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1 Introduction

Discrete choice dynamic structural models have proven useful tools for the assessment of

public policy initiatives (Wolpin, 1996). These econometric models have been applied to the

evaluation of economic policies, hypothetical or factual, such as welfare programs (Sanders

and Miller, 1997, Keane and Moffit, 1998, and Keane and Wolpin, 2000), unemployment

insurance (Ferrall, 1997), social security pensions (Berkovec and Stern, 1991, and Rust and

Phelan, 1997), patents regulation (Pakes, 1986), educational policies (Eckstein and Wolpin,

1999, and Keane and Wolpin, 1997 and 2001), contraceptive choice (Hotz and Miller, 1993),

regulation on labor contracts (Aguirregabiria and Alonso-Borrego, 1999, and Rota, 2004),

programs on child poverty (Todd and Wolpin, 2003), scrapping subsidies (Adda and Cooper,

2000), or regulation of nuclear plants (Sturm, 1991, and Rust and Rothwell, 1995), among

others.

A common feature of the econometric models in these applications is the parametric spec-

ification of the structural functions in the model, i.e., utility function, technology, transition

probabilities of state variables, and the probability distribution of unobservable variables.1

These parametric models contrast with the emphasis on robustness and nonparametric spec-

ification that we find in other econometric approaches to the evaluation of public policies. In

particular, the literature on evaluation of treatment effects has emphasized the importance

of a nonparametric specification of the distribution of unobservables to obtain robust results

(see Heckman and Robb, 1985, Manski, 1990, and more recently Heckman and Smith, 1998,

and Heckman and Vytlacil, 1999 and 2005). Though robustness is an important argument in

favor of this evaluation approach, at its current stage it has limitations to evaluate counter-

factual policies, to estimate welfare effects, to incorporate transitional dynamics, or to allow

for general equilibrium effects. It is in this context where dynamic structural models can

be particularly useful. These structural models incorporate assumptions on individual be-

1Two exceptions are the semiparametric models in Taber (2000) and Heckman and Navarro (2004), where
utilities are parametrically specified but the distribution of unobservable variables is nonparametric.
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havior and on the equilibrium concept, e.g., rational expectations, competitive equilibrium.

In addition to these economic assumptions, does the identification of these models require a

parametric specification of the primitives? This question is the main theme of this paper.2

In this paper we show that it is possible to use nonparametrically specified dynamic

structural models to evaluate the effects of counterfactual policy interventions. The paper

has three main contributions. First, for a broad class of models, data and policies, we show

that agents’ behavior before and after the policy intervention, and the change in agents’ wel-

fare are nonparametrically identified. Second, based on this identification result we propose

a nonparametric method to estimate the behavioral and welfare effects of counterfactual

policy interventions. When the effect of interest is conditional on agents’ state variables, the

estimator is subject to the standard "curse of dimensionality" in nonparametric estimation

(i.e., the speed of convergence of the estimator to its true value decreases with the number

of explanatory variables). However, the estimates of unconditional effects are root-n con-

sistent. Therefore, it is possible to obtain precise estimates of policy effects even when the

specification of the structural model contains a relatively large number of state variables. As

a third contribution, we apply this method to evaluate hypothetical reforms in the rules of

a public pension system using data of male blue-collar workers in Sweden. This application

illustrates how the method can be used to obtain precise estimates of behavioral and welfare

effects which do not rely on any parametric assumption on the primitives of the model.

As shown by Rust (1994) and Magnac and Thesmar (2002), the differences between the

utilities of two choice alternatives cannot be identified in dynamic decision models even when

the researcher "knows" the time discount factor, the probability distribution of the unob-

servables, and the transition probabilities of the state variables. This under-identification

2The economic content of a dynamic structural model does not rest on the choice of a particular family
of parametric functions for the primitives but on general assumptions which are essentially nonparamet-
ric such as: the selection of the relevant decision and state variables; independence assumptions between
unobservable variables and some observables; the stochastic structure of the transition probabilities of the
state variables (e.g., which variables follow exogenous transitions, and which variables are endogenous and
why); monotonicity and concavity assumptions of some primitive functions; specification of individual het-
erogeneity; or the equilibrium concept that is used. Of course, these assumptions remain (and become more
transparent!) once we remove parametric assumptions from our structural models.
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result contrasts with the identification of utility differences in static (i.e., not forward look-

ing) decision models (see Matzkin, 1992). This paper takes a different look at the problem

of nonparametric identification of dynamic decision models. Instead of looking at the non-

parametric identification of the utility function we consider the identification of the behav-

ioral and welfare effects of counterfactual policy changes. More specifically, we prove the

identification of agents’ choice probability functions and surplus functions associated with

hypothetical policy interventions. We show that knowledge of the current utility function or

of utility differences is not necessary to identify these counterfactual functions. These coun-

terfactuals depend on the distribution of unobservables and on the difference between the

present value of choosing always the same alternative and the value of deviating one period

from that behavior. We show that these objects are identified under similar conditions as in

static models.

The class of dynamic discrete structural models that has been most commonly used in

empirical applications is the one in Rust (1994) that assumes that unobserved state variables

are not correlated over time. This paper also considers Rust’s framework. Understanding

identification in this framework is a necessary first step before considering models with more

general structure for the unobservables.3 As we have explained in footnote 2, this class of

models incorporate explicitly important economic assumptions such as rational expectations

and behavior, an equilibrium concept, etc. An open question is which of these assumptions

are really necessary for identification and which ones might be relaxed. This paper does

not study this type of identification issue, but we think that the results in this paper are a

necessary first step before studying the empirical content of deeper economic assumptions.

During the last years, there has been an increasing interest in the nonparametric identifi-

cation, and in the validation, of dynamic structural models. Recent important contributions

in this area Magnac and Thesmar (2002), Pesendorfer and Schmidt-Dengler (2003), Heckman

and Navarro (2005), Aguirregabiria (2005), and Bajari and Hong (2006).

3Though the identification results in this paper might be extended to models with unobserved hetero-
geneity ala Heckman-Singer, we have not explored this possibility in this paper.
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The rest of the paper is organized as follows. In section 2 we set up the model, the basic

assumptions and the type of counterfactual policy experiments that we want to evaluate.

Section 3 presents the identification results. In section 4 we describe the estimation proce-

dure. The empirical application is presented in section 5. We summarize and conclude in

section 6.

2 Model

2.1 Framework and basic assumptions

Time is discrete an indexed by t. Consider an agent who has preferences defined over a

sequence of states of the world between periods 0 and T , where the time horizon T can be

finite or an infinite. A state of the world has two components: a vector of state variables st

that is predetermined before period t, and a discrete decision at ∈ A = {0, 1, ..., J} that the

agent chooses at period t. The decision at period t affects the evolution of future values of

the state variables. The agent’s preferences over possible sequences of states of the world can

be represented by the time-separable utility function
PT

j=0 β
j Ut(at+j , st+j), where β ∈ [0, 1)

is the discount factor and Ut(at, st) is the current utility function at period t. The agent

has uncertainty about future values of state variables. His beliefs about future states can be

represented by a sequence of Markov transition probability functions Ft(st+1|at, st). These

beliefs are rational in the sense that they are the true transition probabilities of the state

variables. Every period t the agent observes the vector of state variables st and chooses his

action at ∈ A to maximize the expected utility

E
³PT

j=0 β
j Ut(at+j, st+j) | at, st

´
. (1)

Let αt(st) and Vt(st)be the optimal decision rule and the value function at period t, respec-

tively. By Bellman principle of optimality the sequence of value functions can be obtained

using the recursive expression:

Vt(st) = max
a∈A

©
Ut(a, st) + β

R
Vt+1(st+1) dFt(st+1|a, st)

ª
(2)
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And the optimal decision rule αt(st) is equal to argmaxa∈A{Ut(a, st)+β
R
Vt+1(st+1)dFt(st+1|a, st)}.

Suppose that we observe a random sample of agents who behave according to this model.

We index agents in the sample by i ∈ {1, 2, ..., n}. As it is typically the case in micro panels,

we observe each individual over a short period of time: e.g., two, three periods. Without loss

of generality for our identification results, we will consider that each individual is observed

for two periods. It is important to note that in this paper the time index t does not represent

calendar-time but the agent-specific period in the agent’s decision problem. To emphasize

this agent-specific time, we refer to t as the agent’s age. In some parts of the paper we will

also emphasize this point by using the variable ti to represent the agent i0s age. For each

agent in the sample, the econometrician observes his action, ait, and a subvector xit of the

vector of state variables sit, i.e., xit ⊂ sit. In many applications of dynamic decision models,

the researcher also observes an outcome variable yit that is a component of the current

payoff function. For instance, in a model of firm behavior the researcher may observe a

component of the profit function such as output, revenue or the wage bill. In a model of

individual behavior the econometrician may observe individual earnings, that is a component

of current utility. In summary, the data set can be described as:

Data = {ait, xit, yit : i = 1, 2, ..., n; t = ti, ti + 1} (3)

Note that the outcome variable yit is neither a decision nor a state variable, but it is

an outcome that depends on the agent’s decision and state variables. We represent this

relationship using the structural outcome equation:

yit = ht (ait, xit, ωit) (4)

where ωit ⊂ sit is an unobserved state variable. For example, if yit is firm’s output, then ht(.)

is a production function and ωit is an unobserved productivity shock. Or in an application

where yit represents individual’s earnings, we have that ht(.) is an earnings function and ωit

is a shock in earnings. Therefore, xit and ωit are components of the vector of state variables

sit. We represent the rest of the state variables using the vector εit, that contains all the
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unobserved state variables, for the researcher, which do not enter in the outcome function

ht. Thus, sit = (xit, ωit, εit).

