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Abstract

In this paper, we develop a tractable model of the labor market where workers search

for jobs both while unemployed and while on the job. Search is directed in the sense

that each worker chooses to search for the offer that provides the optimal tradeoff be-

tween the probability of obtaining the offer and the increase in the value relative to

the worker’s current employment. There are both aggregate and match-specific shocks,

on which the wage path in an offer can be contingent. We characterize the equilibrium

analytically and show that the equilibrium is unique and socially efficient. On the quan-

titative side, we calibrate the model to the US data to measure the effect of aggregate

productivity fluctuations on the labor market. We find that productivity fluctuations

account for approximately 64% of the cyclical volatility in US unemployment. Moreover,

productivity fluctuations generate the same matrix of correlations between unemploy-

ment and other labor market variables as in the US. In particular, the Beveridge curve

is negatively sloped over business cycles, and the magnitude of the slope is the same as

in the data. In light of these findings, we conclude that productivity shocks are one of

the main forces driving labor market fluctuations over business cycles. Furthermore, we

find that recessions have a cleansing effect on the economy.
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1 Introduction

Empirical evidence suggests that a substantial fraction of US workers move from job to job

without any intervening spell of unemployment or non-employment. For example, Blanchard

and Diamond (1989) find that approximately twenty percent of all the workers hired during

a given month directly move from another job. Using NLSY data, Parsons (1991) finds that

approximately fifty percent of the workers who voluntarily quit their job have another one

lined up. Using CPS data, Nagypál (2004) finds that more than forty percent of the workers

who, for whatever reason, have left their job during a given month are employed somewhere

else at the end of the month.

This evidence has motivated the development of on-the-job search models of the labor

market, i.e. models where workers search for new employment opportunities both while

unemployed and while on the job. On-the-job search models have greatly contributed to our

understanding of the US labor market. For example, partial equilibrium models with on-

the-job search have been successfully used to explain the relationship between the worker’s

tenure on a job and his probability of leaving it (see Burdett 1978). And general equilibrium

models with on-the-job search have been successfully used to explain the extent and shape

of the distribution of wages across firms (see Burdett and Mortensen 1998, Mortensen 2003

and Burdett and Coles 2003).

Nevertheless, on-the-job search models are not commonly used to study the dynamics of

the labor market over the business cycle. The reason is that–in all the existing general equi-

librium models of on-the-job search (such as Pissarides 1994, Burdett and Mortensen 1998

and Barlevy 2002)–the worker’s probability of transition from one employment state to an-

other is a non-trivial function of the entire distribution of workers across jobs. Therefore,

finding the equilibrium transition probabilities outside the steady-state is a task that is an-

alytically hopeless and numerically daunting. Building on recent contributions by Delacroix

and Shi (2006) and Shi (2007), this paper develops the first analytically tractable general

equilibrium model with on-the-job search and aggregate fluctuations.

In our model, the economy is populated by a continuum of workers and a continuum of

firms. Each worker supplies an indivisible unit of labor when employed, and each firm has

a production technology with constant returns to scale. Workers and firms come together

through a search-and-matching process. At the beginning of the period, a large number of

“submarkets” open, each of which is defined by the terms-of-trade between firms and workers.
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These terms can be contingent on both aggregate shocks and productivity shocks specific to

the match that will be formed. Based on his current employment state, a worker decides

in which submarket he wants to search for a new employment opportunity. Based on the

distribution of workers across submarkets, each firm decides whether and where to create

vacancies. These choices of the submarkets by workers and firms generate the tightness of

each submarket, i.e. the ratio of vacancies to workers in that submarket. Because workers

and firms can anticipate the dependence of the tightness of each submarket on the terms of

trade in that submarket, their search decisions are directed by these terms of trade.

Once inside a submarket, workers and vacancies meet bilaterally. The probability that

a worker meets a vacancy positively depends on the tightness of the submarket, while the

probability that a vacancy meets a worker negatively depends on the tightness. If a worker

and a vacancy meet, they form a production unit whose per-period output is the sum of an

idiosyncratic and an aggregate component. If a worker does not meet a vacancy, he returns to

his previous employment position. If a vacancy does not meet a worker, it fully depreciates.

In equilibrium, because of free entry of firms, the firm’s benefit from creating an additional

vacancy in any given submarket is equal to its cost. The cost of creating an additional vacancy

is a constant. The benefit is the probability that a vacancy meets a worker, multiplied by

the value of a filled vacancy. The meeting probability only depends on the tightness of

the submarket, while the value of a filled vacancy only depends on the current realization

of the aggregate productivity shock and the terms-of-trade prescribed in the submarket.

Therefore, in any given submarket, the equilibrium tightness only depends on the realization

of the aggregate productivity shock, and not on the distribution of workers across jobs.

In equilibrium, a worker visits the submarket where the benefit from searching is maxi-

mized. This benefit is the probability of meeting a vacancy, multiplied by the increase in the

value of working in the firm. The meeting probability only depends on the tightness of the

market, and the increase in the value of working in the firm only depends on the worker’s

previous employment position and on the terms-of-trade prescribed in the submarket. There-

fore, the worker’s equilibrium search strategy only depends on the tightness of the various

labor markets and the worker’s initial employment position.

Taken together, the two equilibrium conditions imply that the worker’s probability of

transition from one employment state to another depends on the current realization of the

aggregate productivity shock but not on the distribution of workers across jobs. Therefore,
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in our model, finding the equilibrium transition probabilities is an analytically feasible and

numerically straightforward task.

In the second part of the paper, we use our model to measure the effect of cyclical

fluctuations in aggregate productivity on the US labor market. In order to choose parameter

values, we require that the model’s non-stochastic steady-state matches some features of

the US labor market such as the average unemployment rate, the average transition rate

from unemployment to employment and the relationship between the worker’s tenure on a

job and his probability of leaving it. In order to choose the persistence and variance of

aggregate productivity shocks, we require that the stochastic version of the model matches

the persistence and variance of the cyclical component of the US average productivity of

labor.

By comparing model-generated and US data, we find that cyclical fluctuations in ag-

gregate labor productivity account for approximately 64% of the cyclical volatility of US

unemployment. Moreover, we find that cyclical fluctuations in aggregate productivity gener-

ate the same matrix of correlations between unemployment and other labor market variables

as in the US. For example, in both model-generated and US data, unemployment features

a strong negative correlation with vacancies (i.e., the Beveridge curve over business cycles),

a negative correlation with the unemployment-to-employment transition rate and a positive

correlation with the employment-to-unemployment transition rate. In light of these findings,

we conclude that aggregate productivity shocks are likely to be one of the central forces

behind business cycles.

Finally, we use the model to measure the effect of aggregate productivity shocks on job

quality, i.e. the average of the idiosyncratic component of labor productivity over all active

matches. We find that a one percent negative shock to aggregate productivity increases job

quality by half a percentage point. Conversely, we find that a one percent positive shock to

aggregate productivity decreases job quality by approximately one percent. In light of these

findings, we conclude that recessions have a cleansing effect on the economy.

Our first result is in sharp contrast with Shimer (2005) who finds that aggregate pro-

ductivity fluctuations account for approximately ten percent of the cyclical volatility of US

unemployment. Our model’s quantitative predictions match the data better than Shimer’s

do because our model, unlike Shimer’s, allows for on-the-job search and match heterogene-

ity. Both additional elements are important for the quantitative performance of our model.
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In particular, without on-the-job search, the model produces a positive contemporaneous

correlation between unemployment and aggregate productivity.

