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Abstract

This paper reviews methods for the estimation of dynamic discrete choice structural models
and discusses related econometric issues. We consider single agent models, competitive equilib-
rium models and dynamic games. The methods are illustrated with descriptions of empirical
studies which have applied these techniques to problems in different areas of economics. Pro-
gramming codes for the estimation methods are available in a companion web page.
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1 Introduction

This paper reviews recent developments in the literature on the estimation of discrete choice dy-

namic programming models of individual behavior. The goal of this paper is to provide an update

of existing surveys of this literature, e.g. Eckstein and Wolpin (1989) and Rust (1994a).1 In order

to avoid repetition, we emphasize the methodological contributions during the last decade. Thus,

some of the major themes of the survey are: the extension of methods which avoid repeated full

solution of the structural model in estimation; the development and increased use of simulation

and approximation methods; and the exploration of techniques that allow researchers to estimate

dynamic equilibrium models, both strategic and competitive. This paper tries to make the reader

familiar with these recent developments. With that purpose in mind, this survey is complemented

with programs that implement the estimation methods we describe. These programs are available

at the journal’s web site.

In dynamic discrete choice structural models, agents are forward looking and maximize expected

intertemporal payoffs. The parameters to be estimated are structural in the sense that they describe

agents’ preferences and beliefs about technological and institutional constraints. Under the princi-

ple of revealed preference, these parameters are estimated using micro data on individuals’ choices

and outcomes. Thus an attractive feature of this literature is that structural parameters have a

1Other excellent surveys are Rust (1994b), Pakes (1994) and Miller (1997).
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transparent interpretation within the theoretical model that frames the empirical investigation.

Moreover, econometric models in this class are useful tools for the evaluation of new (counterfac-

tual) policies.2 Seminal papers include Wolpin (1984) on fertility and child mortality, Miller (1984)

on occupational choice, Pakes (1986) on patent renewal, and Rust (1987) on machine replacement.

A well known impediment to the development of this literature has been the computational com-

plexity of estimation. Solving the structural model or evaluating an estimation criterion such as

the likelihood can both be non-trivial numerical tasks, and estimation in this context typically re-

quires the use of algorithms in which a dynamic programming solution procedure is nested in the

optimization of the estimation criterion. In spite of this, over the last twenty years there has been

a significant number of interesting applications of these models to different areas in economics. In

this paper, we will select a few of these applications as examples to illustrate estimation methods

and econometric issues. Many of the problems encountered by applied researchers are the same as

in other discrete choice microeconometric models, e.g., permanent unobserved heterogeneity, initial

conditions, censored outcomes and sample selection, measurement error, endogeneity, identification,

etc. Having to consider explicit solutions to the dynamic optimization problem that is postulated

to describe individual behavior adds another layer of complexity. But such a close link between

economic theory and the econometric model can also provide more insight into the econometric

problems.

Our discussion of estimation methods will follow a classification based on two criteria. The first

criterion is the type of interactions between agents which the structural model explicitly takes into

account. According to this criterion we distinguish single-agent models, dynamic games, and com-

petitive equilibrium models. The estimation of equilibrium models and dynamic strategic games

involves specific econometric issues which are not present in single agent models. In particular, mul-

tiple equilibria, the endogeneity of other players’ actions and prices, and the curse of dimensionality

associated with the number of heterogeneous players and the state of the economy.

A second natural classification criterion is the structure of the unobservables. Different assump-

tions on the structure of the unobservables lead to very different estimation methods, as already

noted by Eckstein and Wolpin (1989). Multi-dimensional numerical integration and the so called

initial conditions problem are important issues that arise in dynamic discrete choice models (struc-

tural or not) in which unobservables are correlated across choices or over time. Dealing with these

issues can add considerable complexity to the solution and estimation of dynamic discrete choice

structural models.
2See Wolpin (1996) for a review of some uses of these models for public policy anlaysis.
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Our discussion of estimation methods for single agent problems proceeds in three steps. First,

we review methods for Rust’s model with additively separable, conditionally independent and ex-

treme value distributed unobservables. Second, we consider several important departures from

Rust’s framework, such as allowing for permanent unobserved heterogeneity, non additive shocks,

correlation across choices and observable but choice-censored state-variables or payoffs. We group

all such models under the label Eckstein-Keane-Wolpin models after the authors who have con-

tributed many applications and methodological advances. Third, we discuss estimation of models

with serially correlated unobservables and continuous state variables. While we can compute ex-

actly the solution of a discrete, finite horizon dynamic decision model, the solution to models with

infinite horizons and continuous observable state variables is always an approximation and most of

the methods and applications in the literature have considered specifications where continuous state

variables are discretized. Approximation errors may have an effect on inferences and conclusions

in applied work. We include a brief discussion of this issue.

For the sake of space, this paper does not cover several topics in this literature which have

received attention in recent years. Some omissions that we are aware of are nonparametric and

semiparametric identification and estimation (see Magnac and Thesmar, 2002, Aguirregabiria, 2007,

Bajari and Hong, 2005, and Heckman and Navarro, 2007), and application of parallel computing

(see Ferrall, 2005).

Section 2 introduces the notation and basic assumptions, illustrates the main issues that arise in

estimation of dynamic discrete choice structural models and presents four examples of applications.

Each of these examples deals with one of the four classes of models that we examine in the survey:

single-agent models under Rust’s framework; single-agent models under the Eckstein-Keane-Wolpin

framework; dynamic general equilibrium models; and dynamic strategic games. This section is self-

contained and tries to provide an introduction to this literature for a second year PhD student.

Sections 3, 4 and 5 deal with the detail of methods for the estimation of single-agent models,

dynamic games and general equilibrium models, respectively. The idea is that, after reading section

2, the reader can go to either of these sections to learn about the details of specific methods.

2 Models and examples

2.1 Single agent models

Time is discrete an indexed by t. We index agents by i. Agents have preferences defined over a

sequence of states of the world from period t = 0 until period t = T . The time horizon T can be
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either finite or infinite. The state of the world at period t for individual i has two components:

a vector of state variables sit that is known at period t; and a decision ait chosen at period

t that belongs to the discrete set A = {0, 1, ..., J}. The time index t can be a component of

the state vector sit, which may also contain time-invariant individual characteristics. Agents’

preferences over possible sequences of states of the world can be represented by a utility functionPT
j=0 β

j U(ai,t+j , si,t+j), where β ∈ (0, 1) is the discount factor and U(ait, sit) is the current utility

function.3 The decision at period t affects the evolution of future values of the state variables, but

the agent faces uncertainty about these future values. The agent’s beliefs about future states can

be represented by a Markov transition distribution function F (si,t+1|ait, sit).4 These beliefs are

rational in the sense that they are the true transition probabilities of the state variables.5 Every

period t the agent observes the vector of state variables sit and chooses his action ait ∈ A to

maximize the expected utility

E

µXT−t

j=0
βj U(ai,t+j , si,t+j) | ait, sit

¶
. (1)

This is the agent’s dynamic programming (DP) problem. Let α(sit) and V (sit)be the optimal

decision rule and the value function of the DP problem, respectively.6 By Bellman’s principle of

optimality the value function can be obtained using the recursive expression:

V (sit) = max
a∈A

½
U(a, sit) + β

Z
V (si,t+1) dF (si,t+1 | a, sit)

¾
(2)

and the optimal decision rule is then α(sit) = argmaxa∈A {v(a, sit)} where, for every a ∈ A,

v(a, sit) ≡ U(a, sit) + β

Z
V (si,t+1) dF (si,t+1 | a, sit) (3)

is a choice-specific value function.

We are interested in the estimation of the structural parameters in preferences, transition prob-

abilities, and the discount factor β.7 Suppose that a researcher has panel data for N individuals

3We do not consider deviations from this expected utility, time-separable framework. Note that β is constant over
time, e.g., hyperbolic discounting is ruled out.

4The utility function and the transition probability functions are not indexed by time or individual. This is
without loss of generality because time and individual heterogeneity can be arguments in the state vector sit.

5 If the only data available are (longitudinal) data on choices and states, then preferences, beliefs and the actual
transition probabilities cannot be separately identified in general. In this sense, rational expectations is an identi-
fication assumption. It can be relaxed if the researcher has data on elicited beliefs and is able to use that data in
estimation. See Manski (2004) and Delavande (2006) for a discussion and example.

6Again, and without loss of generality, we omit time and individual subindexes from the arguments of these
functions because they are implicit in the state vector sit.

7The discount factor is assumed constant across agents. In most applications this parameter is not estimated
because it is poorly identified (e.g., see Rust, 1987). Also note that the decision horizon T is the same for all agents
and known by the econometrician.
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who behave according to this decision model. For every observation (i, t) in this panel dataset, the

researcher observes the individual’s action ait and a subvector xit of the state vector sit. Therefore,

from an econometric point of view, we can distinguish two subsets of state variables: sit = (xit, εit),

where the subvector εit is observed by the agent but not by the researcher. Note that εit is a source

of variation in the decisions of agents conditional on the variables observed by the researcher. It is

the model’s ’econometric error’, which is given a structural interpretation as an unobserved state

variable.8 In some applications the researcher also observes one or more payoff variables. We

define a payoff variable as a variable yit which contains information about utility but is not one

of the model’s actions or state variables.9 Payoff variables depend on current action and state

variables. We specify this relationship as yit = Y (ait, xit, εit), where Y (.) is the payoff function,

e.g., an earnings function, a production function, etc.10 In summary, the researcher’s dataset is:

Data = { ait , xit , yit : i = 1, 2, ..., N ; t = 1, 2, ..., Ti} (4)

where Ti is the number of periods over which we observe individual i.11 In microeconometric

applications of single-agent models, we typically have that N is large and Ti is small.

Let θ be the vector of structural parameters and let gN(θ) be an estimation criterion for this

model and data, such as a likelihood or a GMM criterion. For instance, if the data are a random

sample over individuals and the criterion is a log-likelihood, then gN (θ) =
PN

i=1 li(θ), where li(θ)

is the contribution to the log-likelihood function of individual i’s history:

li(θ) = log Pr (ait, yit, xit : t = 1, 2, ..., Ti | θ)

= log Pr (α (xit, εit, θ) = ait, Y (ait, xit, εit, θ) = yit, xit : t = 1, 2, ..., Ti | θ)
(5)

Whatever the estimation criterion, in order to evaluate it for a particular value of θ it is necessary

to know the optimal decision rules α(xit, εit, θ). Therefore, for each trial value of θ the DP problem

needs to be solved exactly, or its solution approximated in some way.

So far we have not made any assumption on the relationship between observable and unobserv-

able variables. These are key modelling decisions in the econometrics of dynamic discrete structural

8See Rust (1994) for a discussion of alternative interpretations of the econometric error.
9That is, we can write U(ait, sit) as Ũ(yit, ait, sit). For instance, in a model of firm behavior the researcher may

observe firms’ output, revenue or the wage bill; or in a model of individual behavior the econometrician may observe
individual earnings.
10The payoff function can also incorporate stochastic components such as measurement error in payoff variables or

structural innovations which are not state variables because they are iid over time and unknown to the agent when
he makes his decision.
11Here the index t sequences each individual’s observations. Strictly speaking, it is not the same as the time period

index in the description of the structural model, but distinguishing between the two at this stage would make the
notation unnecessarily cumbersome.
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models. The form of li(θ) and the choice of the appropriate solution and estimation methods cru-

cially depend on these assumptions. We first introduce six assumptions that describe what we

define as Rust’s model. This is the simplest framework for estimation and it has been used in many

applications beginning with the bus engine replacement model in Rust (1987).

ASSUMPTION AS (Additive separability): The one-period utility function is additively separable

in the observable and unobservable components: U(a, xit, εit) = u(a, xit) + εit(a), where εit(a) is a

zero mean random variable with support the real line.12 That is, there is one unobservable state

variable for each choice alternative, so the dimension of εit is (J + 1)× 1.

ASSUMPTION IID (iid unobservables): The unobserved state variables in εit are independently

and identically distributed over agents and over time with CDF Gε(εit) which has finite first mo-

ments and is continuous and twice differentiable in εit.13

ASSUMPTION CI-X (Conditional independence of future x): Conditional on the current values

of the decision and the observable state variables, next period observable state variables do not

depend on current ε: i.e., CDF (xi,t+1|ait, xit, εit) = Fx(xi,t+1| ait, xit). We use θf to represent the

vector of parameters that describe the transition probability function Fx.

ASSUMPTION CI-Y (Conditional independence of y): Conditional on the values of the decision

and the observable state variables, the value of the payoff variable y is independent of ε: i.e.,

Y (ait, xit, εit) = Y (ait, xit). The vector of parameters that describe Y is θY .

ASSUMPTION CLOGIT: The unobserved state variables {εit(a) : a = 0, 1, ..., J} are independent

across alternatives and have an extreme value type 1 distribution.

ASSUMPTION DIS (Discrete support of x): The support of xit is discrete and finite: xit ∈ X =

{x(1), x(2), ..., x(|X|)} with |X| <∞.

Note that assumptions IID and CI-X together imply that F (xi,t+1, εi,t+1|ait, xit, εit) = Gε(εi,t+1)

Fx(xi,t+1| ait, xit), what corresponds to the conditional independence assumption in Rust (1987).

It is convenient to distinguish several components in the vector of structural parameters: θ =

{θu, θY , θf}, where θY and θf have been defined above and θu represents all the parameters in

the utility function which are not in θY as well as the parameters in the distribution of Gε. In

12Unbounded support is as important as additive separability in assumption AS. To see this, suppose that
U(a, xit, εit) = u(a, xit) exp{εit(a)} with E(exp{εit(a)}|xit) = 1. It is clear that we can rewrite this utility func-
tion as u(a, xit) + ε∗it(a), where ε

∗
it(a) is equal to u(a, xit) [exp {εit(a)}− 1]. Note that ε∗it(a) is additive in the utility

and it is a zero mean random variable. However, its range of variation is not the real line but only the positive real
numbers.
13Rust (1994) presents a weaker version of this assumption where the second and higher moments of εit may depend

on xit. However, this weaker version of the assumption is hardly ever used in practive.
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order to illustrate this framework, we present an example of a model of retirement from the labor

force which is based on the models of Rust and Phelan (1997) and Karlstrom, Palme and Svensson

(2004).

EXAMPLE 1. (Retirement from the labor force). Every period the individual decides

whether to continue working (ait = 1) or to retire and start collecting social security pension

benefits (ait = 0). This is an optimal stopping problem with a finite horizon, where t = 1 is

the earliest age at which the individual can retire and T is age at death.14 Let rait denote the

individual’s retirement status. If he has not retired yet, rait = 0. If retired, rait is the age at

which he retired. The utility function is additively separable in consumption and leisure. More

specifically,

u(ait, xit) = E
³
cθu1it |ait, xit

´
exp

½
θu2 + θu3hit + θu4mit + θu5

tit
1 + tit

¾
− θu6 ait (6)

cit is current consumption. θu1 is the coefficient of relative risk aversion. The expression in the

exponential term captures individual heterogeneity in the marginal utility of consumption. In

particular, hit is an indicator of good health status, mit is an indicator of marital status, and tit is

age. Finally, the last term is associated with the utility of leisure. θu6 is the disutility of working.

In our notation, θu = (θu1, θu2, ..., θu6). The unobservable state variables εit(1) and εit(0) enter

additively in the utilities of working and not working, respectively, and they can be interpreted

as transitory and idiosyncratic shocks to the utility from leisure. These random variables are

independently distributed over time and over individuals with an extreme value distribution.

Consumption is equal to current income (yit) minus health care expenditures net of insurance

reimbursements (hcit): cit = yit − hcit. If the individual works, his income is equal to stochastic

labor earnings (wit), hence the expectation E
³
cθu1it |ait, xit

´
. If the individual decides to retire, then

his earnings are equal to social security pension benefits bit. The econometrician observes earnings

yit and yit = aitwit+(1−ait)bit. Labor earnings depend on age, health status, marital status, past

earnings history through pension points and an unobservable shock ξit. In particular,

wit = exp

½
θw1 + θw2hit + θw3mit + θw4

tit
1 + tit

+ θw5ppit + ξit

¾
(7)

Earnings yit are a payoff variable and θY = (θw1, θw2, ..., θw5, σ
2
ξ) is the vector of parameters in

the corresponding payoff function, where σ2ξ is the variance of ξit. Retirement benefits depend on

retirement age (rait) and on pension points or social security wealth ppit: bit = b(rait, ppit). The

14Rust and Phelan allow for uncertainty about the age at death. In their specification, the hazard of death varies
with age and T is a terminal age at which the probability of death is 1.
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form of the function b(., .) depends on the rules of the pension system, which are known to the

econometrician. Health care expenditures are stochastic, with a Pareto distribution conditional on

health and marital status.

The vector of observable state variables is xit = {hit, hcit,mit, tit, rait, ppit}. Age and retirement

age have obvious deterministic transition rules. Pension points are a deterministic function of

past earnings history. However, as argued by Rust and Phelan (1997) and Rust et al (2000), for

many pension systems, including the US system, the transition rule of pension points can be very

closely approximated by a Markov process with transition probability function Fpp(ppi,t+1|wit, ppit).

This transition probability is nonparametrically specified. Health status and marital status follow

first order Markov processes with transition probabilities Fh(hi,t+1|hit) and Fm(mi,t+1|mit) which

are nonparametrically specified. Though health expenditures and pension points are continuous

variables, Rust and Phelan discretize these variables. An important feature of this model is that

the shock to wages ξit is assumed serially uncorrelated, independent of the state variables xit

and εit, and unknown to the individual at the time he makes his period t decision. Therefore, ξit

determines the transition of labor earnings but it is not a state variable and assumption CI-Y holds:

i.e., conditional of (ait, xit) observed earnings are independent of the unobserved state variables in

εit.

Rust and Phelan use a richer specification of this model which allows for part time work and

post-retirement work and includes a detailed description of Social Security and Medicare benefits

to help explain several aspects of retirement behavior in the US. Counterfactual experiments based

on their estimated model suggest that the peak in retirement behavior at age 65 is largely due to

the fact that Social Security benefits are actuarially unfair after age 65 and to the fact that ’health

insurance constrained’ individuals have to wait to age 65 in order to apply for Social Security

benefits and qualify for Medicare. Karlstrom, Palme and Svensson (2004) use their model to

simulate the effect of a three year delay in retirement benefits.¥
Imposing additive separability implies that the marginal utility of observable state variables,

today and in future periods, does not depend on unobservables. For instance, in Example 1 the

decision to retire or to continue working determines the current and future level of consumption.

However, additive separability in the econometric model implies that observed variation in retire-

ment choices cannot be linked to unobserved heterogeneity in the marginal utility of consumption.

Relatedly, an individual considering early retirement in this model would presumably weigh uncer-

tainty about the value of her marginal utility of consumption in the future. Additive separability
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implies that unobserved state variables induce no uncertainty about the marginal utility of con-

sumption, which may have an effect on the patterns of behavior the model can explain and on

estimation of structural parameters such as the coefficient of relative risk aversion. As in the case

of assumption CI-X which we discuss next, assumption AS may not be too restrictive if the model

specification and the data are sufficiently rich in observable explanatory variables; i.e., observable

state variables which are unconstrained by assumptions AS, IID and CI-X, vary across individuals

and time and correlate with behavior.

Assumptions IID and CI-X restrict the joint transition probability of state variables. These

restrictions have two main implications which can be illustrated in Example 1. First, the unobserved

shocks to the utility of leisure are serially uncorrelated, i.e., transitory. And second, the probability

that a person’s health or marital status will change between the current period and the next one

could depend on whether this person is currently working, but once we take this into account it does

not depend on the current value of the shocks to the utility of leisure.15 Suppose we interpret these

unobservable shocks as health shocks not included in the observable hit. The shocks are important

enough because they can explain individuals’ changes in labor supply decisions, but they should be

’transitory’ since according to CI-X they cannot have any direct impact on next period’s health.

