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Abstract

Many pricing models imply that nominal interest rates contain in-
formation on inflation expectations. This has lead to a large empirical
literature that investigates the use of interest rates as predictors of fu-
ture inflation. Most of these focus on the Fisher hypothesis in which
the interest rate maturity matches the inflation horizon. In general
forecast improvements have been modest and often fail to improve on
autoregressive benchmarks. Rather than use only monthly interest
rates that match the maturity of inflation, this paper advocates using
the whole term structure of daily interest rates and their lagged val-
ues to forecast monthly inflation. Principle component methods are
employed to combine information from interest rates across both the
term structure and time series dimensions. We find robust forecasting
improvements in general as compared to both an augmented Fisher
equation and autoregressive benchmarks.
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1 Introduction

There has been a growing empirical literature that finds a statistical re-
lationship between interest rates and future inflation. Papers by Mishkin
1990a, 1990b, 1991, Jorion and Mishkin (1991), Estrella and Mishkin (1997),
and Kozicki (1997) document the predictive power of interest rates for fu-
ture inflation. In general, these papers investigate the statistical relationship
between a yield spread that matches an inflation spread. This is motivated
by the Fisher equation which states that the nominal interest rate is com-
posed of the real interest rate and expected inflation. The stability of this
relationship is investigated in Estrella, Rodrigues, and Schich (2003). For
the U.S. they find evidence of a structural break in 1979 and 1982 for short
horizon regressions. Estrella (2005) discusses the reasons why the yield curve
contains predictive content for both real and nominal variables, and argues
that monetary policy plays a large role in this relationship.

Nevertheless, the practical forecast improvements that come from employ-
ing the Fisher equation sometimes appear modest relative its importance as
a theoretical relationship. The literature finds poor predictive power at the
short end of the yield curve but improved prediction around 12 months and
the best performance from 3 to 5 years out. Stock and Watson (2003) also
note that the Fisher equation often loses its predictive content after control-
ling for lagged inflation.

The failure of the Fisher equation to consistently beat autoregressive
benchmarks has two possible implications for inflation forecasting. One pos-
sible implication, as argued by Stock and Watson (2003), is that, despite
their theoretical appeal, interest rates may have limited practical value for
inflation forecasting. An alternative interpretation is that the performance
of the Fisher equation is hindered by its rigid restrictions, in which only
the information in a single interest rate spread with maturities matching the
inflation spread is employed in the forecast. While theoretically appealing,
using only one source of information goes against some of the more recent
trends in forecasting, in which improvements are found from combing infor-
mation from multiple predictors or forecasts (Bernanke, Boivin, and Eliasz
(2005), Stock and Watson (2002), Favero, Marcellino, and Neglia (2005)).

Recent research on macro-finance models, including Ang and Piazzesi
(2003), Chernov and Biokbov (2006), Dewachter, Lyrio, and Maes (2006),
and Diebold, Rudebusch, and Aruoba (2006), demonstrates the important
role that macro aggregates and monetary policy play in determining the
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shape of the term structure and its dynamics.
In this paper we contribute to the literature on inflation forecasting in

several ways. First, we investigate whether, for a given inflation spread,
additional forecasting information can be extracted from the entire interest
rate term structure. We also investigate if information in daily lags of the
term structure are useful for prediction. In contrast to previous work, we
focus exclusively on the out-of-sample predictive performance relative to au-
toregressive type models, and we work with readily available interest rates
on government T-bill and bonds.1 Our focus is on the empirical forecasting
content of interest rates.

One reason why multiple interest rates may improve inflation forecasts
is that we face a signal extraction problem. For example, suppose that the
Fisher equation holds as in ikt = rk

t +Etπ
k
t+k, where ikt is the k period nominal

interest rate, rk
t is the matching real interest rate, Etπ

k
t+k is the expected

inflation over this period, and πk
t+k = log(pt+k/pt), where pt denotes the price

level. If real interest rates are unobserved and stochastic then ikt provides a
noisy measure of Etπ

k
t . However, the interest rate ilt, l > k, also contains

information on Etπ
k
t+k, since we can decompose the longer inflation rate as

πl
t+l = πk

t+k + πl−k
t+l to get ilt = rl

t + Etπ
k
t+k + Etπ

l−k
t+l . Therefore, ikt and ilt have

Etπ
k
t+k as a common factor. This suggests additional information on Etπ

k
t+k

may be available in other interest rates and the term structure as a whole.
If inflation expectations are persistent then similar reasoning suggest that
there may be benefits to using lags of the term structure.

By employing multiple interest rates we may also allow for a more robust
predictive relationship with inflation. For instance, the information content
of the term structure may be constant, but the location of inflation expec-
tations may be easier to extract at different maturities, depending on the
stance and expectation of monetary policy.