Our second result is in sharp contrast with Barlevy (2002) who finds that recessions have

a sullying effect on the economy. We conjecture that our result is different because our model

allows for a continuum of realizations of the idiosyncratic productivity shock.

2 Market Equilibrium

2.1 The Model

The economy is populated by a continuum of workers with measure one and a continuum

of firms whose measure is determined by competitive entry. Each worker maximizes the

expected sum of discounted income, with a discount factor β ∈ (0, 1). Each firm maximizes

the expected sum of discounted profits discounted, with the same discount factor β.

At the beginning of each period, the state of the economy is summarized by three vari-

ables: the aggregate component of labor productivity y ∈ [y, y]; the fraction of workers
u ∈ [0, 1] who are unemployed; and the distribution of employed workers, represented by the
function G(.), where G(z) ∈ [0, 1] is the measure of workers whose jobs have an idiosyncratic
component of labor productivity equal to or less than z ∈ [z, z]. It is useful to denote the
state of the economy as ω = {y, u,G(z)}.

Each period is divided in three stages: separation, search and production. In the first

stage, each employed worker is exogenously displaced from his job and into unemployment

with probability δ ∈ (0, 1). Also, during the separation stage, each employed worker can
voluntarily quit his job to become unemployed and each firm can voluntarily dismiss his

employee.

In the second stage, workers and firms come together via search. First, each worker finds

out whether he can search the labor market in the current period. In particular, if the worker

was unemployed at the beginning of the separation stage, he can search the labor market

with probability λu ∈ (0, 1]. If the worker was employed at the end of the separation stage,
he can search the labor market with probability λe ∈ [0, 1]. If the worker became unemployed
during the separation stage, he cannot seek for a new job during the search stage. Secondly, if

a worker has the opportunity to search, he chooses which submarket W ∈ R to visit. Finally,
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after having observed the locations of all workers, firms choose how many vacancies to create

in each submarket W . The cost of a vacancy is k ∈ R++.

Let θ(W ; y) ∈ R+ denote the ratio between the number of vacancies and the number

of workers in the submarket W . Following Pissarides (1985), we refer to θ(W ; y) as the

tightness of submarket W . We assume that a worker visiting submarket W is hired with

probability p(θ(W ; y)), where p : R+ → [0, 1] is a twice continuously differentiable function

such that p0 > 0, p00 < 0, p(0) = 0 and p0(0) = 1. Conversely, we assume that a vacancy

created in submarket W is filled with probability q(θ(W ; y)) ≡ θ(W ; y)−1 ·p(θ(W ; y)), where
q : R+ → [0, 1] is a twice continuously differentiable function such that q0 < 0, q(0) =

1 and limθ→∞ q(θ) = 0. Perhaps, the reader may find useful to interpret p(θ(W ; y)) as

u−1m(u, θ(W ; y)u), where m(u, v) is a constant return to scale function that tells how many

matches are created when u workers and v vacancies visit submarket W .

If a worker visiting submarket W is not hired, he maintains the employment state he had

before the search stage. If a vacancy created in submarketW is not filled, it fully depreciates.

And if a match is formed in submarket W , the firm offers to the worker an employment

contract that provides him with the lifetime utilityW . The contract specifies the probability

of employment and the terms-of-trade between the firm and the worker in the current period

and–conditional on the survival of the employment relationship–in future periods. As

in Burdett and Coles (2003) and Stevens (2004), the terms-of-trade can be contingent on

the aggregate state of the economy, the idiosyncratic productivity of the match and the

length of the relationship, but they cannot depend on the worker’s outside offers. Moreover,

either party retains the option to unilaterally terminate the employment relationship during

the separation stage. Finally, at the end of the search stage, each new match draws its

idiosyncratic component of labor productivity z from the cumulative distribution function

F (z). For simplicity, we assume that this match specific productivity will remain the same

as long as the worker and the firm keep the match.1

In the third stage, production takes place, workers receive their income and firms realize

their profits. In particular, if a worker is unemployed, his income is equal to b units of

output. If a worker is employed at a job with idiosyncratic quality z, he produces y+z units

of output. The division of output between the worker and the firm is determined by the

contractual agreement that the two parties have signed upon forming the production unit.
1 In contrast to our modeling, Mortensen and Pissardies (1994) assume that a new match always starts

with the highest match specific productivity, and then experiences new draws of z in future periods.
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Finally, at the end of the production stage, nature draws next period’s aggregate component

of productivity y+ from the cumulative distribution function Φ(y+|y). Figure 1 illustrates
the timing of events.

2.2 Worker’s Problem

Consider a worker at the beginning of the search stage. If the worker does not get an oppor-

tunity to search in the labor market, he enters the production stage in the same employment

position that he held at the end of the separation stage. In this case, the worker’s lifetime

utility at the beginning of the production stage is denoted as V . We refer to V as the

worker’s fall-back position. If the worker does get an opportunity to search, he chooses the

submarket in which to search, W . With probability p(θ(W ; y)), the worker finds a new job

and his continuation utility is W . With probability 1− p(θ(W ; y)), the worker does not find
a new job, he returns to his previous employment position, and his lifetime utility is V at

the beginning of the production stage. Therefore, the worker chooses W in order to solve

the following maximization problem:

D(V ; y) = max
W

p(θ(W ; y)) (W − V ) . (1)
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We denote with W (V ; y) the solution for W to (1).

Now, consider a worker who enters the production stage without a job and denote with

Vu(y) his lifetime utility. During the current stage, the worker obtains b from unemploy-

ment. During the next search stage, the worker gets the opportunity to look for a job with

probability λu. In this case, the worker’s expected lifetime utility at the beginning of the

next production stage is Vu(y+)+D(Vu(y+); y+). If the worker fails to get the search oppor-

tunity, the worker’s lifetime utility at the beginning of the next production stage is Vu(y+).

Therefore, Vu(y) is given by:

Vu(y) = b+ β
R
[Vu(y+) + λuD(Vu(y+); y+)]dΨ(y+|y). (2)

Next, consider a worker who enters the production stage with a job. In this case, the

worker’s lifetime utility, Ve, is determined by the prescriptions of his employment contract.

In particular, let the employment contract prescribe that the worker should receive the wage

w in the current period, that the match should be destroyed with probability d(y+) during

the next separation stage, and that the worker’s lifetime utility at the next production stage

should be V+(y+), conditional on the survival of the match. Then, Ve is given by:

Ve (w, d+, V+; y) = w + β
R
d(y+)Vu(y+)dΨ(y+|y)+

β
R
(1− d(y+))[V+(z; y+) + λeD(V+(z; y+); y+)]dΨ(y+|y).

(3)

Finally, consider a worker who is employed at the beginning of the production stage and

has complete ownership over the output of his job. Denote with V (z; y) the lifetime utility

of this worker. During the current stage, the worker produces y + z units of output. During

the next separation stage, the worker is exogenously displaced from his job with probability

δ and he is not with probability 1 − δ. In the first case, the worker’s lifetime utility at the

beginning of the next production stage is Vu(y+). In the second case, the worker can choose to

voluntarily quit his job or to keep it. If the worker quits, his lifetime utility at the beginning

of the next production stage is Vu(y+). If the worker does not quit, his lifetime utility at the

beginning of the next production stage is V (z; y+)+λeD(V (z; y+); y+). Therefore V (z; y) is

given by

V (z; y) = y + z + βδ
R
Vu(y+)dΨ(y+|y)+

β(1− δ)
R
max {V (z; y+) + λeD(V (z; y+); y+), Vu(y+)} dΨ(y+|y).

