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Abstract

In a range of settings, private firms manage peer effects by sorting agents into different

groups, be they schools, neighbourhoods or teams. This paper considers such a firm, which

controls group entry by setting a series of anonymous prices. We show that private provision

systematically leads to two distortions relative to the efficient solution: first, agents are

segregated too finely; second, too many agents are excluded from all groups. We demonstrate

that these distortions are a consequence of anonymous pricing and do not depend upon the

nature of the peer effects. This general approach also allows us to assess the way the

‘returns to scale’ of peer technology and the cost of group formation affect the optimal

group structure.

1 Introduction

In an increasingly privatised world, for–profit organisations have come to play an important

role in many markets where peer effects are prominent. This paper considers such a market,

where a firm posts a series of prices and agents self–select into different groups. The quality of

a group, in turn, depends on the characteristics of its members. We show that private provision

systematically leads to two distortions in group formation relative to the efficient solution. First,

there is too much segregation between different types of agents; that is, groups are excessively

homogenous. Second, too many agents are excluded from all available groups.

The model captures the key features of several important markets. First, consider the

market for education, where peer effects play an important role in shaping students’ goals and

learning experience. In such a market, firms can manage peer effects to their advantage by
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charging more for courses which attract above–average students. This type of differentiation

is commonplace: providers of higher education and professional training consistently use peer

effects to price–discriminate between different institutions and different courses of otherwise

similar quality. The growing popularity of vouchers also promises to raise the importance of

private primary and secondary schools, which will similarly seek to manipulate peer effects.

Epple and Romano (1998) and Caucutt (2002), among others, have investigated the role of

selection when schools are highly competitive. This paper analyses the optimal pricing policy

for a school with market power.1

The second application concerns the market for community formation, where peer effects

are a major determinant or consumers’ preferences. In recent years, this market has seen a

significant expansion in the role of the private sector, with more than forty million Americans

currently living in common interest developments (e.g. condominiums, planned unit develop-

ments). Proponents argue that these new communities increase welfare by providing safety and

comfort for those willing to pay; critics counter that they are discriminatory and isolationist.

Our model is consistent with both these arguments, showing how group formation increases

welfare, but also that private provision leads to communities that are insufficiently diverse.2

Thirdly, peer effects play an important role in the theory of the firm. According to Alchian

and Demsetz (1972), facilitating teamwork is a major activity, and perhaps even the defining

property, of a firm. While the composition of a team is often taken as exogenous, firms will seek

to assemble compatible agents in order to maximise their productivity and minimise their wage

bill. This paper thus analyses optimal team formation within a firm, examining how different

types of peer effects alter group composition.

One significant problem in analysing peer effects is that the nature of peer technology is

likely to differ greatly across environments. In a recent survey on the role of private education,

Helen Ladd (2002, p. 14) wrote:

“This lack of clarity about how peer effects differ among groups rules out any clear

predictions about whether a voucher program would be likely to increase or decrease

the overall productivity of the education system through the mechanism of peer

effects”.

Despite this concern, we analyse the distortions induced by private provision while placing very

little structure on the nature of peer effects. This general approach enables us to examine how

1Due to transportation costs, schools and universities already possess considerable local market power. As
private schools become more popular, it is also likely that chains, such as Edison in the U.S. and GEMS in
Britain, will become increasingly powerful.

2The model applies to many other types of communities: restaurants, golf clubs and luxury good manufac-
turers all seek to affect the attractiveness of their product through exclusivity. For example, Kaneff owns six
golf courses in Ontario, charging a range of fees, separating different types of customers into groups. See Rayo
(2005) for other examples.
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the degree of segregation depends on the form of peer effects. It also helps us interpret the

recent empirical literature quantifying peer effects in different environments.

1.1 Outline of the Paper

The basic structure of the model is as follows. First, a single principal posts a range of anony-

mous group–entry prices. Agents vary in their willingness to pay for group quality and, after

observing these prices, sort themselves into different groups. The quality of a group, in turn,

depends upon the types of its members. This quality function is allowed to be very general and

subsumes the average quality model (e.g. Rayo (2005)), the Cobb–Douglas quality model (e.g.

Epple and Romano (1998)) and the multiplicative quality model (e.g. Lazear (2001)).

Since pricing is anonymous, the principal must rely on agents to self–select into different

groups. Self–selection immediately implies that that agents who care more about group quality

must be in better quality groups (the monotonicity condition). This result implies that if the

agents who generate high quality have a low willingness to pay, then the principal must assign

all agents to identical groups. Conversely, if the agents who generate high quality have a high

willingness to pay, then the principal can segregate the agents into groups of different standards.

The paper first analyses the principal’s problem when group formation is costless, showing

that profit–maximisation leads to two distortions relative to the welfare–maximising group

structure. The first distortion, the segregation effect, states that there are too many groups

under profit–maximisation. Intuitively, by splitting a group into two, putting all high types

into one group and the low types into another, the principal increases the price the high types

are willing to pay in order to avoid the low quality group. Crucially, we do not require any

assumptions on the nature of peer effects in order to attain this result: the required restrictions

come endogenously from the requirement that agents self–select into groups. This segregation

effect implies that the distribution of group qualities under private provision has a lower mean

and will tend to be more dispersed than the efficient distribution.

The second distortion, the exclusion effect, states that too many agents are excluded from

all privately provided groups. The exclusion effect is analogous to the standard result that a

monopolist prices above marginal cost. Intuitively, excluding some low types of agents raises

the price paid by those agents who are not excluded.

We further analyse how the optimal group structure depends upon the nature of peer inter-

actions. When a quality function has decreasing returns to scale, in that splitting a group into

two subgroups raises the average quality, then welfare and profit are maximised by complete

separation. That is, every type is in a group of his own,3 so agents associate with those just like

themselves and ignore everyone else. Conversely, when a quality function has increasing returns

3The principal is female, while agents are male.
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to scale, in that splitting a group into two subgroups lowers the average quality, then matching

will be assortative (i.e. groups will be connected) and there will tend to be some pooling.

The paper also examines the principal’s problem when group formation is costly. This set-

ting introduces a new factor, the appropriability effect, according to which a welfare–maximising

principal may invest more in group formation than a profit–maximising principal. Intuitively,

a profit–maximiser cannot appropriate agents’ consumer surplus and may opt for larger groups

than is optimal. Nevertheless, under increasing returns to scale and the usual monotone haz-

ard rate condition, the segregation effect dominates the appropriability effect and groups are

smaller under profit–maximisation.

We also investigate how welfare– and profit–maximising group structures change with rel-

ative position. This is motivated by Lazear (2001) who argues that more able students will

tend to be in larger classes. In our model, when group formation is costless, we also find that

higher types will tend to be in larger groups, albeit for a very different reason. The intuition

behind our result is that the ratio between the highest and lowest types in a group declines as

everyone’s type rises. This means a group split, which helps the high types but hurts the low

types, becomes less desirable. This suggests that selective grammar schools were of more use

in the 1950s, when education levels were relatively low, than today. In comparison, Lazear’s

finding derives from the specifics of the multiplicative quality model, under which returns to

scale increase in agents’ types

The paper proceeds as follows. The remainder of this section provides a literature review,

while Section 2 considers a simple two–type example that captures a number of the main effects.

Section 3 describes the model. Section 4 assesses the implications of self–selection. Sections

5 and 6 analyse the costless group formation problem, deriving the segregation and exclusion

effects. Section 7 examines the costly group formation problem, comparing appropriability and

segregation effects. Section 8 derives conditions under which higher types are in larger groups,

and Section 9 concludes.

1.2 Literature

It is helpful to break the peer group literature into three branches.

The first branch considers a single principal with perfect information about agents’ charac-

teristics. In their classic paper, Arnott and Rowse (1987) analyse the socially optimal way to

break students into N groups in the presence of peer effects. A student’s utility is a function

of his ability, the mean ability of the other students in the class and educational expenditure.

Using a Cobb–Douglas quality function, the authors obtain sufficient conditions for assorta-

tive matching and computationally solve several examples. Lazear (2001) considers a highly

tractable model where each student is disruptive with probability p. If there are m students in

the class who act independently of each other then the class is attentive proportion (1 − p)m
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of the time. Lazear shows that a welfare–maximising school increases class sizes as p increases

and, in a two–type model, will segregate students by type.4

In the second branch, there is a single principal with imperfect information about agents’

characteristics. Helsley and Strange (2000) analyse common interest developments with social

interactions. Agents, who vary in their type, choose whether to stay in the public sector or join

a single private community, and subsequently choose an action. Agents’ utility then depends

upon their action, their type and the mean action of those in their community. Helsley and

Strange allow the private community to choose both a minimum required action and an entry

price. In a numerical example they show fewer people secede from the public sector when the

community is profit–maximising, in a similar spirit to our exclusion effect.

The two closest papers to the current one both consider a principal who price discriminates

between agents by sorting them into different groups of different qualities. Rayo (2005) considers

a one–sided matching problem, similar to ours, where the principal breaks the agents up into

groups. Rayo uses the average–quality function and investigates the role of non–monotone

marginal revenue functions (see Section 5.4). Damiano and Li (2006) analyse a two–sided

matching market where the principal can discriminate between different sides of the market

and between different groups. Damiano and Li derive necessary and sufficient conditions for

full separation.5

The third branch analyses competition between peer groups. Epple and Romano (1998)

analyse a model of private school competition, where agents differ in their income and ability,

both of which are publicly observable. Epple and Romano show that monopolistic competition

between schools with fixed costs leads to stratification of the market where poor talented agents

attend the same schools as wealthy untalented agents. Caucutt (2002) introduces educational

expenditure and shows that complete segregation may not be desirable, even without fixed

costs of setting up schools. Intuitively, a school can keep its quality constant by lowering its

expenditure on teachers but recruiting a few talented students.6

The discussion of the empirical literature is postponed until Section 3.1.

4In a related model, Kremer (1993) considers a groups of agents on a production line who each make a mistake
with probability pi. In the competitive equilibrium, there is assortative matching and higher quality workers
work in longer production lines.

5Also relevant is Pesendorfer (1995) who supposes that status is driven by a two–sided matching problem,
where a durable status good is sold by a monopolist. Pesendorfer argues that the firm will regularly introduce
new designs if they cannot commit to a price path or if there is imitation.

