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Abstract

Constructed from high-frequency data, realized volatility (RV) provides an effi-

cient estimate of the unobserved volatility of financial markets. This paper uses a

Bayesian approach to investigate the evidence for structural breaks in reduced form

time-series models of RV. We focus on the popular heterogeneous autoregressive

(HAR) models of the logarithm of realized volatility. Using Monte Carlo simula-

tions we demonstrate that our estimation approach is effective in identifying and

dating structural breaks. Applied to daily S&P 500 data from 1993-2004, we find

strong evidence of a structural break in early 1997. The main effect of the break

is a reduction in the variance of log-volatility. The evidence of a break is robust

to different models including a GARCH specification for the conditional variance of

log(RV ).

key words: realized volatility, change point, marginal likelihood, Gibbs sampling,

GARCH

JEL: C22, C11, G10

1 Introduction

The econometric modeling of volatility is an important issue in empirical finance. Instabil-

ity of the volatility process has important implications for decisions in risk management,
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helpful comments. Maheu is grateful for funding from SSHRC. Corresponding author: J. Maheu, 100 St.
George St., University of Toronto, Dept. of Economics, Toronto, Ontario M5S 3G3, Canada, 905-828-
5375, jmaheu@chass.utoronto.ca
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portfolio choice and derivative pricing. Many papers have studied the effect of neglected

parameter changes on the level and persistence of volatility1. Another strand of the litera-

ture has focused on testing for structural breaks2, or directly modeling parameter change.3

A common feature of this research is the use of stock returns to infer structural changes

in the latent volatility process.

Recently, a new observable measure of volatility, called realized volatility (RV) has

been proposed. Realized volatility uses high-frequency data information and has been

shown to be an accurate estimate of ex post volatility. RV is constructed from the sum

of intraday squared returns, and converges to quadratic variation which is the sum of

integrated volatility plus a jump component for a broad class of continuous time models.

This is an essentially nonparametric estimate of ex post volatility. Barndorff-Nielsen and

Shephard (2004) show how the continuous component can be separated from the jump

component of volatility. Empirical and theoretical features of RV are discussed by An-

dersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001), Andersen,

Bollerslev, Diebold and Ebens (2001), Barndorff-Nielsen and Shephard (2002a,2002b),

and Meddahi (2002). The purpose of this paper is to investigate the evidence for struc-

tural breaks within the context of popular time-series models of RV. The use of realized

volatility, in contrast to daily returns, will provide us with more power to detect structural

changes.

An important feature of the time-series of RV is the strong serial dependence.4 Corsi

(2004) shows that the heterogeneous autoregressive (HAR) model can capture the strong

persistence in the data with a parsimonious linear structure. This is not a true long-

memory model but it does provide a good approximation to the dynamics of long-memory.

These features make this specification popular and easy to estimate. HAR type parame-

terizations appear in recent research including Andersen, Bollerslev and Diebold (2006),

Andersen, Bollerslev and Huang (2007), Bollerslev et al. (2007), Corsi et al. (2005),

Forsberg and Ghysels (2006), and Maheu and McCurdy (2006).

This paper provides a Bayesian analysis of structural breaks in daily S&P 500 realized

1Examples include Chu (1995), Hillebrand (2005), Hwang and Pereira (2004), Lamoureux and Las-
trapes (1990), Mikosch and Starica (2004), and Starica and Granger (2005) among others.

2Andreou and Ghysels (2002), Pastor and Stambaugh (2001), Rapach and Strauss (2006), Ray and
Tsay (2002), and Smith (2006).

3For instance, Engle and Rangel (2005).
4Different models that account for this include: autoregressive fractional integrated moving average

(ARFIMA) models by Andersen, Bollerslev, Diebold and Labys (2003), Giot and Laurent (2004), and
Martins, van Dijk and de Pooter (2004); Markov switching in Maheu and McCurdy (2002); unobserved
component models, Barndorff-Nielsen and Shephard (2002a) and Koopman, Jungbacker and Hol (2005);
the mixed data sampling approach of Ghysels et al. (2003); and the heterogeneous autoregressive model
of Corsi (2004).
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volatility. We focus on a logarithmic HAR specification similar to Andersen et al. (2006),

and an extension to include GARCH effects. We test for multiple structural breaks

using the change-point (or structural break) model of Chib (1998) which is estimated

with efficient Markov chain Monte Carlo sampling methods. We investigate specifications

which allow for all parameters, as well as only a subset of parameters, to change due to

a structural break. This allows us to isolate the impact of a break on individual model

parameters and to use all data in the estimation of parameters not affected by breaks.

Each model is estimated conditional on 0, 1, 2, ..., kmax breaks occurring. For each of these

we calculate the marginal likelihood, and the evidence for the number of breaks can be

compared using Bayes factors.5

A first step is to investigate the power of the Chib change-point model to detect

the correct number of structural breaks. The simulations, based on empirically realistic

models, show the method to perform well in estimating the true number of breaks when

there are 1 or more breaks, as well as when there are no breaks. The larger the number of

parameters that are affected by a break, the more likely the structural breaks are correctly

identified. In addition, it is relatively more difficult to identify several structural breaks,

particularly when only one model parameter changes.

We find the marginal likelihood has an advantage over traditional model comparison

criteria, such as sum of squared errors, in identifying the true number of structural breaks.

For example, in-sample loss functions of one period ahead forecasts of RV are less sen-

sitive to structural breaks. In fact, the R2 from commonly used Mincer and Zarnowitz

(1969) forecast regressions strongly favor models with more change-points than there are.

Forecasting loss functions are less powerful in detecting breaks and can be a misleading

indicator of structural breaks.

The empirical results for S&P 500 provide strong evidence of a structural break in the

logarithm of RV (log-RV) during February 1997 based on data from 1993-2004. The effect

of the structural break is mainly confined to the variance with weaker evidence that the

regression parameters are effected. The structural break results in a smaller variance after

1997. The conclusions are robust to the inclusion/exclusion of jumps, and asymmetric

terms in the model.

Concurrent work by Andersen et al. (2006), Andersen et al. (2007), Corsi et al.

(2005), and Bollerslev et al. (2007) using a similar model for S&P 500 volatility ignore

the possibility of structural breaks. We demonstrate that accounting for the structural

break improves out-of-sample density forecasts of log-volatility dramatically after the

5Related applications of Bayesian change-point analysis include Kim et al. (2005), Martin (2000),
Pastor and Stambaugh (2001), Pettenuzzo and Timmermann (2006), and Ray and Tsay (2002).
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break point. Corsi et al. (2005), Andersen et al. (2007) and Bollerslev et al. (2007)

use a HAR model for volatility and allow for GARCH effects in the conditional variance.

To investigate if our finding of a break is spurious due to neglected conditional variance

dynamics, we consider breaks in a HAR-GARCH model for log-RV. Again the evidence

is strong for a break in the long-run variance from the GARCH model and the estimated

break point is identical to that of the homoskedastic model. Moreover, ignoring this break

results in persistence estimates in the GARCH model that are too high. In summary, we

find a permanent reduction in the variance of log-RV in February 1997 for all of our

specifications. Failure to model this break results in biased parameter estimates and poor

density forecasts.

The structure of this paper is as follows. In Section 2 we review the construction of

RV and the jump component, and the empirical model for daily log-RV. The change-point

model and Bayesian estimation are detailed in Section 3. Section 4 presents simulation

results on the ability of the change-point model to detect breaks, date change points

and other features. Section 5 is the application to S&P 500 volatility while Section 6

concludes. An appendix provides details on the estimation of the marginal likelihood and

the HAR-GARCH model.

2 Realized Volatility

2.1 Estimation

We assume that the price process belongs to the class of special semimartingales, which

is a very broad class of processes including Ito and jump processes. In this environment

Andersen, Bollerslev, Diebold and Labys (2001) show that the quadratic variation of the

process, which is defined as integrated volatility plus the jump component, provides a

natural measure of ex post volatility. RV is constructed from the sum of intraday squared

returns and is a consistent estimate of quadratic variation as the intraday sampling fre-

quency goes to infinity. In contrast to traditional measures of volatility, such as daily

squared returns, realized volatility is more efficient. Andersen and Bollerslev (1998),

Barndorff-Nielsen and Shephard (2002b) and Meddahi (2002) discuss the precision of RV.

