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Abstract

I analyze the equilibrium in a labor market where firms offer wage-tenure contracts
to direct the search of employed and unemployed workers. Each applicant observes
all offers and there is no coordination among individuals. Workers’ applications
(as well as firms’ recruiting decisions) are optimal. This optimality requires the
equilibrium to be formulated differently from the that in the literature of undirected
search. I provide such a formulation and show that the equilibrium exists. In the
equilibrium, individuals explicitly tradeoff between an offer and the matching rate
at that offer. This tradeoff yields a unique offer which is optimal for each worker to
apply, and applicants are separated endogenously according to their current values.
Despite such uniqueness and separation, there is a non-degenerate and continuous
wage distribution of employed workers in the stationary equilibrium. The density
of this distribution is increasing at low wages and decreasing at high wages. In
all equilibrium contracts, wages increase with tenure, which results in quit rates to
decrease with tenure. Moreover, the model makes novel predictions about individuals’
job-to-job transition and comparative statics.
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1. Introduction

Directed search is a matching process in which an individual can use his offer to affect his

matching rate. The objective of this paper is to study the equilibrium in a labor market

where firms offer wage-tenure contracts to direct workers’ search. A wage-tenure contract

is a time profile of wages which describes how a worker’s wage will evolve with tenure. All

firms post contracts before workers apply and each applicant observes all offers. Employed

workers continue to search on the job for better contracts elsewhere. I characterize the

market equilibrium and establish its existence. Then, I show that the equilibrium yields

novel predictions about individual workers’ job-to-job transition and aggregate outcomes.

To see why directed search is interesting to study, it is useful to contrast it with the

large literature on undirected search developed from Diamond (1982), Mortensen (1982),

and Pissarides (1990). There are two classes of models in this literature. In one class, as in

the three pioneering works, prices (wages) are a result of bargaining after individuals are

matched. In the other class, some individuals post prices but the searching individuals do

not know who posted what prices (e.g., Burdett and Mortensen, 1998, and Burdett and

Coles, 2003). In both classes of models, search is undirected because prices play no role,

ex ante, to direct workers to particular matches.

Although undirected search captures important frictions, there are good reasons why

it does not describe a search market adequately. First, some search is directed rather than

completely random. For example, searching workers often have information about wages,

from job advertisement, word of mouth, or referrals. This is particularly true for workers

who search on the job. Second, it has been a long tradition in economics to treat prices as a

useful mechanism to direct the allocation of resources, ex ante. By abandoning this role of

prices, the literature of undirected search generates an array of inefficiencies in the market.

The corrective policy depends on arbitrary details of matching and price determination

processes (see Hosios, 1990). Directed search can eliminate most of these inefficiencies.

Third, undirected search generates wage dispersion that is sensitive to the assumption on

how many wages a worker knows before search. In these models, a searching worker knows

either no wage beforehand as in the three pioneering works, or one wage (the worker’s

current wage) as in the on-the-job search model of Burdett and Mortensen (1998). If each

searching worker knows two or more wages, instead, then wage dispersion disappears in

these models. This sensitivity reduces the potency of undirected search as an explanation

for wage dispersion. Directed search is immune to this sensitivity.

During the last fifteen years or so, a literature has grown to analyze directed search. Pe-
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ters (1984, 1991) and Montgomery (1991) provide two of the earliest formulations. Exam-

ples of further explorations include Moen (1997), Acemoglu and Shimer (1999a,b), Julien,

et al. (2000), Burdett, et al. (2001), Shi (2001), Galenianos and Kircher (2005), and

Delacroix and Shi (2006). They have shown that an equilibrium with directed search and

its efficiency properties are significantly different from those with undirected search.

This literature has not yet introduced wage-tenure contracts; instead, it has assumed

that each firm posts a single fixed wage for the entire duration of the worker’s employment

with the firm. Moreover, only one model in this literature (i.e., Delacroix and Shi, 2006) has

incorporated on-the-job search. Without wage-tenure contracts, the literature of directed

search is unable to explain the empirical regularities that wages rise and quit rates fall with

tenure (e.g., Farber, 1999). Without on-the-job search, a model cannot make predictions

on job-to-job transitions which constitute a large part of the flow of workers in the data.

There is an urgency to fill in these gaps between directed search theory and the data, given

the appealing features of directed search discussed above.

The immediate challenge of this task is to formulate the equilibrium with contracts and

prove its existence. To appreciate the challenge, it is useful to compare the task with the

one in undirected search, which is accomplished by Burdett and Coles (2003, termed as BC

henceforth). With undirected search, one does not need to formulate workers’ application

decisions, because workers are assumed to send their applications randomly to a pool of

recruiting firms. With directed search, however, each worker’s application must be optimal.

In this decision, a worker makes the optimal tradeoff between an offer and the likelihood

of obtaining the offer. Similarly, each firm understands that it can raise the offer to entice

more workers to apply to the firm. To describe this tradeoff, I need two new objects in

addition to the set of optimal contracts. One is the employment rate function, which

describes how the rate at which an applicant gets a particular offer varies with the offer.

The other is the hiring rate function, which describes how the rate at which a recruiting

firm successfully hires a worker varies with the offer. These functions are equilibrium

objects: They must be consistent with the aggregation of individuals’ optimal choices, and

the hiring rate must ensure that all equilibrium offers earn the same expected profit to a

firm. A challenge is to show that these functions exist.

I formulate the equilibrium in an environment where all firm-worker pairs have the same

productivity, and then establish the existence of the equilibrium. The equilibrium extends

several realistic properties from the BC model of undirected search to directed search.

First, wages increase and quit rates fall with tenure, because finding a higher offer becomes

increasingly difficult as a worker’s wage rises. Second, all equilibrium contracts are sections
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of a baseline contract. The baseline contract starts with the lowest equilibrium wage and

then increases the wage with the worker’s tenure in the firm. Any other equilibrium contract

that starts at a different wage is identical to the remaining section of the baseline contract

from that wage level onward. Third, wage-tenure contracts and on-the-job search generate

wage dispersion among workers, even though all matches have the same productivity and

all applicants observe all offers before they apply.

Beyond these similarities, the equilibrium with directed search has little resemblance

to the one with undirected search. One main difference is the prediction about individuals’

job-to-job transitions. With directed search, the employment rate is a decreasing function

of the offer and the hiring rate is an increasing function of the offer. Thus, the tradeoff

between an offer and the matching rate is non-trivial. Each worker chooses to apply to

a unique offer and the applicants are separated endogenously. That is, a worker whose

current state yields a higher value chooses to apply to a higher offer than another worker

whose current state has a lower value. Such separation implies that wage mobility is limited

endogenously by the worker’s current wage. In contrast, undirected search models (e.g.,

BC, 2003, and Burdett and Mortensen, 1998) assume that any two workers have the same

probability of receiving an offer that is higher than their current wages.

Another difference is the shape of the wage distribution of employed workers. There

is a non-degenerate, continuous distribution of wages both in the current model and in

the BC model. However, in the current model, the density function of the distribution of

employed workers over wages is increasing at low wages and decreasing at high wages. This

non-monotonic shape of the density function is an empirical regularity (see Kiefer and Neu-

mann, 1993), but it is not the prediction of an undirected search model with homogeneous

matches. Instead, an increasing density function of employed wages is necessary to sup-

port an equilibrium with undirected search and homogeneous matches. To eliminate this

unrealistic prediction, the literature of undirected search has introduced sufficient hetero-

geneity across matches (e.g., van den Berg and Ridder, 1998). It is important to know that

directed search can generate the non-monotonic wage density without such heterogeneity.

The third difference is comparative statics. An increase in unemployment benefits in the

sense of the first-order stochastic dominance has no effect on the set of equilibrium contracts

or individual workers’ job-to-job transition rates, although it affects wage distributions of

workers. If search were undirected, however, such an increase in unemployment benefits

would increase the slope of the wage-tenure profile and increase the transition rate from

low wages to high wages, as well as affecting wage distributions.

In general, the distributions of workers and offers have a much lesser role in determining
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equilibrium contracts and job-to-job transitions in the current model than in undirected

search models. The reason is that, with directed search, the matching rate functions (rather

than the distributions) play the critical role in determining the equilibrium. These functions

form a fixed-point problem with optimal contracts and optimal applications. Only after

solving this fixed-point problem can one deduce the implications on the distributions. The

reverse is true with undirected search. There, in order to offer contracts optimally, the

firms must know the distributions of workers and offers first.

The main extension of this paper to the literature of directed search is to incorporate

wage-tenure contracts and on-the-job search, as discussed earlier. Here, a contrast must

be made to Delacroix and Shi (2006), who examine directed search on the job by assuming

that firms can offer only fixed wages over tenure. That paper shows that the equilibrium is

a wage ladder. The discreteness of the set of equilibrium wages makes the characterization

of the equilibrium quite messy in that model. Allowing for wage-tenure contracts not only

captures empirical regularities, but also simplifies the characterization of the equilibrium —

Any initial gap between two offers will eventually be filled in by the increasing wage profile.

The analysis here is much more general than in Delacroix and Shi and, at the same time,

preserves the feature of limited wage mobility.

The continuous distribution of wages in the current model with homogeneous matches

is another contribution to the literature of undirected search. In a similar setting, the liter-

ature of directed search generates only a finite number, or even a singleton, of equilibrium

wages. In the current model, wage-tenure contracts provide a source of wage dispersion

because they allow workers who got jobs earlier to earn more than workers who got jobs

later, even if the two are employed under the same contract. The endogenous separation of

applicants is another source of wage dispersion because workers who got jobs earlier apply

to higher wages than other workers choose to.

To emphasize the differences between directed search and undirected search, I maintain

four assumptions imposed by BC. First, workers are risk averse; second, the capital market

is not perfect for workers to borrow against their future income. These assumptions are

important for generating the wage-tenure relationship, as discussed by BC. Third, a firm

does not respond to the worker’s outside offers. One justification for this assumption might

be that, since a worker can observe all firms’ posted offers, he may be able to counterfeit

other firms’ offers. If it is difficult for a firm to verify such counterfeits, then it is optimal for

the firm not to respond to outside offers. How reasonable this assumption is clearly varies

across different types of labor markets. In checking the validity of the assumption, however,

one must keep in mind that all workers are assumed to have the same productivity in the
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current model. In any case, the assumption is commonly imposed in the literature, and

it enables me to compare the results clearly with those in BC. For a model of undirected

search without this assumption, see Postel-Vinay and Robin (2002). Finally, I assume that

the productivity of a firm-worker pair is public information and deterministic. For private

information or learning about productivity, see Jovanovic (1979), Harris and Holmstrom

(1982), and Moscarini (2005). These productivity differences between matches or over time

are clearly important for wage dynamics and turnover, but abstracting from them enables

me to have the clearest exploration of the role of search frictions.

2. The Model

Consider a labor market that lasts forever in continuous time. There is a unit measure

of risk averse workers whose utility function is u(w), where w is income. Workers do not

have access to the financial market to borrow against their future wage income, and so the

lower bound on wages is 0. All workers have the same productivity: when employed, each

worker produces a flow of output, y > 0. When unemployed, a worker enjoys a flow of

utility u(b), which is derived from leisure and other benefits in unemployment. I will refer

to b simply as the unemployment benefit.

It will become clear later that the analysis is simpler if b is distributed in an interval,

rather than being concentrated on a discrete set. Accordingly, I assume that a worker who

enters unemployment draws a value of b from the interval [b, b̄] according to a continuous

distribution H, where 0 < b < b̄. Let the density function h(b) = H 0(b) be differentiable.

To simplify the analysis further, I set b̄ = w̄, where w̄ is the highest wage specified later.

Once a worker draws a value of b, the value will stay with him until he dies.

All workers face the process of death at a Poisson rate σ ∈ (0,∞). Dead workers are
replaced with newborns who enter the labor market through unemployment and who draw

unemployment benefits according to the distribution H. To simplify the algebra, assume

that the rate of time preference is zero. However, the probability of death generates effective

discounting on the future.

Assumption 1. The utility function has the following properties: 0 < u0(w) < ∞ and

−∞ < u00(w) < 0 for all w ∈ (0,∞); u0(0) =∞; and u(0) = −∞.

These properties are standard, except u(0) = −∞. This additional property is required
to ensure that wages are positive at all time in an optimal contract. As discussed extensively

by BC, if u(0) <∞, then the optimal contract may be a wage path which starts with zero
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wage for a finite duration and then increases continuously into positive wages. If, in

addition, the workers are risk neutral, then the optimal wage path is a step function; i.e.,

the wage is zero initially, followed by a jump to a permanent level (see Stevens, 2004).

There are also a large number of identical firms that can enter the market. Entry is

competitive: a firm can recruit by incurring a flow of vacancy cost k > 0. Each vacancy

(firm) can recruit only one worker. Normalize the production cost to 0. Recruiting firms

announce wage-tenure contracts to compete for workers. A contract offered at time s is

a time path of wages, W (s) = {w(t)}∞t=s, conditional on the continuation of the worker’s
employment with the firm. Although a worker can quit the firm at any time, the firm

is assumed to commit to the contract. Thus, employment is permanent until the worker

either quits the firm or dies.