An important implication of assumptions IID and CI-X is that the solution to the DP problem

is fully characterized by the integrated value function or Emax function, V̄ (xit), which is the

expectation of the value function over the distribution of unobservable state variables, conditional

on the observable state variables: V̄ (xit) ≡
R
V (xit, εit) dGε(εit). This function is the unique

solution to the integrated Bellman equation:

V̄ (xit) =

Z
max
a∈A

⎧⎨⎩u(a, xit) + εit(a) + β
X
xi,t+1

V̄ (xi,t+1) fx(xi,t+1|a, xit)

⎫⎬⎭ dGε(εit) (8)

Under these assumptions, the size of the state space X is the relevant measure of computational

complexity, and given that X is discrete and finite the DP problem can be solved exactly. The

choice-specific value function in (3) can be decomposed as v(a, xit) + εit(a) as in static random

utility models, where:16

v(a, xit) = u(a, xit) + β
X
xi,t+1

V̄ (xit+1) fx(xi,t+1|a, xit) (9)

15 In Rust and Phelan’s specification the probability that a person’s health or marital status will change between
the current period and the next one does not depend on whether this person is currently working.
16There is a slight abuse of notation here because we use the same v() function as in equation (3), but the

alternative-specific value function here does not depend on εit(a).
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Another important implication of assumptions IID and CI-X is that the observable state vector

xit is a sufficient statistic for the current choice. The contribution of individual i to the log-likelihood

function can be factored as follows:17

li(θ) =
XTi

t=1
logP (ait|xit, θ) +

XTi

t=1
log fY (yit|ait, xit, θY )

+
XTi−1

t=1
log fx(xi,t+1|ait, xit, θf ) + log Pr(xi1|θ)

(10)

fY is the density of the payoff variable conditional on (ait, xit). In example 1, under assumption

CI-Y, this density is quite straightforward: I{ait = 1}φ([log yit−θw1−θw2hit−θw3mit−θw4 tit
1+tit

−

θw5ppit]/σξ), where I{.} is the indicator function and φ(.) is the density of a standard normal. This

can greatly simplify the estimation of θY .18 fx is the transition density function associated with

Fx. The term log Pr(xi1|θ) is the contribution of initial conditions to the likelihood of individual

i. In most applications a conditional likelihood approach is followed and this term is ignored.

No bias is incurred as long as unobservables are serially independent. Even when there is a loss

of efficiency, the conditional likelihood is simpler to compute. Accordingly, hereafter the term

’likelihood’ by default refers to the conditional likelihood. The term P (ait|xit, θ) is the Conditional

Choice Probability (CCP) obtained by integrating the optimal decision rule over the unobservable

state variables. The optimal decision rule is α(xit, εit) = argmaxa∈A {v(a, xit) + εit(a)}. Therefore,

for any (a, x) ∈ A×X and θ ∈ Θ, the conditional choice probability is:

P (a|x, θ) ≡
Z

I {α(x, ε; θ) = a} dGε(ε)

=
R
I {v(a, xit) + εit(a) > v(a0, xit) + εit(a

0) for all a0} dGε(εit)

(11)

When {εit(a)} are iid type 1 extreme value random variables, as in example 1, the multi-dimension

integrals in the integrated Bellman equation and in the definition of CCPs have closed form ana-

lytical expressions. This is the DP conditional logit model with Bellman equation19

V̄ (xit) = log

⎛⎝XJ

a=0
exp

⎧⎨⎩u(a, xit) + β
X
xi,t+1

V̄ (xi,t+1) fx(xi,t+1|a, xit)

⎫⎬⎭
⎞⎠ (12)

17To see this, define ãit, x̃it and ỹit as the vectors with the histories of the individual’s decisions, states and outcomes,
respectively, from period 1 until t. Assumptions IID, CI-X and CI-Y imply that Pr(ait, yit, xit | ãi,t−1, ỹi,t−1, x̃i,t−1) =
fY (yit | ait, xit) Pr(ait | xit)fx (xit | ai,t−1, xi,t−1).
18Note that ξit is censored for the econometrician since wages are observed only when the individual works.

However, under assumption CI-Y this censoring does not introduce any bias in the estimation of the wage equation
by OLS. We discuss this issue in more detail in section 3.
19Since X is discrete and finite, we can represent Bellman equation as a system of equations in the Euclid-

ean space R|X|. Let V̄ be the |X| × 1 vector with the values V̄ (x(1)), V̄ (x(2)), ..., V̄ (x(|X|)). Then, V̄ is the

unique solution to: V̄ =log
J

a=0
exp u(a) + β F(a) V̄) , where u(a) is the |X| × 1 vector of current utilities

(u(a, x(1)),u(a, x(2)), ..., u(a, x(|X|)))0 and F(a) is the |X|× |X| matrix with the transition probabilities fx(xt+1|a, xt).
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and choice probabilities:

P (a|xit, θ) =
exp {v(a, xit)}XJ

j=0
exp {v(j, xit)}

(13)

If v(a, xit) were a linear function of the parameters θ, these expressions would be familiar as the

choice probability of binary probit, logit or multinomial logit models. In general, v(a, xit) is a

complex non-linear function of θ which has to be computed from the Bellman equation in (12).

The relative simplicity of dynamic discrete choice models under Rust’s assumptions and their

similarity with static discrete choice econometric models, has contributed to more extensive devel-

opment of this framework. The econometric theory is better understood, and some general results

on identification are available (see Rust, 1994, Magnac and Thesmar, 2002, and Aguirregabiria,

2007). Factorization of the likelihood in (10) allows for a computationally advantageous estimation

approach. Our review of estimation methods begins in section 3.1 with methods for this class

of models. One line of research has developed estimation methods which avoid repeated solution

of the DP problem (see sections 3.1.2-3.1.4), and this computational advantage has made Rust’s

model the framework of choice in recent research on models with strategic interactions (see section

4). If the choice is not binary, an important restriction is involved in the CLOGIT assumption, i.e.,

that the unobservable state variables are independent across alternatives.

Our next example, based on Keane and Wolpin (1997), serves as an illustration of models

which relax some of the assumptions in Rust’s framework. More specifically, we highlight four

departures from the previous model: (1) unobservables which do not satisfy assumption AS; (2)

observable payoff variables which are choice-censored and do not satisfy assumption CI-Y; (3)

permanent unobserved heterogeneity (a departure of assumption IID); and (4) unobservables which

are correlated across choice alternatives (i.e., no CLOGIT assumption). Many applications have

included at least one of these four features, and in this survey we group all of them under the

label Eckstein-Keane-Wolpin (EKW) after the authors who are the main contributors. We review

estimation methods for EKW models in section 3.2.

EXAMPLE 2. (Occupational choice and the career decisions of young men). Each

period (year), starting at age 16 through a maximum age T , an individual chooses between staying

at home (ait = 0), attending school (ait = 4), or working at one of three occupations: white collar

(ait = 1), blue collar (ait = 2), or the military (ait = 3). The specification of the one-period utility
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function is:
U(0, sit) = ωi(0) + εit(0)

U(4, sit) = ωi(4)− θtc1 I(hit ≥ 12)− θtc2 I(hit ≥ 16) + εit(4)

U(a, sit) = Wit(a) for a = 1, 2, 3

(14)

hit is schooling (in years). θtc1 and θtc2 are parameters that represent tuition costs in college and

graduate school, respectively. Wit(a) is the wage of individual i at period t in occupation a. Wages

in occupation a are the product of the skill price in that occupation, ra, and the individual’s skill

level for that occupation, which is an exponential function of an individual-specific endowment at

age 16, schooling, experience and a transitory shock. That is:

Wit(a) = ra exp
n
ωi(a) + θa1 hit + θa2 kit(a)− θa3 (kit(a))

2 + εit(a)
o

(15)

where kit(a) is cumulated work experience (in years) in occupation a. The vector εit = {εit(a) : a ∈

A} contains choice-specific shocks to skill levels and to the monetary values of a year at school or

at home. They are assumed to be serially uncorrelated with a joint normal distribution with zero

means and unrestricted variance matrix. The vector ωi = {ωi(a) : a ∈ A} contains occupation and

individual-specific endowments which are fixed from age 16. This vector has a discrete support,

and its probability distribution is nonparametrically specified. Both εit and ωi are unobservable to

the econometrician but observable to the individual when he makes his decision at period t. The

vector of observable state variables is xit = {hit, tit, kit(a) : a = 1, 2, 3}, where tit represents age. All

the variables in xit have a discrete and finite support. Labor earnings are observable. This payoff

variable is equal to zero when ait ∈ {0, 4} and equal to Wit(ait) when ait ∈ {1, 2, 3}. Therefore, the

payoff function is I{ait ∈ {1, 2, 3}}ra exp{ωi(a)+ θa1 hit+ θa2 kit(a)− θa3 (kit(a))
2+ εit(a)}. Note

that assumption CI-Y does not hold because the unobserved state variables εit(1), εit(2) and εit(3)

have a direct effect on observed labor earnings.

The opportunity cost of investing in human capital by attending school is the value of foregone

earnings and work experience, or the utility of staying home. Working also has an investment value

since it increases occupation-specific skills and future earnings. An individual’s optimal career path

is partly determined by comparative advantage embedded in endowments at age 16. Keane and

Wolpin estimated this model on NLSY data.20 They found that unobserved skill endowments at

age 16 are a very important source of inequality in lifetime career paths, earnings and utility. To the

20Keane and Wolpin report estimates of two versions of this model. The first ’bare bones’ version is the one
described here. The second one includes additional features such as disutilities of switching between choices and
permament unobserved heterogeneity in preferences, which are introduced in order to help the model fit the degree
of persistence in choices observed in the data.
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extent that they are the root source of inequality, their counterfactual policy experiments suggest

that the impact of (large) college tuition subsidies on college attainment and income distribution

would be rather small. ¥
We now use example 2 to illustrate the practical implications for estimation of relaxing some

of Rust’s assumptions. The sum of the permanent and transitory unobserved skill components,

εit(a) + ωi(a), is a serially correlated state variable. The presence of autocorrelated unobservables

has important implications for the estimation of structural parameters. Individuals self-select into

occupations and schooling classes on the basis of persistent differences in skills which are unob-

served by the researcher. Ignoring this source of self-selection can result into an overestimation

of the returns to schooling and occupation-specific experience. Also, persistence in occupational

choices in the data may arise because there is a disutility of switching occupations (state depen-

dence), or because there are persistent differences in skills (unobserved heterogeneity). Failure to

control for the latter, if present, would lead to biased estimates of switching disutilities.21 With

serially correlated unobservables, the probability of an individual’s sequence of choices cannot be

factored into a product of conditional choice probabilities as in (10). The observable state xit is

not a sufficient statistic for ait because lagged choices contain information about the permanent

components ωi. However, conditional on ωi the transitory components {εi(a)} do satisfy assump-

tion IID. Since ωi has discrete support, each individual’s likelihood contribution can be obtained

as a finite mixture of likelihoods, each of which has the same form as in (10). If the support of ωi

is Ω = {ω1, ω2, ..., ωL} ⊂ RJL, then we have that

li(θ,Ω, π) = log

µXL

c=1
Li(θ, ω

c) πc|xi1

¶
(16)

where πc|x ≡ Pr(ωi = ωc|xi1 = x); π is the vector of parameters {πc|x : c = 1, 2, ..., L;x ∈ X}; and

Li(θ, ω
c) is

QTi
t=1 P (ait|xit, θ, ωc) fY (yit|ait, xit, θ, ωc)

QTi−1
t=1 fx(xi,t+1|ait, xit, θf , ωc).22 Note that

the conditional density of the payoff variable yit depends not only on θY , as in Rust’s model, but

on the whole vector of structural parameters θ. Conditioning on the current action ait introduces

selection or censoring in the payoff variable and this selection effect depends on all the parameters

of the model. An important implication of this feature of the model is that (even if there is not

permanent unobserved heterogeneity) θY and θu cannot be estimated separately.

Several issues are worth highlighting here. First, in general permanent unobserved heterogene-

21See Heckman (1981) for the first discussion of this issue.
22 In Example 2, the transitions of the observable state variables are all deterministic and do not depend on any

structural parameter. Therefore, in this example θf is an empty vector and the likelihood Li(θ, ω
c) does not include

the term Ti−1
t=1 fx(xi,t+1|ait, xit, ωc, θf ).
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ity poses an initial conditions problem because the initial state xi1 is correlated with permanent

unobserved components. This problem is avoided if the structural model has an initial period in

which all the individuals have the same value of the vector x, and if this initial period is observed

in the sample. Under these conditions xi1 = x1 for every i and then Pr(ωc|xi1) is constant over

individuals and equal to πc, i.e., the unconditional mass probability of type c individuals which

is a primitive structural parameter. Keane and Wolpin’s model is an example of this in that all

individuals start ’life’ in the model at age 16 with zero experience in all occupations and the NLSY

data provide histories as of age 16. If x can take different values in the behavioral model’s first

decision period, then the researcher needs to specify how the distribution of permanent unobserved

heterogeneity varies with xi1. In Keane and Wolpin’s data there is variation in schooling measured

at age 16. It seems likely that initial schooling is correlated with other age 16 endowments, and

Keane and Wolpin allow for this as our mixture likelihood in (16) suggests. A more difficult case

arises if individual histories are left-censored. We return to this issue in our review of estimation

methods for finite mixture models in Section 3.2.1. The focus there is on a structure with (dis-

crete) permanent unobserved heterogeneity and (continuous) iid transitory components, which is

the simplest way of allowing for autocorrelation in unobservable state variables.

Second, in order to evaluate the mixture of likelihoods the DP problem needs to be solved

as many times as the number of components in the mixture. This is the reason why permanent

unobserved heterogeneity is almost always introduced with a discrete and finite support. The

integrated value function or Emax function (conditional on individual’s type) V̄c(xit) still fully

characterizes the solution to the DP problem. The integrated Bellman equation for individual type

c is:

V̄c(xit) =

Z
max
a∈A

⎧⎨⎩U(a, xit, ω
c, εit) + β

X
xi,t+1

V̄c(xi,t+1) fx(xi,t+1|a, xit, ωc)

⎫⎬⎭dGε(εit) (17)

The optimal decision rule is α(xit, ωc, εit) = argmaxa∈A
©
v(a, xit, ω

c, εit)
ª
, where v(a, xit, ωc, εit)

is the term in brackets {} in equation (17). When ε0s are additively separable and extreme value

distributed, then we still have closed form expressions for the integrated Bellman equation and for

CCPs in terms of choice-specific value functions. In the occupational choice model of example 2

the transitory shocks to skills are not additively separable and, more important, they are correlated

across choices or occupations. This seems like a realistic (and even necessary) assumption to make

in this application; e.g., if the transitory component of labor market skills reflects an unobservable

health shock, the shock would likely have an effect on both white collar and blue collar skills. But
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correlation across choices implies that integrated value functions and conditional choice probabilities

do not have the convenient closed forms of McFadden’s conditional logit. In this case, as well as

in models with more general autocorrelation structures, repeated calculation of multidimensional

integrals in the solution and/or estimation of the model is unavoidable. Section 3.2.2 reviews Keane

and Wolpin’s simulation and interpolation method, developed for the occupational choice model.

Simulation is used in order to compute multidimensional integrals, interpolation in order to handle

problems with very large state spaces.

Third, in example 2 transitory shocks to wages are observable to the decision maker and de-

termine the optimal occupational choice. This feature of the model implies that, in contrast with

example 1, there is a self-selection bias if we estimate the wage equation for an occupation by OLS

using the sub-sample of individuals whose wages are observed because they chose that occupation.

And fourth, in example 2 the shocks εit(2), εit(3) and εit(4) do not satisfy assumption AS, i.e., one

shock per alternative and additive separability combined with unbounded support. This implies

that the model is saturated (Rust 1994). That is, optimal choice probabilities P (a|x, ωc, θ) are

not strictly positive for every value of (a, x, ωc, θ) and this leads to well-known complications in

estimation.

So far, we have maintained the assumption that X is a discrete and finite set. However, in

many applications some state variables are continuous. DP problems with continuous state vari-

ables cannot be solved exactly and the solution need to be approximated using discretization or

interpolation methods. These approximation methods introduce an additional error in the estima-

tion of the model. The implications of this error for the properties of estimators is a complicated

issue because of the nonlinearity of the structural model. Section 3.3 discusses some recent develop-

ments in this area. In that section we also discuss methods for models with (time-variant) serially

correlated unobservables, and Bayesian methods.

2.2 Competitive equilibrium models

The single-agent models of Examples 1 and 2 are partial equilibrium models. They study one

side of the market (i.e., labor supply) taking prices and aggregate quantities as exogenously given.

Though useful for policy evaluation, it is well known that partial equilibrium analysis can give

misleading results if the assumption that prices are invariant to changes in the policy variables of

interest is not a good approximation. Equilibrium models are also better suited to improve our

understanding of economy-wide trends. Despite the limitations of partial equilibrium, there have

been very few studies that specify and estimate dynamic general equilibrium (GE) models with
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heterogeneous agents using micro data. An important exception is the study by Heckman, Lochner

and Taber (1998) who estimate and calibrate a heterogeneous-agent dynamic GE model of human

capital accumulation and earnings. They use their estimated model to study the sources of rising

wage inequality in the US economy. More recently, Lee (2005) and Lee and Wolpin (2006) have

estimated dynamic GE models of human capital accumulation in the same spirit as the study in

Heckman, Lochner and Taber, relaxing some of their assumptions and more fully incorporating

into the estimation process the equilibrium restrictions embodied in the theory.23

EXAMPLE 3. (Occupational choice in equilibrium). In order to make it more suitable

for the analysis of economy-wide aggregate data, consider the following changes in the model of

Example 2: a) Exclude the ’military’ occupational choice. b) Allow the utility parameters to vary

with gender and make the utility of the ’home’ alternative dependent on the number of children

of pre-school age nit: U(0, sit) = ωi(0) + θc nit + εit(0). The observable state variable nit which is

now part of xit follows an exogenous Markov process conditional on age, gender, education and

cohort. In Example 2, the skill rental prices ra in the wage equations (15) were assumed constants.

In this example the state vector is augmented to include skill prices and, most important, the law

of motion of skill prices is endogenously determined in the model as an equilibrium outcome. The

labor market is assumed to be competitive. The supply side consists of overlapping generations

of individuals aged 16 through 65, whose behavior corresponds to the occupational choice model.

The demand side can be characterized by the following Cobb-Douglas, constant returns to scale

aggregate production function:

Yt = zt S
α1t
1t Sα2t

2t K1−α1t−α2t
t (18)

where Yt is aggregate output, S1t and S2t are the aggregate quantities of white collar and blue

collar skills, and zt and Kt are total factor productivity and the aggregate capital stock, which

follow exogenously determined processes.24 Technical change is captured (deterministically) in

time-varying factor shares {α1t, α2t} as well as in total factor productivity. Demand side competitive

behavior implies that skill rental prices satisfy the value-of-marginal-product conditions:

rat = (αat/Sat)
³
zt S

α1t
1t Sα2t

2t K1−α1t−α2t
t

´
for a = 1, 2 (19)

23This emergent microeconometric literature on estimation of dynamic GE models is related to macro literature
on GE models with heterogeneous agents. See Krusell and Smith (1998) and Rios-Rull (1999). There is also an
important and large literature in labor economics on the estimation of equilibrium search models with heterogeneous
workers and firms. See Mortensen and Pissarides (1999) and Eckstein and van den Berg (2007) for surveys.
24 It is implicitly assumed that the distribution of capital rental income among individuals has no effect on labor

supply decisions.
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Let eXt denote aggregate state variables relevant to the individual’s occupational choice problem,

i.e. current skill rental prices and other aggregate variables which agents use to predict future

skill rental prices. The state vector of the occupational choice model is augmented with eXt and

individuals are assumed to know its law of motion. The aggregate supplies of skills are obtained

by adding individual skill supplies over all individuals in the economy:

Sat =

Z
x,ω,�

kit(a) I
n
a = α(xit, ωi, εit, eXt)

o
for a = 1, 2 (20)

where kit(a) is individual i0s stock of skill in occupation a, α() is the optimal decision rule, and

the integral represents the appropriately weighted sum over the distribution of individual state

variables.

