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1 Introduction

Multi-store retailers account for more than 60% of sales in food retailing, drugstores, and bookstores

(Hollander and Omura, 1989). Geographic location is in many cases the most important source

of product differentiation for these firms. It is also a forward-looking decision with significant

non-recoverable entry costs, mainly due to capital investments which are both firm- and location-

specific. Thus, sunk costs, and the dynamic strategic behavior associated with them, are important

forces behind the configuration of the spatial market structure that we observe in retail markets.

Despite its relevance, there have been very few studies analyzing spatial competition as a dy-

namic game. Existent models of industry dynamics often lack an explicit account of spatial com-

petition. Although useful applications have emerged from the seminal work by Ericson and Pakes

(1995), none have explicitly incorporated the spatial and multi-store features which are prevalent

in many retailing industries.1 The literature on spatial competition often restricts the treatment of

time. Models based on the seminal work of Hotelling (1929) describe a two- or three-period frame-

work where firms choose locations and then compete in the product market.2 Eaton and Lipsey

(1975), Schmalensee (1978), and Bonanno (1987) study the multi-store monopolist under the threat

of entry. They find that, depending on the magnitude of entry costs, the monopolist will either

proliferate or strategically locate its stores to deter entry, successfully preempting the competition.

Judd (1985) notes that the aforementioned models place strong assumptions on firms’ level of com-

mitment. These papers assume that entry and location decisions are completely irreversible, with

no possibility of exit or relocation. Judd shows that when there is strong substitutability among

stores (i.e. proximity in space), allowing for exit may result in non-successful spatial preemption

by the incumbent. Potential entrants know the incumbent firm may prefer to have a monopoly in

a single location rather than being a monopolist in a location and a duopolist in another nearby

location. Therefore, spatial preemption and entry deterrence by the incumbent is not a credible

(i.e., equilibrium) strategy.

Judd’s paper emphasizes that models of spatial competition between multi-store firms need

to incorporate dynamics to its full extent, allowing for endogenous firm entry, store proliferation,

exit, and forward-looking strategies. That is the intention of this paper. In this context, the

contribution of this paper is threefold. First, we propose a dynamic model of an oligopoly industry

1Examples of applications of the Ericson-Pakes framework are Pakes and McGuire (1994), Gowrisankaran’s (1999)

study of mergers, Markowitz’s (2003) study of network effects, and Benkard’s (2004) study of the commercial aircraft

industry. Ellickson and Beresteanu (2005) is also in that framework. They endogenize supermarkets’ “store density,”

i.e., the number of stores per capita a firm owns in a market. However, spatial competition per se is not accounted

for.
2Hay (1976), Prescott and Visscher (1977), Lane (1980), and Neven (1987) use the concept of subgame-perfect

equilibrium to study pre-specified sequential entry by single-store firms. Firms incur entry costs but relocation is

prohibitively expensive. They find that strategic product positioning is pursued by earlier movers to either deter

entry or take profitable locations first. For a compilation of spatial competition models see Anderson et al. (1992).
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characterized by spatial competition between multi-store firms. In this model, firms compete in

prices and decide where to open or close stores depending on the location profile of competitors,

demand conditions, and location-specific private-information shocks. We define and characterize a

Markov Perfect Equilibria (MPE) in this model. Our framework is a useful tool to study multi-

store competition issues that involve spatial and dynamic considerations. Some examples of topics

within this class are: the evaluation of the welfare effects of possible mergers between multi-store

firms; understanding the main factors that explain the patterns in the evolution of multi-store

retailers such as Wal-Mart, Starbucks, or McDonalds; or studying the conditions under which

spatial preemptive behavior is an equilibrium strategy.3

A second contribution of this paper is to provide an algorithm to compute an equilibrium of the

model. The algorithm exploits simulation techniques that have been recently proposed for solv-

ing single-agent dynamic models (Rust, 1997), and for the estimation of dynamic games (Bajari,

Benkard, and Levin, 2006). We apply and extend these ideas to the computation of equilibria in

dynamic games of spatial competition.4 The main idea behind our algorithm is that when firms cal-

culate the expected value associated with a possible action, they do it by integrating only through

the most likely paths of future exogenous state variables. Many low-probability paths of these

state variables are not taken into account. This assumption reduces very substantially the cost of

calculating these expected values and of computing an equilibrium. The algorithm provides an ap-

proximation to the actual MPE. However, an alternative interpretation is that the algorithm obtains

the actual MPE of a model where firms face computational costs and use simulation techniques to

minimize these costs when making decisions.

To illustrate the model and the algorithm, we present several numerical examples that analyze

how the propensity of multi-store retailers to spatial preemptive behavior depends on the magnitude

of sunk costs. With this purpose, we have to start with a useful definition of spatial preemption.

Previous definitions have been based on simple three-period games where firms move sequentially,

and in equilibrium there either is or there is not pre-emption. Instead we consider spatial pre-

emptive behavior (both in practice and in the context of our model) to be a matter of degree, and

propose an index that measures the intensity of firms’ preemptive behavior in a market. This index

can be calculated using information on firms’ decisions of where to open/close their stores. In our

numerical examples we calculate this index using simulated data from the equilibrium of the model.

Then, we look at how this index varies when we modify some parameters of the model, i.e., entry

costs, exit value and transportation costs. We also look at the relationship between the spatial

preemption index and several market outcomes such as number of stores, profits and markups.

3The model in sections 5 and 6 of Judd (1983) is the closest to ours in the literature. However, Judd’s model is

still highly stylized relative to our model.
4The software for this algorithm, in GAUSS language, can be downloaded from the authors’ web pages. In a

companion paper we provide a manual that describes in detail the programs and procedures in this software (see

Aguirregabiria and Vicentini, 2006).
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The rest of the paper is organized as follows. Section 2 presents the model. Section 3 describes

the algorithm used to solve for equilibria. Section 4 presents the numerical exercises on spatial

preemptive behavior. Section 5 summarizes and concludes.

2 Model

2.1 The Market

Consider a local market of a differentiated retail product (e.g., retail banking, supermarkets). From

a geographic point of view the market is a compact set C in the Euclidean space R2. The distance
between two points in the market, say a and b, is the Euclidean distance denoted by ka− bk.
There is a finite set of L pre-specified locations where it is feasible for firms to operate stores. Let

{z1, z2, ..., zL} be the set of geographical coordinates of these feasible locations, where zc ∈ C. We
call each of this business locations a submarket. As a real life example, figure 1 presents the location

of eight shopping malls (circles) in the city of Tulsa, Oklahoma.5 These malls can be thought as

the feasible locations for retailers such as large department stores.

FIGURE 1

Shopping Malls in Tulsa, Oklahoma

Time is discrete. At time t the market is populated by a continuum of consumers. Each

consumer is characterized by a geographical location z ∈ C. The geographical distribution of

consumers at period t is given by the absolute measure φt(z) such that
R
C φt(dz) =Mt, where Mt

is the size of the market. This measure φt evolves over time according to a discrete Markov process.

Let Ω be the discrete set of possible φt’s.

5Satellite picture constructed using the free software Google Earth, available at http://earth.google.com/.