(4)
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Define z∗(y) as the level of idiosyncratic productivity such that the worker is indifferent

between keeping and quitting the job to get unemployed, i.e.

V (z∗(y); y) + λeD(V (z∗(y); y); y) = Vu(y). (5)

We will show later that a worker will quit the job to get unemployed if and only if z < z∗ (y).

2.3 Firm’s Problem

At the beginning of the search stage, a firm decides whether and where to create a vacancy.

In making this decision, the firm takes as given the set W of submarkets that are populated

by a positive number of workers and the equilibrium tightness function θ(W ; y). If it decides

to create a vacancy in submarket W ∈ W, the firm first pays the cost k. Then, the firm

finds a worker to fill its vacancy with probability q(θ(W ; y)) and does not with probability 1−
q(θ(W ; y)). In the first case, the firm’s expected profits at the production stage are J0(W ; y).

In the second case, the firm’s expected profits at the production stage are zero. If it decides

against creating a vacancy, the firm does not sustain any cost at the search stage and does

not make any revenue at the production stage. Overall, the firm’s expected profits at the

beginning of the search stage are given by:

max{0,−k + max
W∈W

q(θ (W ; y))J0(W ; y)}. (6)

In equilibrium, (6) is equal to zero because firms are free to enter the labor market.

Next, consider a firm that has just met a worker in submarket W . At this stage, the

firm chooses the function V0 : [z, z] × Y → R, where V0(z) is the lifetime utility that the
employment contract offers to the worker conditional on the realization z of the idiosyncratic

productivity shock. The firm’s choice is constrained by the requirement that, in expectation,

the employment contract must offer the worker the lifetime utility W , i.e.
R
V0(z; y)dF (z) =

W . Finally, the firm’s choice maximizes the expectation of J(V0(z; y), z; y) with respect to

the realization z of the idiosyncratic productivity shock, where J(V0(z; y), z; y) is the profit

that a firm can expect from having a match with quality z and an obligation to deliver its

employee the lifetime utility V0. Therefore, J0(W ; y) is given by:

J0(W ; y) = max
V0(z)

R
J(V0(z; y), z; y)dF (z), s.t. W =

R
V0(z; y)dF (z). (7)

Finally, consider a firm that has just entered the production stage with a match of quality

z and an obligation to deliver the lifetime utility V to its employee. The firm designs the
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employment contract–i.e. it chooses the current wage w, next period’s separation probability

d(y+) and the worker’s continuation value V+(z; y+)–in order to maximize the discounted

sum of profits. The firm’s choice is subject to the promise-keeping constraint–i.e. the

contract has to provide the worker with the lifetime utility V–and the individual rationality

constraint–i.e. the separation probability d(y+) has to be consistent with the worker’s

incentives to quit and the firm’s incentives to destroy the match. Therefore, J(V, z; y) is

given by

J(V, z; y) = max
w,d∈[δ,1],V+

y + z − w+

β
R
[1− d(y+)] [1− λep(θ(W (V+(z; y+); y+)))]J(V+(z; y+), z; y+)dΨ(y+|y), s.t.

V = Ve(w, d(y+), V+(z; y+); y),

d(y+) = 1 if V+(z; y+) + λeD(V+(z; y+); y+) < Vu(y+) or J(V+(z; y+), z; y+) < 0.
(8)

2.4 The Optimal Contract

First, we consider the contracting problem (8). We denote with M(V, z; y) the joint value of

the employment relationship between the firm and the worker, i.e. M(V, z; y) = J(V, z; y)+V .

From (8) and (3), it follows that M(V, z; y) is given by

M(V, z; y) = y + z + β
R
d(y+)Vu(y+)dΨ(y+|y)+

β
R
(1− d(y+))M(V+(z; y+), z; y+)dΨ(y+|y)+

β
R
(1− d(y+))λep(θ(W (V+(z; y+); y+))))[W (V+(z; y+); y+)−M(V+(z; y+), z; y+)]dΨ(y+|y).

(9)

Since the worker does not care about the firm’s profits, the search strategyW (V+(z; y+); y+)

does not necessarily maximize the joint value of the employment relationship. Similarly,

because one partner does not care about the other’s share of the match output, the separation

strategy d(y+) does not necessarily maximize the joint value of the employment relationship.

Therefore, M(V, z; y) is smaller or equal than

M(V, z; y) ≤ y + z + βδ
R
Vu(y+)dΨ(y+|y)+

β(1− δ)
R
max {Vu(y+),M(V+(z; y+), z; y) + λeD(M(V+(z; y+), z; y+); y+)} dΨ(y+|y).

(10)

From the comparison of (10) and (4), it is immediate to conclude that the joint value of the

employment relationship–namely, M(V, z; y)–cannot be greater than the worker’s value
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of the production unit–namely, V (z; y). And, consequently, the firm’s expected profits

J(V, z; y) cannot be greater than V (z; y)− V .

Now, consider the employment contract {w∗, d∗, V ∗+}, where the current wage w∗ is equal
to y+ z+V −V (z; y), the separation probability d∗ is equal to one if Vu(y+) is greater than
V (z; y+) + λeD(V (z; y+); y+) and equal to δ otherwise, and the worker’s continuation value

V ∗+(y+) is equal to V (z; y). The contract {w∗, d∗, V ∗+} satisfies the promise-keeping constraint
because Ve

¡
w∗, d∗, V ∗+; y

¢
is equal to V . The separation probability d∗(y+) satisfies the

individual rationality constraint because the worker’s continuation value is equal to V (z; y)

and the firm’s continuation profits are equal to zero. Finally, given {w∗, d∗, V ∗+}, the sum of

the firm’s expected profits and the worker’s lifetime utility is equal to V (z; y). Hence, the

employment contract {w∗, d∗, V ∗+} is the solution to the firm’s problem (8).

Next, we consider the contracting problem (7). The firm’s expected profits J0(W ; y) are

given by

J0(W ; y) =
£
maxV0(z)

R
J(V0(z; y), z; y)dF (z), s.t. W =

R
V0(z; y)dF (z)

¤
=£

maxV0(z)
R
[V (z; y)− V0(z; y)]dF (z), s.t. W =

R
V0(z; y)dF (z)

¤
=R

V (z; y)dF (z)−W .

(11)

The second line in (11) uses the fact that J(V0, z; y) is equal to V (z; y) − V0. The third
line in (11) states that the firm’s profits J0(W ; y) are equal to the difference between the

expected value of the production unit,
R
V (z; y)dF (z), and the lifetime utility, W , that the

firm has to provide to a worker hired in submarket W . Finally, notice that the solution to

the contracting problem (7) is indeterminate.