Let a ∈ A be an arbitrary choice alternative, not necessarily the optimal alternative.

Without loss of generality we can write the one-period utility associated with a as the sum

of two components:

Ut(a, sit) = ut(a, xit, ωit) + εt(a, xit, ωit),

where: ut(a, xit, ωit) ≡Median (Ut(a, sit) | xit, ωit) ,

and: εt(a, xit, ωit) ≡ Ut(a, sit)− ut(a, xit, ωit)

(5)

For the sake of notational simplicity we use εit(a) instead of εt(a, xit, ωit), and the vector

εit to represent {εit(0), εit(1), ..., εit(J)}. By construction, the random variables in εit have

median equal to zero and are median independent of xit and ωit.4

We consider the following assumptions on the joint distribution of the state variables.

ASSUMPTION 1: The cumulative transition probability of the state variables factors as:

F (si,t+1|ait, sit) = Fω(ωi,t+1|ωit) Fε|x(εi,t+1|xi,t+1) Fx(xi,t+1|ait, xit) (6)

where Fω(.|ω), Fε(.|x) and Fx(.|a, x) are distribution functions. That is: (A) ωit follows an

exogenous Markov process; (B) εitmay depend on contemporaneous xit (e.g., heterocedas-

ticity) but not on previous values of a, x or ε; (C) conditional on xt and at, the vector

xt+1 does not depend on ωt and εt; and (D) Fε|x is continuously differentiable and strictly

increasing with support the Euclidean space.

Assumption 1 is based on Rust’s conditional independence assumption (Rust, 1994),

but it is more general than Rust’s because it allows for the unobservable ωit. Under this

assumption the optimal decision rule αt(sit) can be described as:

αt(sit) = argmax
a∈A

{ vt(a, xit, ωit) + εit(a) } (7)

4A more common condition in the discrete choice literature is that εi has zero mean and is mean inde-
pendent of the observable state variables. Instead, we consider median independence because it simplifies
the nonparametric estimation of the distribution of ε.
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where the functions vt(0, x, ω), vt(1, x, ω), ..., vt(J, x, ω) are alternative-specific value func-

tions and they are defined as:

vt(a, x, ω) ≡ ut(a, x, ω) + β
R
max
a0∈A

{vt+1(a0, x0, ω) + ε0(a0)} Fω(dω
0|ω)Fε(dε

0|x0)Fx(dx
0|a, x)

(8)

The optimal decision rule represents individuals’ behavior. Individuals’ welfare is given by

the value function Vt(st) = maxa∈A {vt(a, xt, ωt) + εt(a)}. For the econometric analysis it is

convenient to define versions of these functions which are integrated over the unobservables

in ε. The choice probability function is defined as:

Pt(a|xt, ωt) ≡
Z

I{α(xt, ωt, εt) = a} Fε|x(dεt) (9)

And the integrated valued function is:

Vσ,t(xt, ωt) ≡
Z

Vt(st) Fε|x(dεt) =

Z
max
a∈A

{ vt(a, xt, ωt) + εt(a) } Fε|x(dεt) (10)

To complete the description of the model we have to establish how the outcome variable yit

enters into the utility function. Assumption 2 establishes that the utility function ut (a, x, ω)

is linear in the outcome variable.

ASSUMPTION 2: The utility function ut(a, xt, ωt) has the following form:

ut(a, xt, ωt) = ψt(xt) yt + ct(a, xt) (11)

where the function ψt(.) is positive valued, and ct(., .) is a real valued function.

The structural functions of the model are {ψt, ht, ct, β, Fω, Fε, Fx}. This is the so called

model structure.

2.2 Policy interventions

We want to evaluate the behavioral and welfare effects of an hypothetical policy intervention

that modifies the current utility function. Let Ut be the utility function in the data generating

process, and let U∗t be the utility function under the counterfactual policy. Assumption 3

describes the class of policy interventions that we consider in this paper.
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ASSUMPTION 3: The counterfactual policy is such that: (A) It can be represented as a

change in the payoff or utility function, from function Ut to function U∗t . (B) Though the

econometrician does not know neither function Ut nor U∗t , he knows the difference between

these two functions in units of the outcome variable yt, i.e., he knows the function τ t(a, s)

where:

τ t(a, s) =
U∗t (a, s)− Ut(a, s)

ψt(x)
(12)

And (C) the function τ t(a, s) does not depend on ε, i.e., τ t(a, s) = τ t(a, x, ω).

The function τ t represents the policy intervention and it is known to the researcher,

though the functions Ut and U∗t are unknown. Assumption 3 establishes that the policy

intervention should be such that it can be measured in units of one of the outcome variable

y. This assumption includes a broad class of counterfactual experiments. For instance, any

change in the vector of outcome functions ht(a, x, ω) is a particular case of this class of

experiments. Note that the function τ t may depend on (a, x, ω) in a completely unrestricted

way, but it cannot depend on the unobservable ε. We provide several examples to illustrate

how general is this class of policy interventions.

EXAMPLE 1: Consider a model of retirement from the labor force as in Rust and Phelan

(1997). The outcome variable in this model is individual earnings. The type of policies that

we can evaluate includes: policies that modify retirement benefits such as changes in the

minimum and normal retirement age, or changes in the discount (premium) for early (late)

retirement; policies that affect labor earnings such as a wage tax; or an hypothetical change

in the risk aversion parameter.

EXAMPLE 2: Consider a model of occupational choice as in Keane and Wolpin (1997)

where individual earnings are observable. Some examples of policies that we can evaluate in

this model are a change in returns to schooling in a certain occupation, or a change in the

costs of schooling.

EXAMPLE 3: Consider a dynamic model of firm investment in physical capital where the
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researcher observes firm output. In this model we can evaluate hypothetical changes in the

production function parameters; or a sales tax.

Let {Pt} and {Vσ,t} be the choice probability functions and the integrated value functions

before the policy intervention. And let {P ∗t } and {V ∗σ,t} be these functions after the policy

intervention. We represent the behavioral effects of the policy by comparing the functions

P ∗t and Pt. Similarly, the difference between the functions V ∗σ,t and Vσ,t represents the welfare

effects of the policy. We are interested in the nonparametric estimation of the functions Pt,

P ∗t and V ∗σ,t − Vσ,t. Given probability functions {Pt} and {P ∗t }, we can simulate the future

evolution of the variables {xt,yt, at} starting from the initial period in which the hypothetical

policy is implemented. That is, we can obtain the transition dynamics associated with the

policy change and so derive the cross-sectional distribution of the state variables one period,

two periods, etc, after the policy change.

2.3 An example: A model of capital replacement

Dynamic structural models of machine replacement have been considered before by, among

others, Rust (1987), Das (1992), Kennet (1993), Rust and Rothwell (1995), Cooper, Halti-

wanger and Power (1999), Adda and Cooper (2000) and Kasahara (2004). Most of these

studies use the estimated structural model to evaluate the behavioral effects of a policy

change. Kennet (1993) studies how deregulation of the US airline industry affected the num-

ber of aircraft engine hours between major overhauls. Rust and Rothwell (1995) analyze the

impact on the operation of US nuclear power plants of an increase in the intensity of safety

regulation by the US Nuclear Regulatory Commission after an accident on March 1979.

Adda and Cooper (2000) evaluate the effects of a policy in France in which the government

subsidized the replacement of old cars with new ones. Kasahara (2004) examines the impact

on firms’ investment in equipment of a temporary increase in import tariffs in Chile.

Consider a firm that produces a good using capital and some perfectly flexible inputs.

The firm has multiple plants and each plant consists of only one machine. Production at
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different plants is independent and therefore we can concentrate in the decision problem for

an individual plant or machine. Let xt represent time since last machine replacement, that

is the age of the existing machine at the beginning of month t. And let at ∈ {0, 1} be the

indicator of the decision of replacing the old machine by a new machine at the beginning of

month t. Therefore, the age of the machine that is used during month t is (1 − at)xt, and

the transition of the variable x is:

xt+1 = (1− at) (xt + 1) + at (13)

The output that a machine produces during month t depends on the age of the machine,

and on a productivity shock ωt that follows a Markov process.5 The profit function has the

following form:

Ut = Y ((1− at)xt, ωt)−MC((1− at)xt, ε
MC
t )− at RC(xt, ε

RC
t ) (14)

where Y (., .) is the production function; MC(., .) is the maintenance cost, that depends on

the age of the machine and on a random shock εMC
t that is unobservable to the researcher;

and RC(., .) is the replacement cost net of the scrapping value of the retired capital. The

replacement cost is realized only if the machine is replaced and it depends on the age of the

replaced machine (not the used one) and on a random shock εRCt that is also unobservable

to the researcher.

To show that this model has the form that we have postulated in Assumptions 1 and

2, consider the following definitions: (1) the function c(0, xt) is the median of MC(xt, ε
MC
t )

conditional on xt; (2) the function c(1, xt) is the median ofMC(0, εMC
t )+RC(xt, ε

RC
t ) condi-

tional on xt; (3) the variable εt(0) is the difference betweenMC(xt, ε
MC
t ) and its conditional

median c(0, xt); and (4) the variable εt(1) is the difference betweenMC(0, εMC
t )+RC(xt, ε

RC
t )

and its conditional median c(1, xt). Given these definitions, we have that:

Ut = Y ((1− at)xt, ωt)− c(at, xt)− εt(at) (15)

5The amount of variable inputs is a function the age of the machine and the productivity shock and
therefore we can omit it from our analysis. Note that the "productivity shock" may include shocks in the
prices of variable inputs.
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where εt(0) and εt(1) are zero conditional median random variables.