Let V (t, s) be the remaining value of the contract to the worker whose tenure in the

firm is (t − s). This value is the expected utility to the worker in the lifetime generated
by the remaining wage path in the contract from t onward, given the worker’s optimal

quitting strategy in the future. I will refer to an offer by its value to the worker at the

time of the offer, V (s, s), because this is all that matters to an applicant. All offers are

bounded in
h
V , V̄

i
, where

V̄ = u(w̄)/σ, V = u(b)/σ

w̄ is the highest wage which will be given by Lemma 3.3. The upper bound V̄ is the

lifetime utility of a worker who is employed at the highest wage permanently until death.

The lower bound V is the lifetime utility of a worker who has the lowest unemployment

benefit forever until death. However, because an unemployed worker has the opportunity

of finding employment, all equilibrium offers are likely to be strictly higher than V . I say

that a result holds for all V if it holds for all V ∈ [V , V̄ ].
Both unemployed and employed workers can search for jobs. At any instant, an un-

employed worker receives an opportunity to apply to a job with probability λ0, and an

employed worker receives the opportunity with probability λ1.
1 I allow for the possibility

λ0 = λ1 = 1 by letting λ0, λ1 ∈ (0, 1]. A worker who receives the application opportunity
observes all firms’ offers instantly without any cost and then chooses the offer to which he

applies. As in most search models, each worker can apply to only one offer.2

1Note that the λ’es are not Poisson rates, but rather the probabilities of receiving a job application
opportunity at any instant. As such, they are bounded above by one.

2Let me clarify two assumptions here. One is that an applicant observes all offers. This assumption is
not necessary, because the essential results in directed search are the same if each applicant is assumed to
observe two offers that are randomly drawn from the offer distribution (see Acemoglu and Shimer, 1999b).
The second assumption is that each applicant can apply to only one offer at a time. (For a directed search
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There is no coordination among firms’ recruiting decisions or workers’ applications.

When there are two or more firms making an offer to which a worker wants to apply,

the worker randomly selects one to apply. Similarly, a firm may receive more than one

applicant, in which case the firm randomly selects one to employ. If the selected worker

is employed elsewhere, the worker must quit that job before accepting the offer. I assume

that firms do not match the worker’s outside offers, as discussed in the introduction. A

job is destroyed when either the worker accepts another firm’s offer or the worker dies.

Because workers observe the offers before they apply to the jobs, the offers can direct

the search. That is, both workers and firms make an explicit tradeoff between an offer and

the matching rate at that offer. When offering a value V , a firm will succeed in hiring a

worker at a rate q(V ) according to the Poisson process. By changing the offer, the firm

knows that its hiring rate will change according to q(.). Similarly, when applying to V ,

a worker will obtain the job at a rate p(V ). By applying to a different offer, a worker

understands that his employment rate will change according to p(.). Note that p and q are

Poisson rates instead of probabilities, and so they can exceed one.

More importantly, the functions q(.) and p(.) are equilibrium objects, since they must

satisfy two equilibrium requirements. First, they must be consistent with aggregation.

That is, as firms and workers make their choices under these functions, the resulting match-

ing rates must indeed be given by these functions. Second, the hiring rate function must

ensure that the expected profit of recruiting be the same for all equilibrium offers. Delaying

the second requirement to section 4, I formulate the first requirement below.

Aggregate consistency imposes a link between the two functions, q(.) and p(.). To

see this, let M(x, 1) be a linearly homogenous matching function that determines the

measure of matches between a measure x of workers and a unit measure of firms. Given

the two functions of the matching rates, individuals’ decisions result in a tightness θ(V )

for each offer V , which is the ratio of applicants for V to recruiting firms at V . Then,

q(V ) = M(θ(V ), 1) and p(V ) = M(θ(V ), 1)/θ(V ). Using these relationships to eliminate

θ, I can express p(V ) = P (q(V )). This relationship between the two matching rates is

what aggregate consistency requires.

The function P (q) embodies all essential properties of the matching function. From now

on, I will take P (q) as a primitive of the model and refer to it as the matching function.3 To

model with multiple applications, see Galenianos and Kircher, 2005). In continuous time, this assumption
is not as restrictive as it may sound. Although a worker in reality may be able to send out multiple
applications, the probability with which two or more of his applications will be received by different firms
at the same instant can be very small.

3Some directed search models have gone one step further to derive the matching function endogenously
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specify the properties of the matching function, let q(V ) ∈ [q, q̄] for all V , with 0 < q < q̄,
where q̄ is given by the matching function and q will be defined later by (5.4).

Assumption 2. The matching function P (q) has the following features: (i) P (q) is con-

tinuous for all q ∈ [q, q̄] and, for all q in the interior of (q, q̄), the derivatives P 0(q) and P 00(q)
exist and are finite; (ii) q̄ <∞ and P (q̄) = 0; (iii) P 0(q) < 0; (iv) −qP 00(q)/P 0(q) ≤ 2.

Part (i) is a regularity condition that is satisfied by many well-known matching func-

tions. Part (ii) is imposed for the convenience of working with bounded functions. Part

(iii) is equivalent to 0 < θM1/M < 1, which is satisfied by all matching functions of con-

stant returns to scale that are strictly increasing in the arguments. In the equilibrium, I

will show q0(V ) > 0. Then, part (iii) ensures p0(V ) < 0. Part (iv) restricts the convexity

of P (q), which will be useful for ensuring uniqueness of a worker’s application decision.4

To see the different parts of the assumption more clearly, consider the matching function

with a constant elasticity of substitution between searching workers and vacancies:

Example 2.1. If M(θ, 1) = [αθρ + 1− α]1/ρ, where α ∈ (0, 1) and −∞ < ρ < 1, then

P (q) = q
µ
qρ − 1
α

+ 1
¶−1/ρ

Parts (i) and (iii) of Assumption 2 are satisfied. Part (ii) is satisfied iff −∞ < ρ < 0, i.e.,

iff the elasticity of substitution between searching workers and vacancies is less than one.

In this case, q̄ = (1−α)1/ρ. Part (iv) is satisfied iff α ≥ 1−(1−ρ)qρ/2. When ρ ≤ −1, this
condition is satisfied for all α > 0. When −1 < ρ < 0, the condition puts a lower bound

on α. Note that, for ρ < 0, the derivatives P 0(q) and P 00(q) are unbounded at q = q̄.

3. Workers’ and Firms’ Optimal Decisions

In this section, I will characterize agents’ optimal decisions and their value functions.

Throughout this paper, denote ẋ = dx/dt for any variable x.

by aggregating agents’ strategies, e.g., Peters (1991), Burdett et al. (2001), Julien et al. (2000) and
Delacrox and Shi (2006). In this paper, I follow the approach in Moen (1997) and Acemoglu and Shimer
(1999a) to take the matching function as given. This allows me to focus on the main feature of directed
search, i.e., that agents take into account how their choices of offers and applications will affect their
matching rates.

4For a general matching function, part (iv) of the assumption requires 1−θM1/M ≤ [−θM11/(2M1)]
1/2,

where the left-hand side of the inequality is the share of vacancies in the matching function.
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3.1. Optimal Application

Workers’ search is directed by the employment rate, p(V ), which gives the Poisson rate

of getting an offer V . As emphasized before, this function is an equilibrium object. Be-

fore analyzing workers’ search decisions, I describe the properties of this function by the

following lemma, which is an implication of Lemma 5.1 later.

Lemma 3.1. Under Assumption 2, p(V ) is bounded, continuous and concave for all V .

Moreover, p(V ) is differentiable and strictly decreasing for all V < V̄ , with p(V̄ ) = 0.

Examine an applicant, who can be either employed or unemployed. Let V (t) be the

value that the worker can obtain at his current state. This notation suppresses the starting

time of the contract, if the worker is employed. After receiving a job application opportu-

nity, the expected increase in value to the worker is:

E(V (t)) = max
f∈[V (t),V̄ ]

p(f) [f − V (t)] . (3.1)

Denote the solution as f(t) = F (V (t)). Then F is given implicitly as follows:

V = F (V ) +
p(F (V ))

p0(F (V ))
. (3.2)

The following lemma is proven in Appendix A:

Lemma 3.2. F (V̄ ) = V̄ . For all V < V̄ , the following results hold: (i) There is a

unique and interior solution to (3.1), f = F (V ); (ii) F (.) is continuous and E(V ) is

differentiable, with E0(V ) = −p(F (V )) < 0; (iii) F (.) is strictly increasing; (iv) if p(.) is
twice continuously differentiable, then F (V ) is differentiable with 0 < F 0(V ) ≤ 1/2, and
E(V ) is twice differentiable.

For a worker at a value V , applying to the offer F (V ) is the only optimal choice. This

is true despite the fact that the worker observes all other offers. Offers higher than F (V )

are not sufficient for compensating for the lower probability of getting them. Offers lower

than F (V ) have higher probabilities of being obtained, but these probabilities are not high

enough for compensating for the low values. For workers at a value V , only the offer F (V )

provides the optimal tradeoff between the value and the probability of obtaining it.

Not only is a worker’s optimal application unique, it is also monotonic in the worker’s

current value. That is, a worker with a higher current value applies for higher offers than

a worker with a lower value. Thus, the workers choose to separate themselves in the
9



application process according to their current values. This separation is optimal because

an applicant’s payoff function has the single-crossing property. That is, compared with an

applicant with a low current value, an applicant with a high value can tolerate a higher

risk of not getting an offer in exchange for a higher value of the offer. When an applicant

with a high current value fails to get the offer to which he applies, his current job provides

a good backup or insurance. As a result, he can afford to “gamble” on applying to higher

offers than does a worker with a low current value. Therefore, the optimal application

choice, F (V ), is an increasing function.

Figure 1 illustrates the single-crossing property between worker 1 at a value V1 and

worker 2 at value V2, where V2 > V1. Worker i’s indifference curve can be written as

f = Vi + Ei/p, for i = 1, 2. Suppose that the two workers’ indifference curves cross each

other at a particular point (f0, p0), where f0 > V2. At this crossing point, the slope of

worker i’s indifference curve is df/dp < 0, and the absolute value of this slope decreases

with Vi. This implies that, for the same increase in the offer, the high-value worker (worker

2) is willing to take a larger reduction in the probability of getting the offer than does worker

1. Equivalently, for the same reduction in the probability of getting an offer, worker 2 is

willing to apply to a higher offer than worker 1.

   f    indifference curve for V1

0 > df/dp = - (f0 - Vi)/p0
 f '

indifference curve
  f0       for V2 > V1

  p2   p1       p0     p
Figure 1. Monotonicity of the application decision

The optimality of the application decision is one of the key differences between this

model and the BC model, or more generally, between directed search and undirected search.

Models with undirected search have no counterpart to the above decision problem by an

applicant; instead, an applicant is assumed to randomly apply to a value which is drawn

from the offer distribution. Such an application is not optimal. First of all, the application
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may result in an offer which the worker will not accept. Second, even if the application

results in an acceptable offer, there is a continuum of values from which the offer comes

from. In contrast, with directed search, the set of values to which a worker optimally

chooses to apply is a singleton.

This contrast between the two models leads to sharply different predictions on job-to-

job transitions and wage mobility. Directed search predicts a definite pattern of transition

and endogenously limited mobility in wages between jobs. For example, take two workers

whose current wages are w1 and w2, respectively, with w2 > w1. Let wA be the starting

wage of the contract to which worker 1 will apply, and wB be the starting wage of the

contract to which worker 2 will apply. Then, for these two workers, the probability of

transiting immediately to another job with a starting wage above wB is zero. Moreover,

for any w0 ∈ (wA, wB), the likelihood ratio between worker 2’s and worker 1’s probability
of immediately transiting to another job with a starting wage above w0 is infinite. In

undirected search models, the probability of transiting to wages above wB is positive for

both workers, and the likelihood ratio is constant and finite.

In addition to limited wage mobility, directed search also yields predictions on the gain

to a worker from an application.5 First, a worker who has a high current value gains less

from an application than a worker who has a low current value. This is true in terms of

the expected gain from an application, because E0(V ) < 0. The result is also true in terms

of the actual gain in percentage, (F − V )/V , because F 0(V ) ≤ 1/2 < F (V )/V . With

risk aversion, however, this decreasing gain in the value does not necessarily translate into

a decreasing gain in wages. The decreasing gain in the value partly reflects the worker’s

decreasing marginal utility as the wage increases. Second, E00(V ) > 0. That is, the decrease

in the expected gain from an application slows down as the worker’s current value increases.

3.2. Value Functions of Workers and Firms

For an employed worker, the value can change over time for four possible reasons. The first

is the change in wages during the contract with the same firm. The second is the event

that the worker obtains a better offer and quits the current job.6 The third is death. The

fourth is the adjustment to the steady state. As in the literature, I abstract from the last

5Delacroix and Shi (2006) establish similar features in a model with directed, on-the-job search, but
they restrict that offers must be a constant wage over time. Nevertheless, the similarity suggests that these
features are common in directed search models.