In a (rational expectations) competitive equilibrium, the sequence of skill rental prices {r1t, r2t :

t = 1, 2, ...} and the law of motion of eXt satisfy the following conditions. First, individuals solve the

occupational choice problem taking the law of motion of eXt as given. Second, labor markets for both

white and blue collar skills clear, i.e., the resulting aggregate skill supply functions, together with

skill prices, satisfy the labor demand conditions (19). And, third, the actual law of motion of eXt

is consistent with individuals’ beliefs. The equilibrium need not be stationary: besides dependence

on initial conditions eX1, there are other sources of non-stationarity such as time variation in factor

shares in the aggregate production function, changes in cohort sizes, cohort effects in fertility, etc.

An important question the equilibrium model can address is the extent to which ’feedback’

effects offset the impact of policies such as the college tuition subsidy evaluated by Keane and

Wolpin in partial equilibrium. That is, the subsidy may increase the supply of white collar skills to

the extent that it induces higher college enrollment. If the relative price of white collar skills falls

as a result, this reduces the returns to schooling and college enrollment. Lee (2005) estimates the

equilibrium model on CPS data and concludes that feedback effects in the US were quite small.

Lee and Wolpin (2006) extend this framework, allowing for three occupations in an economy with

two sectors, goods and services. They estimate the model on CPS and NLSY data and use it to

study the determinants of the large growth of employment in the service sector in the US over the

last 50 years. They conclude that demand factors (technological change and movements in product

and capital prices) were much more important than supply factors such as changes in cohort sizes

or the decline in fertility. ¥
The estimation of this model is considerably more demanding than that of its partial equilib-

rium version in Example 2 for two reasons. First, imposing the equilibrium restrictions increases the

computational burden of estimation by an order of magnitude. Second, estimation of the equilib-
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rium model requires additional data which can only be obtained from different sources and having

to combine multiple data sources poses some complications for estimation and inference.

Recall that the state space of the individual agent’s occupational choice problem is augmented

with aggregate variables fXt , e.g. current and past values of skill prices, total factor productivity,

cohort sizes, the distributions of schooling and occupation-specific experience, and other variables

which predict future skill prices. Note that any such variable omitted by the econometrician

is a potential source of endogeneity bias because it is likely to be correlated with current skill

prices. The dimensionality of eXt is potentially so large as to make solution - let alone estimation

- infeasible without some further simplification. Lee (2005) assumes that skill price sequences are

deterministic and individual agents have perfect foresight; in this case, the state space is augmented

with the sequence of current and future deterministic skill prices. Lee and Wolpin (2006) assume

that stochastic skill prices are linear functions of a small number of state variables and search for

equilibria within this class of pricing functions. The equilibria they consider are thus approximations

to the ’full’ stochastic rational expectations equilibria implied by the model. For any given values

of the parameters to be estimated, the equilibrium laws of motion solve a fixed point problem

which uses as input the solutions to the individual DP problems of all agents who interact in the

economy. This implies that a single evaluation of the estimation criterion nests two layers of fixed

point problems.25 The estimation criterion is based on a set of moment conditions which summarize

occupational choices and wages obtained from micro survey data. We review the estimation of these

models in more detail in section 5.

2.3 Dynamic discrete games

The analysis of many economic and social phenomena requires the consideration of dynamic strate-

gic interactions between a relatively small number of agents. The study of the dynamics of oligopoly

industries is perhaps the most notorious example of these dynamic strategic interactions. Com-

petition in oligopoly industries involves important investment decisions which are irreversible to a

certain extent. Market entry in the presence of sunk entry costs is a simple example of this type

of investment. Dynamic games are powerful tools for the analysis of these dynamic strategic inter-

actions. Until very recently, econometric models of discrete games had been limited to relatively

simple static games. Two main econometric issues explain this limited range of applications: the
25Multiplicity of equilibria in these models cannot be ruled out in general, but computing multiple equilibria - if

they exist - is a difficult task. Because of this, this issue tends to be ignored in empirical work. Estimation is carried
out under the assumption that the equilibrium is unique, and the validity of the assumption is scrutinized at the final
parameter estimates. The recent literature on estimation of dynamic discrete games, which we review in sections 2.3
and 4, has been more concerned with the issue of multiple equilibria.
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computational burden in the solution of dynamic discrete games, and the indeterminacy problem

associated with the existence of multiple equilibria. The existence of multiple equilibria is a preva-

lent feature in most empirical games where best response functions are non-linear in other players’

actions. Models with multiple equilibria do not have a unique reduced form and this incomplete-

ness may pose practical and theoretical problems in the estimation of structural parameters. The

computational burden in the structural estimation of games is specially severe. The dimension of

the state space, and the cost of computing an equilibrium, increases exponentially with the number

of heterogeneous players. An equilibrium is a fixed point of a system of best response operators

and each player’s best response is itself the solution to a dynamic programming problem.

In section 4 we review recent papers which have taken Rust’s framework of single agent prob-

lems, combined with Hotz-Miller’s estimation approach, as a starting point in the development of

estimable dynamic discrete games of incomplete information. Private information state variables

are a convenient way of introducing unobservables in the econometric model.26 Furthermore, under

certain regularity conditions dynamic games of incomplete information have at least one equilibrium

while that is not case in dynamic games of complete information (see Doraszelski and Satterthwaite,

2003). We provide here a description of the basic framework with no payoff variables, based on

suitably extended versions of the AS, IID and CI-X assumptions (also see Rust (1994) pp. 154-158).

Consider a game that is played by N players that we index by i ∈ I = {1, 2, ..., N}. Every

period t these players decide simultaneously a discrete action. Let ait ∈ A = {0, 1, ..., J} be

the action of player i at period t. At the beginning of period t a player is characterized by

two vectors of state variables which affect her current utility: xit and εit. Variables in xit are

common knowledge for all players in the game, but the vector εit is private information of player

i. Let xt ≡ (x1t, x2t, ..., xNt) be the vector of common knowledge state variables, and similarly

define at ≡ (a1t, a2t, ..., aNt), and let εt be the vector with all players’ private information. Let

Ui(at, xt, εit) be player i’s current payoff function, that depends on the actions of all the players,

the common knowledge state variables, and his own private information εit. A player chooses

his action to maximize expected discounted intertemporal utility Et[
PT−t

j=0 β
jUi(at+j , xt+j , εi,t+j)],

where β ∈ (0, 1) is the discount factor. Players have uncertainty about other players’ current and

future actions, about future common knowledge state variables, and about their own future private

26As far as we know, there are no estimable dynamic games of complete information. The estimation of this class of
games involves non trivial complications. For instance, other players’ current actions are not independent of common
knowledge unobservables. In contrast, unobservables which are private information state variables, independently
distributed across players, can explain at least part of the heterogeneity in players’ actions without generating this
endogeneity problem.
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information shocks. We assume that {xt,εt} follows a controlled Markov process with transition

probability function F (xt+1,εt+1|at,xt,εt). This transition probability is common knowledge.

Players’ strategies depend only on payoff relevant state variables. Let α = {αi(xt, εit) : i ∈ I}

be a set of strategy functions, one for each player. Taking as given the strategies of all players

other than i, the decision problem of player i is just a standard single-agent DP problem. Let

V α
i (xt, εit) be the value function of this DP problem. The Bellman equation is V α

i (xt, εit) =

maxai∈A {vαi (ai, xt, εit)} where, for every ai ∈ A,

vαi (ai, xt, εit) ≡ Eε−it {Ui(ai, α−i(xt, ε−it), xt, εit)}

+ β Eε−it

½Z
V α
i (xt+1, εt+1) dF (xt+1,εt+1|ai, α−i(xt, ε−it),xt, εt)

¾ (21)

and Eε−it represents the expectation over other players’ private information shocks. The best

response function of player i is bi(xt, εit, α−i) = argmaxai∈A {vαi (ai, xt, εit)}. This best response

function gives the optimal strategy of player i if the other players behave, now and in the future,

according to their respective strategies in α−i. A Markov perfect equilibrium (MPE) in this game

is a set of strategy functions α∗ such that for any player i and for any (xt, εit) we have that

α∗i (xt, εit) = bi(xt, εit, α
∗
−i).

We now formulate the AS, IID and CI-X assumptions in the context of this game.

ASSUMPTION AS-Game: The one-period utility function is additively separable in common

knowledge and private information components: Ui(at, xt, εit) = ui(at, xt)+ εit(ait), where εit(a) is

the a-th component of vector εit. The support of εit(a) is the real line for all a.

ASSUMPTION IID-Game: Private information shocks εit are independently and identically dis-

tributed over agents and over time with CDF Gε(εit) which has finite first moments and is contin-

uous and twice differentiable in εit.

ASSUMPTION CI-X-Game: Conditional on the current values of players’ actions and common

knowledge state variables, next period common knowledge state variables do not depend on current

private information shocks: i.e., CDF (xt+1|at, xt, εt) = Fx(xt+1| at, xt).

As in the case of single-agent models, under assumptions AS, IID and CI-X the integrated value

function V̄ α
i (xt) ≡

R
V α
i (xt, εit)dGε(εit) fully characterizes player i’s DP problem. The integrated

Bellman equation is V̄ α
i (xt) =

R
maxai∈A{vαi (ai, xt) + εit(ai)}dGε(εit) where

vαi (ai, xt) = Eε−it

½
ui(ai, α−i(xt, ε−it), xt) + β

Z
V̄ α
i (xt+1) dFx(xt+1|ai, α−i(xt, ε−it),xt)

¾
(22)
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Another implication of these assumptions is that a MPE can be described as a fixed point of a

mapping in the space of CCPs which ’integrate out’ players’ private information variables. Given a

set of strategy functions α = {αi(xt, εit) : i ∈ I} we define a set of conditional choice probabilities

Pα = {Pα
i (ai|x) : (i, ai, x) ∈ I ×A×X} such that,

Pα
i (ai|x) ≡ Pr (αi(xt, εit) = ai |xt = x) =

Z
I {αi(xt, εit) = ai} dGε(εit) (23)

These probabilities represent the expected behavior of firm i from the point of view of the rest of

the firms when firm i follows its strategy in α. Similarly, we can define player i’s best response

probability function as:

Λ(ai|vαi (., xt)) =
Z

I

½
ai = argmax

j∈A
{vαi (j, xt) + εit(j)}

¾
dGε(εit) (24)

Note that the value functions vαi (ai, xt) depend on other players’ strategies only through other play-

ers’ choice probabilities. That is, in equation (22) we can replace the expectationEε−it{...α−i(xt, ε−it)...}

by
P

a−i
Pr(a−i|xt;α){...a−i...} where

P
a−i

represents the sum over all possible values in AN−1,

and Pr(a−i|xt;α) =
Q

j 6=i P
α
i (aj |xt). To emphasize this point we will use the notation vPi instead

vαi to represent these value functions.

Letα∗ be a set of MPE strategies and letP∗ ≡ {P ∗i (ai|x) : for every (i, ai, x)} be the correspond-

ing CCPs. Then, it is straightforward to show that for every (i, ai, x), P ∗i (ai|x) = Λ(ai|vP
∗

i (., x)).

That is, P∗ is a fixed point of P = Λ(vP), where Λ(vP) ≡ {Λ(ai|vPi (., x)) : for every (i, ai, x)}.

Given the assumptions on the distribution of private information, we can define best response

probability functions which are continuous in the compact set of players’ choice probabilities. By

Brower’s theorem, there exists at least one equilibrium. In general, the equilibrium is not unique.27

We now distinguish between observable and unobservable variables from the point of view of the

econometrician. In principle, we could distinguish observable and unobservable components both

in common knowledge and in private information state variables. We start with a more restrictive

and simpler case.

ASSUMPTION OC: All the common knowledge state variables in xt are observable to the econo-

metrician, and all the private information variables in εt are unobservable.

To complete this description of the econometric model we should comment on the sampling

framework. In the case of single agent models, we assumed that the econometrician has a random

sample of many agents (e.g., firms, households) behaving according to the model. That is not

27See Doraszelski and Satterthwaite (2003) amd Aguirregabiria and Mira (2007) for more details.
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the case in applications of dynamic strategic games where typically the number of players is quite

small, e.g., firms in an oligopoly market, members of a family, political parties, etc. We assume

that the game is played independently at different locations, indexed by m, and that we have a

random sample of M of these locations. Therefore, taking into account Assumption OC, the data

consist of:

Data = { amt, xmt : m = 1, 2, ...,M ; t = 1, 2, ..., Tm} (25)

Note that an assumption that is implicit in this description of the data is that we observe the actions

of all the players in the game. Our next example illustrates models with strategic interactions and

is based on Aguirregabiria and Mira (2007).

EXAMPLE 4. (An entry-exit game of incomplete information). The players are firms

making decisions on whether to enter, continuing to operate in, or exit from a market. The market

is a small local retail market and each active firm operates at one location or store. We observe

a random sample of markets, m = 1, . . . ,M. In each market there are N potentially active and

infinitely lived firms. Every period all firms decide simultaneously whether to operate their store

or not. If firm i in market m operates its store at time t (aimt = 1), its variable profits depend on

the number of firms that choose to be active and on market demand conditions, as follows: θRS

log (Smt)− θRN log
³
1 +

P
j 6=i ajmt

´
, where θRS , θRN are parameters. Market demand conditions

are represented by market (population) size, Smt. Market size is common knowledge to firms and

observable to the econometrician, and it follows a first order Markov process. The parameters θRS

and θRN measure the sensitivity of variable profits to market size and to the number of active

competitors, respectively.28 Total current profits of an active firm are:

Uimt(1) = θRS log (Smt)− θRN log

Ã
1 +

P
j 6=i

ajmt

!
− θFC,i − θEC,i(1− aim,t−1) + εimt(1) (26)

where θFC,i−εimt is firm i’s fixed operating cost which has two components: θFC,i is time-invariant

and common knowledge, and εimt(1) is private information of firm i and time-varying. The term

(1− ai,t−1) θEC,i is an entry cost, where the entry cost parameter θEC,i is multiplied by (1− ai,t−1)

since this cost is paid only by entrants. If a firm does not operate its store, it can put its capital

to other uses. Current profits of a non-active firm, Uimt(0), are equal to the value of the best

outside opportunity. We assume that Uimt(0) = εimt(0), which is private information of firm

i. The choice-specific private information variables, εimt(0) and εimt(1), are transitory normally

28One may interpret variable profits as the equilibrium payoffs of a one-period static game in which firms with
identical products and variable costs compete in quantities (i.e., Cournot).
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distributed shocks, iid across firms, markets and time with zero mean.29

The vector of state variables of the game which are observable to the researcher is xmt =

(Smt, amt−1) where amt−1 = {ami,t−1 : i = 1, 2, ..., N} are indicators of incumbency status. Incum-

bency status matters because incumbent firms do not pay entry costs and are thus more likely to

operate their store than non-incumbents. The unobservable state variables are the private infor-

mation shocks εimt. In this game, a firm’s strategy function, αi(xmt, εimt), is a binary decision rule.

The associated conditional choice probability, Pα
i (1|xmt), is the probability that the firm operates

in the market.

Aguirregabiria and Mira estimate this model using panel data of Chilean local retail markets.

They assume that all potential entrants in each market are identical and consider symmetric equi-

libria.30 They estimate the model separately for five different retail industries and analyze how

economies of scale, the sensitivity of profits to the number of active firms and the magnitude of

sunk costs contribute to explain differences in the number of active firms across industries. As we

describe in section 4, Aguirregabiria and Mira relax Assumption OC by including a time-invariant

and market-specific component of market profitability that is common knowledge for firms but

unobserved to the researcher They find that this unobserved market heterogeneity is important.

Failure to account for it may lead to implausible estimates of the parameter θRN which measures

the sensitivity of profits to the number of active competitors, because more profitable markets tend

to have a larger number of active firms in equilibrium. ¥
The estimation of dynamic games, relative to single agent models, poses several specific prob-

lems. Simple as this example is, it illustrates how the size of the game’s state space tends to grow

exponentially with the number of players if it includes player-specific state variables such as incum-

bency status. As in the competitive equilibrium example, solving the model nests two levels of fixed

point problems, i.e., the best response equilibrium condition and the individual player’s dynamic

programming problem. In order to alleviate the computational complexity, one might attempt to

estimate structural parameters from each player’s individual decision problem and actions. But

the decision rule depends on the (lagged) actions of other players, such as their incumbency sta-

tus. If some aggregate state variables are unobservable (e.g., the permanent component of market

profitability), other player’s actions are endogenous.31 For given parameter values, multiple equi-

29We might write the value of the best outside oppotunity as μi+εimt(0), but the parameter μi cannot be identified
separately from the average fixed cost θFC,i so we normalize it to zero.
30Therefore, θFC,i and θEC,i is the same for all firms. Aguirregabiria, Mira and Roman (2007) relax this assumption.

We discuss the issue of firm permanent unobserved heterogeneity in section 4.
31And, furthermore, an initial conditions problem has to be taken into account.
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libria are a (likely) possibility which will make the empirical model indeterminate and call for some

additional structure.

On a different level, note that example 4 is different from the first three in that only choice

data are used in estimation. In the first three examples, data on payoffs (i.e., wages) was also

available. ’Pure choice’ data is a fairly common situation which tends to make estimation simpler

because payoff data are often choice-censored and corrections for selection can be more difficult

to implement in structural models, as we will see for example 2. On the other hand, it is clear

that availability of payoff data is an important source of identification. Furthermore, the basic

framework that we have described for empirical discrete games is easily extended to the case in

which payoff variables satisfy assumption CI-Y.

3 Estimation methods for single agent models

3.1 Methods for Rust’s model

We introduced Rust’s model as a single agent model with the conditional independence and additive

separability assumptions. We describe four methods/algorithms which have been applied to the

estimation of this class of models: (1) the nested fixed point algorithm; (2) Hotz-Miller’s CCP

method; (3) recursive CCP method; and (4) Hotz-Miller with simulation. The first of these is a full

solution method, i.e., the DP-problem is solved for every trial value of the parameters. Methods

(2)-(4) avoid repeated full solutions of the DP problem, taking advantage of the existence of an

invertible mapping between conditional choice probabilities and differences in choice-specific value

functions, a result due to Hotz and Miller (1993). We have noted that almost all applications in

models with more than two choice alternatives have also imposed the extreme value assumption

on unobservables. Although the extreme value assumption per se is not essential for the statistical

properties of the model and the methods which we review here, it leads to closed form expressions

for several of the econometric model’s key objects. This is an advantage which these methods fully

exploit, specially (2)-(4). Extending the range of applicability of these methods to models which

do not impose the extreme value assumption is a topic for further research.