Suppose that we are interested in evaluating the effects of a counterfactual policy that

modifies firms’ replacement costs. This policy tries to promote the retirement of old capital

by providing a subsidy that depends on the age of the retired capital. The amount of the

subsidy, that coincides with the change in the current profit function associated with the

policy, is:

τ(at, xt) =

⎧⎨⎩
0 if xt < x∗low
at (τ 0 − τ 1 [xt − x∗low]) if x∗high ≤ xt ≤ x∗low
0 if xt > x∗high

(16)

where τ 0 > 0, τ 1 > 0, x∗low and x
∗
high are parameters that characterize the policy. The subsidy

is zero if replacement takes place either too early (i.e., before age x∗low) or too late (i.e., after

age x∗high). For replacement ages within the range [x
∗
low, x

∗
high] the subsidy is strictly positive

and it decreases linearly with the age of capital. This type of policy has been common

in many countries and it has been motivated as part of an environmental policy to reduce

emissions of carbon dioxide.

3 Identification

Suppose that we have a random sample of individuals with information on the variables

{aiti , ai,ti+1, xiti , xi,ti+1, yiti , yi,ti+1}. As usual, we study identification with a very large (i.e.,

infinite) sample of individuals.6 For the sake of simplicity, we concentrate in binary choice

models. However, the identification results and the estimation method can be generalized

to the multinomial case. Consider the binary choice case where a ∈ {0, 1}. For notational

simplicity we use Pt(x, ω) to denote Pt(1|x, ω). Also, we assume that the outcome function

h is identified without having to estimate the rest of the structural model. There are dif-

ferent conditions under which one can consistently estimate wage equations or production

functions using instrumental variables or control function approaches which do not require

the estimation of the complete structural model (see Olley and Pakes, 1996, and Imbens and

6Furthermore, we assume that the sample has variability over the whole support of the observable vari-
ables: A × [1, T ]2 × X2 × Y 2. This assumption of full-support variation is needed to identify the reduced
form of the model.

11



Newey, 2002). We provide an examples for the identification of h in the empirical application

of retirement behavior in section 4.

ASSUMPTION 4: The outcome functions ht(0, x, ω) and ht(1, x, ω) are real valued func-

tions such that: (A) they are identified from the data {aiti , ai,ti+1, xiti , xi,ti+1, yiti , yi,ti+1};

(B) they are strictly monotonic in ω, such that we can invert these functions to obtain

ωit = h−1(ait, xit, yit); (C) ωit is a continuous random variable with support Ω; and (D) the

transition probability Fω(ωt+1|ωt) is such that if q(ω) is a strictly increasing function, then

E(q(ωt+1)|ωt) =
R
q(ωt+1)Fω(dωt+1|ωt) is also a strictly increasing function of ωt.

Assumption 4 implies that the transition probability functions Fx and Fω are nonpara-

metrically identified. We can identify Fx on A × X2 from the transition probabilities

Pr(xi,ti+1|aiti , xiti) in the data. Furthermore, under Assumption 4 the values of ωiti and

ωiti+1 can be consistently estimated and we can treat these variables as observables. There-

fore, Fω is also identified on Ω × Ω from the probabilities Pr(ωiti+1|ωiti) in the data. It is

also clear that we can identify the choice probability functions Pt(x, ω) on X × Ω from the

probabilities Pr(aiti = 1|xiti , ωiti , ti = t) in the data. However, without further restrictions,

we cannot identify the structural functions {ψt, ct, Fε|x,t}. This is the case both in decision

models where agents are forward looking (i.e., β > 0) and in models where agents are myopic

(i.e., β = 0). In this paper we are not interested in the identification of {ψt, ct, Fε|x,t} but

in the functions P ∗t and V ∗σ,t − Vσ,t associated with a counterfactual policy intervention. We

show below that the following Assumption 5, together with Assumptions 1 to 4, is sufficient

to identify the functions P ∗t and V ∗σ,t − Vσ,t.

ASSUMPTION 5: Define the functions h̃t(x, ω) ≡ ht(1, x, ω)− ht(0, x, ω). This function

h̃t(x, ω) is: (A) strictly increasing in ω; and (B) for any x ∈ X, it is unbounded from above,

such that for any constant k ≥ h̃t(x,−∞) there exits a value ω ∈ Ω such that h̃t(x, ω) = k.

For the sake of presentation, we start showing identification in a myopic version of the

model.
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3.1 Myopic model

Suppose that agents are not forward looking, i.e., β = 0. Then, the counterfactual choice

probability function is:

P ∗t (x, ω) = Pr ( U∗t (1, s) ≥ U∗t (0, s) | x, ω)

= Pr

µ
U∗t (1, s)− Ut(1, s)

ψt(x)
+

Ut(1, s)

ψt(x)
≥ U∗t (0, s)− Ut(0, s)

ψt(x)
+

Ut(0, s)

ψt(x)
| x, ω

¶
(17)

Define the functions c̃t(x) ≡ (ct(1, x)−c0(1, x))/ψt(x) and τ̃ t(x, ω) ≡ τ t(1, x, ω)− τ t(0, x, ω),

and the random variable ε̃t ≡ (εt(0) − εt(1))/ψt(x). Let Fε̃|x,t be the CDF of the random

variable ε̃t conditional to x. Then, using these definitions, the previous expression of P ∗t (x, ω)

can be written as:

P ∗t (x, ω) Fε̃|x,t

³
τ̃ t(x, ω) + h̃t(x, ω) + c̃t(x)

´
(18)

By the conditions in Assumptions 3 and 4, the functions τ̃ t and h̃t are known to the re-

searcher. Equation (18) shows that the identification of P ∗t requires one to identify the

functions Fε̃|x,t and c̃t. The relationship between these functions and the factual reduced

form probability function P is:

Pt(x, ω) = Fε̃|x,t

³
h̃t(x, ω) + c̃t(x)

´
(19)

Proposition 1 establishes the nonparametric identification of the counterfactual probability

function P ∗t .

PROPOSITION 1: Suppose that Assumptions 1 to 5 hold and β = 0. For any period t, define

the set [X × Ω]∗t ≡ {(x, ω) ∈ X × Ω : τ̃ t(x, ω) + h̃t(x, ω) ≥ h̃t(x,−∞)}. The counterfactual

choice probability function P ∗t is identified over the set [X×Ω]∗t . For any (x0, ω0) ∈ [X×Ω]∗t

this probability can be obtained as:

P ∗t (x0, ω0) = Pt(x0, ω
(τ)
t (x0, ω0)) (20)

where ω
(τ)
t (x0, ω0) is a function from [X × Ω]∗t into Ω that is implicitly defined as the value

ω ∈ Ω that solves the equation h̃t(x0, ω) = τ̃ t(x0, ω0)+ h̃t(x0, ω0). Furthermore, the function

13



c̃t is identified on X and Fε̃|x,t is identified on the set ũt(X×Ω)×X, where ũt(X×Ω) ⊆ R

is the space of real values that the function h̃t(x, ω) + c̃t(x) can take.

Proof. By Assumption 5, the function ω(τ)t (x0, ω0) exists and is unique at any point (x0, ω0) ∈

[X ×Ω]∗t . Using this function, it is clear that:

P ∗t (x0, ω0) = Fε̃|x0,t

³
τ̃ t(x0, ω0) + h̃t(x0, ω0) + c̃t(x0)

´
= Fε̃|x0,t

³
h̃t(x0, ω

(τ)
t (x0, ω0)) + c̃t(x0)

´
= Pt(x0, ω

(τ)
t (x0, ω0))

Given that the factual choice probability function Pt is identified on X×Ω and the function

ω
(τ)
t is identified on [X × Ω]∗t , it is clear that P

∗
t is identified [X × Ω]∗t . We now prove

the identification of functions c̃t and Fε̃|x,t. Define P−1t (x, 0.5) as the value of ω that solves

the equation Pt(x, ω) = 0.5. By Assumptions 1(D) and 5(A), the probability function Pt is

strictly monotonic in ω and therefore there is a unique value ω that solves Pt(x, ω) = 0.5, i.e.,

P−1t (x, 0.5) is identified for any x ∈ X. SinceMedian(ε̃t|x) = 0, we have that Pt(x, ω) = 0.5

implies that h̃t(x, ω) + c̃t(x) = 0. Therefore, given P−1t (x, 0.5) we can identify c̃t(x) as

c̃t(x) = −h̃t(x, P−1t (x, 0.5)). The function c̃t is identified on X. Now, define the function

ω∗t (x, u) fromX×ũt(X×Ω) into Ω such that this function provides the value of ω that solves

the equation h̃t(x, ω) + c̃t(x) = u. By definition of ω∗t (x, u) we can obtain this function for

u 6= 0 by solving in ω the equation h̃t(x, ω) = u+ h̃t(x, P
−1
t (x, 0.5)). Then, by construction

we have that, for any (x, u) ∈ X × ũt(X × Ω), Fε̃|x,t (u) = Pt(x, ω
∗
t (x, u)). Thus, Fε̃|x,t is

identified. Q.E.D. ¥

Remark 1. The (differential) outcome function h̃t plays a key role in the identification result

in Proposition 1 and on the rest of identification results in this paper. The identification of

P ∗t is possible because h̃t is identified and it depends monotonically on a continuous variable

ω that does not enter in c̃t and Fε̃|x,t.

