on network
structure and design– Hendricks, Piccione, Tan (1995, 1999); Oum, Zhang, Zhang (1995); Starr
and Stinchcombe (1992), Berechman and Shy (1996), Hendricks, Piccione, Tan (1995, 1999), Barla
(1999), Schipper and Nijkamp (1998), Adler (2005), and, Daniel and Pahwa (2007)– none truly
endogenize structure and design. For our purposes, the best suited model is Lederer and Nambi-
madom (1998)– hereafter LN– from the operations research literature. Their model encompasses
various factors that can affect network structure and design: flight frequency, aircraft size, prices,
aircraft velocity, takeoff/landing time, random delays, consumer preferences, costs per seat-mile
and seat-day, demand and route-lengths.

LN show that in principle almost any network structure is optimal; thus, depending the pa-
rameters, it can be optimal to operate a HS or P2P or sub-tour network. We extend their model
to show why it may have been optimal for legacy carriers’ to operate HS networks and why later
LCC’s chose sub-tour networks (contrary to common perceptions, LCCs do not operate P2P net-
works (Hussain (2003)). More subtly, LCC’s P2P network is optimal and profitable only against
the backdrop of HS networks. The model allows a comparison of legacy carriers’ and LCCs’ flight

7According to Credit Sights, Southwest, due to its timely fuel hedging, had the lowest year-on-year growth in
fuel costs in 2005 (16% versus the next lowest, Alaska Air’s 36% and far below the maximum, US Air’s 69%) and
has the lowest operating cost in the industry for its principal aircraft the Boeing 737-700. Heskett (2003) identifies
some aspects of Southwest’s superior management which contribute to its fast turnaround times and greater flight
utilization, which are both being undermined following 9-11 and as Southwest expands.

8As we show below, there is nothing special about the choice of LCC’s homogeneous aircrafts– it is the direct
consequence of operating a network with uniform route-length. In contrast, because legacy carriers operate a network
over routes of varying route-lengths, these necessarily must have heterogeneous aircrafts. For example, in 2005,
indicating stage length in miles in parentheses, Southwest had 194 Boeing 737-300s (498), 25 Boeing 737-500s (368)
and 218 Boeing 737-700s (779); Jet Blue had 80 Airbus A320s (1446), and Delta had 8 Boeing 777s (3749), 12
Boeing 767-200s (1069), 85 Boeing 767-300s (2454), 21 Boeing 767-400s (1787), 64 Boeing 757-200s (1314), 118
MD-88s (558), 16 MD-90s (836), 39 Boeing 737-1/200s (542), 21 Boeing 737-300s (432) and 70 Boeing 737-800s
(1094).



4

frequencies, aircraft sizes, prices, cost per seat-mile, cost per seat-day, total fixed and variable costs,
revenues, profits, and social welfare.

We show the LCCs will operate smaller aircrafts with higher frequencies. For some routes, the
higher frequencies, which lead to shorter wait times between flights, and shorter travel times (owing
to, for some O-D city pairs, LCCs providing direct service instead of legacy carriers’ service with
connection), implies that LCCs may charge higher prices due to passengers on these routes being
less inconvenienced relative to HS service. In contrast, for other routes, despite the overall higher
frequencies, the longer travel times in the sub-tour routings, inconvenience passengers, which the
LCCs compensate through lower prices. Thus, owing to how passengers are routed, LCCs do not
necessarily charge lower prices in all routes, which has obvious implications for comparisons of fares
across carriers: our model shows that route-specific prices are a function of (amongst others) not
only frequency but also network connectivity.

As such it’s not clear whether LCCs, despite lower fares, will raise social welfare. In fact, as we
show, LCCs can theoretically lower social welfare, and provides an answer to Borenstein’s (1992)
question “What type or degree of government intervention will maximize social welfare?”: restrict
entry of airlines operating the ‘low cost carrier’ business model. Our analysis of route-specific prices
provides an explanation for why entry by LCCs lowers legacy carriers’ prices even in markets where
there is no direct competition (which has been cited as a salubrious outcome of competition). When
LCCs enter a route, the lower demand for legacy carriers results in these lowering flight frequencies
which leads to longer wait times between flights, for which passengers are compensated through
lower prices. In a HS network, flights carry both intra route and inter route passengers, the latter
being those traveling to the hub to continue on to a destination which may not be served by LCCs.
The lower frequency on direct competition routes will also impact passengers ultimately traveling
to non-competition routes. Thus, these passengers must also be compensated by lower prices so
that prices also decrease on routes without direct competition from LCCs.

Our model gives a new perspective on whether legacy carriers practice predatory pricing (Bam-
berger and Carlton (2006), Eckert and West (2006)). When LCCs enter a route, legacy carriers
optimally lower frequency and therefore prices; conversely, if a LCC exits the route, legacy carriers
optimally raise frequency and therefore prices. To an outside observer, oblivious of optimal network
design, this will appear to predatory pricing when in fact it is the direct consequence of optimal
network redesign.

Our model attempts an answer to another question raised in Borenstein (1992): “What equi-
librium will evolve in the industry and what will be the speed and path of transition to that
equilibrium?”. We show that under the current deregulation regime, there is no equilibrium. This
is because, firstly, in response to entry from LCCs, legacy carriers may deviate from a HS network
to a non-HS network; secondly, as LCCs expand, they too must deviate from a sub-tour network
to a HS network (Hussain (2006), using measures of network structure in Berry (2004) shows that
this has already begin occurring). Without restrictions on entry by non-HS carriers, the cycle of
HS networks being undermined by non-HS networks will be repeated such that there may be no
network equilibrium,.

The rest of this paper is organized as follows: Section 2 presents LN index of network struc-
ture, section 3 presents our extension of LN to model optimal network structure and design for
the deregulated U.S. airline industry, Section 4 presents an analysis of the model, and Section 5
concludes.

2 LN (1998) Index of Network Structure

LN develop an index of network structure that can be used as an argument in an endogenous
network structure and design model. An even number of cities n > 0 are equi-spaced on a circle
with uniform demand for travel between all city pairs. For an O-D city pair i, j, denote a passenger
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flight by i → j and an empty flight carrying no passengers by {i → j}. Assume all flights operate
with exogenously given (daily) flight frequency f . Then k = {0, 1, 2, .., n/2, n} is an index of network
structure, which are discussed below.

2.1 k = 0: Index of Point-to-Point (P2P) Network

The following flight itinerary enables all passengers to travel directly between O-D cities:

for i = 1, .., (n− 1)
for j = (i + 1), .., n

i → j

j → i

end
{i → (i + 1)}

end
{(n − 1) → 1}

Figure 1 illustrates the k = 0 network for n = 4 cities: passenger flights travel along the chord
connecting O-D cities and empty flights travel along the circumference:

1 → 2 → 1
1 → 3 → 1
1 → 4 → 1

{1 → 2}
2 → 3 → 2
2 → 4 → 2

{2 → 3}
3 → 4 → 3

{3 → 1}
Observe that the sum of the distances traveled by empty flights along the circumference is always
2πr.

2.2 0 < k < n/2: Index of Sub-Tour Network

In a sub-tour network, passengers may be transported to their destination via intermediate stops.
For tractability, consider first the HS network (a sub-tour network k = 1) followed by other cases.

2.2.1 k = 1 Index of Hub-and-Spoke (HS) Network

A HS network k = 1 network consists of n/k sub-tours (i.e. the n cities). Passenger flights depart
from each city, travel to the hub and loop back (see Figure 2 (a)). Flights traveling to the hub carry
passengers bound for all other (n − 1) cities who are exchanged at the hub and placed on flights
returning to all cities. Thus, a returning flight carries passengers bound from all other (n−1) cities.

2.2.2 1 < k < n/2: Index of Sub-Tour Network

If k > 1, the network consists of n/k < n sub-tours. In each sub-tour, flights depart (say, clockwise)
from one end of the sub-tour– the “first” city on that sub-tour– and make (k − 1) stops until the
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Figure 1: k = 0 P2P Network for n = 4

flight reaches the other kth city– the “last” city on that sub-tour. From the first to the (k − 1)th
city on the sub-tour, the flight picks up passengers bound for intra-tour cities, and, from all cities
the flights picks up passengers bound for inter-tour cities. From the second to the kth city on the
sub-tour the flight drops off passengers bound for intra-tour cities; passengers bound for intra-tour
cities are ferried to the center of the circle to be exchanged on the return flights from the remaining
(n/k) − 1 sub-tours. The flight returns from the center carrying passengers from the other sub-
tours bound for cities in that sub-tour. Figures 2 (b), (c) illustrate the n = 4, k = 2 n = 6, k = 2
networks.

2.3 k = n: Index of Tour Network

A tour network consists of a single sub-tour serving all cities. A flight departs from the first city,
travels to every city picking up and dropping passengers, there being no inter-tour passengers, until
it reaches the nth city (See Figure 2 (d) for n = k = 4).

3 Model: Setup

We extend LN’s to model the evolution of network structure and design in the post-deregulation
U.S. airline industry.

3.1 Assumptions

A.1 n > 0 exogenously given cities are served by an arbitrary number of carriers. The cities
consist of two groups A, B with na cities in group A and nb cities in group B. Cities in each group
are equi-spaced on a circle with a common center (see Figure 3), where group A has radius Ra and
group B has radius Rb with Ra << Rb. Let na, nb be multiples of each other.
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Figure 2: (a) n = 4, k = 1 Network (b) n = 4, k = 2 Network (c) n = 6, k = 2 Network (d)
n = k = 4 Network

A.2 Demand between origin-destination cities i, j is denoted dij, i �= j, where cities i, j can be in
either group A or B. Demand is balanced and uniform9:

dii = daa, ∀i ∈ A

dii = dbb, ∀i ∈ B

dij = dab = dba, ∀i, j ∈ A, B, i �= j

A.3 Flights operate with endogenously determined frequencies. In the k = 0 network– owing
to the way flights operate (see A.4 below)– there are four frequencies faa(0), fbb(0), fab(0), fba(0)
corresponding to intra-group A, intra-group B, inter-group A → B, and inter-group B → A travel
markets. On the other hand, in k �= 0 networks– again owing to how flights operate (see A.4
below)– there are two frequencies fa(k > 0), fb(k > 0), where fa(k > 0) encompasses intra-group A
and inter-group A → B travel markets and fb(k > 0) encompasses intra-group B and inter-group
B → A travel markets.