6The worker can also choose to quit the job to become unemployed if the wage profile is sufficiently
decreasing. However, this event will never occur in the equilibrium, because the optimal wage profile has
increasing wages with tenure, as shown later.
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source of changes in the value by focusing on a stationary equilibrium. Because the rate

of time preference is zero, the value for an employed worker evolves as follows:

V̇ (t) = σV (t)− u(w(t))− λ1E(V (t)) (3.3)

If wages were constant over tenure, then V̇ = 0.

In contrast to wages, the unemployment benefit does not change over time once it is

drawn. Thus, the value to an unemployed worker with a given benefit, b, will be constant

over time as long as he stays unemployed. Denote this value as Vu(b). Then,

0 = σVu(b)− u(b)− λ0E(Vu(b)). (3.4)

To characterize a firm’s value function, consider a firm that has an employed worker at

time t under a contract whose remaining value to the worker is V (t). (Again, I suppress the

starting time of the contract in this notation.) Let J(t) denote this firm’s value. Because

the worker quits at rate λ1p(F (V (t))) and dies at rate σ, then

J̇(t) = [σ + λ1p(F (V (t)))] J(t)− y + w(t). (3.5)

For dynamic optimization, it is useful to express the firm’s values as the discounted

sum of profits. To do so, let t0 be an arbitrary point in [s, t], where s ≤ t is the starting
time of the contract. Let γ(t, t0) be the probability that a worker will still be with the firm

at time t given that he is with the firm at t0. Then,

γ(t, t0) = e
−
R t
t0
[σ+λ1p(F (V (τ)))]dτ . (3.6)

Equivalently, γ is given by the solution to the following differential equation:

dγ(t, t0)

dt
= − [σ + λ1p(F (V (t)))] γ(t, t0), (3.7)

where γ(t0, t0) = 1 and γ(∞, t0) = 0. Because J is bounded, it satisfies the transversality
condition limt→∞ J(t)γ(t, t0) = 0. Integrating (3.5) yields:

J(t0) =
Z ∞
t0
[y − w(t)] γ(t, t0)dt.

For any t0 ≥ s, this value is determined by the remaining contract from t0 onward.

12



3.3. Optimal Recruiting Decisions and Contracts

Take an arbitrary time s ≥ 0. A firm’s recruiting decision at time s contains two parts.

The first part is to choose a value V (s) at which to recruit. The optimal choice maximizes

the firm’s expected value, q(V (s))J(s), taking the function q(V ) as given. As I will explain

later, the solution to this part of the firm’s problem is a continuum of positive values of

V (s). The second part of a firm’s problem is to choose a wage profile (i.e., a contract) to

maximize J(s) and to deliver the value V (s). I characterize this decision below.

The optimal contract, {w(t)}∞t=s, solves:

(P) max J(s) s.t. (3.3) for all t ≥ s.

In this problem, V (s) is taken as given, and so the maximized value of J(s) is a function

of V (s). I express this fact by writing J(s) as J(V (s)).

Treat γ(t, s) as an auxiliary state variable in the dynamic optimization and (3.7) as the

law of motion of γ. Then, the Hamiltonian of the dynamic optimization is:

H(t, s) = (y − w)γ(t, s)− Λγ [σ + λ1p(F (V ))] γ(t, s) + ΛV [σV − u(w)− λ1E(V )] ,

where Λγ and ΛV are shadow prices of γ and V . I suppressed time on the right-hand

side, except for γ. Following a similar argument to that in BC, it can be shown that

the assumption u(0) = −∞ implies w(t) > 0 for almost all t in all optimal contracts.

Optimality conditions are: Λγ = J , ΛV = −γ/u0(w) and

ẇ =
[u0(w)]2

u00(w)
λ1J(V )

"
dp(F (V ))

dV

#
. (3.8)

Optimal contracts have three important properties. First, an optimal contract provides

optimal sharing of the value between a firm and its worker. To express this feature formally,

note that the Hamiltonian is zero at the optimum.7 Thus, an optimal contract satisfies:

−J̇ = 1

u0(w)
V̇ . (3.9)

To explain, suppose that the contract increases the value to the worker by a marginal

amount, V̇ . This will entail an increase in the wage by an amount, V̇ /u0(w). The cost to

the firm, in terms of profit, is −J̇ . The above condition requires that the marginal cost to
the firm from increasing the wage should be equal to the marginal benefit to the worker.

7To obtain this result, differentiate the Hamiltonian with respect to time, and then substitute (3.3),
(3.5) and the optimality conditions. This shows that the Hamiltonian, H(t, s), is constant over t. Because
γ(∞, s) = 0, then H(t, s) = H(∞, s) = 0 for all t ≥ s.
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For the analysis later, it is useful to substitute (3.5) and (3.3) to rewrite (3.9) as:

u0(w)(y − w) + u(w) = u0(w) [σ + λ1p(F (V ))] J(V ) + [σV − λ1E(V )] (3.10)

The best way to explain this condition is to view a worker-firm pair as a joint asset. With

this view, the left-hand side of the above equation measures the flow of “dividends” to the

asset, which consists of the firm’s profit, evaluated with the worker’s marginal utility, and

the worker’s utility of the wage. The right-hand side is the “permanent income” generated

by the asset. In particular, the permanent income to the firm is [σ + λ1p(F )]J , which is

translated into units of utility with the marginal utility of the worker. The permanent

income to the worker is [σV − λ1E(V )]. The optimal contract requires that the flow of

dividends to the joint asset should be equal to the permanent income of the asset.

Second, an optimal contract provides an increasing wage profile that increases with

tenure. This feature and the bounds on wages are stated in the following lemma (see

Appendix B for a proof):

Lemma 3.3. ẇ(t) > 0 for all V < V̄ . Moreover, w̄ = y − σk/q̄ < y, V̄ = u(w̄)/σ,

J(V̄ ) = k/q̄ > 0, and q(V̄ ) = q̄ <∞.
There are two forces that make an optimal wage profile smoothly increase with tenure.

The first is a firm’s incentive to retain a worker and the second is a worker’s risk aversion.

To retain a worker, it is optimal for a firm to backload wages so as to increase the worker’s

opportunity cost of quitting. As the wage and the value of the job to the worker rise with

tenure, the probability with which the employee can find a better offer elsewhere falls, and

so the worker’s quit rate falls with tenure. Thus, a rising wage profile is less costly to the

firm than a constant wage profile that provides the same expected value to the worker.

However, if workers are risk neutral, then the best way for a firm to backload wages is

to offer a step function as the wage contract (see Stevens, 2004). With risk aversion,

workers prefer a smooth wage profile to a discontinuous profile, and so wages in an optimal

contract are smoothly increasing with tenure. These two forces appear in the equation

for wage dynamics, (3.8): the incentive to retain a worker appears through the negative

derivative dp(F (V ))/dV (< 0) and a worker’s risk aversion through u00 < 0.

Because the wage is increasing with tenure and because the wage is bounded above, all

optimal wage profiles increase toward the upper bound w̄ as t→∞. Accordingly, the value
for an employed worker converges to V̄ .8 This convergence in the value is also monotonic,

as I will show later in Corollary 5.3. As a result, a firm’s value falls over time.
8Offers above V̄ are not optimal because they generate expected values to the firm that are less than

the recruiting cost.
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The third property of optimal contracts is that all optimal contracts are sections of

a baseline contracts. To describe this property, let the baseline optimal contract be

{wb(t)}∞t=0, where wb(0) is the lowest wage equilibrium wage. Every other optimal con-

tract, {w(t)}∞t=0, traces out the baseline contract from a particular initial wage level. That
is, the entire set of optimal contracts is:

{{w(t)}∞t=0 : s ∈ [0,∞); w(t) = wb(t+ s) for all t} .

This property is an implication of the principle of dynamic optimality. To explain why,

note that the above problem of optimal contracts does not depend on the starting time s

separately once V is given. Suppose that there are two contracts: contract 1 is offered at

time s1 and contract 2 offered at s2 > s1. The value offered by contract 2 is V2. Suppose

that contract 1 from s2 onward also delivers V2, then this remaining part of contract 1 must

be the same as contract 2. Otherwise, the firm that offers contract 1 could replace the

remaining part by contract 2 and, by the optimality of contract 2 at s2, the replacement

would improve the firm’s expected value.

This property of dynamic optimality simplifies the analysis greatly. One simplification

is that characterizing the entire set of optimal contracts at any time is equivalent to tracing

out the baseline contract over time. Similarly, characterizing the set of offer values at any

time is equivalent to tracing out the values provided by the baseline contract over time.

From now on, I will focus on the baseline contract, suppress the subscript b, and suppress

the starting point of a contract.

Another simplification is that the wage at any tenure can be written as a function of

the value remaining in the contract, rather than a function of time. To do so, let V be the
set of equilibrium lifetime utilities. Define v1 = inf (V) and define T by

T (V (t)) = t, with T (v1) = 0. (3.11)

Then, T (x) is the length of tenure required for a worker to increase the value from v1 to x

according to the baseline wage contract. The wage level of a worker with tenure t on the

baseline contract is w(T (V (t))). With a slight abuse of the notation, I express this wage

as w(V ) and refer to the function as the wage function. The above explanation makes it

clear that w(V (t)) is also the starting wage of a contract that is offered at t with a value

V (t) to the worker. The notation w(V ) should be construed to mean that wage can only

vary over time when the value to the worker changes over time.

Similarly, the notation J(V ) indicates that a firm’s value can only change over time

when the value to the worker changes over time. Thus, I can rewrite (3.9) as
15



J 0(V ) = − 1

u0(w(V ))
< 0. (3.12)

4. Definition and Configuration of the Equilibrium

Let n be the fraction of workers who are employed and (1−n) the fraction of workers who
are unemployed. Let Ge be the cumulative distribution function of employed workers over

values and Gu be the distribution of unemployed workers over values.

An equilibrium is a set of lifetime utilities, V, a Poisson rate of employment, p(.), an
application strategy, F (.), a value function J(.), a wage function w(.), and distributions of

workers, (Ge, Gu, n), that satisfy the following requirements:

(i) F (V ) solves (3.1), given p(.);

(ii) Given F (.) and p(.), each value V ∈ V is delivered by a contract that solves
(P) for s = 0 with a starting wage w(V ), and the resulting value function of
the firm is J(V );

(iii) Zero expected profit of recruiting: q(V )J(V ) = k for all V ∈ [V , V̄ ], and
q(V )J(V ) < k for all V > V̄ , where q(V ) = P−1(p(V ));

(iv) Ge, Gu and n are stationary.

Most elements of this definition are self-explanatory, but requirement (iii) needs a clar-

ification. This requirement asks the function q(V ) to induce zero expected profit from

recruiting for all V ∈ [V , V̄ ], not just for V ∈ V. Since V is a strict subset of [V , V̄ ], as
I will show later, the requirement imposes a restriction on beliefs out of the equilibrium.

The reason for imposing this restriction is as follows. For a non-equilibrium value V /∈ V,
there can be two different reasons why the value is not in the equilibrium set. One is the

self-fulfilling expectation that no worker will apply to that value: This expectation induces

firms not to offer that value, in which case no worker will apply to that value, indeed. The

second reason is that, even after firms offer that value, workers still find it optimal not

to apply to it. The first reason for a “missing market” may not be robust to a trembling

event that exogenously puts some recruiting firms at the value V . Requirement (iii) ex-

cludes such non-robust equilibria, and hence, refines the set of equilibria. This refinement

resembles trembling-hand perfection.

Requirement (iii) can be viewed as a condition that determines the equilibrium func-

tion of firms’ hiring rate, and hence, of applicants’ employment rate. For given J(.), the
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requirement yields q(V ) = k/J(V ), and so p(V ) = P (k/J(V )) for all V ∈ [V , V̄ ].9 For
all V > V̄ , requirement (iii) states that recruiting at such values makes an expected loss

to the firm. This part of the requirement is always satisfied, because Lemma 3.3 implies

q(V )J(V ) ≤ q̄J(V ) < q̄J(V̄ ) = k.
I illustrate the likely configuration of the equilibrium in Figure 2. The set of equilibrium

values for employed workers is V = [v1, V̄ ] and the set of equilibrium values for unemployed
workers is [v0, V̄ ], where v1 > v0 > V . There are workers employed, and firms recruiting,

at every level in [v1, V̄ ]. Similarly, there are unemployed workers at every level in [v0, V̄ ].