The use of the whole term structure and lags of the term structure results
in a dimensionality problem. To extract the predictive content but retain par-
simony we follow the diffusion index method of Stock and Watson (2002). We
extract principle components from both current term structures and lagged
term structures. We select the principle components using a variance criteria
and a correlation criteria. The latter is based on the correlation between the
principle components and regression residuals from an AR model of infla-

1The majority of research in this area uses zero coupon yields. This requires estimation
of the yield curve at each point in time.
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tion. Therefore, they pick up remaining structure not captured by the AR
model. We investigate several variable selection methods and report results
on a model average over different principle component specifications.

To gauge the success of our methods we include, as benchmarks, an au-
toregressive type model, a Fisher equation model augmented with lags of
inflation and a Phillips curve. To allow for changes in the model relationship
we use a rolling window for estimation.

In general, our results show that an AR type benchmark is better than an
augmented Fisher model. Our principle component methods improve upon
these results. The forecasting improvements come from two dimensions. The
term structure (current term structure) dimension and the time (lagged term
structures) dimension. For the 12 month ahead predictive regressions, only
the term structure dimension improves forecasts, while for the 36 month
regressions both the term structure and time dimension are useful. The
relative performance of the variance and correlation criteria used to select
principle components criteria is mixed, and depends on the subsample and
the forecast horizon. Our recommended approach is a model average over
specifications that have between 3 and 5 principle components from both the
term structure and time dimensions. This approach provides good results
for all time periods and forecast horizons.

Our results are supportive of the broad implication of the Fisher equation
that interest rates provide a useful tool in inflation forecasting. At the same
time, we find that employing the whole term structure and its recent lags
provides clear improvements over the restrictions of the Fisher equation.
This is consistent with recent developments in forecasting which emphasize
the value of combining information and forecasts from multiple sources.

While this paper focuses on predictive content of the term structure, it
is not our intention to suggest that interest rates be used in isolation to
forecast inflation. There is a large literature on inflation forecasting and
many useful techniques have been developed using information other than
interest rates that could potentially be combined with term and lagged term
structure variables considered here. Examples, include methods based on
structural relationships (Fisher, Liu, and Zhou 2002, Orphanides and van
Norden 2005, Stock and Watson 1999), the use of asset prices, (Ang, Bekaert,
and Wei 2005, Stock and Watson 2003), and factor models (Banerjee and
Marcellino 2006, Camba-Mendez and Kapetanios 2005, Stock and Watson
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2002).2.
This paper is organized as follows. Section 2 reviews the data, Section 3

discusses the benchmark models, while the new principle components models
are introduced in Section 4. Results are found in Section 5 and conclusions
in Section 6.

2 Data

Our data set comprise daily interest rates and monthly data on consumer
price indexes, and the total civilian unemployment rate. The daily interest
rates included in our panel are U.S. Treasury yields with maturities of 3-
months, 6-months, 1-year, 3-years, 5-years, and 10-years. Inflation was com-
puted as the log difference of the seasonally adjusted consumer price index
for all urban items. Interest rates and consumer price indices were obtained
from the Federal Reserve of St. Louis FRED data base. The unemployment
rate was obtained from the Citibase data base. The sample period spans
from March 1962 to December 2004. This yields a sample size of 514 for the
monthly inflation rate data and a sample size of 11,175 for the daily interest
rate data. Out-of-sample forecasts are computed from September 1974 to
December 2004, giving a total of 364 monthly out-of-sample forecasts, with
the proceeding 150 months reserved for the training sample.

The top panel of Figure 1 presents the annual inflation rate for the whole
sample. Two major episodes are observed during the post-war U.S. history.
The first one is characterized by a period of high inflation from the early
1960s through the mid 1980s, and a second period of low inflation runs from
the mid 1980s to the present.

We define the annualized j-th term inflation rate observed at time t as:

πj
t = (1200/j) ln(pt/pt−j).

Following Stock and Watson (1999), we will focus on forecasting annualized
inflation percentage spreads of the form:

πk
t+k − π1

t+1 = (1200/k) ln(pt+k/pt) − 1200 ln(pt+1/pt)

2Recent work on time series models of inflation emphasize the changing inflation dy-
namics (Cogley and Sargent 2002, Dossche and Everaert 2005, Pivetta and Reis 2006, Stock
and Watson 2006).
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where k = {12, 36}.

Finally, note that in the following we use interest rates for T-bills and
bonds which may have coupon payments. This has two attractions for our
forecasting exercises. First, it avoids the need to estimate a zero-coupon
term structure and the associated estimation errors that can arise form this.
Second, the interest rates we use are readily available, for example from the
St. Louis FRED data base. Throughout the paper we use the terminology
Fisher equation even though our rates may not be derived from a zero-coupon
instrument.