3



There are I multi-store firms that can potentially operate in the market. We index firms by i

and use Υ = {1, 2, ..., I} to represent the set of firms. At the beginning of period t a firm’s network
is represented by the vector nit = (ni1t, ni2t, ..., niLt), where nict is the number of stores that firm

i operates in location c at period t. For simplicity, we assume that a firm can have at most one

store in a location, such that nict ∈ {0, 1}. The model can be easily generalized to the case with
a maximum of n̄ > 1 stores per location and firm.6 Overlapping of stores from different firms

at the same location is allowed. The spatial market structure at period t is represented by the

vector nt = (n1t, n2t, ..., nIt) ∈ {0, 1}IL. A store in this market is identified by a pair (i, c) where i
represents the firm, and c identifies the location.

We conclude this sub-section providing a big picture of the structure of the model. The details

are in sections 2.2 to 2.4. Every period t, firms observe the spatial market structure nt, the

state of the demand φt, and some location- and firm-specific shocks in entry, exit and fixed costs,

which are private information of each firm. Given this information, incumbent firms compete in

prices. Prices can vary over stores within the same firm. This spatial Bertrand game is static

because current prices do not have any effect on future demand or profits. Furthermore, private

information shocks affect fixed operating costs and entry costs but not the demand or variable costs.

Therefore, these shocks do not have any influence in equilibrium prices. The resulting Bertrand

prices determine equilibrium variable profits for each firm i at period t. At the end of period t, firms

decide simultaneously their network of stores for next period. This choice is dynamic because of

partial irreversibility in the decision to open a new store, i.e., sunk costs. Firms are allowed to open

or close at most one store per period. Exogenous changes in the spatial distribution of demand

(i.e., changes in φt), as well as firms’ location-specific shocks to costs, generate simultaneous entry

and exit at different locations and changes over time in the spatial market structure. Firms may

grow over time in the geographic context and expand their network of stores, and possibly become

a dominant player.

2.2 Consumer Behavior7

A consumer is fully characterized by a pair (z, υ), where z is her location in space and υ ∈ RIL

is a vector representing her idiosyncratic preferences over all possible stores. Consumer behavior

is static and demand is unitary. At every period t, consumers know all active stores with their

respective locations and prices. A consumer decides whether to buy or not a unit of the good, and

from which firm and store to buy it. The indirect utility of consumer (z, υ) patronizing store (i, c)

at time t is:

u(i, c) = ωi − pict − τ kz − zck+ υic (1)

6Some retail industries are characterized by firms having more than one store in a particular submarket. Starbucks

often has multiple coffee shops in large malls.
7De Palma et al. (1985) consider a similar demand system but in a linear city.
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ωi is the quality of the product offered by firm i, common across its locations. All consumers

agree on this measure. pict is the mill price charged by store (i, c) at time t. The term τ kz − zck
represents consumer’s transportation costs, where τ is the unit transportation cost. Finally, υic

captures consumer idiosyncratic preferences for store (i, c). The utility of the outside alternative

(i.e., not purchasing the good) is normalized to zero.

A consumer purchases a unit of the good at store (i, c) iff u(i, c) ≥ 0 and u(i, c) ≥ u(i0, c0) for

any (i0, c0). To obtain the aggregate demand at each store we have to integrate individual demands

over the distribution of (z, υ). We assume that υ is independent of z and it has a Extreme Value

distribution with dispersion parameter μ. The parameter μ measures the importance of horizontal

product differentiation, other than spatial differentiation. Integrating over υ we obtain the local

demand for store (i, c) from consumers at location z:

dic(z,nt,pt) =
nict exp {(ωi − pict − τ kz − zck) /μ}

1 +
PI

i0=1
PL

c0=1 ni0c0t exp {(ωi0 − pi0c0t − τ kz − zc0k) /μ}
(2)

Integrating these local demands over the spatial distribution of consumers we obtain the aggregate

demand for store (i, c) at time t:

Dic(nt,pt, φt) =

Z
C
dic(z,nt,pt) φt(dz) (3)

The aggregate consumer surplus is defined as:

CS(nt,pt, φt) =

Z
C
μ ln

h
1 +

PI
i=1

PL
c=1 nict exp {(ωi − pict − τ kz − zck) /μ}

i
φt(dz) (4)

And the aggregate transportation costs incurred by consumers is:

TC(nt,pt, φt) =
PI

i=1

PL
c=1

Z
C
dic(z,nt,pt) τ kz − zck φt(dz) (5)

A few comments about this demand system are needed. Consumers’ substitution patterns

depend directly on the distance function kz − zck, so that a store competes more fiercely against
closer stores. Stores’ market areas are overlapping because of the unobserved heterogeneity of

consumers, υ. Therefore a store serves consumers from all corners of the city C, but more so the
nearby patronage. Stores will always face a positive demand and can adjust prices without facing

a perfectly elastic demand. Firms face the trade-off between strategic and market share effects.

As stores locate closer to each other, the more intense price competition acts as a centrifugal

force of dispersion (strategic effect). At the same time, firms wish to locate where transportation

costs are minimum, which acts as a centripetal force of agglomeration (market share effect). An

equilibrium spatial market structure would balance these forces, along with the effect of own-firm

stores cannibalization.

Finally, we note the importance of the parameters μ and τ that capture product differentiation.

As μ→ 0 the degree of non-spatial horizontal product differentiation becomes smaller and market
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areas become well defined and predictable, with a consumer strictly shopping at the store with

lowest full price (quality-adjusted mill price plus transportation costs) from her location. At the

limit we would observe market areas defined as Voronoi graphs (or Thiessen polygons) with well-

defined market borders (see Eaton and Lipsey, 1975, or Tabuchi, 1994, among others). Higher

transportation cost τ increases the importance of location and the isolation of consumers, serving

as a shield for market power and creating incentives for firm dispersion.8

2.3 Price Competition

For notational simplicity we omit the time subindex in this subsection. Every period, firms compete

in prices taking as given their network of stores, the state of the demand, and variable costs.

Firms may charge different prices at different stores. This price competition is a game of complete

information. A firm variable profit function is:

Ri(n,p, φ) =
XL

c=1
(pic − ci (di)) Dic(n,p, φ) (6)

ci (di) is the unit variable cost of firm i, constant across its stores. This cost is an increasing function

of di, the average distance between all the stores in the network of firm i.9 This specification

captures the existence of economies of density in marginal costs. For a given number of stores,

it is more costly to operate a network the larger the distance between the stores, such that scope

economies are positively related to the proximity of own-firm stores. Distribution costs are a source

of economies of density. It seems plausible that most of these economies of density operate through

fixed costs. We incorporate that feature in the model (see section 2.4 below). However, economies

of density may also reduce marginal costs. For instance, unit inventory costs can be smaller when

stores are closer to each other because it is easier for these stores to share inventories in case

of stockouts. Note that with this structure of variable costs, firms pass part of the gains from

economies of density to consumers in terms of lower prices. That is not the case when economies of

density operate only through fixed costs. See the work by Holmes (2006) on economies of density

and the implications on the dynamics of store location by multi-store firms.

