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Abstract

Many finance questions require a full characterization of the distribution of returns. We

propose a bivariate model of returns and realized volatility (RV), and explore which fea-

tures of that time-series model contribute to superior density forecasts over horizons of 1

to 60 days out of sample. This term structure of density forecasts is used to investigate

the importance of: the intraday information embodied in the daily RV estimates; the func-

tional form for log(RV ) dynamics; the timing of information availability; and the assumed

distributions of both return and log(RV ) innovations. We find that a joint model of returns

and volatility that features two components for log(RV ) provides a good fit to S&P 500

and IBM data, and is a significant improvement over an EGARCH model estimated from

daily returns.
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1 Introduction

Many finance questions require a full characterization of the distribution of returns. Examples

include option pricing which uses the forecast density of the underlying spot asset, or value-at-

risk which focuses on a quantile of the forecasted distribution. Once we move away from the

simplifying assumptions of Normally-distributed returns or quadratic utility, portfolio choice also

requires a full specification of the return distribution.

The purpose of this paper is to study the accuracy of forecasts of return densities produced by

alternative models. Specifically, we focus on the value that high frequency measures of volatility,1

provide in characterizing the forecast density of returns. We propose new bivariate models of

returns and realized volatility and explore which features of those time-series models contribute

to superior density forecasts over multiperiod horizons out of sample.

Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys (2001), Ander-

sen, Bollerslev, Diebold, and Ebens (2001), Andreou and Ghysels (2002), Barndorff-Nielsen and

Shephard (2002a), Barndorff-Nielsen and Shephard (2002b), and Meddahi (2002), among others,2

have established the theoretical and empirical properties of the estimation of quadratic variation

for a broad class of stochastic processes in finance. Although theoretical advances continue to

be important, part of the research in this new field has focused on the time-series properties and

forecast improvements that realized volatility provides. Examples include Andersen, Bollerslev,

Diebold, and Labys (2003), Andersen, Bollerslev, and Diebold (2007), Andersen, Bollerslev, and

Meddahi (2004), Ghysels and Sinko (2006), Ghysels, Santa-Clara, and Valkanov (2006), Koop-

man, Jungbacker, and Hol (2005), Maheu and McCurdy (2002, 2007), Martens, van Dijk, and

de Pooter (2003), and Taylor and Xu (1997).

Few papers have studied the benefits of incorporating RV into the return distribution. An-

dersen, Bollerslev, Diebold, and Labys (2003), and Giot and Laurent (2004) consider the value

of RV for forecasting and for Value-at-Risk. These approaches decouple the return and volatility

dynamics and assume that RV is a sufficient statistic for the conditional variance of returns. Ghy-

sels, Santa-Clara, and Valkanov (2005) find that high frequency measures of volatility identify

1Unless necessary for clarity, we use the term volatility to refer to either variance or standard deviation.
2Recent reviews include Andersen, Bollerslev, and Diebold (2004), Barndorff-Nielsen and Shephard (2007).
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a risk-return tradeoff at lower frequencies. Their filtering approach to volatility measurement

does not provide a law of motion for volatility and therefore multiperiod forecasts cannot be

computed in that setting.

RV is an ex post measure of volatility and in general may not be equivalent to the conditional

variance of returns. We propose bivariate models based on two alternative ways in which RV is

linked to the conditional variance of returns. Since our system provides a law of motion for both

return and RV at the daily frequency, multiperiod forecasts of returns and RV or the density

of returns are available. The dynamics of the conditional distribution of RV will have a critical

impact on the quality of the return density forecasts.

Our benchmark model is an EGARCH model of returns. This model is univariate in the

sense that it is driven by one stochastic process which directs the innovations to daily returns.

It does not allow higher-order moments of returns to be directed by a second stochastic process.

Nor does it utilize any intraday information.

Two types of functional forms for the bivariate models of returns and RV are proposed. The

first model uses a heterogeneous autoregressive (HAR) specification (Corsi (2003), Andersen,

Bollerslev, and Diebold (2007)) of log(RV ). A second model allows different components of

log(RV ) to have different decay rates (Maheu and McCurdy (2007)).

We also consider two ways to link RV to the variance of returns. First, we impose the cross-

equation restriction that the conditional variance of daily returns is equal to the conditional

expectation of daily RV. Second, motivated by Bollerslev, Kretschmer, Pigorsch, and Tauchen

(2007) who model returns, bipower variation and realized jumps in a multivariate setting,3 we

also investigate a specification of our bivariate component model for which the variance of returns

is assumed to be synonymous with RV. We label this case ’observable stochastic volatility’ and

explore whether this assumption improves the term structure of density forecasts. We also

compare specifications with non-Normal versus Normal innovations for both returns and log(RV ).

As in our benchmark EGARCH model, all of our bivariate models allow for so-called lever-

age or asymmetric effects of past negative versus positive return innovations. Our bivariate

3For definition and development of bipower variation and realized jumps see, for example, Barndorff-Nielsen
and Shephard (2004).
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models allow for mean reversion in RV. This allows us to evaluate variance targeting for these

specifications.