3.1.1 Nested fixed point algorithm

The nested fixed point algorithm (NFXP) is a gradient iterative search method to obtain the max-

imum likelihood estimator of the structural parameters. More specifically, this algorithm combines

a BHHH method (outer algorithm), that searches for a root of the likelihood equations, with a
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value function or policy iteration method (inner algorithm), that solves the dynamic programming

problem for each trial value of the structural parameters. The algorithm is initialized with an

arbitrary vector of structural parameters, say θ̂0. A BHHH iteration is defined as:

θ̂k+1 = θ̂k +

µXN

i=1
Oli(θ̂k)Oli(θ̂k)0

¶µXN

i=1
Oli(θ̂k)

¶
(27)

where Oli(θ) is the gradient in θ of the log-likelihood function for individual i. Given the form of

the likelihood in equation (10), and that θ = (θ0u, θ
0
Y , θ

0
f )
0, we have:

Oli(θ) =

⎡⎢⎣
PTi

t=1Oθu logP (ait|xit, θ)PTi
t=1OθY logP (ait|xit, θ) +

PTi
t=1OθY log fY (yit|ait, xit, θY )PTi

t=1Oθf logP (ait|xit, θ) +
PTi−1

t=1 Oθf log fx(xi,t+1|ait, xit, θf )

⎤⎥⎦ (28)

The terms OθY log fY and Oθf log fx are standard because the transition probability function and

the payoff function are primitives of the model. However, to obtain Oθ logP we need to solve the

DP problem for θ = θ̂k in order to compute the conditional choice probabilities and their derivatives

with respect to the components of θ̂k. There are different ways to solve the DP problem. When

the model has finite horizon (i.e., T is finite) the standard approach is to use backward induction.

For infinite horizon models, one can use either value function iterations (described below) or policy

function iterations, or an hybrid of both.

To illustrate this algorithm in more detail, consider a version of Rust’s DP conditional logit

model with infinite horizon, and discrete observable state variables x. Let V̄(θ) be the column

vector of values {V̄ (x, θ) : x ∈ X}. Following equation (12), this vector of values can be obtained

as the unique fixed point in V̄ of the following Bellman equation in vector form:

V̄ = log

µXJ

a=0
exp

©
u(a, θ) + β Fx(a) V̄

ª¶
(29)

where u(a, θ) is the vector of utilities {u(a, x, θ) : x ∈ X} and Fx(a) is the transition probability

matrix with elements fx(x0|a, x). The choice probabilities P (a|x, θ) have the conditional logit form:

P (a|x, θ) =
exp

©
u(a, xit, θ) + β Fx(a, x)

0V̄(θ)
ªPJ

j=0 exp
©
u(j, xit, θ) + β Fx(j, x)0V̄(θ)

ª (30)

where Fx(a, x) is the column vector {fx(x0|a, x) : x0 ∈ X}. To obtain the gradient Oθ logPit of

this DP-conditional logit model, it is useful to take into account that the denominator in equation

(30) is equal to the exponential of V̄ (xit, θ). It can be shown that this gradient has the following

analytic form:

Oθu logPit =
∂u(ait, xit)

∂θu
+ β

∂V̄0

∂θu
Fx(ait, xit)−

∂V̄ (xit)

∂θu

Oθf logPit = β

µ
∂Fx(ait, xit)

0

∂θf
V̄ +

∂V̄0

∂θf
Fx(ait, xit)

¶
− ∂V̄ (xit)

∂θf

(31)
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The expression for OθY logPit is equivalent to that of Oθu logPit. And given the Bellman equation

in (29), the Jacobian matrix ∂V̄(θ)/∂θ0 is:

∂V̄(θ)

∂θ0u
=

µ
I − β

JP
a=0

P(a|θ) ∗ Fx(a)

¶−1µ JP
a=0

P(a|θ) ∗ ∂u(a, θ)
∂θ0u

¶

∂V̄(θ)

∂θ0f
= β

µ
I − β

JP
a=0

P(a|θ) ∗Fx(a)

¶−1Ã JP
a=0

P(a|θ) ∗ ∂Fx(a)

∂θ0f
V̄(θ)

! (32)

where P(a|θ) is the column vector of choice probabilities {P (a|x, θ) : x ∈ X}, and ∗ represents the

element-by-element product. Note that we obtain the gradient of the value functions in a relatively

simple manner as a by-product of the iterative DP solution method. This is an important additional

advantage of the DP-conditional logit specification. Without it, it would be necessary to ’perturb’

each element of θ and obtain new solutions of the DP model for each perturbation in order to

compute numerical derivatives, which is much more costly.32

The NFXP algorithm proceeds as follows. We start with an arbitrary value of θ, say θ̂0. Given

θ̂0, in the ’inner’ algorithm we obtain the vector V̄(θ̂0) by successive iterations in the Bellman equa-

tion (29): starting with some guess V̄0, we iterate in V̄h+1 = log(
PJ

a=0 exp{u(a, θ̂0)+β Fx(a)V̄h})

until convergence. Then, given θ̂0 and V̄(θ̂0) we construct the choice probabilities P (a|x, θ̂0) using

the formula in (30), the matrix ∂V̄(θ̂0)/∂θ0using (32), and the gradient Oli(θ̂0) using equation (31).
Finally, in the ’outer’ algorithm we use the gradient Oli(θ̂0) to make a new BHHH iteration to

obtain θ̂1. We proceed in this way until the distance between θ̂k+1 and θ̂k or the difference in the

likelihoods is smaller than a pre-specified convergence constant. When the model has finite horizon,

we can solve for the value function, its gradient and choice probabilities using backward induction

in the inner algorithm of the NFXP. That is, the sequence of value vectors at ages T , T −1, etc, can

be obtained starting with V̄T (θ̂) = log(
PJ

a=0 exp{uT (a, θ̂)}), and then using the recursive formula

V̄t(θ̂) = log(
PJ

a=0 exp{ut(a, θ̂)+βFx,t(a)V̄t+1(θ̂)}) for t ≤ T−1. At each iteration the choice prob-

abilities are Pt(a|θ̂) = exp{ut(a, θ̂)+β Fx,t(a)
0V̄t+1(θ̂)} / [

PJ
j=0 exp{ut(j, θ̂)+β Fx,t(j)

0V̄t+1(θ̂)}],

and the gradients have the following recursive forms ∂V̄t(θ̂)/∂θ
0
u =

PJ
a=0Pt(a|θ̂)∗{∂ut(a, θ̂)/∂θ0u+

βFx,t(a) ∂V̄t+1(θ̂)/∂θ
0
u} and ∂V̄t(θ̂)/∂θ

0
f = β

PJ
a=0Pt(a|θ̂) ∗ {∂Fx,t(a)/∂θ

0
fV̄t+1(θ̂) + βbFx,t(a)

∂V̄t+1(θ̂)/∂θ
0
f}.

As any other gradient method, the NFXP algorithm returns a solution to the likelihood equa-

tions. In general, the likelihood function of this class of models is not globally concave. Therefore,

32 If policy iteration is used to solve the infinite horizon DP model, the gradient of the value function can also be
obtained as a by-product. The computational cost of computing numerical derivatives is the main reason why BHHH,
which avoids second derivatives, is paricularly useful in the estimation of structural models.
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some global search is necessary to check whether the root of the likelihood equations that has been

found is actually the global maximum and not just a local optimum.

We have described the NFXP algorithm in the context of full information MLE (FIML). How-

ever, most applications of this algorithm have considered a sequential partial likelihood approach

first advocated by Rust. In the first step, the partial likelihoods
P

i,t log fY (yit|ait, xit, θY ) andP
i,t log fx(xi,t+1|ait, xit, θf ) are maximized to obtain estimates of parameters θY and θf , respec-

tively. This step does not involve solving the DP problem. Given these estimators, in the second

step the parameters in θu are estimated using the NFXP algorithm and the partial likelihoodP
i,t logP (ait|xit, θu, θ̂Y , θ̂f ). This two-step approach can greatly simplify the estimation problem

in models with many parameters in the transition probabilities. It was used by Rust and Phe-

lan (1997) to estimate the model that we described in Example 1. In that application, the state

variables with stochastic transitions were health status, health expenses, marital status and public

pension points. The payoff function is the labor earnings equation. There are two main reasons why

this sequential approach reduces the cost of estimating these and other models. First, the number

of BHHH iterations needed to reach convergence typically increases with the number of parameters

that are estimated. Note that BHHH iterations here are particularly costly because they involve the

full solution of the dynamic programming problem. And second, the computational cost associated

with a global search increase as well with the dimension of the parameter space. Nevertheless, it

should be noted that in the sequential partial likelihood approach the calculation of standard errors

in the second step correcting for estimation error in the first step is not a trivial task. It is often

no more costly to consider a third estimation step consisting of a single FIML-BHHH iteration,

which as is well known delivers an asymptotically efficient estimator as well as the correct standard

errors.

There is a long list of applications which have used the NFXP algorithm to estimate models in

Rust’s class. For instance: investment models of machine replacement, as in Rust (1987), Sturm

(1991), Das (1992), Kennet (1993 and 1994), and Rust and Rothwell (1995); or models of retirement

from the labor force, as in Rust and Phelan (1997), and Karlstrom, Palme and Svensson (2004).

3.1.2 Hotz-Miller’s CCP estimator

The main advantages of the NFXP algorithm are its conceptual simplicity and, more importantly,

that it gives the MLE which is asymptotically efficient under the assumptions of the model. The

main limitation of this algorithm is its computational cost. In particular, the DP problem has to be

solved exactly for each trial value of the structural parameters. Given the cost of solving some DP
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problems, this characteristic of the algorithm limits the range of applications that are feasible, even

in the DP-conditional logit case. Hotz and Miller (1993) observed that, under the assumptions

of Rust model, it is not necessary to solve the DP problem even once in order to estimate the

structural parameters A key idea in their method is that, using nonparametric estimates of choice

and transition probabilities, it is possible to obtain a simple representation of the choice-specific

value functions v(a, x, θ) for values of θ around the true vector of structural parameters (see also

Manski, 1993, for a method that exploits a similar idea). This representation is particularly simple

and useful for estimation in the DP-conditional logit model with linear-in-parameters utility. We

assume that u(a, xit, θu) = z(a, xit)
0θu, where z(a, xit) is a vector of known functions. We describe

Hotz-Miller’s method in detail for this case but we also include a brief discussion of alternative

specifications, including the nonlinear DP-conditional logit case which corresponds to the model in

Example 1.33 Furthermore, we assume that the dataset does not include payoff variables or, if it

does, assumption CI-Y holds and θY has been estimated and subsumed into the known z functions.

In Hotz and Miller’s representation the choice-specific value functions are written as follows:34

v(a, x, θ) = z̃(a, x, θ) θu + ẽ(a, x, θ) (33)

where z̃(a, x, θ) is the expected and discounted sum of current and future z vectors {z(at+j , xt+j) :

j = 0, 1, 2, ...} which may occur along all possible histories originating from (at, xt) = (a, x); and

likewise ẽ(a, x, θ) is the expected and discounted sum of the stream {ε(at+j) : j = 1, 2, ...}. More

formally,

z̃(a, xt, θ) = z(a, xt) +
T−tX
j=1

βj Ext+j |at=a,xt

"
JX

a0=0

P (a0|xt+j , θ) z(a0, xt+j)
#

ẽ(a, xt, θ) =
T−tX
j=1

βj Ext+j |at=a,xt

"
JX

a0=0

P (a0|xt+j , θ) e(a0, xt+j)
# (34)

where Ext+j |at=a,xt(.) represents the expectation over the distribution of xt+j conditional to (at =

a, xt). This expectation is calculated under the assumption that the individual behaves optimally

in the future and, therefore, state variables evolve as a controlled stochastic process defined by

optimal choice probabilities and transition probability functions. e(a, xt) is the expectation of εt(a)

33Alternatively, a linear utility z(a, xit)
0θu can also be interpreted as a first order Taylor approximation to a

nonlinear utility.
34Hotz-Miller’s representation can be derived either for alternative-specific value functions or for the integrated

value function (Emax function). We have preferred to use the first version here. Also note that for problems with
terminal actions Hotz and Miller derived a different representation of alternative-specific value functions which is
simpler than the general representation that we present here. The estimator based on this alternative representation
has different asymptotic variance and it has been used less often.
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conditional on xt and on alternative a being optimal, i.e., e(a, xt) ≡ E(εt(a)|xt, α(xt, εt) = a). Hotz

and Miller showed that e(a, xt) is a function of a, the probabilities P (.|xt, θ), and the distribution

Gε only.35 The particular functional form of e(a, x) depends on the probability distribution Gε.

When the ε0s are iid extreme value, e(a, x) has a closed-form and is equal to Euler’s constant minus

logP (a|x, θ). Note that z̃(a, xt, θ) and ẽ(a, xt, θ) depend on θ only through the parameters in the

transition probabilities, θf , and the vector of CCPs P(θ) = {P (a|x, θ) : (a, x) ∈ A ×X}. In fact,

we can define z̃ and ẽ for an arbitrary vector of CCPs (optimal or not). To emphasize this point

we use the notation z̃P(a, xt) to represent
PT−t

j=1 β
jExt+j |at=a,xt [

PJ
a0=0 P (a

0|xt+j) z(a0, xt+j)] and

ẽP(a, xt) to represent
PT−t

j=1 β
jExt+j |at=a,xt [

PJ
a0=0 P (a

0|xt+j) e(a0, xt+j)].36

Let θ0 = (θ0u, θ
0
f ) be the true value of θ in the population of individuals under study. And let P

0

be the conditional choice probabilities in the population. If we knew (P0, θ0f ), we could construct

the values z̃P
0
(a, x) and ẽP

0
(a, x) and then use Hotz and Miller’s representation to approximate the

choice-specific values v(a, x, θ) as simple linear functions of θu close to its true value. Although we

do not know (P0, θ0f ), we can estimate them consistently without having to solve the DP problem.

Consistent estimates of transition probabilities can be obtained using a (partial) MLE of θ0f that

maximizes the (partial) likelihood
P

i,t log fx(xi,t+1|ait, xit, θf ). Conditional choice probabilities

can be estimated using nonparametric regression methods (i.e., P 0(a|x) = E(I{ait = a}|xit = x))

such as a Nadaraya-Watson kernel estimator or a simple frequency estimator. Let P̂ and θ̂f be

the estimators of P0 and θ0f , respectively. Based on these estimates, Hotz and Miller’s idea is to

approximate v(a, xit, θ) by z̃P̂(a, xit)θu + ẽP̂(a, xit) in order to obtain the CCP’s in equation (30).

They propose the GMM estimator that solves in θu the sample moment conditions:

NX
i=1

TiX
t=1

H(xit)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I{ait = 1}−
exp

n
z̃P̂(1, xit)θu + ẽP̂(1, xit)

o
PJ

a=0 exp
n
z̃P̂(a, xit)θu + ẽP̂(a, xit)

o
...

I{ait = J}−
exp

n
z̃P̂(J, xit)θu + ẽP̂(J, xit)

o
PJ

a=0 exp
n
z̃P̂(a, xit)θu + ẽP̂(a, xit)

o

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (35)

35To see this, note that the event {α(x, ε) = a} is equivalent to {v(a, x) + ε(a) ≥ v(a0, x) + ε(a0) for any a0 6=
a}. Then, e(a, x) = 1

P (a|x) ε(a)I {ε(a0)− ε(a) ≤ v(a, x)− v(a0, x) ∀a0 6= a} dG(ε). The last expression shows that
e(a, x) depends on the primitives of the model only through the probability distribution of ε and the vector of value
differences ṽ(x) ≡ {v(a, x)− v(0, x) : a ∈ A}. The vector of choice probabilities {P (a|x) : a ∈ A} is also a function of
Gε and ṽ(x), i.e., P (a|x) = Pr(ε(a0)− ε(a) ≤ v(a, x)− v(a0, x) ∀a0 6= a|x). Hotz and Miller showed that this mapping
that relates choice probabilities and value differences is invertible (see Proposition 1, page 501, in Hotz and Miller,
1993).
36For notational simplicity we omit θf as an argument, though it should be clear that z̃P(a, xt) and ẽP(a, xt)

depend on P and θf .
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where H(xit) is a matrix with dimension dim(θu) × J with functions of xit which are used as

instruments.

The main advantage of this estimator is its computational simplicity. Nonparametric estimation

of choice probabilities is a (relatively) simple task. The main task is the computation of the

values z̃P̂(a, xit) and ẽP̂(a, xit). We provide more details on the calculation of these expected

and discounted values below. However, these values are calculated just once and remain fixed

in the search for the Hotz-Miller estimator. In contrast, in a full solution method such as the

NFXP algorithm these values are recomputed exactly for each trial value of θ. Thus Hotz-Miller’s

method greatly reduces the computational burden of NFXP’s ’inner’ algorithm. Another important

advantage of Hotz-Miller’s CCP estimator is that, for the DP conditional logit model with linear-

in-parameters utility, the system of equations (35) that defines the estimator has a unique solution.

Therefore, a global search is not needed.

Previous conventional wisdom was that Hotz-Miller’s estimator achieved a significant com-

putational gain at the expense of efficiency, both in finite samples and asymptotically. Thus,

researchers had the choice between two extremes: a full solution NFXP-ML estimator with the at-

tendant computational burden, or the much faster but less efficient Hotz-Miller estimator. However,

Aguirregabiria and Mira (2002) showed that a pseudo maximum likelihood version of Hotz-Miller’s

estimator is asymptotically equivalent to partial MLE. The ’two-step’ pseudo maximum likelihood

(PML) estimator is defined as the value of θu that maximizes the pseudo likelihood function:37

Q(θu, P̂, θ̂f ) =
NX
i=1

TiX
t=1

log
exp

n
z̃P̂(ait, xit)θu + ẽP̂(ait, xit)

o
PJ

a=0 exp
n
z̃P̂(a, xit)θu + ẽP̂(a, xit)

o (36)

The asymptotic variance of this two-step PML estimator is just equal to the variance of the partial

MLE of θu described at the end of section 3.1.1. That is, the initial nonparametric estimator of P0

and the PML estimator of θ0u are asymptotically independent and therefore there is no asymptotic

efficiency loss from using an inefficient initial estimator of P0. Nevertheless, although the two-step

PML estimator is asymptotically equivalent to partial MLE, Monte Carlo experiments show that

its finite sample bias can be much larger.38 Imprecise initial estimates of choice probabilities do

not affect the asymptotic properties of the estimator, but they can generate serious small sample

biases in the two-step PML estimator and, more generally, in the whole class of Hotz-Miller’s CCP

37 It is well known that the PML estimator belongs to the class of GMM estimators defined in equation (35). More
specifically, the PML estimator is the GMM estimator with a matrix of instruments H(xit) equal to the pseudo
scores.
38See the Monte Carlo experiments in Aguirregabiria and Mira (2002 and 2007), Pesendorfer and Schmidt-Dengler

(2007), and Kasahara and Shimotsu (2006).

30



estimators.39 The source of this bias is well understood in two-step methods: P̂ enters nonlinearly

in the sample moment conditions that define the estimator, and the expected value of a nonlinear

function of P̂ is not equal to that function evaluated at the expected value of P̂. The larger

the variance of P̂, the larger the bias of θ̂u. The variance of the nonparametric estimator of

P 0(a|x) = E(I{ait = a}|xit = x) increases with the number of cells in the set X. In applications

with millions of cells in X and a few thousand observations, the variance of P̂ and the bias of θ̂u

can be very large. A recursive extension of the two-step method, which we describe in the next

subsection, deals with this problem.

