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Abstract
This paper is concerned with tests of restrictions on the sample path of condi-
tional quantile processes. These tests are tantamount to assessments of lack
of fit for models of conditional quantile functions or more generally as tests
of how certain covariates affect the distribution of an outcome variable of
interest. This paper extends tests of the generalized likelihood ratio (GLR)
type as introduced by Fan et al. (2001) to nonparametric inference prob-
lems regarding conditional quantile processes. As such, the tests proposed
here present viable alternatives to existing methods based on the Khmaladze
(1981, 1988) martingale transformation. The range of inference problems
that may be addressed by the methods proposed here is wide, and includes
tests of nonparametric nulls against nonparametric alternatives as well as
tests of parametric specifications against nonparametric alternatives. In par-
ticular, it is shown that a class of GLR statistics based on nonparametric
additive quantile regressions have pivotal asymptotic distributions given by
the suprema of squares of Bessel processes, as in Hawkins (1987) and An-
drews (1993). The tests proposed here are also shown to be asymptotically
rate-optimal for nonparametric hypothesis testing according to the formula-
tions of Ingster (1993a,b,c) and of Spokoiny (1996).
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1 Introduction
This paper continues a line of work begun in recent years that aims to provide
practitioners with tools appropriate for making inferences regarding the sample
path of a conditional quantile process. In the first instance, inference problems of
this nature are of demonstrated importance in the context of assessments of lack
of fit for postulated models of conditional quantile functions. These problems can
also be re-expressed as questions relevant to the analysis of treatment effects in
biostatistics and in the evaluation of social programmes, where it is often of in-
terest to know how a particular intervention or policy affects the distribution of
the outcome variable of interest. In particular, distributional hypotheses associ-
ated with these questions can often be reformulated in terms of restrictions on the
sample path of the associated conditional quantile process.

Much of the recent econometric work in this area has focused on the de-
velopment of asymptotic distributional approximations based on empirical quan-
tile regression processes. In the context of linear quantile regressions, Koenker
and Machado (1999) introduced goodness-of-fit processes analogous to the least-
squares R2 statistic with the goal of allowing practitioners to test composite hy-
potheses regarding the effect of covariates over a range of quantiles.

Subsequent research by Koenker and Xiao (2002) investigated the asymptotic
distribution theory of “Wald-type” Kolmogorov-Smirnov goodness-of-fit tests ap-
propriate for composite hypotheses regarding the form of linear conditional quan-
tile functions over a range of quantiles.1 The difficulty considered by Koenker
and Xiao (2002) involves the requirement to estimate nuisance parameters in im-
portant cases where the researcher is unable to specify completely the form of
the conditional quantile process under the null.2 In such cases the correspond-
ing Kolmogorov-Smirnov test statistic is not asymptotically pivotal, a problem
analogous to that considered by Durbin (1973) for the one-sample Kolmogorov-
Smirnov test when there exist estimated parameters under the null. Koenker and
Xiao (2002) solve the problem posed by the non-pivotal nature of the asymptotic
null distribution by adapting an idea of Khmaladze (1981, 1988) in which a trans-

1The setting considered in Koenker and Xiao (2002) difers slightly from that considered by
Koenker and Machado (1999, §2.3), as the Wald-type inference processes for quantile regression
considered in the earlier work did not involve the presence of nuisance parameters under the null.

2For example, the researcher may desire a test of the hypothesis that the distribution of the
responses under a binary treatment differs from that under the null by a pure location shift at
all quantiles in some interval [τ, 1 − τ ] ⊂ (0, 1), but may be unwilling to specify the sign and
magnitude of the location shift.



formation of the Kolmogorov-Smirnov statistic results in the elimination of the
non-pivotal components of the test statistic, resulting in a goodness-of-fit process
equal to a martingale that converges to a standard Brownian motion. The deriva-
tion of the Khmaladze transformation is based on the Doob-Meyer decomposition
of a parametric empirical quantile process and its practical implementation re-
quires the estimation of nonparametric nuisance functions. 3

This paper proposes to extend the existing toolkit that has been developed for
inference problems regarding conditional quantile processes in two different di-
rections. In particular, an alternative is proposed to existing methods based on
Khmaladzation. In addition, this paper also generalizes the inferential domain
from families of (approximately) linear conditional quantile functions to certain
families of nonparametric conditional quantile functions. It is shown below that
tests of the generalized likelihood ratio (GLR) type—first developed in a number
of nonparametric mean regression contexts by Fan et al. (2001)—are both feasi-
ble and advantageous for nonparametric inference problems involving the sample
path of conditional quantile processes.4 The range of inference problems regard-
ing conditional quantile processes that can be handled in this framework is wide,
and includes tests of nonparametric nulls against nonparametric alternatives, as
well as tests of parametric specifications of conditional quantile functions against
broadly defined nonparametric alternatives.

The GLR test statistics proposed in this paper are shown to have asymptotic
null distributions that are free of nuisance parameters. In particular, the limiting

3Chernozhukov and Fernández-Val (2005) have recently proposed an alternative to the some-
what complex solution of “Khmaladzation” proposed by Koenker and Xiao (2002) for problems of
this type. Noting that the Kolmogorov-Smirnov statistic that is the focus of the paper of Koenker
and Xiao (2002) is based on the linear quantile regression process, Chernozhukov and Fernández-
Val (2005) proposed to estimate the null distribution of the test statistic by subsampling an appro-
priately re-centred empirical quantile regression process.

4The families of conditional quantile functions considered here are assumed to be members of
a smooth class of functions—in particular, function classes associated with the names of Besov,
Hölder or Sobolev. As described in Section 2, this paper also explicitly considers families of
conditional quantile functions that have the additive structure

F−1
Yi|Xi

(α) = m0,α +
d∑

j=1

mj,α(Xij),

where Xij is the jth component of Xi ∈ Rd. As such, the work in this paper can also be viewed
as an extension to a quantile regression setting of the GLR inference procedures for nonparametric
additive mean regression models proposed by Fan and Jiang (2005).



null distributions are given by the suprema taken over closed subintervals of (0, 1)
of the squares of scalar-valued Bessel processes, as in De Long (1981); Hawkins
(1987) and Andrews (1993). Following Kiefer (1959), the GLR test statistics
consequently have a limiting behaviour identical to that of a squared Kolmogorov-
Smirnov statistic in a setting without estimated nuisance parameters.

The inference procedures proposed here are also shown to generalize a famil-
iar power-optimality property for parametric likelihood ratio tests in the sense of
achieving optimal rates of convergence for nonparametric hypothesis testing ac-
cording to the formulations of Ingster (1993a,b,c) and of Spokoiny (1996)—this
further highlights the usefulness of the methods proposed below.

The remainder of this paper proceeds as follows. Section 2 describes the spe-
cific class of nonparametric quantile regression model considered in this paper and
provides informal details regarding a natural estimation procedure for members
of that class. Section 3 introduces the class of testing problem and test statistic
considered here with specific reference to the class of quantile regression model
presented in Section 2. Section 4 presents the large-sample properties of the GLR
testing procedure proposed here, while Section 5 reports the results of two sets of
simulation experiments designed to verify the quality of the asymptotic approx-
imations presented in Section 4. Section 6 concludes. Proofs of theorems and a
statement of the regularity conditions presumed to underlie the analysis presented
here appear in the appendix.

Notational conventions
All limits are taken as n → ∞, where n denotes the sample size. The symbol A denotes a
set whose closure is contained in (0, 1). D[0, 1] denotes the space of bounded real-valued right-
continuous functions with left-hand limits on [0,1] endowed with the uniform metric. DA denotes
the analogous space defined for cadlag functions on A. The relation ⇒ denotes the weak con-
vergence5 of sequences of measurable random elements in D[0, 1] or in DA, while d→ and

p→
denote convergence in distribution and in probability, respectively. The relation An

p
= Bn holds if

and only if An − Bn
p→ 0. The assumption of Borel-measurability is maintained throughout for

any sequence of random variables or vectors converging in probability to zero. Finally, define for
α ∈ (0, 1) the “check function” ρα(u) ≡ u {α− 1(u < 0)} and the corresponding score function
ψα(u) ≡ α− 1(u < 0).