3 Benchmark Models

In order to obtain the benchmark with the best performance in our sample,
a set of competing models were estimated.

1. Pure autoregression-type benchmark (AR-type) Our base-line
benchmark model for inflation forecasting is the simple autoregressive-
type specification given by:

πk
t+k − π1

t+1 = γ +
P−1∑
p=0

φpπ
1
t−p + εt+k, (1)

where εt+k is an error term. We also consider two other standard
benchmark models in which this AR-type specification is augmented
by other predictors suggested by economic models.

2. Phillips Curve (PhCu)

The unemployment-based Phillips curve specification used in this paper
is

πk
t+k − π1

t+1 = γ +
P−1∑
p=0

φpπ
1
t−p +

Q−1∑
q=0

βqwt−q + εt+k, (2)

where wt is total civilian unemployment rate (LHUR) in month t.

3. Augmented-Fisher Equation
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Finally, a benchmark that appears as the natural counterpart to the
model that includes daily spreads as predictors, is a model that incorpo-
rates the Fisher hypothesis. In this case, we extend the autoregressive
model by including as an additional predictor the monthly yield spread
with the same maturity as the target inflation forecast. The empirical
specification of the augmented Fisher equation hypothesis is given by

πk
t+k − π1

t+1 = γ +
P−1∑
p=0

φpπ
1
t−p + β(ikt − i1t ) + εt+k, (3)

where ikt is the observed treasury yield with maturity k at time t.

All three benchmark models are estimated by OLS, with the number of
lagged inflation rates (1 ≤ P ≤ 12) and unemployment rates (1 ≤ Q ≤ 12,
PhCu model only) determined recursively using the Bayesian information
criterion (BIC). For the Phillips curve, P is selected first and then condi-
tional on that value Q is selected. This process of lag selection is repeated
recursively as new information arrives.

The benchmark models above were estimated under the assumption of
an I(1) price index. We also compared these to the equivalent benchmark
models that hold under the assumption that prices are I(2), in which case
the terms involving π1

t−p are replaced by ∆π1
t−p. As in Stock and Watson

(1999, 2002) we find little difference between the I(1) and I(2) specifications
with respect to the accuracy of the inflation forecasts. Thus we present only
the results that hold when prices are modelled as I(1) variables. Generally
speaking, we found that the forecasts using the pure AR-type model with
prices modelled as I(1) provided the best benchmark forecasts.

4 Principal Components Models

Models that use interest rate spreads as predictors of future inflation are
based on a version of the Fisher’s hypothesis. The empirical specification of
Fisher’s hypothesis includes only monthly spreads with the same maturity
as the target inflation rate. Thus, Fisher’s specification discards any other
potential information contained in the term structure of interest rates or its
daily lags. In this paper, we propose forecasting inflation by incorporating
information contained in both dimensions of the interest rate data: the term
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structure dimension and the time dimension. The time series dimension is
incorporated via the use of daily interest rate observations.

The transition from Fisher’s specification that includes just one spread
of interest rates as predictors to the multivariate case that incorporates dif-
ferent terms for different dates raises the important problem of parsimony.
In order to mitigate overfitting and poor forecast performance we proceed
by constructing a small number of factors from the large set of daily spreads
using principal components. The methodology is based on the premise that
the most useful information for forecasting purposes can be summarized by
the first few principal components.

4.1 Incorporating Term Structure and Time Series In-
formation

We denote by Xt the full vector of interest rates used as inflation predictors.
In our main forecast results the interest rates included in Xt span both the
maturity and time series dimensions. However, in order to better understand
the source of the forecast improvements, we first consider the two dimensions
separately.

Let spk,j
t = ikt − ijt denote the spread at time t between yields with a

maturity of k and j respectively. To simplify notation, the length of every
month is assumed to be of 22 business days. We use integer subindices
to denote monthly frequencies, whereas for daily data subindices we use
the conventional notation in which t + h/22 for h = 0, ..., 22 − 1 refers to
business day h in month t. Time t refers to the first business day of month
t. Inflation rates are assumed to be observed the first business day of every
month. Following the above notation, and to avoid the use of information
not available to the econometrician, the information set available at time t
is given by inflation rates observed up to time t, and interest rate spreads
observed up to time t − 1/22.