Market microstructure dynamics contaminate the price process with noise. The noise

can be time dependent and may be correlated with the efficient price (Hansen and Lunde

(2006)). RV can be a biased and inconsistent estimator. For instance see Bandi and

Russell (2006), Hansen and Lunde (2006), Oomen (2005) and Zhang et al. (2005) for

more details on the effects of market microstructure noise on volatility estimation. To
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reduce the effect of market microstructure noise, we employ a kernel-based estimator that

utilizes autocovariances of intraday returns. Specifically, we follow Hansen and Lunde

(2006) to provide a bias correction to realized volatility as follows,6

RVt =
M∑
i=1

r2
t,i + 2

q∑

h=1

(
1− h

q + 1

) M−h∑
i=1

rt,irt,i+h (1)

where rt,i is the ith logarithmic return during day t, M is the number of returns in each

day, and q = 1 in our calculations. This estimator is guaranteed to be non-negative and

is almost identical to the subsample-based estimator of Zhang et al. (2005).

Barndorff-Nielsen and Shephard (2004) show how the continuous component can be

separated from the jump component of volatility. They define realized bipower variation

as,

RBPt = µ−2
1

M−1∑
i=1

|rt,i||rt,i+1|, (2)

where µ1 =
√

2/π. Asymptotically as M → ∞, realized bipower variation converges to

integrated volatility. The difference between RVt and RBPt is an estimate of the daily

jump component. In our paper, we follow Andersen et al. (2006) and estimate jumps by,

Jt =

{
log (RVt −RBPt + 1) when RVt −RBPt > 0

0 Otherwise
(3)

where we add 1 to ensure that Jt ≥ 0.

2.2 Models

Consider the heterogeneous autoregressive model (HAR) of realized volatility proposed by

Corsi (2004). Corsi shows that this model can capture many of the features of volatility

including long memory. Empirically the distribution of log(RVt) is approximately bell

shaped7, so we consider a logarithmic version of the HAR similar to that implemented by

Andersen et al. (2006) and defined as

vt = β0 + β1vt−1 + β2vt−5,t−1 + β3vt−22,t−1 + εt, εt ∼ NID(0, σ2). (4)

6The adjusted RVt from Hansen and Lunde produced several days with a negative estimate for RVt.
We follow their suggestion and use Bartlett weights to ensure that RVt is positive. The estimator is no
longer unbiased, but may have a smaller MSE.

7See Andersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev, Diebold and Ebens (2001),
and Giot and Laurent (2006).
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where vt = log(RVt) and

vt−5,t−1 =
log (RVt−1) + log (RVt−2) + · · ·+ log (RVt−5)

5
(5)

vt−22,t−1 =
log (RVt−1) + log (RVt−2) + · · ·+ log (RVt−22)

22
(6)

This model postulates three factors that affect volatility: daily log-volatility vt−1, weekly

log-volatility vt−5,t−1 and monthly log-volatility vt−22,t−1.

Andersen et al. (2006), Huang and Tauchen (2005), and Tauchen and Zhou (2005)

conclude that jumps are an important component of realized volatility. Therefore, we

consider a model with a jump component as well as asymmetric terms motivated by the

models in Bollerslev et al. (2007),

vt = β0+β1vt−1+β2vt−5,t−1+β3vt−22,t−1+βJJt−1+βA1
|rt−1|√
RVt−1

+βA2
|rt−1|√
RVt−1

I (rt−1 < 0)+εt

(7)

where rt is the daily return, I (rt−1 < 0) is an indicator function, which equals 1 when

rt−1 < 0 and equals 0 otherwise. Jt−1 is the jump component defined above. The last

two terms allow for asymmetric effects from positive and negative returns similar to the

EGARCH model of Nelson (1991).

To simplify the notation, we note that the model can be cast into a standard regression

form

yt = Xtβ + εt

where yt = vt, β = [β0 β1 β2 β3 βJ βA1 βA2]
′
and

Xt =

[
1 vt−1 vt−5,t−1 vt−22,t−1 Jt−1

|rt−1|√
RVt−1

|rt−1|√
RVt−1

I (rt−1 < 0)

]
.

In the following denote Yt = {v1, v2, . . . , vt}, and It = {y1, X1, ..., yt, Xt}.

3 Change-point Model

We consider the change-point (or structural break) model proposed by Chib (1998). This

uses a hidden Markov model with a restricted transition matrix to model change-points.

A test for the number of breaks is then a test of the dimension of the hidden Markov

chain. As Chib shows there are efficient posterior simulation methods available for this

type of model. Model parameters and change points are jointly estimated conditional on

a fixed number of change points. Bayes factors can be used to compare the evidence for
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the number of breaks.

In the following we review a Gibbs sampling approach for the unrestricted model in

which all parameters are subject to change after a break. This is followed by a discussion

of the restricted model in which some parameters are restricted to be constant across

breaks. This latter specification allows us to isolate which features of the model are most

likely affected by a structural break.

Assume there are m − 1, m ∈ {1, 2, ...} change points at unknown times Ωm =

{τ1, τ2, . . . , τm−1}. Separated by those change points, we have m different regimes. The

density of observation yt, t = 1, 2, · · · , T , depends on the parameter θk = {βk, σ
2
k},

k = 1, ...,m, whose value changes at the change points Ωm and remains constant oth-

erwise

θt =





θ1 if t < τ1

θ2 if τ1 ≤ t < τ2

...
...

...

θm−1 if τm−2 ≤ t < τm−1

θm if τm−1 ≤ t.

(8)

Denote the state of the system at each time by S = {s1, s2, . . . , sT} where st = k

indicates that the observation yt is from regime k and follows the conditional distribution

f (yt|It−1, θk). The one-step ahead transition probability matrix for st is assumed to be

P =




p11 p12 0 · · · 0

0 p22 p23 · · · 0
...

...
...

...
...

...
... 0 pm−1,m−1 pm−1,m

0 0 · · · 0 1




(9)

where pij = Pr (st = j|st−1 = i) with j = i or i + 1, and this is the probability of moving

from regime i at time t − 1 to regime j at time t. The transition matrix ensures that

given st = k at time t, the next period t + 1, st+1 remains in the same state or jumps

to the next state. For instance, given st = k, we have st+1 = k or st+1 = k + 1 and

pk,k + pk,k+1 = 1. Once we move to the last regime m, we stay there for ever, that is

pm,m = 1. This structure enforces the ordering (8) on the change-points.
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3.1 Bayesian Estimation

To conduct model estimation, we use Bayesian methods. We specify independent condi-

tionally conjugate priors for the parameters. They are

βk ∼ N(d0, B0), σ2
k ∼ IG

(
v0

2
,
l0
2

)
, pii ∼ Beta (a0, b0) (10)

for k = 1, ..., m, and i = 1, ..., m − 1, and where IG(·, ·) denotes the inverse Gamma

distribution. For a detailed discussion of prior selection in the context of change-point

models see Koop and Potter (2004).

3.1.1 Gibbs Sampling

Although the posterior for the model is not a well known distribution, we can obtain

samples from the posterior based on a Gibbs sampling scheme. Good introductions to

Gibbs sampling and Markov chain Monte Carlo methods can be found in Chib (2001),

and Geweke (2005).

We divide the parameters into 3 blocks: parameters of the HAR model Θ = {θ1, ..., θm},
the state of the system S and the transition matrix P . We augment the parameter space

to include the states so that we sample from the full posterior p(Θ, S, P |IT ). After choos-

ing a starting value, Θ(0), and P (0), Gibbs sampling requires we iterate sampling from the

following conditional densities

• S|P, Θ, IT

• P |S, Θ, IT

• Θ|S, P, IT

After dropping a set of burn-in samples to ensure convergence, we collect the remaining

draws {P (h), Θ(h), S(h)}R
h=1 to approximate the posterior distribution. To ensure these

draws have converged to the stationary distribution, we investigate running the chain from

different starting values and compute convergence diagnostics such as Geweke (1992).8

For a sufficiently large posterior sample, any function of interest can be consistently

estimated. For example,

ĝ(θk) =
1

R

R∑

h=1

g(θ
(h)
k ) (11)

8All results in this paper are robust to different starting values. For instance, we consider many
different starting values, including values drawn randomly over a wide range of the parameter space.
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is a simulation consistent estimate of E [g (θk) |IT ], the posterior mean of g(θk).