5Cf. e.g., Billingsley (1999, p. 1).



2 Nonparametric Estimators of Additive Quantile
Regressions

We suppose the researcher has a sample of n observations

(Y1,X
T
1 )T , . . . , (Yn,XT

n )T ,

where the Yi’s are real-valued outcome variables, and the Xi’s are d-dimensional
covariates for some finite d ≥ 2. The jth component of Xi is denoted Xij . In this
paper, the assumption is maintained that the outcome variables are generated by
the quantile regression model

Yi = m0,α +
d∑

j=1

mj,α(Xij) + εiα, (1)

where for α ∈ (0, 1), m0,α is an unknown constant, mj,α(·) (j = 1, . . . , d) are
unknown functions, and εiα is an unobserved random disturbance with conditional
α-quantile given Xi = x equal to zero for almost every x in the support of Xi.

This paper is concerned with nonparametric inference for the families of con-
ditional quantile functions implied by the model given in (1). The focus here on
an additive, rather than a fully nonparametric, quantile regression specification is
motivated by a common desire in empirical practice to avoid the small-sample
imprecision attendant in fully nonparametric settings brought about by the curse
of dimensionality when several covariates are involved. Nonparametric additive
modelling involves an effective reduction of the dimension of the statistical prob-
lem while naturally retaining a greater degree of flexibility than simple parametric
models.6

The analysis in this paper proceeds from the assumption that the additive com-
ponents m1,α, . . . ,md,α in (1) are estimated at the optimal pointwise rate n−

q
2q+1

when each mj,α, for j = 1, . . . , d, is q-times continuously differentiable. To the
best of this author’s knowledge, the only estimator of the additive components in
(1) that attains this level of performance is the procedure proposed by Horowitz
and Lee (2005).7 As such, the metaphorical empirical researcher in this paper is
assumed to adopt the estimation procedure for (1) set out in Horowitz and Lee

6Cf. inter alia Hastie and Tibshirani (1990), Fan and Gijbels (1996) and Horowitz and Lee
(2002) for examples of how nonparametric additive modelling has been applied in empirical prac-
tice.

7Other estimators of the nonparametric additive quantile regression model given in (1) include



(2005). The regularity conditions adopted in the analysis presented below are also
identical to those adopted by Horowitz and Lee (2005), and for ease of reference
are repeated here in Appendix A.

For the sake of completeness, an informal description of the estimation proce-
dure of Horowitz and Lee (2005) is now given.8 First let xj denote the jth compo-
nent of an arbitrary vector x ∈ Rd, and set mα(x) ≡ ∑d

j=1 mj,α(xj). Without loss
of generality, assume that the support of the covariates in (1) is SX ≡ [−1, 1]d,
and for each of the additive components in (1), impose the normalization

∫ 1

−1

mj(x)dx = 0, j = 1, . . . , d

in order to ensure identifiability.
The additive components in (1) are estimated using a two-step procedure. The

first step involves the fitting of a series estimator to the conditional α-quantile
function implied by (1). In this connection, let {pb : b = 1, 2, . . .} denote a
complete orthonormal basis for smooth functions defined on [−1, 1] and satisfying
the assumptions detailed below in Appendix A. For a given positive intger B, set

PB(x) ≡ [
1, p1(x

1), . . . , pB(x1), p1(x
2), . . . , pB(x2), . . . , p1(x

d), . . . , pB(xd)
]T

.

As such, a series approximation to the conditional α-quantile function m0,α +
mα(x) is given by PB(x)T θB, where θB ∈ RBd+1. Access to a tractable large-
sample theory for the first stage depends on the tuning parameter B satisfying
certain conditions given in Appendix A as n → ∞. Assuming these conditions
are satisfied, θB is estimated with

θ̂n,B ≡ arg min
θ

1

n

n∑
i=1

ρα

(
Yi − PB(Xi)

T θ
)
.

The first-step series estimator of the conditional α-quantile function given x ∈ SX

is accordingly given as

m̄n,0,α + m̄n,α(x) ≡ PB(x)T θ̂n,B,

those involving splines (cf. e.g., Doksum and Koo, 2000), backfitting (cf. e.g., Fan and Gijbels,
1996, p. 296–297) and marginal integration (de Gooijer and Zerom, 2003). The large-sample
theory of spline and backfitting estimators is complicated to the extent that pointwise rates of
convergence and limiting distributions are unknown. On the other hand, the estimator of de Gooijer
and Zerom (2003) is asymptotically normal, but takes as a starting point a fully nonparametric d-
variate quantile regression model, and consequently suffers from the curse of dimensionality.

8Readers already familiar with this estimator might wish to skip ahead to Section 3.



where m̄n,0,α denotes the first component of θ̂n,B and m̄n,α(x) denotes the sum
of the individual series estimators m̄n,j,α(xj) of mj,α(xj), j = 1, . . . , d. The first-
stage series estimator obviously imposes an explicit assumption of additivity, and
as such, allows for a faster rate of convergence in bias than would be possible in
the case of a fully nonparametric d-variate estimator.

The second stage of the procedure of Horowitz and Lee (2005) involves the
sequential fitting of univariate locally polynomial α-quantile regressions for each
of the additive components in (1) with the other additive components replaced
with the corresponding series estimates obtained in the first stage. In particular,
the second-stage estimator of the jth additive component mj,α(xj) requires an
estimator of

m−j,α(X−j,i) ≡ m1,α(Xi1) + · · ·+ mj−1,α(Xi,j−1) + mj+1,α(Xi,j+1) + · · ·
+md,α(Xid), (2)

where X−j,i ≡ (Xi1, . . . , Xi,j−1, Xi,j+1, . . . , Xid)
T . Let m̄n,−j,α(X−j,i) denote

the quantity in (2) with each of the functions on the right-hand side replaced by its
corresponding first-stage series estimate. Assuming that mj,α is at least q-times
continuously differentiable on [−1, 1], mj,α(xj) is estimated using m̂n,j,α(xj) ≡
β̂j

n,0,α, where

β̂j
n,α ≡

(
β̂j

n,0,α, β̂j
n,1,α, . . . , β̂j

n,q−1,α

)T

is defined as

β̂j
n,α ≡ arg min

{βj
0,βj

1,...,βj
q−1}

1

nhn

n∑
i=1

ρα

(
Yi − m̄n,0,α − βj

0 −
q−1∑

k=1

βj
k

[
Xij − xj

hn

]k

−m̄n,−j,α(X−j,i)) ·K
(

xj −Xij

hn

)
, (3)

where K : [−1, 1] → R+ and hn respectively denote a kernel function and band-
width satisfying conditions detailed in Appendix A. The fitting of the locally
polynomial regression in the second stage essentially creates a local averaging ef-
fect that reduces the variance of the estimators of the additive components over
that attained by the first-stage series estimates—thus it is the second stage that
allows each additive component in (1) to be estimated at the optimal rate of con-
vergence. Combining the first-stage estimate of the constant term m0,α and the



second-stage estimates of the additive functions yields

m̂n,α(Xi) ≡ m̄n,0,α +
d∑

j=1

m̂n,j,α(xj)

as an estimator of the conditional α-quantile of Yi given Xi = x.
This section concludes by reproducing, for ease of reference, the main result

of Horowitz and Lee (2005).

Proposition 1. Horowitz and Lee (2005, Theorem 3)
Suppose the conditions set out in Appendix A are valid. Also suppose that the

order of continuous differentiability q of each of the additive components in (1)
satisfies q ≥ 2 and is even. Let j ∈ {1, . . . , d}.