4.1.1 Term Structure Dimension

In this case, we extend the augmented Fisher equation in the term structure
dimension by including the full set of interest interest rate spreads as pre-
dictors for future inflation. The matrix of predictors, Xt, is therefore given

8



by

X ′
t =

[
sp12,3

t−1/22, sp
36,3
t−1/22, sp

36,12
t−1/22, sp

60,3
t−1/22, sp

60,12
t−1/22, sp

60,36
t−1/22, sp

120,3
t−1/22,

sp120,12
t−1/22, sp

120,36
t−1/22, sp

120,60
t−1/22

]
such that only the interest rate spreads observed on the last business day of
month t − 1 are included in the information set It.

4.1.2 Time Series Dimension

This case extends the augmented Fisher specification in the time series di-
mension by including m daily lags of the interest rate spread with the same
maturity as the target inflation spread as predictors. In other words, for the
target inflation forecast period πk

t+k − πj
t+j, k > j, Xt is given by,

X ′
t =

[
spk,j

t−1/22, sp
k,j
t−2/22, ..., sp

k,j
t−m/22

]
.

4.1.3 Combined term structure and time series information

In this case both dimensions, the term structure and time dimension, are
pooled together to construct predictors to forecast future inflation. The
predictors’ matrix, Xt, is formed as

X ′
t = [x1t

′, x′
2t, . . . , x

′
mt]

xht =
[
sp12,3

t−h/22, sp
36,3
t−h/22, sp

36,12
t−h/22, sp

60,3
t−h/22, sp

60,12
t−h/22,

sp60,36
t−h/22, sp

120,3
t−h/22, sp

120,12
t−h/22, sp

120,36
t−h/22, sp

120,60
t−h/22

]
, h ∈ {1, ...,m}.

Unfortunately, there is little guidance as to the number of days, m, that
should be included in Xt. To measure the relative information content in
daily data, we constructed three matrices of predictors by setting different
values for m. The first matrix sets m equal to 20, including four weeks of
daily data. In the second matrix m is set equal to 10, and finally, the last
case includes only a week of daily data setting m equal to 5. In the following
let n denote the number of columns in Xt.

From the above definitions the information set available for forecasting
at time t, It, is given by lag values of inflation rates and Xt,

It = {πt, πt−1, πt−2, ..., Xt} .
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4.2 Dimension Reduction via Principal Components

Following Stock and Watson (2002), forecasting is performed in a two-step
procedure. First, the principal components of the set of interest spreads are
computed; second, the estimated factors are used as predictors to forecast
future inflation.

As discussed above, we denote by Xt the vector of n daily interest rate
predictors, potentially varying across both the time series and maturity di-
mensions, that are observed up until the last day of time t − 1. Because the
dimension of Xt is large, it is impractical to use all n predictors. Instead, we
employ the principle component decomposition

Xt = AZt + AcZc
t = AZt + vt, vt ≡ AcZc

t (4)

where Z ′
t =

(
zt,(1), zt,(2), . . . , zt,(F )

)
denotes the first F < n (sorted) principal

components, and Zc
t contains the remaining n − F components. The factor

loading matrices for Zt and Zc
t are denoted by A and Ac respectively. This

allows us to achieve dimension reduction by extracting only the first F factors
Zt for inclusion as regressors in our forecasting equation for inflation, together
with the lagged values of inflation. Thus our forecasting model becomes

πk
t+k − π1

t+1 = γ +
P−1∑
p=0

φpπ
1
t−p +

F∑
f=1

αfzt,(f) + εt+k, (5)

All of the regression coefficients in (5), including the coefficients αf on the
first F principal components are estimated by OLS. Since the lagged values
of inflation already enter (5) parsimoniously, we do not include them in the
principal component analysis. As in the benchmark models, the number
of lagged inflation rates is chosen using the Bayesian Information Criteria
(BIC), with a maximum of 12 (1 ≤ P ≤ 12). We discuss the choice of F in
Section 4.3.2 below.

The advantage of this approach is that we have reduced the number of
term structure regressors from n down to F , while allowing the factor decom-
position to pick out what we expect to be the most important components in
Zt for forecasting inflation. This potentially allows us to incorporate substan-
tially more information on inflation than in the augmented Fisher regressions,
while still maintaining parsimony.
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4.3 Selection of Principal Components

In order to determine which principal components to employ in a principal
components model two choices are required. First, one needs a rule for
ordering the components from first to last. This involves taking a stand on
which components will be most useful for forecasting inflation. Secondly, one
needs to decide how many components to use. We discuss these questions
separately in the two subsections below.