We now describe in some detail on the computation of the values z̃P(a, xt) and ẽP(a, xt). We

start with the case of a finite horizon model, i.e., T < ∞. We can obtain the sequence of values

{z̃Pt (a, xt) and ẽPt (a, xt) : t = 1, 2, ..., T} using backwards induction. Starting at the last period, we

have z̃P̂T (a, xT ) = z(a, xT ) and ẽP̂T (a, xT ) = 0. Then, for any period t < T , we have the following

recursive expressions:

z̃Pt (a, xt) = z(a, xt) + β
X

xt+1∈X
fx(xt+1|a, xt)

"
JX

a0=0

Pt+1(a
0|xt+1) z̃Pt+1(a0, xt+1)

#

ẽPt (a, xt) = β
X

xt+1∈X
fx(xt+1|a, xt)

"
JX

a0=0

Pt+1(a
0|xt+1)

¡
et+1(a

0, xt+1) + ẽPt+1(a
0, xt+1)

¢# (37)

The computational burden incurred to obtain these values is equivalent to that of solving the finite

horizon DP problem. For models with infinite horizon, these values can be obtained by using

successive approximations. It is possible to show that z̃P(a, x) = z(a, x) + β
P

x0∈X fx(x
0|a, x)

WP
z (x

0) and ẽP(a, x) = β
P

x0∈X fx(x
0|a, x) WP

e (x
0), where WP

z (.) is a 1 × dim(θu) vector and

WP
e (.) is a scalar and both are (basis functions for) valuation operators. Define the matrixW

P ≡

{[WP
z (x),W

P
e (x)] : x ∈ X}. Then, the valuation basisWP is defined as the unique solution inW

to the following contraction mapping:

W =
XJ

a=0
P(a) ∗ {[z(a), e(a)]+β Fx(a)W} (38)

where P(a) is the column vector of choice probabilities {P (a|x) : x ∈ X}; z(a) = {z(a, x) : x ∈ X};

and e(a) ≡ {e(a, x) : x ∈ X}.40 Again, the computational cost to obtain these values is equivalent

to solving once the infinite horizon DP problem. Note that (38) is a linear system, so there is a

39As pointed out by Pakes, Ostrovsky and Berry (2007), the bias of CCP estimators can be smaller when the
instruments H(xit) do not depend on the first step estimator P̂. We discuss this issue in section 4.
40WP

z (x)θu+WP
e (x) is the expected discounted utility of behaving according to choice probabilities P from current

period t and into the infinite future when xt = x. See Aguirregabiria and Mira (2002) for more detail.
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closed form expression forWP, i.e.,WP = (I − β
PJ

a=0P(a) ∗ Fx(a))
−1PJ

a=0P(a) ∗ [z(a), e(a)].

When the number of cells in X is small enough, matrix inversion algorithms may be preferable to

successive approximations.41

Our description of the CCP method has sofar assumed that the utility function is linear in

parameters and that there is a closed form expression for the e() function. We now discuss briefly

the role of these assumptions. First, if the utility is not linear-in-parameters, we can represent the

choice-specific value v(a, x, θ) as z̃P(a, x, θu) + ẽP(a, x), where θu is now an argument in z̃P(). All

the previous expression for z̃P and ẽP still apply if we replace z(a, x) by z(a, x, θu) and WP
z (x)

by WP
z (x, θu). The matrix W

P is now {[WP
z (x, θu),W

P
e (x)] : x ∈ X} which uniquely solves the

system W =
PJ

a=0P(a) ∗ {[z(a, θu), e(a)]+β Fx(a) W}. For each trial value of θu the termsPJ
a=0P(a)∗z(a,θu) do have to be recomputed and premultiplied by rows of the ’weighting’ inverse

matrix. This increases significantly the computational cost relative to a model with a linear-

in-parameters utility. However, the inverse matrix (I − β
PJ

a=0P(a) ∗ Fx(a))
−1 only has to be

computed once and collects a large part of the calculations involved in valuation.42 Second, the

e(a, x) function has a straightforward expression when the ε0s have independent extreme value

distributions, as well as in binary choice models when unobservables have normal or exponential

distributions (see Aguirregabiria and Mira (2007) and Pakes et al (2007) for examples). However,

in multinomial models without extreme value unobservables, e() does not have a closed form and

would have to be computed numerically or by simulation. Furthermore, in general e() might depend

nonlinearly on unknown parameters and would have to be recomputed for different trial values of

the parameters. Therefore, relaxing the logistic assumption in the multinomial case represents an

important complication for all methods which rely on Hotz-Miller’s invertibility result and their

usefulness in that setting remains an open question. Finally, it should also be noted that all the

methods that use Hotz-Miller’s representation of value functions are based on the two-step partial

likelihood approach and do not estimate the discount factor directly. To see why, recall that

the valuation operator relies on previously obtained consistent estimates of the parameters θf of

transition probability functions. Without these, the present values z̃P and ẽP would have to be

recomputed repeatedly for different values of θf and β in the in the second step, rather than just

once, and most of the computational advantage of the Hotz-Miller approach would be lost.

41The matrix (I − βF )−1 can be also approximated using the series I + βF + β2F 2 + ... + βKFK , with K large
enough. This can be easier than matrix inversion. More generally, this inverse matrix can be obtained iterating in A
(succesive approximations) in the mapping A = I + βF A.
42This inverse matrix computes the expected number of times each state will be visited in the future, with each

visit weighted by the corresponding discount factor.
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An important limitation of Hotz-Miller’s CCP estimator and most of its extensions is that

consistency depends crucially on Assumption IID. If unobservables are serially correlated, or if there

is permanent unobserved heterogeneity as in the finite mixture model, consistent non parametric

estimates of CCP’s, an essential element of Hotz-Miller’s 2-step approach, cannot be obtained from

choice data.43 However, Aguirregabiria and Mira (2007), Aguirregabiria, Mira and Roman (2007)

and Arcidiacono and Miller (2006) have recently proposed and applied recursive versions of the

CCP estimator which provide consistent estimates for finite mixture models. Also, Kasahara and

Shimotsu (2006b) have shown than under certain conditions it is possible to obtain consistent

nonparametric estimators of CCPs in finite mixture models, which can be used to construct a

root-N consistent CCP estimator.

Some applications which have used the CCP estimator are: contraceptive choice, Hotz and

Miller (1993); price adjustment and inventories in retail firms, Slade (1998), Aguirregabiria (1999),

Kano (2006); and firms’ investment and labor demand, Sanchez-Mangas (2002) and Rota (2004).

3.1.3 Recursive CCP estimation (NPL)

Let θ̂u be the two-step PML estimator of θ0u that we have described above. Given this estima-

tor, one can obtain new estimates of the choice probabilities, P̂1 = {P̂1(a|x)}, as P̂1(a|x) =

exp
n
z̃P̂(a, x) θ̂u + ẽP̂(a, x)

o
/
PJ

j=0 exp
n
z̃P̂(j, x) θ̂u + ẽP̂(j, x)

o
.44 Given the new estimates P̂1

we can compute new values z̃P̂1(a, xit) and ẽP̂1(a, xit), a new pseudo likelihood functionQ(θu, P̂1, θ̂f ),

and a new PML estimator that maximizes this function. We can iterate in this way to generate

a sequence of estimators of structural parameters and conditional choice probabilities {θ̂u,K , P̂K :

K = 1, 2, ...} such that for any K ≥ 1:

θ̂u,K = arg max
θu∈Θ

Q(θu, P̂K−1, θ̂f ) (39)

and

P̂K(a|x) =
exp

n
z̃P̂K−1(a, x) θ̂u,K + ẽP̂K−1(a, x)

o
XJ

j=0
exp

n
z̃P̂K−1(j, x) θ̂u,K + ẽP̂K−1(j, x)

o (40)

All the estimators in this sequence are asymptotically equivalent to partial MLE and to the two-step

PML (Aguirregabiria and Mira, 2002, Proposition 4). Therefore, iterating in this procedure does

43Relatedly, note that Hotz-Miller’s approach also relies on a DGP such that all states are visited with positive
probability. This assumption may be problematic in life-cycle applications.
44Given parameter values, this expression defines an operator mapping from CCP’s into CCP’s. Aguirregabiria and

Mira (2002) show that this is a policy iteration operator and use it to characterize the solution of the DP problem in
the space of conditional choice probabilities. Also note that if unobserved state variables do not have extreme value
distribution, the mapping from choice-specific value functions to CCPs which is used in the policy iteration step in
(40) need not have a closed form.
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not give any asymptotic gain. However, it seems intuitive that if the pseudo likelihood is built from

estimates of choice probabilities that exploit the structure of the model one may get estimates of

structural parameters with smaller finite sample bias an variance. Aguirregabiria and Mira (2002)

present Monte Carlo experiments that illustrate how iterating in this procedure does in fact produce

significant reductions in finite sample bias. Kasahara and Shimotsu (2006a) provide a proof of this

result using higher order expansions for the bias and variance of the sequence of PML estimators.

Aguirregabiria and Mira also show that upon convergence the recursive procedure gives, exactly, a

root of the likelihood equations. This result holds regardless of whether the initial estimator of P0

is consistent or not, and the procedure is called the nested pseudo likelihood algorithm (NPL).

Therefore, the NPL procedure can be seen both as a method to reduce the finite sample bias of

Hotz-Miller’s CCP estimator and as an algorithm to obtain the MLE. As a bias reduction method,

we do not have to iterate until convergence and the computational cost is clearly smaller than

NFXP. As an algorithm to obtain the MLE, it can also be computationally much cheaper than

NFXP. The example in Aguirregabiria and Mira (2002) suggests that this is likely to be the case in

infinite horizon models when maximization in θu of the pseudo likelihood function is a simple task,

such as Rust’s DP-conditional logit model with a linear-in-parameters utility where the pseudo

likelihood is globally concave in θu.45 Applications of this method include: Aguirregabiria and

Alonso-Borrego (1999) on labor demand; Sanchez-Mangas (2002) and Lorincz (2005) on machine

replacement and firms’ investment; and Kano (2006) on price adjustments with menu costs.

3.1.4 Simulation-based Hotz-Miller estimator

Though Hotz-Miller’s CCP estimator is computationally much cheaper than NFXP, it is still im-

practical for applications where the dimension of the state space X is very large, e.g., a discrete

state space with millions of points or a model in which some of the observable state variables

are continuous. To deal with this problem, Hotz, Miller, Sanders and Smith (1994) propose an

extension of the Hotz-Miller estimator that uses simulation techniques to approximate the values

z̃P̂(a, x) and ẽP̂(a, x). For every value of xit in the sample and every choice alternative a ∈ A (in

the sample or not), we consider (a, xit) as the initial state and generate R simulated paths of future

actions and state variables from period t+1 to t+T ∗ (i.e., T ∗ periods ahead). We index simulated

paths by r ∈ {1, 2, ..., R}. The r − th simulated path associated with the initial state (a, xit) is

45Computational savings will be larger the smaller the number of NPL iterations relative to the number of trial
values of θu required by NFXP’s outer algorithm. Little is known about the relative merits of NPL and NFXP in
other contexts, e.g., finite horizon models.
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{a(r,a)i,t+j , x
(r,a)
i,t+j : j = 1, 2, ..., T

∗}. Then, Hotz et al. consider the following simulators:

z̃P̂R(a, xit) = z(a, xit)+
1

R

RP
r=1

"
T∗P
j=1

βj z
³
a
(r,a)
i,t+j , x

(r,a)
i,t+j

´#

ẽP̂R(a, xit) =
1

R

RP
r=1

"
T∗P
j=1

βj e
³
a
(r,a)
i,t+j , x

(r,a)
i,t+j

´# (41)

Simulated paths are obtained using the initial estimates of choice and transition probabilities, P̂ and

θ̂f . The path is generated sequentially. Starting at the observed state xit and given the hypothetical

action a, the state next period, x(r,a)i,t+1, is a random draw from the distribution fx(.|a, xit, θ̂f ). Then,

the action a(r,a)i,t+1 is a random draw from the distribution P̂ (.|x(r,a)i,t+1). Given (a
(r,a)
i,t+1, x

(r,a)
i,t+1), then the

state x(r,a)i,t+2 is a random draw from fx(.|a(r,a)i,t+1, x
(r,a)
i,t+1, θ̂f ), and a

(r,a)
i,t+2 is drawn from P̂ (.|x(r,a)i,t+2). And

so on. Simulations are independent across the R paths. If the DP problem has finite horizon, or

if T ∗ is large enough such that the approximation error associated with the truncation of paths is

negligible, then these simulators are unbiased. That is, for any number of simulations R we have

that ER(z̃
P̂
R(a, xit))) = z̃P̂(a, xit) and ER(ẽ

P̂
R(a, xit)) = ẽP̂(a, xit), where ER(.) is the expectation

over the simulation draws.

Hotz et al. propose an estimator that is root-N consistent for any number of simulations,

even with R = 1. This property of simulation-based estimators obtains when, in the system

of equations that define the estimator, the unbiased simulator enters linearly and averaged over

sample observations. This is not satisfied by the simulation versions of the GMM estimator in (35)

or of the PML estimator. Hotz et al consider a GMM estimator that exploits moment conditions

for the choice-specific value functions. Given that the mapping that relates choice-specific value

functions and choice probabilities is invertible (see Proposition 1 in Hotz and Miller, 1993), we

can represent the value differences v(a, x, θ) − v(0, x, θ) as functions of choice probabilities. For

the DP-conditional logit model, this inverse function has a very simple closed-form expression:

i.e., v(a, x, θ) − v(0, x, θ) = log(P (a|x, θ)) − log(P (0|x, θ)). Based on this representation, we can

construct the following moment conditions:

E

µ
h(xit)

∙
log

µ
P 0(ait|xit)
P 0(0|xit)

¶
−
n
z̃P

0
(ait, xit)− z̃P

0
(0, xit)

o
θ0u −

n
ẽP

0
(ait, xit)− ẽP

0
(0, xit)

o¸¶
= 0

(42)

where h(xit) is a vector of instruments with the same dimension as θu. These moment conditions

still hold if we replace the population parameters (P0, θ0f ) by consistent estimates, and the values

z̃ and ẽ by the unbiased simulators z̃R and ẽR. Then, for the DP-conditional logit model, the
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simulation-based estimator is defined as the value of θu that solves the sample moment conditions:

NP
i=1

TiP
t=1

h(xit)

"
log

Ã
P̂0(ait|xit)
P̂0(0|xit)

!
−
n
z̃P̂R(ait, xit)− z̃P̂R(0, xit)

o
θu −

n
ẽP̂R(ait, xit)− ẽP̂R(0, xit)

o#
= 0

(43)

This estimator has a closed form expression. In fact, the expression is the one of an IV estimator in

a linear regression model. It is clear that the simulation error averages out over the sample and does

not have any influence on the consistency or the rate of convergence of the estimator. However, the

simulation error affects the variance of the estimator: as R goes to infinity, the asymptotic variance

of this estimator converges to the variance of Hotz et al estimator without simulation. The later

is larger than the variance of the one-step PML estimator (i.e., the variance of MLE) because the

moment conditions in (42) are not the optimal ones.

Hotz et al. present several Mont Carlo experiments that illustrate that this estimator can have

large bias in small samples. To the finite sample bias of the Hotz-Miller estimator now we should

add the bias due to the simulation error. Despite these problems, this is a very interesting and

useful estimator. The estimator can be applied to models with continuous state variables and it

can be extended to deal with continuous decision variables as well. Altug and Miller (1998) applied

this method to estimate a model of female labor supply where the decision variable, hours of

work, is continuous and censored. Other applications include Miller and Sanders (1997) on welfare

participation, and Hollifield, Miller and Sandas (2004) on limit orders markets.

3.2 Estimation of Eckstein-Keane-Wolpin models

Under the label ’Eckstein-Keane-Wolpin’ we grouped most applications which have not used Rust’s

DP-conditional logit model. Specifically, we listed the following four departures from that frame-

work: (1) Unobservables which do not satisfy assumption AS; (2) Observable but choice-censored

payoff or state variables; (3) Permanent unobserved heterogeneity; (4) Unobservables which are cor-

related across choice alternatives. The prevalent estimation criterion for Eckstein-Keane-Wolpin

models has been FIML because the partial likelihood approach exploited in Rust’s framework does

not give consistent estimators under (2) and (3). The bulk of this section will address the esti-

mation of models allowing for (3) and (4), i.e., methods for finite mixtures of likelihoods (section

3.2.1) and Keane and Wolpin’s simulation and interpolation method (section 3.2.2). In the next

two paragraphs we briefly discuss the estimation of models featuring (1) and (2).46

46Several of the seminal papers in this literature, such as Miller (1984), Wolpin (1984, 1987) and Pakes (1986),
precede Rust’s contribution and ’deviated’ from his framework. All these models considered binary choices and a
single unobservable state variable which resulted in a ’threshold’ decision rule.
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The main consequence of departing from AS is that the econometric model may not be satu-

rated. A discrete choice model is saturated if for any value of the observable state variables and

of the structural parameters the model predicts a strictly positive choice probability for any of the

choice alternatives. Non-saturation causes econometric and computational problems in maximum

likelihood estimation (see Rust, 1994). A natural way of dealing with this issue is to allow for

measurement error in the state and/or choice variables. Wolpin (1987) and Keane and Wolpin

(1997, 2001) are examples of this approach to deal with non-saturated models.

The problem with censored payoff or state variables was illustrated in the occupational choice

model of Example 2, where wages are observed if individuals work but the distribution of wages

across occupations cannot be estimated consistently from wage data alone because observed wages

are a choice-censored sample. The full likelihood uses the structural behavioral model to correct

for sample selection bias.47

3.2.1 Finite mixture models (permanent unobserved heterogeneity)

The finite mixture framework and FIML estimation: Consider a more general version of the finite

mixture model introduced in Section 2, with permanent unobserved heterogeneity in the utility

function, payoff function, and transition probabilities. Individuals in the population belong to one

of L unobserved types indexed by c. The vector ωc represents unobserved heterogeneity, and πc|xi1

denotes the mass (to be estimated) of type c individuals conditional on the individual’s initial

value of the state variables. We distinguish three components in ωc, i.e., ωc = (ωcu, ω
c
Y , ω

c
f ), which

correspond to heterogeneity in utility, payoff and transition rules, respectively. In example 2 there

is heterogeneity in utility and payoffs but not in transition probabilities because the laws of mo-

tion of schooling and experience are deterministic. The set of structural parameters consists of:

π = {πc|x : c = 1, 2, ..., L;x ∈ X}; the set of values Ω = {ωc : c = 1, 2, ..., L}; and the vector θ = (θu,

θY , θf ), that is invariant across types. As we presented in section 2, the contribution of agent i

to the conditional log-likelihood in this mixture model is li(θ,Ω, π) = log(
PL

c=1 πc|xi1 Li(θ, ω
c)),

where Li(θ, ω
c) is

QTi
t=1 P (ait|xit, ωc, θ) fY (yit|ait, xit, ωcY , θ)

QTi−1
t=1 fx(xi,t+1|ait, xit, ωcf , θf ). Condi-

tional on type, the likelihood factors into conditional choice probabilities, payoff probabilities, and

state transition probabilities as in Rust’s model. However, unlike the log-likelihood in (10), this

47There are approaches other than FIML to estimate consistently the wage equation controlling for selection. For
instance, the model can provide exclusion restrictions (i.e., variables that affect occupational choice but not wages)
which can be used to estimate the wage equation using a Heckman two-step method. The first step of this method
is a reduced form finite-mixture, multinomial probit model for occupational choice where the vector of explanatory
variables consists of the terms of a polynomial in xit.
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log-likelihood is not additively separable because the type proportions appear inside the log.48 Con-

sistent estimates of θY and θf cannot be obtained separately because agents’ choices, which appear

in the payoff and transition probabilities, are not independent of the individual unobserved types.

FIML estimation corrects the endogeneity bias. This approach to allow for persistent individual

heterogeneity is based on the seminal work by Heckman and Singer (1984).