Our main method of model comparison uses the predictive likelihood of returns. This is

the forecast density of a model evaluated at the realized return; it provides a measure of the

likelihood of the data being consistent with the model. Intuitively, better forecasting models will

have higher predictive likelihood values. Therefore our focus is on the relative accuracy of the

models in forecasting the return density out of sample. The forecast density of the models is not

available in closed form; however, we discuss accurate simulation methods that can be used to

evaluate the forecast density and the predictive likelihood.

An important feature of our approach is that we can directly compare traditional volatility

specifications, such as EGARCH, with our bivariate models of return and RV since we focus

on a common criteria – forecast densities of returns. We generate a predictive likelihood for

each out-of-sample data point and for each forecast horizon. For each forecast horizon, we can

compute the average predictive likelihood where the average is computed over the fixed number

of out-of-sample data points. A term structure of these average predictive likelihoods allows us

to investigate the relative contributions of RV over short to long forecast horizons.

Our empirical applications to S&P 500 (Spyder) and IBM returns reveal the importance of

intraday return information, the timing of information availability, and non-Normal innovations

to both returns and log(RV ). The main features of our results are as follows. Bivariate models

that use high frequency intraday data provide a significant improvement in density forecasts

relative to an EGARCH model estimated from daily data. Two-component specifications for

log(RV ) provide similar or better performance than HAR alternatives; both dominate the less

flexible single-component version. A bivariate model of returns with Normal innovations and

observable stochastic volatility directed by a 2-component, exponentially decaying function of

log(RV ) provides good density forecasts over a range of out-of-sample horizons for both data

series. We find that adding a mixture of Normals or GARCH effects to the innovations of the

log(RV ) part of this specification is not statistically important for our sample of S&P 500 returns,

while the addition of the mixture of Normals provides a significant improvement for IBM.

4



This paper is organized as follows. The next section introduces the data used to construct

daily returns and daily RV. It also discusses the measurement of volatility, the adjustments to

realized volatility to remove the effects of market microstructure, and a benchmark model which

is based on daily return data. Our bivariate models of returns and RV, based on high-frequency

intraday data, are introduced in Section 3. The calculation of density forecasts and the predictive

likelihood are discussed in Section 4; results are presented in Section 5. Section 6 concludes.

2 Data and Realized Volatility Estimation

2.1 Data

We investigate a broadly diversified equity index (the S&P 500) and an individual stock (IBM).

For the former we use the Standard & Poor’s Depository Receipt (Spyder) which is a tradable

security that represents ownership in the S&P 500 Index. The ticker symbol is SPY. Since this

asset is actively traded, it avoids the stale price effect associated with using the S&P 500 index at

high frequencies. Transaction price data associated with both the Spyder and IBM are obtained

from the New York Stock Exchange’s Trade and Quotes (TAQ) database.

Our data samples cover the period January 2, 1996 to August 29, 2007 for the Spyder and

January 4, 1993 to August 29, 2007 for IBM. The shorter sample for the Spyder data was chosen

based on volume of trading, for example there were many 5-minute periods with no transactions

during the first years after the Spyder started trading in 1993, and a structural break in the Spyder

log(RV ) data in the mid 1990s (Liu and Maheu (2008)). The average number of transactions per

day for the 1996-2007 sample of Spyder data4 was 32, 971 but the volume of trades has increased

substantially over the sample – especially from 2005 forward. In contrast, the average number of

transactions per day for IBM shares has been more stable over our 1993-2007 sample, averaging

6011 transactions per day with a substantial increase from late 2006.

4Henceforth, unless necessary for clarity, we refer to the Spyder data as S&P 500.
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After removing errors from the transaction data,5 a 5-minute grid6 from 9:30 to 16:00 EST

was constructed by finding the closest transaction price before or equal to each grid-point time.

From this grid, 5-minute continuously compounded (log) returns are constructed. These returns

are scaled by 100 and denoted as rt,i, i = 1, ..., I, where I is the number of intraday returns in

day t. For our 5-minute grid, normally I = 78 although the market closed early on a few days.

This procedure generated 228, 394 5-minute returns corresponding to 2936 trading days for the

S&P 500; and 286, 988 5-minute returns corresponding to 3693 trading days for IBM.

2.2 Realized Volatility Estimation

A traditional proxy for ex post latent volatility has been daily squared returns. As shown by

Andersen and Bollerslev (1998), this measure of volatility is very noisy and of limited use in

assessing features of volatility such as its time-series properties.