Then for any xj satisfying |xj| ≤ 1 − hn, where hn is the bandwidth used to
implement the second-stage locally polynomial regression,

∣∣m̂n,j,α(xj)−mj,α(xj)
∣∣ = Op

(
n−

q
2q+1

)
,

and
n

q
2q+1

(
m̂n,j,α(xj)−mj,α(xj)

) d→ N
(
B(xj), V (xj)

)
,

where B(xj) and V (xj) are as described in the statement of Horowitz and Lee
(2005, Theorem 3). Furthermore, for k 6= j and any xk satisfying |xk| ≤ 1− hn,

n
q

2q+1
(
m̂n,j,α(xj)−mj,α(xj)

)

and n
q

2q+1
(
m̂n,k,α(xk)−mk,α(xk)

)
are asymptotically independently normally

distributed.

3 The Testing Problem and Test Statistic
The class of inference problem and associated class of test statistic considered in
this paper are defined in this section. First note that the class of model given above
in (1) implies that the conditional α-quantile function of the outcome variable
satisfies

F−1
Yi|Xi

(α) = m0,α +
d∑

j=1

mj,α(Xij). (4)



As such, the covariates are seen to be capable of potentially affecting the entire
shape—and not merely the location—of the conditional distribution of the out-
come variable.

The assumption is maintained that the specification in (4) holds for all α ∈ A,
whereA is taken to be a closed subinterval of (0, 1). This paper is concerned with
the general hypothesis

H0 : {mj1,α, . . . , mjH ,α} ⊂ MH0(α) ∀α ∈ A, (5)

where for some 1 ≤ H ≤ d, {j1, . . . , jH} ⊂ {1, . . . , d}. The set MH0(α) in
(5) denotes a collection of functions, possibly indexed by a finite-dimensional
parameter, that satisfies some restriction of interest for all quantiles α in the index
set A. The hypothesis given in (5) is clearly of interest when assessing the fit
of a certain parametric specification of the conditional α-quantile function. More
generally, (5) nests a broad class of inference problems regarding the effect of
the covariate vector on the conditional distribution of the outcome variable. In
particular, several hypotheses customarily of interest in the analysis of treatment
effects can be seen to fit into the general rubric expressed by (5) when the vector
of covariates contains an intervention or policy variable.9

It is assumed that estimates of the additive components in (4) satisfying the
restrictions of the null hypothesis are available,10 and that under the null, the
restricted estimates also converge at the same pointwise rate as the unrestricted
estimates.11 Denote by m̃n,1,α, . . . , m̃n,d,α the restricted estimates of mj,α (j =
1, . . . , d) satisfying the constraints of (5). As was the case in Section 2, let
m̂n,1,α, . . . , m̂n,d,α denote the unrestricted estimates of the additive components
in (4), and let m̄n,0,α denote the first-stage series estimate of the constant term
m0,α. Let

RS0(α) ≡
n∑

i=1

ρα

(
Yi − m̄n,0,α −

d∑
j=1

m̃n,j,α(Xij)

)
(6)

9These hypotheses include tests for the significance of treatment (i.e., non-zero treatment ef-
fect) for at least one quantile α ∈ A; for the homogeneity (i.e., constancy) of treatment effect for
all quantiles α ∈ A versus the heterogeneity of treatment impact for some α ∈ A; and the stochas-
tic dominance of treatment for all α ∈ A. Concrete empirical motivation for the consideration of
inferential questions of this nature can be found in e.g., Abadie (2002), Bitler et al. (2006) and
Heckman et al. (1997).

10For example these restricted estimates might be obtained by solving appropriately constrained
variants of the second-stage optimization problem given above in (3).

11Cf. the first conclusion in the statement of Proposition 1.



denote the value of the objective function for the nonparametric additive α-quantile
regression problem under the restrictions of the hypothesis given in (5). Similarly,
let

RS1(α) ≡
n∑

i=1

ρα

(
Yi − m̄n,0,α −

d∑
j=1

m̂n,j,α(Xij)

)
(7)

denote the optimized value of the α-quantile regression criterion function. As
such, the statistic

λn(H0, α) ≡ RS0(α)−RS1(α) (8)

provides a natural assessment of the plausibility of the restrictions of H0 at a fixed
value of α ∈ A. This paper proposes to test H0 as given above in (5) by examining
values of the statistic

sup
α∈A

(
λn(H0, α)− bn,α(K)

Sn,α

)2

, (9)

where the normalizing sequences {bn,α(K)} and {Sn,α} are as given below in
Section 4.1.

Noting that the statistic λn(H0, α) in (8) coincides with the parametric log-
likelihood ratio statistic if the disturbance terms in (1) above are homoskedastic
and generated by the asymmetric Laplace density fα(ε) = α(1−α) exp (−ρα(ε)),
this paper follows Fan et al. (2001) by referring to λn(H0, α) as a generalized
likelihood ratio (GLR) statistic. In what follows, the testing procedure based on
the statistic in (9) will be referred to as a GLR test.

4 Main Results
The large-sample theory of the GLR testing procedure proposed above for the
general class of hypotheses given in (5) is developed in this section.

4.1 Asymptotic null distribution
First define

Xn ≡ {X1, . . . , Xn}. (10)

The assumption is made that the elements of Xn are supported on the space SX ≡
[−1, 1]d.



Recalling the definitions introduced above of m0,α, m̄n,0,α, mj,α(·), m̂n,j,α(·)
and m̃n,j,α(·) for j = 1, . . . , d, set mα(Xi) ≡ m0,α+

∑d
j=1 mj,α(Xij), m̂n,α(Xi) ≡

m̄n,0,α +
∑d

j=1 m̂n,j,α(Xij) and m̃n,α(Xi) ≡ m̄n,0,α +
∑d

j=1 m̃n,j,α(Xij). Also de-
fine

S2
n,α ≡ α(1− α)

n∑
i=1

(m̂n,α(Xi)− m̃n,α(Xi))
2 (11)

and

bn,α(K) ≡ 1

2
(α(1− α))−1 Kd(0)

n∑
i=1

f 3
α(0|Xi)

[
(m̃n,α(Xi)−mα(Xi))

2

− (m̂n,α(Xi)−mα(Xi))
2] , (12)

where for any x ∈ SX , fα(ε|x) is the conditional density of the disturbance term
in (1) above. For α ∈ (0, 1), let B(α) ∼ N(0, α(1 − α)). Following general
usage, we refer to the process {Q(α)}, where

Q(α) ≡ |B(α)|√
α(1− α)

, (13)

as a Bessel process.
The limiting distribution of the test statistic given above in (9) under H0 is

given as follows.

Theorem 1. Under the conditions given in Appendix A, and for Sn,α and bn,α(K)
as defined in (11) and (12) respectively,

sup
α∈[τ,1−τ ]

(
λn(H0, α)− bn,α(K)

Sn,α

)2
∣∣∣∣∣Xn

d→ sup
α∈[τ,1−τ ]

Q2(α).

under H0 for τ ∈ (
0, 1

2

]
.

Proof. The proof appears in Appendix B.

As such, the GLR test statistic behaves asymptotically under the null like the
square of a Kolmogorov-Smirnov statistic.12 Critical values for the limit quan-
tity supα∈[τ,1−τ ] Q

2(α) can be found in Andrews (1993, Table 1) for a number of
different settings of τ .

12Cf. Kiefer (1959).



The conclusion of Theorem 1 indicates that the asymptotic null distribution of
the test statistic proposed here is free of nuisance parameters. In particular, the
unknown quantities in the normalizing constants given above in (11) and (12) can
be replaced with reasonable estimates without affecting the asymptotic properties
of the test under the null. In addition, any of the additive components appearing in
(4) whose values are unaffected by the restrictions of (5) can also be replaced with
estimates without affecting the conclusion of Theorem 1. As mentioned above in
the Introduction, this property is in contrast to some of the earlier work on this
problem, where the asymptotic null distributions of the test statistics are affected
by the estimation of nuisance parameters.13

4.2 Asymptotic power analysis
This section considers the power in large samples of the GLR testing procedure
against a broad class of smooth functional alternatives that shrink to the null as
n → ∞. For simplicity, attention is restricted here to the test of the exclusion
restriction

H0 : md,α ≡ 0 ∀α ∈ [τ, 1− τ ] (14)

for some fixed τ ∈ (
0, 1

2

]
. The assumption is made that for each n, the class of

relevant alternatives to the hypothesis in (14) belongs to a Hölder class of differ-
entiable functions on R2 that vanish as n → ∞. In particular, the sequence of
local alternatives {H1n} is considered, where

H1n : md,α(xd) = µn

(
α, xd

)
(15)

for some α ∈ [τ, 1 − τ ] and all xd ∈ [−1, 1], and where µn

(
α, xd

) → 0 as
n → ∞. Each member of the sequence of functions {µn} is assumed to have
bounded derivatives of order q on [τ, 1− τ ]× [−1, 1].