A.4 Network structure is indexed by k = {0, 1, 2, .., n/2, n} where n = min{na, nb}. Assume
carriers operate a single network structure– for example, it cannot be that group A has a k = 0
network and group B has a k �= 0 network. The flight itineraries for a given k differ from LN. In
a k = 0 network there are four distinct networks corresponding to each ‘market’: intra-group A,
intra-group B, inter-group A → B and inter-group B → A travel. The following flight itinerary

9Combined with the assumption Ra << Rb A.1 and A.2 permit models of a variety of airlines and networks.
For example, Southwest airlines ‘cherry picks’ routes with high-demand low-distance which can be modeled by
daa > dbb, Ra << Rb.
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Figure 3: Groups A and B

connects the intra-group A travel market directly (flights operate with frequency faa(0)):

for i = 1, .., (na − 1)
for j = (i + 1), .., na

i → j

j → i

end
{i → (i + 1)}

end
{(na − 1) → 1}

The following flight itinerary connects the intra-group B travel market directly (flights operate with
frequency fbb(0)):

for i = 1, .., (nb − 1)
for j = (i + 1), .., nb

i → j

j → i

end
{i → (i + 1)}

end
{(nb − 1) → 1}

Denote group A and B’s common center with C and denote city i in group G by i∈G. The following
itinerary connects inter-group A → B and B → A market directly: a flight departs from group A
because in a k = 0 network the flight has to travel empty along the circumference of some group;
airlines, seeking to minimize operations cost will operate the empty flight on the group with the
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smaller radius, which in this model is group A:

for i = 1a, .., na

for j = 1b, .., nb

ia → jb

jb → ia

end
{ia → (ia + 1)}

end

where flights operate with frequency fab(0) when departing from a group A city and frequency
fba(0) when departing from a group B city. Observe the same aircraft serves travel from group
A → B and B → A. Thus, in a k = 0 network there are three aircraft sizes but four frequencies.

In a network 0 < k < n/2 network flights depart from each of the (na/k), (nb/k) sub-tours in

Figure 4: k = 2 network for na = 4, nb = 8

groups and A and B with frequencies fa(k), fb(k) respectively, travel to the center where intra-
group-inter-tour and inter-group passengers are exchanged. The flight itinerary for a tour network
differs from LN in one respect: in this model inter-group passengers must be exchanged at the
center– when the flight reaches the k = min{na, nb}th city on the tour, it travels to the center
where inter-group passengers are exchanged (see Figure 5).

A.5 Owing to network routings, a P2P network is served by three aircraft types, Saa(0), Sbb(0) and
Sab(0) = Sba(0) corresponding to intra-group A, intra-group B and inter-group A → B ≡ B → A
travel markets, while k �= 0 networks are served by two aircraft types, Sa(k), Sb(k), corresponding
to travel originating in group A (which includes intra-group A and inter-group A → B travel) and
travel originating in group B (which includes intra-group B and inter-group B → A travel).

A.6 Aircraft velocity, takeoff/landing time, variable cost per seat mile and fixed cost per seat day
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Figure 5: k = 4 tour Network for Group A, Sub-Tour Network for Group B

are exogenous and independent of aircraft size or network structure10 . Takeoff and landing each
require g/2 hours and are independent of the O-D city pair and k. There are economies of scale in
variable cost per seat mile11 V C(k) and aircraft fixed cost per available seat-day FC(k) is constant:

V C(k) = α + β/S(k) (1)
FC(k) = γ (2)

where α, β, γ > 0. The total variable cost TV C(k) is the product of total seat miles SM(k) and
variable cost per seat mile V C(k) and the total fixed cost TFC(k) is the product of total seat days
SD(k) and fixed cost per seat day FC(k):

TV C(k) = SM(k) V C(k) (3)
TFC(k) = SD(k) FC(k) (4)

where SM(K) is equal to S(K) times the total miles in a flight’s itinerary, and, SD(k) is the fleet
size times S(k) (i.e., the total number of seats). The total miles traveled by an aircraft and the
fleet size are both functions of k.

A.7 Flights may be randomly delayed at takeoff or landing. Delay time is i.i.d exponential with
parameter λ. Since the exponential distribution is gamma(1, λ), the takeoff and landing delay times
is distributed gamma(2, λ). Assume carriers plan for delays by adding a ‘planned delay’ time Aδ in
addition to the flight time where P (X ≥ Aδ) = δ. Aircraft controllers are assumed to be cognizant
of Aδ and hold the aircraft in a “holding pattern” until the buffer time is used up12.

10See http://www.globalaircraft.org for data on aircraft velocity.
11For an excellent overview of cost per seat mile across carriers by type of aircrafts see CreditSight’s report

“Airlines: Legacy Aircraft Cost Disadvantag”, February 2006.
12Daniels (1995) models and estimates congestion at hub airports. Mayer and Sinai (2002) study the sources of

congestion and delays.
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A.8 Consumer preference for travel between O-D cities i, j is represented by a utility function
which is linear in the benefit of travel and the disutility from price, travel time, wait times between
flights and the possible inconvenience of traveling from a secondary airport such as Providence, RI
instead of Boston, MA:

Uij(k) = Bij − pij(k) − t Tij(k) − w Wij(k) − Δij (5)

Bij is the benefit of travel, pij(k) is the price; t is travel cost per hour and Tij(k) is the total
passenger travel time; Wij(k) is the passenger’s average wait times between flights13 and w the
waiting cost per hour; Δij is the possible cost of inconvenience if the consumer travels from a
‘secondary’ airport. The total passenger time is the sum of flight time plus takeoff/landing time
plus planned delay time:

Tij(k) = Fij(k) + Gij(k) + Dij(k) (6)

Consumers have common reservation utility Ūij and travel if Uij(k) ≥ Ūij .

A.9 Carriers practice yield management and set prices to extract all consumer surplus:

pij(k) = Bij − t Tij(k) − w Wij(k) − Δij − Ūij (7)

Price is a function of k because carriers must compensate travelers for (amongst others) longer
travel and wait times, which are functions of k.

A.10 The total network overhead cost of flight coordination and management O(k|n) has economies
of scope: O(k|na) + O(k|nb) > O(k|na + nb); i.e. it’s cheaper to manage the network k over both
groups A and B together than separately.

3.2 Objective

Carriers choose network structure k and network design– f(k), S(k), p(k)– to maximize profits
subject to all travel markets having a common k and (trivially) all consumers traveling. The model
is solved in several steps: first, given k carriers choose S(k); second, given k, S(K) carriers choose
optimal f(k); third, given S(k), f(k) carriers choose k to maximize total network profits.

Denote profits between the O-D city pair i, j by Πij(k). Summing across all possible O-D city
pairs yields the total network profits:

Π(k) =
n∑
i

n∑
j �=i

Πij(k) =
n∑
i

n∑
j �=i

{Rij(k) − V Cij(k) − FCij(k)} − O(k|n)

Rij is:
Rij(k) = pij(k)dij = {Bij − Δij − Ūij − t Tij(k) − w Wij(k)}dij

Substituting and re-arranging:

Π(k) =
∑

i

∑
j �=i

[Bij − Δij − Ūij]dij

−
∑

i

∑
j �=i

[t Tij(k) + w Wij(k)]dij

−
∑

i

∑
j �=i

TV Cij(k) −
∑

i

∑
j �=i

TFCij(k) − O(k|n)

� Uij(k) ≥ Ūij

13For inter-group travel this includes the waiting time at the origin and the center. One can relax this assumption
so that only waiting times at the origin matters.
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The first line is independent of k; thus, maximizing profits is equivalent to minimizing the sum of
the second and third lines denoted C(k):

C(k) = t
∑

i

∑
j �=i

Tij(k)dij + w
∑

i

∑
j �=i

Wij(k)dij

+
∑

i

∑
j �=i

TV Cij(k) +
∑

i

∑
j �=i

TFCij(k) + O(k|n)

C(k) = t T (k) + w W (k)︸ ︷︷ ︸
Passengers Cost

+TV C(k) + TFC(k) + O(k|n)︸ ︷︷ ︸
Carriers Cost

Carriers choose k, f(k), S(k), p(k) to minimize the sum of passengers’ total cost of travel time and
airlines’ total cost of travel.

For the k = 0 network, C(k) is equal to passenger plus carriers’ cost in four separate ‘network
routings’: intra-group A, intra-group B, inter-group A → B and inter-group B → A routings (see
Figure 6 (a), (b)). In the k > 0 network, C(k) is equal to passenger plus carriers’ cost in two
separate ‘network routings’: for travel originating in group A– which consists of intra-group A and
inter-group A → B travel– and originating in group B– which consists of intra-group B and inter-
group B → A travel. For k > 0 networks, intra-group travel consists of intra-tour travel (Figure 7
(a)) and inter-tour travel (Figure 7 (b)); inter-group travel is illustrated in Figure 8.

Decompose C(K) for a ‘network routing’ (suppressing the network overhead cost O(k|n)):

C(k) = t T (k) + w W (k) + TV C(k) + TFC(k)
= t (F (k) + G(k) + D(K)) + w W (k) + SM(k) V C(k) + SD(K) FC(k)
= t (F (k) + G(k) + D(K)) + w W (k)

+ S(k) f(k) Miles Traveled V C(k) + SD(K) FC(k)
= t (F (k) + G(k) + D(K)) + w W (k)

+ S(k) f(k) Miles Traveled V C(k) + S(k) Fleet Size FC(k) (8)

Sections 3.3 through 3.7 derive expressions for F (k), G(k), D(K), W (k), S(K), f(k), SM(k), SD(k),
miles traveled and fleet size.

For each expression, we consider k = 0 and k > 0 networks separately; for a given k, we examine
specific ‘network routings’; for a given ‘network routing’ we examine F (k), G(k), D(k), W (k), S(k),
f(k), SM(k), SD(k) between arbitrary O-D city pairs i, j. Expressions for Fij(k), Gij(k), Dij(k),
Wij(k), Sij(k), fij(k), SMij (k), SDij (k) are aggregated over all O-D city pairs in that network
routing which are in turn aggregated across all network routings for that network structure k to
yield F (k), G(k), D(k), W (k), S(k), f(k), SM(k), SD(k). The interested reader can skip the
derivation below and go directly to section 4 for analysis of the model.