Each firm maximizes its variable profit by choosing its best-response vector of prices. The best

response of firm i can be characterized by the first-order condition for each price pic:

Dic + (pic − ci)
∂Dic

∂pic
+
X

c0 6=c (pic0 − ci)
∂Dic0

∂pic
= 0 (7)

The first two terms are the price and output effects of pic on its own store (i, c), while the last term

is the output effect of pic on all other stores of firm i. In our demand system, stores of a same

8Besides computing equilbrium prices, our Bertrand algorithm computes demand price elasticities for each location

and store at these prices. These elasticities help the researcher better understand what are the actual market areas

in geographic space. The detection of the relevant geographical market area has long been debated among antitrust

authorities (see Willig, 1991, and Baker, 1997).
9The average distance between stores is di = c c0 6=c nic nic0 kzc − zc0k / c c0 6=c nic nic0 .
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firm are gross substitutes, i.e., ∂Dic0/∂pic > 0 and therefore the third term is always positive. This

implies that, ceteris paribus, a multi-store firm will offer higher prices than a single-store firm.

Following Berry (1994) and Berry et al. (1995), we define a square matrix Λ of dimension

IL× IL with elements:

Λi
0c0
ic =

⎧⎨⎩ −
∂Di0c0

∂pic
if i0 = i

0 otherwise
(8)

We can write the entire system of best-response equations as D (p)− Λ (p) · (p− c) = 0, or what

is equivalent:

p = c+ Λ (p)−1 ·D (p) (9)

A spatial Nash-Bertrand equilibrium is then a vector p∗ that solves the fixed-point mapping (9).

Given our assumptions on the distribution of consumer taste heterogeneity υ, the mappings D (p)

and Λ (p) are continuously differentiable. Furthermore, the vector of prices p belongs to a compact

set. Every price is greater or equal than its corresponding unit variable cost, and it is smaller

or equal than the monopoly price of a firm with L stores and maximum quality ωi. Therefore,

by Brower’s fixed-point theorem, a Nash-Bertrand equilibrium exists. This proof of existence can

be extended to other specifications of the distribution of the vector υ of consumer heterogeneous

tastes, as long as the distribution of υ is such that the functions D (p) and Λ (p) are continuous in

p.

The equilibrium is not necessarily unique. This is a problem if we want to use the model for

comparative statics or to study the effects of public policies. To deal with this issue we assume a

particular equilibrium selection mechanism. This criterion for equilibrium selection is incorporated

in the algorithm that we use to compute the equilibrium. We select the Nash-Bertrand equilibrium

that we converge to when the fixed-point algorithm is initialized with prices equal to marginal costs

c. This implies that we select the equilibrium with the lowest equilibrium prices.10 Let p∗ (n,φ) be

the vector of equilibrium prices associated with a value (n,φ) of the state variables. Solving this

vector into the variable profit function one obtains the equilibrium variable profit function:

R∗i (n, φ) ≡ Ri(n,p
∗ (n,φ) , φ) (10)

2.4 Dynamic game

At the end of period t firms simultaneously choose their network of stores nt+1 with an understand-

ing that they will affect their variable profits at future periods. We model the location choice as a

game of incomplete information, so that each firm i has to form beliefs about other firms’ choices

10Alternatively, we might select the Nash-Bertrand equilibrium that we converge to when the fixed-point algorithm

is initialized with prices equal to monopoly prices. In that case, we would be selecting the equilibrium with the

highest prices.
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of networks.11 More specifically, there are components of the entry costs and exit values of a store

which are firm-specific and private information. We assume that a firm may open or close at most

one store per period. Given that we can make the frequency of firms’ decisions arbitrarily high,

this is a plausible assumption that reduces significantly the cost of computing an equilibrium in

this model.

Let ait be the decision of firm i at period t such that: ait = c+ represents the decision of opening

a new store at location c; ait = c− means that a store at location c is closed; and ait = 0 means the

firm chooses to do nothing. Therefore, the choice set is A = {0, c+, c− : c = 1, 2, ..., L}. Some of the
choice alternatives in A may not be feasible for a firm given her current network nit. In particular,

a firm can not close a store in a submarket where it has no stores, and it can not open a new store

in a location where it already has a store. We incorporate these constraints in the specification of

the profit function below. In particular, there is a cost K of taking this type of actions, where K

is a very large number.

2.4.1 Specification of the profit function

Firm i’s current profit is:

πi (ait,nt, φt, εit) = R∗i (nt, φt)− FC(nit)−ECit +EVit (11)

FC(nit) is the fixed cost of operating all the stores of firm i. ECit is the entry cost of creating

a new store. And EVit is the exit value of closing a store. Fixed operating costs depend on the

number of stores but also on their location.

FC(nit) =
³PL

c=1 θ
FC
c nict

´
+ θED (dit) (12)

θFCc is the fixed cost of operating a store in submarket c. dit is the average distance between all the

stores in the network of firm i, as defined above, and θED (.) is an increasing real valued function

that captures the existence of economies of density. For a given number of stores, it is more costly

to operate a network the larger the distance between the stores. The specification of entry cost is:

ECit =
PL

c=1 I{ait = c+}
¡
θECc +K nict + εECict

¢
(13)

I{.} is the indicator function. θECc is the entry cost at location c, and K is an arbitrarily large

number that accounts for the restriction that a firm cannot open more than one store in the same

location. The variable εECict represents a firm- and location-specific component of the entry cost.

This idiosyncratic shock is private information of firm i. The specification of the exit value is:

EVit =
PL

c=1 I{ait = c−}
¡
θEVc −K (1− nict) + εEVict

¢
(14)

11See Doraszelski and Satterthwaite (2003) for an analysis of dynamic games of incomplete information.
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θEVc is the scrapping or exit value of a store in location c. The term K(1− nict) accounts for the

restriction that it is not possible to close a store that does not exist. The variable εEVict is a firm-

and location-specific shock in the exit value of a store.

The vector of private information variables for firm i at period t is εit = {εECict , εEVict : c =

1, 2, ..., L}. We make two assumptions on their distribution. First, we assume the vectors εit’s are
independent of demand condition φt, and independently distributed across firms and over time.

Independence across firms implies that a firm cannot learn about other firms’ ε’s by using its

own private information. And independence over time means that a firm cannot use other firms’

histories of previous decisions to infer their current ε’s. These assumptions simplify significantly

the computation of an equilibrium in this dynamic game. Second, we assume the εit’s have support

over the entire real line with a cumulative distribution increasing with respect to every argument.

These two assumptions allow for a broad range of specifications for the εit’s, including spatially

correlated shocks.

2.4.2 Markov Perfect Equilibrium

We consider that a firm’s strategy depends only on its payoff relevant state variables (nt, φt, εit).

Let α ≡ {αi(nt, φt, εit) : i ∈ Υ} be a set of strategy functions, one for each firm, such that
αi : {0, 1}IL×Ω×R2L → A. A Markov perfect equilibrium (MPE) in this game is a set of strategy

functions such that each firm’s strategy maximizes the value of the firm for each possible (nt, φt, εit)

and taking other firms’ strategies as given.

To characterize a MPE in this model, we first describe a firm’s best response function. Let

ψi(nt, φt, εit;α) be firm i’s best response function that is defined as:

ψi(nt, φt, εit;α) = arg max
ait∈A

{ πi (ait,nt, φt, εit) + vαi (ait,nt, φt) } (15)

where vαi (ait,nt, φt) is the expect future profits of firm i if his current decision is ait and all the

firms, including firm i, behave in the future according to their respective strategy functions in α.