6One can view these papers of applications of club theory (e.g. Scotchmer (2002)). Related papers include
Nechyba (2000) and Benabou (1993). For a model with imperfect information see Damiano and Li (2005).

5



2 Two–Type Example

There are equal numbers of two types of agents, θH > θL, where an agent’s type describes his

willingness to pay for quality. The utility of type θi who is assigned to a group of quality Q(θi)

and pays price y(θi) is given by u(θi) = θiQ(θi) − y(θi), for i ∈ {L,H}. The quality of a group

is determined by the types of its members. A group consisting of θH agents has quality QH ; a

group consisting of θL agents has quality QL; and a group consisting of both types has quality

QLH . An agent’s outside option is 0. Finally, we suppose that agents are small, so no individual

agent can affect the quality of a group.

The principal posts anonymous group–entry prices and lets agents self–select into the dif-

ferent groups. This means that, in order to stop the high type copying the low type, we must

have Q(θH) ≥ Q(θL) (the monotonicity condition). Consequently, the principal can separate

the agents if and only if QH ≥ QL; otherwise a high type would enter the low type’s group

rather than his own.

2.1 Segregation Effect

Let us first consider the principal’s incentive to separate the two types of agents. For simplicity,

assume that 2θL ≥ θH and that the principal does not exclude either type. Utility is quasi–

linear, so welfare equals θLQ(θL) + θHQ(θH). A welfare–maximising principal would therefore

like to separate the agents when

θHQH + θLQL ≥ θHQLH + θLQLH (2.1)

Define QW
LH as the pooling quality that equates both sides of (2.1). If QH < QL, the principal

can only pool the agents. If QH ≥ QL, then the principal will separate the agents when

QLH ≤ QW
LH . Since QW

LH ≥ (QH + QL)/2, separation is optimal if the quality function is

increasing, QH ≥ QL, and satisfies decreasing returns to scale, in that QLH ≤ (QH +QL)/2.

A profit–maximising principal maximises total payments, y(θL) + y(θH). If the principal

pools both types, she will charge y(θL) = y(θH) = θLQLH in order to fully extract from the low

type, θL. On the other hand, if the principal separates both types, she will charge y(θL) = θLQL

to the low group and y(θH) = θLQH − (θH − θL)QL to the high group. Under these prices, the

low type is just willing to join the low group, while the high type is indifferent between joining

the high and low groups. Putting this together, the profit–maximising principal would like to

separate the agents when

θHQH + (2θL − θH)QL ≥ 2θLQLH (2.2)

Define QΠ
LH as the pooling quality that equates both sides of (2.2). If QH < QL, then the

principal can only pool the agents. If QH ≥ QL, then QΠ
LH ≥ QW

LH , so a profit–maximising
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Figure 1: Two–Type Model with QH ≥ QL.

principal is more willing to separate the agents than a welfare–maximising principal (see Figure

1). Intuitively, by separating high and low types, the good agents become very keen to avoid the

bad agents and can be forced to pay higher prices. Notice that this segregation effect requires

no assumptions about the structure of qualities (QL, QH , QLH): the fact that Q(θH) ≥ Q(θL)

follows from the endogenous self–selection constraint.

2.2 Exclusion Effect

If 2θL < θH , then the profit–maximising principal may wish to exclude the low types in order

to increase revenue. To see this, consider the case where QH ≥ QL.7 The welfare–maximising

principal never excludes any type of agent, and separates the two types if (2.1) holds. In

contrast, the profit–maximising principal may wish to exclude the low type, enabling her to

charge y(θH) = θHQH to the remaining high types. She therefore wishes to separate the two

types if

θHQH + max{2θL − θH , 0}QL ≥ 2θLQLH (2.3)

As above, (2.1) implies (2.3). This shows that the segregation effect extends to the case where we

allow exclusion. Moreover, a profit–maximising principal is more willing to exclude agents than

a welfare–maximising principal. This exclusion effect is analogous to the standard monopoly

distortion: by cutting out low types the principal increases the price she can charge the high

types.

2.3 Appropriability Effect

So far we have assumed that splitting the agents into two groups is free of charge. Costly group

formation introduces a third effect. To illustrate, let us assume that QH ≥ QL. Using equation

(2.1), the benefit of separation for a welfare–maximising principal is

θH(QH −QLH) + θL(QL −QLH) (2.4)

7This assumption is not necessary. If QH < QL then the principal may wish to exclude the low type in
order to ‘monotonise’ the quality function (see Section 6). However, it is straightforward to show that both the
segregation and exclusion effects continue to apply.
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If 2θL ≥ θH , equation (2.2) implies that the benefit of separation for a profit–maximising

principal is

θH(QH −QLH) + (2θL − θH)(QL −QLH) (2.5)

Hence, if group formation is costly, and there are very strong decreasing returns to scale,

QL ≥ QLH , then the welfare–maximising principal is willing to pay more to separate the

agents than the profit–maximising principal. This appropriability effect is caused by the profit–

maximising principal’s inability to appropriate the agents’ consumer surplus. However, when

there are sufficient returns to scale, then the segregation effect outweighs the appropriability

effect and the profit–maximising principal is more likely to separate the groups.

3 Basic Model

Agents’ Preferences. A single principal faces a continuum of agents with privately known

willingness to pay θ ∈ [θ, θ] ⊂ IR+. Types are distributed according to positive density f(θ)

with distribution function F (θ). Agents then choose to join one of the available groups, or

choose not to participate. If agent θ joins a group of quality Q and pays price y, he obtains

utility

u = θQ− y.

If an agent chooses not to participate, he obtains zero utility.

Principal’s Problem. The principal first chooses a series of group–entry prices; agents sub-

sequently self–select into groups G ⊂ [θ, θ]. Applying the revelation principle, we analyse the

direct revelation mechanism 〈G, y〉 whereby agents announce their types, and the principal as-

signs them to a group G ∈ G and charges a fee y. Given any equilibrium in the price–setting

game, then there exists a corresponding direct revelation mechanism such that all agents accept

the mechanism (individual rationality) and all agents announce their types truthfully (incentive

compatibility). The principal’s problem is thus to choose the mechanism 〈G, y〉 to maximise

welfare/profits subject to individual rationality and incentive compatibility.

Groups. The principal breaks the agents into groups G. For technical reasons, we restrict how

the principal can break up the agents. Let the collection of sets P be a finite partition of the type

space; that is, a collection of nonintersecting connected sets whose union equals [θ, θ]. A group

G is then the union of sets lying in P. A group structure G is a collection of nonintersecting

groups whose union equals [θ, θ]. Taking two group structures, GL and GH , we write GL ⊂ GH

if GH is finer than GL. Two groups, G and G′, overlap if there exists θH > θM > θL, such that

θH , θL ∈ G and θM ∈ G′, or θH , θL ∈ G′ and θM ∈ G. Denote the sigma–algebra of a group

structure by σ(G); since P is finite, this equals the collection of unions of sets in G.
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Peer Technology. Each group G is associated with a quality Q(G) > 0. Let Q(θ,G) denote

the quality of type θ’s group under group structure G. A quality function Q(G) is said to be

weakly increasing in G if Q(GH) ≥ Q(GL) whenever GH is larger than GL in the sense that

θ ≥ θ′ for all θ ∈ GH and θ′ ∈ GL.

Some remarks are in order. First, we do not insist that groups be connected. This is

important because the optimal group structure may place agents with a wide range of abilities in

the same group, as suggested by the empirical work of Mas and Moretti (2006) and experimental

study of Falk and Ichino (2006).

Second, the model restricts groups to be unions of sets in some underlying finite parti-

tion, P. This assumption is for technical simplicity. It enables us to avoid measure–theoretic

problems such as the creation of non–measurable sets. It also guarantees the problem has an

optimal solution. This restriction is analogous to having a finite number of types, although the

continuous type representation remains useful.8,9

Third, in the model above, we assume that the principal places each agent into a group.

That is, we assume it is not optimal for the principal to exclude any types of agents. This

assumption is for simplicity: we extend the analysis in Section 6.10

Finally, we say a function φ : IR → IR is quasi–increasing if φ(xL) ≥ 0 implies φ(xH) ≥ 0

for xH > xL, and weakly quasi–increasing if φ(xL) > 0 implies φ(xH) ≥ 0.

3.1 Group Quality Functions

The paper allows for a large range of quality functions, Q : G → IR++, subsuming those used

in a number of previous papers. This level of generality is particularly important since the peer

technology depends on the specific environment and is hard to quantify in any given application.

Some examples of quality functions are as follows:

• Average–quality: Q(G) = E[θ|θ ∈ G]. This states that the quality of a group is given by

the average type of its members. This is used by Rayo (2005) and matching papers such

as Damiano and Li (2006).

8In Examples 10–11 we drop the finiteness restriction on the principal’s choice set and let σ(P) equal the
Borel sets, enabling the use of calculus.

9We also assume that different agents of a single type are assigned to the same group. However, since
groups may be disconnected, any mixed strategy can be approximated by such a pure strategy. For example,
if θ ∼ U [0, 1], then a group with measure 1/2 on [0,1/2] can be approximated by a group with measure 1 on
[0, 1/8] ∪ [3/8, 4/8]. This restriction is therefore minor if the quality functional, which maps measures on the
type space to the real line, is continuous in, say, the Prohorov metric.

10 The assumption of no exclusion is without loss of generality if the principal’s objective, MR(θ), is positive
(∀θ). In this case, one can define the quality function so that Q(G) = 0 if θ ∈ G. Pooling agent θ with type θ
is then equivalent to excluding θ. This ‘evil type’ model does not work if MR(θ) is negative since the objective
fails to be log–supermodular. Consequently, when we allow MR(θ) to be negative in Section 6, we use a different
approach.
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• Average–quality with crowding out: Q(G) = E[θ|θ ∈ G] −mE[1G], where m > 0 repre-

sents the importance of crowding out.

• Generalised average–quality: Q(G) = φ1(E[φ2(θ)|θ ∈ G]). As a special case, this includes

the Cobb–Douglas quality function, Q(G) = E[θ1/α|θ ∈ G]β , which is used by Epple

and Romano (1998), Nechyba (2000), Caucutt (2002) and the latter parts of Arnott and

Rowse (1987).