2.5 Laws of Motion

Given the properties of the optimal employment contract, we can derive the probability with

which a worker transits from one employment state to another. First, consider a worker

who is unemployed at the beginning of the period. Define θ∗u(y) = θ(W (Vu(y); y); y). With

probability 1 − λup(θ
∗
u(y)), the worker does not find an employment opportunity during

the search stage and, at the beginning of next period, he will still be unemployed. With

probability λup(θ
∗
u(y))F (z), the worker finds an employment opportunity during the search

stage and, at the beginning of next period, he will be employed at a job with idiosyncratic

productivity equal to or less than z.
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Next, consider a worker who is employed at a job with productivity z at the beginning of

the period. If z is smaller than z∗(y), the worker quits his job during the separation stage and

does not have the opportunity to find another job during the search stage. At the beginning

of next period, the worker will be unemployed. If z is greater than z∗(y), the worker is

exogenously displaced from his job with probability δ. In this case, the worker will be

unemployed at the beginning of next period. With probability (1−δ)(1−λep(θ∗(z; y))), where
θ∗(z; y) is defined as θ(W (V (z; y); y); y), the worker keeps his job during the separation stage

and does not find a new employment opportunity during the search stage. At the beginning

of next period, the worker will still be employed at a job with idiosyncratic productivity

z. Finally, with probability (1 − δ)λep(θ
∗(z; y))F (z), the worker keeps his job during the

separation stage and finds a new employment opportunity during the search stage. At the

beginning of next period, the worker will be employed at a job with idiosyncratic productivity

smaller or equal than z.

Given the state of the economy at the beginning of the period, ω = {y, u,G(z)}, and
given the worker’s transition probabilities, we can derive the state of the economy at the

beginning of next period, ω+ = {y+, u+(ω), G+(z;ω)}. In particular, the measure of workers
who will be unemployed at the beginning of next period is:

u+(ω) = u+ (1− u) [δ + (1− δ)G(z∗(y))]− uλup∗(θ∗u(y)), (12)

For z < z∗(y), the measure of employed workers who will have a job at the beginning of next

period with idiosyncratic productivity equal to or less than z is:

G+(z;ω) =
h
uλup(θ

∗
u(y)) + (1− u)(1− δ)λe

R z
z∗(y)

p(θ∗(z̃; y))dG(z̃)
i

F (z)
1−u+(ω) . (13)

For z ≥ z∗(y), the measure of employed workers who will have a job at the beginning of next
period with idiosyncratic productivity equal to or less than z is:

G+(z;ω) =
h
uλup(θ

∗
u(y)) + (1− u)(1− δ)λe

R z
z∗(y)

p(θ∗(z̃; y))dG(z̃)
i

F (z)
1−u+(ω)+hR z

z∗(y)
[1− λep(θ

∗(z̃; y))] dG(z̃)
i
(1−u)(1−δ)
1−u+(ω) .

(14)

2.6 Definition of an Equilibrium

Definition 1: A market equilibrium is a tuple D(V ; y), W (V ; y), Vu(y), V (z; y), z∗(y),

θ(W ; y), u+(ω), G+(z;ω) which satisfies the following properties:
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(i) Optimal search: D(V ; y) and W (V ; y) are, respectively, the value and the policy func-

tion associated with the maximization problem (1).

(ii) Optimal quitting: Vu(y) and V (z; y) are the solution to the system of functional equa-

tions (2) and (4). Moreover, z∗(y) is the solution to the equation (5).

(iii) Profit maximization: For all W ,

−k + q(θ(W ; y)) £R V (z; y)dF (z)−W ¤ ≤ 0
and θ(W ; y) ≥ 0, with complementary slackness.

(iv) Consistent aggregation: u+(ω) and G+(z;ω) are given by (12) and (13)—(14).

Condition (i) guarantees that the worker’s search strategy is consistent with utility max-

imization given the equilibrium market tightness θ(W ; y). Condition (ii) guarantees that the

worker’s quitting strategy is consistent with utility maximization given the properties of the

optimal employment contract. Condition (iii) guarantees that the equilibrium market tight-

ness θ(W ; y) is consistent with the firms’ optimal decisions about the creation and location

of vacancies. Finally, condition (iv) guarantees that the law of motion for the state of the

economy is consistent with the decisions made by individual agents.

3 Social Planner’s Problem

3.1 Formulation of the Problem

At the beginning of each period, the physical state of the economy can be summarized by

two state variables: the aggregate productivity y ∈ [y, y] and the derivative h : [z, z] → R+
of the measure of workers who are employed at jobs with idiosyncratic productivity smaller

than z. The measure of workers u who begin the period without a job is recovered from the

adding-up constraint :

u+
R
h(z)dz = 1. (15)

In each period, the social planner makes three choices. First, it chooses the tightness

θ̂u ∈ R+ in the labor market visited by the workers whose fall-back position is unemployment.
Secondly, it chooses the tightness θ̂ : [z, z] × Y → R+ in the market visited by the workers
whose fall-back position is being employed at a job with idiosyncratic productivity z. Finally,
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the planner chooses the productivity level ẑ∗ below which workers are instructed to quit their

job.

The amount of output C available for consumption in the current period is determined

by the initial state of the economy {h, y} and by the planner’s choices {θ̂u, θ̂, ẑ∗}. More
specifically, C is given by

C = −k
"
λuuθ̂u + λe(1− δ)

ẑR̂
z∗
θ̂(z)h(z)dz

#
+ u+b+

zR
z

(z + y)h+(z)dz. (16)

The first term on the right-hand-side of (16) measures the output that is invested in the

creation of new vacancies. The second term measures the amount of output that is home-

produced by unemployed workers. And the third term measures the amount of output that

is produced by employed workers.

In the next period, the state of the economy {h+, y+} is determined by {h, y} and by
the planner’s choices {θ̂u, θ̂, ẑ∗}. More specifically, next period’s aggregate productivity y+1
is a random variable distributed according to the distribution function Ψ(y+|y). And at
the beginning of the next period, the density of workers h+ : [z, z] → R+ across jobs with
different productivity is given by

h+(z) =
h
λuup(θ̂u) + λe(1− δ)

R ẑ
ẑ∗
p(θ̂(z))h(z)dz

i
F 0(z) +∆(z),

∆(z) =

⎧⎨⎩ 0 if z ≤ ẑ∗,
(1− δ)(1− λep(θ̂(z)))h(z) if z ≥ ẑ∗.

(17)

Finally, the measure u+1 of workers who are unemployed at the beginning of the next period

can be recovered from the following adding-up constraint:

u+ +
R
h+(z)dz = 1. (18)

The planner ’s objective function is the sum of current and future consumption discounted

with the factor, β. Therefore, the planner’s value in state {h, y} is given by

S(h, y) = max
{θ̂u,θ̂,ẑ∗}

C + β
R
S(h+, y+)dΨ(y+|y), s.t. (15)—(18). (19)

We conjecture that the Volterra derivative of S(h, y) with respect to h(z) is increasing in the

productivity z and independent from the function h, i.e.,

∂S(h, y)

∂(h(z))
= ŝ(z, y).
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This is derivative is the option value to the society of an employed worker in a match (z, y),

as opposed to keeping the worker unemployed.