The computational cost of estimation may be much larger than in a similar model without

permanent unobserved heterogeneity because the likelihood of the choice history is maximized in

the full parameter vector and furthermore the number of times the DP problem needs to be solved

is multiplied by the number of types. As noted before this is the reason why finite mixtures are

used and the number of types is kept small. Following Heckman and Singer, if L is unknown the

number of types can be estimated by increasing L until the likelihood at the FIML estimates ’does

not increase’. However, this search is expensive and typically L is set a priori. One should be

careful not to choose a large value for L. If the value of L in the estimated model is larger than

its true value in the population, the model is not identified (e.g., there are multiple combinations

of the πc|xi1 parameters that can explain the data equally well). This is another reason why most

applications have considered a small number of types.

Sequential EM algorithm (ESM): Arcidiacono and Jones (2003) propose a clever algorithm which

makes the two-step partial likelihood approach compatible with the finite mixture model. Their

insight is that additive separability of the log-likelihood, which is the basis for the two-step partial

likelihood strategy, can be recovered in a ’multi-cycle’ or ’sequential’ version of the well known

Expectation-Maximization (EM) algorithm. A key element of Arcidiacono and Jones’ ESM algo-

rithm is the ’posterior’ probability that individual i belongs to unobserved type c given her observed

history of choices and states. For the sake of simplicity, ignore for the moment the initial conditions

problem and assume that πc|xi1 = πc. We also assume that conditional on type, Rust’s assumption

CI-Y holds, i.e., conditional on type the payoff function yit is independent of the transitory shocks

εit. Let eai, exi and ỹi be individual i’s histories of actions, states, and payoff variables, respectively.

From Bayes’ theorem this is

Pr(c|eai, exi, ỹi; θ,Ω, π) = πc Pr (eai, exi, ỹi | c; θ, π)
Pr (eai, exi, ỹi | θ,Ω, π) =

πc Li(θ, ω
c)

exp {li(θ,Ω, π)}
(44)

where the functions Li(θ, ω
c) and li(θ,Ω, π) are the likelihoods that we have defined in equation

(16). It can be shown that the FIML estimator (θ̂, Ω̂, π̂) that maximizes the likelihood function
48 If there is not permanent unobserved heterogeneity in the transition probabilities, then we can write the full

likelihood as the sum of two partial likelihoods and θf can be still estimated consistently by maximizing the partial
likelihood associated with transition data and without solving the DP problem.
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(16) satisfies the following conditions:

(a) π̂c =
1

N

XN

i=1
Pr(c | eai, exi, ỹi; θ̂, Ω̂, π̂)

(b) (θ̂, Ω̂) = arg max
{θ,Ω}

XN

i=1

XL

c=1
Pr(c | eai, exi, ỹi; θ̂, Ω̂, π̂) logLi(θ, ω

c)

(45)

Condition (a) is quite intuitive since it states that unconditional type proportions and individual

posterior probabilities have to be mutually consistent. Condition (b) states that (θ̂, Ω̂) also maxi-

mizes a mixture of log-likelihoods, weighted by posterior type probabilities. In this maximization

the posterior weights are kept fixed and appear outside the logs, so the mixture of log likelihoods

is once again separable in choice, payoff and state transition factors.

These properties motivate Arcidiacono and Jones’ sequential version of the EM algorithm.

The algorithm is initialized with an arbitrary vector {θ̂0, Ω̂0, π̂0} in the space of the structural

parameters. Given {θ̂0, Ω̂0, π̂0} we obtain a new vector {θ̂1, Ω̂1, π̂1} as follows:

“E” step: Compute Pic0 ≡ Pr(c|eai, exi, ỹi; θ̂0, Ω̂0, π̂0) as π̂c0Li(θ̂0, ω̂
c
0)/ exp{li(θ̂0, Ω̂0, π̂0)}.

Sequential “M” step: For {Pic0} fixed, obtain {θ̂1, Ω̂1, π̂1} using:

(a) π̂c1 =
1

N

NX
i=1

Pic0

(b1) (θ̂f1, ω̂
c
f1) = arg max

{θf ,ωcf}

NX
i=1

LX
c=1

Pic0

"
Ti−1X
t=1

log fx(xi,t+1|ait, xit, ωcf , θf )
#

(b2) (θ̂Y 1, ω̂
c
Y 1) = arg max

{θY ,ωcY }

NX
i=1

LX
c=1

Pic0

"
TiX
t=1

log fY (yit|ait, xit, ωcY , θY )
#

(b3) (θ̂u1, ω̂
c
u1) = arg max

{θu,ωcu}

NX
i=1

LX
c=1

Pic0

"
TiX
t=1

logP (ait|xit, ωcu, ω̂cY 1, ω̂cf1, θu, , θ̂Y 1, θ̂f1)
#

Then, use {θ̂1, Ω̂1, π̂1} as the initial value and apply the “E” step and the sequential "M" step

again. We proceed until convergence in {θ̂, Ω̂, π̂}. Arcidiacono and Jones show that, if the algorithm

converges, it obtains consistent and asymptotically normal estimators. These estimators are not

asymptotically efficient because the sequential partial likelihood approach is used in every M-step.

The algorithm requires multiple maximization steps, but each of them may be much less costly

than full information maximization. Arcidiacono and Jones illustrate their method in a Monte

Carlo experiment based on a model of schooling choices. In their experiments, the ESM delivers

estimators much faster than FIML, with a small loss of precision.
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Initial conditions: As illustrated in Example 2, if the model has permanent unobserved heterogene-

ity then the first observation xi1 on which the likelihood is conditioned is potentially an endogenous

variable because it is not independent of the individual’s type: i.e., πc|xi1 ≡ Pr(c|xi1) 6= Pr(c). Fol-

lowing Heckman (1981), there are two standard solutions to this problem. The first solution, which

has been the most common approach in life-cycle models, is to complement the conditional likeli-

hood derived from the structural DP model with an auxiliary model for the distribution of types

conditional on the initial value of the state variables. A sufficiently flexible multinomial logit model

can approximate arbitrarily well the distribution of type c as a function of xi1. That is, for c ≤ L−1:

πc|xi1 =
exp {xi1 θπ,c}

1 +
PL−1

c0=1 exp
©
xi1 θπ,c0

ª (46)

where θπ ≡ {θπ,c : c = 1, 2, ..., L− 1} is a vector of parameters to estimate, and θπ,L is normalized

to zero. This seems like the most reasonable approach if the researcher thinks that the structural

model does not apply to pre-sample periods. For instance, in Keane-Wolpin occupational choice

model, the authors did not believe that their structural model explained schooling at age 16, but

still treated this variable as endogenous.

In the second approach, it is assumed that the structural behavioral model explains the dis-

tribution of the initial values of the state variables. Consider again Keane-Wolpin’s occupational

choice model. The initial age in their data and model (i.e., t = 1) is 16 years old. For the

sake of illustration, suppose that at some out-of-sample age lower than 16 (i.e., t0 < 1) the

state variables took the same value for all individuals. That is, all the individuals at age t0

have the same level of formal education and the same (zero) labor market experience. There-

fore, for every individual i, xit0 = x0 where x0 is known to the researcher. Also, assume that

individuals’ choice probabilities at ages in the sample (i.e., t ≥ 1) can be extrapolated to ages

younger than 16. Then, given the choice probabilities of the structural model, we can obtain

the probabilities Pr(xi1|xit0 = x0, ω
c, θ) for every type c and every value xi1 in the sample. By

Bayes rule, πc|xi1 = πc Pr(xi1|x0, ωc, θ)/
PL

c0=1 πc0 Pr(xi1|x0, ωc
0
, θ). Therefore, given the proba-

bilities Pr(xi1|x0, ωc, θ), we can construct the conditional log-likelihood function log(
PL

c=1 πc|xi1

Li(θ, ω
c)), where now the vector of parameters π contains the unconditional mass probabilities of

each type {πc : c = 1, 2, ..., L}, which are primitive parameters of the structural model and are es-

timated together with θ. The key assumption for the validity of this approach is the extrapolation

of choice probabilities for periods t < 1. If this assumption is correct, this ”structural” approach to

deal with the initial conditions problem provides more efficient estimates of the structural parame-

ters than the first, ”reduced form” approach. However, the approach has two important limitations:
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it is computationally much more intensive, and it relies on out-of-sample extrapolations which may

be not realistic in some applications.

In some applications some individuals’ histories may be left-censored which implies that individ-

uals have different initial periods. For instance, in Keane and Wolpin’s occupational choice model

suppose we do not observe all the individuals since age 16 but from very different initial ages, e.g.,

age 24, 28, etc. If we use the ”reduced form” approach to deal with the initial conditions problem,

we will have to allow the parameters θπ,c to vary in a flexible way with the individual’s initial

age. In this context, the number of θπ parameters to estimate may be very large and therefore

the estimation of all the parameters can be quite inefficient. Keane and Wolpin (2001) propose

and implement a simulation estimation method which deals with this problem, and more generally

with the problem of missing state or choice data, which is in the same spirit as the ”structural

approach” that we have described above. They simulate complete outcome histories and match

them to incomplete observed histories in order to compute the probabilities of the latter, allowing

for measurement error in order to avoid degeneracy. They use it to estimate a dynamic model of

schooling choices with savings decisions and borrowing constraints. More recently, an alternative

approach to the initial conditions problem has been explored by Aguirregabiria and Mira (2007)

(see section 4.2).

3.2.2 Nested Backwards Induction with Simulation and Interpolation

Keane and Wolpin’s simulation and interpolation method has been the most widely used for ap-

plications with large state spaces and unobservables which are correlated across choices, beginning

with the occupational choice model. The estimation criterion is FIML and individual contributions

to the likelihood are the finite mixtures shown in (16). Conditional on an individual’s unobserved

type Assumption CI-X holds so the likelihood factors into conditional choice probabilities and the

solution of the DP problem is characterized by the Emax function. However, the choice-specific

unobservables do not have extreme value distributions and are correlated so the CCP’s and Emax

functions do not have closed forms. Computing them involves solving J-dimensional integrals at

every point x in the state space. Keane and Wolpin use Monte Carlo integration to simulate these

multiple integrals. Furthermore, for every time period the Emax integrals are simulated at a subset

of the state space points only, and their value at every other point is interpolated using a regression

function which is fit to the points in the subset.

As before, solving the model essentially amounts to obtaining the Emax function. In a finite

horizon model, this is done by backwards induction. Let V̄ct(xt) be the integrated value function,
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or Emax function, at period t and for type c, as defined in section 2.1. Let {ε(r)t : r = 1, 2, ..., R}

be R random draws of histories of an individual’s unobservables. Using these random draws we

can construct simulation-based approximations (simulators) for the Emax function. Starting at the

last period T , the simulator of ṼcT (x) is:49

ṼcT (x) =
1

R

RX
r=1

max
a∈A

n
UT (a, x, ε

(r)
T , ωc, θ)

o
(47)

At period t < T we already know the simulator of next period’s Emax function, Ṽc,t+1(.). Then,

the simulator of the Emax function at period t is:

Ṽct(x) =
1

R

RX
r=1

max
a∈A

(
Ut(a, x, ε

(r)
t , ωc, θ) + β

X
x0∈X

Ṽc,t+1(x
0) fx(x

0|a, x)
)

(48)

Note that these Emax values should be calculated at every point x in the support X. This can be

very costly for DP problems with large state spaces. In order to alleviate this computational bur-

den the method obtains simulated-based approximations to the Emax function only at a (randomly

chosen) subset X̄t of the state points every period. The Emax at other points are obtained as the pre-

dicted values from a regression function which is estimated from the points in X̄t. In the model of ca-

reer decisions, the arguments of the regression function were {vt(a, x)−max [vt(1, x), . . . , vt(J, x)]},

where:

vt(a, x) ≡ Eεt

h
Ut(a, x, εt, ω

c, θ)
i
+ β

X
x0∈X̄t+1

Ṽc,t+1(x
0) fx(x

0|a, x) (49)

That is, the interpolating function depends on the state through choice-specific value functions

only. This interpolating function worked very well in this example but the arguments are costly to

compute and the full state space has to be spanned in either simulation or interpolation. Using a

polynomial in the state variables is much cheaper because in order to approximate the Emax at

state x, we don’t need to compute {vt(a, x)} and because of this we don’t need to know Emaxes at

all states that may visited in the future from x. Monte Carlo experiments reported in Keane and

Wolpin (1994) show that the method performed a bit less well in this case. However, polynomial

approximations have been used in most subsequent applications.

Given the Emax functions, the conditional choice probabilities and the conditional density of

the payoff variables can be obtained using simulation.50 The parameters are estimated by FIML.
49We describe a version of Keane-Wolpin method that uses a simple frequency simulator. However, more efficient

simulators can be used.
50Simulation of CCP’s is needed only at sample points; kernel smoothing is used in this case, in order to avoid

empty cells and to enable the use of gradient methods in the maximization of the likelihood. Note that the same
draws of ε0s are used for the simulation of CCPs and the conditional density of wages. See Hajivassiliou and Rudd
(1994) for details on simulation of different types of limited dependent variables models.
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As Keane and Wolpin noted, the approximation errors in the Emax functions enters non-linearly

in the CCP’s. Therefore, simulated CCP’s are biased and this implies that estimators of structural

parameters are not consistent.51 To put this problem into perspective, note that approximation

error in the Emax is not the only source of inconsistency; e.g., discretization of continuous variables,

approximate convergence of the Bellman operator in infinite horizon problems, etc. Furthermore,

the large computational gain involved has allowed researchers using this method to produce many

interesting applications, estimating models with very large state spaces and richer structures than

would otherwise be possible.

3.3 Other issues in the estimation of single-agent models

3.3.1 Serially correlated, time-variant unobservables

We start this section reviewing methods and applications for models where the unobservables

follow stochastic process with serial correlation. The seminal paper by Pakes (1986) on patent

renewal was the first application to estimate this type of model. There are two main issues in the

estimation of this class of models. First, the observable state variable xt is not a sufficient statistic

for the current choice and the probability of an individual’s choice history cannot be factored into

CCP’s conditional on xt alone. Therefore, computing that individual contribution involves solving

an integral of dimension Ti. Pakes’ paper was one the first econometric applications that used

Monte Carlo simulation techniques to approximate high dimensional integrals.52 Since Pakes’s

paper, there have been very important contributions in the areas of Monte Carlo integration (see

Geweke, 1996) and simulation-based estimation methods (see Stern, 1997). In the context of

dynamic discrete choice models, an important contribution was the development of the Geweke-

Hajivassiliou-Keane (GHK) simulator. This is a very efficient importance-sampling simulator of

multinomial probabilities in discrete choice models with normally distributed unobservables. The

use of this simulator reduces significantly the approximation error and thus the bias and variance

of simulation-based estimators.

A second important issue is that a DP problem with continuous state variables - observable

or unobservable - cannot be solved exactly and needs to be approximated using interpolation

methods or polynomial approximations.53 To illustrate this issue consider the occupational choice

51A bias remains as long as interpolation is used, even if the number of simulation draws goes to infinity.
52See also the seminal work by Lerman and Manski (1981).
53This second issue is not a problem in Pakes’ patent renewal model. A nice feature of that application is that the

particular structure of the model (i.e., optimal stopping problem and the specification of the stochastic process of εt)
is such that it is possible to obtain an exact recursive solution of the threshold values that characterize the optimal
decision rule.
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model in example 2 where, for every choice alternative, we omit the random effect ωi(a) but re-

lax the IID assumption in εit(a). For instance, suppose that εit(a) follows an AR(1) process,

εit(a) = ρaεi,t−1(a) + ξit(a). The value function of this DP problem depends on εit, which is a vec-

tor of continuous variables, and cannot be solved exactly. Note that the problem cannot be solved

by considering the integrated value function, as in models where εit is iid, because it is no longer the

case that V̄ (xit) ≡
R
V (xit, εit)dGε(εit) fully characterizes the solution of the DP problem.54 There

are two classes of approximation methods to solve this type of DP problems: interpolation meth-

ods, and polynomial approximations. Stinebrickner (2000) discusses these methods in the context

of a dynamic discrete structural models with serial correlation and he presents some examples to

illustrate the relative strengths of the various approximation approaches. His experiments suggest

that, at least for models with normally distributed variables, interpolating methods based on Her-

mite and Gauss-Legendre quadrature perform very well even when the degree of serial correlation

is high. Bound, Stinebrickner and Waidman (2005) have recently applied Gauss-Legendre quadra-

ture interpolation to solve and estimate a structural model of retirement where a component of an

individual’s health is unobserved to the researcher and it is a continuous and serially correlated

random variable. The study in Benitez-Silva et al (2005) presents a very extensive comparison of

different strategies for solving dynamic programming problems with continuous, serially correlated

state variables. One of the methods considered in that paper is the parameterized policy itera-

tion method. This solution method has been used by Hall and Rust (2003) in the estimation of a

model of inventory investment and price speculation by a durable commodity intermediary. The

simulation-interpolation method in Keane and Wolpin (1994) could also be used for this class of

models.

A recent paper by Hendel and Nevo (2006) presents an interesting and useful approximation

method for the estimation of dynamic demand models with large state spaces.55 Hendel and Nevo

estimate a dynamic model for the demand of a differentiated storable good (laundry detergent) using

consumer scanner data. They use the estimated model to study long-run and short-run demand

responses to temporary price reductions (i.e., sales promotions).56 The state space in this model

includes prices and advertising expenditures for all brands in all sizes of the product: more than one

54Note that the integrated value function V̄ (xit, εi,t−1) ≡ V (xit, ρεit+ξit)dGξ(ξit) fully characterizes the solution
of the DP problem. However, V̄ (xit, εi,t−1) has the same dimension as V (xit, εit).
55Hendel and Nevo’s approach has clear similarities with the use of Gittins’s indexes in the estimation of an

occupational choice model in Miller (1984).
56The empirical results are really striking: static demand estimates overestimate own-price elasticities by 30% and

underestimate cross-price elasticities by 500%. Therefore, the biases of ignoring consumer intertemporal substitution
are very large and they have important economic implications in the standard applications of demand systems such
as measure of market power, antri-trust and merger analysis or the evaluation of the effects of a new good.
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hundred continuous state variables. Hendel and Nevo show that in their model the probability of

choosing a brand conditional on quantity does not depend on dynamic considerations, and therefore

many of the demand parameters can be estimated from a static brand-choice model without solving

the DP problem. Once these parameters are estimated, it is possible to construct a single index

(or inclusive value) for each quantity choice (four quantity choice alternatives). These four indexes

summarize all the relevant information in prices and advertising expenditures for the current utility

of an individual. Then, Hendel and Nevo assume that these inclusive values follow a first order

Markov process: i.e., all the information in current prices and advertising that is relevant to predict

next period inclusive values can be summarized in today’s inclusive values. Under this assumption,

more than hundred state variables can be summarized in just four state variables. This is a very

convenient approach in the estimation of dynamic demand models of differentiated products.57

Even under these assumptions the solution of the DP problem in this model is cumbersome: the

vector of state variables consists of the inclusive value, consumer inventory, and an unobserved

shock in the marginal utility of consumption, which are all continuous variables. Thus, Hendel and

Nevo should use interpolation techniques to approximate the solution of the DP problem. They

use the parameterized policy iteration method in Benitez-Silva et al (2005) as the ’inner algorithm’

in a Rust’s nested fixed point algorithm.