Remark 2. The counterfactual probability function is identified on the set [X × Ω]∗t that is

a subset of X × Ω where the factual Pt is identified. However, there are different cases in
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which [X × Ω]∗t = X × Ω. For instance, that is the case when the range of variation of the

utility differences is the whole real line, or when τ̃ t is a positive valued function. The latter

occurs in applications where the outcome variable y has a lower bound at zero (e.g., output,

earnings, revenue), and we consider a counterfactual policy that increases the differential

outcome for any possible value of (x, ω). For instance, an increase in the returns of college

degree in a model for the decision of going to college.

Proposition 2 establishes the identification of the welfare effect function (V ∗σ,t(x, ω) −

Vσ,t(x, ω))/ψt(x), that is measured in units of the outcome variable y. We use the following

Lemma in the proof of Proposition 2.

LEMMA 1: Consider the utility maximization problem max{u(0) + ε(0), u(1) + ε(1)}. Mc-

Fadden’s social surplus is defined as the expected surplus of behaving optimally instead of

choosing always alternative zero: that is, Eε̃(max{ũ − ε̃; 0}), where ũ ≡ u(1) − u(0) and

ε̃ ≡ ε(0) − ε(1). Let Fε̃ be the CDF of ε̃, and let P be the probability Pr(ε̃ ≤ ũ|ũ), i.e.,

P = Fε̃(ũ). If Fε̃ is a continuous and strictly increasing function, then the social surplus is

a function of P and Fε̃ only. That is,

Eε̃(max{ũ− ε̃; 0}) = G(P, Fε̃) ≡
R
max{F−1ε̃ (P )− ε̃; 0}dFε̃(ε̃). (21)

Proof. Since Fε̃ is continuous and strictly increasing, we have that ũ = F−1ε̃ (P ), where

F−1ε̃ is the inverse function of Fε̃. Then, Eε̃(max{ũ − ε̃; 0}) =
R
max{ũ − ε̃; 0}dFε̃(ε̃) =R

max{F−1ε̃ (P )− ε̃; 0}dFε̃(ε̃). Q.E.D. ¥

PROPOSITION 2: Under Assumptions 1 to 5 and β = 0 the functions (V ∗σ,t(x, ω) −

Vσ,t(x, ω))/ψt(x) are nonparametrically identified. We can obtain these functions as:

(V ∗σ,t(x, ω)− Vσ,t(x, ω))/ψt(x) = τ t(0, x, ω) +G
¡
P ∗t (x, ω), Fε̃|x,t

¢
−G

¡
Pt(x, ω), Fε̃|x,t

¢
(22)

where G (P, F ) is McFadden’s surplus function as defined in Lemma 1.

Proof. We omit here the time subindex. When β = 0, the integrated value function is
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Vσ(x, ω) =
R
maxa∈A{u(a, x, ω) + ε(a)}dFε|x(ε). Then,

Vσ(x, ω)/ψ(x) =
1

ψ(x)

R
max
a∈A

{ u(a, x, ω) + ε(a) } dFε|x(ε)

=
u(0, x, ω)

ψ(x)
+
R
max

n
h̃(x, ω) + c̃(x)− ε̃ ; 0

o
dFε̃|x(ε̃)

=
u(0, x, ω)

ψ(x)
+G

¡
P (x, ω), Fε̃|x

¢
where we have used Lemma 1 and the property h̃(x, ω) + c̃(x) = F−1ε̃|x (P (x, ω)). Given that

(u∗(0, x, ω)− u(0, x, ω))/ψ(x) = τ(0, x, ω), we have that (V ∗σ (x, ω)− Vσ(x, ω))/ψ(x) is equal

to τ(0, x, ω) + G
¡
P ∗(x, ω), Fε̃|x

¢
− G

¡
P (x, ω), Fε̃|x

¢
. Since P , P ∗ and Fε̃|x are identified

(Proposition 1), the surplus function, and therefore (V ∗σ (x, ω)−Vσ(x, ω))/ψ(x), is identified.

Q.E.D. ¥

3.2 Dynamic model

We now study the identification of counterfactual choice probabilities when agents are for-

ward looking, i.e., when β > 0. For the sake of simplicity, we present the proof in the context

of a finite horizon model, i.e., T <∞. However, the proof can be extended to infinite horizon

models.7 The factual choice probability function is:

Pt(x, ω) = Fε̃|x,t (ṽt(x, ω)) (23)

where ṽt(x, ω) ≡ (vt(1, x, ω)− vt(0, x, ω))/ψt(x) is the differential value function. The coun-

terfactual choice probability function is P ∗t (x, ω) = Fε̃|x,t(ṽ
∗
t (x, ω)), where ṽ

∗
t is the differential

value function after the policy change. We show in this section that the functions Fε̃|x,t, ṽ∗t and

P ∗t are identified under the similar conditions as in Proposition 1. However, there are some

differences in the identification results of the myopic and the dynamic or forward-looking

models. In the dynamic model we cannot identify current utility differences or any other

function that depends only on preferences and not on agents’ beliefs. That is, we cannot

7The proof of identification in a model with infinite horizon appears in an earlier version of this paper
which is available online at ideas.repec.org and at papers.ssrn.com.
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separately identify agents’ preferences and agents’ beliefs. Despite this under-identification

of preferences, we can identify the counterfactual choice probabilities associated to the class

of experiments defined in Assumption 3. We also need an additional assumption on the

function ψt(x).

ASSUMPTION 6: The function ψt(x) is time invariant and it only depends on time-

invariant individual characteristics: i.e., ψt(x) = ψ where ψ may vary over individuals.

Proposition 3 provides a characterization of the choice probability function that will be

useful to identify and to estimate the counterfactuals.

PROPOSITION 3: For any age t, the optimal choice probability function Pt has the following

form:

Pt(x, ω) ≡ Fε̃|x,t

³
Ṽ
(y)
t (x, ω) + Ṽ

(c)
t (x) + Ṽ

(opt)
t (x, ω)

´
(24)

where: (1) Ṽ
(y)
t (x, ω) ≡ V

(y)
t (1, x, ω) − V

(y)
t (0, x, ω), and V

(y)
t (a, x, ω) is the expected, dis-

counted value of the sum of current and future realizations of the outcome variable y if the

current choice is a and then alternative 0 is chosen forever in the future; (2) Ṽ
(c)
t (x) ≡

V
(c)
t (1, x)− V

(c)
t (0, x), and V

(c)
t (a, x) is the expected, discounted value of the sum of current

and future realizations of the component c of the utility function if the current choice is a

and then alternative 0 is chosen forever in the future; and (3) Ṽ (opt)
t (x, ω) ≡ V

(opt)
t (1, x, ω)−

V
(opt)
t (0, x, ω), where V (opt)

t (a, x, ω) is the value of behaving optimally in the future minus the

value of choosing always alternative 0, given that the current choice is a. These functions

are formally defined as:

V
(y)
t (a, x, ω) = ht(a, x, ω) +

T−tX
j=1

βj
∙Z

ht+j(0, x
(j), ω(j)) dF

(j)
0 (x

(j)|a, x)dF (j)
ω (ω(j)|ω)

¸

V
(c)
t (a, x) =

ct(a, x)

ψ
+

T−tX
j=1

βj
∙Z

ct+j(0, x
(j))

ψ
dF

(j)
0 (x

(j)|a, x)
¸

V
(opt)
t (1, x, ω) =

T−tX
j=1

βj
∙Z

G(Pt+j(x
(j), ω(j)), Fε̃|t+j,x(j)) dF

(j)
0 (x

(j)|a, x)dF (j)
ω (ω(j)|ω)

¸
(25)
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where G (P, F ) is the surplus function that we have defined in Lemma 1; F
(j)
ω (ω(j)|ω) is

the j-periods-forward transition probability function of ω; and F
(j)
0 (x

(j)|a, x) is the j-periods-

forward transition probability of x given that the agent chooses alternative 0 at every period

in the future.8

Proof. For notational simplicity we omit ω as an argument in the different functions. Given

the definition of the surplus function G(P,F ) in Lemma 1, we have that:Z
max

½
vt(0, x) + εt(0)

ψ
;
vt(1, x) + εt(1)

ψ

¾
dFε|x,t(ε) =

vt(0, x)

ψ
+G(Pt(x), Fε̃|x,t)

Solving this expression in equation (8) that defines the conditional choice value function

vt(a, x), we have that:

vt(a, x)

ψ
= ht(a, x) +

ct(a, x)

ψ
+ β

Z
vt+1(0, x

(1))

ψ
dF (x(1)|a, x)

+ β

Z
G(Pt+1(x

(1)), Fε̃|x(1),t+1) dF (x
(1)|a, x)

We can apply the same decomposition to the value vt+1(0, x(1)) that appears in this expres-

sion. If we do this, we get:

vt(a, x)

ψ
= ht(a, x) +

ct(a, x)

ψ
+ β

Z
ht+1(0, x

(1))dF (x(1)|a, x) + β

Z
ct+1(0, x

(1))

ψ
dF (x(1)|a, x)

+ β2
Z

vt+1(0, x
(2))

ψ
dF

(2)
0 (x(2)|a, x)

+ β

Z
G(Pt+1(x

(1)), Fε̃|x(1),t+1) dF (x
(1)|a, x) + β2

Z
G(Pt+2(x

(2)), Fε̃|x(2),t+2) dF
(2)
0 (x(2)|a, x)

If we continue applying the decomposition to vt+2(0, x(2)), vt+3(0, x(3)), and so on, we get:

vt(a, x)

ψ
= ht(a, x) +

PT−t
j=1 β

j

∙Z
ht+j(0, x

(j)) dF
(j)
0 (x

(j)|a, x)
¸

+
ct(a, x)

ψ
+
PT−t

j=1 β
j

∙Z
ct+j(0, x

(j))

ψ
dF

(j)
0 (x

(j)|a, x)
¸

+
PT−t

j=1 β
j

∙Z
G(Pt+j(x

(j)), Fε̃|x(j),t+j) dF
(j)
0 (x

(j)|a, x)
¸

8That is, the one-period forward transition is F
(1)
0 (x(1)|a, x) = Fx(x

(1)|a, x); two-periods forward
we have F

(2)
0 (x(2)|a, x) =

R
Fx(x

(2)|0, x(1))Fx(x(1)|a, x)dx(1); three periods forward, F
(3)
0 (x(3)|a, x) =R R

Fx(x
(3)|0, x(2))Fx(x(2)|0, x(1))Fx(x(1)|a, x)dx(1)dx(2), and so on.
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Given the definitions in (25), this shows that vt(a, x)/ψ = V
(y)
t (a, x)+V

(c)
t (a, x)+V

(opt)
t (a, x).