Below we provide more details on each step of the Gibbs sampling.

Step 1: Simulation of S|P, Θ, IT . Chib (1996) shows that a joint draw of all states

can be achieved using

p(S|Θ, P, IT ) = p(sT |Θ, P, IT )
T−1∏
t=1

p(st|st+1, Θ, P, It) (12)

in which we sample sequentially from each density on the right hand side of (12) beginning

with p(sT |Θ, P, IT ), and then p(st|st+1, Θ, P, It) t = T −1, ..., 1. At each step we condition

on the previously drawn state st+1, until we obtain a full draw S. The individual densities

in (12) are obtained based on the following three steps.

(a) Initialization: At t = 1, set p(s1 = 1|Θ, P, I1) = 1.

(b) Compute the Hamilton (1989) filter, p (st = k|Θ, P, It). This involves a prediction

and an update step in which we iterate on the following from t = 2, ..., T ,

p (st = k|Θ, P, It−1) =
k∑

l=k−1

p(st−1 = l|Θ, P, It−1)plk, k = 1, ..., m, (13)

p (st = k|Θ, P, It) =
p (st = k|Θ, P, It−1) f (yt|Θ, It−1, st = k)∑m
l=1 p (st = l|Θ, P, It−1) f (yt|Θ, It−1, st = l)

, k = 1, ..., m.

The last equation is obtained from Bayes’ rule. Note that in (13) the summation

is only from k − 1 to k, due to the restricted nature of the transition matrix, and

f (yt|Θ, It−1, st = k) ∼ N (Xtβk, σ
2
k).

(c) Finally, Chib (1996) has shown that the individual densities in (12) are,

p (st|st+1, Θ, P, It) ∝ p (st|Θ, P, It) p (st+1|st, P ) . (14)

Thus, given sT = m, we can draw st backwards over t = T − 1, T − 2, . . . , 2 as

st|It, st+1, Θ, P =

{
st+1 with probability ct

st+1 − 1 with probability 1− ct

where

ct =
p (st = k|Θ, P, It) p (st+1 = k|st = k, P )∑k

l=k−1 p (st = l|Θ, P, It) p (st+1 = k|st = l, P )
.

ct is similar to Bayes’ rule and the filter p (st = k|Θ, P, It) is computed in step (b).

9



Finally, note that P (s1 = 1|I1, s2, Θ, P ) = 1.

Step 2: Simulation of P |S, Θ, IT . The conditional posterior for each component of P

is

pii|S ∼ Beta (a0 + nii, b0 + 1) (15)

where nii is the number of one-step transitions from state i to state i in the sequence S.

Step 3: Simulation of Θ|S, P, IT . The conditional posterior density of θk only depends

on the data in regime k. Therefore, let Ŷk = {yt : st = k} and X̂k = {Xt : st = k} and

use standard Gibbs sampling methods for the linear model,

βk|Ŷk, X̂k, σ
2
k ∼ N(Mk, Vk) (16)

where

Mk = Vk(σ
−2
k X̂ ′

kŶk + B−1
0 d0), Vk = (σ2

kX̂
′
kX̂k + B−1

0 )−1,

and

σ2
k|Ŷk, X̂k, βk ∼ IG

(
vk

2
,
lk
2

)
(17)

where vk = Tk+v0, lk = (Ŷk−X̂kβk)
′(Ŷk−X̂kβk)+l0, and Tk is the number of observations

in regime k.

3.1.2 Only Breaks in Conditional Mean Parameters

Suppose we have a subset of regression parameters η with n elements that are subject to

breaks denoted by ηk, k = 1, ..., m, while the remainder δ and the variance σ2 are not. If

we partition the regression parameter as βk = [η
′
k δ

′
]
′
and reorder Xt = [Ut Vt] to conform

to this we carry out sampling as follows.

• To sample from ηk|δ, σ2, S, IT , for each regime k = 1, · · · ,m, we use the observations

only in regime k and let ŷk = {yt − Vtδ : st = k} and X̂k = {Ut : st = k} and use

standard Gibbs sampling methods as in step 3.

• To sample from δ|η1, ..., ηk, σ
2, S, IT , we use the model ŷt = Vtδ + εt, where ŷt =

yt −
∑m

k=1 UtηkI(st = k) where I(·) is the indicator function. Once again standard

methods can be used to sample δ.

• For σ2|η1, ..., ηk, δ, S, IT , we sample the variance from the model yt =
∑m

k=1 UtηkI(st =

k)+Vtδ + εt with εt ∼ NID(0, σ2) which is a draw from the inverse gamma density.

10



3.1.3 Only Breaks in the Variance

Suppose only the variance changes between regimes, and β is constant.

• Draw of σ2
k|β, S, IT , k = 1, ..., m, only uses data in each regime, this is standard as

in step 3 above.

• β|σ2
1, ..., σ

2
k, S, IT . Due to the heteroskedasticity, we construct new data as ŷt =

yt/σk, and X̂ = X/σk in each regime. Then we have the standard linear model with

an error variance of 1.

Finally, note that we can consider breaks in the variance with only partial breaks in

β by combining the methods in the last two subsections.

3.2 Bayes Factors

Let A denote a model parameterization in which some or all parameters are subject to

breaks and conditional on k breaks occurring. Then the marginal likelihood (ML) is

defined as

p(YT |A) =

∫
p(YT |A, Θ, P )p(Θ, P |A)dΘdP

which is a measure of the success the model has in accounting for the data after the

parameter uncertainty has been integrated out over the prior. The term p(Θ, P |A) is the

prior and p(YT |A, Θ, P ) is the likelihood function and calculated as

log p (YT |A, Θ, P ) =
T∑

t=1

log f (yt|It−1, Θ, P ) (18)

where

f (yt|It−1, Θ, P ) =
m∑

k=1

f (yt|It−1, Θ, st = k) p (st = k|Θ, P, It−1) . (19)

The last term in the right hand side of Equation (19) is computed from Equation (13).

For this model we can estimate the marginal likelihood following Chib (1995), the details

of which are reported in the Appendix.

Once we calculate the marginal likelihood for different specifications we can compare

them using Bayes factors. Note that we can compare models across the number of breaks,

as well as the type of breaks (restricted versus unrestricted). Bayes factors can be used

to compare any model configuration. The relative evidence for model A versus B is

BFAB = p(YT |A)/p(YT |B). Kass and Raftery (1995) suggest interpreting the evidence for

A as: not worth more than a bare mention for 1 ≤ BFAB < 3; positive for 3 ≤ BFAB < 20;
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strong for 20 ≤ BFAB < 150; and very strong for BFAB ≥ 150. Equivalently, based on a

log scale, log(BFAB) > 0 is evidence in favor of A versus B.

4 Monte Carlo Simulation

In this section we use Monte Carlo simulations to investigate the ability of the change-

point model to detect change-points, and date the time of a change-point. We also

consider the effect of different sample sizes, and the in-sample forecasting performance.

As mentioned above, a key ingredient of the analysis is the marginal likelihood which we

estimate following Chib (1995). We have also calculated the marginal likelihood following

Gelfand and Dey (1994) but do not report it to save space. We found a very close

correspondence between the two estimates and identical conclusions from Bayes factors.

4.1 Setting

We consider the HAR model based on equation (4), in which change points affect one or

more model parameters. Table 1 lists all the specifications used in the simulations and the

empirical application. Specifically, M0 is the simple HAR model without any structural

change, M1 −M7 are models in which different parameters change and M8 is the model

in which all parameters change from a structural break.