However, the arrows in Figure 2 depict only the applications of the workers at the special

values vj defined later, where j = 0, 1, 2, .... For a worker whose value is vj, his optimal

choice of application is vj+1 = F (vj). Similarly, for a worker whose value lies in the

interior of a segment, say V ∈ (vj, vj+1), he optimally applies to a unique value F (V )
in the interior of the next segment, (vj+1, vj+2). As remarked earlier, such optimality of

workers’ applications is the key difference between this model and an undirected search

model, such as Burdett and Mortensen (1998) and BC. If search is undirected, a worker

sends the application to a randomly selected value in [v1, V̄ ].

 employed
 workers:

 v1         v2  v3 ……    V

 unemployed
 workers:

      v0  v1         v2  v3 ……    V
Figure 2. An illustration of the equilibrium

This difference in the nature of search implies a different procedure of finding an equi-

librium. In an undirected search model, the most important equilibrium objects are the
9An alternative method of obtaining the function p(.) is to require that a worker’s expected surplus

from applying to every offer (including a non-equilibrium offer) be the same. This method has been used
in models of directed search with homogeneous applicants. However, the method is not practical when
the applicants are heterogeneous. In this case, it is not possible to have one function p(.) that induces all
applicants to be indifferent between a non-equilibrium offer and an equilibrium offer.
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distributions of values and workers. These distributions determine a worker’s employment

rate and a firm’s hiring rate. To solve for an equilibrium under undirected search, one

must solve for these distributions first. The procedure is almost reversed when search is

directed. Now the most important equilibrium object is the function of the employment

rate, p(V ). This function is critical for determining workers’ optimal applications. It is

also critical for determining firms’ optimal recruiting decisions, because it implies the hir-

ing rate, q(V ). One can determine the function, p(V ), by invoking requirements (i) — (iii)

in the equilibrium definition, without any explicit reference to the distribution of offers or

workers. Once this is done, the distributions of offers and workers can be calculated by

invoking requirement (iv) in the equilibrium definition.

Before carrying out the analysis on the equilibrium in the next two sections, let me

explain how heterogeneity in unemployment benefits simplifies the analysis. Let us see

what will happen if all unemployed workers have the same unemployment benefit, say b. In

this case, all unemployed workers will have the same value, v0. They will choose to apply to

the same value v1. The workers employed at v1 will apply to v2, and so on. Because there

is a positive mass of unemployed workers, there will be a positive mass of workers at each

of the values vj, j = 1, 2, .... Some of these workers will fail to get a better job in the next

while and, according to the optimal contract, their values will drift up. Thus, there will

be mass points at values vj + x < vj+1, for some x > 0 and all j ≥ 1. With all these mass
points, it is difficult to characterize the stationary distribution of workers. This difficulty

is eliminated by introducing a continuous distribution of unemployment benefits. With

this distribution, the value for unemployed workers will be dispersed over a continuum.

As a result, their application targets will be dispersed over a continuum of values. This

eliminates the mass points described above.10

5. Equilibrium Employment Rate and the Wage Function

The main step of determining an equilibrium is to determine the function of the employment

rate, p(V ). For the analysis, however, it is more convenient to build the existence around

the wage function, w(V ). The following procedure develops a mapping for w and obtains

other functions such as J(V ), p(V ) and F (V ).

Start with any function w(.) and add the subscript w to other functions constructed

10Undirected search models avoid this technical problem by assuming that workers randomly apply to
all jobs. In such models, an unemployed worker accepts all offers in the equilibrium. Thus, the assumption
makes workers dispersed over a continuum of values.
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with this given function. First, given w(.), I integrate (3.12) and use J(V̄ ) = k/q̄ to get:

Jw(V ) = k/q̄ +
Z V̄

V

1

u0(w(z))
dz (5.1)

Second, the zero-profit condition for recruiting yields qw(V ) = k/Jw(V ) and hence

pw(V ) = P

Ã
k

Jw(V )

!
(5.2)

Third, with pw(V ) as the employment rate, I can express a worker’s optimal application as

f = Fw(V ) and the expected gain from the application as Ew(V ). Fourth, I explore (3.10),

which is a requirement on a firm’s optimal recruiting decision. Treat w on the left-hand

side of (3.10) as a variable but substitute the given function w(V ) for w on the right-hand

side. To avoid confusion, use w1 instead of w on the left-hand side. Then,

u(w1) + u
0(w1)(y − w1) = u0(w(V )) [σ + λ1pw(Fw(V ))]Jw(V ) + σV − λ1Ew(V ) (5.3)

Denote the solution for w1 as w1(V ). Then, w1(V ) = (Γw)(V ). The equilibrium wage

function w(V ) is a fixed point of the mapping Γ, i.e., w(V ) = (Γw)(V ) for all V .

Confirming an earlier statement, the above procedure does not involve the distributions

of workers and offers. An implication is that optimal contracts and applications are inde-

pendent of such distributions. I will explore this feature of the equilibrium later in section

7.

To characterize the fixed point for w, let me specify a few bounds on various functions.

First, using the constant w̄ to replace the function w(V ) in (5.1) and (5.2), I obtain

Jw̄(V ) and pw̄(V ). Because Jw(.) and pw(.) are monotone in w, then Jw(V ) ≤ Jw̄(V ) and
pw(V ) ≤ pw̄(V ) for all V . Second, define

q = k/Jw̄(V ). (5.4)

Since Jw̄(V ) is decreasing, q(V ) ∈ [q, q̄] for all V , and q ∈ (0, q̄). This lower bound on q is
the one used in Assumption 2. Similarly, p(V ) is bounded in [0, P (q)]. Third, let w be a

strictly positive number that is sufficiently close to 0.

Assumption 3. Assume that b, V and w satisfy:

(0 <) b < w̄ = y − σk/q̄ (5.5)

Jw̄(V ) [σ + λ1pw̄(V )] < y (5.6)

u(w) + u0(w) [y − w − Jw̄(V )(σ + λ1pw̄(V ))] ≥ u(b). (5.7)
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The condition (5.5) is a regularity condition: When it is violated, all workers will choose

to stay out of employment. The condition (5.6) requires that the permanent income of a

job to a firm is less than output even when the firm is providing the lowest value to the

worker. To see which parameters this condition restricts, note that Jw̄(V ) and pw̄(V )

are decreasing functions. Then, the left-hand side of (5.6) is decreasing in V , and hence

decreasing in b. As a result, (5.6) is satisfied if b is bounded below by some number. If I

set b = w̄, the left-hand side of (5.6) is equal to σk/q̄, which is less than y by (5.5). Thus,

there exists b̂ ∈ (0, w̄) such that (5.5) and (5.6) are satisfied if b ∈ (b̂, w̄).
To see what (5.7) entails, note that the left-hand side of (5.7) is a decreasing function

of w for sufficiently small w. Thus, (5.7) imposes an upper bound on w. Because w is

chosen to be sufficiently close to 0, a sufficient condition for (5.7) is:

lim
w↓0
[u(w) + u0(w)(a− w)] =∞ for all a > 0.

This sufficient condition is satisfied by the example u(w) = (w1−η − 1) /(1−η) with η > 1.

Define
Ω = {w(V ) : w(V ) is continuous and (weakly) increasing;

w(V ) ∈ [w, w̄] for all V ; w(V̄ ) = w̄
o

Ω0 =
n
w ∈ Ω : w(V ) is strictly increasing for all V < V̄

o
.

I establish the existence of a fixed point of Γ in Ω and then show that it lies in Ω0. First,

the following lemma holds:

Lemma 5.1. For any w ∈ Ω, Jw(V ) defined by (5.1) is strictly positive, bounded, strictly

decreasing and continuously differentiable for all V . The function pw(V ) defined by (5.2)

has all the properties stated in Lemma 3.1.

Proof. Let w(V ) ∈ Ω. It is easy to verify that Jw(V ) defined by (5.1) is strictly positive,

bounded, strictly decreasing and continuously differentiable, with J 0(V ) = −1/u0(w(V )) <
0. Because w(V ) is non-decreasing, then J 0(V ) is non-increasing; i.e., J(V ) is (weakly)

concave. Moreover, Jw(V̄ ) = k/q̄. Similarly, the function pw(V ) defined by (5.2) is bounded

and continuous for all V (including V = V̄ ), with pw(V̄ ) = P (q̄) = 0. For all V < V̄ ,

pw(V ) is differentiable and strictly decreasing because

p0w(V ) =

Ã
P 0
k

J2w

!
1

u0(w(V ))
< 0,
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where the argument of P 0 is k/Jw(V ) and P 0 < 0 under Assumption 2. Moreover, for any

given value V ,
d

dJw

Ã
P 0
k

J2w

!
=
k

J3w

Ã
− k

Jw
P 00 − 2P 0

!
≥ 0

where the inequality follows from part (iii) of Assumption 2. Because Jw(V ) is decreasing,

the function P 0k/Jw(V ) is non-increasing. Because 1/u0(w(V )) is non-decreasing in V and

P 0 < 0, then p0w(V ) is non-increasing. That is, pw(V ) is (weakly) concave. QED

The above lemma shows that pw(V ) has all the properties that enable parts (i) - (iii)

in Lemma 3.2 to hold. As a result, there is a unique and interior solution to (3.1),

Fw(V ), which is continuous and strictly increasing for all V < V̄ . Moreover, E0w(V ) =

−pw(Fw(V )) < 0.
The following theorem states the existence of the fixed point of Γ (see Appendix C for

a proof):

Theorem 5.2. Maintain Assumptions 1, 2 and 3. Then, the mapping Γ has a fixed point,

w∗ ∈ Ω0. That is, w∗(V ) is continuous on [V , V̄ ], its values lie in [w, w̄] with w∗(V̄ ) = w̄,

and it is strictly increasing for all V < V̄ . The implied functions Jw∗(V ) and pw∗(V ) are

strictly concave, in addition to the properties stated in Lemma 5.1.

In the remainder of this paper, I will suppress the * on the fixed point and the subscripts

w∗ on the functions J , p, F and E.

The above theorem establishes continuity, but not differentiability, of the wage func-

tion w(V ). However, differentiability is required for various parts of previous sections. For

example, part (iv) of Lemma 3.2 requires p(V ) to be twice differentiable in order for F 0(V )

to exist, which in turn requires w(V ) to be differentiable. Moreover, the exposition lead-

ing to the equilibrium definition relied on the supposition that optimal contracts provide

increasing values, as well as increasing wages, to workers over the tenure of employment.

These features are guaranteed if the focus is on wage profiles that are smooth over time,

as the following corollary states (see Appendix D for a proof):

Corollary 5.3. If |ẇ(t)| < ∞ for all t, then w(V ) is differentiable, with 0 < w0(V ) < ∞
for all V . Moreover, the following results hold for all V < V̄ : (i) the derivatives J 00(V ),

p00(V ) and F 0(V ) exist and are finite; (ii) V̇ > 0 and J̇(V ) < 0.

21



6. Equilibrium Distributions of Workers and Firms

The functions p(V ) and F (V ) induce equilibrium distributions of workers and firms. Let ge

be the density function corresponding to the distribution of employed workers, Ge, and gu

be the density function corresponding to the distribution of unemployed workers, Gu. Once

these distributions of values are obtained, one can compute other distributions interested

in the literature. For example, the distribution of employed wages, denoted as Gw(w), is

given by Gw(w(V )) = Ge(V ). Because w
0(V ) > 0, the density function of employed wages

is gw(w) = ge(V )/w
0(V ).

6.1. Unemployment Benefits versus Wages

Let me compare unemployment benefits with wages. To do so, I translate unemployment

benefits into values, using (3.4). That equation solves Vu = Vu(b). Denote the inverse of

this function as b = B(Vu), where

B(V ) = u−1 (σV − λ0E(V )) . (6.1)

I will refer to B(V ) as the benefit function. It gives the level of the unemployment benefit

starting at which an unemployed worker can achieve the lifetime value V . It can be verified

that V 0u(b) > 0, and so B
0(V ) > 0. Under the assumption b̄ = w̄, Vu(b̄) = V̄ .

Define

v0 = Vu(b) and vj = F
(j)(v0), j = 1, 2, ... (6.2)

where F (0)(v0) = v0 and F
(j)(v0) = F (F (j−1)(v0)). The support of Gu is [v0, V̄ ] and the

support of Ge is [v1, V̄ ], as depicted in Figure 2 earlier. Clearly, v1 > v0. Moreover,

v0 = V +λ0E(v0)/σ > V . That is, the set of equilibrium values is a strict subset of [V , V̄ ].

The following lemma compares the benefit function with the wage function:

Lemma 6.1. w(V̄ ) = B(V̄ ). If λ0 ≤ λ1, then w(V ) < B(V ) for all V ∈ [v1, V̄ ).

Proof. For all V ∈ [v1, V̄ ], V̇ ≥ 0, and so the following holds for all λ0 ≤ λ1:

u(w(V )) = σV − λ1E(V )− V̇ ≤ σV − λ0E(V ) = u(B(V )).

Thus, w(V ) ≤ B(V ). The inequality is strict when V̇ > 0, and hence when V < V̄ . QED
For an unemployed worker to achieve the same value V as an employed worker, the

unemployment benefit must be higher than the wage. This is true even if an unemployed
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worker has the same access to jobs as an employed worker, i.e., if λ0 = λ1. The reason for

this result is that an employed worker enjoys the prospect of rising wages while an unem-

ployed worker’s benefit does not change over time. This disadvantage of an unemployed

worker must be compensated by a higher unemployment benefit in order for the unem-

ployed worker to achieve the same value as an employed worker. Note that the comparison

between the unemployment benefit and wage may also hold for some λ0 > λ1. Of course,

if λ0 < λ1, then an unemployed worker has more difficult access to jobs than an employed

worker. In this case, there is an additional reason for B(V ) > w(V ).