The local power of the GLR testing procedure for the hypothesis given in (14)
against H1n is approximable via the conclusion of the following theorem.

Theorem 2. Suppose the conditions set out in Appendix A hold, and that H1n in
(15) holds for some α′ ∈ [τ, 1− τ ]. Then

sup
α∈[τ,1−τ ]

(
λn(H0, α)− b

(0)
n,α(K)

Sn,α

)2
∣∣∣∣∣∣
Xn

asy∼ sup
α∈[τ,1−τ ]

Q2(α) + C
(1)
n,α′(K),

13Cf. esp. Koenker and Xiao (2002).



where Sn,α is as given above in (11), and where b
(0)
n,α(K) and C

(1)
n,α′(K) are as

defined below in (20) and (23), respectively.

Proof. The proof appears in Appendix C.

In a manner analogous to that of Theorem 1, the conclusion of Theorem 2 al-
lows for an assessment of the local power of the GLR testing procedure to be made
in simulations with any nuisance parameters replaced with reasonable estimates.

In order to investigate issues of optimality, we define a class of functions Mn

whose members are boundedly differentiable to qth order onR2 such that for every
α ∈ [τ, 1− τ ] and every µn(α, xd) ∈Mn,

V ar
[
fα(0|X1)σ

−2
α (X1)µ

2
n(α,X1d)

]
< D

(
E

[
fα(0|X1)σ

−2
α (X1)µ

2
n(α,X1d)

])2

(16)
for some constant D > 0, and where

E
[
fα(0|X1)σ

−2
α (X1)µ

2
n(α,X1d)

]
= O(1).

For a given r > 0, define

Mn(r) ≡ {
µn ∈Mn : E

[
fα′(0|X1)σ

−2
α′ (X1)µ

2
n(α′, X1d)

] ≥ r2
}

for some α′ ∈ [τ, 1−τ ], and where α′ may in fact depend on n. Denote the critical
function of the GLR test of the null given in (14) by φn. The probability of type-II
error of a level-ω test against the alternative

H1n(α′) : md,α′(x
d) = µn(α′, xd)

is denoted by
β(ω, µn) ≡ P [φn = 0 |md,α′ = µn(α′, ·) ] .

Let
β(ω, r) ≡ sup

µn∈Mn(r)

β(ω, µn).

Following the formulations of Ingster (1993a,b,c),14 it is desired to find the small-
est distance rn = r such that a test with asymptotically non-trivial power is still
possible. Expressed differently, this distance is the distance between the null and
the closest class of alternatives that can be detected by the GLR testing procedure
proposed here.

In particular, it is desired to find the minimax rate of testing rn.15 The follow-
ing theorem derives the minimax rate of testing for the GLR test of (14) against
the class of alternatives described by (15).

14Also cf. Spokoiny (1996).
15In particular, the minimax rate of the level-ω test φn is the smallest rn such that



Theorem 3. Under the conditions of Appendix A, the GLR test of the exclusion
restriction given above in (14) can detect alternatives in the class described by
(15) at a rate rn = n−

q
4q+2 .

Proof. The proof appears in Appendix D.

We note that the bound r2
n = n−

q
2q+1 coincides with the minimax rate of testing

against alternatives lying in Hölder, Sobolev or Besov classes of functions in R2

with bounded derivatives of order q ≥ 1.16 As such, the GLR testing procedure
proposed here can be considered to be asymptotically rate-optimal.

5 Numerical Evidence
This section reports the results of two sets of modest Monte Carlo experiments
intended to evaluate the small-sample quality of the asymptotic approximations
presented in Section 4. In both sets of experiments, 100 replications were used,
and the sample size was set to n = 100. In addition, both sets of experiments in-
volved estimation of the additive components in the conditional quantile functions
according to a reasonable implementation of the two-step method of Horowitz
and Lee (2005, §5).17 The index set of quantiles of interest was taken to be
A ≡ [.15, .85], which for the purpose of computing the test statistic was approx-
imated by a discrete grid Â of 100 equally-spaced points covering the interval
[.15, .85].

1. for every r > rn, ω > 0 and any β > 0, there is a constant c such that β(ω, cr) ≤ β+o(1);
and

2. for any sequence r∗n = o(rn), there exist ω > 0 and β > 0 such that for any c > 0,
P [φn = 1 |md,α′ = µn(α′, ·) ] = ω + o(1) and lim infn β(ω, cr∗n) > β.

16Cf. Ingster (1982, 1993a,b,c) and Guerre and Lavergne (2002).
17In particular, B-splines were used in the first stage, where the number of terms Bn was chosen

to minimize the BIC criterion used in Doksum and Koo (2000), namely,

n log

(
n∑

i=1

ρα

(
Yi − PB (Xi)

T
θ̂nBn

))
+ 2 (log n) Bn.

A locally linear fit was used for the second stage with a normal density kernel truncated at ±3.5
and the bandwidth chosen according to the rule of thumb given in Fan and Gijbels (1996, p. 202).



5.1 Size and local power
The first set of experiments involved simulated data generated according to the
model

Yi = .75Xi1 + 1.5 sin
(
.5πX2

i2

)
+

[
1 + c

(
Xi2 + .25X2

i2

)]
εi, (17)

where
{

(Xi1, Xi2)
T
}

are generated from a bivariate normal distribution with
mean 0, unit variance and covariance .2, and where εi is standard normal and
independently distributed of the covariates. The constant c in (17) was taken
to range over the set {0, .2, .4, .6, .8, 1.0}. As such, c indexes the distance be-
tween the situation where the covariate Xi2 exerts a “pure location-shift” effect
on the conditional distribution of Yi (i.e., homoskedasticity) and the alternative of
Xi2 having a more complicated location-scale-shift effect. The inference problem
considered in this simulation can be accordingly expressed as a test of

H0 : F−1
Yi|Xi1,Xi2

(α) = m1,α(Xi1) + m2(Xi2) ∀α ∈ A = [.15, .85], (18)

where it is emphasized that the function m2(·) does not vary with α. A quantile-
invariant estimator of m2(Xi2) was constructed by averaging estimates of the ad-
ditive component corresponding to Xi2 over a grid of 100 equally-spaced points
Â ≡ {αg} covering the interval [.15, .85]. This estimate was in turn used along
with unrestricted estimates of m1,αg(Xi1) in constructing a grid of GLR statistics
{λn(H0, αg)} for αg ranging over Â. Estimates Ŝn,αg and b̂n,αg(K) of the normal-
izing constants defined above in (11) and (12), respectively, were constructed for
each αg ∈ Â by substituting reasonable estimates of mαg(Xi) and fαg(0|Xi) in
the corresponding locations.18

Approximating the test statistic

sup
α∈[.15,.85]

(
λn(H0, α)− bn,α(K)

Sn,α

)2

18In particular, an unrestricted estimate m̂n,αg (Xi) of mαg (Xi) constructed in the manner
described in the introduction to this section was used, while fαg (0|Xi) was estimated using the
difference quotient

f̂αg (0|Xi) ≡ 2h̃n

m̂n,αg+h̃n
(Xi)− m̂n,αg−h̃n

(Xi)
.