3.3 Passenger Travel Time T (k)

Total travel time for a passenger traveling from an origin city in group i, Oi, to a destination city
in group j, Dj , consists of total passenger flight plus takeoff/landing plus planned delay times.
Passenger flight travel time is not the same as total flight travel time; in the k = 0 network for
instance in some portions of the itinerary the flight travels empty along the circumference.

3.3.1 Passenger Flight Time F (k)

Denote total passenger flight time by TFT.
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Figure 6: k = 0 Network: (a) Intra-group Travel (b) Inter-group Travel

k = 0 Network TFT:

k = 0 Intra-Group Travel TFT: The O-D city pair (Oi, Di) is directly connected by a chord
of length 2Ri sin(θ/2) where θ is the sub-tending angle for the arc connecting Oi, Di where θ =
s/Ri, s = length of the arc = 2πRi|Oi − Di|/ni and θ = 2πRi|Oi − Di|/Rini so that the chord
connecting Oi, Di has length 2Ri sin(π|Oi − Di|/ni). Dividing by velocity v gives the flight time
between (Oi, Di):

F(Oi,Di)(k = 0) =
2Ri

v
sin(π|Oi − Di|/ni)

Aggregating over all O-D pairs in group i and multiplying by 2 (since flights loop back to the origin
city) gives the total intra-group i passengers TFT:

Fii(k = 0) = 2
ni∑
Oi

ni∑
Di

F(Oi,Di)dii = cot(π/2ni)Rinidii/v

Setting i = A, B yields Faa, Fbb:

Faa(k = 0) = cot(π/2na)Ranadaa/v

Fbb(k = 0) = cot(π/2nb)Rbnbdbb/v

k = 0 Inter Group Travel TFT: Inter-group passengers travel from Oi along the radius Ri to
the center and along the radius Rj to Dj . Thus:

F(Oi,Dj)(k = 0) = (Ri + Rj)/v

Aggregating over all Oi, Dj in the inter-group i, j network routing:

Fij(k = 0) =
ni∑
Oi

nj∑
Dj

F(Oi,Dj) dij = ni nj (Ri + Rj) dij/v
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Figure 7: k > 0 Network: (a) Intra-group Intra-Tour Travel (b) Intra-group Inter-Tour Travel

Setting i, j = A, B and i, j = B, A yields:

Fab(k = 0) = nanb(Ra + Rb)dab/v

Fba(k = 0) = nbna(Rb + Ra)dba/v

TFT in k = 0 Network: Summing up over intra group and inter group network routings yields
TFT in the k = 0 network:

F (k = 0) = Faa(k = 0) + Fbb(k = 0) + 2Fab(k = 0)
= 2{Ranadaa cot(π/2na) + Rbnbdbb cot(π/2nb) + nanb(Ra + Rb)dab}/v

k > 0 Network TFT:

k > 0 Intra-Group Travel TFT: Consider first intra-group intra-tour travel between the O-D
city pair Oi:t, Di:t, where Di:t = Oi:t + 1, . . . , ki:t. The distance between adjacent cities in group i
is 2πRi/ni and therefore the distance between (Oi:t, Di:t) is |Oi:t −ODi:t |2πR/ni which divided by
velocity v gives the passenger TFT:

F(Oi:t,Di:t) = 2πRi|Oi:t − Di:t|/niv

Demand being bi-directional between (Oi:t, Di:t) the TFT for intra-group intra-tour travel is twice
the expression above aggregated over all O-D city pairs in the intra-group intra-tour network rout-
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Figure 8: k > 0 Network: Inter-Group Travel

ing:

Fii(k > 0|Oi:t, Di:t) =
ni∑

Oi:t

ni−1∑
Di:t

F(Oi:t,Di:t) = (2nidii/k)
k−1∑
Oi:t

k∑
Di:t

F(Oi:t,Di:t)

= 2(nidii/k)
k−1∑
Oi:t

k∑
Di:t

2πRi

niv
|Oi:t − Di:t|

= (4πRidii/v)
k−1∑
Oi:t

k∑
Di:t

|Oi:t − Di:t|

= 2πRidii(k2 − 1)/3v

Now consider intra-group inter-tour TFT between the O-D city pair (Oi:t, Di:t′). The distance
between cities Oi:t and ki:t is (2π Ri/ni)(ki:t − Oi:t); the distance between cities ki:t and ki:t′ is
2Ri; and the distance between cities ki:t′ and Di:t′ is (ki:t′ − Di:t′)2π Ri/ni. Summing these and
dividing by velocity:

F(Oi:t,Di:t′)(k > 0) =
2πRi

niv
(ki:t − Oi:t) +

2Ri

v
+

2πRi

niv
(ki:t′ − Di:t′ )

There are ni/k sub tours sending passengers to (ni/k)−1 other sub tours. Thus the total intra-group
i inter-tour TFT is:

Fii(k > 0|Oi:t, Di:t′) =
ni∑

Oi:t

ni−1∑
Di:t′

F(Oi:t,Di:t′ ) = dii (
ni

k
− 1)

ni

k

k∑
Oi:t

k∑
Di:t′

F(Oi:t,Di:t′ )

= dii (
ni

k
− 1)

ni

k

k∑
Oi:t

k∑
Di:t′

2Ri{ π

ni
(ki:t − Oi:t| + 1 +

π

ni
(ki:t′ − Di:t′)}/v

= 2kRidiini{2πk + ni − π(k + 1)}/v
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Aggregating Fii(k > 0|Oi:t, Di:t), F(Oi:t,Di:t′ )(k > 0) over all intra-group i O-D city pairs yields
intra-group i TFT:

Fii(k > 0) =
ni∑

Oi:t

ni−1∑
Di:t

F(Oi:t,Di:t) +
ni∑

Oi:t

ni−1∑
Di:t′

F(Oi:t,Di:t′)

= (2πRidii{(k − 1)(ni − k) + (k2 − 1)/3}+ 2Ridiini(ni − k))/v

Setting i = A, B:

Faa(k > 0) = (2πRadaa{(k − 1)(na − k) + (k2 − 1)/3}+ 2Radaana(na − k))/v

Fbb(k > 0) = (2πRbdbb{(k − 1)(nb − k) + (k2 − 1)/3}+ 2Rbdbbnb(nb − k))/v

Inter-Group Travel TFT: Consider inter-group travel between (Oi:t, Dj:t′). The distance between
cities Oi:t and ki:t is (2πRi/ni)(ki:t −Oi:t); the distance between cities ki:t and kj:t′ is Ri +Rj; the
distance between cities kj:t′ and Dj:t′ is (kj:t′ −Dj:t′)2π Rj/nj. Summing and dividing by velocity:

F(Oi:t,Dj:t′)(k > 0) =
2πRi

niv
(ki:t − Oi:t) +

Ri + Rj

v
+

2πRj

njv
(kj:t′ − Dj:t′)

dij passengers from ni/k sub-tours in group i travel to nj/k sub-tours in group j. The TFT for
inter group i, j travel is:

Fij(k > 0) = dij
ni

k

nj

k

ni∑
Oi

nj∑
Dj

F(Oi,Dj)

= dij{π(k − 1)(njRi + naRj) + ninj(Ri + Rj)}/v

Thus:

Fab(k > 0) = dab(π(k − 1)(nbRa + naRb) + nanb(Ra + Rb))/v

Fba(k > 0) = dba(π(k − 1)(nbRa + naRb) + nanb(Ra + Rb))/v

k > 0 Network TFT: Aggregating over all O-D city pairs in the intra-group and inter-group
network routings yields the TFT in a k > 0 network:

F (k > 0) = Faa(k > 0) + Fbb(k > 0) + 2 Fab(k > 0)
= 2(πRadaa{(k − 1)(na − k) + (k2 − 1)/3}+ Radaana(na − k)))/v

+ 2(πRbdbb{(k − 1)(nb − k) + (k2 − 1)/3} + Rbdbbnb(nb − k))/v

+ 2dab(π(k − 1)(nbRa + naRb) + nanb(Ra + Rb))/v

3.3.2 Passenger Takeoff and Landing Time G(k)

Denote the total takeoff and landing time by TLT.

k = 0 Network TLT:

Intra Group Travel TLT: Since each O-D pair is directly connected:

G(Oi,Di)(k = 0) = g
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Aggregating over all intra-group O-D city pairs yields the intra group i TLT:

Gii(k = 0) =
ni∑
Oi

ni∑
Di

G(Oi,Di)dii = gni(ni − 1)dii

Setting i = A, B yields:

Gaa(k = 0) = gna(na − 1) daa

Gbb(k = 0) = gnb(nb − 1)dbb

Inter-Group Travel TLT: Since each O-D pair is directly connected:

GOi,Dj (k = 0) = g

The TLT for all passengers’ inter group i to group j travel is:

Gij(k = 0) =
ni∑
Oi

nj∑
Dj

G(Oi,Dj)dij = gninjdij

which yields:

Gab(k = 0) = gnanbdab

Gba(k = 0) = gnbnadba

k = 0 Network TLT: Aggregating over all O-D city pairs yields the TLT in the k = 0 network:

G(k = 0) = Gaa(k = 0) + Gbb(k = 0) + 2Gab(k = 0)
= gna(na − 1)daa + gnb(nb − 1)dbb + 2gnanbdab

k > 0 Network TLT:

Intra-Group Travel TLT: Consider the TLT for intra-group intra-tour travel between cities Oi:t, Di:t:
takeoff from Oi:t is g/2 hours; g |Di:t −Oi:t − 1| hours for the |Di:t − Oi:t − 1| stops between cities
Oi:t and Di:t; g/2 hours for the landing at city Di:t. Summing these yields:

G(Oi:t,Di:t)(k > 0) = g/2 + |Di:t − Oi:t − 1|g + g/2 = g|Di:t − Oi:t|
The TLT for intra-group inter-tour travel between cities Oi:t, Di:t′ is: g |ki:t − Oi:t| hours between
cities Oi:t and ki:t; g hours from city ki:t to the center; g hours from the center to city ki:t′; and
g |ki:t′ − Di:t| hours from city ki:t′ to city Di:t′ . Summing these and multiplying by 2 for the
bi-directional demand yields:

G(Oi:t,Di:t′ )(k > 0) = 2gk + 2g − g(Oi:t + Di:t′)

With (ni/k)((ni/k) − 1) sub-tours the total intra group i TLT is:

Gii(k > 0) = 2 dii
ni

k

k−1∑
Oi:t

k∑
Di:t

G(Oi:t,Di:t)

+ dii(
ni

k
− 1)

ni

k

k∑
Oi:t

k∑
Di:t′

G(Oi:t,Di:t′)

= diinig(k2 − 1)/3 + diinig(ni − k)(k + 1)
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Setting i = A, B the TLT for intra group A, B travel is:

Gaa(k > 0) = daanag(k2 − 1)/3 + daanag(na − k)(k + 1)
Gbb(k > 0) = dbbnbg(k2 − 1)/3 + dbbnbg(nb − k) (k + 1)

Inter-Group Travel TLT: The TLT for a passenger traveling between cities (Oi:t, Dj:t′) is:

G(Oi,Dj) = 2gk + 2g − g(Oi + Dj)

Aggregating over all inter-group O-D city pairs:

Gij(k > 0) = dij
ni

k

nj

k

ni∑
Oi=1

k∑
Dj=1

G(Oi,Di) = dijninj(k + 1)g

and:

Gab(k > 0) = dabnanb(k + 1)g
Gba(k > 0) = dbanbna(k + 1)g

k > 0 Network TLT: The TLT in a k > 0 network is:

G(k > 0) = Gaa(k > 0) + Gbb(k > 0) + 2 Gab(k > 0)
= daanag(k2 − 1)/3 + daanag(na − k)(k + 1) + dbbnbg(k2 − 1)/3

+ dbbnbg(nb − k)(k + 1) + 2dabnanb(k + 1)g

3.3.3 Passenger Delay Time D(k)

Delay time at takeoff or landing is exponentially distributed with parameter λ. Denote total delay
time by TDT. The TDT for two travel between two adjacent cities is the sum of two exponential
distributions and is an Erlang distribution with parameters (2, λ). All carriers choose a common
planned delay time Aδ such that P (X ≥ Aδ) = δ.

k = 0 Network TDT:

Intra Group Travel TDT: Since all cities are directly connected the TDT between cities (Oi, Di)
is:

D(Oi,Di) = Aδ

Aggregating over all intra-group O-D city pairs:

Dii(k = 0) =
ni∑
Oi

ni∑
Di

D(Oi,Di) dii = Aδ ni(ni − 1) dii

which yields intra group A, B TDT:

Daa(k = 0) = Aδna(na − 1)daa

Dbb(k = 0) = Aδnb(nb − 1)dbb

Inter Group Travel TDT: Since all cities are directly connected, the TDT between cities (Oi, Dj)
is:

D(Oi,Dj) = Aδ
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Aggregating over all inter-group O-D city pairs yields:

Dij(k = 0) =
ni∑
Oi

nj∑
Dj

D(Oi,Dj) dij = Aδ ni nj dij

which yields the TDT for inter-group A, B and B, A travel:

Dab(k = 0) = Aδninjdij

Dba(k = 0) = Aδninjdij

TDT in k = 0 Network: From the expressions above, the TDT in a k = 0 network is:

D(k = 0) = Daa(k = 0) + Dbb(k = 0) + 2 Dab(k = 0)
= Aδna(na − 1)daa + Aδnb(nb − 1)dbb + 2Aδnanbdab

k > 0 Network TDT:

Intra-Group Travel TDT: The TDT for an intra-group intra-tour passenger traveling between cities
(Oi:t, Di:t) involves |Oi:t − Di:t|. Thus:

D(Oi:t ,Di:t) = Aδ|Oi:t − Di:t|

Next consider an intra-group inter-tour passenger traveling between cities (Oi:t, Di:t′). Since pas-
sengers are exchanged at the center after all na/k, nb/k after all flights from groups A, B have
arrived, the planned delay time at the center is Bδ where P (Y ≥ Bδ) and Y = max{na/k, nb/k}.
The TDT between: cities Oi:tand ki:t is Aδ(ki:t − Oi:t) hours; between cities ki:t and the center
is Aδ hours; at the center is Bδ hours; between the center and city ki:t′ is Aδ hours; and between
cities ki:t′ and Di:t′ is (Di:t′ )Aδ hours. Summing these:

D(Oi:t ,Di:t′) = Aδ (ki:t − Oi:t) + Bδ + Aδ + Aα (ki:t′ − Di:t′)

Since intra tour travel is bi-directional in each of the ni/k sub tours in group i and that there are
(ni/k) ((ni/k) − 1) inter tours, the total intra group i TDT for all passengers is:

Dii(k > 0) = 2
ni∑

Oi:t

ni∑
Di:t

D(Oi:t ,Di:t)dii +
ni∑

Oi:t

ni∑
Di:t′

D(Oi:t ,Di:t′ )dii

= 2 dii
ni

k

k−1∑
Oi:t

k∑
Oi:t

D(Oi:t ,Di:t) + dii(
ni

k
− 1)(

ni

k
)

k∑
Oi:t

k∑
Di:t′

D(Oi:t,Di:t′ )

= {diiniAδ(k2 − 1)/3}+ diiniAδ(ni − k)k + diini(ni − k)Bδ

= diiAα{ni(k2 − 1)/3 + ni(ni − k)k} + diiBαni(ni − k)

which yields the TDT for intra group A, B travel:

Daa(k > 0) = daaAα{na(k2 − 1)/3 + na(na − k)k} + daaBαna(na − k)
Dbb(k > 0) = dbbAα{nb(k2 − 1)/3 + nb(nb − k)k} + dbbBαnb(nb − k)

Intra Group Travel TDT: The TDT for travel between cities (Oi:t, Dj:t′) is:

D(Oi:t ,Dj:t′ ) = Aδ (ki:t − Oi:t) + Bδ + Aδ + Aα (ki:t′ − Dj:t′)
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Aggregating over all inter group O-D city pairs yields:

Dij(k > 0) =
ni

k

nj

k

ni∑
Oi=1

nj∑
Dj=1

D(Oi,Dj) dij = dij ni nj (k Aδ + Bδ)

and:

Dab(k > 0) = dij ni nj (k Aδ + Bδ)
Dba(k > 0) = dij ni nj (k Aδ + Bδ)

k > 0 Network TDT: Combining the expressions above yields:

D(k > 0) = Daa(k > 0) + Dbb(k > 0) + 2 Dab(k > 0)
= (daaAδ{na(k2 − 1)/3 + na(na − k)k} + daaBδna(na − k))

+ (dbbAδ{nb(k2 − 1)/3 + nb(nb − k)k} + dbbBδnb(nb − k))
+ 2(dabnanb(kAδ + Bδ))

3.4 Passenger Waiting Time W (k)

From any origin city the wait time between flights is 1/f(k) days; thus the average wait time per
passenger per day is f(k)/2 or 24/2f(k) = 12/f(k) hours.

k = 0 Network TWT:

The k = 0 network has four network routings, with frequencies faa(0), fbb(0), fab(0), fba(0)
which yields four wait times:

W (k = 0) = Waa(k = 0) + Wbb(k = 0) + Wab(k = 0) + Wba(k = 0)
= 12{na(na − 1)daa/faa(0) + (nb(nb − 1)dbb)/fbb(0)

+ nanbdab/fab(0) + nanbdab/fba(0)}

k > 0 Network TWT:

The k > 0 has two network routings, with frequencies fa(k), fb(k) which yield two wait times:

W (k > 0) = Wa(k > 0) + Wb(k > 0)
= 12{(na(na − 1)daa + nanbdab)/fa(k)

+ (nb(nb − 1)dbb) + nbnadba)/fb(k)}

3.5 Total Variable Cost TV C(k)

The total variable cost of operating a flight between cities i, j is equal to total variable cost per seat
mile times the total seat miles, where total seat miles is the product of aircraft size Sij(k) times
flight frequency fij(k) times distance (in miles) ||i− j||:

TV Cij(k) = SMij(k)V C(k)
= Sij(k)fij(k)(Miles i → j){α + β/Sij(k)}

Conditional on k, f(k) we derive expressions for SM(k), S(k) below.



21

3.5.1 Aircraft Size S(k)

Aircraft size (seats per plane) is equal to maximum traffic on the route between the O-D city pair
i, j. Due to the nature of network routings in a k = 0 network, there are three aircraft sizes corre-
sponding to intra-group A, intra-group B, and inter-group A → B ≡ B → A travel, i.e., the same
aircraft serves intergroup travel between groups A and B; there are however four frequencies. In
the k > 0 network there are two network routings and thus two types of aircrafts..

k = 0 Network Aircrafts:

Intra-Group Travel Aircrafts: Maximum demand between any O-D city pair in groups A, B are
daa, dbb respectively. Given faa, fbb the maximum number of passengers per flight– and therefore
the aircraft sizes– are:

Saa(k) = daa/faa(k)
Sbb(k) = dbb/fbb(k)

Inter-Group Travel Aircraft: A single aircraft type serves inter group travel. Due to symmetrical
demand dab = dba it is tempting to say that fab(0) = fba(0). However this is not true because in the
k = 0 network, the aircraft travels empty along the circumference of group A so that the distance
and times between i, j and j, i are not symmetrical which as we show below implies fab �= fba.
Thus:

Sab(k) = Sba(k) = max{dab/fab(k), dba/fba(k)} (9)

k > 0 Network Aircrafts:

The k > 0 network has two aircraft sizes Sa(k), Sb(k) with frequencies, fa(k), fb(k) respectively.
Note that in each sub-tour a flight departs travels from the first city in that sub-tour to the kth
city on that sub-tour, from there on to the hub, looping back to the first city on the sub-tour. For
group i, consider the qth city on a sub-tour of length k > 0. For k > 1, when a flight departs from
city q, (k − q)dii intra-group-intra-tour passengers; (ni − k)dii intra-group-inter-tour passengers;
njdij inter group i to group j passengers board the flight. As this flight travels on the sub-tour, at
every city (q − k)dii intra-group-inter-tour passengers dis-embark. Since the number of intra tour
passengers aboard the aircraft is a decreasing function of i, the maximum number of passengers
will be at city k, with Ni(k) passengers, where:

Ni(k) =
k∑

q=1

(k − q)dii +
k∑

q=1

(n − k)dii +
k∑

q=1

njdij −
k∑

q=1

(q − 1)dii

= dii{k2 − k(k + 1)/2 + nik − k2 − k(k + 1)/2 + k}+ njkdij

= k{(ni − k)dii + ninjdij}
Now k = {0, 1, .., n/2, n} where n = min{na, nb}. For a 0 < k < n network traffic is maximized at
the kth stop so that:

Si(0 < k < n) = k{(ni − k) dii + nj dij}/fi(k)

Next consider k = n: the total number of intra tour– and therefore intra group– passengers are:

k∑
q=1

(k − q)dii +
k∑

q=1

(n − k)dii −
k∑

q=1

(q − 1)dii = k(n − k)dii

which implies that intra tour traffic is maximized at the n/2 city and is equal to diin
2/4 while inter

group traffic is dijnjn/2. At the end of the tour there are nnjdij passengers. If dii > 2njdij/n then
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diin
2/2 + dijnjn/2 > nnjdij. Aircraft size is set to the number of passengers at the n/2th city so

that:

Si(k = n) =
{

n2dii/4 + njdijn/2 if dii > 2njdij/n
ninjdij otherwise

Aircraft sizes in groups A, B are:

Sa(0 < k < n) = k{(na − k) daa + nb dab}/fa(k)

Sa(k = n) =
{ {n2daa/4 + nbdabn/2}/fa(k) if daa > 2nbdab/n

{nanbdab}/fa(k) otherwise
Sb(0 < k < n) = k{(nb − k) dbb + na dba}/fb(k)

Sb(k = n) =
{ {n2dbb/4 + nadban/2}/fb(k) if dbb > 2nadba/n

{nbnadba}/fb(k) otherwise

3.5.2 Total Seat-Miles SM(k)

Given k, S(k), f(k), derivation of SM(k) requires calculating the total distance (miles) between any
O-D city pair.

k = 0 Network Seat-Miles:

Intra Group Travel Seat-Miles: In the k = 0 network, flights operate with and without flights. The
total miles traveled with passengers is the sum of the chords for each city in group ito all other
ni − 1 cities; the total miles traveled without passengers is the sum of all arcs connecting all cities
in group i. Each multiplied by S(K)f(k) yields intra group i, SM(k):

SMii(k = 0) = Sii(0)fii(k)Milesi→j

= Sii(0)fii(k){2niRi cot(π/(2ni)) + 2πRi}
= dii{2niRi cot(π/(2ni)) + 2πRi}

where the last line is due to Sii(0) = dii/fi(k). Thus:

SMaa(k = 0) = daa{2naRa cot(π/(2na)) + 2πRa}
SMbb(k = 0) = dbb{2nbRb cot(π/(2nb)) + 2πRb}

Inter Group Travel Seat-Miles: A single aircraft type serves inter groups A → B and B → A travel
albeit with fab(k = 0) �= fba(k = 0). Consider first SMab(k = 0): for each O-D pair, the distance
traveled is Ra + Rb and with na origin cities and nb destination cities, the total distance traveled
for passenger flights is: nanb(Ra + Rb).

Next– recalling that inter group flights in the k = 0 network originate in group A– SMab(k)
includes the sum of the chords when the flight travels empty along the circumference of group A:

SMab(k = 0) = Sab(0)fab(0)(nanb(Ra + Rb) + 2πRa)
SMba(k = 0) = Sab(0)fba(0)nanb(Ra + Rb)

k > 0 Network:

In each group flight departs with frequency fi per day from the first city on each sub-tour, travel
along the circumference to kth city on the sub-tour, on to the center, and looping back on the same
path to first city on the sub-tour, covering a total distance of 2 {2 π Ri/ni (k − 1) + Ri} miles.
With ni/k sub-tours the total seat miles in group i is:

SMi(k) = 2{2π Ri(k − 1)/ni + Ri}Si(k)fi(k)ni/k

= 2{2π Ri(k − 1)/ni + Ri} {(ni − k)dii + njdij}ni
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where the last line follows from Si(k > 0) = k{(ni − k) dii + nj dij}/fi(k). Thus:

SMa(k) = 2{2πRa(k − 1)/na + Ra} {(na − k)daa + nbdab}na

SMb(k) = 2{2πRb(k − 1)/nb + Rb} {(nb − k)dbb + nadba}nb

3.6 Total Fixed Cost

The total fixed cost between the O-D city pair i, j is equal to total fixed cost per seat day times the
total seat days, where total seat days is aircraft size times fleet size (for travel between cities i, j).
The fleet size is the smallest integer greater than fij Tij , denoted I|fij Tij|, where Tij is the time
per trip (days) between i, j. If a trip takes Tij(k) > 1/fik(k) then carriers will need more than one
aircraft; fleet size will be I|fij Tij |. The derivation of:

TFCij(k) = γSij(k)I|f(k)Tij | = γSDij (k)

requires calculating time per trip.

3.6.1 Total Available Seat Days & Trip Times

k = 0 Network:

Intra Group Travel Seat-Days: The time needed to complete a trip per flight is the flight plus
takeoff/landing time plus planned delay time14. Using earlier expressions for distance and S(k)
from above, intra group i travel time is:

Tii(k = 0) = Milesi→j/v + ni(ni − 1)(g + Aδ)
= {2niRi cot(π/2ni) + 2πRi}/v + ni(ni − 1)(g + Aδ)

Assuming I|f(k)T (k)| is a large number so that I|f(k)T (k)| ≈ f(k)T (k)and recalling S(k) =
d/f(k):

SDaa(k = 0) = Saa(0)I|faa(0)Taa(0)| = daaTaa(0)
SDbb(k = 0) = Sbb(0)I|fbb(0)Tbb(0)| = dbbTaa(0)

Inter Group Travel Seat-Days: Recalling the aircraft travels empty along the circumference of group
A:

Tab(k = 0) = Miles A/v + na (na − 1) (g + Aδ)
= {nanb(Ra + Rb) + 2πRa}/v + na (na − 1) (g + Aδ)

Tba(k = 0) = Miles B/v + nb (nb − 1) (g + Aδ)
= {nanb(Ra + Rb)}/v + na nb (g + Aδ)

Since the same aircraft serves inter-group travel A → B and B → A with size:

Sa→b(0) = max{dab/fab(k = 0), dba/fba(k = 0)}
the total number of seats for inter group travel is:

SDab(k = 0) = Sa→b(0)I|faa(0)Taa(0)|
SDbb(k = 0) = Sa→b(0)I|fbb(0)Tbb(0)|

14Note this is not the same as passenger flight, takeoff/landing, and planned delay time because the aircraft travels
empty for some portions of the trip
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k > 0 Network:

Consider the path of a fight in a sub tour of length k in group i: depart from the first city in the
sub tour, travel along the circumference stopping at each city until the kth city on that sub-tour,
traveling along the radius Ri to the center and looping back on the same path to the first city in
the sub-tour. The total travel time for this path is total flight time plus total takeoff/landing time
plus total planned delay time.

Total flight time is total distance divided by velocity 2{(k − 1)(2πRi)/ni + Ri}/v. For total
takeoff/landing time consider the itinerary of a flight: from the first to the kth cities of the sub
tour there are (k− 2) stops each of which take g hours in takeoff and landing; takeoff from the first
city and landing at the kth city each take g/2 hours; takeoff from the kth city to and landing at the
center totals g hours. Thus, takeoff/landing time in one direction is (k−2)g+g+g = kg so that the
total takeoff/landing time for the round trip is 2kg.. Total planned delay time is (2k − 1)Aδ + Bδ

hours. Summing the TFT, TLT and TDT, the total trip time (days) is:

Ti(k) = 2{(k − 1)2πRi/ni + Ri}/v + 2kg + 2(k − 1)Aα + Bα

hours. The number of (daily) dispatches is I[fi(k) Ti(k)]. Thus the total available seat days on a
sub-tour is Si(k)I[fi(k)Ti(k)] which implies that the total available seat days in group i, assuming
I[fi(k)Ti(k)] ≈ fi(k)Ti(k), is:

SDi(k) = Si(k)I[fi(k)Ti(k)]ni/k ≈ Si(k)fi(k)Ti(k)ni/k

Substituting for aircraft size and recalling that S(0 < k < n) �= S(k = n):

SDi(0 < k < n) = {(ni − k)dii + njdij}niTi(k)

SDi(k = n) =
{ {n2dii/4 + njdijn/2}niTi(k)/k if dii > 2njdij/n

{ninjdij}Ti(k)niTi(k)/k otherwise

Thus:

SDa(0 < k < n) = {(na − k)daa + nbdab}naTa(k)

SDa(k = n) =
{ {n2daa/4 + nbdabn/2}naTa(k)/k if daa > 2nbdab/n

{nanbdab}naTa(k)/k otherwise
SDb(0 < k < n) = {(nb − k)dbb + nadba}nbTb(k)

SDb(k = n) =
{ {n2dbb/4 + nadban/2}nbTb(k)/k if dbb > 2nadba/n

{nanbdba}nbTb(k)/k otherwise

3.7 Optimal Flight Frequencies

Given k, S(k), carriers choose frequencies to minimize the objective C(k) in Equation 8, where the
passenger waiting times cost and carriers cost are functions of f(k). Thus, optimal frequencies
minimize frequency related cost:

FRC(k, f(k)) = W (k, f(k)) + TV C(k, f(k)) + TFC(k, f(k)) + O(k, f(k))

k = 0 Network:

Intra Group Travel Frequencies: The frequency related cost for intra group i travel is:

FRCii(0, f(0)) = Wii(0, f(0)) + TV Cii(0, f(0)) + TFCii(0, f(0))
= 12w{ni(ni − 1)dii/fii(0)} + SMii(0){α + β/Sii(0)} + SDii(0, f(0))γ
= 12w{ni(ni − 1)dii/fii(0)} + SMii(0){α + βfii(0)/Nii(0)}