• Linear–quality: Q(G) = α sup(G) + β inf(G). One special case of this is min–quality,

Q(G) = inf(G), where the group is only as good as its worst member. Another special

case is max–quality, Q(G) = sup(G), where the best agent becomes the “leader” of the

group.

• Multiplicative–quality: Q(G) = exp
(

−m
∫

G(1 − θ)dF (θ)
)

, where m > 0. As shown in

Appendix A.1, this is a continuous analogue of the production functions in Kremer (1993)

and Lazear (2001).

There is a large empirical literature which seeks to estimate peer technology. While it is

hard to generalise, the magnitude of these peer effects can be substantial. In the classroom,

Henderson, Mieszkowski, and Sauvageau (1978) find that moving a student from a weak class to

a strong class can increase their overall rank from the 50th percentile to the 20th percentile. In

the workplace, Mas and Moretti (2006) and Falk and Ichino (2006) find a 10% increase in one’s

colleagues productivity raises a given worker’s productivity by around 1.5%. This literature

has analysed three major aspects of the production function.

First, nonlinearities in the peer technology. Looking at college roommates, Zimmerman

(2003) finds that bad students have a bigger effect on their roommates than good students.

However, in a similar study, Sacerdote (2001) finds the converse: bad students seem to have

a smaller effect on their roommates than good students. We will see that the former is an

example of decreasing returns to scale, implying that bad students should be segregated; while

the latter is an example of increasing returns to scale, implying that some mixing of abilities is

optimal (see Proposition 2). In a similar spirit, Henderson, Mieszkowski, and Sauvageau (1978)

find that test scores are a concave function of mean class ability. These results are consistent

with a generalised average–quality function where φ1(·) is concave, implying increasing returns

to scale.

Second, interaction effects. In their workplace studies, Mas and Moretti (2006) and Falk

and Ichino (2006) find that having good peers have a stronger effect on poor workers. In

contrast, with college roommates, Zimmerman (2003) finds that peer effects have the biggest

impact on students of middling ability. Looking at the classroom, Henderson, Mieszkowski, and

Sauvageau (1978) and Hanushek et al. (2003) report that there are few cross effects. This latter
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result implies that, if all students care equally about their test scores, then it is impossible to

separate different types of agents (see Lemma 2). However, if high ability students care more

about their test scores than low ability students, then separation can be sustained.

Third, scale effects. In the education literature, there has been a long standing debate about

the impact of reductions in class size. While the desirability of small classes may seem obvious,

the evidence seems to find beneficial effects only in certain environments (Hanushek (1999)).

In the workplace, Falk and Ichino (2006) find agents are more productive at stuffing envelopes

when they work in the presence of others, although this result clearly depends on the task at

hand.

Looking across these studies, it seems that the peer technology can vary greatly with the

environment. This observation has two important implications. First, it is important to derive

results that do not depend on the exact nature of the peer effects. To illustrate, both the

multiplicative quality and Cobb–Douglas quality are widely used models. However, while the

multiplicative model predicts that more able agents should be in larger groups (Lazear (2001)),

the Cobb–Douglas model predicts the opposite (Figure 4). The second implication is that

theory should identify which aspects of the peer technology are critical for a given result, rather

than working with a single functional form, which contains many hidden assumptions. This

approach both helps us categorise different classes of peer technologies, and helps us understand

what to look for in the data.

4 Agents’ Problem

The principal runs a direct revelation mechanism 〈G, y〉, in which an agent of type θ declares

that they are type θ̂, receives quality Q(θ̂,G) and makes payment y(θ̂). Since there are a

continuum of agents, the quality of an agent’s group depends on his declaration but not his

type. Utility is then

u(θ, θ̂) = θQ(θ̂,G) − y(θ̂) (4.1)

Define equilibrium utility to be U(θ) = u(θ, θ).

Lemma 1. A mechanism 〈G, y〉 is incentive compatible and individually rational if and only if:

(a) Utility is given by

U(θ) =

∫ θ

θ
Q(s,G) ds+ U(θ) (4.2)

(b) The lowest type obtains U(θ) ≥ 0; and

(c) The monotonicity condition holds. That is, Q(θ,G) is increasing in θ.

Proof. Since Q(θ,G) is integrable, Milgrom and Segal (2002, Corollary 1) shows that incentive

compatibility implies (4.2). The rest of the proof is the same as Mas-Colell, Whinston, and
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Green (1995, Proposition 23.D.2).

Lemma 2. In any incentive compatible group structure:

(a) Any overlapping groups have the same quality.

(b) If Q(G) is weakly decreasing then every agent will be in a group of the same quality.

Proof. Follows from the monotonicity condition (Lemma 1(c)).

Lemma 2(a) says that while groups do not have to be connected, any overlapping groups

must have the same quality. Lemma 2(b) says that the principal cannot separate different

types when the agents who generate high quality have a low willingness to pay. This may be

the case in the workplace if good workers most improve the performance of poor workers (e.g.

Mas and Moretti (2006), Falk and Ichino (2006)). Separation may also be difficult with some

conspicuous goods, where agents seek to signal a certain image. For example, the consumers

who generate Harley–Davidson’s reputation are unlikely to have the highest incomes. Similarly,

the supporters with the highest willingness to pay for football tickets may not create the best

atmosphere.11

5 The Segregation Effect

5.1 Principal’s Problem

Welfare equals the sum of utilities plus transfers,

W = E[θ Q(θ,G)] (5.1)

Integrating utility (4.2) by parts, consumer surplus is

E[U(θ)] = E

[

1 − F (θ)

f(θ)
Q(θ,G)

]

+ U(θ) (5.2)

Profit equals welfare (5.1) minus consumer surplus (5.2). The profit–maximising principal will

set prices so that the lowest type’s individual rationality constraint binds, U(θ) = 0. Profit is

then given by

Π = E [MR(θ)Q(θ,G)] (5.3)

where marginal revenue is defined by

MR(θ) := θ −
1 − F (θ)

f(θ)

11In both these examples the firms use non–price mechanisms to maintain quality. Harley–Davidson uses
waiting lists, while football clubs force supporters to buy season tickets.
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Welfare and profit can be thus combined into a single objective:

H = E [h(θ)Q(θ,G)] (5.4)

where h(θ) ∈ {θ,MR(θ)}. Let Γ be the set of group structures that satisfy the monotonicity

condition (Lemma 1(c)). The principal’s problem is then to choose G ∈ Γ to maximise (5.4).

The choice set Γ is finite, so a solution to the principal’s problem exists. Nevertheless, there

are two difficulties with this maximisation problem. First, Γ is not generally a lattice. Second,

Q(θ,G) is unlikely to be quasi–supermodular in G. Intuitively, two different ways of splitting a

group are likely to be substitutes rather than complements. Consequently, the optimal set of

groups structures may not be a lattice.

5.2 Welfare– and Profit–Maximisation

For a fixed group structure G, let IG(G) be the smallest interval containing G that is made up

of elements of G.12 By Lemma 2(a), quality must be constant over all groups in IG(G). Let

I(G) be the partition formed by collecting the intervals {IG(G)}G∈G . Equivalently, let I(G) be

the partition induced by merging all overlapping groups in G.

Lemma 3. GL ⊂ GH implies I(GL) ⊂ I(GH).

Proof. See Appendix A.2.

Assumption (MON). [1 − F (θ)]/θf(θ) is decreasing in θ.

This assumption implies that MR(θ) is quasi–increasing. It is weaker than the usual hazard

rate condition (see Section 7).

Proposition 1 (Segregation Effect). Suppose (MON) holds and MR(θ) ≥ 0. For any welfare–

maximising solution, GW , Π(GW ) ≥ Π(G) on {G ∈ Γ : G ⊂ GW }. Hence if any optimal solu-

tions, GW and GΠ, are ordered in terms of set inclusion, then there exists a profit–maximising

solution, GΠ∗, such that GW ⊂ GΠ∗.

Proof. Suppose GW maximises welfare and fix G ∈ Γ such that G ⊂ GW . Since GW is welfare–

maximising, E[θ∆Q(θ)] ≥ 0, where ∆Q(θ) := Q(θ,GW )−Q(θ,G). Define I∗ to be the coarsest

partition on which ∆Q(θ) is quasi–increasing. Applying Lemma 3, I(G) ⊂ I(GW ). Monotonic-

ity thus implies that ∆Q(θ) is increasing on each I ∈ I(G), so I∗ ⊂ I(G). See Figure 2 for an

illustration. The proof is now based on two steps.

12Formally, IG(G) is the smallest interval in σ(G) containing G. This is uniquely defined.
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For the first step, we claim that E[θ∆Q(θ)|I∗] ≥ 0.13 To see this suppose, by contradiction,

that E[θ∆Q(θ)|I∗] < 0 on some set A ∈ σ(I∗). Then define a new group structure, G′, equal to

G on A and GW elsewhere. This new structure has two properties. First, G′ has higher welfare

than GW , E[θQ(θ,G′)] > E[θQ(θ,GW )]. Second, G′ ∈ Γ, which we verify below. Together,

these contradict the welfare–optimality of GW .

Let us now verify that G′ ∈ Γ. The partition I∗ has the key property that ∆Q(θ) goes from

negative to positive on each in each I∗ ∈ I∗. Formally, for a sufficiently small ε, ∆Q(inf I∗+ε) <

0 for all I∗ ∈ I∗, except possibly for the lowest interval. Similarly, ∆Q(sup I∗ − ε) ≥ 0 for all

I∗ ∈ I∗, except possibly for the highest interval. To show Q(θ,G′) is increasing, pick θH > θL

and denote the respective partitions IH , IL ∈ I∗. If IH = IL, then Q(θH ,G
′) ≥ Q(θL,G

′) follows

from the monotonicity of Q(θ,G) and Q(θ,GW ). If IH 6= IL, then

Q(θH ,G
′) ≥ Q(inf IH − ε,G′) ≥ Q(inf IH − ε,GW )

≥ Q(sup IL + ε,GW ) ≥ Q(sup IL + ε,G′) ≥ Q(θL,G
′)

The first, third and fifth inequalities come from monotonicity. The second and forth inequalities

then follow from the above properties of I∗. Hence G′ ∈ Γ, as required.