Better estimates of ex post latent volatility are available. The increment of quadratic variation

is a natural measure of ex post variance over a time interval. A popular estimator of this type

is realized variance or realized volatility (RV) computed as the sum of squared returns over this

time interval. As shown by Andersen, Bollerslev, Diebold, and Labys (2001), as the sampling

frequency is increased, the sum-of-squared returns converges to the quadratic variation over a

fixed time interval for a broad class of models. Thus RV is a consistent estimate of ex post variance

for that period. The asymptotic distribution of RV has been studied by Barndorff-Nielsen and

Shephard (2002a) who provide conditions under which RV is also an unbiased estimate.

Given the intraday returns, rt,i, i = 1, ..., I, an unadjusted RV estimator of daily ex post

variance is

RVt,u =
I∑

i=1

r2
t,i. (2.1)

However, in the presence of market-microstructure dynamics, RV can be a biased and inconsistent

estimator for quadratic variation (Bandi and Russell (2005) and Zhang, Mykland, and Aı̈t-Sahalia

5Data were collected with a TAQ correction indicator of 0 (regular trade) and when possible a 1 (trade later
corrected). We also excluded any transaction with a sale condition of Z, which is a transaction reported on the
tape out of time sequence, and with intervening trades between the trade time and the reported time on the tape.
We also checked any price change that was larger than 3% and removed obvious errors.

6Volatility signature plots using grids ranging from 1 minute to 195 minutes are available on request.
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(2005)). Therefore, we consider several adjustments to our estimates based on Hansen and Lunde

(2006) and gauge their statistical performance in our model comparisons.7

Hansen and Lunde (2006) suggest the use of Bartlett weights to rule out negative values for

RV. Following this approach, a corrected RV estimator is

RVt,ACqb = ω0γ̂0 + 2

q∑
j=1

ωj γ̂j, γ̂j =

I−j∑
i=1

rt,irt,i+j, (2.2)

in which the weights follow a Bartlett scheme ωj = 1− j
q+1

, j = 0, 1, ..., q. We consider q = 1, 2, 3.

In summary, we construct daily RV with no adjustment, that is RVu as in equation (2.1),

and, alternatively, RVACqb using a kernel-based adjustment for market-microstructure dynamics,

as in equation (2.2). Daily returns, rt, are computed as the logarithmic difference of the price

for the last grid point of the day and the price for the first grid point following market opening.

These returns are scaled by 100.

Table 1 displays summary statistics for returns and alternative RV estimates computed from

a 5-minute grid. If we take the sample variance of daily returns as a benchmark estimate

of volatility in which no market microstructure effects are present, and compare this to the

sample mean of RV, we see a clear bias for unadjusted RV. With respect to removing bias, it

appears that a Bartlett adjustment with q = 3 is necessary for the S&P 500 (Spyder) data,

whereas an adjustment with q = 1 is adequate for the IBM data. This conclusion is supported

by autocorrelation analyses of the 5-minute returns data, as revealed by the autocorrelation

functions with associated confidence bounds in Figure 1 for the S&P 500 and IBM respectively.

For the remainder of our paper, unless otherwise stated, we use RVt ≡ RVt,ACqb, with q = 3 for

the S&P 500 and q = 1 for the IBM data. The noise-to-signal ratio, computed following Hansen

and Lunde (2006), is 0.15% for our sample of Spyder data and 0.05% for the IBM sample.

Figures 2 and 3 display daily returns plus the square-root of adjusted RV for the S&P 500 and

IBM sample periods respectively.

7For alternative approaches to dealing with market microstructure dynamics see Aı̈t-Sahalia, Mykland, and
Zhang (2005, 2006), Bandi and Russell (2006), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, 2006),
Curci and Corsi (2006), Oomen (2005), Zhang (2004) and Zhou (1996).
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2.3 Benchmark Specification

One way to ascertain whether or not high-frequency (intraperiod) information contributes to

improved forecasts of return distributions, is to compare density forecasts from our bivariate

specifications of returns and log(RV ) with those from a traditional EGARCH model8 (Nelson

(1991)) specified as:

rt = µ + εt, εt = σtut ut ∼ NID(0, 1), (2.3)

log(σ2
t ) = ω + β log(σ2

t−1) + γut−1 + α|ut−1|. (2.4)

Note that this EGARCH model conditions on daily (standardized) return innovations rather

than RV which incorporates intraday information.

3 Joint Return-RV Models

As discussed in the Introduction, an integrated model of returns and realized volatility is needed

to deal with common questions in finance which require a forecast density of returns for multiple

horizons.9 In this section, we introduce two alternative joint specifications of daily returns and

realized volatility. These bivariate models are distinguished by alternative assumptions about

RV dynamics. We also consider versions of these bivariate models with non-Normal return and

log(RV ) innovations, as well as a version with an alternative assumption concerning available

information about RV. In each case, cross-equation restrictions link the variance of returns and

our realized volatility specification.

3.1 Linking Variance of Returns to RV

Corollary 1 of Andersen, Bollerslev, Diebold, and Labys (2003) shows that, under empirically

realistic conditions, the conditional expectation of quadratic variation (QVt) is equal to the con-

8Note that we found the EGARCH to have the best performance among a variety of other GARCH specifica-
tions that were explored.