3.2 Solution to the Problem

In any submarket, the optimal tightness (if positive) is such that the cost and benefit of

creating an additional vacancy are equalized. The cost of creating an additional vacancy is

k. The benefit of creating an additional vacancy is the product between the increase in the

number of workers who find a successful match and the increase in the output produced by

each one of them. Therefore, in the submarket visited by unemployed workers, the optimality

condition for θ̂u(y) is:

k = p0(θ̂u(y))

"
zR
z

μ̂(z; y)dF (z)− μ̂u(y)

#
, (20)

where μ̂u(y) is the social value per period for an unemployed worker, and μ̂(z; y) is the social

value per period generated by an employed worker in a match with productivity (z, y). These

social values are given, respectively, as

μ̂u(y) = b, μ̂(z; y) = z + y + β
R
ŝ(z; y+)dΨ(y+|y). (21)

Note that the social value of employing a worker in a match (z, y) contains not only the

level of output in the match, but also the option value of the employed worker in the future

relative to the social value of an unemployed worker. In the submarkets visited by workers

employed at jobs with productivity z, the optimality condition for θ̂(z; y) is:

k = p0(θ̂(z; y))
hR z

z
μ̂(z; y)dF (z)− μ̂(z; y)

i
if z ≤ ẑ∗(y),

θ̂(z; y) = 0 if z > ẑ∗(y).
(22)

The optimal cutoff ẑ∗(y) equates the output of a worker who is employed at the beginning

of the search stage at a job with idiosyncratic productivity ẑ∗(y) to the output of a worker

who is unemployed at the production stage. Formally, the optimality condition for ẑ∗(y) is:

μ̂(ẑ∗(y); y) + λek

"
p(θ̂(ẑ∗(y); y))
p0(θ̂(ẑ∗(y); y))

− θ̂(ẑ∗(y); y)

#
− μu(y) = 0. (23)

Conversely, the optimal cutoff ẑ∗(y) equates the output of a worker who is employed at the

production stage at a job with productivity ẑ∗(y) and the expected output of a worker who
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has just been hired at a new job (net of the vacancy cost). Formally, the optimality condition

for ẑ∗(y) is:
zR
z

μ̂(z; y)dF (z)− μ̂(ẑ∗(y); y)− k = 0. (24)

Finally, from the envelope condition for the value function S(h, y), it follows that the

derivative ŝ(z; y) satisfies the following condition:

ŝ(z; y) = −λuk
³
p(θ̂u(y))

p0(θ̂u(y))
− θ̂u(y)

´
+∆(z; y),

∆(z; y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if z ≤ ẑ∗(y),
(1− δ)

h
μ̂(z; y)− μ̂u(y) + λek

³
p(θ̂(z;y))

p0(θ̂(z;y))
− θ̂(z; y)

´i
if z ∈ (ẑ∗(y), ẑ∗(y)),

(1− δ) [μ̂(z; y)− μ̂u(y)] if z ≥ ẑ∗(y).
(25)

The derivative ŝ(z; y) is the difference between the output of a worker who is employed at

the beginning of the period at a job with productivity z and the output of a worker who is

unemployed at the beginning of the period. According to condition (25), when z is smaller

than ẑ∗(y), ŝ(z; y) is the negative of the option value of searching while unemployed. When z

is greater than ẑ∗(y), ŝ(z; y) is the sum of two terms. The first term is the difference between

the option value of searching while employed at a job z and searching while unemployed.

The second term is the difference between the output of a worker who is employed at a job

z at the production stage and a worker who is unemployed at the production stage.

3.3 Conditions for a Market Equilibrium

In this subsection, we derive a set of conditions that are necessarily satisfied by any market

equilibrium. First, let s∗(z; y) denote the the difference between the lifetime utility of a

worker who is employed at the beginning of the period at a job with idiosyncratic productivity

z and the utility of a worker who does not have a job at the beginning of the period. Formally,

let s∗(z; y) denote:

s∗(z; y) = (1− δ)max{V (z; y)− Vu(y) + λeD(V (z; y); y), 0}− λuD(Vu(y); y). (26)

Secondly, let μ∗u(y) and μ∗(z; y) be defined as

μ∗u(y) = b, μ
∗(z; y) = z + y + β

R
s∗(z; y+)dΨ(y+|y). (27)
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From condition (iii) in the definition of an equilibrium, it follows that the market tightness

θ(W ; y) is equal to zero wheneverW is greater than
R
V (z; y)dF (z)−k. And for allW smaller

than
R
V (z; y)dF (z)−k, the market tightness θ(W ; y) equates the cost and benefit of creating

an additional vacancy, i.e.

k = q(θ(W ; y))
£R
V (z; y)dF (z)−W ¤ . (28)

Rearranging (28) and using the fact that q(θ) · θ = p(θ), we obtain that

W =
R
V (z; y)dF (z)− k θ(W ; y)

p(θ(W ; y))
. (29)

Differentiating (29) with respect to W , we obtain that

θ0(W ; y) =
p(θ(W ; y))

p0(θ(W ; y))
£R
V (z)dF (z)−W ¤− k . (30)

From condition (i) in the definition of an equilibrium, it follows that the worker’s search

strategyW (V ; y) equates the cost and benefit of seeking a marginally better job. The cost of

seeking a marginally better job is the product between the lower probability of being hired,

i.e., −p0(θ(W ; y)) · θ0(W ; y), and the value of being hired, i.e., W (V ; y)− V . The benefit of
seeking a marginally better job is the higher value of the job, i.e., p(θ(W ; y)). Therefore, the

worker’s search strategy W (V ; y) is such that

θ0(W ; y) (W − V ) = − p(θ(W ; y))
p0(θ(W ; y))

. (31)

If the worker is unemployed, the optimality condition (31) can be written as

k = p0(θ∗u(y))
£R
V (z; y)dF (z)− Vu(y)

¤
=

p0(θ∗u(y))
£R

μ∗(z; y)dF (z)− μ∗u(y)
¤
,

(32)

where the first line uses (29) and (30), and the second line uses (26) and (27). If the worker

is employed at a job with idiosyncratic productivity z ≤ z∗(y), where z∗(y) is such that

V (z∗(y); y) =
R
V (z; y)dF (z)− k, the optimality condition (31) can be written as

k = p0(θ∗(z; y))
£R
V (z; y)dF (z)− V (z; y)¤ =

p0(θ∗(z; y))
£R

μ∗(z; y)dF (z)− μ∗u(z; y)
¤
.

(33)

Finally, if the worker is employed at a job with idiosyncratic productivity z ≥ z∗(y), the

optimality condition (31) implies that W (V (z; y); y) is greater than
R
V (z; y)dF (z)− k.

16



From the optimality conditions (32) and (33), it follows that the expected gain from

searching while unemployed (i.e., D(Vu(y); y)) and the expected gain from searching while

employed at a job with idiosyncratic productivity z ≤ z∗(y) (i.e., D(V (z; y); y)) can be

written as

D(Vu(y); y) = k

µ
p(θ∗u(y))
p0(θ∗u(y))

− θ∗u(y)
¶
,

D(V (z; y); y) = k

µ
p(θ∗(z; y))
p0(θ∗(z; y))

− θ∗(z; y)
¶
.

(34)

Finally, from the optimality condition (31), it follows that the option value of searching while

employed at a job with idiosyncratic productivity z ≥ z∗(y) is zero.

From condition (ii) in the definition of an equilibrium, it follows that a worker employed

at a job with idiosyncratic productivity z voluntarily moves into unemployment whenever

z is smaller or equal than z∗(y), where z∗(y) is implicitly defined by equation (??). Using

(26)—(27) and (34), we can rewrite equation (??) as

μ∗(z∗(y); y) + λek

∙
p(θ∗(z∗(y); y))
p0(θ∗(z∗(y); y))

− θ∗(z∗(y); y)
¸
− μu(y) = 0. (35)

From conditions (i) and (iii) in the definition of an equilibrium, it follows that a worker

employed at a job with idiosyncratic productivity z ≥ z∗(y) does not move to another job
during the search stage. Using (26)—(27) and (29), we can rewrite the equation that defines

z∗(y) as R
μ∗(z; y)dF (z)− μ∗(z∗(y); y)− k = 0. (36)

Finally, using (2), (4), (27) and (34), we can rewrite (26) as

s∗(z; y) = −λuk
³
p(θ∗u(y))
p0(θ∗u(y))

− θ∗u(y)
´
+∆(z; y),

∆(z; y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if z ≤ z∗(y),
(1− δ)

h
μ∗(z; y)− μ∗u(y) + λek

³
p(θ∗(z;y))
p0(θ∗(z;y)) − θ∗(z; y)

´i
if z ∈ (z∗(y), z∗(y)),

(1− δ) [μ∗(z; y)− μ∗u(y)] if z ≥ z∗(y).
(37)

3.4 Efficiency and Uniqueness of the Market Equilibrium

Taken together, (20)—(25) are a system of seven equations in the seven unknowns θ̂u(y),

θ̂(z; y), ẑ∗(y), ẑ∗(y), ŝ(z; y), μ̂(z; y) and μ̂u(y). Using the concavity of the job-finding prob-

ability p(θ) and the uniqueness of the solution of the Bellman Equation (19), we verify that
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this system of equations has a unique solution. Then, since the necessary conditions of an

equilibrium (27), (32)—(33) and (35)—(37) constitute the same system as (20)—(25), we con-

clude that the market equilibrium is unique and efficient. Proposition 2 contains the details

of this argument.