For the second step, index the objective function h(θ, t) so that h(θ, 1) = MR(θ) ≥ 0 and

h(θ, 0) = θ. Under (MON), the function h(θ, t) ≥ 0 is log–supermodular. Since ∆Q(θ) is quasi–

increasing on each I∗ ∈ I∗, Karlin and Rubin (1956, Lemma 1) states that E[h(θ, t)∆Q(θ)|I∗]

is quasi–increasing in t.14 Thus E[θ∆Q(θ)|I∗] ≥ 0 implies that E[MR(θ)∆Q(θ)|I∗] ≥ 0. Inte-

grating over θ, we have E[MR(θ)∆Q(θ)] ≥ 0. That is, Π(GW ) ≥ Π(G).

Corollary 1. If GW ⊂ GΠ then E[φ ◦Q(θ,GW )] ≥ E[φ ◦Q(θ,GΠ)] for all increasing, concave

functions φ : IR → IR.

Proof. See Appendix A.3.

Proposition 1 says that groups will tend to be finer under profit–maximisation than welfare–

maximisation. As shown by Corollary 1, this means that profit–maximisation induces a dis-

tribution of quality levels that has lower a mean and will tend to be more dispersed. In the

school example, if one interprets Q(θ,G) as the exam scores of agent θ, then Corollary 1 yields

testable implications of the theory.

The idea behind the segregation effect is that, under (MON), MR(θ) is steeper than θ, so

a profit–maximising firm puts relatively more weight on the preferences of high types than the

13Notation: the function E[θ∆Q(θ)|I∗] : [θ, θ] → IR maps each type into its conditional expectation.
14Karlin and Rubin (1956, Lemma 1) actually shows that the objective function is weakly quasi–increasing.

Lemma 12 in Appendix A.4 extends the result, showing the objective is quasi–increasing. The proof is essentially
identical.
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Figure 2: Sets in Proof of Proposition 1

social planner. This means a profit–maximising firm is more likely to split up a group, which

helps the high types and hurts the low types. Intuitively, by introducing extra segregation the

principal raises the cost of pretending to be a lower type and reduces consumer surplus. That

is, by separating good and bad agents, the good agents become very keen to avoid the bad

groups and can be forced to pay higher prices.

As stated in the Introduction, Proposition 1 makes no assumption about the nature of the

peer effects. This is important because peer technology differs greatly across environments.

Instead, Proposition 1 only uses the monotonicity condition that comes endogenously from the

agents’ self selection constraints.

Proposition 1 does have one limitation in that the welfare– and profit–maximising groups

may not be ordered in terms of set inclusion. One should therefore view the result as saying

that, if we start from the welfare–maximising group structure, then separating groups may

increase profit, but merging groups will not. Moreover, Figure 3 shows that the spirit of the

result may remain true even if the optimal solutions are not ordered.15,16

Example 1 (Pareto Distribution). Suppose θ ∼ Par(α, β), so that f(θ) = αβαθ−(α+1). In this

case, (MON) holds with equality and profit is (1−α−1)E[θQ(θ,G)]. Consequently, the welfare–

and profit–maximising group choices coincide. 4

15Figure 3 shows the profit and welfare–maximising group structures where Q(G) = 0.55 sup(G) + 0.45 inf(G)
and θ ∼ U [2, 3]. In this example, P is a grid with increments of 1/1000. See Examples 5 and 11 for more details.

16Proposition 1 shows that a profit–maximising principal introduces more segregation than the welfare–
maximising principal. Similarly, one can show that a consumer–surplus–maximising principal introduces less
segregation than the welfare–maximising principal.
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5.3 Group Structure and Returns to Scale

This section analyses how different types of peer technology affect the optimal group structure.

Definition 1. Consider any GH ,GL ∈ Γ such that GL ⊂ GH .

(a) Q(θ,G) has decreasing returns to scale (DRS) if E[Q(θ,GH)] ≥ E[Q(θ,GL)].

(b) Q(θ,G) has increasing returns to scale (IRS) if E[Q(θ,GH)] ≤ E[Q(θ,GL)].

Under DRS, splitting a group raises the average quality. Under IRS, splitting a group

lowers the average quality. Which case is appropriate depends upon the application and the

interpretation of a group. To illustrate, consider the school example. If one interprets a group

as a class, then dividing one class into two is likely to improve all students’ performance. This

suggests that the quality function will satisfy DRS. On the other hand, if one fixes the class size

and interprets a group as an entire school, then the good students may help the poor students

more than the poor students harm the good students (Henderson, Mieszkowski, and Sauvageau

(1978)). In this case, the quality function will satisfy IRS.

Proposition 2. Assume h(θ) is positive and increasing, and Q(G) is weakly increasing in G.

(a) Under decreasing returns to scale, the optimum is attained under full separation (i.e. G=P).

(b) Under increasing returns to scale, the optimum is attained when groups are connected.

Proof. (a) We prove a more general result: Suppose h(θ) is positive and increasing, and that

DRS holds. Then, for any GL,GH ∈ Γ such that GL ⊂ GH , the principal prefers GH to GL. If

Q(G) is weakly increasing then P ∈ Γ, so the optimum is attained when G = P.

Pick GL,GH ∈ Γ such that GL ⊂ GH , and denote ∆Q(θ) := Q(θ,GH) −Q(θ,GL). Let I∗ be

the coarsest partition on which ∆Q(θ) is quasi–increasing. By Lemma 3, I∗ ⊂ I(GL) ⊂ I(GH).

We claim that DRS implies

E[∆Q(θ)|I∗] ≥ 0 (5.5)
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To see this pick I∗ ∈ I∗ and let G′ equal GH on I∗ and equal GL elsewhere. First, G′ ∈ Γ, as in

the proof of Proposition 1. Second, since GL ⊂ G′, DRS implies

E[∆Q(θ)|I∗] = E[Q(θ,G′)] − E[Q(θ,GL)] ≥ 0

as required. This result implies that,

E[h(θ)∆Q(θ)|I∗] ≥ E[h(θ)|I∗]E[∆Q(θ)|I∗] ≥ 0

where the first inequality comes from the fact that an increasing function and a quasi–increasing

function have positive covariance (e.g. Persico (2000, Lemma 1)), and the second from (5.5).

Integrating over θ, GH yields a higher payoff that GL.

(b) Suppose there is IRS. Consider an arbitrary group structure, G ∈ Γ. Form I(G) by

merging overlapping groups in G. SinceQ(G) is weakly increasing, we have I(G) ∈ Γ. Moreover,

IRS implies that merging increases group quality so that E[h(θ)Q(θ,I(G))] ≥ E[h(θ)Q(θ,G)].

Proposition 2 says that when h(θ) is increasing, there is full separation under DRS and may

be pooling under IRS. This result applies to a welfare–maximising principal and, when MR(θ)

is increasing, to a profit–maximising principal.17

Example 2 (Exponential Distribution). Suppose f(θ) = (1/λ) exp(−(θ−θ)/λ), where θ ≥ λ.

Then profit is E[θQ(θ,G)]−λE[Q(θ,G)], and only differs from welfare in the second expression.

Under DRS, full separation is optimal under both welfare– and profit–maximisation. Under

IRS the second term decreases as G becomes finer. Consequently, profit is increased by splitting

a group only if welfare is increased by splitting a group, illustrating the segregation effect. 4

5.4 Group Quality Functions

This section considers a number of examples which have occurred in the literature. Examples

3–6 satisfy increasing or decreasing returns to scale; Example 7 shows that the optimal group

structure may be more complex.

Example 3 (Average Quality). The average quality function, Q(G) = E[θ|θ ∈ G], satisfies

both increasing and decreasing returns to scale. As shown by Rayo (2005), one can then

handle objective functions that are non–monotone. In particular, when the ironed E[h(θ)|P]

is increasing, the principal chooses full separation; when the ironed E[h(θ)|P] is constant,

17Similarly, if h(θ) is constant, then there is full separation under DRS and full pooling under IRS. And if h(θ)
is decreasing, then there may be multiple groups under DRS and there is full pooling under IRS. This last result
can be shown by ironing the objective as in Myerson (1981).
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the principal chooses full pooling. Thus there will always be full separation under welfare–

maximisation, but there may be regions of pooling under profit–maximisation, if MR(θ) is badly

behaved. This suggests welfare–maximisation leads to smaller groups than profit–maximisation.

In comparison, Proposition 1 says that when we allow for different quality functions, the reverse

is likely to be true. 4

Example 4 (Generalised Average Quality). Suppose Q(G) = φ1(E[φ2(θ)|θ ∈ G]). If φ1(·)

is concave and increasing, as suggested by the empirical analysis of Henderson, Mieszkowski,

and Sauvageau (1978), then the quality function has increasing returns to scale, by Jensen’s

inequality. The profit–maximising group structure is then likely to exhibit some pooling and,

by Proposition 1, be finer than the welfare–maximising group structure. 4

Example 5 (Linear Quality). Suppose Q(G) = α inf(G) + β sup(G) and θ ∼ U [θ, θ]. One

can verify that if G ∈ Γ, then Q(θ,G) = Q(θ,I(G)). Proposition 2(a) implies that if β ≤ α

(e.g. min–quality) there is decreasing returns to scale and welfare– and profit–maximisation

will entail full separation. Conversely, if β ≥ α (e.g. max–quality) there is increasing returns

to scale and welfare– and profit–maximisation will generally induce some pooling. 4

Example 6 (Multiplicative Quality). With multiplicative technology, Q(G) exhibits decreasing

returns to scale. Hence full separation is optimal if P ∈ Γ.18 Even with costly group formation,

it will be optimal to have assortative matching when P is sufficiently fine. To see this, suppose

G1 and G2 overlap. Then define disjoint G′
1 and G′

2 such that G′
1 lies below G′

2, Q(G′
1) = Q(G1)

and Q(G′
2) = Q(G2). 4

Example 7 (Intervals Not Optimal). Suppose Q(G) = sup(G) − E[1G], so the quality of the

group depends upon its leader and the number of followers. This is one interpretation of the

results Mas and Moretti (2006) and Falk and Ichino (2006). Here, groups will not take the form

of intervals: it will be optimal to have lots of small groups, each with a very good leader. Since

groups will overlap, Lemma 2(a) implies that they must all have the same quality. 4

6 The Exclusion Effect

In Section 5 we examined the optimal way to segregate different types of agents when the

principal serves all agents. In this section we extend the analysis to allow for exclusion. In

the education example, these excluded agents may attend a public school or, in the case of

universities, enter the workplace.