+ (Nii(0)/fii(0))I|fii(0)Tii(0)|γ
= 12w{ni(ni − 1)dii/fii(0)} + SMii(k){α + βfii(0)/Nii(0)} + Nii(0)Tii(0)γ
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where we’ve assumed I|fii(0)Tii(0)| ≈ fii(0)Tii(0). SMii(0) is independent of fii(0) since:

SMii(0) = Sii(0)fii(0)Milesi

= (Nii(0)/fii(0))fii(0)Milesi

= Nii(0)Milesi

Thus: FRCii(0, f(0)) = 1/fii(0){12wni(ni − 1)dii} + βSMii(0)fii(0)/Nii(0). Differentiating with
respect to fii(0) yields:

fii(0) =

√
12wni(ni − 1)dii

β SMii(0)/Nii(0)

Thus:

faa(0) =

√
12wna(na − 1)daa

SMaa(k)β/Naa(0)

fbb(0) =

√
12wnb(nb − 1)dbb

SMbb(k)β/Nbb(0)

Inter Group Travel Frequencies: A single aircraft serves inter group travel, albeit with fab(0) �=
fba(0). To compute frequencies we need the aircraft size. However, recall from Equation 9
that Sa→b(0) = Sb→a(0) = max{dab/fab(0), dba/fba(0)}. Therefore, to compute optimal frequen-
cies, first assume 1/fab(0) > 1/fba(0) so that Sa→b(0) = dab/fab(0) followed by the assumption
1/fab(0) < 1//fba(0) so that Sa→b(0) = dab/fba(0). Second, compare the frequency related costs
for each pair of frequencies, from which the optimal frequencies are:

fab(0), fba(0) = min
fab,fba

{FRCab(k : 1/fab(0) > 1/fba(0)), FRCab(k : 1/fab(0) < 1/fba(0))}

This yields:

Sab(0) =
{

dab max{1/fab(0), 1/fba(0)} = dab/fab(0) if 1/fab(0) > 1/fba(0)
dab max{1/fab(0), 1/fba(0)} = dab/fba(0) otherwise

Denote max{1/fab(0), 1/fba(0)} = 1/fa−b(0).. Now, FRCa−b is:

FRCa−b(0, f(0)) = Wab(0, f(0)) + TV Cab(0, f(0)) + TFCab(0, f(0))
+ Wba(0, f(0)) + TV Cba(0, f(0)) + TFCba(0, f(0))

= 12wnanbdab/fab(0) + SMab(0){α + β/Sa−b(0)} + γSDab(0, f(0))
+ 12wnbnadba/fba(0) + SMba(0){α + β/Sa−b(0)} + γSDba(0, f(0))

= 12wnanbdab/fab(0)
+ fab(0){α + β/Sa−b(0)}MilesA→BNab(0)/fa−b(0)
+ γI|fab(0)Tab(0)|Nab(0)/fa−b(0) + 12wnbnadba/fba(0)
+ fba(0){α + β/Sa−b(0)}MilesA→BNba(0)/fa−b

+ γI|fab(0)Tab(0)|Nab/fa−b(0)

Here SMab, SMba are not (necessarily) independent of flight frequencies so that an analytical so-
lution is not possible. Instead, in the analysis of the model below, we use numerical methods to
derive the optimal flight frequencies for inter group travel in the k = 0 network..
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k > 0 Network:

The frequency related cost for travel originating in group i is:

FRCi(k, f(k)) = Wi(k, f(k)) + TV Ci(k, f(k)) + TFCi(k, f(k))
= 12w(ni(ni − 1)dii + ninjdij)/fi(k)

+SMi{α + β/Si(k)} + γSDi(k)
= 12w(ni(ni − 1)dii + ninjdij)/fi(k)

+SMi{α + β fi(k)/Ni(k)} + γSDi(k)

where the last line follows from the fact that aircraft size is maximum traffic, denoted Ni(k)/fi(k).
FRCi(k, f(k)) can be simplified further by noting that SMi(k) is independent of fi(k):

SMii(k) = Sii(k)fii(k)Milesi

= (Nii(k)/fii(k))fii(k)Milesi

= Nii(k)Milesi

SDi(k) is independent of fi(k) because SDi(k) ≈ Si(k)fi(k)Ti(k) = Ni(k)Ti(k). Collecting fre-
quency related terms FRCi(k, f(k)) becomes:

FRCCi(k, f(k)) = {12w(ni(ni − 1)dii + ninjdij) + β SMi(k)fi(k)/Ni}/fi(k)

The first order condition yields:

fi(k > 0) =

√
12w(ni(ni − 1)dii + ninjdij)

β SMi(k)/Ni

from which:

fa(k > 0) =

√
12w(na(na − 1)daa + nanbdab)

β SMa(k)/Na

fb(k > 0) =

√
12w(nb(na − 1)dbb + nbnadba)

β SMb(k)/Nb

4 Analysis: Optimal Networks & Post-Deregulation U.S.

Airline Industry

In this section we first demonstrate that LN (1998) result that any network structure can be optimal
also holds in our two group model; and second, we explain and analyze the evolution of network
structure and design over the past three decades of the deregulated U.S. airline industry.15

4.1 Optimal Network Structure

4.1.1 LN (1998) on Optimal Networks

LN (1998) show that any network structure can be optimal: the precise network structure is a
complicated function of demand, distance, number of cities, passenger cost per hour of traveling

15Other results from this model are in a companion paper: “Network Structure and Design in the Post-Deregulation
U.S. Airline Industry: an Argument for Re-Regulation” available upon request.
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and waiting between flights, delays at takeoff/landing and hubs, aircraft size and velocity, variable
cost per seat mile economies of scale in aircraft size and fixed cost per seat day. Instead of a
complete investigation of the impact of these parameters on network structure and design, we focus
here on a few key economically interesting factors. In each case below, LN’s results extend to our
two group model.

Ceteris paribus, as demand increases the network structure tends to be a P2P; conversely, as
demand weakens the optimal network structure tends first to a HS and then sub-tour network. To
see the intuition consider travel between the two continental U.S. coasts. Suppose aircraft size is
exogenously given: if there is weak demand between Boston-LA and New York-LA, it is cheaper
for carriers to fly all West Coast bound passengers from Boston and New York first to a hub from
where all LA bound passengers are placed on a single flight. The hub concentrates traffic from
all origins on the East Coast into direct flights from the hub to all destination cities on the West
Coast. Conversely, if demand between Boston-LA and New York-LA increases, it becomes efficient
to operate direct flights– there is enough demand to justify the fixed cost of the aircraft.

Similarly, as the distance between cities increases, sub-tour and tour networks become optimal.
This is because the variable costs of a P2P network rise dramatically as the distance increases even
if aircraft utilization is high due to strong demand. Conversely, as the distance becomes smaller, a
P2P network becomes optimal. Finally, ceteris paribus, if the network consists of a small number of
(exogenously given) cities, the optimal network tends to be a sub-tour or tour. But as the number
of cities increases, the optimal network structure becomes a HS. This is because passengers dislike
travel and wait times. If carriers operated a sub-tour or tour network over a large number of cities,
the lower variable cost is outweighed by increased passengers’ cost of travel.

These factors point to some key aspects of so called LCCs: their success is due to cherry picking
routes and serving a ‘patient’ segment of the travel market. That is, LCCs deliberately operate
flights over a small number of cities with low average distance and high demand: for example,
Heskett (2003) estimates that Southwest serves the following percentages of potential routes: 100-
400 miles, 55%; 400-800 miles, 27%; 800-1,200 miles: 20%; > 1,200 miles, 8%. At the same
time, if LCCs’ passengers have a low cost of traveling, the LCCs will operate sub-torur networks.
Conversely, it implies that as passengers cost of travel increases, it would be optimal to shift away
from sub-tour networks towards a P2P or HS network. This further suggests that carriers can
‘tailor’ network structure structure to cities. For example, passengers from and to Las Vegas may
place a high premium on getting there quickly and for low wait times between flights. Hence,
it would behoove airlines to connect Las Vegas with other ‘passenger travel and wait premium’
cities by a HS or direct network while possibly connecting other cities by other types of network
structures.

In our opinion, these factors suggest that following deregulation, given the large number of
cities spread over a great distance, it was optimal for legacy carriers to setup HS networks; of
course, under a different set of parameters, another network structure may have emerged. For
example, observe the prevalence of P2P networks in EU which is unsurprising given its smaller
radius compared to the U.S. (see Brueckner, Goebel and Niskanen (1997) for an analysis of network
structures in the EU.).

4.2 Post-Deregulation Network Structure and Design: Explanation and
Analysis

We assume that legacy carriers optimally setup HS networks after regulation ended in 1978. Our
investigation of network structure evolution and design and its impact on social welfare is through
a four stage game. In stage 1 legacy carriers setup HS networks16. Observe that we do not impose

16This is a testable assumption, which we pursue in a later paper: 1978 data on number of cities, average distance,
demand, and aircraft characteristics can be inputted into the model to see if the optimal network is a HS.
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restrictions on the number of carriers in stage 1. For any given number of incumbent carriers,
entrants will enter the market and setup HS network so long as their share of profits, however
determined, is greater than the fixed cost. Once the potential profits are smaller than the fixed
cost, we assume potential entrants look for ‘subsets’ of markets to enter.

For tractability we assume that in stage 2, entrants will either enter the intra-group A or intra-
group B travel markets: entrants first choose the optimal network structure and design in each
market (by minimizing the passengers plus airlines costs) and choose the more profitable market.

Legacy carriers respond to the entrants in the short and long run. The short run is modeled in
stage 3: legacy carriers alter the ‘variable input’ frequency– holding fixed inputs network structure
and aircrafts constant– which leads to a change in prices. The long run is modeled in stage 4:
legacy carriers alter all inputs including network structure.

The parameters of the model are chosen to ‘calibrate’ the model with the fact that legacy
carriers operated HS networks after regulation ended and continue doing so: na = 4, nb = 8, Ra =
200, Rb = 600, daa = 15, dbb = dab = dba = 10, Baa = Bbb = Bab = Bba = 800, Ū = 10, w = $15, t =
$10, g = 0.3, v = 50, λ = 2, δ = 0.1.