The benefit function transforms the exogenous distribution of new entrants over the

benefits into an endogenous distribution over the values. To see this, define Φ(V ) =

H(B(V )). Drawing a benefit b according to the distribution H is equivalent to drawing a

value V according to Φ. Because B0(V ) > 0, the density function corresponding to Φ is:

φ(V ) = h(B(V ))B0(V ) =
σ + λ0p(F (V ))

u0(B(V ))
h(B(V )). (6.3)

Because h(.), F (.) and B(.) are differentiable, φ(.) is differentiable.

6.2. Distribution of Unemployed Workers

Consider the group of unemployed workers whose values are greater than V , where V ∈
[v0, V̄ ]. Equating the flows into this group and out of this group in a small interval of time

dt, I obtain the following equation:

(σdt) {1− (1− n) [1−Gu(V )]} [1− Φ(V )]

= (σdt)(1− n)[1−Gu(V )]Φ(V ) + λ0(1− n) R V̄V [p(F (z))dt]dGu(z).
The left-hand side gives the flow into the group, which is generated by newborns who

replace workers who were not in the group and who just died. The measure of agents who

were not in the described group is {1− (1− n) [1−Gu(V )]}. When such an agent dies
and is replaced by a new agent, the new agent belongs to the described group if the agent

draws a value of leisure higher than V , which occurs with probability 1−Φ(V ). Note that

if agents who just died were in the described group and are replaced by new agents who

draw values above V , such newborns do not change the measure of the group.

The right-hand side of the equation gives the flows out of the group. The first term

is caused by death in the group whose replacements draw values less than or equal to V .

The second term is the flow of agents who just exited the group as the result of becoming

employed (at higher values).
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Dividing the two sides of the equation by dt and re-arranging, I obtain:

σ[n− Φ(V ) + (1− n)Gu(V )] = λ0(1− n)
Z V̄

V
p(F (z))dGu(z). (6.4)

From this equation one can show that Gu(V ) is continuous and differentiable for all V ∈
[v0, V̄ ]. Differentiating with respect to V , I get:

gu(V ) =
σφ(V )

(1− n) [σ + λ0p(F (V ))]
. (6.5)

Integrating over V , I solve:

Gu(V ) =
σ

1− n
Z V

v0

φ(z)

σ + λ0p(F (z))
dz. (6.6)

The requirement Gu(V̄ ) = 1 determines the fraction of employed workers as:

n = 1− σ
Z V̄

v0

φ(z)

σ + λ0p(F (z))
dz. (6.7)

The following lemma is proven in Appendix D:

Lemma 6.2. Gu(V ) < Φ(V ) for all V ∈ (v0, V̄ ).

The cause for the result in this lemma is the feature that the employment rate is

decreasing in the worker’s current value. This feature implies that a higher proportion

of unemployed workers at low values transit from unemployment into employment than

unemployed workers at high values. As a result, the distribution of the values of workers

who remain unemployed in the steady state is more skewed toward high values than the

distribution with which unemployed workers start their lives with. A particular implication

of such first-order stochastic dominance is that, if H is uniform, then the density function

gu is increasing.

6.3. Distribution of Employed Workers

Examine the group of employed workers whose values are greater than V , where V ∈ [v1, V̄ ].
Since death is the only way to exit from this group, the measure of the outflow from this

group in a small interval dt is σn[1 − Ge(V )](dt). There are three flows into the group.
One is the group of workers who were employed at or below V and whose values increased

above V according the contract. The size of this flow is n[Ge(V ) − Ge(V − V̇ dt)]. The
second inflow is the group of workers who were employed at or below V and who received
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offers above V . This inflow exists only if the workers’ values before the application are

equal to or greater than v1, i.e., if F
−1(V ) ≥ v1; otherwise, the workers were unemployed.

The third inflow is the group of unemployed workers who received offers above V . Before

receiving offers, these workers’ values lie in [F−1(V ), V̄ ]. Equating the outflows to the sum

of inflows, and taking the limit dt→ 0, I get:

σn [1−Ge(V )]
= n limdt↓0

Ge(V )−Ge(V−V̇ dt)
dt

+ λ1n
R V
max{v1,F−1(V )} p(F (z))dGe(z)

+λ0(1− n) R V̄F−1(V ) p(F (z))dGu(z).
Using (6.4) to substitute for the last term and re-arranging, I get:

limdt↓0
Ge(V )−Ge(V−V̇ dt)

dt

= σ∆(F−1(V ))− σGE(V )− λ1
R V
max{v1,F−1(V )} p(F (z))dGe(z)

(6.8)

Here, ∆ is defined as ∆(V ) = [Φ(V )− (1− n)Gu(V )] /n. Denote δ(V ) = ∆0(V ). Then,

δ(V ) =
λ0p(F (V ))φ(V )

n [σ + λ0p(F (V ))]
=

λ0p(F (V ))h(B(V ))

nu0(B(V ))
. (6.9)

Lemma 6.3. Ge does not have a mass point and ge is continuously differentiable.

Proof. Suppose, to the contrary, that Ge has a mass point at a value V ∈ [v1,V̄ ]. Then

lim
dt↓0

Ge(V )−Ge(V − V̇ dt)
dt

=∞.

This violates (6.8), because the right-hand side of (6.8) is bounded. Thus, Ge does not

have a mass point, and so it is a continuous function. Denote

ge(V−) = lim
dt↓0

Ge(V )−Ge(V − dt)
dt

The left-hand side of (6.8) is equal to ge(V−)V̇ . The right-hand side of (6.8) is a contin-

uous function of V , because Ge, F
−1 and p(F (.)) are continuous. Thus, ge(V−)V̇ must

be continuous. Because V̇ is also continuous, ge must be continuous. Continuity of ge

implies that Ge is continuously differentiable. Since F
−1 and p(F (.)) are continuously dif-

ferentiable, differentiability of Ge implies that the right-hand side of (6.8) is continuously

differentiable. Therefore, ge is continuously differentiable. QED

With the above lemma, I can rewrite (6.8) as

ge(V )V̇ = σ∆(F−1(V ))− σGE(V )− λ1

Z V

max{v1,F−1(V )}
p(F (z))dGe(z) (6.10)
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To solve for ge, partition the support of Ge into subintervals [vj, vj+1), where vj is defined

by (6.2). Add a subscript j to ge(V ) and Ge(V ) when V ∈ [vj, vj+1). Using the function
T (V ) defined by (3.11) and δ(V ) defined by (6.9), I summarize some previous results and

the solution for ge in the following theorem (see Appendix E for a proof):

Theorem 6.4. The density of the equilibrium distribution of unemployed workers is given

by (6.5), the measure of employed workers by (6.7), and the equilibrium density function

of employed workers is given as follows:

ge1(V )V̇ = σ
Z V

v1
γ(T (V ), T (z))δ(F−1(z))dF−1(z), (6.11)

gej(V )V̇ − gej(vj)v̇jγ(T (V ), T (vj))
=

R V
vj
γ(T (V ), T (z))

n
σδ(F−1(z)) + λ1p(z)ge(j−1)(F−1(z))

o
dF−1(z)

(6.12)

where (6.12) holds for j ≥ 2. Moreover, gej(vj) = limV→vj ge(j−1)(V ) for all j.

The theorem gives the following procedure to compute ge. Starting with j = 1, (6.11)

gives ge1. Taking the limit V → v2 in the formula yields ge2(v2). Then, setting j = 2 in

(6.12) yields ge2(V ). Taking the limit V → v3 in the result yields ge3(v3). Continue this

process until gej is obtained for all j.

The following corollary describes the shape of ge (see Appendix E for a proof):

Corollary 6.5. ge(v1) = 0 and g
0
e(v1) > 0. If F

0(V̄ ) > 0, then ge(V̄ ) = 0. In this case,

there exists V̂ ∈ (v1, V̄ ) such g0e(V ) < 0 for V̂ < V < V̄ .

Before discussing the result in this corollary, let us see how easily the condition F 0(V̄ ) >

0 can be satisfied. Consider the matching function in Example 2.1. Write the first-order

condition of a worker’s application as F−1(V ) = V + p(V )/p0(V ). Differentiating this

condition and evaluating at V̄ yields dF−1(V )/dV |V=V̄ = 1 − ρ. Thus, with the CES

matching function, F 0(V̄ ) > 0 is automatically satisfied under Assumption 2.

The above corollary says that the density function of employed workers is an increasing

function at low values. In addition, if F 0(V̄ ) > 0, the density function is decreasing at

high values. In this case, the density function is non-monotonic. There are more workers

employed at intermediate values than at values at the two ends.

The non-monotonic density of employed values implies a non-monotonic density of

employed wages. To see this, recall that the density of employed wages is gw(w) =

ge(V )/w
0(V ). Because 0 < w0(V ) <∞ by Lemma 5.3, the above corollary yields gw(w1) =
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gw(w̄) = 0, where w1 = w(v1). Thus, the shape of gw(w) at the two ends is similar to the

shape of ge(V ) at the two ends. That is, the density of employed wages is increasing when

wage is low and decreasing when wage is high.

The non-monotonicity of the density function of employed values (or wages) is a robust

feature of the data. However, this feature is not a prediction of the BC model or, more

generally, of any undirected search model with on-the-job search and with homogeneous

matches. Instead, such a model generates monotonically increasing density functions of

employed values. The critical difference is in the shape of the density function at high

values. While directed search induces the density function to decrease at high values, as

in the data, undirected search induces the density function to increase at high values. To

reverse this unrealistic prediction, an undirected search model needs to introduce sufficient

heterogeneity across matches, such as heterogeneity in workers’ or firms’ productivity.

Directed search generates such a different result from undirected search because an

applicant optimally chooses to apply to one target value. Since higher values are also

available to the applicant, applying to the (lower) target value is optimal only if higher

values are more difficult to be obtained than the target value. For this to be true, the

measure of recruiting firms per applicant must be smaller at high values than at the target

value. In particular, at values close to the upper bound V̄ , the measure of recruiting firms

per applicant should be close to zero. In turn, as few workers apply to such high values,

it is indeed optimal for only few firms to recruit at these values. The measure of workers

who succeed in obtaining jobs at values near V̄ is close to zero. This feature makes the

density function of employed values decreasing near the upper end of the distribution.

This desirable feature does not exist under undirected search because, then, every

applicant is assumed to send the application randomly and uniformly to the recruiting

firms. Because firms cannot use offers to attract applications, they use offers to increase

acceptance and retention. For these purposes, a high value is superior to a low value.

Because all equilibrium offers must yield the same expected value to the firm, there must

be more firms recruiting at high values than at low values. This results in more workers

being employed at high values than at low values. In addition, since workers employed at

high values are also less likely to quit than workers employed at low values, the density

function of employed values is increasing under undirected search.

The above difference can be illustrated with the roles of p(V ) and q(V ), the Poisson

rates of employment and hiring. A directed search model and an undirected search model

both require zero net expected profit from recruiting at all values, i.e., q(V ) = k/J(V ).

With reasonable assumptions, both models produce a decreasing and concave function,
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J(V ), which implies that q(V ) is increasing and convex. The difference arises in the link

between q(V ) and the distribution of workers. This link is tight when search is undirected.

In that case, a firm’s hiring rate at V is equal to the rate at which the application comes

from a worker employed below V . That is,

λ1nGe(V ) + λ0(1− n)Gu(V ) = q(V )

Because q(V ) is convex, then the density functions ge(V ) and gu(V ) are likely to be both

increasing. Directed search breaks this close link between q and Ge. With directed search,

the critical determinant of the equilibrium distribution of workers is not the hiring rate, but

rather workers’ application decisions which is governed by the function p(V ) = P (q(V )).

Although q(V ) is still convex, the function p(V ) is decreasing and concave. In particular,

the employment rate at values close to V̄ is almost zero. As a result, few workers are

employed at such high values, and so the density of employed workers is decreasing at this

high end of the distribution.

Now an alert reader may notice the heterogeneity in the distribution of unemployment

benefits. Because this heterogeneity is not in the BC model, one might suspect that its

presence also plays a role in creating the non-monotonic density function of employed

workers. This suspicion is not supported. The non-monotonicity of ge occurs regardless of

whether h(b) is increasing, decreasing, flat, or non-monotonic.

As a general matter, it is important to remark that the heterogeneity in unemployment

benefits affects the details of the wage distribution, but eliminating it does not eliminate the

wage dispersion. Even if all workers start their lives with the same unemployment benefit,

the matching process results in only a fraction of them getting jobs initially. Those who

luckily get jobs will continue to apply for higher wages in the future than those who do not

have jobs. This precess continues, and so there will be wage dispersion in the equilibrium.

Moreover, because wages increase with tenure, workers who obtain the same contract at

different times will also see wages differ.

6.4. Distribution of Offer Values

Denote the distribution of recruiting firms as R(V ) and its density as r(V ). Because each

firm has only one vacancy, R is also the distribution of offers. To compute this distribution,

note that the relative measure of applicants for V to recruiting firms at V is the tightness

θ(V ) = q(V )/p(V ). The measure of workers applying to V is:

A(V ) = λ0(1− n)gu(F−1(V )) + λ1nge
³
max{v1, F−1(V )}

´
.
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The measure of firms recruiting at V is equal to A(V )/θ(V ). Thus, the distribution of

recruiting firms or offer values is:

R(V ) =
Z V

v1

p(z)

q(z)
A(z)dz

,"Z V̄

v1

p(z)

q(z)
A(z)dz

#

The second integral is the total measure of recruiting firms.