18P ∈ Γ if, for example, σ(P) equals the Borel sets or P consists of intervals of equal measure.
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An agent has an outside option of zero. Given a group structure G, suppose A ∈ σ(G) are

excluded. Agents’ rents can then be characterised by Lemma 1, where the quality function is

given by Q(θ,G)1¬A.19

Lemma 4. In any incentive compatible mechanism 〈G, A, y〉 then

(a) A is decreasing; and

(b) A ∈ σ(I(G)).

Proof. Follows from the monotonicity condition (Lemma 1(c)).

6.1 Principal’s Problem

There are two possible reasons to exclude an agent. First, the principal might wish to exclude θ

if h(θ) < 0. Second, the principal can exclude groups to ‘monotonise’ a non–monotonic quality

function.

Formally, the principal’s problem is to choose a group structure G and a set of excluded

agents A to maximise

H = E [h(θ)Q(θ,G)1¬A]

subject to Q(θ,G)1¬A increasing in θ. Let D∗
G be the smallest decreasing set in σ(I(G)) such

that Q(θ,G) is increasing on [θ, θ]\D∗
G , and let Q∗(θ,G) := Q(θ,G)1¬D∗

G
be the induced quality

function. Denote the positive and negative components of a function by φ(x)+ := max{φ(x), 0}

and φ(x)− := −min{φ(x), 0}.

Lemma 5. Fix G and suppose h(θ) is quasi–increasing. Then the principal’s maximal profits

are given by

H(G) = E
[

E[h(θ)|I(G)]+ Q∗(θ,G)
]

(6.1)

Proof. Fix G. By Lemma 4, the excluded set A must be decreasing and measurable with respect

to σ(I(G)). Given such a set, the monotonicity condition is satisfied if and only if A ⊃ D∗
G .

The principal’s payoff is then given by

E
[

h(θ)Q(θ,G)1¬A

]

= E
[

E[h(θ)Q(θ,G)1¬A |I(G)]
]

= E
[

E[h(θ)|I(G)]Q(θ,G)1¬A

]

(6.2)

The first equality uses the law of iterated expectations, while the second uses the fact that

Q(θ,G) and A are measurable with respect to σ(I(G)). The principal thus chooses A ⊃ D∗
G to

maximise (6.2). Pointwise maximisation implies

A∗ = D∗
G ∪ {θ : E[h(θ)|I(G)] < 0} (6.3)

19Notation: ¬A := {θ : θ 6∈ A}.
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Since h(θ) is quasi–increasing, (6.3) is a decreasing set, as required. This yields equation

(6.1).

Observe that Lemma 5 applies to the welfare–maximisation problem and, under (MON), to

the profit–maximisation problem. Moreover, if we assume that the quality function is weakly

increasing, then the principal need not exclude in order to ‘monotonise’ the quality function.

Lemma 6. Suppose that h(θ) is quasi–increasing and Q(G) is weakly increasing in G. Then

the principal’s payoffs are maximised by G ∈ Γ, and are given by

H(G) = E
[

E[h(θ)|I(G)]+ Q(θ,G)
]

(6.4)

Proof. Suppose G 6∈ Γ maximises the principal’s payoff (6.1). Then form a new structure G′ by

pooling all excluded agents into one group. Since Q(G) is weakly increasing, G′ ∈ Γ. The new

optimal set of excluded agents is then given by

A∗ = {θ : E[h(θ)|I(G′)] < 0}

The new group structure G′ therefore attains a (weakly) greater payoff than G, as required.

6.2 Welfare– and Profit–Maximisation

The principal’s problem is thus to choose G to maximise (6.1). Proposition 3 shows that the

segregation effect extends to the case where the principal can exclude agents. Notably, this

result places no restrictions on the sign of MR(θ).

Proposition 3 (Segregation Effect II). Suppose (MON) holds. For any welfare–maximising

solution, GW , Π(GW ) ≥ Π(G) on {G : G ⊂ GW }. Hence if any optimal solutions, GW and GΠ,

are ordered in terms of set inclusion, then there exists a profit–maximising solution, GΠ∗, such

that GW ⊂ GΠ∗.

Proof. See Appendix A.5.

There are two effects underlying Proposition 3. First, a profit–maximising principal cares

relatively more about high value agents than a welfare–maximising principal (see Proposition

1). Second, a profit–maximising principal is more willing to exclude agents than a welfare–

maximising agent (see Proposition 4). Hence the smaller group size provides additional flexi-

bility to exclude some agents.

Proposition 4 (Exclusion Effect). Suppose that (MON) holds and either (a) Q(G) is weakly

increasing in G, or (b) GW ⊂ GΠ. Then exclusion is higher under profit–maximisation than

welfare–maximisation.
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Proof. Denote the types excluded under profit–maximisation by AΠ and those excluded under

welfare–maximisation by AW .

(a) Lemma 6 implies AW = ∅, so that AW ⊂ AΠ.

(b) Suppose GW ⊂ GΠ. By Lemma 3, I(GW ) ⊂ I(GΠ). Let I∗ be the coarsest partition

such that ∆Q(θ) := Q(θ,GΠ)−Q(θ,GW ) is quasi–increasing. As in the proof of Proposition 1,

we have E[θ∆Q(θ)|I∗] ≤ 0. Yet if AΠ ( AW , then E[θ∆Q(θ)|I∗] > 0 on the first interval in

I∗, yielding a contradiction.

The exclusion effect is analogous to the standard monopoly distortion. Under profit–

maximisation the principal would like to exclude agents with negative marginal revenue, whereas

under welfare–maximisation the principal would like to exclude no agents (see Proposition 4(a)).

The principal may also exclude agents in order to ‘monotonise’ the quality function. However,

the profit–maximising principal is more likely to exclude agents than a welfare–maximising

principal since she cares less about low value agents (see Proposition 4(b)).

Proposition 5 provides a characterisation of the excluded agents. A quality function Q(G)

is increasing in G if Q(GH) ≥ Q(GL) whenever GH is larger than GL in strict set order.20

Proposition 5. Suppose h(θ) is increasing. Assume that either:

(a) Q(G) is weakly increasing in G and exhibits DRS; or

(b) Q(G) is increasing in G and exhibits IRS.

Then the principal’s objective is maximised by excluding the set A∗ = {θ : E[h(θ)|P] < 0}.

Proof. (a) Suppose Q(G) exhibits DRS. Since Q(G) is weakly increasing in G, Lemma 6 implies

that profit is maximised by G ∈ Γ. Also observe that, given h(θ) is increasing, D := {θ :

E[h(θ)|P] < 0} is a decreasing set.

First, suppose that A ) D. Then form a new group structure G′ by including A\D as a

single group. Since Q(G) is weakly increasing, G′ ∈ Γ. Moreover, G′ yields a (weakly) higher

payoff than G.

Next, suppose that A ( D. Since h(θ) is increasing, and Q(G) is weakly increasing and

exhibits DRS, Proposition 2(a) implies that the principal’s payoffs are maximised by full sepa-

ration.21 Lemma 6 then implies that the principal should exclude agents with E[h(θ)|P] < 0.

(b) Suppose Q(G) exhibits IRS. The proof that the principal’s payoff is maximised by

A ⊂ D is the same as part (a). Next, suppose that A ( D. Since Q(G) is (weakly) increasing

and exhibits IRS, Proposition 2(b) implies that the principal’s payoffs are maximised when

groups are intervals.22 Denote the lowest included interval by I0. By Lemma 6, we must have

20Definition: GH is larger than GL in strict set order if min{θ, θ′} ∈ GL and max{θ, θ′} ∈ GH for all θ ∈ GL

and θ′ ∈ GH .
21Proposition 2(a) does not allow for exclusion, but the result immediately extends. Intuitively, with exclusion,

smaller groups provide more flexibility and, via Jensen’s inequality, further increase the principal’s payoff.
22Proposition 2(b) does not allow for exclusion, but the proof is identical.
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E[h(θ)|I0] ≥ 0, so I0 is the only interval that intersects with D. Next, form a new group

structure, G′′, by excluding D. Since Q(G) is (weakly) increasing, G′′ ∈ Γ. Since Q(G) is

increasing, we thus have G′′ ∈ Γ and Q(I0\D) ≥ Q(I0). Hence,

E
[

h(θ)Q(θ,G)
∣

∣

∣
I0

]

= E
[

E[h(θ)|P]+Q(I0) − E[h(θ)|P]−Q(I0)
∣

∣

∣
I0

]

≤ E
[

E[h(θ)|P]+Q(I0\D)
∣

∣

∣
I0

]

so that G′′ attains a (weakly) higher payoff than G.

At first sight, it seems reasonable to conjecture that the principal should exclude an agent

if and only if h(θ) < 0. There are two reasons why this may not be correct. First, the principal

may exclude more agents in order to ‘monotonise’ the quality function. Second, the principal

may exclude fewer agents if they exert a positive externality on the included agents, with

h(θ) > 0. Broadly speaking, Proposition 5 shows that both of these possibilities are ruled out

if the quality function is increasing.

7 Costly Group Formation

The segregation effect (Proposition 1) states that groups will be finer under profit–maximisation

than welfare–maximisation. With costly group formation this is countered by the appropriabil-

ity effect: a profit–maximising principal cannot capture consumer surplus and may not invest

enough in creating groups. Examples 8–9 illustrate how the appropriability effect can dominate

the segregation effect. Proposition 6 then derives sufficient conditions for the segregation effect

to dominate the appropriability effect.

In order to focus on the segregation effect, we suppose the principal cannot exclude any

agents.23 The principal’s problem is thus to choose G ∈ Γ to maximise H(G) − c(G), where

H(G) := E[h(θ)Q(θ,G)] and c(G) is an arbitrary cost function.