For each model, we generate T = 1000 observations, which is much less than the actual

data in our empirical application. Thus, we test the robustness of the method under more

challenging conditions. The true models we consider include cases of no change point,

1 and 2 change points. When there is 1 change point, the position of this change point

follows a uniform distribution U(0.25 × T, 0.75 × T ). When there are 2 change points,

the first one follows U(0.2× T, 0.4× T ) and the second follows U(0.6× T, 0.8× T ). This

setting allows us to account for the randomness of the change points as well as ensuring

sufficient observations in each regime to conduct estimation.

To make our simulation empirically realistic, we select parameter values of the HAR

model which are close to those reported in Andersen et al. (2006). They are listed in

Table 2. For example, in M0 there are no structural breaks, all parameters are constant

across regimes, while for M1 only β0 changes. If there is 1 break, β0 changes from −0.1

to −0.4. If there are 2 breaks, it changes from −0.1 to −0.4 and finally to −0.1.

The priors are βk ∼ N (0, 100I) , σ2
k ∼ IG(0.001, 0.001), k = 1, ..., m, and pii ∼

Beta (20, 0.1), i = 1, ...,m − 1. In this setting, βk and σ2
k are very uninformative, while

the prior for pii favors infrequent structural breaks. Specifically, it means we assume

the expected duration of each regime is about 201 before we see the data. However, if
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there are outliers in the time series, a single point may be identified as a separate regime.

To rule this out and allow for only infrequent breaks, we impose the assumption that

each regime lasts at least 66 days, which is roughly 3 months in actual trading time. In

practice, when we simulate a draw of S which has a regime shorter than 66, we discard it

and resample until each regime is 66 or more in length. Our results are robust to different

duration restrictions which we discuss in more detail for the empirical application in

Section 5. A similar strategy is followed by Kim et al. (2005) using financial data. The

first 5000 samples from the posterior simulator are discarded and the next 15000 are used

for posterior inference.

4.2 Identifying the Number of Change Points

In the following, the model specification Mi is assumed known but the number of structural

breaks and model parameters are not known. For each draw from the data generating

process (DGP), we estimate the change-point model assuming 0, 1, 2, and 3 structural

breaks. We rank the evidence for the number of break points according to the largest

marginal likelihood. The best change point specification has the largest marginal likeli-

hood, while the second best has the next largest, etc. We draw a new sample of data

from the DGP and repeat this until 100 repetitions are completed. Then we report the

frequency over repetitions in which each specification is best according to the marginal

likelihood.

Table 3 lists the results for each of the different specifications. For convenience, bold

entries in these cells should be 100 if classification is perfect. For example, the first entry

(row) for M1 says that for a DGP with no change points, out of 100 repetitions 90 are

correctly identified as no change point, while 10 (8+1+1) are identified incorrectly as

change points. The next entry in the table repeats this for a DGP with 1 change point.

Here, 92 times 1 change point is correctly identified.

Overall the Chib model works very well. When there is no change point, this is

correctly selected most of the time. Looking at the cases when data are generated from

the model with no change point (first row in each panel), they are 90/100 for M1, 96/100

for M2, 99/100 for M3 and 100/100 for M4 − M8. Except for a few cases, this method

will correctly rule out structural breaks when the underlying process is actually stable.

On the other hand, when the process contains change points, the Chib model correctly

identifies the existence of the change points in most cases. For example, the probability of

correctly identifying instability of the process is 0.98 ((92+3+3)/100) for M1 and 1 change

point, and is 0.79 for 2 change points. Furthermore, the correct number of change points

are found most of the time. Looking at the numbers in bold, many of them are close
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to 100. However, the relatively low numbers associated with M1 and M2 show that the

method is not as powerful when there are changes only in the intercept β0 or only in β1.

Therefore, for this DGP it is easier to identify structural breaks when more parameters

undergo a change. For example, compare M1, and M2, with the better performance of M4

in which all β change from a break. Similarly, we see better results when the variance is

subject to structural breaks. The best results of the table correspond to models M5–M8.

In summary, the change-point model provides a very reliable method for the identification

of structural breaks using a marginal likelihood criteria.

4.3 Dating the Change Points

After finding the number of structural breaks, we are interested in whether this method

can identify the position of the change points correctly. Given S, we define the jth change-

point as, cpj = inf{t|st 6= st−1, t > cpj−1} with cp0 = 0. Given a full MCMC run, we use

the posterior mean cpj = 1
R

∑R
h=1 cp

(h)
j , where cp

(h)
j is the jth change point based on the

draw S(h).

For each of the 100 repetitions we consider two measures of accuracy, mean absolute

error (MAE), and root mean squared error (RMSE) defined as,

MAE =
1

100

1

W

100∑
i=1

W∑
j=1

∣∣cpj(i)− cpj(i)
∣∣ , RMSE =

√√√√ 1

100

1

W

100∑
i=1

W∑
j=1

(
cpj(i)− cpj(i)

)2

(20)

where W is the number of change points. cpj(i) is the true position of change point j,

and cpj(i) is the estimate, from the ith draw of the DGP. Recall that change points are

randomly drawn from the DGP each repetition.

Table 4 reports the MAE and RMSE when the underlying process contains 1 or 2

change points. For the results to be meaningful we focus only on models which have the

correct number of change points. For example, if the DGP has 2 change points, we focus

on specifications that assume 2 change points only. Consistent with previous results, M1

and M2 perform the worst, and we see improvements when more parameters are subject to

structural breaks. Specification M8 in which all parameters change is the most accurate.

4.4 Sample Size

We are also concerned about the robustness of this method with respect to different

sample sizes. Here we consider one of the more challenging specifications with sample

sizes of 500, 1000, 2000 and 5000. We report results for only breaks in β1, change-point
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specification M2, with 2 change points in Table 5. Increasing the number of observations

improves the identification of the true number of change points. The distribution is also

more concentrated on the true model. We obtain similar, but generally better results for

other models which are not reported here.

4.5 Forecasts

Another approach to compare the evidence for the number of change points is by forecast

quality through the associated loss functions RMSE, MAE and the R2. The R2 is obtained

from a regression of realized observations on a constant and a model forecast (Mincer and

Zarnowitz (1969)). In our simulation exercise, we calculate these quantities as well. That

is, using the change-point model estimated conditional on m − 1 breaks, we calculate

the in-sample model forecast for RVt using the posterior mean. Since we assume RVt is

conditionally log-normal, we use the following partially analytical results for the posterior

mean:

E [RVt|It−1] ≈ 1

R

R∑

h=1

exp

[
Xtβ

(h) +
1

2
σ2(h)

]
(21)

where β(h), σ2(h) for h = 1, . . . , R are draws from the posterior simulator conditional on

all the data.

We calculate the in-sample RMSE, MAE and R2 for specifications M3 and M8 and

summarize the results in Table 6. Similar results are obtained for other cases. For each

criteria we report the number of times out of 100 repetitions that the specific change-point

model is selected as best based on a forecast criterion and the marginal likelihood. For

instance, in the top row, given a DGP with no change points, 90 out of 100 (90/100)

repetitions the no change-point model has the smallest MAE, while 6/100 times the 1

change-point model is best, and 4/100 times the 2 change-point model is best. If there

were perfect classification the bold numbers should be 100.

The RMSE criterion generally identifies the correct number of structural breaks. The

MAE deteriorates with more change points for M3. Note that the posterior mean is

only an optimal estimate for RMSE, and we include the MAE for comparison only. The

R2 criterion is particularly bad in both cases. This shows that forecasts alone provide

weaker, and in the case of R2, misleading evidence about structural breaks. The marginal

likelihood, that uses the whole distribution and hence more information, performs better.

In the case of M8, we would expect the marginal likelihood to be the best since it is

sensitive to breaks in the variance while the RMSE, MAE and R2 should not be. However,
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it also performs well for M3 in which the variance is not subject to breaks.

In conclusion, we have presented simulation evidence that the Chib change-point model

performs well in identifying the number of structural breaks, dating change points, and

the superiority of the marginal likelihood criterion in identifying the number of breaks.