9Similar to most of the existing literature, although see Meddahi (2003), we ignore aggregation issues linking
an underlying diffusion to dynamics of daily returns and RV. We focus on the empirical value of using daily RV
in daily return models.
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ditional variance of returns, that is, Et−1(QVt) = Vart−1(rt) ≡ σ2
t . If RV is an unbiased estimator

of quadratic variation,10 it follows that the conditional variance of returns can be linked to RV as

σ2
t = Et−1RVt where the information set is defined as Φt−1 ≡ {rt−1, RVt−1, rt−2, RVt−2, ..., r1, RV1}.

Assuming that RV has a log-Normal distribution, that restriction takes the form

σ2
t = Et−1RVt = exp

(
Et−1 log(RVt) +

1

2
Vart−1(log(RVt))

)
. (3.1)

3.2 HAR-RV Specifications

We begin with a bivariate specification for daily returns and RV in which conditional returns

are driven by Normal innovations and the dynamics of log(RVt) are captured by Heterogeneous

AutoRegressive (HAR) functions of lagged log(RVt). Corsi (2003) and Andersen, Bollerslev, and

Diebold (2007) use HAR functions in order to parsimoniously capture long-memory dependence.

Motivated by that work, we define

log(RVt−h,h) ≡ 1

h

h−1∑
i=0

log(RVt−h+i), log(RVt−1,1) ≡ log(RVt−1). (3.2)

For example, log(RVt−22,22) averages log(RV ) over the most recent 22 days, that is, from t− 22

to t− 1, log(RVt−5,5) over the most recent 5 days, etc.

This leads to our bivariate specification for daily returns and RV with the dynamics of

log(RVt) modeled as an asymmetric HAR function of past log(RV ). This bivariate system

is summarized as follows:

rt = µ + εt, εt = σtut, ut ∼ NID(0, 1) (3.3)

log(RVt) = ω + φ1 log(RVt−1) + φ2 log(RVt−5,5) + φ3 log(RVt−22,22)

+ γut−1 + ηvt, vt ∼ NID(0, 1). (3.4)

This bivariate specification of daily returns and RV imposes the cross-equation restriction that

10We assume that any stochastic component in the intraperiod conditional mean is negligible compared to the
total conditional variance. It is also straightforward to estimate a bias term.
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relates the conditional variance of daily returns to the conditional expectation of daily RV, as in

equation (3.1). If the model is stationary, the unconditional mean of log(RV ) is ω/(1−φ1−φ2−
φ3). This can be used to enforce variance targeting. Joint estimation of the bivariate system in

equations (3.3), (3.4) and (3.1) is by maximum likelihood.

Since our applications are to equity returns, it is important to allow for asymmetric effects in

volatility. To facilitate comparisons with the benchmark EGARCH model, our parameterization

in equation (3.4) includes an asymmetry term, γut−1 associated with the standardized return

innovation, ut−1. The impact coefficient for a negative innovation to returns will be −γ, whereas

the impact of a positive innovation will be γ. Typically, γ̂ < 0, which means that a negative

innovation to returns implies a higher conditional variance for next period. Unlike EGARCH,

our parameterization does not propagate the asymmetry further into future volatility.

In-sample fit of GARCH models have generally favored return innovations with tails that are

fatter than those implied by a Normal distribution. Therefore, we evaluate whether or not that

result obtains for our bivariate models of returns and RV. That is, we also try replacing equation

(3.3) with

rt = µ + εt, εt = σtut, ut ∼ tν(0, 1), (3.5)

in which tν denotes a t-distribution with mean 0, variance 1, and ν degrees of freedom. The

remainder of the bivariate dynamic system for this case is the same as above. We compare

this bivariate system with t-distributed return innovations to that with Normally-distributed

innovations, not only for in-sample fit, but also for the term structure of out-of-sample density

forecasts.

3.3 Component-RV Specifications

This bivariate specification for daily returns and RV has conditional returns driven by Normal

innovations but now the dynamics of log(RVt) are captured by two components (2Comp) with

different decay rates, as in Maheu and McCurdy (2007). In particular, this bivariate system can
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be summarized as follows:

rt = µ + εt, εt = σtut, ut ∼ NID(0, 1) (3.6)

log(RVt) = ω +
2∑

i=1

φisi,t + γut−1 + ηvt, vt ∼ NID(0, 1) (3.7)

si,t = (1− αi) log(RVt−1) + αisi,t−1, 0 < αi < 1, i = 1, 2. (3.8)

Again, we impose the cross-equation restriction that relates the conditional variance of daily

returns to the conditional expectation of daily RV as in equation (3.1). For this specification of

our bivariate model, the dynamics of daily log(RV ) are parameterized as the component model

specified in equations (3.7) and (3.8) which replace the HAR function in equation (3.4).