Here the smoothing parameter h̃n was selected according to the plug-in rule of Hall and Sheather
(1988) based on an Edgeworth expansion for studentized quantiles of normally distributed data.



with maxαg∈Â
(

λn(H0,αg)−b̂n,αg (K)

Ŝn,αg

)2

, rejection frequencies of a 5%-test of H0 as
given in (18) are tabulated in Table 1. The critical value for the test was taken
from the appropriate location in Andrews (1993, Table 1) and found to be 8.85.
The empirical rejection probabilities across the 100 simulations conducted are
suggestive of satisfactory size and power performance in small samples against
heteroskedastic local alternatives indexed by the parameter c in (17).

5.2 Sensitivity of the test to estimated nuisance parameters
The goal of the second set of simulations was to assess the sensitivity in small
samples of the distribution of the GLR test statistic to variation in nuisance param-
eters existing under the null. In this connection, the hypothesis of Xi2 exerting a
pure location shift as given above in (18) is maintained. The data-generating pro-
cess considered here is consistent with the null and is given by the homoskedastic
model

Yi = .75Xi1 + 1.5s sin
(
.5πX2

i2

)
+ .25εi, (19)

where {(Xi1, Xi2, εi)} are generated according to the same process used in Sec-
tion 5.1, and where the constant s is taken to range over the set

{
1, 2

3
, 3

2

}
. The

different settings of s are intended to help evaluate the sensitivity of the be-
haviour of the test statistic to variation in the (quantile-invariant) nuisance pa-
rameter m2(Xi2).

Taking Â as before to denote a grid of 100 evenly-spaced points covering the
interval [.15, .85], a simulated sample of 100 normalized GLR test statistics

max
αg∈Â

(
λn(H0, αg)− bn,αg(K)

Sn,αg

)2

was obtained for each of the three settings of s considered. In this simulation,
the true values of the normalizing constants bn,αg(K) and Sn,αg for each αg ∈
Â were used. The densities of the normalized GLR statistics for the location-
shift hypothesis were then estimated using a normal density kernel and the rule-
of-thumb bandwidth h100 = 1.06σ̂100100−.2, where σ̂100 is the standard error in
simulations of the normalized test statistic. The estimated densities are plotted in
Figure 6 for each of the three settings of s considered, and are seen to be very
close, as predicted by the conclusion of Theorem 1. As such, Figure 6 suggests
that the distribution of the normalized GLR test statistics is indeed pivotal in small
samples.



6 Conclusion
This paper has illustrated the utility, feasibility and asymptotic rate-optimality of
tests of the generalized likelihood ratio type as developed by Fan et al. (2001) for
nonparametric inference regarding conditional quantile processes. As such, the
existing set of tools that has been developed to address problems of this type has
been extended in a direction permitting an expansion in the range of inferential
questions that can be handled by nonparametric quantile-based methods of infer-
ence. The GLR tests proposed here also present a viable alternative to existing
methods requiring Khmaladzation.
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A Assumptions
The analysis in this paper is predicated on the same conditions adopted by Horowitz and Lee
(2005). For ease of reference, these conditions are repeated in the following list. Once again,
for any vector x ∈ Rd, xj denotes the jth component of x, while for any matrix M , ‖M‖ ≡√

tr [MMT ] denotes the Euclidean norm.

1. The researcher is faced with iid data
{
(Yi,X

T
i )T : i = 1, . . . , n

}
, where the conditional

α-quantile of Yi given Xi = x satisfies

F−1
Yi|Xi=x(α) = m0,α +

d∑

j=1

mj,α(xj)

for almost every x ∈ [−1, 1]d.

2. The support of the covariates is given by SX ≡ [−1, 1]d. Xi has an absolutely continuous
distribution with respect to Lebesgue measure. The pdf of Xi is bounded, bounded away
from zero, is twice continuously-differentiable in the interior of SX and has continuous
second-order one-sided derivatives on the boundary of SX .

3. Let Fα(0|x) denote the conditional distribution function given Xi = x of the error term
εiα in (1). Then Fα(0|x) = α for almost every x ∈ SX and admits the existence of a (con-
ditional) pdf fα(·|x). There exists a constant Lα < ∞ such that |fα(e1|x)− fα(e2|x)| ≤
Lα|e1 − e2| for all e1 and e2 in a neighbourhood of the origin and all x ∈ SX . There
also exist constants cα > 0 and Cα < ∞ such that cα ≤ fα(e|x) ≤ Cα for all e in a
neighbourhood of the origin and all x ∈ SX .



4. For each j = 1, . . . , d, the additive component mj,α(·) is q-times continuously differen-
tiable in the interior of [−1, 1] and has continuous qth-order one-sided derivatives on the
boundary of [−1, 1] for some q ≥ 2.

5. For some positive integer B, set ΦB ≡ E
[
fα(0|X1)PB(X1)PB(X1)T

]
. The smallest

eigenvalue of ΦB is bounded away from zero for all B, and the largest eigenvalue of ΦB

is bounded for all B.

6. Set ζB ≡ supx∈SX
‖PB(x)‖. The basis functions {pb : b = 1, 2, . . .} satisfy the follow-

ing:

(a) Each function pb is continuous.

(b)
∫ 1

−1
pb(u)du = 0.

(c)
∫ 1

−1
pb(u)pc(u)du =

{
1 , if b = c
0 , otherwise.

(d) As B →∞, ζB = O
(√

B
)

.

(e) Set dB ≡ Bd + 1. Then there exist vectors θB0 ∈ RdB such that

sup
x∈SX

∣∣∣∣∣∣
m0,α +

d∑

j=1

mj,α(xj)− PB(x)T θB0

∣∣∣∣∣∣
= O

(
B−q

)
,

as B →∞.

7. B4

n (log n)2 → 0 and B1+2q

n is bounded as B,n →∞.

8. (a) B = CBnν for some constant CB ∈ (0,∞) and some ν satisfying

1
2q + 1

< ν <
2q + 3
12q + 6

.

As such, q ≥ 2.

(b) hn = Chn−
1

2q+1 for some constant Ch ∈ (0,∞).

9. The smoothing kernel K(·) is a bounded continuous and symmetric pdf supported on
[−1, 1].

10. Let 0B denote the zero vector in RB . For each j ∈ {1, . . . , d}, set

PB,−j(x−j) ≡ [1, p1(x1), . . . , pB(x1), . . . , p1(xj−1), . . . , pB(xj−1),0T
B ,

p1(xj+1), . . . , pB(xj+1), . . . , p1(xd), . . . , pB(xd)]T ,

where x−j ≡ (x1, . . . , xj−1, xj+1, . . . , xd)T . Then the largest eigenvalue of

E
[
PB,−j(X1,−j)PB,−j(X1,−j)T

∣∣ X1j = xj
]

is twice continuously differentiable with respect to xj .



B Proof of Theorem 1
Define the following, for δ ∈ R and α ∈ (0, 1):

rni(δ, α) ≡
[
ρα

(
εiα − n−

q
2q+1 σα(Xi)δ

)
− ρα(εiα)

]
+n−

q
2q+1 σα(Xi)ψα(εiα)δ−1

2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ2.

and

rn(δ, α) ≡
n∑

i=1

rni(δ, α),

where, for x ∈ SX ,

σα(x) ≡
√

α(1− α)
fα(0|x)

.

The following preliminary argument is made.

Lemma 1. For some constant C > 0 and τ ∈ (
0, 1

2

]
, and under the conditions given in Ap-

pendix A,
sup

{
|rn(δ, α)| : |δ| ≤ C

√
log log n, α ∈ [τ, 1− τ ]

}
p→ 0.

Proof. The proof appears in Appendix E.1.

Now consider RS1(α) ≡ ∑n
i=1 ρα(Yi − m̂n,α(Xi)). Set

δ̂n,α(Xi) ≡ n
q

2q+1 (m̂n,α(Xi)−mn,α(Xi))
σα(Xi)

.