5 Application to S&P 500 Volatility

5.1 Data

We consider the S&P 500 index by using the Spyder (Standard & Poor’s Depository

Receipts), which is an Exchange Traded Fund that represents ownership in the S&P 500

Index. The ticker symbol is SPY. Since this asset is actively traded, it avoids the stale

price effect of the S&P 500 index.9 The Spyder trades at about 1/10th the value of the

index. There is a very close correspondence between the series and generally the tracking

error is well below 1%.

The Spyder price transaction data are obtained from the Trade and Quotes (TAQ)

database. We removed any price transaction change that was larger than 3% which were

obvious errors and keep those records with a TAQ correction indicator of 0 (regular trade)

and when possible a 1 (trade later corrected). We also excluded any transaction with a

sale condition of Z, which is a transaction reported on the tape out of time sequence. A 5

minute grid from 9:30 to 16:00 was constructed using previous-tick method10 which means

if there is no transaction at that time grid, the nearest previous transaction record is used.

The first observation of the day occurring just after 9:30 was used for the 9:30 grid time.

From this grid, 5 minute intraday log returns are constructed. Then the return data

was used to construct daily returns, realized volatility, and realized bipower variation.

The data ranges from January 29, 1993 to March 30, 2004. Conditioning on the first 22

observations, we have T = 2791 observations. Table 7 displays summary statistics for

daily RVt and log(RVt).

5.2 Results

To conduct Bayesian estimation we use the same prior11 as in our simulation exercises

but focus on the HAR model with jumps and asymmetric terms, see equation (7). We

investigate this model under the structural change configurations in Table 1. Table 8

9See Atchison et al. (1987) for a discussion of the spurious autocorrelation in index returns due to
nonsynchronous trading.

10For this and other sampling methods see Hansen and Lunde (2006).
11The results in Section 5 are robust to different hyperparameters in our prior distributions.
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displays the log marginal likelihood for specifications with no change point up to 7 change

points.

The results suggest the existence of a change point for S&P 500 data. The log marginal

likelihood for no change point is −2333.28, but all specifications with structural breaks

improve on this except for M1 and M2. The difference in the best structural break

specification (M5, and one break) and the no-break model is large with a Bayes factor

of exp(57.99) in favor of a single break. This is very strong evidence. Taking a closer

look at the table, the results suggest one change point. For most model settings, the

largest marginal likelihood occurs at 1 change point. There is some posterior support for

2 change points for M5, but it is dominated by its 1 change point counterpart, and the

Bayes factor is 29.67 favoring 1 change point versus 2.

More interesting findings come from the comparison between models. The largest log

marginal likelihood across all models is −2275.29 from M5 with 1 change point. This is

a structural break in σ2. Considering the second largest number in this table, which is

−2277.51 from M7 with 1 change point, the Bayes factor for M5 vs M7 is 9.22. Therefore,

we conclude the effect of the break is mainly variance, but there is the possibility that

the break affects the first 2 regression parameters as well as the variance of log-realized

volatility.12 Our results also suggest that there is no structural break in β2 or β3, which

can be seen from the relative small value for M4 (compared to M3) and M8 (compared to

M7).

Figure 1 displays the data, the posterior density of the change point date and the

cumulative probability of the change point for M5 conditional on one change point. There

is some uncertainty as to the change point date. The posterior mode of the change point

density is associated with February 6, 1997.

There are several events that may have contributed to the change in volatility dynam-

ics. The New York Stock Exchange (NYSE) launched real-time stock tickers on CNBC

and CNN-FN in 1997. Previously, market data had been delayed 20 minutes. The NYSE

changed the smallest price increment to 1/16 from 1/8 in June 1997.13 Finally, the East

12In M7 with 1 change point, β0 goes from −0.4341, (st = 1) to −0.0971, (st = 2), and β1 goes from
0.1202 (st = 1) to 0.3089, (st = 2), and σ2 goes from 0.4581, (st = 1) to 0.2395 (st = 2). This is an
increase in the long-run mean of log-RV along with a reduction in the variance of the innovations to
log-RV.

13The empirical evidence shows that the smaller ticker size resulted in a smaller bid-ask spread, but
there is no conclusive evidence about the relationship between the tick size and trading costs. Goldsteina
and Kavajecz (2000) argue both spreads and depths declined after the change of the tick size, and
the combined effect of smaller spreads and reduced cumulative limit order book depth has made those
investors trading small orders better off. Similarly, Portniaguina et al. (2006) demonstrate trading cost
are minimized at larger tick sizes for larger market orders, creating an incentive to submit smaller orders
when tick size is reduced. As a result, investors will tend to submit smaller orders and execute their order
patiently after the reduction in tick size.
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Asian financial crisis began in the summer of 1997.

The first section of Table 9 list the posterior mean and 95% density intervals for the

stable model and the best model M5 with 1 structural break. None of the density intervals

for the parameters include 0 except for the coefficient on |rt−1|√
RVt−1

. The jump coefficient is

negative, and means that a jump this period will cause log-volatility to revert to a lower

level next period. In other words, volatility is less persistent after a jump. The coefficient

on |rt−1|√
RVt−1

I (rt < 0) is positive and very large with a value of 0.2583. A negative return

leads to higher log-volatility the next day, while a positive return has little to no effect.

Figure 2 plots the marginal posterior densities for the variance. There is considerable

difference in the variances from the two regimes. Marginal posterior densities for other

parameters are bell shaped.

5.3 Forecasts

Structural breaks can have an important effect on forecasting. In this section, we compare

the predictive likelihood of the model M5 with 1 structural break and the model without

structural breaks. The predictive likelihood contains the out-of-sample prediction record

of a model, making it the central quantity of interest for model evaluation (Geweke and

Whiteman (2005)).

Given the data up to time s − 1, Ys−1 = {y1, ..., ys−1}, the predictive likelihood

p(ys, ..., yt|Ys−1) (Geweke (1995,2005)) is the predictive density evaluated at the realized

outcome ys, ..., yt, s ≤ t. The predictive likelihood for model A can be calculated by

p (ys, ..., yt|Ys−1, A) =
p(y1, ..., yt|A)

p(y1, ..., ys−1|A)
(22)

where the nominator and the denominator at the right hand side are the marginal likeli-

hood for all the data Yt, and for the in-sample data Ys−1, respectively. In a similar fashion

to the Bayes factor which is based on all the data, we can compare the performance of

models on a specific out-of-sample period by predictive Bayes factors. The predictive

Bayes factor for model A versus B is

PBF = p(ys, ..., yt|Ys−1, A)/p(ys, ..., yt|Ys−1, B). (23)

and summarizes the relative evidence of the two models over the out-of-sample data

ys, ..., yt.

To compare the out-of-sample density forecasts of the model with and without a

structural break, we calculate the predictive Bayes factor for data after the break point
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February 6, 1997. In other words, s − 1 = February 5, 1997, and t ≥ s. Specifically, for

one observation (t = s) out-of-sample, PBF = 1.12; 1 month (t = s + 21) PBF = 2.17;

3 months (t = s + 65) PBF = 20.02; and 5 months (t = s + 109) PBF = 176.49; each in

favor of the break specification. The improvements continue till the end of sample.

5.4 Identifying the Structural Break in Real Time

To investigate how quickly we can identify the structure break, we re-estimate the model

using data up to the date of the identified structural break, Feb. 6, 1997, then using data

up to Feb. 7, 1997, etc. For each run, the Bayes factor is computed for the 1 change-

point model M5 versus the stable no-break model.14 The recursive log(BF ) is shown in

Figure 3. For the S&P 500 data, it takes 300 observations (around 14 months) to provide

compelling evidence for a structural break. After this the evidence for a break continues

to grow till the final BF at the end of the sample (not shown in the figure) is exp(57.99).