3.3.2 Approximation error and inference

Numerical methods provide only approximations to the solution of dynamic decision models with

continuous state variables. Therefore, the researcher cannot calculate the exact likelihood function

(or other sample criterion function) of the model but only an approximated likelihood based on

his approximated solution to the model. An important question is what are the implications for

statistical inference of using an approximated likelihood function. The literature on simulation-

based estimation has dealt with the implications of simulation errors on the asymptotic properties

of estimators. However, much less is known when the approximation error does not come from using

Monte Carlo simulators but from other numerical methods such as interpolation techniques. The

standard practice in applications that use interpolation techniques has been to conduct inference as

if the exact solution of the model were used and to ignore the effects of approximation errors. In this

context, the recent paper by Fernandez-Villaverde, Rubio-Ramirez and Santos (2006) contains some

57Nevertheless, under realistic specifications for the stochastic process of prices and brand-choice parameters, the
assumption of a Markov process for inclusive value can be clearly rejected. On the positive side, this is an assumption
that can be tested empirically and that can be relaxed to a certain extent, e.g., a higher order Markov process. See
Erdem, Imai and Keane (2003) for a similar application with different assumptions and estimation method.
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important contributions to this difficult topic. They show that convergence of the approximated

policy function to the exact policy function does not necessarily implies that the approximated

likelihood function also converges to the exact likelihood. Some additional conditions are needed

for convergence of the likelihood function. In particular, in addition to regularity conditions to

have a well defined likelihood function, the optimal decision rule and the transition rule of the state

variables, as functions of the vector of structural parameters, should be continuously differentiable

and have bounded partial derivatives. They also propose a likelihood ratio test to check for the

importance of errors in the approximated likelihood. Suppose that a researcher is using interpolation

methods to approximate the solution of a DP model and that he solves and estimates the model

under two different levels of approximation error, e.g., two different grids of points in the state

space. We can interpret the two different approximations as two competing models. We want to

test if the data significantly support one approximation over the other one. Let l̂(1) and l̂(2) be the

maximum values of the two likelihood functions under the two levels of approximation error. The

likelihood ratio statistic is LR = l̂(1) − l̂(2). Vuong (1989) develops the asymptotic behavior of this

statistic for both nested and non-nested models and his results are general enough to include the

case we consider here. Based on this test, Fernandez-Villaverde et al. suggest to use an increasing

approach to choose the degree of accuracy in the numerical solution of the model. That is, to

increase the accuracy of the numerical solution until the likelihood ratio test cannot reject that the

less accurate solution is statistically equivalent to the more accurate solution.

3.3.3 Bayesian methods

The computational cost of evaluating the likelihood in structural dynamic discrete choice models

has sofar made Bayesian inference in these models intractable.58 If a Markov Chain Montecarlo

algorithm (MCMC) is used, the number of likelihood evaluations that is required is typically much

larger than in the case of algorithms tailored to classical likelihood-based inference. In a recent

paper, Imai , Jain and Ching (2007) propose an estimation method which promises to alleviate

this problem significantly. At each iteration, a modified Metropolis-Hastings step is combined with

a single iteration in the Bellman equation which updates the value function and replaces the full

solution of the DP problem. Therefore, estimation and solution proceed simultaneously. This is

in the same spirit as Aguirregabiria and Mira’s NPL algorithm, but gradual updating of the DP

solution is carried out in ’value function space’ rather than in ’conditional choice probability space’.

58An exception is Lancaster (1997) who demonstrates the feasibility of Bayesian inference in a search model with
closed form solutions. Geweke and Keane (1995) show how to do Bayesian inference when the future component of
the value function is replaced by a flexible approximation in order to avoid the burden of full solution.
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Imai et al show that the approximate solution converges to the full solution and the approximate

posterior converges to the true posterior. They illustrate their method in Montecarlo experiments

with uninformative priors for models of firm entry and exit with random effects and continuous

state variables.

3.3.4 Validation of dynamic structural models

One of the most attractive features of dynamic structural models is that they can be used to predict

the effects of counterfactual policy changes (or ex ante policy evaluation). Clearly, a prerequisite

for such an exercise is that the researcher has enough confidence in the estimated structural model,

i.e., the model needs to be validated. Some of the most commonly used criteria for validation

of dynamic structural models have been: (a) conformity with the researcher’s priors on "admis-

sible" ranges of parameter values, based on economic theory and/or previous empirical work; (b)

informal assessment of goodness of fit; (c) formal specification tests such as goodness of fit and

over-identifying restrictions tests (see Andrews, 1988, and Rust, 1994). However, these criteria

may seem insufficient for the purpose of credible policy evaluation. First, many researchers are

concerned about identification. Second, goodness of fit and over-identifying restrictions tests are of

limited usefulness when the estimated model is the result of pretesting (or "structural data mining",

as referred by Wolpin, 2007). Alternative specifications with very similar in-sample performance

may provide very different out-of-sample predictions of the effects of counterfactual policies. In

fact, as pointed out by Wolpin (2007), it can be the case that some model features that contribute

to improve in-sample goodness-of-fit may have a negative effect on the performance of the model for

the prediction of counterfactual experiments. Then, how should we choose among these models?

First, if the structural model will be use to predict a counterfactual policy, it seems reasonable

that the model should be judged in terms of its ability to predict that particular policy. In this

sense, the "best" model depends on the type of counterfactual policy one wants to predict. Social

experiments and exogenous regime swifts provide very useful information for the credible validation

of a structural model. Subject to identification issues, one can estimate the structural model using

the control-group subsample and then use the experimental group to evaluate how well the model

predicts the effects of the policy intervention which was the object of the social experiment. Once

a model has been selected in this way, it can be used to predict extrapolations of the policy in the

social experiment. This idea has been used before in dynamic structural models by Lumsdaine,

Stock and Wise (1992), to predict retirement behavior under alternative pension plans, and by

Todd and Wolpin (2006), to predict the effect of subsidies on children school attendance in Mexico.
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However, for good or for bad, social experiments and regime swifts are a rarity. In a recent

paper, Keane and Wolpin (2007) propose an approach for model validation that is in this same

spirit but can be used when non-experimental data is available. The approach consists in holding

out a part of the sample that has the characteristics of a policy change similar (in some way) to

the counterfactual policy that we want to evaluate. The hold out sample plays the same role as the

treatment group sample when a social experiment is available: it is not used for estimation but it is

used to validate the predictive ability of the model. For instance, a researcher who wants to predict

the effect of a child care subsidy program on a female labor supply model may estimate model

using the subsample of females with two or more children and holdout the sample of females with

less than two children. This idea seems very interesting and useful, though the fact the subsample

selection is not random introduces nontrivial econometric issues.

3.3.5 Relaxing rational expectations using subjective expectations data

The assumption of rational expectations has been ubiquitous in this literature. Nevertheless, this

is a very strong assumption in many applications. Information is costly and individuals typically

make predictions using different sets of partial information. Though the rational expectations as-

sumptions is made for identification reasons (i.e., observed choices may be consistent with many

alternative specifications of preferences and expectations), it can induce serious biases in our pre-

dictions of counterfactual experiments. Data on expectations can be used to relax or to validate

assumptions about expectations, and it can make the predictions of dynamic structural models

more credible. Manski (2004) presents an excellent review on the use of data on subjective expec-

tations in microeconometric decision models. In the context of dynamic discrete choice structural

models, an example is the study by van der Klaauw and Wolpin (2005) on Social Security and

savings. The study uses data on subjective expectations from the Health and Retirement Sur-

vey (expectations over the own retirement age and longevity) and from the Survey of Economic

Expectations (expectations over future changes in Social Security policy).

4 Estimation methods for dynamic discrete games

As we did for single agent models, we distinguish between the structural parameters in the util-

ity function, θu, in the payoff function, θY , and in the transition rules of the state variables,

θf . Under assumptions CI-X and CI-Y, for the estimation of θY and θf we do not have to

deal with the problem of calculating a MPE of the game. We can estimate θY and θf as the
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vectors that maximize the partial likelihood functions
PM

m=1

PTm−1
t=1 log fY (yimt|aimt,xmt; θY ) andPM

m=1

PTm−1
t=1 log fx(xm,t+1|amt,xmt; θf ), respectively. We assume that β is known and that θY and

θf have been estimated in a first step and we focus on the estimation of the parameters in θu, which

requires that we exploit the equilibrium structure of the game. Following most of the papers in

this literature, we start considering that the observations in the data have been generated by only

one Markov Perfect equilibrium.

ASSUMPTION One-MPE-Data: Define the distribution of amt conditional on xmt in market m

at period t as P0mt ≡ {Pr(amt = a|xmt = x) : (a, x) ∈ AN × X}. (A) For every observation

(m, t), P0mt = P
0. (B) Players expect P0 to be played in future (out of sample) periods. (C) The

observations {amt, xmt} are independent across markets and Pr (xmt = x) > 0 for all x in X.

Assumption (A) establishes that the data has been generated by only one Markov Perfect

equilibrium. Thus even if the model has multiple equilibria, the researcher does not need to

specify an equilibrium selection mechanism because the equilibrium that has been selected will be

identified from the conditional choice probabilities in the data. We will discuss in section 4.2 how

this assumption can be relaxed. Assumption (B) is necessary in order to accommodate dynamic

models. Without it, we cannot compute the expected future payoffs of within-sample actions unless

we specify the beliefs of players regarding the probability of switching equilibria in the future.

Following the notation in section 2.3, let Λ(vP(θ)) ≡ {Λ(ai|vPi (., x, θ)) : (i, ai, x) ∈ I×A×X} be

the equilibrium mapping of the dynamic game. Furthermore, let vPi (ai, x, θ) hereafter denote Hotz-

Miller’s representation of choice-specific value functions, adapted to this context (see details below).

Aguirregabiria and Mira (2007) show that, for given θ, a vector of conditional choice probabilities

P is a MPE of the game if and only if satisfies the fixed point condition, P = Λ(vP(θ)). For the

description of several estimators in this literature, it is convenient to define the following pseudo

likelihood function:

Q(θ,P) =
XM

m=1

XTm

t=1

XN

i=1
lnΛ(aimt|vPi (xmt, θ)) (50)

where P is an arbitrary vector of players’ choice probabilities. This is a ”pseudo” likelihood because

the choice probabilities Λ(aimt|vPi (xmt, θ)) are not necessarily equilibrium probabilities associated

with θ, but just best responses to arbitrary beliefs P about other players’ behavior. The MLE can

be defined as:

θ̂MLE = argmax
θ∈Θ

(
sup

P∈(0,1)N|X|
Q(θ,P) subject to : P = Λ(vP(θ))

)
(51)
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For given θ, the expression P = Λ(vP(θ)) defines the set of vectors P which are equilibria associated

with that value of the structural parameters. For some values of θ that set may contain more than

one P and therefore to obtain the MLE one should maximize over the set of equilibria. Under

standard regularity conditions, multiple equilibria does not affect the standard properties of the

MLE which in this model is root-M consistent, asymptotically normal and efficient. However, in

practice, this estimator can be very difficult to implement. This is particularly the case if we use

an algorithm that for each trial value of θ computes all the vectors P which are an equilibrium

associated with θ and then selects the one with maximum value for Q(θ,P). Finding all the Markov

Perfect equilibria of a dynamic game can be very difficult even for relatively simple models.

4.1 Two-Step methods

Several recent papers (Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007), Jofre-

Bonet and Pesendorfer (2003), Pakes, Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-

Dengler (2007)) have proposed different versions and extensions of Hotz-Miller CCP estimator to

the estimation of dynamic games. An interesting aspect of the application of the CCP estimator

to dynamic games is that this method deals with the problem of multiple equilibria, i.e., it avoids

the optimization of the (pseudo) likelihood with respect to P. Under assumption ‘One-MPE-

Data’, players’ choice probabilities can be interpreted as players’ beliefs about the behavior of

their opponents. Given these beliefs, one can interpret each player’s problem as a game against

nature with a unique optimal decision rule in probability space, which is the player’s best response.

While equilibrium probabilities are not unique functions of structural parameters, the best response

mapping is a unique function of structural parameters and players’ beliefs about the behavior of

other players. These methods use best response functions evaluated at consistent nonparametric

estimates of players’ beliefs.

We now describe different variants of this estimator in the context of dynamic games. As in

the case of single agent models, the CCP method is particularly useful in models where the utility

function is linear in parameters. Therefore, we assume that ui(at, xt, θu) = zi(at, xt)
0θu, where

zi(at, xt) is a vector of known functions. Let P be a vector of conditional choice probabilities,

for every player, state and action. Following the same approach as in single agent models, the

alternative-specific value functions can be written as follows:

vPi (ai, xt) = z̃Pi (ai, xt) θu + ẽPi (ai, xt) (52)

where z̃Pi (ai, xt) is the expected and discounted sum of current and future z0is that originate from

50



(ai, xt) given that all players behave now and in the future according to the probabilities in P; and

ẽPi (ai, xt) is the expected and discounted sum of the stream {εi,t+j(ai,t+j) : j = 1, 2, ...} given that

the sequence of players’ actions is generated by the choice probabilities in P. More formally, we

have that:

z̃Pi (ai, xt) ≡
X
a−i

ÃQ
j 6=i

Pj(aj |xt)
!"

zi(ai, a−i, xt) + β
X
x0

fx(x
0|ai, a−i, xt) WP

zi (x
0)

#

ẽPi (ai, xt) ≡ β
X
a−i

ÃQ
j 6=i

Pj(aj |xt)
!"X

x0

fx(x
0|ai, a−i, xt) WP

ei (x
0)

# (53)

where a−i is the vector with the actions of all players other than i. WP
zi (x) andW

P
ei (x) are valuation

operators. Let WP
i be the matrix {(WP

zi (x),W
P
ei (x)) : x ∈ X}. Then, this valuation operator is

defined as the unique solution in W to the fixed point problem: W =
P

a∈AN [
QN

j=1Pj(aj)] ∗

{[zi(a), ei(a)]+β Fx(a)W}, and ei(a) has the same definition as in the single agent model.

Let P̂, θ̂Y and θ̂f be consistent estimators of P0, θ0Y and θ
0
f , respectively. Based on these initial

estimates, we can obtain a two-step estimator of θu as a GMM estimator that solves the sample

moment conditions:

MX
m=1

NX
i=1

Tm−1X
t=1

Hi(xmt)

⎡⎢⎢⎢⎣
I{aimt = 1}− Λ

³
0 | z̃P̂i (., xmt)θu + ẽP̂i (., xmt)

´
...

I{aimt = J}− Λ
³
J | z̃P̂i (., xmt)θu + ẽP̂i (., xmt)

´
⎤⎥⎥⎥⎦ = 0 (54)

where H(xmt) is a matrix with dimension dim(θu) × J with functions of xmt which are used as

instruments. The estimator is root-M consistent and asymptotically normal. This estimator is

used by Jofre-Bonet and Pesendorfer (2003) and Pakes, Ostrovsky and Berry (2007). An attractive

feature of this method of moments estimator, emphasized by Pakes, Ostrovsky and Berry (2007),

is that when the matrix of instruments Hi(xmt) does not depend on the nonparametric estimator

P̂, this estimator can have lower finite sample bias than the pseudo maximum likelihood and the

minimum distance estimators that we describe in the following paragraphs. We return to this issue

at the end of this section.

The two-step method in Aguirregabiria and Mira (2007) is a pseudo maximum likelihood (PML)

estimator that maximizes in θu the criterion function Q(θu, θ̂Y , θ̂f , P̂). The values z̃P̂i and ẽP̂i are

calculated as described above: i.e., solving for the matricesWP̂
i and then applying the expressions in

(53). This method is a particular case of the class of GMM estimators defined in equation (54). The

(pseudo) likelihood equations that define this estimator can be expressed as in (54) with a matrix

Hi(xmt) equal to diag{∂ logΛimt(j)/∂θu : j = 0, 1, ..., J}. This PML method is asymptotically
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efficient within the class of GMM estimators described by conditions (54). However, in contrast to

the case of single-agent models, this estimator is less efficient asymptotically than the partial MLE.

This is because the initial nonparametric estimator of P0 and the PML estimator of θ0u are not

asymptotically independent and therefore there is an efficiency loss from using an inefficient initial

estimator of P0.

Pesendorfer and Schmidt-Dengler (2007) consider the following class of minimum distance esti-

mators:

θ̂u = argmin
θu

h
P̂−Λ

³
vP̂(θ)

´i0
AM

h
P̂−Λ

³
vP̂(θ)

´i
(55)

where AM is a weighting matrix that converges in probability to a non-stochastic positive definite

matrix A0 as M goes to infinity. Different choices of weighting matrices give rise to distinct

estimators within this class. Under standard regularity conditions, all the estimators in this class

are consistent and asymptotically normal. Minimum distance estimation theory establishes that

the efficient estimator in this class is the one where the weighting matrix A0 is:µ∙µ
I
... 0
¶
−∇P,θY ,θfΛ

¡
vP0(θ0)

¢¸0
Σ

∙µ
I
... 0
¶
−∇P,θY ,θfΛ

¡
vP0(θ0)

¢¸¶−1
(56)

where (I
...0) is the identity matrix vertically stacked with a matrix of zeros; ∇P,θY ,θfΛ is the

Jacobian matrix of Λ with respect to P, θY and θf ; and Σ is the variance matrix of the initial

estimators P̂, θ̂Y and θ̂f . Note that this optimal weighting matrix depends on θ0u. Therefore, the

efficient estimator is obtained in three steps: estimate P̂, θ̂Y and θ̂f0 and their variance; obtain an

inefficient minimum distance estimator of θ0u; finally, construct a consistent estimator of the optimal

weighting matrix and obtain the efficient estimator. Pesendorfer and Schmidt-Dengler show that

this efficient estimator is asymptotically equivalent to MLE.

In models with continuous state variables or with large state spaces, the computation of con-

tinuation values z̃P̂i and ẽP̂i can be infeasible or extremely burdensome. Bajari, Benkard and Levin

(2007) propose a method that builds on and extends the simulation-based CCP estimator that we

have described in section 3.1.4. Their method has two important features that distinguish it from

the other methods that we review here: it can be applied to models with continuous decision vari-

ables (as long as the utility function satisfies ∂2u(ai, a−i, x, εi)/∂ai∂εi ≥ 0), and to models where

the parameters are not point identified (i.e., set identification). In fact, these two features of their

method also contribute to the literature on estimation of single-agent dynamic structural models.

Bajari, Benkard and Levin (BBL) propose an estimator that minimizes a set of moment inequal-

ities and that can be applied to a general class of dynamic structural models under assumptions
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AS, IID and CI-X, including dynamic games with either discrete or continuous decision and state

variables. Define WP
i (x) ≡ (WP

zi (x),W
P
ei (x)), and split the vector of choice probabilities P into the

sub-vectors Pi and P−i, where Pi are the probabilities associated to player i and P−i contains the

probabilities of the other players. The model implies that for any state x ∈ X and any Pi 6= P0i
the following inequality should hold:

W
P0i ,P

0
−i

i (x)

µ
θu
1

¶
≥W

Pi,P0−i
i (x)

µ
θu
1

¶
(57)

Let H be a set of values for (i, x,P). If the set H is large enough and θ0u is identified, then θ0u

uniquely minimizes the population criterion function:

2X
{i,x,P}∈H

min

½
0 ;

µ
W
P0i ,P

0
−i

i (x)−W
Pi,P0−i
i (x)

¶µ
θu
1

¶¾2
(58)

This criterion function penalizes departures from the inequalities in (57). The Bajari-Benkard-

Levin (BBL) estimator of θ0u minimizes a simulation-based sample counterpart of this criterion

function. More precisely,

θ̂u = arg min
θu∈Θ

X
{i,x,P}∈H

½
0 ;

³
W̃
P̂i,P̂−i
i (x)− W̃

Pi,P̂−i
i (x)

´µ θu
1

¶¾2
(59)

where P̂ is a nonparametric estimator of P0 (there is also initial estimator of θ0Y and θ
0
f but we have

omitted them for the sake of notational simplicity), and W̃i is a simulator of Wi which is obtained

as described in section 3.1.4. The estimator is root-M consistent and asymptotically normal. The

asymptotic variance of the estimator depends not only on the variance of P̂ but also on the number

of simulations and, very importantly, on the choice of the set of "deviations" with respect to the

optimal policy contained in H. Bajari et al. describe a bootstrap procedure to calculate standard

errors (see also Chernozhukov, Hong and Tamer, 2007). Ryan (2006) uses this method to estimate

a dynamic oligopoly model of the US cement industry. In his model, firms compete in quantities in

a static equilibrium, but they are subject to capacity constraints. Firms invest in future capacity

and this decision is partly irreversible (and therefore dynamic). Note that the decision variable

in this model, investment, is a censored continuous variable. Ryan estimates the parameters in

demand and marginal costs using data on prices, quantities and the static equilibrium conditions.