4.3.1 Ordering the principal components

Two different criteria are employed in the selection of factors. The first cri-
terion, Variance Sort , consists in selecting the principal components that
explain the highest percentage of the second moment of the predictors matrix
{Xt}. Regardless of this being the most common practice in the selection of
principal components, there is no guarantee that this methodology will result
in the set of factors that maximize forecasting power for inflation. Hence, we
also propose and compare to a second criterion for selecting factors, Cor-
relation Sort , in which we sort principal components according to their
in-sample correlation with the residual from the AR-type benchmark model
in (1). The idea consists in selecting the principal components that have the
highest in-sample correlation with the residual term from the AR model to
capture the component of inflation not explained by the AR model.

4.3.2 Selecting the number of principal components

Once we have decided on a rule for ordering the components, we must next
choose the number of components (F) to include. Here we compare three
approaches. The first is simply to fix F, the second is to select F by applying
a model selection criterion to the forecasting equation, and the third is to
model average across forecasts using a range of different choices for F.

Because our primary interest is in forecasting inflation, we apply BIC
to the forecasting equation in (5), while treating the principle components
zt(f) as regressors. Thus we measure the (penalized) fit in terms of the
explanatory power of the principle components of zt(f) for inflation πk

t+k −
π1

t+1. This is similar to the approach of Stock and Watson (1999). An
alternative approach, not pursued here, is to measure the penalized fit based
on the explanatory power of the principle components zt(f) for Xt itself in
(4). This is the approach pursued by Bai and Ng (2002) in a more general
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context, where the primary focus is often on the modeling of Xt itself, rather
than on the use of the components of Xt in the forecast of another variable,
say yt. Bai and Ng (2002) provide consistent model selection procedures for
the choice of F in (4).

For the model averaging approach, we let fpc
t+k,F denote the out-of-sample

forecast of the principal component model using F factors. The model aver-
age forecasts are then given by

fa,t+k =
u∑

F=l

ωF,t+kf
pc
F,t+k, (6)

where l and u are the lower and upper bounds for the number of principal
components used to forecast inflation. We compare two simple approaches
to choosing the weights {ωF,t}. In the first approach, we simply weight all
forecasts equally, setting {ωF,t} ≡ 1/(u − l + 1), so that fa,t+k is just the
simple average of all date t + k forecasts. In our second approach, we choose
weights using an in-sample regression of the realized inflation rate on the
inflation predictions from each model. In other words, the weights are given
by the estimated coefficients in the following regression:

πk
t+k − π1

t+1 =
u∑

F=l

ωF,t+kf
pc
F,t+k + εt+k. (7)

5 Results

The ability of the different models, benchmarks and factor models, to fore-
cast inflation is summarized by the mean-squared-error (MSE) and mean-
absolute-error (MAE) of their forecasts relative to the MSE and MAE of
forecasts based on the autoregressive type model (AR-type) respectively.
Table 1 summarizes the results from different tables while results for the
competing benchmark models are found in Table 2.

Tables 3-7 present results for the different specifications of the factor mod-
els; Term Structure Dimension, Time Series Dimension, and All Information
(using both the term structure and time series dimension). For the latter two
models results are shown for 5, 10, and 20 days of lagged daily interest rate
spreads. As mentioned above, principal components were selected using two
different methods: 1) the variance sort criteria and 2) the correlation sort
criteria. We also considered three competing approaches to chose the number
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of principal components: a) the specification of parsimonious models with
fixed numbers of principal components, b) selection by BIC, and c) model
averaging across forecasts with different numbers of principal components.
Results for the different models are summarized in Tables 3-7 following the
organization described in Table 1.

5.1 Benchmark

Table 2 summarizes results for the different benchmark models: the autoregressive-
type model (AR-type), the augmented Fisher model, and the Phillips Curve
(PhCu) specification. The columns labelled I(1) and I(2) refer to cases where
price indices are modelled as I(1) and I(2) respectively. Panel A shows re-
sults when the parameters are estimated using recursive least squares3 and
in Panel B rolling windows estimates are presented. In order to make com-
parisons between the different estimates, the MSE and MAE are computed
relative to the recursive least squares AR type model. Results are shown
for the 12-month and 36-month inflation forecasts, and are divided in two
forecast sub-samples: 1974-1983, 1984-2004, and for the whole period.

There are important differences in the forecasting performance between
recursive least squares estimates and rolling windows estimates. Both, MSE
and MAE deteriorate dramatically when parameters are estimated using
rolling windows, especially the 36-month inflation rate forecasts. The MSE
for the 12-month inflation forecasts over the period 1974-2004 using the AR
model when prices are modelled as I(1) increases by 14 percent when es-
timated by rolling windows (1.144, panel B.1, AR) compared to the least
square estimation (1.000, panel A.1). For the 36-month inflation forecasts,
least squares estimation outperforms rolling windows forecasts by 68 per-
cent measured by MSE (1.684, panel B.2, AR) and by 20 percent in terms
of the MAE (1.206, panel B.2, AR). The augmented Fisher representation
and Phillips Curve benchmarks exhibit the same pattern. In the case of
the Fisher’s representation, the MSE for the 12-month inflation rate goes
from 0.847 (panel A.2, Fisher) in the least square case to 1.480 (panel B.2,
Fisher) in the rolling windows case. Therefore, in the results that follow we
concentrate exclusively on recursive least squares estimates.