Example 8 (Appropriability Effect I). Suppose θ ∼ Par(α, β), as in Example 1. Then the

profit–maximising problem is to choose groups {Gi}
N
i=1 to maximise:

(1 − α−1)

N
∑

i=1

Q(Gi)

∫

Gi

θdF − c(G) (7.1)

This coincides with the welfare–maximising problem if α = ∞. Suppose that c(G) only depends

on G through the number of groups N , and is increasing in N (e.g. N is the number of teachers).

23One can allow for exclusion using the ‘evil type’ approach in footnote 10. Proposition 6 then holds no matter
what the sign of MR(θ). Saying this, the result is less interesting when MR(θ) < 0 since GW and GΠ are unlikely
to be ordered, as assumed in the final line.
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It then follows from (7.1) that there will be more groups under welfare–maximisation than

profit–maximisation.24 4

Example 9 (Appropriability Effect II). Suppose that splitting a group increases everyone’s

quality (e.g. multiplicative quality) and that MR(θ) ≥ 0. Hence ∆Q(θ) = Q(θ,GH)−Q(θ,GL) ≥

0 (∀θ), for GL,GH ∈ Γ such that GL ⊂ GH . Since θ ≥ MR(θ) ≥ 0, we have E[θ∆Q(θ)] ≥

E[MR(θ)∆Q(θ)]. That is, whenever a profit–maximiser splits a group, a welfare–maximiser

will also split the group. 4

Assumption (HR). [1 − F (θ)]/f(θ) is decreasing in θ.

Proposition 6 (Weak Segregation Effect). Suppose (HR) holds and Q(G) exhibits increasing

returns to scale. For any welfare–maximising solution, GW , Π(GW ) ≥ Π(G) on {G ∈ Γ : G ⊂

GW }. Hence if any optimal solutions, GW and GΠ, are ordered in terms of set inclusion, then

there exists a profit–maximising solution, GΠ∗, such that GW ⊂ GΠ∗.

Proof. Suppose GW maximises welfare and fix G ⊂ GW , such that G ∈ Γ. Hence E[θ∆Q(θ)] ≥

c(GW ) − c(G), where ∆Q(θ) = Q(θ,GW ) −Q(θ,G). By Lemma 3, I(G) ⊂ I(GW ).

Let I∗ be the coarsest partition on which ∆Q(θ) is quasi–increasing. As in Proposition

2, IRS implies that E[∆Q(θ)|I∗] ≤ 0. Since ∆Q(θ) is quasi–increasing on each I∗ ∈ I∗,

E[1D∆Q(θ)] ≤ 0 for any decreasing set D.

For decreasing sets {Di} and positive constants {ai}, i ∈ {1, . . . ,m}, E[
∑

i ai1Di
∆Q(θ)] ≤ 0.

Since (HR) implies that [1−F (θ)]/f(θ) is decreasing, we can define {Di} such that
∑

i ai1Di
→

[1 − F (θ)]/f(θ) as m→ ∞. Hence

E

[

1 − F (θ)

f(θ)
∆Q(θ)

]

≤ 0 (7.2)

Equation (7.2) implies that

Π(GW ) − Π(G) = E[MR(θ)∆Q(θ)] ≥ E[θ∆Q(θ)] ≥ c(GW ) − c(G)

as required.

The appropriability effect states that a profit–maximising principal cannot capture consumer

surplus and may not invest enough in group formation. Under (HR) and IRS, consumer surplus

is maximised by complete pooling, so a profit–maximiser will be willing to invest more in group

formation than a welfare–maximiser.

24There are other variants of this result. For example, if c(GH) ≥ c(GL) for GL ⊂ GH , then W (GΠ) ≥ W (G)
on {G ∈ Γ : G ⊂ GΠ}.
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Proposition 6 is more restrictive than the original segregation effect (Proposition 1). First,

it assumes that the distribution of types satisfies (HR) rather than (MON). Defining h(θ, 0) = θ

and h(θ, 1) = MR(θ), (MON) implies that h(θ, t) is log–supermodular, while the stronger (HR)

assumption is required for h(θ, t) to be supermodular. Second, the result assumes that Q(G)

satisfies IRS, overcoming the problem in Example 9.

Example 10 provides a tractable numerical illustration of Proposition 6. Observe that

Example 10 exhibits constant returns to scale, so the conditions of Proposition 6 are stronger

than necessary.

Example 10 (Average Quality). Suppose Q(G) = E[θ | G] and c(G) only depends on G

through the number of groups, N . By Proposition 2(b), the optimal group structure consists

of intervals. The principal then chooses cutoffs {θi}
N
i=0 to maximise welfare or profit (5.4).

Assume σ(P) equals the Borel sets, enabling the use of calculus. When θ ∼ U [θ, θ], the FOCs

for {θi}
N−1
i=1 reduce to (θi+1 − θi) = (θi − θi−1) under both welfare– and profit–maximisation. If

θ is sufficiently high, such that exclusion is not desirable under either objective, then marginal

welfare from an extra group is dW/dN = (θ− θ)2/6N3, while the marginal profit from an extra

group is dΠ/dN = (θ − θ)2/3N3. Since dΠ/dN ≥ dW/dN , a profit–maximising principal will

choose to have more groups.25

This example shows that, once again, profit–maximisation exhibits excessive segregation.

However, conditional on choosing the same number of groups, the welfare– and profit–maximising

principals will choose to divide agents in the same manner. This makes regulation relatively

easy: the government need only restrict the total number of tariffs; the principal will then

choose the welfare–maximising group structure.26 4

8 Group Size and Relative Position

In this section we investigate how the size of groups changes with the types of agents. These

results are of particular interest in the education market, where they enable us to assess how

class composition should change (a) with ability and (b) over time.

Our results can be summarised as follows. In Section 8.1, we show that, under costless

group formation, higher types will tend to be in larger groups. In Section 8.2, we show this

result extends to costly group formation if the quality function exhibits increasing returns to

scale, but reverses under decreasing returns. Finally we relate our results to those of Lazear

(2001) and discuss the implications for education.

25See Web Appendix. http://www.economics.utoronto.ca/board/papers/groups-webappendix.pdf.
26Although the models are very different, this result resembles Epple and Romano (1998, Propsition 4(i))

which showed that, conditional on the number of schools, a private system segregates students optimally. Their
paper also showed that the business stealing effect tends to lead to excessive entry of private schools.
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8.1 Costless Group Formation

In order to examine how group size changes with agents’ types, we consider the following

experiment. First, suppose that types are initially distributed according to θ ∼ f(θ) on [θ, θ].

We then examine the effect of an upwards shift in the distribution so that θ ∼ f(θ − t) on

[θ + t, θ + t]. We then compare the size of the group containing θ in the initial distribution

to that containing θ + t in the shifted distribution. For an arbitrary group, G, under the

initial distribution, let G(t) := G + t. Similarly define G(t),Γ(t) and P(t) relative to the new

distribution.

Assumption (LIN). A vertical shift affects group quality linearly: Q(G(t)) = Q(G(0)) + λt.

The (LIN) assumption is satisfied by average–quality (λ = 1) and linear–quality (λ = α+β)

among others. The principal’s problem is then to choose G(t) ∈ Γ(t) to maximise27

H =

∫ θ+t

θ+t
h(θ, t)Q(θ,G(t))f(θ − t) dθ.

Under (LIN) we can change variables to θ̃ = θ − t. Under welfare–maximisation, h(θ, t) = θ,

so the objective becomes h(θ̃ + t, t) = θ̃ + t. Under profit–maximisation, h(θ, t) = θ − [1 −

F (θ − t)]/f(θ − t) so the objective becomes h(θ̃ + t, t) = MR(θ̃) + t. Putting this together,

h(θ̃ + t, t) = h(θ̃) + t. Denoting G = G(0), the principal’s problem is thus to choose G ∈ Γ to

maximise

H(G, t) =

∫ θ

θ
[h(θ̃) + t][Q(θ̃,G) + λt]f(θ̃) dθ̃. (8.1)

Proposition 7. Suppose h(θ)+t is positive and increasing in θ, and that quality satisfies (LIN).

Fix tH > tL. For any tH–optimal solution, GH , H(GH , tL) ≥ H(G, tL) on {G ∈ Γ : G ⊂ GH}.

Hence if any optimal solutions, GL and GH , are ordered in terms of set inclusion, then there

exists a tL–optimal solution, GL∗, such that GH ⊂ GL∗.

Proof. The function h(θ)+ t is positive and increasing in θ, and is therefore log–submodular in

(θ, t). The rest of the proof is identical to Proposition 1.

Proposition 7 says that higher types will tend to be in larger groups under welfare or profit–

maximisation. To understand the result, take a group [θL + t, θH + t] and consider a split that

reduces the quality of the low types a lot, while raising the quality of the high types a little.

When the agents’ types are low (i.e. t is low), the ratio between the highest and lowest types

in the group, (θH + t)/(θL + t), is large and this split may increase welfare/profit. Yet when

the agents’ types are high (i.e. t is high), the ratio between the highest and lowest types in the

group is small and the split is less likely to be beneficial.

27This assumes the principal cannot exclude. As in footnote 10, this is without loss if h(θ, t) is always positive.
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Pooling Fine Segregation

Figure 4: Optimal Group Formation: Cobb Douglas Quality

Our result concerns the group structure as the entire distribution of types shifts. It also

suggests that higher types will be in larger groups than lower types within a given distribution

if the relative ratio of high types to low types remains constant throughout the distribution

(e.g. the density is uniform, ignoring boundary problems). This can be seen in Figure 3, where

higher types are in larger groups under both welfare– and profit–maximisation.

Proposition 7 assumes that the quality function satisfies (LIN). Without this assumption

the result may be overturned, and high types may be in smaller groups than low types. For

example, Figure 4 illustrates the welfare–maximising partition under Cobb–Douglas quality.28

In this case, agents below a certain cutoff are pooled into one giant group, while all other types

are very finely segregated. Intuitively, for low types the quality function is very concave and

the returns to scale are large; for high types the quality function is less concave and the returns

to scale are small.