Proposition 1: (Uniqueness and Efficiency of the Equilibrium) Any market equilibrium

generates a unique and efficient allocation of labor θ∗u(y), θ
∗(z; y), z∗(y).

Proof: In the Appendix. k

4 Quantitative Analysis

4.1 Calibration of the Model

In order to simulate the model, we need to choose values and functional forms for: (i) house-

holds’ preferences {β, b}, (ii) matching process {λu,λe,m(u, v), δ}, (iii) production technol-
ogy {k, F (z),Ψ(y0|y)}. Following most of the labor search literature, we choose m(u, v) to
be a Cobb-Douglas matching function Muγv1−γ . Following most of the real business cycle

literature, we choose the distribution Ψ(y0|y) of the current level of aggregate productivity
y0 conditional on the past realization y to be normal with mean y + ρ (y − y) and standard
deviation σy. Finally, we choose the distribution F (z) of match-specific productivity to be

normal with mean zero and standard deviation σz. Given these functional specifications, we

have twelve parameters to identify.

Three of these twelve parameters can be normalized. First, the average aggregate produc-

tivity level, y, affects only the units of {αk,α2σz,αy,α2σy, b}, and so it can be normalized
to 1. Second, notice that the model’s outcomes are identical for all parameterization {β, b},
{α−1λu,α−1λe,αM, γ, δ}, {αk,σz,σy, ρ}, where α > 0. Therefore, the coefficientM in front

of the matching function can be normalized to 1. Finally, notice that the model’s outcomes

are identical for all parameterization {β, b}, {αλu,αλe, γ, δ}, {α(1−γ)−1γk,σz,σy, ρ}, where
α > 0. Therefore, the probability λu that an unemployed worker receives a job application

opportunity can be normalized to 1.

The remaining parameters are identified as follows, and the outcome is reported in Table

1, column (a). Four of the remaining nine parameters, i.e., (k, λe,σz, δ), are identified

by requiring that the non-stochastic steady state of the model matches some statistical

characteristics of the US labor market. In particular, the steady-state unemployment rate

18



û is required to match the average US unemployment rate over the period 1951-2003. The

steady state hazard rate ĥue from unemployment to employment is required to match the

average US monthly job-finding rate over the period 1951-2003. The steady state job-to-job

transition rate ĥee is required to be equal to the steady state hazard rate from employment

to unemployment as it is (approximately) the case in the US (see Nagypál 2004). Finally,

notice that the empirical probability that a worker leaves his job during a given month is

decreasing with tenure and converging to 1.6 percent (see Topel and Ward 1992). In the

non-stochastic steady state version of the model, the probability that a worker leaves his job

during a given month is decreasing with tenure and converging to the exogenous destruction

rate δ. Therefore, we set δ to be equal to 1.6.

Three of the remaining nine parameters, γ, ρ and σy, are identified by requiring that the

data generated by the stochastic version of the model matches some statistical properties of

the US labor market. The elasticity γ of the matching function with respect to applicants is

such that the regression coefficient of the job-finding rate ĥue over the market tightness v/u

in the data generated by the model is the same as in the US. The parameters ρ and σy are

such that the quarterly autocorrelation and standard deviation of labor productivity in the

data generated by the model are the same as in the US.

The two remaining parameters, β and b, are identified as follows. The parameter β is such

that the real interest rate in the model is equal to the average of the real monthly interest

rate on AAA-bonds over the period 1951-2003. The parameter b is such that the flow value

of non-market to market activity is equal to 68 percent of the average labor productivity.2

4.2 The Cyclical Behavior of Unemployment and Vacancies

Table 2 presents a statistical summary of the cyclical behavior of the US labor market over

the period 1951—2003. The first two rows in Table 2 report the standard deviation and

the quarterly autocorrelation for the log-deviation from trend of the unemployment rate u,

the aggregate vacancy rate v, the tightness of the labor market v/u, the hazard rate from

unemployment to employment hue, the hazard rate from employment to unemployment heu
and the average labor productivity p. The last six rows in Table 1 report the correlation

matrix between these labor market variables.
2Note that his value of b is higher than the one used by Shimer (2005) but significantly lower than the

one used by Hagedorn and Manovskii (2006).
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Four facts about the behavior of the US labor market clearly emerge from Table 2. First,

the unemployment rate displays large fluctuations over the business cycle. Specifically, the

standard deviation of the cyclical component of the unemployment rate is almost ten times as

large as the standard deviation of the average labor productivity. Second, over the business

cycle, the fluctuations in the vacancy rate have the opposite sign and the same magnitude as

the fluctuations in the unemployment rate. Specifically, the standard deviation of the cyclical

component of the aggregate vacancy rate is 1.1 times the standard deviation of unemploy-

ment, and the contemporaneous correlation between the two variables is -.894. Consequently,

the cyclical fluctuations in labor market tightness are twice as large as the fluctuations in

unemployment and vacancies. Third, when the cyclical component of the unemployment

rate is positive, the hazard rate from employment to unemployment is typically above its

long-run trend while the hazard rate from unemployment to employment is typically be-

low trend. Specifically, the contemporaneous correlation of the unemployment rate with the

probability of transition from employment to unemployment is .709, and the contemporane-

ous correlation of the unemployment rate with the probability of moving from unemployment

to employment is -.949. Finally, the quarterly autocorrelation of all six variables is at least

as large as 0.7.

Table 3 presents the statistical summary of the cyclical behavior of the labor market in

our model. Specifically, using the parameter values from Table 1 and an arbitrary initial

condition for the distribution of workers across employment states, we have solved for the

equilibrium of the model and simulated 9,000 months of economic activity. Then, we have

thrown away the first 3,000 months of data to make our findings independent from the initial

conditions. Finally, we have used the last 6,000 months of data to construct Table 3.

Four facts about the effect of aggregate productivity shocks on the labor market emerge

from Table 3. First, productivity shocks generate large cyclical fluctuations in the unem-

ployment rate. Specifically, in the data generated by the model, the standard deviation of

the unemployment rate is more than seven times greater than the standard deviation of the

average labor productivity. Secondly, vacancies and unemployment fluctuate in opposite di-

rections in response to productivity shocks. Specifically, in the data generated by the model,

the contemporaneous correlation between the aggregate vacancy rate and the unemployment

rate is -.819, which indicates a negatively sloped Beveridge curve over business cycles. Third,

in response to a positive productivity shock, the hazard rate from employment to unemploy-

ment falls and the hazard from unemployment to employment increases. Specifically, in the

simulation, the contemporaneous correlation of the unemployment rate with the probability
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of moving from employment to unemployment is .949 and its correlation with the probability

of moving from unemployment to employment is -.990. Finally, productivity shocks generate

high autocorrelation in all six variables. The reader can find an illustration of these find-

ings in Figures 1—3, where we have plotted the path of labor productivity, unemployment,

vacancies and hazard rates (expressed as percent deviations from trend) over one hundred

quarters of model-generated data.