This implies that Pt(x) = Pr(ε̃t ≤ (vt(1, x) − vt(0, x))/ψ) = Fε̃|t,x(Ṽ
(y)
t (x) + Ṽ

(c)
t (x) +

Ṽ
(opt)
t (x)). Q.E.D. ¥

Proposition 3 establishes that we can decompose additively the differential value function

ṽt into the functions Ṽ
(y)
t , Ṽ (c)

t , and Ṽ
(opt)
t . This decomposition is not arbitrary. We show

below that we can identify these three components of the differential value function, and

that these components, together with Fε̃|x,t, is all what we need in order to construct the

counterfactual choice probability P ∗t . First, note that the functions Ṽ
(y)
t and Ṽ

(c)
t do not

depend on the optimal behavior of the individual. Therefore, it is straightforward to show

that these functions after the policy intervention are:

Ṽ
(y)∗
t (x, ω) + Ṽ

(c)∗
t (x) = Ṽ

(y)
t (x, ω) + Ṽ

(c)
t (x) + Υ̃t(x, ω) (26)

where Υ̃t(x, ω) ≡ Υt(1, x, ω)−Υt(0, x, ω) and

Υt(a, x, ω) = τ t(a, x, ω) +
T−tP
j=1

βj
∙Z

τ t+j(0, x
(j), ω(j)) dF

(j)
0 (x

(j)|a, x)dF (j)
ω (ω(j)|ω)

¸
(27)

Given the functions {τ t}, the discount factor and the transition probabilities, it is straight-

forward to construct Υ̃t(x, ω), which is identified.

The value function V
(opt)
t depends on the agent’s future optimal behavior and therefore

on the optimal choice probability functions from period t+ 1 until period T . To emphasize

this dependence, we incorporate future choice probabilities as an explicit argument in this

function: Ṽ (opt)
t (x, ω; {Pt+j : j > 0}). Note that all the primitives that enter explicitly in

this value function (i.e., transition probabilities, distribution of ε̃, and discount factor) are

policy invariant: they are the same before and after the policy change. Therefore, the only

way in which the value function Ṽ (opt)
t is affected by the policy change is through the change

in the optimal behavior between periods t+1 and T , i.e., through the change in the optimal

choice probabilities between t+ 1 and T . Taking into account these considerations, we can
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write the counterfactual choice probability functions as follows:

P ∗t (x, ω) = Fε̃|x,t

³
Υ̃t(x, ω) + Ṽ

(y)
t (x, ω) + Ṽ

(c)
t (x) + Ṽ

(opt)
t (x, ω; {P ∗t+j : j > 0})

´
(28)

Proposition 4 establishes the identification of the counterfactual choice probabilities.

PROPOSITION 4: Suppose that Assumptions 1 to 6 hold and that the discount factor β is

known. For any period t, define the set [X×Ω]∗t ≡ {(x, ω) ∈ X×Ω : ṽ∗t (x, ω) ≥ ṽt(x,−∞)}.

The counterfactual choice probability functions {P ∗t } are identified over the sets {[X×Ω]∗t}.

Starting at the last period, t = T , the probability P ∗t (x0, ω0) can be obtained recursively as:

P ∗t (x0, ω0) = Pt(x0, ω
(τ)
t (x0, ω0)) (29)

where ω
(τ)
t (x0, ω0) is a function from [X × Ω]∗t into Ω that is implicitly defined as the value

ω ∈ Ω that solves the equation:

Ṽ
(y)
t (x0, ω)+Ṽ

(opt)
t (x0, ω; {Pt+j : j > 0}) = Υ̃t(x0, ω0)+Ṽ

(y)
t (x0, ω0)+Ṽ

(opt)
t (x0, ω0; {P ∗t+j : j > 0})

(30)

Furthermore, the differential value functions {Ṽ (c)
t } are identified on X, and the probability

distributions {Fε̃|x,t} are identified on ν̃t(X×Ω)×X, where ν̃t(X×Ω) is the space {ν̃t(x, ω) :

(x, ω) ∈ X ×Ω}.

Proof: We start at last period T and then proceed backwards. At period T , there is no

future and therefore the decision problem is static. We can apply Proposition 1 to show the

identification of functions P ∗T , c̃T and Fε̃|x,T . Let (x0, ω0) be a point in the set [X × Ω]∗T

and let ω(τ)T (x0, ω0) be the function that is defined in the enunciate of the Proposition. For

period T , ω(τ)T (x0, ω0) is implicitly defined as the value ω ∈ Ω that solves the equation

h̃T (x0, ω) = τ̃T (x0, ω0) + h̃T (x0, ω0). By Assumption 5, the function ω
(τ)
T (x0, ω0) exists and

is unique at any point (x0, ω0) ∈ [X ×Ω]∗T . Using this function, it is clear that:

P ∗T (x0, ω0) = Fε̃|x0,T

³
τ̃T (x0, ω0) + h̃T (x0, ω0) + c̃T (x0)

´
= Fε̃|x0,T

³
h̃T (x0, ω

(τ)
T (x0, ω0)) + c̃T (x0)

´
= PT (x0, ω

(τ)
T (x0, ω0))
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Given that the factual choice probability function PT is identified on X×Ω and the function

ω
(τ)
T is identified on [X × Ω]∗T , it is clear that P

∗
T is identified on [X × Ω]∗T . Following the

same arguments as in Proposition 1, we can prove the identification of functions c̃T (which is

equal to Ṽ (c)
T ) and Fε̃|x,T . Now, consider the decision problem at some period t < T . Suppose

that the sequence of future probability functions {P ∗t+j : j > 0} and the sequence of future

distribution functions {Fε̃|x,t+j : j > 0} are identified. Then, it is clear that the function

Ṽ
(opt)
t (.; {P ∗t+j : j > 0}) is also identified because it only depends on {P ∗t+j : j > 0} and

{Fε̃|x,t+j : j > 0}. The functions Υ̃t, Ṽ
(y)
t and Ṽ

(opt)
t (.; {Pt+j : j > 0}) are also identified. By

Assumptions 4 and 5 the function ω(τ)t exists and is unique at any point in the set [X ×Ω]∗t .

And given the identification of Υ̃t, Ṽ
(y)
t , Ṽ (opt)

t (.; {P ∗t+j : j > 0}), and Ṽ
(opt)
t (.; {Pt+j : j > 0}),

it is clear that ω(τ)t is identified on [X ×Ω]∗t . Using this function, we have that:

P ∗t (x0, ω0) = Fε̃|x0,t

³
Υ̃t(x0, ω0) + Ṽ

(y)
t (x0, ω0) + Ṽ

(c)
t (x0) + Ṽ

(opt)
t (x0, ω0; {P ∗t+j : j > 0})

´
= Fε̃|x0,t

³
Ṽ
(y)
t (x0, ω

(τ)
t (x0, ω0)) + Ṽ

(c)
t (x0) + Ṽ

(opt)
t (x0, ω

(τ)
t (x0, ω0); {Pt+j : j > 0})

´
= Pt(x0, ω

(τ)
t (x0, ω0))

Therefore, P ∗t is identified. Following the same arguments as in Proposition 1, we can prove

the identification of functions Ṽ (c)
t and Fε̃|x,t. Thus, by a backwards induction argument, the

sequence of functions {P ∗t , Ṽ
(c)
t , Fε̃|x,t : t = 1, 2, ..., T} is identified. Q.E.D. ¥

The functions {Ṽ (c)
t } depend on preferences and on transition probabilities of the state

variables. Without further restrictions we cannot separately identify preferences. A restric-

tion that identifies the utility function c(a, x)/ψ is the "normalization" c(0, x) = 0 for any

x ∈ X. By the definition of Ṽ (c)
t in equation (25) it is simple to verify that under this

restriction we have that V (c)
t (0, x) = 0 and Ṽ

(c)
t (x) = V

(c)
t (1, x) = c(1, x)/ψ. Furthermore,

this normalization is innocuous for the type of counterfactual experiments that we consider

in this paper (i.e., Assumption 3). That is, if the true c(0, x) is not zero, then it is no longer

true that our estimator of Ṽ (c)
t is a consistent estimator of c(1, x)/ψ, but this misspecifica-

tion does not affect the consistency of our estimation of P ∗t because P
∗
t depends on c(1, x)/ψ
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and c(0, x)/ψ only though Ṽ
(c)
t . Nevertheless, this normalization is not innocuous for the

evaluation of other type of policy interventions which we do not consider in this paper, such

as those that modify the transition probabilities of the state variables or the discount factor.

Proposition 5 establishes the identification of the welfare effect function
¡
V ∗σ,t − Vσ,t

¢
/ψ.