Note that this dynamic model for log(RV ) includes the sum of two components that are

allowed to decay at different rates associated with their parameters αi. That is, for component i,

a small value of αi puts more weight on log(RVt−1), and less weight on the past si,t−1. Conversely,

an αi close to 1 puts less weight on recent observations and more weight on past si,t−1 which

smooths the data. Startup values of si,0 are set to the average of log(RV ) based on the reserved

presample of data.

Although infinite exponential smoothing provides parsimonious estimates, it possesses several

drawbacks. For instance, it does not allow for mean reversion in volatility; and, as Nelson

(1990) has shown in the case of squared returns or squared innovations to returns, the model

is degenerate in its asymptotic limit. To circumvent these problems, but still retain parsimony,

our dynamic model for log(RVt), given by equation (3.7), weights each component i by the

parameter 0 < φi < 1 and adds an intercept, ω. Note that when the model is stationary, variance

forecasts will mean revert to ω/(1− φ1− φ2).
11 This result can be used to do variance targeting

and eliminate the parameter ω from the model.12 This model implies an infinite expansion in

log(RVt−j) with coefficients of φ1(1− α1)α
j−1
1 + φ2(1− α2)α

j−1
2 , j = 1, 2, ....13

In order to evaluate the potential importance of t-distributed return innovations for this

bivariate specification, we replace equation (3.6) with equation (3.5), and jointly estimate with

11Assuming φ1 + φ2 < 1.
12That is, set ω = mean(log(RV ))(1− φ1 − φ2).
13Expanding (3.8) gives si,t = (1− αi)

∑∞
n=0 αn

i log(RVt−1−n).
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equations (3.7), (3.8) and (3.1).

3.4 Component-RV Specifications with Observable SV

Motivated by Bollerslev, Kretschmer, Pigorsch, and Tauchen (2007), we also present results

for an alternative assumption about available information in which we replace equation (3.1)

with σ2
t ≡ RVt. This is like taking a stochastic volatility model in which volatility is latent and

assuming it is equal to observable RV, hence we label this observable SV (OSV).

This bivariate system, with the stronger information assumption, is specified as follows:

rt = µ + εt, εt =
√

RVtut, ut ∼ NID(0, 1) (3.9)

log(RVt) = ω +
2∑

i=1

φisi,t + γut−1 + ηvt, vt ∼ NID(0, 1) (3.10)

si,t = (1− αi) log(RVt−1) + αisi,t−1, 0 < αi < 1, i = 1, 2. (3.11)

which we label 2Comp-OSV.

3.5 Extensions

We consider two extensions to the previous model. The first sets η = 1, and replaces the

innovation vt in (3.10) with a mixture of two Normals. It has density

vt ∼





N(0, σ2
v,1) with probability π

N(0, σ2
v,2) with probability 1− π

(3.12)

and allows log(RVt) to have a fat-tailed distribution.

The second extension is to include GARCH dynamics. In this case, η in (3.10) has a time

subscript and follows the GARCH(1,1) model

η2
t = κ0 + κ1[log(RVt−1)− Et−2 log(RVt−1)]

2 + κ2η
2
t−1. (3.13)

where log(RVt−1)− Et−2 log(RVt−1) denotes the innovation to log(RV ) at time (t− 1).
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4 Density Forecasts

Our focus is on the return distribution and we evaluate each of the models ability to provide

accurate density forecasts of daily returns. A popular approach to assess the accuracy of a

model’s density forecasts is the predictive likelihood or logarithmic score (Amisano and Giacomini

(2007), Bao, Lee, and Saltoglu (2006), and Weigend and Shi (2000)). This approach evaluates

the model’s density forecast at the realized return. This is generally done for a one-step-ahead

forecast density as multiperiod density forecasts are often not available in closed form. In this

paper we advocate multiperiod forecasts since they provide more information to discern among

models. The details of the multiperiod predictive likelihood and how to calculate it are described

below.

The average predictive likelihood over the out-of-sample observations t = τ + kmax, ..., T − k,

is

DM,k =
1

T − τ − kmax + 1

T−k∑

t=τ+kmax−k

log fM,k(rt+k|Φt, θ), k ≥ 1, (4.1)

where fM,k(x|Φt, θ) is the k-period ahead predictive density for model M , given Φt and parameter

θ, evaluated at the realized return x = rt+k. Intuitively, models that better account for the data

produce larger DM,k.

As we will see below for our application to S&P 500, T = 2936, τ = 1200, kmax = 60 so that

τ + kmax− 1 = 1259. DM,k is computed for each k using the out-of-sample returns r1260, ..., r2936.

That is, if k = 1, DM,1 is computed using out-of-sample returns r1260, ..., r2936. For k = 2, DM,2

is computed using the same out-of-sample returns, etc. This gives us a term structure of average

predictive likelihoods, DM,1, ..., DM,60, to compare the performance of alternative models, M , over

an identical set of out-of-sample data points.