That is,

vαi (ait,nt, φt) ≡
∞P
j=1

βj E
©
πi
£
αi
¡
nαt+j , φt+j , εi,t+j

¢
,nαt+j , φt+j , εi,t+j

¤ | ait,nt, φtª (16)

where the expectation is taken over all the possible future paths of {φt+j, εt+j}. We use the super-
index α in nαt+j to emphasize that the evolution of future networks of stores depends on the strategy

functions in α. Note that ψi(nt, φt, εit;α) is a best response to other firms’ strategies but also to

the own firm strategy αi. That is, this best response function incorporates a ‘policy iteration’ in

the firm’s dynamic programming problem. The Representation Lemma in Aguirregabiria and Mira

(2006) shows that we can use this type of best response functions to characterize every MPE in the
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model. That is, a set of strategy functions is a MPE in this model if and only if these strategies

are a fixed point of the best response functions in (15).

DEFINITION: A set of strategy functions α∗ ≡ {α∗i (nt, φt, εit) : i ∈ Υ} is a MPE in this model if
and only if for any firm i and any state (nt, φt, εit) we have that:

α∗i (nt, φt, εit) = ψi(nt, φt, εit;α
∗) (17)

Next, we describe the form of the best response function ψi. Taking into account the specifica-

tion of the profit function in equations (11) to (14), we have that firm i’s best response is to open

a store at location c (i.e., ψi(nt, φt, εit;α) = c+) if the following conditions hold:

−θECc − εECict + vαi (c+,nt, φt)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≥ −θECc0 − εECic0t + vαi (c

0
+,nt, φt) for any c0

≥ vαi (0,nt, φt)

≥ θEVc0 + εEVic0t + vαi (c
0−,nt, φt) for any c0

(18)

The first condition states that submarket c is the best location for firm i to open a new store. The

other two conditions establish that opening a new store is better than doing nothing and better

than closing a store, respectively. Similarly, we have that firm i’s best response is to close a store

at location c (i.e., ψi(nt, φt, εit;α) = c−) if the following conditions hold:

θEVc + εEVict + vαi (c−,nt, φt)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≥ θEVc + εEVic0t + vαi (c

0−,nt, φt) for any c0

≥ vαi (0,nt, φt)

≥ −θECc0 − εECic0t + vαi (c
0
+,nt, φt) for any c0

(19)

The first condition establishes that submarket c is the best one to close an existing store of firm i.

The other two conditions state that closing a store is better than doing nothing and better than

opening a new store, respectively.

Equations (18) and (19) show that the strategies in α enter the best response function ψi only

through the value function vαi . Therefore, we can write the best response function as ψi(nt, φt, εit; v
α
i ).

This representation is useful to characterize a MPE in this model in terms of the value functions

{vαi : i ∈ Υ}. And the characterization can be used to prove the existence of a MPE in this model
and to compute an equilibrium. The following Proposition establishes this result.

PROPOSITION: Let α ≡ {αi(nt, φt, εit) : i ∈ Υ} be a set of strategy functions. And let vα ≡ {vαi :
i ∈ Υ} be the value functions associated with α as we have defined them in equation (16). Then,

α is a MPE if and only if the vector of value functions vα is a solution to the fixed-point problem

v = Γ(v) where Γ(v) = {Γi(v) : i ∈ Υ} and:

Γi(v)(ait,nt, φt) ≡
∞P
j=1

βj E
n
πi

h
ψi

³
n
ψ(v)
t+j , φt+j, εi,t+j

´
,n

ψ(v)
t+j , φt+j, εi,t+j

i
| ait,nt, φt

o
(20)
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where the expectation is taken over all the possible future paths of {φt+j , εi,t+j}, and the nota-
tion n

ψ(v)
t+j means that the evolution of future networks of stores is based on the strategy functions

ψi(., ., .; v).

Proof: Suppose that α is a fixed-point of the mapping (17). Therefore, the vector of value function

vα is equal to vψ(v
α), and this implies that vα is a fixed point of the mapping Γ. Now, suppose

that a vector of functions v is a fixed point of Γ and define the vector of strategy functions α =

{ψi(., ., .; v) : i ∈ Υ}. It is clear that α is an equilibrium of (17). ¥

Given this Proposition, the proof of existence of a MPE is a straightforward application of

Brower’s theorem. Note that the variables (ait,nt, φt) are discrete and take finite values. It follows

that: (1) the set of value functions vα can be represented as a vector in the Euclidean space;

(2) this vector can take only a finite number of values; and (3) by the continuity of the profit

function, these values are bounded. Therefore, vα belongs to a compact set. Our assumptions on

the distribution of the private information shocks imply that Γ is a continuous mapping. Thus, by

Brower’s theorem, an equilibrium exits. Given a vector of equilibrium values vα
∗
, we can obtain

the equilibrium strategy functions α∗ using the characterization of the best response function in

equations (18) and (19). We can also obtain the equilibrium choice probability functions:

Pα∗
i (ait|nt, φt) ≡

Z
I {α∗i (nt, φt, εit) = ait} dG(εit) (21)

where G(.) is the distribution function of the private information shocks. Knowledge of these

functions, combined with the transition probabilities for the exogenous population distribution φt,

allows the researcher to compute the probabilistic evolution of the city-economy given a particular

initial condition, as well as the probabilistic steady-state features of this economy.

The model can have multiple equilibria. This is an issue when we use this model for comparative

statics. We deal with this problem in the same way as we did with multiple equilibria in the Nash-

Bertrand game: we impose an equilibrium selection mechanism. More specifically, we select the

MPE that we converge to by iterating in the mapping Γ from the initial set of values vα = 0 (i.e.,

the values that correspond to firms’ myopic behavior, β = 0).

3 Equilibrium algorithms

3.1 Computation of a Nash-Bertrand equilibrium

Recall the system of first-order conditions in the pricing game. For a given value of the state

variables, define the mapping corresponding to that system as ∆ (p) ≡ c + Λ (p)−1 · D (p). Let
∆(i) (p) be the elements of ∆ (p) associated with the prices of firm i. Similarly, let p(i) be the

elements of the vector p associated with firm i. We implement a Gauss-Siedel fixed-point algorithm

which iterates on firms using the mapping ∆ (p). To obtain the lowest price equilibrium, we

11



initialize the search with prices equal to marginal costs. Step 0: Start with the vector of prices

p0 such that p0(i) = ci for any i ∈ Υ. Step 1: Compute aggregate demands D
¡
p0
¢
and the

matrix of partial derivatives Λ
¡
p0
¢
using quadrature integration (see below). Step 2: Starting

with firm 1, obtain a new vector p1(i) for each firm i using Gauss-Siedel iteration: p1(1) = ∆(1)
¡
p0
¢
,

p1(2) = ∆(2)

³
p1(1),p

0
(2), ...,p

0
(I)

´
, ..., p1(i) = ∆(i)

³
p1(1), ...,p

1
(i−1),p

0
(i), ...,p

0
(I)

´
. Step 3: If

°°p1 − p0°°
is smaller than a pre-fixed small constant, then p∗ = p1. Otherwise, proceed to Step 1 with

p0 = p1.

Therefore, the updating of the vector of prices for player i is done immediately after its compu-

tation, before computing a new vector p1(i+1) for the next player. Once the price equilibrium under

an equilibrium selection rule is computed, we encode the equilibrium current variable profits of a

firm given a particular state, Ri(n, φ).

