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Abstract

This paper provides a tractable search model with divisible money that encompasses the

two frameworks currently used in the literature. Individuals belong to many villages. Inside

a village, individuals know each other so financial contracts are feasible. Money is essential

to facilitate trade across villages. When financial markets inside a village are complete, the

model generalizes the framework advanced by Lagos and Wright (2005) without having

to assume quasi-linear preferences. Likewise, complete financial markets in each village

substitutes for the representative household in the framework advanced by Shi (1997). The

paper describes sets of financial arrangements that complete the markets inside the villages.

In general, these financial arrangements include a combination of credit and insurance.

However, if individuals choose period by period the trading role they play outside their

village, then under some parametric restrictions either a lottery or a risk-free bond market

are sufficient.

Keywords: monetary search, divisible money.

JEL: E40.
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1 Introduction

Monetary search models have provided rich insights on the foundations of money, and they

have become the dominant paradigm in this field of economics. To facilitate tractability,

early monetary search models made strong assumptions on the properties of money

(indivisibility and limited storage capacity). These strong assumptions prevented the study

of many interesting issues such as inflation. Thanks to the work of Shi (1997) and Lagos and

Wright (2005), we have now two distinct frameworks that yield tractable monetary search

models with divisible money. Both frameworks use a trick to obtain a tractable distribution

of money balances. In the case of Shi, the trick is the assumption that individuals belong

to large households. In the case of Lagos and Wright, the trick is the assumption that

utility is linear on a good traded in a competitive market. The present paper introduces a

framework that encompasses those advanced by Shi (1997), and Lagos and Wright (2005).

In the model of this paper, individuals belong to villages.1 Each village contains a large

number of individuals, but it is only a small part of the global economy. In a village,

individuals are not altruistic as in a household, but they know their neighbors. Therefore,

financial contracts such as insurance and credit are feasible among individuals of the same

village. Despite the existence of financial contracts inside the village, money is still essential

to facilitate trade with anonymous individuals from other villages. This model captures

in a simple fashion that in our daily economic interactions sometimes we deal with well

identified and easy to trace individuals and sometimes we deal with relative strangers that

can easily disappear from our lives.

If the set of financial markets inside the villages is complete (all individuals share the

same marginal rates of substitution for all commodities traded there), then the financial

deals inside villages substitute for the representative household in Shi (1997) to attain

1 Jin and Temzelides (2004) advance also a random search model with villages to generate equilibria

where money is used in some exchanges while credit is used in some others. However, they do not

attempt to use villages to make tractable the divisibility of money. In their model, both money and

goods are indivisible, and credit is a gift giving equilibrium with trigger strategies.
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a simple distribution of money holdings. The idea that the large household construct

substitutes for financial markets goes, at least, as far back as Lucas (1990). The present

contribution takes seriously Lucas’ idea and fleshes out the mechanisms that arise in the

village to exhaust the gains from trade among villagers. There are several advantages to

design these mechanisms explicitly. Typically, the mechanisms are financial contracts which

are interesting on themselves. Moreover, by designing the financial contracts needed to

complete the market eliminates the ambiguity on the objectives of buyers and sellers when

they interact in a trade meeting. Finally, using numerical methods, one can in principle

relax the assumptions that are required to give rise to a complete set of financial markets

inside the village to find out how relevant they are to a particular issue.

At the same time, the complete set of financial markets inside the villages allows for

more general preferences than those assumed by Lagos and Wright (2005). In Lagos and

Wright, during the day individuals trade in a frictionless competitive market a good that

yields constant marginal utility (quasi-linear preferences), at night they trade anonymously

in frictional search markets. In the framework of this paper, we can add that during the

day individuals are able to trade financial instruments with their fellow villagers, but at

night these financial markets are closed because individuals are away from their village.

With quasi-linear preferences, the financial markets inside the villages are complete even

without any financial trades. As shown by Lagos and Wright (2005), during the day the

unbounded trades on the good with a constant marginal utility equalizes the marginal rates

of substitution for any pair of commodities among all people. In turn, this implies a simple

distribution of money holdings. With the village structure, quasi-linear preferences are not

a necessary assumption for this result. Financial arrangements can substitute for the trades

on the good that yields linear utility to obtain similar outcomes.

Relaxing the quasi-linearity of preferences is important for several reasons. Quasi-linear

preferences imply risk neutrality. Moreover, their usefulness in delivering a tractable

distribution of money holdings rest on the absence of liquidity constraints during the day.

Therefore, resting on these preferences to support tractability rules out most of the issues
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dealt in financial economics. Also, quasi-linear preferences rule out wealth effects on all

goods except for the one that yields constant marginal utility. This hinders the study of

many interesting issues in macroeconomics where wealth effects are important.

The main conclusions of the paper can be summarized as follows. As economists trained

in the basic theorems of welfare economics would expect, each village acts as a well defined

representative household when the set of financial markets inside the villages is complete.