Table 1: Network Structure and Design in the Four-Stage Game
Stage 1 Stage 2 Stage 3 Stage 4
Legacy Entrant Legacy: Short run Legacy: Long Run

A B B A B A B

k (network) 1 1 4 1 1 1 1
f(k) (daily) 0.40 0.21 0.19 0.40 0.13 0.40 0.13
S(k) (seats) 911 1796 208 911 1738 911 2444
Fleet (planes) 24 56 110 24 56 24 32

4.2.1 Optimal Network Structure and Design

Table 1 summarizes the optimal network and design in the 4 stage game. By assumption, in stage
1 legacy carriers choose a HS network k = 1 over groups A and B. Group B has lower flight
frequencies, longer wait times between flights, larger aircraft, and a larger fleet.

In stage 2, entrants optimally choose group B and operate a sub-tour k = 4 network. That
entrants have chosen a sub-tour network given legacy carriers’ HS network is, of course, not a
general result but with empirical support it debunks the perception that so called LCCs operate
P2P networks. For empirical support we use Berry et al (2004) measure of network structure:
consider the relationship between the number of ‘nodes’ in a network and the number of links from
each node to other nodes:

Number of Nodes = a Number of Linksb

In a P2P network, all nodes have many links, while in a HS network some nodes have many links
while most links have few links. Hence, in a P2P network we’d expect b > 0 while for a HS network
b < 0; the parameter a can be interpreted as a measure of network size. Hussain (2006) estimates
a, b for every node and its links for various carriers for 1990, 1995, 2000, and 2006, the results of
which are in Table 2. All legacy carriers operate HS networks while for 1990, 1995 and 2000, LCCs
operated non-HS networks. In particular, note that Southwest arguably had a P2P network before
1990 but has since– see b in 1995 and 2000– moved away from that structure.

Comparing group B across stages 1 and 2, observe that entrants have a larger fleet consisting
smaller aircraft operating with lower frequency. Comparing stage 2 with stage 3 LCCs operate
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Table 2: Network Structure Regression Results
1990 1995 2000 2006

a b a b a b a b

Legacy Carriers
Northwest 16.44 -0.71 9.63 -0.49 12.17 -0.57 18.02 -0.70
American 12.88 -0.54 6.81 -0.37 14.03 -0.67 12.20 -0.70
US Air 9.03 -0.47 19.21 -0.75 6.95 -0.41 7.86 -0.55
American West 8.16 -0.59 14.85 -0.79 5.79 -0.37 8.17 -0.59
Delta 24.61 -0.79 15.99 -0.65 11.61 -0.52 22.70 -0.84
Continental 12.93 -0.59 9.07 -0.58 14.06 -0.68 23.10 -0.86
United 14.46 -0.61 13.21 -0.62 14.68 -0.66 19.56 -0.78

‘Low Cost’ Carriers
Southwest 0.65 0.45 1.32 0.07 1.4 0.04 2.27 -0.08
Jet Blue 1.18 0.11 8.28 -0.82

Source: DOT. Data on nodes and routes unavailable before 1990. Jet Blue did not exist in 1995.

flights with higher frequency than legacy carriers which is consistent with the data. LCCs higher
frequencies result in shorter wait times between flights which suggests ceteris paribus that LCCs
may not necessarily charge lower prices than legacy carriers. In fact, we show this to be the case
for some routes.

In stage 4 when legacy carriers vary all ‘inputs’ by re-optimizing network structure and design
the optimal network structure continues to be a HS– consistent with the data in Table 2– with no
change in group A network design, and lower frequencies, smaller fleet and larger aircraft in group
B.

4.2.2 Prices

From equation 7 the price for travel between an O-D city pair i, j is:

pij(k) = Bij − t Tij(k) − w Wij(k) − Δij − Ūij

For every O-D city pair, we calculate travel and wait times and therefore the price. Recall travel
time is the distance divided by velocity of the itinerary connecting cities i, j and wait time is a
function of flight frequencies. For intra-group travel, waiting time between flights is a function of
group frequency, whereas for inter-group travel wait time is a function of both groups’ frequencies.
This implies that in stage 3 when legacy carriers respond to LCCs entry into group B there is no
change in group A prices whereas there will be a change in group B and inter-group A, B and B, A
prices17.

Tables 3, 4 and 5 contain intra-group A, inter-group A → B = B → A and intra group B
travel prices respectively. Entry does not affect intra-group A prices since it does not affect legacy
carriers prices for intra-group A travel. But because legacy carriers adjust group B frequencies,
prices for all other travel markets change; that is, there is a “ripple” effect from entry leading to
lower prices in markets without direct competition which might be charitably interpreted as the
salubrious effect increased rivalry or sinisterly interpreted as entry deterrence pricing.

17If passenger’s waiting cost stems from waiting time at the origin only then group A → B prices will not equal
group B → A prices and LCCs will impact prices for group B → A but not group A → Btravel.
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Table 3: Intra-Group A Travel Prices
City 1a 2a 3a 4a

Stage 1: Legacy Carrier Prices
1a * 7.9930 7.9930 7.9930
2a 7.9930 * 7.9930 7.9930
3a 7.9930 7.9930 * 7.9930
4a 7.9930 7.9930 7.9930 *

Stage 2: LCC Prices
Not Applicable

Stage 3: Legacy Carrier Prices
1a * 7.9930 7.9930 7.9930
2a 7.9930 * 7.9930 7.9930
3a 7.9930 7.9930 * 7.9930
4a 7.9930 7.9930 7.9930 *

Stage 4: Legacy Carrier Prices
1a * 7.9930 7.9930 7.9930
2a 7.9930 * 7.9930 7.9930
3a 7.9930 7.9930 * 7.9930
4a 7.9930 7.9930 7.9930 *

In fact, it’s the consequence of optimal network structure and design: the change in inter-group
A → B travel prices occurs because even though travel originates from group A– where frequencies
remain unchanged– passengers are exchanged at the center and put on group B flights to their
destinations.

A comparison of stage 2 and stage 3 prices shows that the entrants may charge higher prices
on some routes and charge lower prices on other routes. Thus, competition does not always lower
prices and empirical studies using average fares may incorrectly conclude that all prices have fallen
when in fact some prices have fallen while others have risen. One of the reasons for higher prices
is due to the entrants’ higher flight frequency which leads to shorter wait times between flights
for which passengers are charged a higher price. Another reason is that the entrant transports
passengers faster with a sub-tour network than a HS network. For example, passengers traveling
between adjacent cities on the sub-tour are on direct flights whereas in the HS network they go
through a hub. Since the direct flight between adjacent cities travels a shorter distance, travel times
are quicker and consequently passengers are charged a higher price.
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Table 4: Inter-Group A → B and B → A Prices
City 1b 2b 3b 4b 5b 6b 7b 8b

Stage 1: Legacy Carriers Prices
1a 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839
2a 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839
3a 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839
4a 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839 7.9839

Stage 2: LCC Prices
Not Applicable

Stage 3: Legacy Carriers Prices
1a 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793
2a 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793
3a 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793
4a 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793 7.9793

Stage 4: Legacy Carriers Prices
1a 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784
2a 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784
3a 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784
4a 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784 7.9784
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Table 5: Intra-Group B Travel Prices
City 1b 2b 3b 4b 5b 6b 7b 8b

Stage 1: Legacy Carriers Prices
1b * 7.9876 7.9876 7.9876 7.9876 7.9876 7.9876 7.9876
2b 7.9876 * 7.9876 7.9876 7.9876 7.9876 7.9876 7.9876
3b 7.9876 7.9876 * 7.9876 7.9876 7.9876 7.9876 7.9876
4b 7.9876 7.9876 7.9876 * 7.9876 7.9876 7.9876 7.9876
5b 7.9876 7.9876 7.9876 7.9876 * 7.9876 7.9876 7.9876
6b 7.9876 7.9876 7.9876 7.9876 7.9876 * 7.9876 7.9876
7b 7.9876 7.9876 7.9876 7.9876 7.9876 7.9876 * 7.9876
8b 7.9876 7.9876 7.9876 7.9876 7.9876 7.9876 7.9876 *

Stage 2: LCC Prices
Intra-Tour Prices

1b * 7.9888 7.9870 7.9853
2b 7.9888 * 7.9888 7.9870
3b 7.9870 7.9888 * 7.9888
4b 7.9853 7.9870 7.9888 *
5b * 7.9888 7.9870 7.9853
6b 7.9888 * 7.9888 7.9870
7b 7.9870 7.9888 * 7.9888
8b 7.9853 7.9870 7.9888 *

Inter-Tour Prices
1b 7.9865 7.9856 7.9846 7.9837
2b 7.9856 7.9846 7.9837 7.9827
3b 7.9846 7.9837 7.9827 7.9818
4b 7.9837 7.9827 7.9818 7.9809
5b 7.9865 7.9856 7.9846 7.9837
6b 7.9856 7.9846 7.9837 7.9827
7b 7.9846 7.9837 7.9827 7.9818
8b 7.9837 7.9827 7.9818 7.9809

Stage 3: Legacy Carriers Prices
1b * 7.9830 7.9830 7.9830 7.9830 7.9830 7.9830 7..8930
2b 7.9830 * 7.9830 7.9830 7.9830 7.9830 7.9830 7.9830
3b 7.9830 7.9830 * 7.9830 7.9830 7.9830 7.9830 7.9830
4b 7.9830 7.9830 7.9830 * 7.9830 7.9830 7.9830 7.9830
5b 7.9830 7.9830 7.9830 7.9830 * 7.9830 7.9830 7..9830
6b 7.9830 7.9830 7.9830 7.9830 7.9830 * 7.9830 7.9830
7b 7.9830 7.9830 7.9830 7.9830 7.9830 7.9830 * 7..9830
8b 7.9830 7.9830 7.9830 7.9830 7.9830 7.9830 7.9830 *

Stage 4: Legacy Carriers Prices
1b * 7.9821 7.9821 7.9821 7.9821 7.9821 7.9821 7.9821
2b 7.9821 * 7.9821 7.9821 7.9821 7.9821 7.9821 7.9821
3b 7.9821 7.9821 * 7.9821 7.9821 7.9821 7.9821 7.9821
4b 7.9821 7.9821 7.9821 * 7.9821 7.9821 7.9821 7.9821
5b 7.9821 7.9821 7.9821 7.9821 * 7.9821 7.9821 7.9821
6b 7.9821 7.9821 7.9821 7.9821 7.9821 * 7.9821 7.9821
7b 7.9821 7.9821 7.9821 7.9821 7.9821 7.9821 * 7.9821
8b 7.9821 7.9821 7.9821 7.9821 7.9821 7.9821 7.9821 *



33

On the other hand, travel time in the entrants’ sub-tour network between non-adjacent cities is
longer than in the HS network. Entrants therefore charge lower prices than legacy carriers for these
routes18. In this simulation, all non-adjacent routes have lower prices; if we allow for differences
in cost per seat mile parameters, so that the entrants are a priori low cost, it may well be that all
routes will have lower prices.