Given the logit assumption on the idiosyncratic tastes, the local demands have the closed form

expression in (2). However, to obtain the vector of aggregate demands D (p) and the matrix of

partial derivatives Λ (p) we have to integrate local demands over the 2-dimensional city C. We
use a quadrature method with midpoint nodes (see Judd, 1998, ch. 7). We first divide C into a
pre-specified number of mutually exclusive and adjacent rectangular cells, with each cell k having

a representative node point z(k) in its center. For each location z in cell k we approximate the

local demand dic(z,nt,pt) and the density φt (z) using dic(z(k),nt,pt) and φt
¡
z(k)

¢
, respectively.

Therefore, we calculate aggregate demand for store (i, c) as:

Dic(nt,pt, φt) =
P

k dic(z(k),nt,pt) φt
¡
z(k)

¢
area(k) (22)

where area(k) is the area of the rectangular cell k.

3.2 Computation of a MPE

A MPE is a fixed point of the equilibrium mapping Γ that we defined in equation (20). The

evaluation of this equilibrium mapping requires one to integrate over all possible future paths of

the exogenous variables {εt, φt}. We use Monte Carlo simulation to deal with this high-dimension
multiple-integration problem. Our algorithm computes a fixed point of an equilibrium mapping Γ̃R

that is a simulated version of the mapping Γ. The subindex R represents the number of Monte Carlo

simulations used to approximate expected values. The main feature of Γ̃R is that firms calculate

the expected value associated with an action by using Monte Carlo simulation to integrate over

the path of future exogenous state variables. This means that only R future paths are assigned

a positive probability, while the rest of the paths receive zero probability. As R goes to infinity,

the simulated mapping Γ̃R converges to Γ. But for finite R the mapping Γ̃R can still be a good

approximation to Γ. We might also consider that Γ̃R is the actual equilibrium mapping because,

due to computational costs, firms calculate their best responses by using Monte Carlo simulation.

12



First, we simulate R independent sequences of length T for the exogenous state variables εit

and φt. We index simulated sequences by r, such that {εrit : t = 1, 2, ..., T} is the rth simulated
path for the private information shocks of firm i, and {φrt : t = 1, 2, ..., T} is the rth simulated

path of the demand conditions.12 Very importantly, these simulated sequences remain constant

over the iteration of the algorithm. Define {nrt (a0,n0, φ0, v) : t = 1, 2, ..., T} as the sequence
of networks given: (1) the rth simulated sequence of exogenous state variables; (2) the initial

conditions (a0,n0, φ0); and (3) that every firm behaves according to their best response functions

given v. These simulated sequences of networks do change over the iteration of the algorithm

because the vector of value function v changes. Now, we can describe the simulated equilibrium

mapping Γ̃R(v) as {Γ̃R,i(v) : i ∈ Υ} such that:

Γ̃R,i(v)(ai0,n0, φ0) (23)

≡ 1

R

RP
r=1

½
TP
t=1

βt πi [(ψi (n
r
t (a0,n0, φ0, v), φ

r
t , ε

r
it; v) , n

r
t (a0,n0, φ0, v), φ

r
t , ε

r
it)]

¾
Step 0: We initialize the algorithm with a vector of values v0 such that v0i (ai0,n0, φ0) = 0, for any

state, player, and action. Step 1: Then, we calculate a new vector of values v1 using a Gauss-Jacobi

iteration in the mapping Γ̃R. That is, for any player i, any state (n0, φ0) and any action ai0, we

calculate v1 as v1i (ai0,n0, φ0) = Γ̃R,i(v
0)(ai0,n0, φ0). Step 2: If

°°v1 − v0
°° is smaller than a pre-fixed

small constant, then vα
∗
= v1. Otherwise, proceed to Step 1 with v0 = v1, and conduct another

round of Gauss-Jacobi iterations.

This algorithm computes value functions at every possible value of the state variables (n0, φ0).

The number of possible values in the space of n0 is 2
IL. This can be a huge number for values

of IL greater than 20. When the number of firms is relatively large, an assumption that reduces

significantly the number of values in the space of n0 is symmetry among firms. If firms have the

same quality of their products and marginal costs (i.e., ωi = ω and ci = c for any firm i) then,

the vector of arguments in the value function vi is (ai, ni, N−i, φ), where ni is the network of firm

i, and N−i is the vector {N−ic : c = 1, 2, ..., L} where N−ic ≡
P

j 6=i njc is the number of stores in

location c from firms other than i. The number of values in the space of (ni,N−i) is (2I)L, which is a

smaller number than 2IL and it is not exponential in the number of firms. However, the assumption

of symmetric firms is only useful when the number of firms is greater than 2 and the number of

locations is small. Otherwise, it does not imply any important reduction in computational cost.

However, some interesting applications involve two firms over many possible locations in a city or

region. For these cases, the use of interpolation can be useful. The idea is to compute the values

Γ̃R,i(v)(ai,n, φ) over a grid of points of n and then interpolate these values to approximate the

mapping Γ̃R,i(v)(ai,n, φ) over the values of n which are not in the grid.

12When φt is autocorrelated, the simulated sequence for this variable depends on the initial condition φ0. In that
case, we should generate a different simulated sequence for each possible value of the initial condition φ0.
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4 Spatial preemption

We apply the previous model to study spatial preemptive behavior. Spatial preemptive behavior

cannot be defined or characterized in terms of primitives of the model. It is a characteristic of

firms’ equilibrium behavior in some dynamic games of entry in spatial markets. We start with a

definition of what we mean by preemptive behavior in the context of our model.

DEFINITION: An equilibrium in our model presents spatial preemptive behavior if, in the absence

of economies of density, equilibrium choice probabilities have the following properties.

(1) (Preemption): A firm’s probability of entry to become a monopolist in a local market

is larger when that firm is already a monopolist in a nearby local market.

(2) (Entry Deterrence): Suppose that a firm is a monopolist in a local market. The

probability that other firm enters in a nearby market is smaller if the monopolist is also

a monopolist in a nearby market.

(3) (Credibility): A firm’s probability of exit from a duopoly in a local market is smaller

when that firm is a monopolist in a nearby local market.

A key feature of spatial preemptive behavior is that there is a relationship between firms’

behavior in a local market and the (predetermined) market structure in nearby local markets.

That is, spatial preemptive behavior is a form of strategic interaction that is both spatial and

dynamic. Note that the definition includes the clause “in the absence of economies of density.”

Economies of density may generate some of these spatial-dynamic behavioral patterns. However,

in the case of economies of density, these patterns are not explained by strategic behavior but by

simple cost reductions.13 Here we concentrate in preemptive behavior and ignore economies of

density.14

To illustrate more formally the previous definition, consider a simple version of the model

with only two firms and two locations (i.e., I = L = 2) and where the demand conditions φt are

constant over time. The market structure in a local market can take four possible values: zero firms;

monopoly of firm 1; monopoly of firm 2; and duopoly. We represent these market structures using

the symbols ∅, M1, M2, and D, respectively. Following the definitions of the equilibrium choice

probabilities in section 2.4.2, let Pi(c+|nc, n−c) be the probability that firm i enters in market c

given that the market structures in the two local markets are nc and n−c. Similarly, Pi(c−|nc, n−c)
is the probability that firm i exits from market c conditional on the initial market structures nc

13For instance, suppose that there is only one multi-store firm in the city and that the costs of this monopolist

present economies of density. It is clear that condition (1) should be a characteristic of the optimal behavior of this

monopolist.
14For studies that analyze empirically spatial preemption and economies of density, see West (1981), Holmes (2006)

and Vicentini (2006).
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and n−c.15 Our definition of spatial preemptive behavior implies the following inequalities between

equilibrium choice probabilities (for i 6= j): (1) preemption, Pi(c+|∅,Mi) > Pi(c+|∅,∅); (2) entry
deterrence, Pj(c+|Mi,Mi) < Pj(c+|∅,Mi); and (3) credibility, Pi(c−|D,Mi) < Pi(c−|D,∅).