Exploiting the conclusion of Lemma 1, we have that

RS1(α) =
n∑

i=1

ρα (εiα − (m̂n,α(Xi)−mn,α(Xi)))

=
n∑

i=1

ρα

(
εiα − n−

q
2q+1 σα(Xi)δ̂n,α(Xi)

)

=
n∑

i=1

[
ρα(εiα)− n−

q
2q+1 σα(Xi)ψα(εiα)δ̂n,α(Xi) +

1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ̂2

n,α(Xi)
]

+op(1)

uniformly for α ∈ [τ, 1− τ ].
Similarly, for

δ̃n,α(Xi) ≡ n
q

2q+1 (m̃n,α(Xi)−mn,α(Xi))
σα(Xi)

,

RS0(α) =
n∑

i=1

[
ρα(εiα)− n−

q
2q+1 σα(Xi)ψα(εiα)δ̃n,α(Xi) +

1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ̃2

n,α(Xi)
]
+op(1),

where the representation holds uniformly for α ∈ [τ, 1− τ ].



Then

λn(H0, α) ≡ RS0(α)−RS1(α)

=
n∑

i=1

[
n−

q
2q+1 σα(Xi)ψα(εiα)

(
δ̂n,α(Xi)− δ̃n,α(Xi)

)

+
1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)

(
δ̃2
n,α(Xi)− δ̂2

n,α(Xi)
)]

+ op(1)

= n−
q

2q+1

n∑

i=1

[
σα(Xi)

(
δ̂n,α(Xi)− δ̃n,α(Xi)

)
ψα(εiα)

]

+
1
2
n−

2q
2q+1 Kd(0)

n∑

i=1

fα(0|Xi)
(
δ̃2
n,α(Xi)− δ̂2

n,α(Xi)
)

+ op(1).

The argument is made that the GLR statistic λn(H0, α) is conditionally asymptotically normal
given Xn.

Lemma 2. Under the conditions given in Appendix A, and where Sn,α and bn,α(K) are as defined
above in (11) and (12) respectively,

λn(H0, α)− bn,α(K)
Sn,α

∣∣∣∣Xn
d→ N(0, 1)

under H0 for α ∈ [τ, 1− τ ].

Proof. The proof appears in Appendix E.2.

Note that the uniform tightness of the sequence
{

n−
q

2q+1

n∑

i=1

σα(Xi)
(
δ̂n,α(Xi)− δ̃n,α(Xi)

)
ψα(εiα)

}

in D[0, 1] can be deduced via an appropriate modification of Shorack (1979, Theorem 2.2).
As such, the sequence

{
λn(H0,α)−bn,α(K)

Sn,α

}
is also uniformly tight in D[0, 1].

Uniform tightness and the conclusion of Lemma 2 imply the desired conclusion.

C Proof of Theorem 2
As was the case above, define for x ∈ SX and α ∈ [τ, 1− τ ] the quantity

σα(x) ≡
√

α(1− α)
fα(0|x)

.



Let

b(0)
n,α(K) ≡ 1

2
Kd(0)

n∑

i=1

fα(0|Xi)σ−2
α (Xi)








d−1∑

j=1

(m̃n,,j,α(Xij)−mj,α(Xij))




2

− [m̂n,α(Xi)−mα(Xi)]
2
}

. (20)

Clearly, under H0, b
(0)
n,α(K) = bn,α(K), where bn,α(K) is as given above in (12). In particular,

we have that under H0,

λn(H0, α)− b(0)
n,α(K) = An,α ∀α ∈ [τ, 1− τ ],

where

An,α ≡
n∑

i=1

ψα(εiα)
d−1∑

j=1

(m̂n,j,α(Xij)− m̃n,j,α(Xij)) +
n∑

i=1

m̂n,d,α(Xid)ψα(εiα). (21)

On the other hand, under H1n, there exists α′ ∈ [τ, 1− τ ] such that

λn(H0, α
′)− b

(0)
n,α′(K) = An,α′ + B

(1)
n,α′(K),

where

B
(1)
n,α′(K) ≡ 1

2
Kd(0)

n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi)

[
µ2

n(α′, Xid)

−2µn(α′, Xid)
d−1∑

j=1

(m̃n,j,α′(Xij)−mj,α′(Xij))


 . (22)

It follows that under H1n there exists α′ ∈ [τ, 1− τ ] such that

(
λn(H0, α

′)− b
(0)
n,α′(K)

Sn,α′

)2

=
(

An,α′

Sn,α′

)2

+ C
(1)
n,α′(K),

where

C
(1)
n,α′(K) ≡ 2An,α′B

(1)
n,α′(K) + B

(1)2

n,α′(K)
S2

n,α′
. (23)

Therefore under H1n, there exists an α′ ∈ [τ, 1− τ ] such that

sup
α∈[τ,1−τ ]

(
λn(H0, α)− b

(0)
n,α(K)

Sn,α

)2

− C
(1)
n,α′(K) = sup

α∈[τ,1−τ ]

(
An,α

Sn,α

)2

.

The desired conclusion follows from arguments made above in the proof of Theorem 1.



D Proof of Theorem 3
Let q̄1−ω denote the (1 − ω)-quantile of the distribution of supα∈[τ,1−τ ] Q

2(α). Under H1n as
described above in (15), there exists an α′ ∈ [τ, 1− τ ] such that the probability of type-II error of
a level-ω test satisfies

β(ω, µn)

= P


 sup

α∈[τ,1−τ ]

(
λn(H0, α)− b

(0)
n,α(K)

Sn,α

)2

< q̄1−ω

∣∣∣∣∣∣
md,α′ = µn(α′, ·)




≤ P




(
λn(H0, α

′)− b
(0)
n,α′(K)

Sn,α′

)2

< q̄1−ω

∣∣∣∣∣∣
md,α′ = µn(α′, ·)




= P

[(
An,α′

Sn,α′

)2

+ C
(1)
n,α′(K) < q̄1−ω

∣∣∣∣∣ md,α′ = µn(α′, ·)
]

, (24)

where Sn,α, b(0)
n,α(K), An,α′ and C

(1)
n,α′(K) are as defined in (11), (20), (21) and (23), respectively.

It is clear from (24) that β(ω, µn) → 0 when C
(1)
n,α′(K) → +∞, which from (23) occurs

when B
(1)
n,α′(K) → +∞, where B

(1)
n,α′(K) is as given above in (22).

Note that
∣∣∣B(1)

n,α′(K)
∣∣∣ ≥ 1

2
Kd(0)

n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi)µ2

n(α′, Xid)

−Kd(0)
n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi) |µn(α′, Xid)|

·
d−1∑

j=1

|m̃n,j,α′(Xij)−mj,α′(Xij)| . (25)

Since
∑d−1

j=1 |m̃n,j,α′(Xij)−mj,α′(Xij)| = Op

(
n−

q
2q+1

)
from the first conclusion of Proposi-

tion 1, and |µn(α′, Xid)| = op(1), the second term in (25) satisfies

Kd(0)
n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi) |µn(α′, Xid)|

d−1∑

j=1

|m̃n,j,α′(Xij)−mj,α′(Xij)| = Op

(
n

q+1
2q+1

)
.

As such, the condition

n
−q−1
2q+1

n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi)µ2

n(α′, Xid) → +∞

with probability approaching one is sufficient for B
(1)
n,α′(K) to be unbounded in probability. In

this connection, consider that

1
n

n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi)µ2

n(α′, Xid)
p
= E

[
fα′(0|Xi)σ−2

α′ (Xi)µ2
n(α′, Xid)

]



by the assumption summarized above in (16) that V ar
[
fα′(0|X1)σ−2

α′ (X1)µ2
n(α′, X1d)

]
is bounded

and by Kolmogorov’s “first inequality”.19 Therefore

n
−q−1
2q+1

n∑

i=1

fα′(0|Xi)σ−2
α′ (Xi)µ2

n(α′, Xid)
p
= n

q
2q+1 E

[
fα′(0|X1)σ−2

α′ (X1)µ2
n(α′, X1d)

]

≥ n
q

2q+1 r2
n.

If n
q

2q+1 r2
n →∞, the smallest value of rn possible in this setting is rn = n−

q
4q+2 .