To assess the statistical differences in DM,k for two models we present Diebold and Mar-

iano (1995) test statistics based on the work of Amisano and Giacomini (2007). Under the

null hypothesis of equal performance based on predictive likelihoods of horizen k for models A

and B, tkA,B = (DA,k − DB,k)/(σ̂AB,k/
√

T − τ − kmax + 1) is asymptotically standard Normal.
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σ̂AB,k is the Newey-West long-run sample variance (HAC) estimate for dt = log fA,k(rt+k|Φt, θ̂)−
log fB,k(rt+k|Φt, θ̂). θ̂ denotes the maximum likelihood estimate for the respective model. Due to

the overlapping nature of the density forecasts for k > 1 we set the lag-length in the Newey-West

variance estimate to the integer part of [k× 0.15].14 A large positive (negative) test statistic is a

rejection of equal forecast performance and provides evidence in favor of model A (B). As with

the predictive likelihoods, a term structure of associated test statistics tkA,B, k = 1, ..., kmax are

presented in the Results section.

4.1 Computations

For all k > 1 the term fM,k(rt+k|Φt, θ) will be unknown for the models we consider. However,

given that we have fully specified the law of motion for daily returns and RV, we can accurately

estimate this quantity by standard Monte Carlo methods. A conventional approach to estimate

the forecast density would be to simulate the model out k periods a large number of times

and apply a kernel density estimator to these realizations. However, using the kernel density

estimator to estimate the forecast density ignores the fact that, in our applications, conditional

on the variance we know the distribution. The use of conditional analytic results has been

referred to as Rao-Blackwellization and is a standard approach to reduce the variance of a Monte

Carlo estimate (Robert and Casella (1999)). This is particularly useful in density estimation

which is our context.

To illustrate consider our basic benchmark EGARCH model in (2.3). Note that in this

univariate case the information set, Φt, just includes past returns. Our estimate is

fM,k(rt+k|Φt, θ) =

∫
f(rt+k|µ, σ2

t+k)p(σ2
t+k|Φt)dσ2

t+k (4.2)

≈ 1

N

N∑
i=1

f(rt+k|µ, σ
2(i)
t+k), σ

2(i)
t+k ∼ p(σ2

t+k|Φt) (4.3)

where f(rt+k|µ, σ
2(i)
t+k) is a Normal density with mean µ and variance σ2

t+k, evaluated at return

rt+k; and σ
2(i)
t+k is simulated out N times according to the EGARCH specification, p(σ2

t+k|Φt),

14Our results are generally stronger (stronger rejections of the null hypothesis) for smaller lag-lengths.
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which is conditional on time t quantities σ2
t , ut, and θ̂, the maximum likelihood estimate of the

parameter vector based on Φt.

For the joint models of returns and RV, we do a similar exercise to compute the predictive

likelihood for returns. In this case, we simulate out both the return and RV dynamics, which im-

plicitly integrates out the unknown σ2
t+k. For each simulation of RV

(i)
t+1, ..., RV

(i)
t+k−1, i = 1, ..., N ,

we can compute σ
2(i)
t+k = Et+k−1RV

(i)
t+k using (4.1).15 A numerical standard error can be used to

access accuracy of f̂M,k(rt+k|Φt, θ) and D̂M,k.
16 In our application we found N = 10000 to

provide sufficient accuracy. For example, the numerical standard error is typically well below 1%

of D̂M,k. Note that for all of our bivariate models the dynamics of the conditional distribution

of RV will have a critical impact on the quality of the return density forecasts.

5 Results

Our first results are out-of-sample density forecasts evaluated using predictive likelihoods. The

S&P 500 sample starts at 1996/01/02, the first out-of-sample density forecast begins at 2000/12/26

(t = 1260) and ends at 2007/8/29 (t = 2936), for a total of 1677 density forecasts for each k. We

summarize these out-of-sample forecasts by averaging the associated 1677 predictive likelihoods

for each k and then plotting their term structure for the forecast horizons k = 1, ..., 60, that

is, from 1 to 60 days out of sample. Note that the IBM sample starts at 1993/01/04, the first

density forecast begins at 1997/12/24 (t = 1260), and ends at 2007/8/29 (t = 3693), for a total

of 2434 density forecasts for each k. Full sample parameter estimates for the best models are

discussed at the end of the section. Model estimation conditions on the first 24 observations.

Our empirical work considered many different models, including different innovation distri-

butions for returns, the value of variance targeting for log(RV ), different functional forms for

log(RV ), and a variety of GARCH specifications estimated using daily returns. We note the

15Recall that the observable SV specification in Section 3.4 sets σ
2(i)
t+k = RV

(i)
t+k.

16To calculate a numerical standard error for D̂M,k: let v2 denote the sample variance of the draws of
f(rt+k|µ, σ

2(i)
t+k), then the numerical standard error for f̂M,k(rt+k|Φt, θ) is ν/

√
N . Using the delta rule to calculate

ˆV ar(log f̂M,k(rt+k|Φt, θ)); the numerical standard error of D̂M,k is
√∑T−k

t=τ+kmax−k
ˆV ar(log f̂M,k(rt+k|Φt, θ))/(T−

τ − kmax + 1).