According to this, we define the following index, which should be positive under condition (1):

Preemption Index ≡ Pi(c+|∅,Mi)− Pi(c+|∅,∅) (24)

For models with two firms but more than two locations, we construct the index in the following

way. For any location c, let c∗ be the business location in the city that is closer to c. When looking

at entry/exit probabilities in location c, we represent the vector of networks n as (nc, nc∗ , n−(c,c∗)),

where nc and nc∗ have the same definition as before, and n−(c,c∗) represents the vector with the

spatial market structure at locations other than c and c∗. Then, we defined the index as:

Preemption Index ≡ Average
©
Pi(c+|∅,Mi, n−(c,c∗))− Pi(c+|∅,∅, n−(c,c∗))

ª
(25)

where the average is over all the locations c and over all the possible values of n−(c,c∗).

As mentioned in the introduction, the importance of Judd (1985)’s article was to emphasize

that, in order for an incumbent firm to effectively spatially preempt a market through multi-store

positioning, a full consideration of store substitutability, entry costs, and exit values is needed.

Once exit is allowed the potential entrant recognizes that upon entry into one of the incumbent

submarkets, the incumbent’s self-cannibalization is exacerbated by the augmented price competition

in the duopoly submarket, which may lead it to leave that market if exit costs are low enough. This

forward-looking behavior of the potential entrant impacts the credibility of the preemptive motive

by the incumbent. In sum, the credibility of preemptive behavior can in principle be parametrized

by entry costs, exit values, and the distance (substitutability) amongst locations (submarkets).

However, it is complicated to establish ex-ante for which specifications of the primitives of the

model preemptive behavior is more likely. To investigate the relationship between some structural

parameters and spatial preemption, we perform some numerical experiments. In particular, we

compute the MPE for different levels of entry costs, exit values, and consumer transportation

costs. For each equilibria we measure preemptive behavior by using our preemption index. We

also analyze the implications of preemptive behavior on market outcomes by looking at market

structure, profitability of firms, and price markup.

4.1 Benchmark model

The following parameters are constant over our experiments.

(a) The Market. The city is a unit square, C = [0, 1]2, and consumers are uniformly distributed on
C with population size equal to 10. Both the geographical distribution of consumers and population
15Of course, the probability of entry is zero if firm i is already an incumbent in market c, and the probability of

exit is zero if firm i is not active in that market.
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size are constant over time. The transportation cost parameter τ will vary in our experiments. We

consider a simple specification for the space of feasible business locations. There are two locations

(L = 2) with z1 = (0.2, 0.5) and z2 = (0.8, 0.5). Therefore the market and the locations are

symmetric. Figure 2 presents the spatial configuration of these business locations.

FIGURE 2

Feasible Business Locations

(0,1) (1,1)

z1• •z2

(0,0) (1,0)

(b) Firms. There are two multi-stores firms (I = 2) which are potential entrants in the local

markets of this city. These firms are identical in terms of the quality of their products, which

is set at ω1 = ω2 = 1. The parameter μ, that measures the importance of horizontal product

differentiation, is equal to 0.25. Firms are also identical in their cost structures. Marginal costs are

equal to one.16 Fixed operating costs are normalized to zero. The common knowledge component

of entry costs and exit values are constant across markets. For the benchmark model we set entry

costs at θEC = 1 and exit values at θEV = 0 for every location. However, we analyze the effects of

changes in both of these parameters. The private information parts of entry costs and exit values

have standard normal distributions which are independently distributed across firms and locations

and over time. The discount factor is set to β = 0.9.

We obtain the MPE for different values of exit values, entry costs, and consumer transportation

costs. In particular, we consider a grid for exit values of θEV ∈ {−3.0,−2.5, ..., 2.0}, for entry costs
of θEC ∈ {0, 0.2, ..., 2.0}, and for transportation costs of τ ∈ {0.0, 0.5, 1.0}. For each simulation
path we consider T = 15 time periods and we simulate R = 700 paths.

16To give an idea of the range of price cost margins associated with different values of ω, μ, and c, note that
with zero transportation costs the unique Nash-Bertrand equilibrium (see the proof of equilibrium uniqueness in the

appendix of chapter 7 in Anderson et al (1992)) is such that the equilibrium price cost margin m solves the nonlinear

equation:

m = μ
1 + I exp{(ω − c−m)/μ}

1 + (I − 1) exp{(ω − c−m)/μ}
With I = 2, ω = 1, μ = 0.25, and c = 1, the solution is m = 0.307, which is a 30.7% markup.
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4.2 Results

First, we analyze the effect of changes in exit values given three different values for the transporta-

tion cost parameter. We compute the MPE’s associated with the values of θEV ∈ {−3.0,−2.5, ..., 2.0}
and τ ∈ {0.0, 0.5, 1.0}. The value of the entry cost is held fixed at θEC = 1. Figure 3 displays

the average values of the spatial preemption index, the number of total stores, variable profits per

store, and markup, based on simulations from each equilibria.

FIGURE 3

MPE Features for Different Values of θEV and τ

For ranges of θEV where exit is very expensive (i.e., below −1), the preemption index is the
highest, as expected from the analysis in Judd (1985). In this case, entry into a submarket entails

commitment to that location, and the probability of exit is very small given the prohibitive exit

costs, as the top right panel shows the number of stores in equilibrium to be basically 4. The

preemptive motive declines steadily for the most part as exit costs decline (or exit values increase),

which is a sign of the link between exit costs and the pursuit of preemption in equilibrium. For

exit values greater than one, the preemption index is very small and this means that there is not

any dynamic-spatial link between the two submarkets. That is, with that level of the exit value,

spatial preemption is not a credible equilibrium strategy.

It is also interesting to note that the higher the transportation costs, the lower the preemptive

behavior in equilibrium. With τ = 0 and τ = 0.5 the two business locations are very close
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substitutes, and the strategic interaction across locations matters most, with firms attempting to

take the second location before the competitor does. With higher transportation costs (τ = 1), the

two submarkets become markets on their own, since the substitutability between the two locations

declines, and the equilibrium behavior in a local market is no longer so dependent on the market

structure in nearby local markets.

The upper right panel in figure 3 shows the number of stores. Very interestingly, the number

of stores declines with the exit value θEV . Note that a “partial equilibrium” analysis, that ignores

strategic interactions, would predict that the larger the exit value, the larger the number of stores.

However, once we include dynamic strategic interactions and the preemption motive, this prediction

does not hold. With a low exit value, firms show preemptive behavior and this leads to a large

number of stores in equilibrium. For high exit values, this is no longer true. Now, firms do not

have a preemptive motive and they end up having, on average, just one store each.

Next, we analyze the effect of changes in entry costs given three different values for τ . We

compute the MPE’s associated with the values of θEC ∈ {0, 0.2, ..., 2.0} and τ ∈ {0.0, 0.5, 1.0}.
The exit value is held fixed at θEV = 0, so that the level of entry costs are equivalent to sunk

costs. Figure 4 displays the equilibrium preemption index, number of total stores, variable profits

per store, and markup.