The AR type model and the augmented Fisher specification outperform

3In other words the model is re-estimated and a forecast computed as each new obser-
vation arrives.

13



the rest of the benchmarks. In the case of the 12-month inflation period,
the AR type model with an I(1) specification performs the best in both sub-
samples.4 For the 36-months inflation rate, forecasts using Fisher’s model
outperform the rest of the benchmarks with a relative MSE of 0.847 (panel
A.2, Fisher) compared to 1.000 and 1.203 for the AR model and Phillips
Curve model respectively. Modelling price indexes as I(1) result in bet-
ter forecasts than I(2) specifications in the 1974-1983 sub-sample for both
the 12 and 36-month inflation terms. However, for the 36-period inflation,
the AR-type and Fisher’s representation with price indices modelled as I(2)
outperform the I(1) specification in the 1984-2004 sub-sample. Despite this
result, benchmarks using the I(1) specification have a smaller MSE and MAE
than the I(2) specification for the whole sample.

Although no-single benchmark model dominated in all cases, we con-
cluded that the AR-type model provided the best overall benchmark model.
The comparisons in the proceeding tables (Tables 3-7) all employ this bench-
mark when presenting the relative MSEs and MAEs. Since the Fisher model
provided the starting point for the term structures models proposed here,
Tables 3-6 also include a column with the results from the augmented Fisher
model as an additional point of comparison.

5.2 Fixed Number of Principal Components

Tables 3 and 6 present the results for different specifications of the factor
model using a fixed number of principal components (from one to five) for
the variance and correlation sort criteria respectively. In Panel A the results
for the 12-period inflation period are shown and in Panel B results for the 36-
period inflation are presented. The columns labelled “Term Structure” refer
to the factor model that includes as predictors the current term structure.
The columns labelled “Time” present results for the model that incorporates
lags of daily spreads with the same maturity as the target inflation. Finally,
both are combined in the columns labelled “5 days”, “10 days” and “20 days”
for a factor model that respectively include 5, 10 and 20 lags of the daily term
structure as predictors.

Several findings come out from these tables. All factor models, except
the time dimension model, outperform the AR type benchmark uniformly

4We compared I(1) and I(2) specifications in which the left-hand side variable is iden-
tical annualized inflation differences, but the right hand side inflation variables where I(1)
(π1

t−p) or I(2) (first differences of π1
t−p).
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in the 1974-1983 sub-sample. Important differences in forecasting perfor-
mance between models are observed depending on the target inflation rate.
Forecast errors are smaller when factors are selected using the correlation
approach than the variance approach in the 1974-1983 sub-sample. How-
ever, in the 1984-2004 sub-sample, the variance sort produce smaller MSE
for the 12-month inflation period. For example, the relative MSE for the
Term Structure model using three principal components is 0.820 (Table 3,
panel A.3, Term Structure) in the case of the variance sort and 0.805 (Ta-
ble 4, panel A.3, Term Structure) in the correlation sort for the 1974-1983
subsample, however for the 1984-2004 subsample the results for the variance
and correlation sort are 0.933 and 1.300 respectively.

The term structure model outperforms the rest of the factor models when
forecasting the 12-month inflation rate for the whole sample. However, there
is an improvement in forecasts during the 1984-2004 sub-sample when in-
cluding the time dimension into the model. Forecasts that use 5 or 10 lags
of the daily term structure of interest rates with three principal components
perform the best, with a relative MSE of 0.930 and 0.899 (Table 3, panel A.3,
5 and 10 days) respectively. In general, models with three or more principal
components improve upon the more parsimonious representations with only
one or two principal components.

For the 36-month inflation rate, the correlation sort criteria produces
superior forecasts than the variance sort. In contrast with the 12-month
inflation, we observe that the time dimension contains information on future
inflation beyond the AR-type specification, and uniformly outperforms the
AR-type model in all sub-samples. Forecasts with one principal component
outperform higher dimension models that include more than one principal
component.

Different numbers of lags of daily spreads, m, in the predictors matrix,
X for the All Information model are tested. In general, forecasts using 5
daily lags of interest rate spreads perform better than when 10 or 20 lags are
included.