5.5 Jumps and Asymmetric Terms

Our finding of a structural break is robust to the inclusion or exclusion of jumps and

asymmetric terms. Table 10 reports results for our favored specification. The candi-

date models include a model with neither jump nor asymmetric terms (“No jump, No

Asym” column), a model with only jumps (“with Jumps” column), a model with only

asymmetric terms (“with Asym” column) and a model with both jump and asymmetric

terms (the last column). We also consider a model with an alternative asymmetric term

log(RVt−1)I (rt−1 < 0), whose results are listed in the “with Alt-Asym” column. Accord-

ing to log-marginal likelihood, the best candidate model M5 contains both jumps and

asymmetric terms. Note that the evidence for a single break is still strong in the other

model formulations.

Although jumps are less significant, the asymmetric terms are very important. In-

cluding them increases the marginal likelihood greatly. Nevertheless, the best model for

log(RVt) is the structural break model with both jumps and asymmetric terms.

5.6 Robustness of Minimum Regime Duration

To test the robustness of the minimum regime duration, we estimate the preferred model

M5 with different minimum regime lengths. The results are listed in Table 11. Besides

14The Bayes factor computed here provides a measure of the model fit to the data before and after the
break point. The predictive Bayes factor in Section 5.3 provides a measure of the model fit only to data
after the break point.
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the minimum 66 observations (3 months) setting in our previous sections, we also con-

sider the minimum length as short as 10 observations (2 weeks) or 22 observations (1

month), and the longer setting of 132 observations (6 months). In this table, the first row

(“Minimum Length” row) reports the lowest bound for the number of the observations

in each regime. The marginal likelihoods are almost identical across the different cases.

Each of the different regime duration restrictions favor the 1 change point which has a

mode at February 6, 1997. The choice of the minimum regime length has little effect on

our results.

5.7 The Relationship between Structural Breaks and GARCH

Effects

The change in the variance of log-volatility is related to the recent finding of heteroskedas-

ticity in models of S&P 500 realized volatility (Corsi et al. (2005), Andersen et al. (2007),

Bollerslev et al. (2007)).15 To investigate if our finding of a break is spurious due to ne-

glected conditional variance dynamics, we consider breaks in a HAR-GARCH model.

Based on the previous results we focus on breaks in the conditional variance only. The

HAR model extended to include a GARCH structure is

yt = Xtβ + γstσtut, ut ∼ N (0, 1) (24)

σ2
t = ω + a(yt−1 −Xt−1β)2 + bσ2

t−1, (25)

where γst is a scaling constant which has a direct effect on the unconditional variance of

log-RV. We normalize γ1 = 1 and assume all γk > 0, k = 2, ..., m. Thus, in regime 1, this is

a standard HAR model with a GARCH conditional variance. While in later regimes, the

conditional variance of log-RV can be larger or smaller than σ2
t depending on γst > 1 or

γst < 1. The advantage of this parameterization is that we can model permanent changes

in the variance but avoid the path dependence in the conditional variance16 induced by

parameter changes in ω, a, and b. As a result, the efficient full block Gibbs sampling for

S|P, Θ, IT is still available.

The estimation process is more involved than the HAR model. Denoting the model

parameters Θ = {β, ω, a, b, γ2, · · · , γm}, the Gibbs sampler requires us to iterate on 1)

15Both Corsi et al. (2005) and Bollerslev et al. (2007) use S&P 500 index futures over 1985-2004,
while Andersen et al. (2007) use the shorter sample 1990-2005. Corsi et al. (2005) model GARCH effects
for the variance of

√
RVt while Bollerslev et al. (2007) model GARCH effects in the variance of the

log(RBPt), and Andersen et al. (2007) similarly model log(RBPt) adjusted by a testing procedure for
jumps.

16See Bauwens et al. (2006) for a discussion of path dependence in regime switching GARCH models.
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S|P, Θ, IT , 2) P |S, Θ, IT , and 3) Θ|S, P, IT . The first and second sampling steps are

identical to the basic HAR model. However, Gibbs sampling is not available for all

parameters of Θ|S, P, IT . Therefore, we adopt a random walk Metropolis-Hastings (M-

H) algorithm to sample Θ. The details of the estimation and calculation of the marginal

likelihood are presented in the appendix. In estimation the restrictions ω > 0, a ≥ 0, b ≥ 0,

are imposed for positivity of variance and a + b < 1 for stationarity.

Given our previous results, we concentrate on a stable HAR-GARCH model as well

as its structural break versions with 1–3 change points. The log marginal likelihood for

both the HAR model and the HAR-GARCH model are listed in Table 12. Incorporating

GARCH effects, improves the model with the log (ML) increasing from −2333.28 for the

stable HAR to −2276.10 for the stable HAR-GARCH parameterization. The best HAR

model with constant variance within regimes and 1 change point is still marginally better

than the stable HAR-GARCH model. In other words, a single structural break in the

homoskedastic model provides a similar description of the data as the stable GARCH

model.

There is strong evidence of parameter change for the HAR-GARCH model. Condi-

tional on 1 break, the log (ML) increases from −2276.10 to −2253.38, providing a Bayes

factor of exp(22.72) in favor of 1 structural break. This is consistent with our previous

results. For instance, the unconditional variance of log-RV drops from 0.4482 to 0.2627

in the second regime.17 The posterior mode of the change point is exactly the same

date, February 6, 1997. Finally, there is some evidence of multiple breaks in this model.

Bayesian model averaging could be used to provide forecasts that incorporate uncertainty

about the number of change points.

The parameter estimates of the HAR-GARCH specification are listed in Table 9. The

most notable change is the dramatic reduction in the persistence measure a + b of the

conditional variance. This drops from 0.9856 for no change point, to 0.6874 for 1 change

point. Not only does the no break HAR-GARCH model have the wrong long-run variance,

but it also overstates the persistence of the variance of log-RV.

6 Summary and Conclusion

This paper explores structural breaks in realized volatility. We focus on the popular

heterogeneous autoregressive (HAR) models of the logarithm of realized volatility (log-RV)

and test for breaks using Bayesian methods. Our Monte Carlo simulations demonstrate

that this method is powerful in detecting and dating structural breaks. We show that

17The unconditional variance within a regime is γ2
st

ω/(1− a− b).
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detecting breaks using traditional forecast criteria may be misleading. Applying our

model to daily S&P 500 data, we find strong, robust evidence of a structural break in

log-RV. The main effect of the break is on the variance of log-volatility, but there is weaker

evidence for a change in both the regression parameters and variance. We demonstrate

that accounting for the structural break improves density forecasts. Finally, we consider

a HAR model with GARCH effects and also find a structural break in the unconditional

variance of log-RV. There is a permanent reduction in the variance of log-RV in February

1997 for all of our specifications using data from 1993-2004. Failure to model this break

results in biased parameter estimates and poor density forecasts.

7 Appendix

7.1 Marginal Likelihood

In this appendix we review the estimation of the marginal likelihood following Chib (1995).

Given observations YT = {y1, y2, . . . , yT}, we follow the notation in the previous sections

except that conditioning on Xt is suppressed. A rearrangement of Bayes rule gives the

marginal likelihood, p(YT ), as

p(YT ) =
f (YT |Θ, P ) p (Θ, P )

p (Θ, P |YT )
(26)

where f (YT |Θ, P ) is the likelihood function, p (Θ, P ) is the prior density and p (Θ, P |YT )

is the posterior ordinate. Although this equation is valid for any value (Θ, P ) in the

parameter space, a point with high posterior mass will tend to provide a more accurate

estimate. Therefore, we select the posterior mean denoted as (Θ∗, P ∗). Then

ln p (YT ) = log f (YT |Θ∗, P ∗) + log p (Θ∗, P ∗)− log p (Θ∗, P ∗|YT ) (27)

The prior density p (Θ∗, P ∗) can be evaluated directly and the likelihood function f (YT |Θ∗, P ∗)

can be calculated as in (18).