FIGURE 4

MPE Features for Different Values of θEV and τ
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The preemption index declines for entry costs between 0 and 1, but then it increases for values

above 1, especially for low values of transportation costs. Therefore the value of commitment to

a location, as parametrized by θEC , seems to increase the index when the substitutability among

stores is greater (lower τ), which is similar to the findings in figure 3 for exit values. In fact, the

level of commitment and sunk costs, as parametrized by either very negative values of θEV in figure

3 (as one moves towards the left of its panels), or high positive values of θEC in figure 4 (as one

moves towards the right of its panels), seem to dictate the market structure, conduct, and strategic

interaction in equilibrium. Moreover, the degree to which such commitment affects the equilibrium

behavior is accentuated by lower levels of transportation costs, since then the competition among

firms is fiercer and so are strategic interactions such as preemptive behavior.

5 Conclusion

This paper proposes a dynamic model of an oligopoly industry characterized by spatial competition

between multi-store firms. Firms compete in prices and decide where to open or close stores

depending on the spatial market structure. We define and characterize a Markov Perfect Equilibria

(MPE) in this model. Our framework is a useful tool to study multi-store competition issues that

involve spatial and dynamic considerations. An algorithm to compute an equilibrium of the model

is proposed. The algorithm exploits simulation techniques recently proposed in Rust (1997) and in

Bajari, Benkard, and Levin (2006). Its main idea is that when firms calculate the expected value

associated with a possible action, they do it by integrating only through the most likely paths

of future exogenous state variables. We illustrate the model and the algorithm with numerical

experiments that analyze how the propensity of multi-store firms to spatial preemptive behavior

depends on the magnitude of entry costs, exit value, and transportation costs. We find that

higher levels of commitment to a particular location, as parametrized by sunk costs, and higher

substitutability between locations, as parametrized by lower consumer transportation costs, entails

higher propensity by multi-store firms to engage in spatial preemption.

19



References

[1] Aguirregabiria, V. and Mira, P. (2006). “Sequential Estimation of Dynamic Discrete

Games,” Econometrica, forthcoming.

[2] Aguirregabiria, V. and Vicentini, G. (2006). “Software for the Computation of Markov

Perfect Equilibria in a Dynamic Model of Spatial Competition,” manuscript. Department of

Economics, Boston University.

[3] Anderson, S., De Palma, A. and Thisse, J.-F. (1992). “Discrete Choice Theory of

Product Differentiation,” Cambridge, MA: MIT Press.

[4] Bajari, P., Benkard, L., and Levin, J. (2006). “Estimating Dynamic Models of Imperfect

Competition,” Econometrica, forthcoming.

[5] Baker, J. (1997). “Product Differentiation Through Time and Space: Antitrust Policy Is-

sues,” FTC Antitrust Bulletin, Vol. 42, 177-196.

[6] Benkard, L. (2004). “A Dynamic Analysis of the Market for Wide-Bodied Commercial

Aircraft,” Review of Economic Studies, 71, 581-611.

[7] Berry, S. (1994). “Estimating Discrete Choice Models of Product Differentiation,” Rand

Journal of Economics, 25(2), 242-262.

[8] Berry, S., J. Levinsohn, and A. Pakes (1996). “Automobile Prices in Market Equilib-

rium,” Econometrica, 63(4), 841-890.

[9] Bonanno, G. (1987). “Location Choice, Product Proliferation and Entry Deter-

rance,”Review of Economic Studies, 54. 37-45.

[10] De Palma, A., Ginsburgh, V., Papageorgiou, Y., and Thisse, J.-F. (1985). “The

Principle of Minimum Differentiation Holds Under Sufficient Heterogeneity,” Econometrica,

53(4), 767-781.

[11] Doraszelski, U. and Satterthwaite, M. (2003). “Foundations of Markov-Perfect Industry

Dynamics: Existence, Purification, and Multiplicity,” working paper, Hoover Institution.

[12] Eaton, C. and Lipsey, R. (1975). “The Principle of Minimum Differentiation Reconsidered:

Some New Developments in the Theory of Spatial Competition,” Review of Economic Studies,

42(129), 27-50.

[13] Ellickson, P. and Beresteanu, A. (2005). “The Dynamics of Retail Oligopoly,” working

paper, Duke University.

20



[14] Ericson, R. and Pakes, A. (1995). “Markov-Perfect Industry Dynamics: A Framework for

Empirical Work,” Review of Economic Studies, 62, 53-82.

[15] Gowrisankaran, G. (1999). “A Dynamic Model of Endogenous Horizontal Mergers,” RAND

Journal of Economics, 30, 56-83.

[16] Hay, D. A. (1976). “Sequential Entry and Entry-Deterring Strategies in Spatial Competi-

tion,” Oxford Economic Papers, 28(2), 240-257.

[17] Hollander, S. and Omura, G. (1989). “Chain Store Developments and Their Political,

Strategic, and Social Interdependencies,” Journal of Retailing, 65(3), 299-325.

[18] Holmes, T. (2006). “The Diffusion of Wal-Mart and Economies of Density,” manuscript.

Department of Economics, University of Minnesota.

[19] Hotelling, H. (1929). “Stability in Competition,” Economic Journal, 39, 41-57.

[20] Judd, K. (1983). “Credible Spatial Preemption,” discussion paper # 577, The Center for

Mathematical Studies in Economics and Management Science, Northwestern University.

[21] Judd, K. (1985). “Credible Spatial Preemption,” Rand Journal of Economics, 16, 153-166.

[22] Judd, K. (1998). “Numerical Methods in Economics,” The MIT Press. Cambridge, Massa-

chusetts.

[23] Lane, W. J. (1980). “Product Differentiation in a Market with Endogeneous Sequential

Entry,” The BELL Journal of Economics, 11(1), 237-260.

[24] Markowitz, S. (2003). “Rolling vs. Melting: The Snowball-Effect in a Dynamic Oligopoly

Model with Network Externalities,” mimeo, Tel-Aviv University.

[25] Neven, D.J. (1987). “Endogenous sequential entry in a spatial model,” International Journal

of Industrial Organization, 5, 419-434.

[26] Pakes, A. and McGuire, P. (1994). “Computing Markov-Perfect Nash Equilibria: Numer-

ical Implications of a Dynamic Differentiated Product Model,” Rand Journal of Economics,

25(4), 555-589.

[27] Prescott, E. C. and Visscher, M. (1977). “Sequential Location Among Firms with Fore-

sight,” Bell Journal of Economics, 8, 378-393.

[28] Rust, D. (1997). “Using Randomization to Break the Curse of Dimensionality,” Economet-

rica, 65, 487-516.

21



[29] Schmalensee, R. (1978). “Entry Deterrance in the Ready-to-Eat Breakfast Cereal Industry,”

Bell Journal of Economics, 9, 305-327.

[30] Tabuchi, T. (1994). “Two-stage two-dimensional spatial competition between two firms,”

Regional Science and Urban Economics, 24(2), 207-227.

[31] Vicentini, G. (2006). “Spatial Pre-Emption by Chain Retailers: An Empirical Investiga-

tion,” manuscript. Department of Economics. Boston University.