5.3 Bayesian Information Criteria

Table 5 shows the results when the number of principal components is se-
lected recursively using BIC. The results are qualitatively similar to those
presented in Tables 3 and 6. Overall, the term structure dimension appears
more informative than the time dimension, specially for the 12-month in-
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flation rate. The time dimension of interest rates adds information relative
to the AR-type model for the 36-month inflation, but not for the 12-month
inflation. In contrast to the results obtained in Tables 2 and 3, we obtain
mixed results regarding the forecast performance between the correlation and
variance sorts. The specification that performs the best for the 12-month in-
flation includes only the term structure dimension and has a relative MSE
of 0.908 (panel A, Term Structure) and 0.907 (panel B, Term Structure) for
the correlation and variance sort respectively.

5.4 Model Averaging

Finally, Tables 6 and 7 present results for model averaging. Important im-
provements in forecasting performance are observed from model averaging.
Two different methods are employed to compute forecast averages. The first
method is a simple average across models with different number of princi-
pal components. The second method is a weighted average across models
where weights are obtained by regressing in-sample inflation realizations on
forecasts with different numbers of principal components. OLS averaging
outperform simple averages. Consistent with the results observed in Tables
3 and 6, averages of models with 3 to 5 principal components perform the
best when forecasting the 12-period inflation; and for the 36-period inflation,
averages from 1 to 3, and from 1 to 5 principal components are the best.
The variance criteria outperforms the correlation criteria for the 12-month
inflation rate. The opposite is true for the 36-period inflation rate.

5.5 Significance of Forecast Improvements

Tables 8 and 9 show the results of the Diebold and Mariano (1995) tests used
to assess the significance of the out-of-sample improvements of the forecasts
using the regression based model average relative to the autoregressive bench-
mark. In order to generate a sufficient sample size for reliable out-of-sample
testing, the tests are based on the full sample period.

Since the forecast horizons, (k = 12 and k = 36 months) exceed the
monthly sampling period, the errors from even an unbiased forecast would
follow a moving average process of order k − 1 and it would therefore be
unrealistic to expect uncorrelated errors in either forecast model. Thus to
implement the Diebold and Mariano (1995) test we require a kernel estimator
for the long-run variance of the difference in the squared forecast errors.
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To this end, we employ the Newey-West (Bartlett) kernel, with a baseline
bandwidth choice of k−1. While k−1 seems a natural choice in the context
of a k-period forecast, our relatively large values of k may result in a noisy
variance estimator. For this reason, and to assess the robustness of our
findings, we also provide test results using several smaller bandwidth values.

The results from the Diebold and Mariano (1995) tests confirm the statis-
tical significance of the forecast improvements relative to our baseline model.
In fact, all the t-statistics shown in Tables 8 and 9 exceed the standard crit-
ical values by a substantial margin. This strong significance appears robust
across the bandwidth choice, forecast horizon (k =12,36), the collection of
principal component models included in the average (1 to 3, 3 to 5, 1 to
5), and the choice of term structure and lag information used for the princi-
ple components (columns 3-7). On the other hand, the tests do not adjust
for the effects of parameter estimation (West 1996), model encompassing
(McCracken 2007), or potential data snooping concerns (White 2000). This
would be of particular concern in the case of marginally significant results.
However, any resulting distortions would have to be quite large in order to
overturn the very highly significant results shown in Tables 8 and 9.

5.6 Summary of results

In summary, the AR type model outperforms all benchmarks for the 12-
month inflation rate, and the augmented Fisher model outperforms all bench-
marks when forecasting the 36-period inflation. Forecasts improvements over
the benchmark model for the 12-month inflation rate come from the term
structure dimension, with better results obtained when using the variance
sort criteria than the correlation sort.

For the 36-period inflation both dimensions, the term structure and time
dimension improve upon the benchmark model, with the correlation crite-
ria performing better than the variance criteria. However, model averaging
provide robust forecasting improvements as compared with both the Fisher
model and autoregressive type models.

6 Conclusion

This paper proposes a new approach to forecasting inflation using daily in-
terest rate data. We consider a large number of potential interest rates
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predictors and organize them along a term structure and time series dimen-
sion. Principal component methods are used to extract useful predictors.
For 12 month predictive regressions, only the term structure dimension im-
proves forecasts, while for the 36 month regressions both the term structure
and time dimension are useful. We find robust forecasting improvements in
general as compared to the augmented Fisher equation and autoregressive
benchmarks.