By comparing Tables 2 and 3, we conclude that aggregate productivity shocks are the

fundamental cause of cyclical fluctuations in the US unemployment rate during the postwar

years. First, productivity shocks alone account for 64% of the historical volatility in the

unemployment rate. Second, productivity shocks generate a matrix of contemporaneous

correlations between unemployment, vacancies, market tightness and hazard rates that have

exactly the same signs and approximately the same magnitudes as in the historical data.

The only discrepancies between the US and the model-generated data regard the magnitude

of the cyclical fluctuations of hazard rates and vacancies. In particular, while the cyclical

component of the hazard rate from unemployment to employment is thirty percent more

volatile than the hazard rate from employment to unemployment in the US data, it is only

half as volatile in the model-generated data. Moreover, while the cyclical component of

the vacancy rate has approximately the same volatility as the cyclical component of the

unemployment rate in the US data, it is only 20 percent as volatile in the model-generated

data.

Figure 1: Unemployment Fluctuations
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Figure 2: Transition Rates over the Cycle
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4.3 The Role of On-the-Job Search and Match Heterogeneity

How different is the effect of aggregate productivity shocks on labor market fluctuations in

our model from the effect in the canonical search model by Pissarides (1985)? In order to
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answer this question precisely, we first reduce our model to Pissarides’ by eliminating on-

the-job search and match heterogeneity, i.e. we impose the constraint λe = σz = 0.3 Then,

we calibrate the constrained model using all the targets described in Section 4.1, with the

exception of hee = heu and δ = 0.16. Finally, we use the calibrated model to generate a

long time-series for unemployment, vacancies, hazard rates and labor productivity. Table 4

presents a statistical summary of the data generated by Pissarides’ model (labeled P85).

By comparing Tables 3 and 4, we find that the main difference in the results on unemploy-

ment between our model and Pissarides’ is the magnitude of the unemployment fluctuations

caused by aggregate shocks to labor productivity. Specifically, according to our model, pro-

ductivity shocks alone account for more than 64% of the volatility in the US unemployment

rate over the postwar years. According to Pissarides’ model, they account for approximately

13% of the historical unemployment volatility.

This difference between the two models is easy to explain. In our model, a negative

productivity shock increases the unemployment rate through two channels. First, it lowers

the hazard rate from unemployment to employment–because it reduces the value of filling

a vacancy and the tightness of the labor market–and, secondly, it increases the hazard

rate from employment to unemployment–because it raises the minimum level of match-

specific productivity that the worker is willing to accept. In Pissarides’ model, a negative

productivity shock increases the unemployment rate only through the first channel. In fact,

because all matches are assumed to be equally productive, the hazard rate from employment

to unemployment is given by the exogenous separation rate σ and hence constant over the

business cycle. The reader can find an illustration of this explanation in Figures 5 and 6,

where we have plotted the impulse response functions of various labor market outcomes in

our model and in Pissarides’.

So, if we were to introduce match heterogeneity in the Pissarides’ model (as in Mortensen

and Pissarides 1994), would aggregate productivity shocks have the same effect on labor

market outcomes as in our model? In order to answer the question, we reduce our model

to Mortensen and Pissarides’ by eliminating on-the-job search. Then, we calibrate the con-

strained model using all the targets described in Section 4.1 with the exception of hee = heu.

Finally, we use the calibrated model to generate a long time-series for unemployment, va-

cancies, hazard rates and labor productivity. Table 5 presents a statistical summary of the

data generated by the model of Mortensen and Pissarides (labeled MP94).
3This amounts to the same calibration strategy adopted by Shimer (2005).
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By comparing Tables 3 and 5, we find that the main difference in the behavior of unem-

ployment between our model and Mortensen-Pissarides’ is the sign of the contemporaneous

correlation between the fluctuations in unemployment and vacancy generated by productiv-

ity shocks. According to our model, productivity shocks generate the same strong negative

correlation between vacancies and unemployment as that observed in the US data. In con-

trast, in Mortensen and Pissarides’ model, productivity shocks generate a strong positive

correlation between the two variables. This positively sloped Beveridge curve is “an event

that has essentially never been observed in the United States at business cycle frequencies”

(Shimer 2005, p40).

This difference between the two models is easy to explain. In Mortensen and Pissarides’

model, when a negative productivity shock hits the economy, firms create fewer vacancies

per each worker searching the market–because the value of filling a vacancy is lower–

but more workers choose to search–because the reservation quality of a match is higher.

For reasonable calibrations, the second effect dominates the first one and more vacancies

are created in response to a negative productivity shock. In our model, when a negative

productivity shock hits the economy, firms create fewer vacancies per each worker searching

the market, more workers search the market while unemployed but fewer of them search

the market while employed. For reasonable calibrations, the third effect offsets the second

and fewer vacancies are created. The reader can find an illustration of this explanation

in Figures 5 and 7, where we have plotted the impulse response functions of various labor

market outcomes in our model and in Mortensen-Pissarides’.

4.4 Are Negative Productivity Shocks Cleansing or Sullying?

In this subsection, we use our model to find out whether a negative shock to the aggregate

productivity y has a cleansing effect on the allocation of workers across jobs, in the sense

that it increases the average quality of existing matches, or a sullying effect in the sense that

it lowers the average match quality.

Theoretically, a negative shock to aggregate productivity affects the average quality of

existing matches through two different channels. On the one hand, the shock lowers the

relative value of market to non-market activity and, consequently, increases the reservation

quality z∗(y). All else equal, this effect increases the average quality of existing matches. On

the other hand, when the economy is hit by a negative shock to aggregate productivity, the

tightness of all submarkets falls and, consequently, the probability that a worker employed
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on a job with quality z ∈ [z∗(y), z∗(y)] finds a new employment opportunity decreases. All
else equal, this second effect decreases the average quality of existing matches.

Which of these two effects dominates is a quantitative matter. The blue line in Figure 4

represents the path of aggregate productivity yt (expressed as percent deviations from trend)

over one hundred quarters of data generated from the calibrated version of our model. The

green line represents the path of average labor productivity yt +
R
zdGt(z) over the same

interval of time. Finally, the red line represents the path of the average match-specific com-

ponent of productivity
R
zdGt(z). From this picture, it is evident that negative productivity

shocks have a cleansing effect on the economy. In fact, whenever the aggregate productivity

lies below its trend, the average of the match-specific component of productivity is above

trend (and vice versa). Consequently, average and aggregate productivity fluctuate in the

same direction but the fluctuations in average productivity are not as large.