[32] Willig, R. (1991). “Merger Analysis, Industrial Organization Theory, and Merger Guide-

lines,” Brookings Papers on Economic Activity - Microeconomics, (1991), 281-332.

[33] West, D. (1981). “Testing for Market Preemption Using Sequential Location Data,” The

BELL Journal of Economics, 12(1), 129-143.

22



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Web Graphics Defaults)
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AharoniBold
    /AlleycatICG
    /AlleycatICG-Bold
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /Batang
    /BatangChe
    /BernhardModern-Roman
    /BlackadderITC-Regular
    /blex
    /blsy
    /BocaRatonICG
    /BocaRatonICG-Solid
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BradleyHandITC
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /ChiladaICG-Cuatro
    /ChiladaICG-Dos
    /ChiladaICG-Tres
    /ChiladaICG-Uno
    /Cmb10
    /Cmbsy10
    /Cmbx10
    /Cmbx12
    /Cmbx5
    /Cmbx6
    /Cmbx7
    /Cmbx8
    /Cmbx9
    /Cmbxsl10
    /Cmbxti10
    /Cmcsc10
    /Cmcsc8
    /Cmcsc9
    /Cmdunh10
    /Cmex10
    /Cmex7
    /Cmex8
    /Cmex9
    /Cmff10
    /Cmfi10
    /Cmfib8
    /Cminch
    /Cmitt10
    /Cmmi10
    /Cmmi12
    /Cmmi5
    /Cmmi6
    /Cmmi7
    /Cmmi8
    /Cmmi9
    /Cmmib10
    /Cmmib5
    /Cmmib6
    /Cmmib7
    /Cmmib8
    /Cmmib9
    /Cmmr10
    /Cmr10
    /Cmr12
    /Cmr17
    /Cmr5
    /Cmr6
    /Cmr7
    /Cmr8
    /Cmr9
    /Cmsl10
    /Cmsl12
    /Cmsl8
    /Cmsl9
    /Cmsltt10
    /Cmss10
    /Cmss12
    /Cmss17
    /Cmss8
    /Cmss9
    /Cmssbx10
    /Cmssdc10
    /Cmssi10
    /Cmssi12
    /Cmssi17
    /Cmssi8
    /Cmssi9
    /Cmssq8
    /Cmssqi8
    /Cmsy10
    /Cmsy5
    /Cmsy6
    /Cmsy7
    /Cmsy8
    /Cmsy9
    /Cmtcsc10
    /Cmtex10
    /Cmtex8
    /Cmtex9
    /Cmti10
    /Cmti12
    /Cmti7
    /Cmti8
    /Cmti9
    /Cmtt10
    /Cmtt12
    /Cmtt8
    /Cmtt9
    /Cmu10
    /Cmvtt10
    /ComicSansMS
    /ComicSansMS-Bold
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyOneAB
    /Copperplate-ThirtyThreeBC
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /CurlzMT
    /David-Bold
    /David-Reg
    /DavidTransparent
    /Dcb10
    /Dcbx10
    /Dcbxsl10
    /Dcbxti10
    /Dccsc10
    /Dcitt10
    /Dcr10
    /Dcsl10
    /Dcsltt10
    /Dcss10
    /Dcssbx10
    /Dcssi10
    /Dctcsc10
    /Dcti10
    /Dctt10
    /Dcu10
    /DecoturaICG
    /DecoturaICG-Inline
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /Dotum
    /DotumChe
    /EdwardianScriptITC
    /EngraversMT
    /EngraversMT-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /EstrangeloEdessa
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /Euex10
    /Eufb10
    /Eufb5
    /Eufb7
    /Eufm10
    /Eufm5
    /Eufm7
    /Eurb10
    /Eurb5
    /Eurb7
    /Eurm10
    /Eurm5
    /Eurm7
    /EurostileBold
    /EurostileRegular
    /Eusb10
    /Eusb5
    /Eusb7
    /Eusm10
    /Eusm5
    /Eusm7
    /FajitaICG-Mild
    /FajitaICG-Picante
    /FelixTitlingMT
    /Feybl10
    /Feybo10
    /Feybr10
    /Feyml10
    /Feymo10
    /Feymr10
    /FixedMiriamTransparent
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Condensed
    /FranklinGothic-Demi
    /FranklinGothic-DemiItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FranklinGothic-Roman
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Goudy
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Impact
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /JasmineUPC
    /JasmineUPC-Bold
    /JasmineUPC-BoldItalic
    /JasmineUPC-Italic
    /Kartika
    /KodchiangUPC
    /KodchiangUPC-Bold
    /KodchiangUPC-BoldItalic
    /KodchiangUPC-Italic
    /KristenITC-Regular
    /Lasy10
    /Lasy5
    /Lasy6
    /Lasy7
    /Lasy8
    /Lasy9
    /Lasyb10
    /Latha
    /Lcircle10
    /Lcirclew10
    /Lcmss8
    /Lcmssb8
    /Lcmssi8
    /LevenimMT
    /LevenimMTBold
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /Line10
    /Linew10
    /LitterboxICG
    /Logo10
    /Logo8
    /Logo9
    /Logobf10
    /Logosl10
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /MaiandraGD-DemiBold
    /MaiandraGD-Italic
    /MaiandraGD-Regular
    /Mangal-Regular
    /MatisseITC-Regular
    /MicrosoftSansSerif
    /MingLiU
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /MonotypeCorsiva
    /Msam10
    /Msam5
    /Msam6
    /Msam7
    /Msam8
    /Msam9
    /Msbm10
    /Msbm5
    /Msbm6
    /Msbm7
    /Msbm8
    /Msbm9
    /MS-Gothic
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MS-UIGothic
    /MT-Extra
    /MVBoli
    /Myriad-BdWeb
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-CnItWeb
    /Myriad-CnWeb
    /Myriad-Italic
    /Myriad-ItWeb
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Regular
    /Myriad-Roman
    /Myriad-Web
    /Narkisim
    /NSimSun
    /NuptialScript
    /OCRA
    /PaisleyICG-01
    /PaisleyICG-01Alt
    /PaisleyICG-02
    /PaisleyICG-02Alt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /ParkAvenue
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PMingLiU
    /PrestigeElite-Bold
    /PrestigeElite-BoldSlanted
    /Raavi
    /rblmi
    /Rockwell-ExtraBold
    /Rod
    /RodTransparent
    /SaturdaySansICG
    /SaturdaySansICG-Bold
    /Shruti
    /SimHei
    /SimSun
    /Stencil
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Tci1
    /Tci1Bold
    /Tci1BoldItalic
    /Tci1Italic
    /Tci2
    /Tci2Bold
    /Tci2BoldItalic
    /Tci2Italic
    /Tci3
    /Tci3Bold
    /Tci3BoldItalic
    /Tci3Italic
    /Tci4
    /Tci4Bold
    /Tci4BoldItalic
    /Tci4Italic
    /Tekton-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trajan-Bold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /UltraCondensedSansOne
    /UltraCondensedSansTwo
    /Umb10
    /Umbx10
    /Umbxsl10
    /Umbxti10
    /Umitt10
    /Umr10
    /Umsltt10
    /Umti10
    /Umtt10
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vivaldii
    /Vrinda
    /Webdings
    /WhimsyICG
    /WhimsyICG-Bold
    /WhimsyICG-Heavy
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WontonICG
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 400
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth 8
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