As the distribution of employed values, the offer distribution is decreasing at high

values. This can be verified by noting r(V̄ ) = 0, because p(V̄ ) = 0. The result implies

that the distribution of offer wages is decreasing at high values.

7. Comparative Statics

In this section, I conduct two comparative statics, one with respect to the distribution of the

unemployment benefit and the other with respect to the parameter λ0. These comparative

statics further illustrate the differences between the current model of directed search and

undirected search models.

Suppose unemployment benefits increase in the sense that the distribution H changes

in the first-order stochastic dominance. Suppose that the support of the distribution does

not change. The effects of this change are summarized in the following corollary:

Corollary 7.1. An increase of the first-order stochastic dominance in unemployment ben-

efits has no effect on workers’ optimal applications and equilibrium contracts. It does not

affect the supports of the distributions Gu(.) and Ge(.), either, although it affects the shape

of these distribution functions.

Proof. The analysis on equilibrium contracts in section 5 are independent of the

distributions, Ge, Gu and H. Thus, the functions, w(.), p(.), q(.), J(.), F (.), and E(.) after

the change in H are all the same as before. The independence of the function E(.) on H

implies that the function Vu(.) is independent of H. Under the assumption that b does

not change, v0 and v1 do not change, either, because v0 = Vu(b) and v1 = F (v0). Taken

together, these results imply that the change in H has no effect on a worker’s optimal

application strategy or the equilibrium set of contracts. However, Gu and Ge change with

H because Φ does. QED

The distributions of workers, Ge, Gu and H, do not play any role in the determination

of optimal contracts and optimal application. Although this feature is evident from the

procedure in section 5, it is worthwhile explaining why it arises. To do so, start with a
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worker’s application. For a worker to decide on the optimal application, F (V ), he only

needs the function of the employment rate. In turn, the employment rate must satisfy the

requirement that recruiting should yield zero expected profit at all equilibrium offers. This

requirement pins down p(V ), given a firm’s value function, J(V ). However, a firm value

function depends only on what happens after the hiring, that is, on the contract offered,

w(V ), and the worker’s quit rate, p(F (V )). By the proceeding argument, the two functions

that determine the quite rate, p(.) and F (.), are only functions of optimal contracts. Thus,

the only thing still to be determined is the set of optimal contracts, i.e., the function w(V ).

The function w(V ) provides efficient sharing of the value between a firm and a worker, in

the sense that −J̇ = V̇ /u0(w). Again, J̇ and V̇ involve only the functions F (V ), p(V ), J(V )
and w(V ) (see (3.3) and (3.5)). The solution to this fixed-point problem is independent of

the distributions of employed and unemployed workers.11

A strong (testable) implication of the above corollary is that changing unemployment

benefits can change wage distributions and the average duration of unemployment, but it

does not change individual workers’ job-to-job transition rates or their wage paths.

The above predictions are markedly different from those in undirected search models.12

An increase in unemployment benefits, in the way modelled here, reduces the probability

with which a given offer will be accepted by a worker. This forces the equilibrium dis-

tribution of offers to increase. As more firms are offering higher values than before, the

transition rate from low-value jobs to high-value jobs increases. That is, the quitting rate

at low-value jobs increases. In order to mitigate this increase in the quitting rate, firms

offer contracts in which wages increase more quickly with tenure than before. As is clear

from this explanation, the main cause for this difference in the result is that the offer dis-

tribution plays a critical role in determining workers’ quit rates under undirected search,

but not so under directed search.

Now let me turn to the effects of an increase in λ0, the probability with which an

unemployed worker receives a job application opportunity. Again, the functions w(.), p(.),

q(.), J(.), F (.), and E(.), are all unaffected, because the analysis in section 5 does not

11There are two qualifications. First, the distribution H can affect equilibrium contracts if the number
of firms is fixed in ths short run, rather than being determined by competitive entry. In that case, a firm’s
expected value from recruiting is endogenous, rather than being given by the vacancy cost k. All effects
of the distributions on equilibrium contracts come through this expected value of recruiting, and these
effects vanish in the long run when entry becomes competitive. Second, if there is exogenous separation
between a worker-firm pair and the worker returns to unemployment after such exogenous separation, then
the increase in unemployment benefits will affect optimal contracts by affecting the equation for V̇ .
12One can verify the statements here by introducing a continuous distribution of unemployment benefits

into BC or Burdett and Mortensen (1998).
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depend on λ0. However, the function Vu(.) does depend on λ0. An increase in λ0 increases

Vu(b) for any given b. Thus, v0 increases, and so does v1. The distributions of unemployed

and employed workers change as well.

The increases in λ0 has only a limited effect on the job-to-job transition rate and the

wage path. To see this, let v̂1 be the new level of v1 after the increase in λ0. Because

w(.), p(.) and q(.) are unaffected, the optimal baseline contract after the increase in λ0 is

the part of the original baseline contract from v̂1 onward. Put differently, the new set of

optimal contracts is identical to the subset of the original contracts whose starting values

are equal to or greater than v̂1. Therefore, the job-to-job transition rate and the wage

path of a worker to whom the contract provides v̂1 or more do not change. Again, these

results contrast with those in undirected search models, where an increase in λ0 increases

the job-to-job transition rate and the steepness of the wage path.

The comparative statics above have obvious policy implications. If policymakers at-

tempt to affect the labor market outcomes of employed workers, changing the aspects of

the market for unemployed workers would be a wrong place to put the resource. Instead,

the policy should directly target the aspects of the labor market relevant for employed

workers, such as λ1.

8. Conclusion

In this paper, I analyze the equilibrium in a labor market where firms offer wage-tenure

contracts to direct the search of employed and unemployed workers. Each applicant ob-

serves all offers and there is no coordination among individuals. Because search is directed,

workers’ applications (as well as firms’ recruiting decisions) must be optimal. This opti-

mality requires the equilibrium to be formulated differently from the that in the large

literature of undirected search. I provide such a formulation and show that the equilib-

rium exists. In the equilibrium, individuals explicitly tradeoff between an offer and the

matching rate at that offer. This tradeoff yields a unique offer which is optimal for each

worker to apply. Despite this uniqueness and directed search, the stationary equilibrium

has a non-degenerate and continuous distribution of wages.

One cause of wage dispersion in the model is the feature that the optimal application

increases with the value that a worker’s current state yields. Even if all workers were

initially identical, those who obtained jobs earlier will apply to higher wages than those

who obtain jobs later. In the stationary equilibrium, a continuum of values are offered,

each of which is tailored to workers who have a particular current value. The other cause of
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the wage distribution is the wage-tenure contract. With risk-averse workers and imperfect

capital markets, it is optimal for a firm to offer a wage profile that increases smoothly with

tenure. Such a contract provides partial insurance to the worker and backloads wages to

increase retention of the worker. The positive wage-tenure relationship implies that workers

who are employed under the same contract but at different times may earn different wages.

It also implies that the quit rate falls with tenure.

The model generates several novel implications. First, because applicants separate

themselves according to their current values, wage mobility is endogenously limited by the

workers’ current wages. Second, the density function of the wage distribution of employed

workers over wages is increasing at low wages and decreasing at high wages, even when all

worker-firm pairs are equally productive. Finally, an increase in unemployment benefits

has no effect on the set of equilibrium contracts or individual workers’ job-to-job transition

rates, although it affects wage distributions of workers.

These differences are clearly testable. In addition, the model provides a tight link

between the unobserved distribution of offers and the observed distribution of employed

wages. Because each worker’s application is optimal, every match results in a formation

of a firm-worker relationship. There is no offer which is received by a worker but which is

not taken. If a worker applies to an offer, then the offer is acceptable. This means that a

worker’s duration with a job is simply equal to the duration in which the worker fails to get

an offer. This property allows one to use the duration data and the observed distribution

of wages to back out the distribution of offers. The procedure may even be workable

when there is unobserved heterogeneity across matches. As Barlevy (2003) discusses, the

distribution of offers is useful for a range of issues, but it cannot be easily identified in

undirected search models. One cause of the difficulty is that, with random search, an offer

that is received by a worker may not be acceptable to the worker.

A useful extension will be to incorporate heterogeneity across firms and workers. If

workers differ in productivity, then firms may rank the applicants according to productivity,

as Shi (2002) and Shimer (2005) have shown in simpler environments. If firms are different

in productivity, then they may provide different wage-tenure contracts. Such an extension

will undoubtedly be challenging, but it will bring the model closer to the data.
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Appendix

A. Proof of Lemma 3.2

The result F (V̄ ) = V̄ is evident. Let V < V̄ in the following proof. Temporarily denote
K(f, V ) = p(f)(f − V ). Because p(.) is continuous and bounded, as stated in Lemma
3.1, K(f, V ) is continuous and bounded. Thus, the maximization problem in (3.1) has a
solution. Because p(V̄ ) = 0, I have K(V̄ , V ) = 0 = K(V, V ). Since any interior value of f
gives a positive value of K(f, V ), then the solution is interior. To show that the solution
is unique, I show that K(f, V ) is strictly concave in f for all f ∈ (V, V̄ ). To do so, let
α ∈ (0, 1). Let f1 and f2 be two arbitrary interior values with f2 > f1 > V . Denote
fα = αf1 + (1− α)f2. Then,

K(fα, V ) = p(fα) [α(f1 − V ) + (1− α)(f2 − V )]
≥ [αp(f1) + (1− α)p(f2)] [α(f1 − V ) + (1− α)(f2 − V )]
= αK(f1, V ) + (1− α)K(f2, V ) + α(1− α)[p(f1)− p(f2)][f2 − f1]
> αK(f1, V ) + (1− α)K(f2, V ).

The two equalities come from rewriting, the first inequality from the concavity of p, and
the last inequality from the strictly decreasing property of p. Thus, K(f, V ) is strictly
concave in f and part (i) in the Lemma is established.
For part (ii), uniqueness of the solution implies that F (.) is continuous by the Theorem

of the Maximum. To show that E(.) is differentiable, let V1 and V2 be two arbitrary values
with V1 < V2 < V̄ . Express Fi = F (Vi) for i = 1, 2. Uniqueness of the solution implies
K(F1, V1) > K(F2, V1) and K(F2, V2) > K(F1, V2). Thus,

E(V2)−E(V1) > K(F1, V2)−K(F1, V1) = −p(F1)(V2 − V1);

E(V2)−E(V1) < K(F2, V2)−K(F2, V1) = −p(F2)(V2 − V1).
Divide the two inequalities by (V2 − V1) and take the limit V2 → V1. Because F (.) is
continuous, the limit shows that E(V ) is differentiable at V1 and that E

0(V1) = −p(F1).
Since V1 is arbitrary, this argument establishes part (ii) for all V < V̄ .
For part (iii), again take two arbitrary values V1 and V2, with V1 < V2 ≤ V̄ . Then,

p(Fj)(Fj − Vi) < p(Fi)(Fi − Vi) for j 6= i. I have:

0 > [p(F2)(F2 − V1)− p(F1)(F1 − V1)] + [p(F1)(F1 − V2)− p(F2)(F2 − V2)]
= p(F2)(V2 − V1) + p(F1)(V1 − V2) = [p(F2)− p(F1)](V2 − V1).

This result implies p(F2) < p(F1). Because p(.) is strictly decreasing, F (V2) > F (V1).
Because p is continuously differentiable, F (V ) is given by the first-order condition of

the maximization problem, which leads to (3.2). Furthermore, if p is twice differentiable,
then differentiating the first-order condition generates the derivative F 0(V ) > 0. Concavity
of p yields F 0(V ) ≤ 1/2. Finally, E00(V ) = −p0(F (V ))F 0(V ). QED
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B. Proof of Lemma 3.3

Lemmas 3.1 and 3.2 yield p0(F (V )) < 0 and F 0(V ) > 0 for all V < V̄ . Because J(V ) > 0
for all V , as shown later, then (3.8) implies ẇ(t) > 0 for all V < V̄ .
Because V̄ is the highest value offered, then p(F (V̄ )) = 0 and V̇ = 0 at V = V̄ . Then

E(V̄ ) = 0, and (3.3) implies V̄ = u(w̄)/σ. Similarly, because J̇(V̄ ) = 0, (3.5) implies
J(V̄ ) = (y − w̄)/σ. Because recruiting at w̄ should yield zero net profit, q(V̄ )J(V̄ ) = k;
that is, w̄ = y− σk/q(V̄ ). If q(V̄ ) = q̄, then the stated expressions for w̄ and J(V̄ ) follow.
Since q̄ <∞ by Assumption 2, then w̄ < y and J(V̄ ) > 0.
To show q(V̄ ) = q̄, suppose that q(V̄ ) = q̄ − δ to the contrary, where δ > 0. Because

q(V̄ )J(V̄ ) = k > 0 and J(V̄ ) = (y − w̄)/σ, then w̄ = y − σk/(q̄ − δ). Consider a firm
that deviates from w̄ to w̄ + ε, where ε > 0, which generates a value to a worker as
V̂ = u(w̄ + ε)/σ. Because the firm is the only one that offers a wage higher than w̄, the
workers who are employed at w̄ will all apply to this firm, which yields q(V̂ ) = q̄. The
firm’s expected value of recruiting is q(V̂ )J(V̂ ) = (y − w̄ − ε)q̄/σ, which exceeds k for
sufficiently small ε > 0. This result contradicts the statement that V̄ is an equilibrium
value. Thus, q(V̄ ) = q̄. QED

C. Proof of Theorem 5.2

The sets Ω and Ω0 are defined prior to Lemma 5.1 and the mapping Γ is defined by w1(V ) =
(Γw)(V ), where w1 is the solution to (5.3). It can be verified that Ω is a closed and convex
set. Lemmas C.1 and C.2 below state that Γ : Ω → Ω0 is a continuous mapping in the
supnorm. Then, Γ has a fixed point in Ω, denoted as w∗. Because w∗(V ) = (Γw∗)(V ) ∈ Ω0,
then w∗(V ) is strictly increasing for all V < V̄ . This implies that Jw∗(V ) and pw∗(V ) are
strictly concave, in addition to the properties stated in Lemma 5.1.