15



following general results: models with variance targeting were dominated by the unrestricted

version of the model; HAR and component models that link the conditional variance of returns

to RVt by (3.1) always performed better with t-innovations to returns;17 2-component models

were always better than single-component versions; EGARCH was the best model based on

daily returns data. In the following summary of results, we focus on the top models in different

categories.

Our empirical applications to S&P 500 and IBM returns reveal the importance of intraday

information, the timing of information availability, and non-Normal innovations to both returns

and log(RV ). Figures 4 and 6 compare the term structures of density forecasts for the best models

of each type for the S&P 500 and IBM respectively; Figures 5 and 7 evaluate the robustness of

those results to further generalizations. The second plot in each figure displays a corresponding

term structure of Diebold-Mariano test statistics for equal forecast performance for selected

models.

Note that all of the average predictive likelihood term structures display a negative slope.

This is because the conditioning information is most useful for small k. As we forecast further

and further out of sample, the value of the current information diminishes. All of our models

are stationary so that multiperiod forecast densities converge to the unconditional distribution.

Using the same data points to evaluate the predictive likelihood for different k, we can see how

accuracy of forecasts deteriorate for longer horizons.

Two main conclusions can be gleaned from Figure 4. Firstly, high-frequency intraday data

provide a significant improvement in density forecasts relative to an EGARCH model estimated

from daily data. The same conclusion about the value of high-frequency data can be drawn

from the IBM sample, as shown in Figure 6. Secondly, both the 2-component and the HAR

specification dominate a single-component version of equations (3.7) and (3.8) for the dynamics

of log(RV ). Note that the advantage of the more flexible functional forms (either 2-component

or HAR) increase the further out we forecast.

The three best bivariate specifications are the 2Comp-OSV, 2Comp and HAR. For the S&P

17We did consider t-innovations for returns in the observable SV models, but estimation supported a Normal
distribution since the degree of freedom parameter always moved to extremely large values.

16



500, the latter two do equally well; for IBM forecasts the 2Comp specifications are better than

HAR. The additional information assumed by the observable stochastic volatility (OSV) assump-

tion, although very important with respect to in-sample fit as shown below, is only significant

with respect to density forecasts for long horizons (beyond 45 days) for the S&P 500. The OSV as-

sumption does not improve density forecasts for the IBM case, as shown by the Diebold-Mariano

test statistics in Figure 6 for ’2Comp-OSV vs 2Comp’.

Figures 5 and 7 evaluate the robustness of the best bivariate specification, for the S&P 500 and

IBM respectively, to generalizations of the distributional assumption for log(RV ). In particular,

as discussed in Section 3.5, we generalize equation (3.10) to allow either a mixture-of-Normals or

a GARCH parameterization of the variance of log(RV ). It is clear from Figure 5 that neither of

these generalizations significantly improve the out-of-sample density forecasts for our S&P 500

sample. On the other hand, Figure 7 suggests that a mixture-of-Normals parameterization of the

variance of log(RV ) improves density forecasts relative to the Normally-distributed alternative

for the IBM sample.

Table 2 provides full-sample model estimates for two of the best bivariate specifications for

S&P 500 data. Estimates for the 2Comp-OSV model are reported in column 2 of the table. This

specification imposes the restriction φ1 = φ2 which produced the best forecasts. The 3rd column

of the table reports estimates for a model which replaces the OSV informational assumption with

the assumption used by Maheu and McCurdy (2007), that is, relating the conditional variance

of daily returns to the conditional expectation of daily RV, as in equation (3.1). In this case,

t-distributed return innovations, as in equation (3.5), dominate Normal return innovations.

Based on the in-sample loglikelihood, the 2Comp-OSV specification dominates the 2Comp

specification. However, as shown in Figure 4, there is not a large difference with respect to

out-of-sample density forecasts. This is also evident from comparing the parameter estimates in

Table 2. Except for the return intercept, and the fact that the return innovations have fatter

tails for the 2Comp model than for the 2Comp-OSV version, the parameter estimates are similar.

The main features of our results are as follows. Bivariate models that use high-frequency

intraday data provide a significant improvement in density forecasts relative to an EGARCH
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model estimated from daily data. Two-component specifications for the dynamics of log(RV )

provide similar or better performance than HAR alternatives; both dominate the less flexible

single-component version. A bivariate model of returns with Normal innovations and observable

stochastic volatility directed by a 2-component, exponentially decaying function of log(RV ) pro-

vides good density forecasts over a range of out-of-sample horizons for both data series. We find

that adding a mixture of Normals or GARCH effects to the innovations of the log(RV ) part of

this specification is not statistically important for S&P 500, while the addition of the mixture of

Normals provides a significant improvement for IBM.