8.2 Costly Group Formation

With costly group formation, the principal’s problem is to choose G ∈ Γ to maximise H(G, t)−

c(G), where H(G, t) is defined by (8.1) and c(G) is an arbitrary cost function.

Proposition 8. Suppose h(θ) + t is increasing in θ, and that quality satisfies (LIN). Suppose

either:

(a) there are increasing returns to scale and fix t′′ < t′; or

(b) there are decreasing returns to scale and fix t′′ > t′.

Then for any t′–optimal solution, G′, H(G′, t′′) ≥ H(G, t′′) on {G ∈ Γ : G ⊂ G′}. Hence if any

optimal solutions, G′ and G′′, are ordered in terms of set inclusion, there exists a t′′–optimal

solution, G′′∗, such that G′ ⊂ G′′∗.

Proof. Suppose IRS holds and fix t′ > t′′. Consider a t′–optimal solution, G′, and consider

G ⊂ G′. IRS implies that E[∆Q(θ)] ≤ 0, where ∆Q(θ) := Q(θ,G′) − Q(θ,G). Observe that

H(G′, t) −H(G, t) = E[(h(θ) + t)∆Q(θ)] and

E[(h(θ) + t′′)∆Q(θ)] − E[(h(θ) + t′)∆Q(θ)] = (t′′ − t′)E[∆Q(θ)] ≥ 0

28In Figure 4, θ ∼ U [0.5, 1], Q(G) = (E[θ|G]− 0.5)0.3 and σ(P) equals the Borel sets. In the finely segregated
part, the groups are around 0.0001 wide.
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Hence H(G′, t′)−H(G, t′) ≥ c(G′)−c(G) implies H(G′, t′′)−H(G, t′′) ≥ c(G′)−c(G), as required.

The proof for DRS is identical.

Proposition 8 says that (a) under IRS, higher types are in larger groups; and (b) under

DRS, higher types are in smaller groups. In comparison, if there is costless group formation

then (a) under IRS, higher types are in larger groups (Proposition 7); and (b) under DRS,

there is full separation (Proposition 2). To understand this result, consider the IRS case.

Splitting a group has an efficiency effect, reducing the mean group quality, and a distributional

effect, benefiting high types while hurting low types. When all types are higher, then the ratio

between the highest and lowest types in a group declines, and the distributional effect becomes

less important. Hence the efficiency effect becomes paramount, leading to an increase in group

size.

Proposition 8 considers a shift of the entire distribution of types. Example 11 shows that,

under the uniform–linear model, a similar result applies within a given distribution of types.

Example 11 (Linear–Quality). Suppose Q(G) = α inf(G) + β sup(G) and c(G) only depends

on G through the number of groups, N . By Example 5, the optimal group structure consists

of intervals. The welfare–maximising principal then chooses cutoffs {θi}
N
i=0 to maximise (5.1).

Assume θ ∼ U [θ, θ] and let σ(P) equal the Borel sets, enabling the use of calculus. Under

constant returns to scale (α = β), the FOCs for {θi}
N−1
i=1 reduce to (θi+1 − θi) = (θi − θi−1),

as in Example 10, so groups are the same size for all types. Under DRS (i.e. α ≥ β), then

(θi+1 − θi) ≤ (θi − θi−1), so groups are smaller for higher types. Under IRS (i.e. α ≤ β), then

(θi+1 − θi) ≥ (θi − θi−1), so groups are larger for higher types.29 4

These results have implications for education markets. When considering the optimal class-

room size, the assumption of decreasing returns seems reasonable. Proposition 8 then suggests

that more able students should be in smaller classes. Intuitively, when students are more able,

they have more to gain from a reduction in class size. This results seems consistent with the

35% reduction is U.S. pupil–teacher ratio over the last half–century (Hanushek (1999)).

This result can also be contrasted to Lazear (2001, Proposition 1) which shows that, with

multiplicative quality, groups are larger for higher types. The reason for Lazear’s result is that,

under multiplicative quality, there are significant decreasing returns to scale when θ is low, but

approximately constant returns as θ approaches one. This is the reverse of the logic behind the

Cobb–Douglas example in Figure 4.

When considering the optimal school composition, holding class size constant, Henderson,

Mieszkowski, and Sauvageau (1978) suggest that increasing returns may be the appropriate

assumption. Propositions 7–8 then imply that selective grammar schools were of more use in

the 1950s, when education levels were relatively low, than today.

29See Web Appendix. http://www.economics.utoronto.ca/board/papers/groups-webappendix.pdf.
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9 Conclusion

This paper has analysed how a principal will divide agents into groups in the presence of peer

effects. With costless group formation, we showed that a profit–maximising principal will seg-

regate agents more finely than is socially optimal (the segregation effect) and exclude too many

agents (the exclusion effect). We also analysed how the optimal group structure depends upon

the returns to scale of the peer technology. With costly group formation, we demonstrated that

a profit–maximising firm may not invest enough in group formation (the appropriability effect).

However, under increasing returns to scale, the segregation effect dominates the appropriability

effect.

Our analysis has direct implications for public policy. The large growth in private communi-

ties suggests that these developments are filling a gap in the market, leading to welfare gains for

parts of society. Our model is consistent with this fact: even when agents benefit from living in

varied communities (i.e. under increasing returns to scale) then the welfare–maximising outcome

will exhibit assortative matching, consisting of different tiers of communities. Nevertheless, the

segregation effect illustrates that private community development will often lead to excessively

homogenous neighbourhoods. This suggests that, in cases where a few local developers have

market power, the government should be especially careful to ensure new developments contain

a wide range of housing stock.

This paper also informs the debate on the role of private schools. Much of the discussion over

vouchers and public–private partnerships centres on the mantra of parental choice. However,

choice is not the aim in itself. This paper has shown that when the options are designed

by an organisation with market power, then private provision may provide too much choice,

introducing excessive segregation. On the positive side, given knowledge of these distortions,

there is no reason why an alert regulatory agency cannot mitigate their impact.
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A Omitted Material

A.1 Multiplicative Technology

Kremer (1993) and Lazear (2001) consider a group of agents, G = {p1, . . . , pµ(G)}, where agent

i makes a mistake with probability pi = 1 − θi. For example, one can think of a project that

requires µ(G) jobs to be completed. The probability the project is completed successfully is

then

Q(G) =

µ(G)
∏

i=1

(1 − pi)

We now consider a continuous type analogue to this quality function. Suppose agents

types are distributed according to absolutely continuous measure µ, where µ([θ, θ]) = m. Let

f(θ) = dµ(θ)/m be the normalised density. The quality of a group G ⊂ [θ, θ] is determined

as follows. First, as in the discrete model, suppose that a project requires µ(G) jobs to be

completed. Second, break each job into k equal tasks. Third, draw k agents independently

from G, where each agent makes a mistake with probability pi/k. Then let each of these agents

do one of the k tasks for each of the µ(G) jobs. The probability the project is completed

successfully is then

Qk(G) =





k
∏

j=1

(

1 −
pi

k

)





µ(G)

Lemma 7. As the number of tasks grows, k → ∞,

Qk(G)
p
→ exp

(

−

∫

G
(1 − θ)dµ

)

= exp

(

−m

∫

G
(1 − θ)dF

)

.

Proof. Define

∆k(pi) :=
ln(1) − ln(1 − pi/k)

pi/k

For each k we draw a new set of agents with error probabilities {pi}
k
i=1, so ∆k(pi) is a triangular

array. Observe that for a given pi,

lim
k→∞

∆k(pi) =
d

dx
ln(x)|x=1 = 1
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Since ∆k(pi) ∈ [1,∆k(1)], the law of large numbers (e.g. Durrett (1995, p. 41)) implies

ln(Qk(G)) = µ(G)
k

∑

i=1

ln(1 − pi/k)

= µ(G)
1

k

k
∑

i=1

−pi

[

ln(1) − ln(1 − pi/k)

pi/k

]

= µ(G)
1

k

k
∑

i=1

−pi ∆k(pi)

p
→ −µ(G)E[p | G]

where the second line uses ln(1) = 0.

A.2 Proof of Lemma 3

Pick IH ∈ I(GH). By construction, there exists a GH ∈ GH such that IH = IGH
(GH). Since

GL ⊂ GH , there exists {GHj
}j∈J such that GHj

∈ GH and GH ∈ ∪j∈JGHj
= GL for some

GL ∈ GL. Clearly,

IH = IGH
(GH) ⊂ ∪j∈JIGH

(GHj
)

Since IG(G) is the smallest interval containing G, IGH
(GHj

) ⊂ IGH
(∪j∈JGHj

) for each j ∈ J .

Thus,

∪j∈JIGH
(GHj

) ⊂ ∪j∈JIGH
(∪j∈JGHj

) = IGH
(∪j∈JGHj

) = IGH
(GL)

Since GL ⊂ GH , the definition of IG(G) implies that

IGH
(GL) ⊂ IGL

(GL) ∈ I(GL)

We have thus shown that IH ∈ I(GL), as required.

A.3 Proof of Corollary 1

Suppose GW ⊂ GΠ. Lemma 3 implies that I(GW ) ⊂ I(GΠ). Let I∗ be the coarsest partition

such that ∆Q(θ) := Q(θ,GΠ) −Q(θ,GW ) is quasi–increasing.

Lemma 8. E[∆Q(θ)|I∗] ≤ 0.

Proof. As in Proposition 1, we have E[θ∆Q(θ)|I∗] ≤ 0. For any I∗ ∈ I∗, it follows that

0 ≥ E[θ∆Q(θ)|I∗] ≥ E[θ|I∗]E[∆Q(θ)|I∗]
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where the second inequality comes from the fact that a quasi–increasing function is positively

correlated with an increasing function (e.g. Persico (2000, Lemma 1)).

Fix I∗ ∈ I∗. Denote the distribution function of Q(θ,GΠ), conditional on θ ∈ I∗, by

FΠ(q) := E[1Q(θ,GΠ)≤q|I
∗] Similarly define the distribution function of Q(θ,GW ), conditional

on θ ∈ I∗, by FW (q) := E[1Q(θ,GW )≤q|I
∗].

Lemma 9. For any I∗ ∈ I∗, FW (q) − FΠ(q) is weakly quasi–increasing.