Lemma C.1. Γ : Ω→ Ω0 ⊂ Ω.

Proof. Temporarily denote the left-hand side of (5.3) as L(w1) and the right-hand side
R(V ). Recall that w̄ < y. Because L(w) is continuous and strictly decreasing for all w < y,
it is invertible for all w ∈ [w, w̄]. Then, w1 = L−1(R(V )) ≡ w1(V ). I show that w ∈ Ω =⇒
w1 ∈ Ω0. This is done in the following steps.
First, w1(V ) is continuous because Jw(.), pw(.) and Fw(.) are all continuous.
Second, w1(V ) is strictly increasing for all V < V̄ . To establish this property is equiv-

alent to showing that R(V ) is strictly decreasing for all V < V̄ . Pick arbitrary values V1
and V2, with V ≤ V1 < V2 < V̄ . Then,

R(V2)−R(V1) = [u0(w(V2))− u0(w(V1))] [σ + λ1pw(Fw(V2))] Jw(V2)
+u0(w(V1))λ1Jw(V2) [pw(Fw(V2))− pw(Fw(V1))] +D (C.1)

where

D = u0(w(V1)) [σ + λ1pw(Fw(V1))]Jw(V2) + σ(V2 − V1)− λ1 [Ew(V2)− E(V1)]
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Because pw(V ) is strictly decreasing as in Lemma 5.1, Fw(V ) is strictly increasing, and so
u0(w(V2)) ≤ u0(w(V1)) and pw(F (V2)) < pw(F (V1)). The first term on the right-hand side
of (C.1) is non-positive and the second term is negative. If D ≤ 0, then R(V2) < R(V1),
as desired. To show D ≤ 0, note that Jw(V ) and Ew(V ) are differentiable by Lemmas 5.1
and 3.1. , Then, D is differentiable with respect to V2. Using E

0
w(V ) = −pw(Fw(V )) and

J 0w(V ) = −1/u0(w(V )), I can calculate the derivative as:
∂D

∂V2
= σ + λ1pw(F (V2))− [σ + λ1pw(Fw(V1))]

u0(w(V1)
u0(w(V2))

.

Because u0(w(V1)) ≥ u0(w(V2)) and pw(Fw(V1)) > pw(Fw(V2)), then ∂D/∂V2 < 0 for all
V2 < V̄ . Thus, D > D|V2=V1 = 0 for all V2 ∈ (V1, V̄ ).
Third, w1(V ) ∈ [w, w̄] for all V , with w1(V̄ ) = w̄. Examine w1(V̄ ). Because w(V̄ ) = w̄,

then (5.3) implies:

L(w1(V̄ )) = R(V̄ ) = u
0(w̄)(y − w̄) + u(w̄) = L(w̄).

Because L(w) is strictly decreasing, the above equation implies w1(V̄ ) = w̄. Since w1(V )
is strictly increasing for V < V̄ , then w1(V ) < w̄ for all V < V̄ .
Finally, I show w1(V ) ≥ w. Since L0(w) < 0, w1(V ) ≥ w if and only if L(w) ≥ R(V ).

A sufficient condition is L(w) ≥ R(V ), because R(V ) is decreasing function. Note that the
following holds:

R(V ) = u0(w(V )) [σ + λ1pw(Fw(V ))] Jw(V ) + σV − λ1Ew(V )
< u0(w) [σ + λ1pw(Fw(V ))]Jw(V ) + u(b)
≤ u0(w) [σ + λ1pw(V )]Jw(V ) + u(b)
≤ u0(w) [σ + λ1pw̄(V )]Jw̄(V ) + u(b)

The first inequality follows from the facts that w(V ) ≥ w, V = u(b)/σ and Ew(V ) > 0.
The second inequality follows from the facts that Fw(V ) ≥ V and that pw(.) is decreasing.
To obtain the third inequality, note that Jw(V ) ≤ Jw̄(V ) and pw(V ) ≤ pw̄(V ) for all V .
Therefore, a sufficient condition for w1(V ) ≥ w is:

L(w) ≥ u0(w) [σ + λ1pw̄(V )]Jw̄(V ) + u(b)

This condition can be re-arranged as (5.7), which is assumed to hold. This completes the
proof of Lemma C.1.

Lemma C.2. Γ is continuous in the supnorm.

Proof. To show that the mapping Γ is continuous in the supnorm, I show that the
following holds for all wa, wb ∈ Ω and all V :

|(Γwa)(V )− (Γwb)(V )| ≤ A kwa − wbk , (C.2)

where the norm is the supnorm and A > 0 is a finite constant. Once this is done, then

kΓwa − Γwbk = sup |(Γwa)(V )− (Γwb)(V )| ≤ A kwa − wbk ,
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which implies that Γ is continuous in the supnorm.
To show (C.2), take arbitrarily wa, wb ∈ Ω and V ∈ [V , V̄ ]. Without loss of generality,

assume wa(V ) ≥ wb(V ) for the given value V . Shorten the subscript wi on J , p, F , and E
to i, where i = a, b. Also, denote the right-hand side of (5.3) with w = wi(V ) as Ri(V ).
Because w ≥ wL > 0, Assumption 1 implies that there are positive and finite constants ω1
and ω2 such that ω1 ≤ |u00(w)| ≤ ω2 for all w ∈ [w, w̄]. Then

|L0(w)| = (y − w) |u00| ≥ (y − w̄)ω1 ≡ A1.
Note that A1 is bounded above 0. Since L(w) is decreasing, then

|Ra(V )−Rb(V )| = |L(Γwa(V ))− L(Γwb(V ))| ≥ A1 |Γwa(V )− Γwb(V )| .
Now, consider |Ra(V )−Rb(V )|. Suppressing the given V , I have:

|Ra −Rb| = |{[u0(wa)− u0(wb)] Ja + u0(wb)(Ja − Jb)} [σ + λ1pa(Fa)]
+ λ1u

0(wb)Jb [pa(Fa)− pb(Fb)]− λ1 [Ea −Eb]|
≤ [|u0(wa)− u0(wb)|Ja + u0(wb) |Ja − Jb|] [σ + λ1pa(Fa)]
+λ1u

0(wb)Jb |pa(Fa)− pb(Fb)|+ λ1 |Ea −Eb|
I find the bound on each of the absolute values in the above expression.
Because u00 < 0, then

|u0(wa)− u0(wb)| ≤ |wa − wb|max{|u00(wa)| , |u00(wb)|} ≤ ω2 kwa − wbk (C.3)

By the definition of Jw,

|Ja − Jb| =
¯̄̄R V̄
V

u0(wa(z))−u0(wb(z))
u0(wa(z))u0(wb(z))

dz
¯̄̄

≤ 1
[u0(w̄)]2

R V̄
V |u0(wa(z))− u0(wb(z))| dz

≤ ω2
[u0(w̄)]2

R V̄
V |wa(z)− wb(z)| dz ≤ ω2(V̄−V )

[u0(w̄)]2 kwa − wbk
(C.4)

The coefficient of kwa − wbk is bounded because u0(w̄) > 0 and ω2 <∞.
To develop bounds on |pa(Fa) − pb(Fb)| and |Ea −Eb|, assume kwa − wbk = ε > 0

with loss of generality. (If kwa − wbk = 0, then wa = wb for all V , in which case
|pa(Fa)− pb(Fb)| = |Ea −Eb| = kwa − wbk; these provide the required bounds.) I examine
two cases separately: the case where V is close to V̄ and the case where V is sufficiently
away from V̄ . The separation is necessary because P 0(q) and P 00(q) might be unbounded
at q = q̄ (i.e., at V = V̄ ).
Consider first the case where V is close to V̄ . In this case, Fa(V ) and Fb(V ) are close

to V̄ . Because pw(V ) is continuous for all V , including V = V̄ . then for given ε > 0, there
exists δ > 0 such that

V̄ − V < δ =⇒
¯̄̄
pi(Fi)− pi(V̄ )

¯̄̄
< ε/2, for i ∈ {a, b}

Because pi(V̄ ) = 0, the following holds for V > V̄ − δ:

|pa(Fa)− pb(Fb)| ≤ |pa(Fa)|+ |pb(Fb)| < ε = kwa − wbk (C.5)
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|Ea −Eb| ≤ |pa(Fa)| (Fa − V ) + |pb(Fb)| (Fb − V ) < (V̄ − V ) kwa − wbk (C.6)

For the last inequality, I used the facts that |pi(Fi)| < ε/2 and that Fi−Vi ≤ V̄ −V . (C.5)
and (C.6) provide the required bounds when V > V̄ − δ.
Now consider the case where V ≤ V̄ − δ, where δ > 0. In this case, q < q̄, and

hence Assumption 2 implies that |P 0(q)| and |P 00(q)| are bounded for q ∈ [q, q̄). Because
p(V ) = P

³
k

J(V )

´
, then ¯̄̄̄

¯dP (k/J)dJ

¯̄̄̄
¯ =

Ã
− k
J2

!
P 0
Ã
k

J

!
¯̄̄̄
¯d2P (k/J)dJ2

¯̄̄̄
¯ =

Ã
k

J3w

!Ã
− k

Jw
P 00 − 2P 0

!
These absolute values are bounded above in the current case. Let A2 and A3 be the upper
bounds. Define

A4 = A2
ω2(V̄ − V )
[u0(w̄)]2

<∞

For any x ∈ [V , V̄ − δ],

|pa(x)− pb(x)| ≤ A2 |Ja(x)− Jb(x)| ≤ A4 kwa − wbk¯̄̄̄
¯dPadJa

− dPb
dJb

¯̄̄̄
¯ ≤ A3 |Ja − Jb|

These results lead to the following result:

|p0a(x)− p0b(x)| ≤
¯̄̄
dPa/dJa
u0(wa) −

dPb/dJa
u0(wb)

¯̄̄
≤
¯̄̄
dPa
dJa

¯̄̄ ¯̄̄
1

u0(wa) − 1
u0(wb)

¯̄̄
+ 1

u0(wb)

¯̄̄
dPa
dJa
− dPb

dJb

¯̄̄
≤ A2

[u0(w̄)]2 |u0(wa)− u0(wb)|+ A3
u0(w̄) |Ja − Jb|

≤ A4
V̄−V kwa − wbk+ A4A3/A2

u0(w̄) kwa − wbk

Suppose first that Fa ≥ Fb. If pa(Fa) ≥ pb(Fb), then

0 ≤ pa(Fa)− pb(Fb) ≤ pa(Fa)− pb(Fa) ≤ A4 kwa − wbk

The second inequality comes from the fact that p is decreasing and the last inequality from
the bound on |pa − pb| just derived. If pa(Fa) < pb(Fb), then

0 < pb(Fb)− pa(Fa) = −p0b(Fb)(Fb − V ) + p0a(Fa)(Fa − V )
≤ (Fa − V ) [p0a(Fa)− p0b(Fb)] ≤ (V̄ − V ) [p0a(Fb)− p0b(Fb)]
≤
h
1 + A3(V̄−V )

A2u0(w̄)

i
A4 kwa − wbk

The equality follows from the first-order condition for F , the second inequality from the
supposition Fa ≥ Fb, the third inequality from the facts that p0 is a decreasing function
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and that Fa − V ≤ V̄ − V , and the last inequality from the bound on |p0a − p0b|. Thus, if
Fa ≥ Fb, then

|pa(Fa)− pb(Fb)| ≤
"
1 +

A3(V̄ − V )
A2u0(w̄)

#
A4 kwa − wbk (C.7)

Suppose now that Fa < Fb. By switching the roles of Fa and Fb, it can be shown that
(C.7) continues to hold. Thus, (C.7) holds for arbitrary Fa(V ) and Fb(V ) with V ≤ V̄ − δ.
Now let us examine |Ea −Eb| for the case V ≤ V̄ − δ. If Ea ≥ Eb, then