6 Conclusion

This paper proposes alternative joint specifications of daily returns and RV which link RV to the

variance of returns and exploit the benefits of using intraperiod information to obtain accurate

measures of volatility. Our focus is on out-of-sample forecasts of the return distribution generated

by our bivariate models of return and RV. We explore which features of the time-series models

contribute to superior density forecasts over horizons of 1 to 60 days out of sample.

Our main method of model comparison uses the predictive likelihood of returns, the forecast

density evaluated at the realized return, which provides a measure of the likelihood of the data

being consistent with the model. An identical set of return observations is used to compute a

term structure of test statistics over a range of forecast horizons, so that the average predictive

likelihoods are not only comparable across models but also over different forecast horizons for a

particular model.

Two alternative joint specifications of daily returns and realized volatility were investigated.

These two bivariate models are distinguished by alternative assumptions about RV dynamics.

The first model uses a heterogenous autoregressive (HAR) specification of log(RV ). The second

model allows components of log(RV ) to have different decay rates. Both of these bivariate models

allow for asymmetric effects of past negative versus positive return innovations. Both models

are stationary and consistent with mean reversion in RV. We also investigate an observable SV

assumption (OSV) for the timing of information availability.
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Using the predictive likelihood, we find that high-frequency intraday data is important for

density forecasts relative to using daily data as in our benchmark EGARCH specfication. Sec-

ondly, a flexible function form (either two components or HAR) is very important for the dy-

namics of log(RV ). The OSV assumption marginally improves density forecasts at long horizons

for the S&P 500 but is essentially similar for the IBM data. A bivariate model of returns with

Normal innovations and observable stochastic volatility directed by a 2-component, exponen-

tially decaying function of log(RV ) provides good density forecasts over a range of out-of-sample

horizons for both data series.
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Table 1: Summary Statistics: Daily Returns and Realized Volatility

Mean Variance Skewness Kurtosis Min Max
SPY
rt -0.018 0.967 0.080 6.180 -7.504 8.236
RVu 1.210 2.640 6.932 84.936 0.055 33.217
RVAC1b 1.079 2.373 7.670 96.439 0.047 30.789
RVAC2b 1.013 2.115 7.530 88.588 0.043 25.227
RVAC3b 0.978 2.054 8.071 102.635 0.036 26.329
IBM
rt -0.037 2.602 0.074 3.898 -11.699 11.310
RVu 2.825 9.161 5.145 54.879 0.150 58.270
RVAC1b 2.623 9.433 6.051 75.409 0.132 65.069
RVAC2b 2.558 9.875 6.377 82.091 0.114 66.594
RVAC3b 2.531 10.095 6.362 81.024 0.010 65.235

rt are daily returns constructed from open and close prices. RVu is constructed from raw
5-minute returns with no adjustment. RVACqb, q = 1, 2, 3 are computed as:

RVACqb = γ̂0 + 2
q∑

j=1

ωj γ̂j , γ̂j =
M−j∑

i=1

rt,irt,i+j , ωj = 1− j

q + 1
, j = 0, 1, ..., q
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Figure 1: ACF of 5-Minute Return Data
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Figure 2: S&P 500 (Spyder) Daily Time Series
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Figure 3: IBM Daily Time Series
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Figure 4: S&P 500, Joint Models versus EGARCH
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Figure 5: S&P 500, Robustness to non-Normal Innovations to log(RV )
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Figure 6: IBM, Joint Models versus EGARCH
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Figure 7: IBM, Robustness to non-Normal Innovations to log(RV )
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Table 2: S&P 500 Model Estimates

2Comp-OSV Model

rt = µ + εt, εt =
√

RVtut, ut ∼ D(0, 1)

log(RVt) = ω +
2∑

i=1

φisi,t + γut−1 + ηvt, vt ∼ NID(0, 1),

si,t = (1− αi) log(RVt−1) + α1si,t−1, i = 1, 2.

2Comp Model

rt = µ + εt, εt = σtut, ut ∼ tv(0, 1)

σ2
t = exp

(
Et−1 log(RVt) +

1
2
V art−1(log(RVt))

)

log(RVt) = ω +
2∑

i=1

φisi,t + γut−1 + ηvt, vt ∼ NID(0, 1),

si,t = (1− αi) log(RVt−1) + α1si,t−1, i = 1, 2.

Parameter ut ∼ N(0, 1) ut ∼ tν(0, 1)
2Comp-OSV 2Comp

µ
0.038

(0.011)
-0.018
(0.014)

ω
-0.026
(0.012)

-0.025
(0.013)

φ1
0.476

(0.007)
0.402

(0.147)

φ2
0.476

()
0.543

(0.154)

α1
0.888

( 0.017)
0.911

(0.045)

α2
0.435

(0.037)
0.508

(0.105)

γ
-0.129
(0.010)

-0.141
(0.011)

η
0.531

(0.009)
0.528

(0.009)

1/ν
0.089

(0.016)
lgl -5646.725 -5916.342
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