To calculate the posterior ordinate p (Θ∗, P ∗|YT ), note the decomposition

p (Θ∗, P ∗|YT ) = p (β∗|YT ) p
(
σ2∗|YT , β∗

)
p
(
P ∗|YT , β∗, σ2∗) (28)

where each term on the right hand side can be estimated from MCMC simulations. The

first term is,

p (β∗|YT ) =

∫
p
(
β∗|YT , S, σ2

)
p
(
S, σ2|YT

)
dSdσ2 (29)
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and can be estimated as

̂p (β∗|YT ) =
1

R

R∑

h=1

p
(
β∗|YT , σ2(h), S(h)

)
(30)

where the draws {σ2(h), S(h)}R
h=1 are available directly from our estimation step, and

p
(
β∗|YT , σ2(h), S(h)

)
=

∏m
k=1 p

(
β∗k|YT , σ2(h), S(h)

)
where each conditional density is de-

termined by (16). The second term in (28) is equal to

p
(
σ2∗|YT , β∗

)
=

∫
p
(
σ2∗|YT , β∗, S

)
p (S|, YT , β∗) dS, (31)

where p (σ2∗|YT , β∗, S) =
∏m

k=1 p (σ2∗
k |YT , β∗, S) and each conditional posterior has density

according to (17). To obtain the draws from p (S|YT , β∗), we run an additional reduced

Gibbs sampling conditional on β∗; i.e. we run all the sampling in Section 3.1 except that

we do not draw the values for β but fix them to be β∗. From this reduced run simulation,

{S(h)}R
h=1 is used in

̂p (σ2∗|YT , β∗) =
1

R

R∑

h=1

p
(
σ2∗|YT , β∗, S(h)

)
. (32)

The last term of (29) is

p
(
P ∗|YT , β∗, σ2∗) =

m−1∏
i=1

p
(
p∗ii|YT , β∗, σ2∗) (33)

and each term equal to

p
(
p∗ii|YT , β∗, σ2∗) =

∫
p
(
p∗ii|YT , S, β∗, σ2∗) p

(
S|β∗, σ2∗, YT

)
dS

Sampling {S(h)}R
h=1 from p (S|β∗, σ2∗, YT ) the estimate of each term is

̂p (p∗ii|YT , β∗, σ2∗) =
1

R

R∑

h=1

p
(
p∗ii|YT , S(h), β∗, σ2∗) . (34)

7.2 Estimation of HAR-GARCH model

We set all priors in the regression equation as before, they are independent normal

N (0, 100). The GARCH parameters have independent normal N (0, 100) truncated to

ω > 0, a ≥ 0, b ≥ 0, and a+b < 1. The priors for the scaling parameters γk (k = 2, · · · ,m)
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are also truncated N(0, 100) with positive supports. These priors are uninformative.

For the sampling step Θ|S, P, IT , the conditional distributions for some of the model

parameters are unknown, and therefore Gibbs sampling is not available. Instead we use a

random walk Metropolis-Hastings algorithm. If we denote all the parameters except for

θl as Θ−l = {θ1, · · · , θl−1, θl+1, · · · , θL}, we sample a new θl given Θ−l fixed. With Θ as

the previous value of the chain we iterate on the following steps:

Step 1: Propose a new Θ
′
according to Θ

′
−l = Θ−l, with element l determined as

θ′l = θl + el, el ∼ N(0, ξ2
l ). (35)

Step 2: Accept Θ
′
with probability

min

{
p(YT |Θ′

, P, S)p(Θ
′
, P )

p(YT |Θ, P, S)p(Θ, P )
, 1

}
(36)

and otherwise reject. p(Θ, P ) is the prior, and

log p (YT |Θ, P, S) =
T∑

t=1

[
−1

2
log(2π)− 1

2
log(γ2

st
σ2

t )−
(yt −Xtβ)2

2γ2
st
σ2

t

]
(37)

where σ2
t = ω + a(yt−1 − Xt−1β)2 + bσ2

t−1.
18 Each ξ2

l is selected to give an acceptance

frequency between 0.3–0.5. Running Step 1-2 above for all the parameters l = 1, · · · , L,

we obtain a new draw Θ which is one iteration. We perform 200,000 iterations and use

the last 100,000 for posterior inference.

For the marginal likelihood we use the method of Gelfand and Dey (1994) adapted by

Geweke (2005) (Section 8.2.4). This estimate is based on 1
R

∑R
h=1 g(Θ(h))/[p(YT |Θ(h), P (h))p(Θ(h), P (h))] →

p(YT )−1 as R → ∞, where p(YT |Θ, P ) is the likelihood with S integrated out as in (18)-

(19), and g(Θ(h)) is a truncated multivariate Normal. Note that the prior, likelihood and

g(Θ) must contain all integrating constants. Finally, to avoid underflow/overflow we use

logarithms in this calculation and above in (36).
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Table 1: Change-point Model Specifications

Model Index Parameters that change from a break
M0 None
M1 β0

M2 β1

M3 β0, β1

M4 All β
M5 σ2

M6 β0, σ
2

M7 β0, β1, σ
2

M8 All Parameters
This table labels the various structural break specifications. The first column is the index
of the model, the second lists the parameters that can change due to a structural break. All
other parameters are kept constant across structural breaks.
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Table 2: Parameter Values for Simulation
Regime M0 M1 M2 M3 M4 M5 M6 M7 M8

1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
2 β0 -0.1 -0.4 -0.1 -0.4 -0.4 -0.1 -0.4 -0.4 -0.4
3 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
1 0.4 0.4 0.1 0.1 0.1 0.4 0.4 0.1 0.1
2 β1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
3 0.4 0.4 0.1 0.1 0.1 0.4 0.4 0.1 0.1
1 0.25 0.25 0.25 0.25 0.4 0.25 0.25 0.25 0.4
2 β2 0.25 0.25 0.25 0.25 0.15 0.25 0.25 0.25 0.15
3 0.25 0.25 0.25 0.25 0.4 0.25 0.25 0.25 0.4
1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1
2 β3 0.2 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.4
3 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1
1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2 σ2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5
3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

This table lists the parameter values for our Monte Carlo simulation. The first column is the
index of the regimes. The second column lists the parameters. The first row is the model
index. If there is no break the DGP parameters are M0. If there is 1 break then the DGP
parameters are first from regime 1 and then regime 2. Similarly for 2 breaks.
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Table 3: Ranking the Number of Change Points by Marginal Likelihood

DGP Frequency by ML
# of CP 0 CP 1 CP 2 CP 3 CP

M1 0 90 8 1 1
β0 1 2 92 3 3

2 21 1 40 38
M2 0 96 4 0 0
β1 1 1 55 37 7

2 2 3 56 39
M3 0 99 1 0 0

β0, β1 1 0 90 8 2
2 0 1 95 4

M4 0 100 0 0 0
All β 1 0 91 7 2

2 0 0 87 13
M5 0 100 0 0 0
σ2 1 0 100 0 0

2 1 1 98 0
M6 0 100 0 0 0

β0, σ
2 1 0 100 0 0

2 0 0 100 0
M7 0 100 0 0 0

β0, β1, σ
2 1 0 100 0 0

2 0 0 100 0
M8 0 100 0 0 0

All Pars 1 0 100 0 0
2 0 0 100 0

The first column lists the true model along with the parameters that change
from a structural break. CP=change points, ML=marginal likelihood. The
“0 CP” column displays the number of times in the 100 repetitions when that
specification had the largest marginal likelihood. The “1 CP” column tells the
number of times in the 100 repetitions when that specification had the largest
marginal likelihood, etc. Each row sums to 100. With perfect classification
bold entries would be 100.
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Table 4: Dating the Change Points
DGP # of CP MAE RMSE
M1 1 27.7699 63.2031
β0 2 26.1847 56.5047
M2 1 36.7686 63.5820
β1 2 38.6881 73.1602
M3 1 6.6670 13.1058

β0, β1 2 4.2328 9.6509
M4 1 7.2147 12.7888

All β 2 6.4533 21.9577
M5 1 10.5404 16.7350
σ2 2 10.4418 16.8038
M6 1 7.5043 11.9126

β0, σ
2 2 7.4723 12.1060

M7 1 6.0532 9.7271
β0, β1, σ

2 2 4.1134 7.6212
M8 1 5.6092 4.4879

All Pars 2 3.2063 2.3007
The table reports the MAE and RMSE of the dating of the change points over
the 100 repetitions. The definition of MAE and RMSE are in the text. The
first column lists the true model along with the parameters that change from
a structural break, # of CP lists the number of change points in the DGP.