PROPOSITION 5: Under the conditions in Proposition 4 the welfare effect functions
¡
V ∗σ,t − Vσ,t

¢
/ψ

are identified. We can obtain these functions as:

(V ∗σ,t(x, ω)− Vσ,t(x, ω))/ψ = Υt(0, x, ω) +
£
G
¡
P ∗t (x, ω), Fε̃|x,t

¢
−G

¡
Pt(x, ω), Fε̃|x,t

¢¤
+

h
Ṽ
(opt)
t (0, x, ω; {P ∗t+j : j > 0})− Ṽ

(opt)
t (0, x, ω; {Pt+j : j > 0})

i
(31)

where G (P, F ) is McFadden’s surplus function as defined in Lemma 1.

Proof. By the definition of the value functions V ∗σ,t and Vσ,t, we have that:¡
V ∗σ,t(x, ω)− Vσ,t(x, ω)

¢
/ψ

=

∙Z
max
a∈A

{v∗t (a, x, ω) + ε(a)} dFε|x,t(ε)−
Z
max
a∈A

{vt(a, x, ω) + ε(a)} dFε|x,t(ε)

¸
/ψ

= [v∗t (0, x, ω)− vt(0, x, ω)] /ψ +G
¡
P ∗t (x, ω), Fε̃|x,t

¢
−G

¡
Pt(x, ω), Fε̃|x,t

¢
We know from Proposition 3 that v(0, x, ω)/ψ = V

(y)
t (0, x, ω)+V

(c)
t (0, x, ω)+V

(opt)
t (0, x, ω;P )

and v∗(0, x, ω)/ψ = Υt(0, x, ω) + V
(y)
t (0, x, ω) + V

(c)
t (0, x, ω) + V

(opt)
t (0, x, ω;P ∗). Solving

these expressions into the equation for
¡
V ∗σ,t(x, ω)− Vσ,t(x, ω)

¢
/ψ, we can get equation (31).

Proposition 5 establishes the identification of all the functions in the right hand side of this

equation. Q.E.D. ¥

4 Estimation method

Suppose that we have a random sample of N individuals, indexed by i, for which we observe

actions, states and outcomes at two consecutive periods: {aiti , ai,ti+1, xiti , xi,ti+1, yiti , yi,ti+1}.

The method proceeds in two steps.

Step 1: Estimation of the outcome function h, the transition probabilities Fω and Fx, and

the (factual) choice probability functions {Pt}. First, we estimate the outcome functions ht.
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Given these functions we can get the residuals ω̂iti = ĥ−1ti (yiti , aiti , xiti) which are consistent

estimates of the true ω0s. Then, we use {ω̂iti} to obtain a kernel estimator of the transition

density function of ω. For instance,

f̂ω(ω
0|ω) =

∙PN
i=1K

µ
ω − ω̂iti

bωn

¶¸−1 ∙PN
i=1K

µ
ω − ω̂iti

bωn

¶
K

µ
ω0 − ω̂i,ti+1

bωn

¶¸
(32)

where bωn is the bandwidth and K(.) is the kernel function. Similarly, we estimate the

transition density function fx and the choice probability functions Pt using a kernel method.

For instance,

P̂t(x, ω) =

PN
i=1 aiti I {ti = t} K

µ
x− xiti

bxn

¶
K

µ
ω − ω̂iti

bωn

¶
PN

i=1 I {ti = t} K

µ
x− xiti

bxn

¶
K

µ
ω − ω̂iti

bωn

¶ (33)

In all these kernel estimations we use cross-validation to select the optimal bandwidth.9

Step 2: Recursive Backwards estimation of the functions {P̂ ∗t }, {ω
(τ)
t } and {Fε̃|x,t}.

[At period T] Starting at the last period T , we can estimate ω(τ)T (x0, ω0) using

the estimator ω̂(τ)T (x0, ω0) that solves in ω the equation ĥT (x0, ω) = τ̃T (x0, ω0) +

ĥT (x0, ω0). For instance, suppose that h̃t(x, ω) = gt(x) exp(σtω), where gt(.) is

nonparametrically specified. This is the class of outcome function that we use in

9In some applications, the kernel estimate of the function P may not be strictly monotonic in ω.
Monotonicity of P̂ is necessary for the subsequent estimation of the threshold functions ωτt and therefore for
the estimation of the effects of the counterfactual policy. If that is the case, we can impose monotonicity
using the isotonic-smooth (IS) kernel estimator proposed by Mukerjee (1988) and Mammen (1991). The
estimator can be defined in two steps. Suppose that the observations have been sorted with respect to the
variable ω̂, such that ω̂1 ≤ ω̂2 ≤ ... ≤ ω̂N . The first step is an isotonic regression for {ai} on {ω̂i}:

P̂I(xi, ω̂i) = max
s≤i

min
t≥s

Pt
j=s aj

t− s+ 1

The second step introduces smoothing by using a Nadaraya-Watson kernel estimator where the dependent
variable is the isotonic regression {P̂I((xi, ω̂i)} and the explanatory variable is ω̂.

P̂IS(x, ω) =

PN
i=1 P̂I(xi, ω̂i) I {ti = t} K

µ
x− xi
bxn

¶
K

µ
ω − ω̂i
bωn

¶
PN

i=1 I {ti = t}K
µ
x− xi
bxn

¶
K

µ
ω − ω̂i
bωn

¶
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the empirical application in section 4. Then, there is the following closed form

expression for ω̂(τ)T (x0, ω0):

ω̂
(τ)
T (x0, ω0) = ω0 +

1

σ̂T
log

µ
1 +

τ̃T (x0, ω0)

ĝT (x0) exp{σ̂Tω0}

¶
(34)

We calculate ω̂(τ)T (x0, ω0) for every x0 ∈ X and over a finite grid of points Ω̂ that

is included in Ω. Then, we estimate P ∗T (x0, ω0) as:

P̂ ∗T (x0, ω0) = P̂T (x0, ω̂
(τ)
T (x0, ω0))

=

PN
i=1 aiti I {ti = T} K

µ
x− xiti

bxn

¶
K

Ã
ω̂
(τ)
T (x0, ω0)− ω̂iti

bωn

!
PN

i=1 I {ti = T} K

µ
x− xiti

bxn

¶
K

Ã
ω̂
(τ)
T (x0, ω0)− ω̂iti

bωn

!
(35)

We can also estimate the distribution function Fε̃|x,T as:

F̂ε̃|x0,T (u0) = P̂T (x0, ω̂
∗
T (x0, u0))

=

PN
i=1 aiti I {ti = T} K

µ
x− xiti

bxn

¶
K

µ
ω̂∗T (x0, u0)− ω̂iti

bωn

¶
PN

i=1 I {ti = T} K

µ
x− xiti

bxn

¶
K

µ
ω̂∗T (x0, u0)− ω̂iti

bωn

¶
(36)

where ω̂∗T (x0, u0) is the value of ω that solves the equation ĥT (x0, ω) = u0 +

ĥT (x0, P̂
−1
T (x0, 0.5)). Following with the example with h̃t(x, ω) = gt(x) exp(σtω),

we have also a closed form expression for ω̂∗T (x0, u0):

ω̂∗T (x0, u0) = P̂−1T (x0, 0.5) +
1

σ̂T
log

Ã
1 +

u0

ĝT (x0) exp{σ̂T P̂−1T (x0, 0.5)}

!
(37)

As with function ω̂
(τ)
T , we calculate ω̂

∗
T (x0, ω0) for every x0 ∈ X and over a finite

grid of points Ω̂ ⊂ Ω.

[At period t < T] Using the definitions of functions Ṽ (y)
t and Ṽ (opt)

t we construct

the estimators V̂ (y)
t (x0, ω0), V̂

(opt)
t (x0, ω0; {P̂t+j : j > 0}) and V̂ (opt)

t (x0, ω0; {P̂ ∗t+j :

j > 0}). Note that there is a recursive formula for V (y)
t and V

(opt)
t in terms of
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only transition probabilities and V (y)
t+1 and V

(opt)
t+1 . Given these estimators, we can

now obtain the estimators ω̂(τ)t and ω̂∗T . Then, we get:

P̂ ∗t (x0, ω0) =

PN
i=1 aiti I {ti = t} K

µ
x− xiti

bxn

¶
K

Ã
ω̂
(τ)
t (x0, ω0)− ω̂iti

bωn

!
PN

i=1 I {ti = t} K

µ
x− xiti

bxn

¶
K

Ã
ω̂
(τ)
t (x0, ω0)− ω̂iti

bωn

!
(38)

and

F̂ε̃|x0,t(u0) =

PN
i=1 aiti I {ti = t} K

µ
x− xiti

bxn

¶
K

µ
ω̂∗t (x0, u0)− ω̂iti

bωn

¶
PN

i=1 I {ti = t} K

µ
x− xiti

bxn

¶
K

µ
ω̂∗t (x0, u0)− ω̂iti

bωn

¶
(39)

This estimator of {P̂ ∗t } is consistent and asymptotically normal under standard regularity

conditions. The Nadaraya-Watson estimators in step 1 are consistent, and the estimators

in step 2 are continuous and differentiable functions of the estimators in step 1. However,

we do not derive in this paper the rate of convergence and the asymptotic distribution of

our estimator of P̂ ∗t . In the empirical application that we present in section 5, we use the

bootstrap method to approximate the standard errors of the estimated policy effects.

The computational cost of getting a point estimate using this procedure is equivalent to

solving the dynamic programming problem once. Though the computational cost increases

exponentially with the number of cells in the state space, it is clear that we can use this

method for any dynamic programming model that we be solved once in a reasonable CPU

time. Of course, obtaining bootstrap standard errors is computationally more intensive.