In a second step he estimates investment costs as well as entry and exit costs using BBL’s inequality

estimator. Ryan allows entry costs to vary before and after year 1990 when several amendments

were introduced in the Clean Air Act. He finds that these amendments raised significantly the sunk

costs of entry in the cement industry.
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The main advantage of these two-step estimators is their computational simplicity. However,

they have two important limitations. The first problem is finite sample bias. The initial nonpara-

metric estimator can be very imprecise in the small samples available in actual applications, and

this can generate serious finite sample biases in the two-step estimator of structural parameters. In

dynamic games with heterogeneous players the number of observable state variables is proportional

to the number of players and therefore the so called curse of dimensionality in nonparametric esti-

mation (and the associated bias of the two-step estimator) can be particularly serious. The sources

of this finite sample bias can be illustrated using the moment conditions in (54): (1) if the matrix

of instruments Hi(xmt) depends on the nonparametric estimator P̂0, then there is a finite sample

correlation between these instruments and the "errors" I{aimt = j}− Λ(j| z̃imtθu + ẽimt); and (2)

the choice probabilities Λ(j| z̃imtθu+ẽimt) are complicated nonlinear functions of the nonparametric

estimator P̂0, and the expected value of a nonlinear function is not equal to the function evaluated

at the expected value. As argued by Pakes, Ostrovsky and Berry (2007), the first source of bias is

present in the pseudo maximum likelihood estimator and the minimum distance estimator but not

in a simple method of moments estimator. However, the second source of bias appears in all these

two steps estimators and it can be very important as illustrated in the Monte Carlo experiments

of several papers (see the Monte Carlo experiments in Hotz et al., 1994, Aguirregabiria and Mira,

2002 and 2007, or Pesendorfer and Schmidt-Dengler, 2007).

A second important limitation of these two-step methods is the restrictions imposed by the IID

assumption. Ignoring persistent unobservables, if present, can generate important biases in the

estimation of structural parameters.

4.2 Sequential estimation

We have described in section 3.1.3 how a recursive or sequential CCP procedure is a bias reduction

method that deals with the problem of finite sample bias of the two-step CCP estimator. This

procedure can be particularly useful in the context of dynamic games with heterogeneous players

because it is in this context where the finite sample bias of the two-step estimator can be very

serious. The sequential CCP method or NPL algorithm also deals with the issue of permanent

unobserved heterogeneity. Here we follow Aguirregabiria and Mira (2007) and describe the NPL

method for a model with permanent unobserved market heterogeneity. Consider the entry-exit

model in Example 4 but extended to include unobserved market heterogeneity. The profit of an
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active firm is:

Uimt(1) = θRS log (Smt)− θRN log
³
1 +

P
j 6=i ajmt

´
− θFC,i − θEC,i(1− aim,t−1) + ωm + εimt (60)

where ωm is a random effect interpreted as a time-invariant market characteristic affecting firms’

profits, which is common knowledge to the players but unobservable to the econometrician. We

assume that ωm has a discrete and finite support Ω =
©
ω1, ω2, . . . , ωL

ª
, and it is indepen-

dently and identically distributed across markets with probability mass function πc ≡ Pr(ωm =

ωc). Furthermore, ωm does not enter into the conditional transition probability of xmt, i.e.,

Pr(xm,t+1|amt, xmt, ωm) = fx(xm,t+1|amt, xmt). This assumption implies that the transition proba-

bility function fx can still be estimated from transition data without solving the model.

The introduction of unobserved market heterogeneity also implies that we can relax the assump-

tion of only ‘One MPE in the data’ to allow for different market types to have different equilibria.

Let P0mt ≡ {Pr(amt = a|xmt = x,m, t) : (a, x) ∈ AN ×X} be the distributions of amt conditional

on xmt in market m at period t. We assume that P0mt = P0c , where c is the type of market m.

Each market type has its own MPE. Though we still assume that only one equilibrium is played

in the data conditional on market type, the data generating process may correspond to multiple

equilibria. Markets which are observationally equivalent to the econometrician may have different

probabilities of entry and exit because the random effect component of profits ω is different. Fur-

thermore, though, in our example, market heterogeneity ωm is payoff-relevant, this variable may

also play (in part) the role of a sunspot.

The vector of structural parameters now includes the distribution of firm types: π ≡ {πc :

c = 1, 2, ..., L} and Ω =
©
ω1, ω2, . . . , ωL

ª
. The (conditional) pseudo likelihood function has the

following finite mixture form:

Q(θ, π,Ω, {Pc}) =
MP

m=1
ln

µ
LP
c=1

πc|xm1

∙
TQ
t=1

NQ
i=1
Λ
³
aimt | z̃Pci (xmt)θu + ẽPci (xmt) + ωc

´¸¶
(61)

where πc|x is the conditional probability Pr(ωm = ωc|xm1 = x). It is clear that firms’ incumbent

statuses at period 1, which are components of the vector xm1, are not independent of market type,

i.e., more profitable markets tend to have more incumbent firms. Therefore, πc|xm1 is not equal

to the unconditional probability πc. Under the assumption that xm1 is drawn from the stationary

distribution induced by the MPE, we can obtain the form of πc|xm1 . Let p
∗(Pc) ≡ {p∗(x|Pc) : x ∈

X} be the stationary distribution of x induced by the equilibrium Pc and the transition fx(.|., θf ).

This stationary distribution can be very simply obtained as the solution to the system of linear
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equations:
p∗(x|Pc) =

X
x0∈X

p∗(x0|Pc) Pr(x|x0,Pc)

=
X
x0∈X

p∗(x0|Pc)

Ã P
a∈AN

"
NQ
j=1

Pcj(aj |x0)
#
fx(x|a, x0)

! (62)

Then, by Bayes’ rule, we have that:

πc|xm1 =
πc p

∗(xm1|Pc)
LP

c0=1
πc0 p∗(xm1|Pc0)

(63)

The NPL estimator is obtained using an iterative procedure similar to the one we have described

in section 3.1.3 for a model without heterogeneity. The main difference is that now we have to

calculate the steady-state distributions p∗(Pc) to deal with the initial conditions problem. However,

the pseudo likelihood approach also reduces very significantly the cost of dealing with the initial

conditions problem. The reason is that given Pc the steady-state distributions do not depend on the

structural parameters in θu. Therefore, the distributions p∗(Pc) remain constant during any pseudo

maximum likelihood estimation and they are updated only between two pseudo maximum likelihood

estimations when new choice probabilities are obtained. This implies a very significant reduction

in the computational cost associated with the initial conditions problem. Aguirregabiria and Mira

(2007) also consider a distribution of ωm that simplifies the computation of the NPL: ωm = σωω
∗
m

where ω∗m is a discretized standard normal. Therefore, the support of ω∗m and the probabilities

πc are known and the only parameter to be estimated is σω. Given this distribution of ωm, the

probabilities πc|xm1 also remain constant during any pseudo maximum likelihood estimation. The

algorithm proceeds as follows. We start with L arbitrary vectors of players’ choice probabilities, one

for each market type: {P̂c0 : c = 1, 2, ..., L}. Then, we perform the following steps. Step 1: For every

market type we obtain the steady-state distribution of xm1 and the probabilities {πc|xm1}. Step 2:

We obtain the pseudo maximum likelihood estimator of θu and σω as: (θ̂u1, σ̂ω1) = argmax(θu,σω)

Q(θu, σω, θ̂Y , θ̂f , {P̂c0}). Step 3: Update the vector of players’ choice probabilities using the best

response probability mapping. That is, for market type c, P̂c1 = Λ(v
P̂c0(θ̂u1, σ̂ω1, ω

∗
c , θ̂Y , θ̂f )). If,

for every type c, ||P̂c1−P̂c0|| is smaller than a predetermined small constant, then stop the iterative

procedure and choose (θ̂u1, σ̂ω1) as the NPL estimator. Otherwise, repeat steps 1 to 4 using {P̂c1}.

Collard-Wexler (2006) uses this method to estimate a dynamic oligopoly model of entry and exit

in the US ready-mix concrete industry. He finds that including unobserved market heterogeneity

increases very significantly the estimate of the effect of competitors on profits (i.e., the parameter
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θRN in equation (60)). While the effect of a second competitor on profits is positive in the model

without market effects, it is negative and significant when market heterogeneity is included.

5 General equilibrium models

In this section we describe the method proposed by Lee and Wolpin (LW) to estimate competitive

equilibrium models. The model is that of Example 3, which is a simplified version of the model

in LW with only one sector and two occupations as in Lee (2005). Total factor productivity zt is

assumed to follow an AR(1) process. This is the only source of exogenous aggregate uncertainty

which is explicitly modelled and it implies that individuals solving the occupational choice model

face uncertainty about future skill prices. Future skill prices depend on future TFP and on future

cross-sectional distributions of schooling and occupation-specific experience. However, including

these distributions in the vector of state variables eXt would make the dimension of the state space

so large as to make solution and estimation infeasible. Lee and Wolpin assume that current and

lagged values of skill prices provide a good approximation to the information contained in these

distributions that is relevant to predict future skill prices. More specifically, LW assume that the

evolution of skill prices is described by the following system of difference equations:

ln ra,t+1 − ln ra,t = ηa0 +
2X

k=1

ηak(ln rk,t − ln rk,t−1) + ηa3(ln zt+1 − ln zt) (64)

where η ≡ {ηa0, ηa1, ηa2, ηa3 : a = 1, 2} is a vector of parameters. Under this assumption the vector

of aggregate state variables that individuals use to predict future prices is eXt = (zt, r1t, r2t, r1,t−1, r2,t−1).

Therefore, the equilibria they consider are approximations to the full rational expectations equilib-

ria. This approach is in the spirit of Krusell and Smith (1998). It is important to note that the

vector η is determined in equilibrium as a function of the structural parameters, but is not itself

one of the structural parameters or primitives of the model.

The vector of structural parameters of the model is θ = (θu, θy, θπ, θY , θz, θn) where: θu and θy

represents the parameters in utility function and wage equations, respectively; θπ is the distribution

of types (by cohort, schooling at age 16 and gender); θY contains the parameters in the aggregate

production function; θz has the coefficients in the stochastic process of total factor productivity;

and θn represents the parameters in the stochastic process followed by the number of pre-school

children.

A rational expectations equilibrium in this model can be described as a value of the vector η,

say η∗(θ), that solves a fixed point problem. The following description of the equilibrium mapping
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also provides an algorithm to compute the fixed point. Consider an arbitrary value of η, say η0.

Step 1 (Optimal individual behavior): Given η0 individuals use equation (64) to form

expectations about future prices, and to solve their occupational choice problems.

Step 2 (Solve for market clearing skill prices): Given initial conditions for TFP, skill

prices and the distribution of state variables for all individuals alive at t = 1 :

a. Simulate a sequence of values of TFP for t = 1, 2, ..., T , drawing from the AR(1)

process defined by θz.

b. Guess skill prices {rat} at t = 1 using the TFP draw and equation (64) Draw

idiosyncratic shocks for all individuals alive at t = 1 and simulate their choices using

the solutions from step 1. Obtain aggregate skill supplies S1t and S1t for t = 1.

c. Given these skill supplies, use the market clearing conditions to obtain a new

value of skill prices, that is:

r0at =
αat
Sat

³
zt S1t

α1t S2t
α2t K1−α1t−α2t

t

´
for a = 1, 2 for t = 1

d. In general, the new skill prices {r0at} will not be the same as the original guess

{rat}. Replace {rat} by {r0at} and repeat steps b-c until convergence.

e. Repeat steps b-c-d for t = 2, .., T. Let {rat(η0, θ) : t = 1, 2, ..., T} be the sequence

of skill prices that we obtain upon convergence.

Step 3 (Update Beliefs): Use this new sequence of skill prices and the sequence of TFP

to obtain a new value of η, say η1, as the vector of OLS coefficients for the ’regression

equation’ in (64).

Step 4 (Impose Self-Fulfilling Beliefs): If η1 = η0, then η0 is a rational expectations

equilibrium associated with θ, i.e., individuals’ beliefs are self-fulfilling. Otherwise, we

start again in Step 1 using η1 instead of η0.

The data used in LW have annual frequency and consist of the following items from different

sources: (1) occupational choice and wage data (from micro surveys); (2) aggregate output and

capital stock; (3) number of pre-school children, by cohort age and gender; (4) cohort sizes, by

gender; (5) distribution of schooling at age 16, by cohort and gender; and (6) the initial conditions,

i.e., the distribution of state variables xi1 for all cohorts alive at calendar time t = 1. To make

the inference problem more tractable, LW treat data in items (2) to (6) as population parameters

which are known to the researcher. The parameter θn is obtained directly from (3) and is not

estimated with the rest of the parameters. Note that data in items (2), (4), (5) and (6) is used in
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the solution algorithm we have just described. For the occupational choice and wage data in item

(1), the authors combine two different micro surveys: the Current Population Survey (CPS) and

the National Longitudinal Survey of the Youth (NLSY). The two datasets are complementary: on

the one hand, the CPS covers a much longer period and thus provides a much wider coverage in

terms of calendar time, cohorts and ages; on the other hand, the NLSY has full histories as of age

16, so it adds a true panel dimension and, furthermore, experience capital can be constructed for

all sampled individuals.

The estimation method that LW use is a Simulated Method of Moments (SMM). The estimation

criterion is a weighted average distance between sample and simulated moments, where the weights

are the inverses of the estimated variances of the moments. Moments are selected from CPS and

NLSY micro data and a very large number of moments is considered (see pages 23-24 in their

paper). The estimation procedure is a nested solution-estimation algorithm. The ’outer algorithm’

searches for the value of θ that minimizes the sample criterion function. An iteration of this ’outer

algorithm’ is a Newton iteration. For each value of θ in this gradient search, the ’inside algorithm’

solves for an equilibrium of the model using the procedure that we have described in steps 1 to 4

above. Given that equilibrium, the inside algorithm simulates data and calculates the simulated

moments associated with a given θ.59

It is helpful to compare this estimation procedure with the one for the single-agent occupa-

tional choice model in Example 2. In the single-agent model there was not aggregate uncertainty,

structural parameters consisted of (θu, θπ, θn) and of constant skill prices r̄1 and r̄2, and these pa-

rameters were estimated using the likelihood of the micro data in item (1). In LW’s approximation

to a stochastic rational expectations equilibrium, the state vector of an individual agent’s prob-

lem is augmented with the 5 continuous aggregate variables eXt = (zt, r1t, r2t, r1,t−1, r2,t−1) and the

parameter vector is augmented with parameters (θz, η). However, η is not a free parameter but a

function of the structural parameters θ implicitly defined as a fixed point of the equilibrium map-

ping described above. Therefore, the estimation problem is an order of magnitude more complex

than in Example 2.

There are several details of LW’s method which are worth mentioning. First, note that at step

2 of the solution algorithm (i.e., imposing market clearing condition) we need initial conditions for

TFP and skill prices, {ra1, z1 : a = 1, 2}, which are unobservable variables for the researcher. The
59Lee and Wolpin do not estimate all the model parameters using this nested procedure. The parameters in the

stochastic process of the number of pre-school children, θn, are estimated separately in a first step using data item
(3).
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way that LW deal with this issue is by choosing an initial period t = 1 which is many periods before

the sample period that is used to construct moments conditions from the micro data. In this way,

the choice of the initial conditions has negligible influence on the simulated data for the sample

period. This amounts to assuming that aggregate initial conditions are consistent with ’steady

state’ implications of the model, modified by the limited information we have about aggregate

trends in the decades that precede the sample period.

A second detail deals with the solution of the individuals’ occupational choice problem. The

state space of the DP problem is very large and the estimation procedure requires that the DP

problem be solved many times, more than once for each cohort, type and candidate parameter

value. LW use Keane-Wolpin’s simulation-interpolation method to approximate the solution to

individuals’ occupational choice problem.

Third, a relevant question is why SMM is used instead of Simulated Maximum Likelihood. The

likelihood function of this model is particularly complex and costly to evaluate. For instance, full

histories of choices and states are not available for all sampled individuals and, in particular, the

value of occupation-specific experience capital is not observable. Missing state variables have to be

integrated out for each individual contribution to the likelihood. Computing the likelihood using

simulation methods is therefore more costly than computing simulated moments.

Fourth, in order to highlight the equilibrium mapping and the solution of the model we have

presented a simplified version of LW’s solution/estimation algorithm in which no use is made of

the time series of output in data item (2). In LW’s solution algorithm the sequence of TFP values

in step 2 is not simulated. Instead, they impose that the value of zt which is conjectured to derive

aggregate skill supplies in step 2b should be consistent with aggregate production technology, that

is Yt = zt S
α1t
1t Sα2t

2t K1−α1t−α2t
t where S1t and S2t are the derived supplies and Yt and Kt are the

actual time series data. The iterative procedure within step 2 obtains both the market clearing skill

rental prices and the TFP values consistent with the data. In step 3 both η and θz are updated

based on the sequences derived in step 2. In this solution algorithm θz is not a free parameter. An

’estimate’ of it is obtained as a by-product, conditional on the rest of the parameter vector and

data item (2).

Finally, given that LW’s method is computationally very intensive, an important question is

whether there is a simpler estimation strategy which does not require one to solve for the equilib-

rium of the model for each trial value of θ. Consider the same model and assume that the data

has been generated by a rational expectations equilibrium of this model. It is possible to obtain
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an estimator of an augmented parameter vector (θ, η) that does not fully impose the equilibrium

restrictions. The main advantage of this alternative approach, in the spirit of Heckman et al, is

that it is computationally simpler: its computational burden is of the same order of magnitude

as the one in the estimation of the single-agent occupational choice model. However, it has some

potential limitations. First, it may be difficult to identify (θ, η) jointly without fully imposing the

equilibrium restrictions. Relatedly, there is a loss of efficiency. Even if (θ, η) is identified, impos-

ing the equilibrium restrictions can improve significantly the precision of our estimates. A third

limitation is that the estimated model, though statistically consistent, is not internally consistent

and one might argue that this detracts from the credibility of counterfactual exercises.60 There is a

trade-off between the increased efficiency and internal consistency of the estimates obtained using

Lee and Wolpin’s method and the extra computational burden which is involved.61

60That is, the estimate vector η can be very different to the value that we get using information from skill prices
generated from the market clearing conditions. A possible way of dealing with this internal inconsistency is to include
this discrepancy as one of the moment conditions in the sample criterion function to minimize.
61A solution algorithm like Lee and Wolpin’s is still needed to carry out their empirical analysis of the growth of

the service sector which is based on counterfactuals.
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Appendix: A guide to the use of the programming codes in the companion web page

1. Rust’s nested fixed point algorithm (NFXP).

2. Hotz-Miller’s CCP.

3. Hotz-Miller’s CCP with simulation

4. Nested pseudo maximum likelihood (NPL).

5. Keane-Wolpin simulation-interpolation method.

6. Bajari-Benkard-Levin method (BBL).

7. Arcidiacono-Jones EM algorithm

8. Benitez-Silva, Hall, Hitsch, and Rust’s NFXP with Parameterized Policy Iterations.
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