0 ≤ Ea −Eb = pa(Fa)(Fa − V )− pb(Fb)(Fb − V )
≤ pa(Fa)(Fa − V )− pb(Fa)(Fa − V )
= (Fa − V ) [pa(Fa)− pb(Fa)] ≤ (V̄ − V )A4 kwa − wbk

The first equality comes from the definition of E(V ), the second inequality from the fact
that pb(f)(f − V ) is maximized at f = Fb, the last inequality from the bound on |pa − pb|
derived above and the fact Fa − V ≤ V̄ − V . The same result holds if Ea < Eb. Thus,

|Ea −Eb| ≤ (V̄ − V )A4 kwa − wbk (C.8)

Defining A5 = max{A4, 1} and replace A4 in (C.7) and (C.8) with A5. The resulting
bounds on |pa − pb| and |Ea − Eb| apply for both the case V > V̄ − δ and V ≤ V̄ − δ.
Substituting these bounds, (C.3) and (C.4), I have:

|Ra −Rb| ≤
nh
ω2Ja + u

0(wb)A4A2
i
[σ + λ1pa(Fa)]

+ λ1A5
h
u0(wb)

³
1 + A3(V̄−V )

A2u0(w̄)

´
Jb + λ1(V̄ − V )

io
kwa − wbk

Let A6 be the maximum value of the coefficient of kwa − wbk in the above expression,
taken over V ∈ [V , V̄ ]. Then, A6 is bounded above. Setting A = A6/A1 establishes the
inequality (C.2), which shows that Γ is continuous in the supnorm. This completes the
proof of Lemma C.2, and hence of Theorem 5.2. QED

D. Proofs of Corollary 5.3 and Lemma 6.2

To prove Corollary 5.3, suppose that |ẇ(t)| <∞ for all t. That is, ẇ(V (t)) is finite. If V̇ 6=
0, thenw0(V ) = ẇ/V̇ exists and is finite. If V̇ = 0 at V1, then, σV1−u(w(V1))−λ1E(V1) = 0.
Differentiating this equation with respect to V1 yields:

w0(V1) =
σ + λ1p(F (V1))

u0(w(V1))
∈ (0,∞). (D.1)

That is, w(V ) is differentiable at V1. This argument applies to V̄ , because V̇ = 0 at V = V̄ .
Thus, w0(V1) exists and is finite for all V . From (5.1), (5.2) and Lemma 3.2, one can then
verify that J 00(V ), p00(V ) and F 0(V ) all exist and are finite for all V < V̄ .
I still need to show that w0(V ) > 0, V̇ > 0 and J̇(V ) < 0 in the case V < V̄ . In

this case, F (V ) < V̄ . Lemma 3.2 implies dp(F (V ))/dV < 0. The right-hand side of (3.8)
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is positive and finite, which implies ẇ(V ) > 0. Thus, w0(V )V̇ ∈ (0,∞) for all V < V̄ .
Because w(V ) is strictly increasing for all V < V̄ and V̇ is bounded (see (3.3)), then
w0(V ) ∈ (0,∞) and V̇ ∈ (0,∞) for all V < V̄ . Finally, J̇(V ) = J 0(V )V̇ ∈ (0,∞) for all
V < V̄ . This completes the proof of Corollary 5.3.
To prove Lemma 6.2, temporarily denote D(V ) = Φ(V ) − Gu(V ). Then, D(v0) =

D(V̄ ) = 0. Moreover, computing D0(V ) and using (6.7), I have:

D0(V ) =
σφ(V )

1− n
"Z V̄

v0

φ(z)dz

σ + λ0p(F (z))
− 1

σ + λp(F (V ))

#
.

Examine the expression in [.]. Because p(F (V )) is strictly decreasing in V for all V < V̄ ,
the expression is strictly decreasing in V for such V . Similarly, the expression is positive
at V = v0 and negative at V = V̄ . Thus, there exists va ∈ (v0, V̄ ) such that D0(V ) > 0
for v0 ≤ V < va, and that D

0(V ) < 0 for va < V ≤ V̄ . Thus, for all V ∈ (v0, V̄ ),
D(V ) > min{D(v0),D(V̄ )} = 0. QED

E. Proofs of Theorem 6.4 and Corollary 6.5

I prove Theorem 6.4 first. Given the analysis leading to the theorem, it is only necessary
to establish (6.11) and (6.12). For V ∈ [v1, v2), F−1(V ) < v1, and so (6.10) becomes:

ge1(V )V̇ = σ∆(F−1(V ))− σGe1(V )− λ1

Z V

v1
p(F (z))dGe1(z) (E.1)

Setting V = v1 in (E.1) leads to ge1(v1) = 0. Differentiate (E.1) and divide the result by
γ(T (V ), 0), where γ is defined by (3.6) and T by (3.11). I have:

g0e1(V )V̇ + a(V )ge1(V )
γ(T (V ), 0)

=
b(V )

γ(T (V ), 0)
(E.2)

where

a(V ) = σ + λ1p(F (V )) +
dV̇

dV
, b(V ) = σ

d

dV
∆(F−1(V ))

The definition of T (V ) implies T 0(V ) = 1/V̇ . Then, it can be verified that the left-hand
side of (E.2) is equal to the derivative of the function, ge1(V )V̇ /γ(T (V ), 0), with respect
to V . Integrate (E.2) from v1 to V . Using the fact γ(T (V ), 0)/γ(T (z), 0) = γ(T (V ), T (z))
to rewrite the result, I have (6.11). Since ge is continuous, taking the limit V ↑ v2 in (6.11)
gives ge(v2).
Now examine the case V ∈ [vj, vj+1), where j ≥ 2. In this case, F−1(V ) ≥ v1, and so

(6.10) becomes

gej(V )V̇ = σ∆(F−1(V ))− σGen(V )− λ1

Z V

F−1(V )
p(F (z))dGe(z) (E.3)
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I do not add the subscript j to Ge on the right-hand side of the equation because, if
vj < V < vj+1, some applicants to values above V come from the interval [vj, V ) while
others come from the interval [F−1(V ), vj). Differentiating (6.10) yields:

g0ej(V )V̇ + a(V )gej(V ) = b(V ) + λ1p(V )ge(j−1)(F−1(V ))
dF−1(V )
dV

(E.4)

where a(V ) and b(V ) are defined as before. Using the same procedure as the one used to
solve for ge1 above, I obtain:

gej(V ) =
1

V̇

Z V

v1
γ(T (V ), T (z))

n
σδ(F−1(z)) + λ1p(z)ge(j−1)(F−1(z))

o
dF−1(z)

To obtain (6.12), set V = vj in the above solution:

gej(vj) =
1

v̇j

Z vj

v1
γ(T (vj), T (z))

n
σδ(F−1(z)) + λ1p(z)ge(j−1)(F−1(z))

o
dF−1(z)

Note that
γ (T (V ), T (vj)) γ(T (vj), T (z)) = γ(T (V ), T (z)).

Using this fact and the above formulas for gej(V ) and gej(vj), one can compute the left-hand
side of (6.12) and show that it is equal to the right-hand side. Because ge is continuous,
then gej(vj) = limV→vj ge(j−1)(V ), all j. This completes the proof of Theorem 6.4.
Now, turn to Corollary 6.5. I have shown ge(v1) = 0 in the above proof. Because

0 < F 0(V ) ≤ 1/2 for all V < V̄ , then dF−1(V )/dV > 0 for all V < V̄ . Also, V̇ > 0 and
δ(V ) > 0 for all V < V̄ . These features imply that b(V ) > 0 for all V < V̄ . Substituting
this result and ge(v1) = 0 into (E.4) yields g

0
e(v1) > 0.

Supposing F 0(V̄ ) > 0, I now show that ge(V̄ ) = 0. The supposition F 0(V̄ ) > 0 implies
that dF−1(V )/dV is bounded. Because p(V̄ ) = 0, then regardless of whether V̄ = v2, the
following holds (see (E.2) and (E.4)):

g0e(V̄ )V̇ |V=V̄ + a(V̄ )ge(V̄ ) = b(V̄ )

The first term is zero because V̇ = 0 at V = V̄ . Since (D.1) holds for V1 = V̄ , then

dV̇

dV

¯̄̄̄
¯
V=V̄

= σ + λ1p(F (V̄ ))− u0(w(V̄ ))w0(V̄ ) = 0.

This implies a(V̄ ) = σ. Because p(F (V̄ )) = 0, then δ(V̄ ) = 0. In addition, dF−1(V )/dV is
finite at V = V̄ . Thus, b(V̄ ) = 0. The above form of (E.4) at V = V̄ becomes 0 = −σge(V̄ ),
i.e., ge(V̄ ) = 0.
The feature g0e(v1) > 0 implies that ge(v1 + ε) > 0, where ε > 0 is sufficiently small.

Because ge(V ) is continuous and ge(V̄ ) = 0, then ge(V ) must be decreasing when V is close
to V̄ . That is, there exists V̂ ∈ (v1, V̄ ) such that g0e(V ) < 0 for V̂ < V < V̄ . QED

40



References

[1] Acemoglu, D. and R. Shimer, 1999a, “Efficient unemployment insurance”, Journal of
Political Economy 107, 893-928.

[2] Acemoglu, D. and R. Shimer, 1999b, “Holdups and efficiency with search frictions”,
International Economic Review 40, 827-850.

[3] Barlevy, G., 2003, “Estimating models of on-the-job search using record statistics”,
NBER working paper No. w10146.

[4] Burdett, K. and M.G. Coles, 2003, “Equilibrium wage-tenure contracts”, Economet-
rica 71, 1377-1404.

[5] Burdett, K. and D. Mortensen, 1998, “Wage differentials, employer size, and unem-
ployment”, International Economic Review 39, 257-273.

[6] Burdett, K., Shi, S. and R. Wright, 2001, “Pricing and matching with frictions,”
Journal of Political Economy 109, 1060-1085.

[7] Delacroix, A. and S. Shi, 2006, “Directed search on the job and the wage ladder,”
International Economic Review 47, 651-699.

[8] Diamond, P., 1982, “Wage determination and efficiency in search equilibrium”, Review
of Economic Studies 49, 217-227.

[9] Farber, H.S., 1999, “Mobility and stability,” in O. Ashenfelter and D. Card (eds.)
Handbook of Labor Economics, Vol. 3B, Amsterdam: Elsevier.

[10] Galenianos, M. and P. Kircher, 2005, “Directed search with multiple job applications,”
manuscript, University of Pennsylvania.

[11] Harris, M. and B. Holmstrom, 1982, “A theory of wage dynamics,” Review of Eco-
nomic Studies 49, 315-333.

[12] Hosios, A., 1990, “On the efficiency of matching and related models of search and
unemployment,” Review of Economic Studies 57, 279-298.

[13] Jovanovic, B., 1979, “Job matching and the theory of turnover,” Journal of Political
Economy 87, 972-990.

[14] Julien, B., Kennes, J. and I. King, 2000, “Bidding for labor,” Review of Economic
Dynamics 3, 619-649.

[15] Kiefer, N.M. and G.R. Neumann, 1993, “Wage dispersion with homogeneity: the
empirical equilibrium search model”, in: Bunzel, et al. (eds), Panel Data and Labour
Market Dynamics (pp. 57-74). Amsterdam: North Holland.

41



[16] Moen, E.R., 1997, “Competitive search equilibrium,” Journal of Political Economy
105, 385-411.

[17] Montgomery, J.D., 1991, “Equilibrium wage dispersion and interindustry wage differ-
entials”, Quarterly Journal of Economics 106, 163-179.

[18] Mortensen, D., 1982, “Property rights and efficiency in mating, racing, and related
games”, American Economic Review 72, 968-979.

[19] Moscarini, G., 2005, “Job matching and the wage distribution,” Econometrica 73,
481-516.

[20] Peters, M., 1984, “Bertrand equilibrium with capacity constraints and restricted mo-
bility,” Econometrica 52, 1117-1129.

[21] Peters, M., 1991, “Ex ante price offers in matching games: Non-steady state,” Econo-
metrica 59, 1425-1454.

[22] Pissarides, C., 1990, Equilibrium Unemployment Theory, Cambridge, Massachusetts:
Basil Blackwell.

[23] Postel-Vinay, F. and J-M. Robin, 2002, “Equilibrium wage dispersion with worker and
employer heterogeneity”, Econometrica 70, 2295-2350.

[24] Shi, S., 2001, “Frictional assignment I: efficiency,” Journal of Economic Theory 98,
232-260.

[25] Shi, S., 2002, “A directed search model of inequality with heterogeneous skills and
skill-biased technology,” Review of Economic Studies 69, 467-491.

[26] Shimer, R., 2005, “The assignment of workers to jobs in an economy with coordination
frictions,” Journal of Political Economy 113, 996-1025.

[27] Stevens, M., 2004, “Wage-tenure contracts in a frictional labour market: firms’ strate-
gies for recruitment and retention,” Review of Economic Studies 71, 535-551.

[28] van den Berg, G. and G. Ridder, 1998, “An empirical equilibrium search model of the
labor market”, Econometrica 66, 1183-1221.

42



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