The result that entrants’ prices are for the most part lower is strengthened if instead of operating
from/to primary airports (shared with legacy carriers) the entrants instead operate from ‘secondary’
airports such as Providence near Boston and Long Island near New York City. Entrants’ passengers
incur a loss in utility from traveling to secondary airports for which they are compensated by lower
prices. That entrants’ may charge lower prices due to increased passenger inconvenience is an
important component in any analysis of the impact on social welfare.

A comparison of stage 1 and 3 prices shows that entry results in legacy carriers’ charging lower
prices. This is because the loss of demand results in an optimal reduction of flight frequencies. Now
suppose the entrants’ exit the intra-group B market– with demand bouncing back, legacy carriers
will increase flight frequencies and therefore prices. To an outside observer this may appear to be
predatory pricing when in fact this is the result of optimal network design. As such, our explanation
offers a new perspective on incumbent’s pricing in response to entry and exit (Bamberger and
Carlton (2006), Eckert and West (2006), Edlin (2001), Edlin and Farrell (2004), Ito and Lee (2004)).

In stage 4, when legacy carriers adjust network structure, aircrafts, fleet, prices and flight
frequencies, legacy prices for intra-group B and all inter-group travel decline even further.

4.2.3 The Impact of Entry on Costs, Profits and Social Welfare

Table 7 summarizes costs, revenue, profits and social welfare in the four stage game. In every stage,
legacy carriers have lower variable cost per seat-mile in group B than group A owing to the larger
aircrafts in group B. As legacy aircrafts are fixed in stages 1 and 3, entrants’ have no impact on
V C(k); in stage 4 however as legacy carriers respond with larger aircrafts, the V C(k) is lower than
stages 1 and 3, which may be and has been interpreted as competition’s salubrious impact on legacy
carriers competitive position. In fact, competition is not rendering legacy carriers more efficient;
rather their lower costs is due an optimal response in network design.

Comparing legacy carriers’ variable cost per seat mile in groupB with LCCs in stage 2 shows
what economists have long argued: HS networks are generally more efficient than non-HS networks.
This is in contrast to the business literature in which ‘low fare carriers’ such as Southwest are
axiomatically ‘low cost carriers’. Ceteris paribus, operating smaller aircrafts leads to higher cost
per seat mile19. There is some evidence to support our claim that LCCs are not a priori low
cost. A majority of Southwest’s fleet consists of the Boeing 737-300: Table 6 contains the cost per
available seat mile (CASM) for the Boeing 737-300 for Southwest, US Air and American West. A
breakdown of the CASM by component shows that Southwest’s low cost stems from low fuel and
other expenses. In fact, a comparison of crew expenses across all aircrafts (not shown in Table 6)
indicates that US Air has lower crew costs. Southwest’s lower fuel costs clearly stems from its well
known fuel hedging strategy executed by its management team. In this sense, legacy carriers can
be blamed for being inefficient where the finger may be pointed at management instead of network
structure and design. While entrants have a higher variable cost per seat mile their total variable
cost is lower than legacy carriers. This is because TV C is the total seat miles times variable cost
per seat mile TV C(k) = SM(k) V C(k). Entrants’ higher V C(k) is countered by their lower SM(k)
which raises the question of whether entrants operating smaller aircrafts than legacy carriers will

18Ceteris paribus for intra-group intra-tour travel between cities i, j the HS network has lower prices if the distance
in the HS itinerary is shorter than a k > 1 network itinerary: 2R < 2πR|i − j|/n → |i − j| > n/π.

19This raises the question of when an entrant will be a ‘low cost carrier’. Without imposing severe restrictions–
such as on flight frequencies– it is very difficult to provide answers. For example, if we allow differences in α,β, it
will lead to changes in flight frequencies, which leads to a change in aircraft size. A priori, it is difficult to predict
what will happen and leave this question to be investigated in further research.
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Table 6: Boeing 737-300: CASM Comparison
Crew Fuel Maintenance Other CASM

US Air 1.2 3.7 1.1 0.2 7.3
AWA 1.0 3.1 1.8 0.1 7.2
Southwest 1.1 1.7 0.8 0.0 4.3

Source: CreditSights. All figures in cents. Some categories omitted.

Table 7: Cost, Revenue, Profits and Social Welfare in the Four-Stage Game
Stage: Stage 1 Stage 2 Stage 3 Stage 4
Carrier: Legacy Entrant Legacy: Short run Legacy: Long Run
Group: A B B A B A B

f(k) (daily) 0.40 0.21 0.19 0.40 0.13 0.40 0.13
S(k) (seats) 911 1796 208 911 1738 911 2444

V C(k) ($/seat-mile) 2.384 2.194 3.681 2.384 2.194 2.384 2.143
TV C(k) ($m) 0.013 0.082 0.011 0.013 0.073 0..013 0.065
TFC(k) ($m) 0.023 0.099 0.022 0.023 0.081 0.023 0.081
Passenger Cost ($m) 0.019 0.008 0.012 0.015
Airline Cost ($m) 0.218 0.022 0.191 0.184
R(k) ($m) 8.065 2.235 5.826 5.825
C(k) ($m) 0.237 0.031 0.204 0.200
Π(k) ($m) 7.827 2.204 5.621 5.625

Social Welfare ($m) 7.833 7.825 7.829

always have lower TV C(k)? Denoting entrants with E and legacy carriers by L, the entrants total
seat miles is smaller than legacy carriers if SM(kE = 4) < SM(kL = 1):

2{2πRb(kE − 1)/nb + Rb}{(nb − kE)dbb}nb < 2{2πRb(kL − 1)/nb + Rb}{(nb − kL)dbb + nadba}nb

If kE > kL– entrants operates a sub-tour network and legacy carriers operate HS network– this
inequality holds if:

(nb − kE)dbb < (nb − kL)dbb + nadba

(kL − kE)dbb < nadba

which implies that as long as legacy carriers have some inter group demand, entrants will have
lower TV C(k) so long as they operate with smaller aircraft and a network with sub-tour length
greater than legacy carriers. Thus, given legacy carriers’ HS network, entrants could only have had
lower total cost by operating sub-tour k > 1 networks which is exactly what is observed.

We digress to compare P2P and HS networks. Suppose entrants operate smaller aircraft than
legacy carriers. Then TV C(k = 0) < TV C(k = 1) so long as:

2{2πRb(−1)/nb + Rb} {(nb)dbb}nb < 2{Rb} {(nb − 1)dbb + nadba}nb

{Rb − 2πRb/nb} {(nb)dbb} < {Rb} {(nb − 1)dbb + nadba}
Since {Rb − 2πRb/nb} < Rb this implies that nbdbb cannot be too large compared to {(nb − 1)dbb +
nadba}.
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Since all carriers are assumed to practice yield management, there is no consumer surplus in
this model so that social welfare is the sum of legacy and entrants carriers’ profits. From Table 7,
comparing stages 1 and 3, we note that it is possible for social welfare to be lower due to entry by
non-HS network carriers. This is despite the fact entrants charge lower prices and operate flights
with higher frequency– the source of the social welfare loss is some entrants’ passengers being
inconvenienced from longer travel times in a sub-tour network and from the legacy carriers lower
flight frequencies which inconveniences their passengers. When combined with lower legacy profits
it is possible for social welfare to be lower.

It may appear that this result is conditional on zero consumer surplus– however, if we allow for
positive consumer surplus it offsets carriers profits by the same amount so that social welfare will not
change. This result, though theoretical, suggests that competition by LCCs, made possible under
deregulation may not have necessarily lowered social welfare. This suggests that social welfare may
well have been higher if entry by non-HS carriers had been restricted. This of course would have
meant that policy-makers had anticipated HS networks to be optimal for the U.S. airline industry
and accordingly encouraged competition by HS carriers but not non-HS carriers. In contrast, in
the EU, the optimal network may well be P2P or subtour networks, so that entry by HS networks
should be discouraged there.

5 Conclusion

We extended LNs model and applied it to the evolution of the U.S. airline industry following
deregulation in 1978. We show that under certain conditions on the models parameters, which
we argue are aligned with the data, it was optimal for incumbent carriers to form HS network
structures. With a different set of parameters (e.g. the short distances of Europe, especially in an
era of dominating flag carriers), HS might not be optimal. We further show that for entrants facing
established HS networks, it is optimal to form non-HS networks. Moreover, the effect of entrants
on incumbents pricing is the optimal network design response. Entrants need not charge lower
prices across the spectrum, especially when the disutility of entrants service to the consumer, or
passenger inconvenience, due to longer travel times is small enough. Finally, we show that because
of passenger inconvenience, under certain conditions on parameters the impact of free entry (new
entrants cherry picking, i.e. offering P2P service between two non-hub cities) on social welfare is
negative, suggesting entries to be regulated in the industry.

It may appear that our suggestion to restrict entry by non-HS network carriers may be wishful
thinking in hindsight. However, we feel that this policy has applications for the future. Consider
the optimal network structure and design of LCCs as these expand, or are forced to expand, due
to pressures from Wall Street. With a greater number of cities, expanding distances, and lower
demand routes, the analysis of stage 1 indicates that the LCCs will have to shift from sub-tour to
HS networks. In fact, the measure of network structure b in Table 2 shows that this precisely what’s
happening. Southwest and JetBlue in 2006 are operating non-P2P networks and it is our guess
that they will increasingly do so. Under deregulation, this raises the spectre of history repeating
itself: with barriers to entry, social welfare, and, Southwest and JetBlue’s profitability, may well be
undermined by another wave of non-HS network carriers. Therefore, we advocate a closer look at
this possibility and suggest, if warranted, re-regulating the industry to allow entry by HS carriers
only.
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