E Proofs of Lemmas

E.1 Proof of Lemma 1
Let dniα ≡ n−

q
2q+1 σα(Xi)δ = n−

q
2q+1

√
α(1−α)

fα(0|x) δ. We have

rni(δ, α) +
1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ2

= [ρα (εiα − dniα)− ρα(εiα)] + n−
q

2q+1 σα(Xi)ψα(εiα)δ
= [(εiα − dniα) (α− 1 (εiα < dniα))− εiα (α− 1 (εiα < 0))] + dniα (α− 1 (εiα < 0))
= [(εiα − dniα)α− (εiα − dniα) 1 (εiα < dniα)− εiαα + εiα1 (εiα < 0) + dniαα− dniα1 (εiα < 0)]
= [(dniα − εiα) 1 (0 ≤ εiα < dniα) + (εiα − dniα) 1 (dniα ≤ εiα < 0)]
≤ 2 |dniα|
= O

(
n−

q
2q+1

√
log log n

)
.

If dniα > 0, then

E [rni(δ, α)|Xi] = −1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ2 +

∫ dniα

0

(dniα − u) fα(u|Xi)du. (26)

If dniα ≤ 0, then

E [rni(δ, α)|Xi] = −1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ2 +

∫ 0

dniα

(u− dniα) fα(u|Xi)du. (27)

Consider the situation in (26):

E [rni(δ, α)|Xi] = −1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ2 + O

(
d2

niα

)

= −1
2
n−

2q
2q+1 fα(0|Xi)Kd(0)δ2 + O

(
n−

2q
2q+1 δ2

)

= O
(
n−

2q
2q+1 log log n

)
.

19Cf. Chung (2001, Theorem 5.3.1).



Similarly, proceeding from (27) also leads to

E [rni(δ, α)|Xi] = O
(
n−

2q
2q+1 log log n

)
.

Now if dniα > 0,

E
[
r2
niα(δ, α)|Xi

] ≤
∫ dniα

0

(dniα − u)2 fα(u|Xi)du

= O
(
d3

niα

)

= O
(
n−

3q
2q+1 (log log n)

3
2

)
.

If dniα ≤ 0, a similar bound arises:

E
[
r2
ni(δ, α)

∣∣ Xi

] ≤
∫ 0

dniα

(dniα − u)2 fα(u|Xi)du

= O
(
n−

3q
2q+1 (log log n)

3
2

)
.

Therefore V ar [rni(δ, α)|Xi] = O
(
n−

3q
2q+1 (log log n)

3
2

)
. It follows that

E

[
n∑

i=1

rni(δ, α)

∣∣∣∣∣Xn

]
= O

(
n

1
2q+1 log log n

)

and

V ar

[
n∑

i=1

rni(δ, α)

∣∣∣∣∣Xn

]
= O

(
n
−q+1
2q+1 (log log n)

3
2

)
= O

(
n−

1
2q+1 log log n

)
.

Recall the definition rn(δ, α) ≡ ∑n
i=1 rni(δ, α). Consider Markov’s inequality applied in this

context as
P [ |rn(δ, α)| ≥ sn| Xn] ≤ exp(−snt)E [ exp (rn(δ, α)t)| Xn] , (28)

where the assumption is made that t ∈
(
0, n

q
2q+1 (log log n)−

1
2

)
, thus ensuring that rn(δ, α)t is

bounded. Set

Mrn(t) ≡ E [ exp (rn(δ, α)t)| Xn]

=
n∏

i=1

E [ exp (rni(δ, α)t)|Xi] .

Arguing via Taylor’s theorem, there exists a constant c > 0 such that

log Mrn(t) ≤ tE [rn(δ, α)| Xn] + ct2V ar [rn(δ, α)| Xn] . (29)

Substituting (29) into (28) produces the bound

P [ |rn(δ, α)| ≥ sn| Xn] ≤ exp
(−snt + tE [rn(δ, α)| Xn] + ct2V ar [rn(δ, α)| Xn]

)
. (30)



For any η > 0, set
sn ≡ η, (31)

and
t ≡ n−

2
2q+1 log n. (32)

Substituting (31) and (32) into (30), we find that there exists a constant n0 not depending on δ or
on α such that

P [ |rn(δ, α)| ≥ η| Xn] ≤ n−η (33)

for all n ≥ n0.
A chaining argument is now made in order to complete the proof. For ζ, θ > 0, let αi ≡

τ + in−
ζ

2q+1 for i = 0, 1, 2, . . . , (1− 2τ) n
ζ

2q+1 , and let δi ≡ −C
√

log log n + in−
θ

2q+1 for
i = 0, 1, 2, . . . , 2Cn

θ
2q+1

√
log log n. Set

S ≡ {(α, δ) : α = αi, δ = δj for some i and j} .

The cardinality of S is accordingly O
(
n

ζ+θ
2q+1

√
log log n

)
and we can exploit (33) to get

P

[
sup

S
|rn(δ, α)| ≥ η

∣∣∣∣Xn

]
≤ n

ζ+θ
2q+1

√
log log n · n−η (34)

for n sufficiently large. Now pick {δ1, δ2} ⊂
{
δ : |δ| ≤ C

√
log log n

}
with |δ1 − δ2| ≤ n−

θ
2q+1

and {α1, α2} ⊂ [τ, 1− τ ] with |α1 − α2| ≤ n−
ζ

2q+1 . Set

∆i ≡ |rni(δ1, α1)| ,

and

∆ ≡
∣∣∣∣∣

n∑

i=1

(rni(δ1, α1)− rni(δ2, α2))

∣∣∣∣∣ .

Also set
dniα1 ≡ n−

q
2q+1 σα1(Xi)δ1,

and
dniα2 ≡ n−

q
2q+1 σα2(Xi)δ2.

Then

∆i = |{(dniα1 − εiα1)1 (0 ≤ εiα1 < dniα1) + (εiα1 − dniα1)1 (dniα1 ≤ εiα1 < 0)}
−{(dniα2 − εiα2)1 (0 ≤ εiα2 < dniα2) + (εiα2 − dniα2)1 (dniα2 ≤ εiα2 < 0)}
−1

2
n−

2q
2q+1 fα1(0|Xi)Kd(0)δ2

1 +
1
2
n−

2q
2q+1 fα2(0|Xi)Kd(0)δ2

2

∣∣∣∣ .

First consider

∆i1 ≡ {(dniα1 − εiα1)1 (0 ≤ εiα1 < dniα1) + (εiα1 − dniα1)1 (dniα1 ≤ εiα1 < 0)}
−{(dniα2 − εiα2)1 (0 ≤ εiα2 < dniα2) + (εiα2 − dniα2)1 (dniα2 ≤ εiα2 < 0)} .



We say that ∆i1 ∈
{
∆11

i1 , ∆01
i1 , ∆10

i1 , ∆00
i1

}
, where

∆i1 =





∆11
i1 iff dniα1 > 0 & dniα2 > 0;

∆01
i1 iff dniα1 ≤ 0 & dniα2 > 0;

∆10
i1 iff dniα1 > 0 & dniα2 ≤ 0;

∆00
i1 iff dniα1 ≤ 0 & dniα2 ≤ 0.

We have

∆11
i1 ≤ |dniα1 − dniα2 |+ |εiα2 − εiα1 |

= n−
q

2q+1

∣∣∣∣∣

√
α1(1− α1)
fα1(0|Xi)

(δ1 − δ2) + δ2

(√
α1(1− α1)
fα1(0|Xi)

−
√

α2(1− α2)
fα2(0|Xi)

)∣∣∣∣∣ + O
(
n−

ζ
2q+1

)

≤ O
(
n
−q−θ
2q+1

)
+ O

(
n
−q−ζ
2q+1

√
log log n

)
+ O

(
n−

ζ
2q+1

)

= O
(
n
−q−θ
2q+1

)
+ O

(
n−

ζ
2q+1

)
.

Similarly,
∆00

i1 ≤ O
(
n
−q−θ
2q+1

)
+ O

(
n−

ζ
2q+1

)
.