In some applications with not few observations or not enough sample variability, the

nonparametric estimator of {P̂ ∗t } can be quite imprecise. However, we may be interested

in some aggregate average effects of the policy, such as the Average Treatment Effect,

ATEt = Ex,ω(P
∗
t (xti , ωti) − Pt(xti , ωti)). This parameter can be consistently estimated by

using (1/N)
Pn

i=1 I{ti = t}(P̂ ∗t (xti , ωti)− P̂t(xti , ωti)) which is typically a root-N consistent
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estimator and that can provide precise estimates even when the estimator of the functions

have a large variance.

5 An application

This section presents an application of this methodology to evaluate the effects of an hypo-

thetical reform in the social security pension system in Sweden. The main purpose of this

application is to illustrate the implementation of the method and to show that it can provide

meaningful results in relevant contexts. Our model of retirement behavior follows Rust and

Phelan (1997) and Karlstrom, Palme and Svensson (2004). The reform that we consider

consists in a delay of three years in eligibility ages of the public pension system. The mini-

mum age to claim a public pension goes from 60 to 63 years, and the normal retirement age

goes from 65 to 68. This type of reform has been and it is still considered in many OECD

countries.

5.1 A model of retirement behavior

At the beginning of each year, individuals decide whether to continue working (at = 1) or to

retire from the labor force (at = 0). This decision is irreversible. Individuals have a utility

function that is additively separable in consumption (Ct) and leisure (Lt). More specifically,

Ũt = ψC UC(Ct) + ψL(t,mt, εt) UL(Lt) (40)

where the functions ψC and ψL(t,mt, εt) capture individual heterogeneity in the marginal

utilities of consumption and leisure, respectively10; t represents age; mt is marital status; and

εt is an individual idiosyncratic shock in the marginal utility of leisure that is unobservable

to the econometrician (e.g., unobserved health status).

If the individual works, his hours of leisure are equal to L(1, t,mt, εt) and his annual

earnings are equal to the labor earnings Wt. If the individual decides to retire, then his

hours of leisure are L(0, t,mt, εt) and earnings are equal to retirement benefits Bt. Thus,

10The marginal utility of consumption ψC may depend on time-invariant individual characteristics.
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we can write leisure as Lt = L(at, t,mt, εt) and annual earnings as Yt = atWt + (1 − at)Bt.

Labor earnings depend on age and on a wage shock:

log(Wt) = hW (t) + ωt+1 (41)

hW (.) is a function and ωt+1 is an individual wage shock that follows a Markov process

ωt+1 = ρ(ωt) + ξt+1 where ρ(.) is a function and ξt+1 is the innovation of the process. The

individual knows ωt when he decides whether to retire at age t, but he does not know the

innovation ξt+1. Retirement benefits depend on retirement age (rat) and on pension points

(ppt): Bt = B(rat, ppt). We describe this function in section 5.2 below.

The state variables of the model are εt, ωt and xt = (t,mt, rat, ppt). Note that the

retirement status (i.e., at−1) is implicitly given by the retirement age. Since the individual

has uncertainty about current labor earnings, the relevant current utility Ut is the expected

utility Et(Ũt) where the information set at period t is (at, xt, ωt, εt).

Ut = Et(Ũt) = ψC Et (UC (Ct)) + ψL(t,mt, εt) UL (L(at, t,mt, εt)) (42)

Define the functions c(0, t,mt) and c(1, t,mt) and the variables εt(0) and εt(1) such that, for

a = 0, 1:
c(a, t,mt) ≡ Median (ψL(t,mt, εt) UL (L(a, t,mt, εt)) | t,mt)

εt(a) ≡ ψL(t,mt, εt) UL (L(a, t,mt, εt))− c(a, t,mt)
(43)

Using these definitions we can rewrite the utility function as:

Ut = ψC Et (UC (Ct)) + c(at, t,mt) + εt(at) (44)

We now show that the utility function Ut can be represented in the form that we postu-

late in Assumptions 1 and 2. That is, we have to show that the term ψC Et(UC(Ct)) can

be written as ψyt, where yt is an observable variable for the researcher. If we could observe

individuals’ consumption Ct, we would need very weak assumptions to have the type of

structure in Assumptions 1 and 2. However, as in many other previous econometric models

of retirement, we do not observe individual consumption. Instead, we observe labor earnings
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Wt for those individuals who are working, and potential retirement benefits Bt for every indi-

vidual, working or not. Following Rust and Phelan (1997), we assume that: (1) consumption

is proportional to earnings, and the proportionality may depend on age and marital status,

Ct = λYt; and (2) the utility of consumption is a CRRA function, UC(Ct) = Cα
t where α

is the parameter of relative risk aversion. Furthermore, we also assume that this parameter

α is known to the researcher. We can evaluate a policy under different scenarios for the

degree of risk aversion. Under these conditions we can write ψC Et(UC(Ct)) as ψyt, where

ψ ≡ ψCλ
α, and yt ≡ E(Y α

t |at, t,mt, rat, ppt, ωt).

Now we show that Assumption 4 holds in this model: i.e., that the outcome function yt =

h(at, xt, ωt) is identified. When at = 0, we have that h(0, xt, ωt) = Et(B
α
t ) = B(rat, ppt)

α,

which is a known function for the econometrician. If at = 0, then h(1, xt, ωt) = E(Wα
t |xt, ωt).

Given the previous assumptions about labor earnings, we have that Wα
t = exp{αhW (t) +

αρ(ωt)+αξt+1}, and Et(W
α
t ) = exp{αhW (t)+αρ(ωt)}. We now describe how hW (.) and ρ(.)

can be nonparametrically identified from data on Wt and t from the subsample of working

individuals. Given that lnWt = hW (t) + ρ(ωt) + ξt+1, and ωt = lnWt−1− hW (t− 1), we can

write:

lnWt = hW (t) + ρ (lnWt−1 − hW (t− 1)) + ξt+1 if at = 1 (45)

The innovation ξt+1 is i.i.d. over time and unknown to the individual when he makes his

decision at period t. Therefore, ξt+1 is independent of at and it is also independent of t and

Wt−1. The orthogonality condition E(ξt+1|at = 1, t,Wt−1) = 0 provides moment conditions

that allow us to estimate nonparametrically the functions hW (.) and ρ (.).
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5.2 Social security pensions and the counterfactual reform

The form of the benefits function B(., .) depends on the rules of the pension system. For the

case of social security pensions in Sweden, we have that:

Bt = B(rat, ppt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if rat < RAmin

ppt (1 + κ1 (rat −RAnorm)) if RAmin ≤ rat < RAnorm

ppt (1 + κ2 (rat −RAnorm)) if RAnorm ≤ rat < RAmax

ppt (1 + κ2 (RAmax −RAnorm)) if rat ≥ RAmax

(46)

where RAmin, RAnorm, RAmax, κ1 and κ2 are policy parameters that characterize the function

B(., .). More specifically: RAmin is the minimum retirement age; RAnorm is the "normal"

retirement age; κ1 is a permanent actuarial reduction in benefits per year of early retirement;

and κ2 is a permanent actuarial increase in benefits per month of delayed retirement. For

our sample period, 1983-1997, the values of these parameters in Sweden were RAmin = 60

years, RAnorm = 65 years, RAmax = 70 years, κ1 = 6.0% and κ2 = 8.4%.

An individual’s pension points ppt are a deterministic function of his whole history of

earnings. However, it turns out that for many public pension systems the transition rule of

pension points can be very closely approximated by a Markov process. For instance, that is

the case for social security pensions in US (see Rust and Phelan, 1997), for Germany (see

Knaus, 2002), and for Sweden (see Karlstrom, Palme and Svensson, 2004). Following these

previous studies, we assume that pension points follow the process:

log (ppt+1) = hB(t, ppt) + ηt+1 (47)

where hB(., .) is a function and ηt+1 is the innovation of the process.

As mentioned above, the counterfactual policy that we evaluate is a three years delay

in the eligibility ages. The new eligibility ages are RA∗min = 63, RA
∗
norm = 68, RA

∗
max = 73

years. Figure 1 presents the age profiles of benefits function before and after the reform.

This reform does not affect the current utility when working, and therefore τ(1, xt) = 0. The

change in the current utility when retired τ(0, xt), measured in units of the outcome variable
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(i.e., earnings), is just the vertical difference between the two benefits functions in figure 1.

We represent the age profile of τ(0, xt)/ppt in figure 2.

5.3 Data

The data come from the Swedish Longitudinal Individual Panel (LINDA). This dataset has

been used before by Karlstrom, Palme and Svensson (2004, KPS hereinafter) to estimate

a (parametric) dynamic structural model of retirement. The sample in KPS includes blue-

collar workers who were born between 1927 and 1940. The observation period is 1983 to

1997. We select the subsample of men from the sample used by KPS. Our sample contains

3,129 individuals and 34,593 observations during the period 1983-1997.

Table 1 presents summary statistics for the variables that we use in this paper. Figure

3 shows the histogram of retirement ages for the subsample of 834 individuals who retire

during the sample period. The average retirement age is 63.5 years and almost 46% of these

individuals retired at age 65. Despite the peak at age 65, there is significant variability in

retirement age. The range of retirement ages goes from 51to 69 years.