The performance of variance and correlation criteria used to select prin-
ciple components criteria is mixed, and depends on the subsample and the
forecast horizon. Our recommended approach is the model average across
models using between 3 to 5 principle components from both term struc-
ture and time dimensions. This approach provides good results for all time
periods and forecast horizons.
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Table 1: Location of Forecast Summary Results for Various Models

Number of
Principal Components

Selection of Principal Components
Variance Sort Correlation Sort

Fixed from 2 to 6 Table 3 Table 6
BIC Table 5 Table 5
Model Averaging Tables 6 and 7 Tables 6 and 7
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Model Averaging: π12
t+12−π1

t+1.Relative MSE and MAE for equally weighted
forecasts using 1 to 3 principal components, 3 to 5 principal components, and 1 to
5 principal components. All results are relative to the AR benchmark model. The
columns labelled “Term Structure” present results for the model that incorporates
as predictors the principal components of the monthly term structure spreads. In
the columns labelled “Time”, results for the model that uses daily spreads with
the same maturity as inflation are presented. The last three columns show the re-
sults principal component model incorporating both the time and term structure
dimensions, with either 5, 10, or 20 days of daily interest rate lags.
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Model Averaging: π36
t+36 −π1

t+1. Relative MSE and MAE for equally weighted
forecasts using 1 to 3 principal components, 3 to 5 principal components, and 1 to 5
principal components. All results are relative to the AR benchmark model. The columns
labelled “Term Structure” present results for the model that incorporates as predictors
the principal components of the monthly term structure spreads. In the columns labelled
“Time”, results for the model that uses daily spreads with the same maturity as inflation
are presented. The last three columns show the results principal component model incor-
porating both the time and term structure dimensions, with either 5, 10, or 20 days of
daily interest rate lags.
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Table 9: Diebold Mariano Tests on Regression based Model Aver-
ages. Results for the Diebold Mariano test statistic for regression based average forecasts
using 1 to 3 principal components, 3 to 5 principal components, and 1 to 5 principal com-
ponents are presented. All results are relative to the AR benchmark model. The columns
labelled “Term Structure” present results for the model that incorporates as predictors
the principal components of the monthly term structure spreads. In the columns labelled
“Time”, results for the model that uses daily spreads with the same maturity as inflation
are presented. Finally, the columns labelled “5 days”, “10 days” and “20 days” present
results for the model that incorporates principal components of predictors that incorporate
both dimensions: Term-Structure dimension and Time dimension.

Lags Num. Term Time 5 Days 10 Days 20 Days
NWest of PC Structure
Panel A. π36 − π1

Correlation Sort
3 1 to 3 8.27 7.93 8.14 8.55 9.10

3 to 5 8.50 8.30 7.77 7.71 8.18
1 to 5 8.27 8.14 7.15 7.65 8.79

9 1 to 3 5.79 5.55 5.85 5.91 6.34
3 to 5 6.10 5.82 5.65 5.47 5.69
1 to 5 5.88 5.68 5.20 5.44 6.05

15 1 to 3 4.91 4.72 4.94 4.97 5.34
3 to 5 5.26 4.93 4.86 4.58 4.80
1 to 5 5.02 4.81 4.42 4.57 5.05

20 1 to 3 4.49 4.36 4.52 4.53 4.87
3 to 5 4.86 4.52 4.46 4.13 4.41
1 to 5 4.60 4.43 4.04 4.11 4.59

30 1 to 3 4.05 4.03 4.07 4.06 4.41
3 to 5 4.44 4.12 4.00 3.64 4.01
1 to 5 4.13 4.05 3.60 3.61 4.11

35 1 to 3 3.91 3.93 3.91 3.90 4.26
3 to 5 4.27 3.99 3.83 3.47 3.87
1 to 5 3.96 3.94 3.45 3.45 3.96

Variance Sort
3 1 to 3 6.86 8.21 6.92 6.99 8.08

3 to 5 7.82 8.12 8.22 7.27 6.88
1 to 5 7.04 8.23 6.77 6.74 6.63

9 1 to 3 4.78 5.77 4.79 4.84 5.62
3 to 5 5.64 5.69 5.76 5.08 4.79
1 to 5 4.96 5.77 4.70 4.71 4.61

15 1 to 3 4.03 4.91 4.05 4.08 4.77
3 to 5 4.86 4.84 4.85 4.33 4.06
1 to 5 4.20 4.91 3.98 4.01 3.90

20 1 to 3 3.67 4.52 3.71 3.72 4.41
3 to 5 4.46 4.46 4.44 3.97 3.72
1 to 5 3.82 4.53 3.64 3.69 3.57

30 1 to 3 3.28 4.16 3.36 3.35 4.04
3 to 5 4.01 4.09 3.99 3.59 3.38
1 to 5 3.41 4.16 3.29 3.36 3.24

35 1 to 3 3.16 4.05 3.25 3.24 3.91
3 to 5 3.84 3.97 3.84 3.48 3.28
1 to 5 3.26 4.05 3.19 3.26 3.15
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Figure 1: Inflation
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