In addition,
∆01

i1 = |εiα1 − dniα1 − (dniα2 − εiα2)| = O
(
n−

ζ
2q+1

)
,

and
∆10

i1 = O
(
n−

ζ
2q+1

)
.

As such,
∆i1 ≤ O

(
n
−q−θ
2q+1

)
+ O

(
n−

ζ
2q+1

)
.

Now consider

∆i2 ≡
∣∣∣∣
1
2
n−

2q
2q+1 fα2(0|Xi)Kd(0)δ2

2 −
1
2
n−

2q
2q+1 fα1(0|Xi)Kd(0)δ2

1

∣∣∣∣

≤ 1
2
Kd(0)n−

2q
2q+1

∣∣fα2(0|Xi)δ2
2 − fα1(0|Xi)δ2

1

∣∣

=
1
2
Kd(0)n−

2q
2q+1

∣∣fα2(0|Xi)
(
δ2
2 − δ2

1

)
+ fα2(0|Xi)δ2

1 − fα1(0|Xi)δ2
1

∣∣

= O
(
n
−2q−θ
2q+1

√
log log n

)
+ O

(
n
−2q−ζ
2q+1 log log n

)
.

It follows that

∆i ≤ ∆i1 + ∆i2

≤ O
(
n
−q−θ
2q+1

)
+ O

(
n−

ζ
2q+1

)
+ O

(
n
−2q−θ
2q+1

√
log log n

)
+ O

(
n
−2q−ζ
2q+1 log log n

)

= O
(
n
−q−θ
2q+1

)
+ O

(
n−

ζ
2q+1

)

≤ O
(
n−1−η

)



for θ, ζ sufficiently large. In this case,

∆ ≤
n∑

i=1

∆i = O
(
n−η

)
.

Now

|E [rni(δ1, α1)|Xi]− E [rni(δ2, α2)|Xi]|
≤

∣∣∣∣−
1
2
n−

2q
2q+1 Kd(0)fα1(0|Xi)δ2

1 +
1
2
n−

2q
2q+1 Kd(0)fα2(0|Xi)δ2

2

∣∣∣∣

+2

∣∣∣∣∣
∫ |dniα1 |

0

(u− |dniα1 |)fα1(u|Xi)du−
∫ |dniα2 |

0

(u− |dniα2 |)fα2(u|Xi)du

∣∣∣∣∣

= O
(
n
−2q−θ
2q+1

√
log log n

)
+ O

(
n
−2q−ζ
2q+1 log log n

)
+ O

(
n−

ζ
2q+1

)

= O
(
n
−2q−θ
2q+1

√
log log n

)
+ O

(
n−

ζ
2q+1

)

= o
(
n
−q−θ
2q+1

)
+ O

(
n−

ζ
2q+1

)

≤ O
(
n−1−η

)

for θ and ζ sufficiently large, which in turn implies that

|E [rn(δ1, α1)| Xn]− E [rn(δ2, α2)| Xn]|

≤
n∑

i=1

|E [rni(δ1, α1)|Xi]− E [rni(δ2, α2)|Xi]|

= O
(
n−η

)

= o(1)

for θ and ζ sufficiently large.
As such, ∆ can be made to satisfy ∆ = O (n−η) = o(1) uniformly in probability for

{α1, α2} ⊂ [τ, 1 − τ ] with |α1 − α2| ≤ n−
ζ

2q+1 and {δ1, δ2} ⊂ {δ : |δ| ≤ C
√

log log n}
with |δ1 − δ2| ≤ n−

θ
2q+1 .

For an arbitrary ξ > 0, set η ≡ (ξ + 1) ζ+θ
2q+1 . From (34) we have

P

[
sup

S
|rn(δ, α)| ≥ (ξ + 1)

ζ + θ

2q + 1

]
≤ n−

(ζ+θ)ξ
2q+1

√
log log n

≤ n−ξ
√

log log n

→ 0.

It follows that

P

[
sup

{
|rn(δ, α)| : |δ| ≤ C

√
log log n, α ∈ [τ, 1− τ ]

}
≥ (ξ + 1)

ζ + θ

2q + 1

]
→ 0.



E.2 Proof of Lemma 2
Let

Zn,α(Xi) ≡ n−
q

2q+1 σα(Xi)
(
δ̂n,α(Xi)− δ̃n,α(Xi)

)
ψα(εiα).

Note that

V ar [Zn,α(Xi)|Xi] = (m̂n,α(Xi)− m̃n,α(Xi))
2
α(1− α)

= Op

(
n−

2q
2q+1

)
,

from the first conclusion of Proposition 1 and the assumption that the restricted estimators have
the same pointwise rate of convergence under the null as their unrestricted counterparts. Note also
that Sn,α is divergent, with

Sn,α =

{
α(1− α)

n∑

i=1

(m̂n,α(Xi)− m̃n,α(Xi))
2

} 1
2

= n−
q

2q+1

{
α(1− α)

n∑

i=1

σ2
α(Xi)

(
δ̂n,α(Xi)− δ̃n,α(Xi)

)2
} 1

2

= Op

(
n

1
4q+2

)
.

We have E
[
|Zn,α(Xi)|3

∣∣∣ Xi

]
= Op

(
n−

3q
2q+1

)
, and therefore

n∑

i=1





E
[
|Zn,α(Xi)|3

∣∣∣ Xi

]

S3
n,α





p→ 0.

It follows from Liapounov’s theorem20 that

1
Sn,α

n∑

i=1

Zn,α(Xi)

∣∣∣∣∣Xn
d→ N(0, 1).

The desired conclusion follows.
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Table 1: Size and local power performance of a 5%-GLR test for location shift
c

0 .2 .4 .6 .8 1.0
Rejection frequencies: .07 .25 .31 .35 .59 .75

Notes:

1. 100 simulated random samples of size n = 100 were drawn from the model

Yi = .75Xi1 + 1.5 sin
(
.5πX2

i2

)
+

[
1 + c

(
Xi2 + .25X2

i2

)]
εi,

where εi ∼ N(0, 1) and (Xi1, Xi2)T is bivariate normal and independent of εi with mean
zero, unit variance and covariance .2, and where c ∈ {0, .2, .4, .6, .8, 1.0}.

2. The null hypothesis of interest is of Xi2 exerting a pure location-shift effect on the condi-
tional distribution of Yi. This hypothesis is stated more formally in (18).

3. The GLR test statistic supα∈[.15,.85]

(
λn(H0,α)−bn,α(K)

Sn,α

)2

was approximated with

maxαg∈Â

(
λn(H0,αg)−b̂n,αg (K)

Ŝn,αg

)2

, where Â is a grid of 100 equally-spaced points cov-

ering the interval [.15, .85]; and where b̂n,αg (K) and Ŝn,αg were constructed according to
the description in Section 5.1.

4. The 5% critical value of the limiting quantity supα∈[.15,.85] Q
2(α), where Q(α) is as given

in (13), is 8.85 (Andrews, 1993, Table 1).
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Notes:

1. 100 simulated random samples of size n = 100 were drawn from the model

Yi = .75Xi1 + 1.5s sin
(
.5πX2

i2

)
+ .25εi,

where εi ∼ N(0, 1) and (Xi1, Xi2)T is bivariate normal and independent of εi with mean
zero, unit variance and covariance .2, and where s ∈ {

1, 2
3 , 3

2

}
.

2. The null hypothesis of interest is of Xi2 exerting a pure location-shift effect on the condi-
tional distribution of Yi. This hypothesis is stated more formally in (18).

3. The GLR test statistic supα∈[.15,.85]

(
λn(H0,α)−bn,α(K)

Sn,α

)2

was approximated with

maxαg∈Â
(

λn(H0,αg)−bn,αg (K)

Sn,αg

)2

, where Â is a grid of 100 equally-spaced points cov-
ering the interval [.15, .85].

4. Estimates of the densities of the normalized test statistics were computed for each setting
of s using a normal density kernel and a rule-of-thumb bandwidth h100 = 1.06σ̂100100−.2,
where σ̂100 is the standard error in simulations of the normalized test statistic.