5.4 Step 1: Wage function and transition and choice probabilities

(a) Wage equation and stochastic process of the wage shock. Remember from section 5.1

that solving the stochastic process of the wage shock into the log-wage equation we get:

log(Wit) = hW (t) + ρ (lnWi,t−1 − hW (t− 1)) + ξi,t+1 if ait = 1 (48)

We observeWit andWi,t−1 only for the subsample of individuals who are still working at age

t. However, under our assumption that ξi,t+1 is unknown to the individual when he makes

his decision at age t, there is not selection bias in a least squares estimation of hW (.) and

ρ (.) using equation (48). In contrast, note that a least squares estimation of hW (.) based

on equation log(Wit) = hW (t) + ωi,t+1 suffers of selection bias because ωi,t+1 is not mean

independent of the individual’s choice at period t. The Markov structure of the wage shock

and our assumption on the arrival of information are both needed to control for potential
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selection bias. We consider a polynomial series approximation to the functions hW and ρ,

and we use Akaike’s information criterion to choose the orders of these polynomials. Table

2 presents our estimates and figures 4 and 5 represent graphically these estimates. The

function hW is quadratic and ρ is cubic. Labor earnings reach their life-cycle maximum at

age 60. There is strong persistence in the labor earnings shock ω. Given the residuals of

this regression, {ξ̂i,t+1}, we estimate the density function of ξ using a kernel method with a

Gaussian kernel and cross-validation for the choice of bandwidth. The estimated density, in

figure 6, has very strong kurtosis at zero together with a long left tail. That is, innovations

in labor earnings are typically very close to zero, but it is possible to observe a very negative

shock (e.g., a period of unemployment during the year). Figure 7 shows that these properties

also appear in the density of ω.

(b) Stochastic process of pension points. From section 5.2, the specification of this process

is: log (ppi,t+1) = hB(t, ppit) + ηi,t+1, where ηi,t+1 is i.i.d. over individuals and over time.

Again we use polynomial series for the function hB(., .) and Akaike’s information criterion

to choose the order of the polynomial. Table 3 presents the estimated function ĥB. For any

age, there is a monotonic relationship between current and next year pension points.

(c) Transition of marital status. The transition probability function of the married dummy

variable mt depends on age. Figure 8 presents our kernel estimates of the probabilities

Pr(mt+1 = 1|mt = 1, t) and Pr(mt+1 = 1|mt = 0, t). Not surprisingly (especially for male,

given that their mortality rate is higher than for women), there is very high persistence in

marital status at these ages, and age has very small incidence in these transition probabilities.

Thus, the estimated probabilities Pr(mt+1 = 1|mt = 1, t) and Pr(mt+1 = 0|mt = 0, t) are

very close to one for every age t.

(d) Choice probability functions Pt(m, pp, ω). We have considered two estimation methods

of the factual (and counterfactual) choice probabilities: (1) Nadaraya-Watson with cross-

validation; and (2) a logit model with a very flexible specification in terms of the variables

(t,m, pp, ω). The estimation results from the two methods are qualitatively identical. Table
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4 presents our estimation of the logit model. The explanatory variables are dummies for each

age between 55 and 68, a second order polynomial in age, the wage shock, the logarithm

of pension points, and interactions of these variables with the married dummy. Figure 9

presents the age profile of the estimated probability of working evaluated at the mean values

of the other explanatory variables. The most striking feature is the very low probability of

working at the "normal" retirement age of 65. Though the probability decreases significantly

between ages 60 and 64, the big jump occurs from age 64 to 65, i.e., from a value 0.8258 to

0.3280. The estimates are not very precise for ages older than 65 because there is a small

number of individuals who are still working at these ages. Figure 10 represents the estimated

probability of working as a function of the wage shock ω and evaluated at age 65 and the

mean values of the other state variables. The estimated function is monotonic in ω. The

estimation is quite precise for values of ω between values −1.0 and +0.5 which correspond

to percentiles 3.5 and 98.5, respectively. Most importantly, the probability of working is

very responsive to the wage shock. This probability goes from 0.17 for ω = −2.0 to 0.97 for

ω = 2.0. This strong dependence of the working decision with respect to ω is important to

identify the functions ω(τ)t and ω∗t (and therefore the counterfactuals P
∗
t ) over a wide range

of variation.

5.5 Step 2: Counterfactual choice probabilities

We start at age T = 75, and use the backwards recursive method that we have described in

section 4 to obtain the sequence of estimators {P̂ ∗t }, {ω̂
(τ)
t } and {F̂ε̃|x,t} between t = 50 and

t = 75. Figure 11 presents the estimates P̂t and P̂ ∗t for ages between 50 and 75 and evaluated

at the mean values of the other state variables (mt, ppt, ωt). The average retirement age goes

from 63.47 to 64.95 years. The policy has several effects on the age profile of the probability

of working. It increases between ages 60 and 63. There is a significant reduction at age 63.

The probability of working increases between ages 64 and 67. There is also a new downward

peak at age 68, the new ’normal’ retirement age. Interestingly, the down peak at age 65 does
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not completely disappear after the reform. This could be due to misspecification of the model

or to small-sample-bias in the nonparametric estimates. The peak at age 65 disappears only

when we (artificially) increase the magnitude of the partial derivative of P̂t with respect to

ωt. Therefore, it seems that the effect might be due to a downward bias in our estimate

of this partial derivative. Alternatively, one might think that there are reasons, other than

the social security system, why people retire at 65..Or at least, that there exit other reasons

which are not captured by our simple model of retirement.

6 Summary and Conclusions

This paper presents a nonparametric approach to evaluate the behavioral and welfare ef-

fects of counterfactual policies using a dynamic structural model. The nonparametric struc-

tural model retains all the economic assumptions of a structural model (e.g., exogene-

ity/endogeneity assumptions, equilibrium concept, rational expectations, transition rules,

independence assumptions, agents’ information) but it is more robust than a parametric

model because it relax the parametric assumptions. There are many situations in which a

parametric model can be preferred either because its parsimony or to obtain more precise

estimates. In these cases, our nonparametric approach can be used to test for the validity

of a particular parametric specification and to search for a valid parametric model. The

nonparametric approach has another interesting feature: it makes transparent the role that

the substantial economic assumptions play in the model and in the evaluation of a policy. It

is also a necessary first step to test the validity of these economic assumptions.
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Table 1
Summary Statistics

3,129 blue-collar male workers. Cohorts 1927-1940
Years 1983 to 1997

Variable Mean Std. Dev. Min Max # Obs.

Married 0.711 0.453 0 1 34,593

Annual Labor Earnings(1) 195.8 52.2 1.0 1,591.0 34,593

Pension Points 4.46 0.88 0.13 6.50 34,593

Retirement Age(2) 63.47 2.39 51 69 834

(1) In thousands of Swedish Kronas. In 1997, US$ 1 ' 8 Swedish Kronas.

(2) Subsample of complete (uncensored) histories.

Table 2
Estimation of Wage Equation

and Stochastic Process of Wage Shock

Parameter(1) Estimate (Std. Error)

hW,0 (constant) 4.7465 (0.2041)

hW,1 (t) 0.0174 (0.0072)

hW,2 (t2) -0.00014 (0.00006)

ρ1 0.9161 (0.0037)

ρ2 0.0019 (0.0044)

ρ3 -0.0299 (0.0012)

Std.Dev. ξ 0.1607

R-square 0.7160
# Observations 30,630

(1) The function hW (t) is hW,0 + hW,1 t+ hW,2 t
2

The function ρ(ω) is ρ1 ω + ρ2 ω
2 + ρ3 ω

3
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Table 3
Estimation of Stochastic Process

of Pension Points

Parameter Estimate (Std. Error)

constant 0.0287 (0.0155)

log(pp) 0.9630 (0.0049)

log(pp)2 0.0161 (0.0004)

age 0.0009 (0.0005)

age2 -6.64 × 10−6 (4.53 × 10−6)

log(pp) × age -0.0003 (0.0001)

Std.Dev. η 0.0116

R-square 0.9971
# Observations 30,630
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Table 4
Estimation of Choice Probability Function

(Probability of Working)

Variable Estimate (Std. Error) Variable Estimate (Std. Error)

constant 32.5230 (8.8893) age -0.4328 (0.1450)

dummy age=55 -0.1483 (0.8785) log(pp) -5.496093 (5.1121)

dummy age=56 -1.1586 (0.6228) log(pp)2 -0.3162 (0.2612)

dummy age=57 -1.2248 (0.5914) ωt 8.7521 (3.2608)

dummy age=58 -1.1069 (0.6028) ω2t 0.2580 (0.1364)

dummy age=59 -1.4228 (0.5969) age × log(pp) 0.0929 (0.0820)

dummy age=60 -2.6664 (0.5925) age × ωt -0.1104 (0.0486)

dummy age=61 -2.0099 (0.6365) age × married -0.0404 (0.0369)

dummy age=62 -2.0048 (0.6763) log(pp) × ωt -0.4187 (0.3581)

dummy age=63 -1.9853 (0.7224) dummy married 3.0896 (2.4262)

dummy age=64 -3.2234 (0.7647) married × log(pp) -0.3552 (0.4223)

dummy age=65 -5.1725 (0.8199) married × ωt 0.0413 (0.2940)

dummy age=66 -2.9375 (0.9134)
R-square 0.4644

dummy age=67 -2.2061 (1.011)
# Observations 31,464

dummy age=68 -2.2779 (1.0870)
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Figure 1. Age Profile of Pension Benefits (per pension point)

Before and After the Reform
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Figure 3. Histogram of Retirement Ages for the

Subsample of 834 Men who Retire During the Sample Period
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Figure 8. Transition Probabilities of Marital Status (Kernel Estimates)
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Figure 9. Prob. Working vs. age

(evaluated at mean values of mt, ppt and ωt)
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Figure 10. Prob. Working vs. ωt

(evaluated at Age=65 and at mean values of mt, ppt)
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Figure 11. Factual an Counterfactual Probabilities

of Working at different ages

(Evaluated at mean values of mt, ppt, ωt)
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