Figure 4: The Cleansing Effect of Recessions
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5 Conclusion

In this paper, we develop a tractable model of the labor market where workers search for

jobs both while unemployed and while on the job. Search is directed in the sense that

each worker chooses to search for the offer that provides the optimal tradeoff between the

probability of obtaining the offer and the increase in the value relative to the worker’s current

employment. There are both aggregate and match-specific shocks, on which the wage path

in an offer can be contingent. We characterize the equilibrium analytically and show that

the equilibrium is unique and socially efficient. On the quantitative side, we calibrate the

model to the US data to measure the effect of aggregate productivity fluctuations on the

labor market. We find that productivity fluctuations account for approximately 64% of the

cyclical volatility in US unemployment. Moreover, productivity fluctuations generate the

same matrix of correlations between unemployment and other labor market variables as in

the US. In particular, the Beveridge curve is negatively sloped over business cycles, and the

magnitude of the slope is the same as in the data. In light of these findings, we conclude

that productivity shocks are one of the main forces driving labor market fluctuations over

business cycles. Furthermore, we find that recessions have a cleansing effect on the economy.
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Table 1: Calibration Outcomes

Description (a) Baseline (b) P85 (c) MP94

β discount rate .996 .996 .996

b non-market activity value .750 .680 .703

λe on-the-job application rate .433 – –

γ match elasticity wrt applicants .500 .715 .715

δ exogenous destruction rate .016 .023 .016

k vacancy cost 2.1 10−3 3.7 10−7 3.5 10−7

σz std match productivity .117 – .034

σy std aggregate productivity .007 .006 .007

ρ autocor aggregate productivity .954 .932 .939

Table 2: U.S. Quarterly Data, 1951—2003

u v v/u hue heu hee p

Standard deviation 19.0 20.2 38.2 11.8 7.50 5.54 2.00

Autocorrelation .936 .940 .941 .908 .733 .599 .878

u 1 -.894 -.971 -.949 .709 -.755 -.408

v – 1 .975 .897 -.684 .785 .364

v/u – – 1 .948 -.715 .792 .396

hue – – – 1 -.574 .735 .396

heu – – – – 1 -.595 -.524

hee – – – – – 1 -.009

p – – – – – – 1

Source: Shimer (2005)

27



Table 3: Productivity Shocks

u v v/u hue heu p

Standard deviation 12.2 2.29 14.1 4.11 9.70 2.00

Autocorrelation .907 .601 .897 .893 .779 .870

u 1 -.819 -.995 -.990 .949 -.981

v – 1 .867 .873 -.922 .876

v/u – – 1 .996 -.967 .992

hue – – – 1 -.959 .996

heu – – – – 1 -.957

p – – – – – 1
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Table 4: Productivity Shocks in P85

u v v/u hue heu p

Standard deviation 2.55 7.09 9.53 2.82 – 2.00

Autocorrelation .923 .819 .859 .873 – .870

u 1 -.939 -.967 -.975 – -.973

v – 1 .995 .991 – .988

v/u – – 1 .999 – .996

hue – – – 1 – .997

heu – – – – – –

p – – – – – 1
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Table 5: Productivity Shocks in MP94

u v v/u hue heu p

Standard deviation 10.3 5.66 7.35 2.20 10.6 2.00

Autocorrelation .788 .475 .877 .877 .511 .870

u 1 .633 -.870 -.870 .896 -.868

v – 1 -.254 -.254 .437 -.249

v/u – – 1 .999 -.719 .997

hue – – – 1 -.720 .997

heu – – – – 1 -.729

p – – – – – 1
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A Appendix

Proof of Proposition 1: The proof is divided in three steps.

Claim 1: The Bellman equation (19) has a unique solution S(h, y).

Proof: Let T denote the mapping, i.e.

T (S̃)(h, y) = max
{θ̂u,θ̂,ẑ∗}

C + β
R
S̃(h+, y+)dΨ(y+|y), s.t. (15)—(18).

The mapping T satisfies the monotonicity condition–namely, if S̃2(h, y) ≥ S̃1(h, y), then

T (S̃2)(h, y) is greater or equal than T (S̃1)(h, y)–and the discounting condition–namely,

if a > 0, then T (S̃ + a)(h, y) is smaller or equal than T (S̃)(h, y) + βα. From Blackwell’s

sufficient conditions, it follows that the mapping T is a contraction and it has a unique fixed

point. Since a solution to (19) is a fixed point of T , the Bellman equation (19) has a unique

solution S(h; y).

Claim 2: Given that ŝ(z; y) is a weakly increasing function of z, the equations (20)-(24)

uniquely determine μ̂u(y), μ̂(z; y), θ̂u(y), ẑ
∗(y), θ̂(z; y) and ẑ∗(y).

Proof: Given ŝ(z; y), equation (21) uniquely determines μ̂u(y) and μ̂(z; y). Moreover, μ̂(z; y)

is a strictly increasing function of z. Equation (20) uniquely determines θ̂u(y) because p0(θ) is

a strictly decreasing function of θ. Equation (24) uniquely determines ẑ∗(y) because μ̂(z; y) is

strictly increasing in z. Equation (22) uniquely determines θ̂(z; y) because p0(θ) is a strictly

decreasing function of θ. Moreover, θ̂(z; y) is a strictly decreasing function of z. Finally,

equation (23) uniquely determines z∗(y) because μ̂(z; y) and p0(θ̂(z; y))−1 · p(θ̂(z; y)) · θ̂(z; y)
are both strictly increasing functions of z.

In light of claim 2, we can think of (25) as one equation in the only unknown ŝ(z; y). In

the next claim, we prove that this equation has a unique solution.

Claim 3: Equations (25) has a unique solution with the property that ŝ(z; y) is weakly

increasing in z.

Proof: On the way to a contradiction suppose that ŝ1(z; y) and ŝ2(z; y) are two distinct

solutions to (25). Denote with μ̂iu(y), μ̂
i(z; y), θ̂

i

u(y), ẑ
∗i(y), θ̂

i
(z; y) and ẑi∗(y), the solution

to the equations (20)-(24) given ŝi(z; y). Denote with κi(y) the unique solution to the

functional equation

κi(y) = −kλuθ̂iu(y) + (1− λup(θ̂
i

u(y)))b+ λup(θ̂
i

u(y))
R
(z + y)dF (z)+

β
R h

κi(y+) + λup(θ̂
i

u(y))
R
ŝi(z; y+)dF (z)

i
dΨ(y+|y).
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Denote with Si(h; y) the function

Si(h; y) = κi(y+) +
R
ŝi(z; y)h(z)dz.

Consider the maximization problem

T (Si)(h, y) = max
{θ̂u,θ̂,ẑ∗}

C + β
R
Si(h+, y+)dΨ(y+|y), s.t. (15)—(18).

It is immediate to verify that θ̂
i

u(y), θ̂
i
(z; y) and ẑi∗(y) satisfy the necessary conditions for

the optimal choice of θ̂u, θ̂, ẑ∗. Also, it is immediate to verify that ŝi(z; y) is the Volterra

derivative of the value function T (Si) with respect to h(z). Finally, it is immediate to verify

that κi(y) is equal to T (Si)(h0, y)–where h0(z) = 0 for all z ∈ [z, z]. Overall, the value
function T (Si) is given by

T (Si)(h, y) = κi(y) +
R
ŝi(z; y)h(z)dz = Si(h, y).

Therefore, the functions S1(h0, y) and S2(h0, y) are two distinct fixed points of the contrac-

tion mapping T . A contradiction.

The market equilibrium is a solution to the system of equations (20)-(25) with the property

that s∗(z; y) is weakly increasing in z. The solution to the social planner’s problem is a

solution to (20)-(25) such that ŝ(z; y) is weakly increasing in z. Therefore, claim 3 implies

that the labor allocation θ∗u(y), θ
∗(z; y), z∗(y) generated by the market equilibrium is unique

and efficient. k
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