Table 5: Effect of Sample Size on Identification of Change Points

Sample Size Frequency by ML
0 CP 1 CP 2 CP 3 CP

500 16 34 47 3
1000 2 3 56 39
2000 0 0 57 43
5000 0 0 68 32

This table reports the simulation results for M2 (only β1 changes) with 2 change
points. The “0 CP” column records the number of times in the 100 simulations
when the specification with no change point has the largest marginal likelihood.
The “1 CP” column records the number of times in the 100 simulations when
the specification with 1 change point has largest marginal likelihood, etc. With
perfect classification bold entries would be 100.
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Table 6: Model Comparison using Different Criteria

DGP, M3 Frequency by Loss Function and ML
# of CP Measures 0 CP 1 CP 2 CP 3 CP

0 MAE 90 6 4 0
RMSE 85 9 6 0

R2 3 7 20 70
ML 99 1 0 0

1 MAE 80 19 1 0
RMSE 36 62 1 0

R2 0 21 23 56
ML 0 90 8 2

2 MAE 4 73 23 0
RMSE 0 20 76 4

R2 0 0 46 54
ML 0 1 95 4

DGP, M8 Frequency by Loss Function and ML
# of CP Measures 0 CP 1 CP 2 CP 3 CP

0 MAE 79 14 7 0
RMSE 68 13 16 3

R2 10 8 22 60
ML 100 0 0 0

1 MAE 0 89 9 2
RMSE 0 88 10 10

R2 0 19 23 58
ML 0 100 0 0

2 MAE 0 0 89 11
RMSE 0 0 84 16

R2 0 0 35 65
ML 0 0 100 0

In all cases parameter estimates and change points are obtained from the Chib
model estimated conditional on 0,1,2, and 3 change points. The evidence for
the number of change points is determined according to MAE, RMSE, R2 for
the in-sample one period ahead forecasts of RVt using specification M3, and
M8. Also reported is the marginal likelihood (ML). The R2 is calculated from
the regression RVt = a + bEt−1[RVt] + errort. Et−1[RVt] is the model forecast
computed conditional on the number of change points in row two of the table.
“0 CP” column reports the number of times in the 100 repetitions when the
specification with no change point has the best performance (lowest MAE and
RMSE and highest R2 and ML). Similarly for the other columns.
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Table 7: Summary statistics for RVt and log(RVt)

RVt log(RVt)

Mean 1.1143 -0.3540
Median 0.7423 -0.2980
Std Dev. 1.5777 0.9478
Skewness 7.4730 -0.0133
Excess Kurtosis 91.4800 0.2789
Min 0.0357 -3.3338
Max 30.7842 3.4270

Spyder data Mar 03, 1993 to March 24, 2004 (2791 observations).
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Table 9: Parameter Estimates for S&P 500 Volatility

HAR HAR-GARCH
0 CP M5, 1 CP

st = 1 st = 2 0 CP 1 CP
β0 −0.0988 −0.0934 −0.0912 −0.0933

(−0.1356,−0.0592) (−0.1288,−0.0570) (−0.1265,−0.0561) (−0.1319,−0.0548)
β1 0.2605 0.2737 0.2618 0.2745

(0.2134, 0.3076) (0.2304, 0.3248) (0.2127, 0.3117) (0.2223, 0.3259)
β2 0.4011 0.4025 0.4151 0.3971

(0.3264, 0.4735) (0.3229, 0.4694) (0.3371, 0.4932) (0.3188, 0.4746)
β3 0.2674 0.2546 0.2532 0.2559

(0.2007, 0.3326) (0.1925, 0.3222) (0.1859, 0.3204) (0.1924, 0.3230)
βJ −0.2840 −0.2424 −0.2342 −0.2731

(−0.4261,−0.1340) (−0.3824,−0.1038) (−0.3788,−0.0857) (−0.4355,−0.1192)
βA1 0.0116 0.0041 0.0097 0.0085

(−0.0329, 0.0517) (−0.0353, 0.0465) (−0.0319, 0.0478) (−0.0331, 0.0498)
βA2 0.2596 0.2583 0.2361 0.2394

(0.2114, 0.3035) (0.2134, 0.3004) (0.1926, 0.2797) (0.1963, 0.2825)
σ2 0.3009 0.4450 0.2290

(0.2864, 0.3176) (0.4010, 0.4928) (0.2124, 0.2450)
γ2 0.7656

(0.7192, 0.8137)
ω 0.0045 0.1401

(0.0004, 0.0101) (0.0625, 0.2313)
a 0.0319 0.1133

(0.0121, 0.0537) (0.0661, 0.1698)
b 0.9537 0.5741

(0.9158, 0.9861) (0.3468, 0.7791)
This table reports posterior means and 0.95 probability intervals for the stable model, the
best HAR model M5 given 1 change point, and the HAR-GARCH model with 0 and 1 change
point. The first and second regime are denoted by st = 1, 2 respectively for the HAR and
γ1 = 1, and γ2 for the HAR-GARCH.
The HAR model is

vt = β0+β1vt−1+β2vt−5,t−1+β3vt−22,t−1+βJJt−1+βA1
|rt−1|√
RVt−1

+βA2
|rt−1|√
RVt−1

I (rt−1 < 0)+εt

where εt ∼ NID(0, σ2). While the HAR-GARCH model is identical except

εt = γstσtut

where ut ∼ NID (0, 1), γ1 = 1, γk > 0, for k ≥ 2, and

σ2
t = ω + a(vt−1 − Et−2vt−1)2 + bσ2

t−1.
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Table 10: Jumps and Asymmetric terms

# CP No Jump, No Asym with Jumps with Asym with Alt-Asym with Jump and Aysm
0 -2405.23 -2401.42 -2335.59 -2342.47 -2333.28
1 -2353.80 -2351.50 -2276.00 -2283.09 -2275.29
2 -2355.84 -2354.33 -2279.34 -2286.50 -2278.68
3 -2359.47 -2357.41 -2284.06 -2290.90 -2282.83
4 -2363.14 -2363.80 -2289.34 -2297.26 -2289.00
5 -2369.90 -2369.60 -2295.86 -2303.01 -2294.86
6 -2375.27 -2375.54 -2300.57 -2309.91 -2301.71
7 -2381.27 -2379.44 -2306.60 -2314.50 -2308.00

This table compares the log marginal likelihood for M5 for the HAR model without jumps
and asymmetric (Asym) terms (column 2, “No Jump, No Asym” Column), with jumps (col-
umn 3), with asymmetric terms (column 4), with an alternative asymmetric term (column
5), and with both jumps and asymmetric terms (column 6).

Table 11: Robustness for Minimum Regime Duration

Minimum Duration 10 obs 22 obs 66 obs 132 obs
(2 weeks) (1 month) (3 months) (6 months)

# CP
0 -2333.28 -2333.28 -2333.28 -2333.28
1 -2275.29 -2275.29 -2275.29 -2275.30
2 -2278.67 -2278.67 -2278.68 -2278.67
3 -2283.38 -2283.35 -2282.83 -2282.87

This table compares the log marginal likelihood for different minimum regime durations for
the model M5. The first row reports the lower bound for the number of observations in each
regime.

Table 12: Comparison of the HAR M5 and the HAR-GARCH Model

# of CP HAR HAR-GARCH
0 −2333.28 −2276.10
1 − 2275.29 −2253.38
2 −2278.68 −2253.56
3 −2282.83 −2255.69

This table compares the log marginal likelihoods for the stable HAR M5 model and the
stable HAR-GARCH model as well as their structural break versions with 1, 2 and 3 change
points.

38



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

20032001199919971995

A. Time Series of log Realized Volatility

 0

 0.01

 0.02

 0.03

 0.04

20032001199919971995

B. Posterior Density of Change Point

 0

 0.2

 0.4

 0.6

 0.8

 1

20032001199919971995

C: Cummulative Probability of Change Point

Figure 1: Change Point Date for M5
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Figure 3: Recursive Log-Bayes Factor for Structural Break Model M5 vs Stable Model
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