Proof. Q(θ,GW ) and Q(θ,GΠ) are increasing, so denote the inverses by Q−1
W (q) := inf{θ :

Q(θ,GW ) > q} and Q−1
Π (q) := inf{θ : Q(θ,GΠ) > q}. Q(θ,GΠ) −Q(θ,GW ) is quasi–increasing

on I∗, so Q−1
W (q) −Q−1

Π (q) is weakly quasi–increasing. The difference between the distribution

functions is

FW (q) − FΠ(q) = E[1θ≤Q−1

W
(q) − 1θ≤Q−1

Π
(q)|I

∗]

Hence FW (q) − FΠ(q) is weakly quasi–increasing.

For I∗ ∈ I∗, Lemmas 8–9 imply that [Q(θ,GW )|I∗] ≥icv [Q(θ,GΠ)|I∗], where ≥icv denotes

the increasing–concave order (Shaked and Shanthikumar (1994, Theorem 3.A.12(b))). The

increasing–concave order is closed under mixtures so Q(θ,GW ) ≥icv Q(θ,GΠ) (Shaked and

Shanthikumar (1994, Theorem 3.A.5(b))).

A.4 Monotone Comparative Statics used in Appendix A.5

The function h(θ, t) is extended–log–supermodular if for θH ≥ θL and tH ≥ tL,

h(θH , tH)h(θL, tL) ≥ h(θH , tL)h(θL, tH) (A.1)

If h(θ, t) is also positive, then it is log–supermodular.

Lemma 10. Suppose h(θ, t) is extended–log–supermodular, weakly quasi–increasing in θ and

weakly quasi–increasing in −t. Then for any partition I, E[h(θ, t)|I]+ is log–supermodular.

Proof. First, we show that the properties of h(θ, t) carry over to ψ(θ, t) := E[h(θ, t)|I]. Suppose

h(θ, t) is extended–log–supermodular and pick tH > tL and θH > θL, where θH ∈ IH and

θL ∈ IL.

ψ(θH , tH)ψ(θL, tL) − ψ(θL, tH)ψ(θH , tL)

=

∫

IL

∫

IH

[h(θH , tH)h(θL, tL) − h(θL, tH)h(θH , tL)] dF (θH )dF (θL) ≥ 0

using the extended–log–supermodularity of h(θ, t). Similarly, if h(θ, t) is weakly quasi–increasing

in a parameter then ψ(θ, t) has the same property.
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Second, we show that ψ(θ, t)+ is log–supermodular. Pick θH > θL and tH > tL. If

ψ(θL, tH) ≤ 0, then ψ(θ, t)+ is trivially log–supermodular. If ψ(θL, tH) > 0, then ψ(θH , tH) ≥ 0

and ψ(θL, tL) ≥ 0 from the monotonicity properties of ψ(θ, t). The log–supermodularity of

ψ(θ, t)+ follows from the extended–log–supermodularity of ψ(θ, t).

Lemmas 11–12 are variants of Karlin and Rubin (1956, Lemma 1). The method of proof is

identical.

Lemma 11. Consider groups GL,GH such that I(GL) ⊂ I(GH) and assume Q(θ,G) ≥ 0.

Suppose that E[h(θ, t)|I(GH)]+ is log–supermodular in (θ, t) and decreasing in t. Consider the

partition I∗ ⊂ I(GL) such that Q(θ,GL)−Q(θ,GH) is quasi–increasing on every I ∈ I∗. Then

E

[

E[h(θ, t)|I(GH )]+Q(θ,GH)

∣

∣

∣

∣

I∗

]

− E

[

E[h(θ, t)|I(GL)]Q(θ,GL)

∣

∣

∣

∣

I∗

]

(A.2)

is quasi–increasing in t.

Proof. Write ψ(θ, t) := E[h(θ, t)|I(GH )] and ∆Q(θ) := Q(θ,GH) − Q(θ,GL). Rewriting (A.2)

we wish to show that

E
[

ψ(θ, t)+∆Q(θ)
∣

∣

∣
I∗

]

+ E
[

ψ(θ, t)−Q(θ,GL)
∣

∣

∣
I∗

]

(A.3)

is quasi–increasing in t. By way of contradiction, suppose there exists tH > tL and an interval

I ∈ I∗

E
[

ψ(θ, tL)+∆Q(θ)
∣

∣

∣
I
]

+ E
[

ψ(θ, tL)−Q(θ,GL)
∣

∣

∣
I
]

≥ 0 (A.4)

and

E
[

ψ(θ, tH)+∆Q(θ)
∣

∣

∣
I
]

+ E
[

ψ(θ, tH)−Q(θ,GL)
∣

∣

∣
I
]

< 0 (A.5)

Since ∆Q(θ) is increasing on I, so we can break it up into positive and negative components.

That is, ∆Q(θ) ≥ 0 on some I+ ∈ IH and ∆Q(θ) < 0 on I− := I\I+. For notational

convenience, restrict the state space to I and rewrite (A.4) and (A.5) as

E
[

ψ(θ, tL)+∆Q(θ)+
]

+ E
[

ψ(θ, tL)−Q(θ,GL)
]

≥ E
[

ψ(θ, tL)+∆Q(θ)−
]

(A.6)

and

E
[

ψ(θ, tH)+∆Q(θ)−
]

> E
[

ψ(θ, tH)+∆Q(θ)+
]

+ E
[

ψ(θ, tH)−Q(θ,IL)
]

(A.7)

There are two possible cases. First, suppose that the left hand side of (A.6) equals zero. Then

(A.6) implies the left hand side of (A.6) is also zero and, since ψ(θ, t) is decreasing in t, the left

hand side of (A.7) is zero. We thus obtain a contradiction. Second, we suppose the left hand
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side of (A.6) is positive. Multiplying (A.6) and (A.7),

E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)+∆Q(θ)+
]

+ E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)−Q(θ,IL)
]

(A.8)

> E
[

ψ(θ, tH)+∆Q(θ)+
]

E
[

ψ(θ, tL)+∆Q(θ)−
]

+ E
[

ψ(θ, tL)+∆Q(θ)−
]

E
[

ψ(θ, tH)−Q(θ,IL)
]

We now show that (A.8) also yields a contradiction. This follows from two facts. First, using

the log–supermodularity of ψ(θ, t)+,

E
[

ψ(θ, tH)+∆Q(θ)+
]

E
[

ψ(θ, tL)+∆Q(θ)−
]

− E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)+∆Q(θ)+
]

(A.9)

=

∫

I−
L

∫

I+

L

[ψ(θH , tH)+ψ(θL, tL)+ − ψ(θH , tL)+ψ(θL, tH)+]∆Q(θH)+∆Q(θL)−dF (θH)dF (θL) ≥ 0

Second, ψ(θ, t) is decreasing in t. Hence ψ(θ, tL)+ ≥ ψ(θ, tH)+ and ψ(θ, tH)− ≥ ψ(θ, tL)−. This

means

E
[

ψ(θ, tL)+∆Q(θ)−
]

E
[

ψ(θ, tH)−Q(θ,GL)
]

≥ E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)−Q(θ,GL)
]

(A.10)

Together, (A.9) and (A.10) contradict (A.8), as required.

Lemma 12. Suppose ∆Q(θ) is quasi–increasing on I. In addition, suppose that h(θ, t) is

log–supermodular in (θ, t) and decreasing in t. Then E[h(θ, t)∆Q(θ)|I] is quasi–increasing in t.

Proof. Follows from Lemma 11.

A.5 Proof of Proposition 3

The method of proof is the same as in Proposition 1. Suppose GW maximises welfare and pick

G such that G ⊂ GW . We wish to show that Π(GW ) ≥ Π(G). By Lemma 3, I(G) ⊂ I(GW ).

Denote the benefit from splitting, conditional on I(G), by

∆W (θ) := E

[

θQ∗(θ,GW )

∣

∣

∣

∣

I(G)

]

− E

[

θQ∗(θ,G)

∣

∣

∣

∣

I(G)

]

∆Π(θ) := E

[

E[MR(θ)|I(GW )]+Q∗(θ,GW )

∣

∣

∣

∣

I(G)

]

− E

[

E[MR(θ)|I(G)]+Q∗(θ,G)

∣

∣

∣

∣

I(G)

]

Let ∆Q∗(θ) := Q∗(θ,GW )−Q∗(θ,G). Since GW maximises welfare, E[∆W (θ)] ≥ 0. Observe

that ∆Q∗(θ) is increasing on each I ∈ I(G) and let I∗ be the coarsest partition such that ∆Q∗(θ)

is quasi–increasing for all I∗ ∈ I∗.

Lemma 13. E[∆W (θ)|I∗] ≥ 0.

Proof. Same as Proposition 1.
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Lemma 14. E[∆Π(θ)|I∗] ≥ 0 and hence E[∆Π(θ)] ≥ 0.

Proof. Let us divide the state space into two. MR(θ) is quasi–increasing in θ, so E[MR(θ)|I(G)]

is positive on some increasing set IB ⊂ [θ, θ], and strictly negative on the compliment, IA.

First, E[∆W (θ)|I∗] ≥ 0 implies E[∆W (θ)1IB
|I∗] ≥ 0. To see this, notice that the function

h(θ, t) = θ1θ≥t is log–supermodular and decreasing in t. Let h(θ, 0) = θ and h(θ, 1) = θ1IB
and

apply Lemma 12.

Second, let h(θ, 0) = θ1IB
and h(θ, 1) = MR(θ)1IB

. Under (MON), h(θ, t) is extended–

log–supermodular in (θ, t), weakly quasi–increasing in θ and decreasing in t. Lemma 10 im-

plies that E[h(θ, t)|I(GW )]+ is log–supermodular and decreasing in t. Hence, by Lemma 11,

E[∆W (θ)1IB
|I∗] ≥ 0 implies that E[∆Π(θ)1IB

|I∗] ≥ 0.

Third, E[MR(θ)1IA
|I(G)]+ = 0, so E[∆Π(θ)1IA

|I∗] ≥ 0. Thus E[∆Π(θ)1IB
|I∗] ≥ 0 implies

E[∆Π(θ)|I∗] ≥ 0.
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