What is more surprising is the type of instruments that in some instances are sufficient

to complete these financial markets. If the individuals choose endogenously their trading

role (buyer-seller) in the frictional night markets, then, under some parametric restrictions,

either a lottery or a risk-free bond are sufficient instruments to exhaust the gains from

financial trades inside the village. In general, the complete set of markets includes the

insurance of risks on trading opportunities.

The rest of the paper is organized as follows. The basic model of this paper is analyzed

in Section 2. This model uses credit and insurance to complete the financial markets inside

the villages. Section 3 provides the conditions for a simple lottery to substitute credit and

insurance as the instrument for achieving market completeness inside the villages. Section

4 discusses the robustness of the main results of the paper and concludes. An Appendix

collects the most technical parts of the proofs.

2 The Model

The economy is composed of a continuum of measure one of individuals. Individuals live

in a continuum of measure one of symmetric villages. Inside their village, individuals know

each other. Outside their village, individuals can easily hide their true identity, so they are

anonymous.

Time is discrete and the horizon is infinite. Each period consists of two subperiods:

day and night. During the day, all the individuals can produce and consume a general

nondurable good, which is traded competitively inside each village. Also during the day,
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individuals trade competitively with their fellow villagers a set of financial contracts to

be specified below. During the night, individuals trade nondurable goods specific to each

village. All individuals can produce the good from their own village. Moreover, they

all consume one specific good from another village. The specific good consumed differs

randomly across time and across villagers. This environment gives rise to potential gains

from trading outside the village of origin. At the same time, it precludes the possibility of

long term relationships between buyers and sellers from different villages. Finally, it avoids

that one individual can purchase outside goods for other fellow villagers.

At night, goods are traded in search markets where each individual is a price taker as in

the competitive equilibrium concept employed by Rocheteau and Wright (2003 and 2005).2

In the present environment, we can visualize this equilibrium concept as follows. Every

night, a market for each specific good (one for each village) opens. In every market there is

a Walrasian auctioneer that finds the competitive price that clears the market. All potential

traders must search for the appropriate market place of the good they want to buy or sell.

If successful, individuals are able to trade this good at the competitive price.

Individuals do not find by accident markets for which they do not search, so each

individual must decide during the day if they are going to search for the market that trades

the specific good from their own village, in which case the individual is going to be a seller,

or for the market that trades the specific good they would like to consume, in which case

the individual is going to be a buyer. For short, it is convenient to call the individuals that

choose the first option “sellers” and individuals that choose the second option “buyers.”

In the symmetric equilibrium we focus on, all markets for each specific good have the

same measures of buyers and sellers, and all markets clear at the same price. Therefore,

each one of these markets is representative of all the others. The probabilities that a buyer

and a seller are able to trade in this representative market are denoted respectively by

πb (θ) and πs (θ) , where θ is the measure of individuals that choose to be sellers in period t.

2 As Rocheteau and Wright acknowledge, this concept is closely related to the one used much earlier

by Lucas and Prescott (1974).
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(Throughout the paper time subscripts are omitted when they are not strictly necessary.)

Both functions πb and πs are continuously differentiable. The function πb is convex and

increasing, with terminal conditions: πb (0) = 0 and πb (1) = 1. The function πs is concave,

decreasing, πs (0) = 1, and πs (1) = 0. In bilateral matching, these functions must also

satisfy: (1− θ)πb (θ) = θπs (θ) . However, this restriction is not necessary for most results,

so it will only be imposed as an interesting special case.

Despite the competitive nature of all markets, there is a role for money in this model

because at night buyers are anonymous in the markets they trade and there is a lack of

double coincidence of wants.3 Money is an intrinsically useless, perfectly divisible, and

storable asset. The money supply grows at a constant gross rate γ : M+1 = γM , where M

is the aggregate quantity of money and subscript +1 denotes next period. New money is

injected via a lump-sum transfer to all individuals at the beginning of each day.

The objective of individuals is to maximize their expected lifetime utility: E
P∞

t=0 β
tUt.

The discount factor β belongs to the interval (1/2, 1) .4 The one period utility is equal to:

U = Ud (x, y) +EUn
¡
qb, qs

¢
, (1)

where x and y are respectively quantities consumed and produced of the general good, and

qb and qs are the quantities consumed or produced of specific goods. The expectation in

(1) is conditional on the information at the beginning of period t. The functions Ud and

Un are continuously differentiable, concave, increasing in x and qb, and decreasing in y and

qs. The maximum quantities an individual can produce, y and qs, are bounded. Finally,

Un (0, 0) = 0, and the standard Inada conditions for interior solutions apply. The discount

and money growth factors obey: γ > β.

A typical period proceeds as follows. During the day, individuals produce, trade, and

consume the general good in their village of origin. Also during the day, individuals trade

3 Levine (1991) provides an early discussion of this point. See also Kocherlakota (1998).

4 The restriction that β is greater than 1/2 implies that the real interest rate is lower than 1. This

restriction is important for the results of this section, but it is not for those in the next one.
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with their fellow villagers an array of financial securities to be described below and choose

the quantity of money to be held overnight. The optimal choices made during the day

depend on the choice of being a seller or a buyer at night. Therefore, it is optimal for the

individuals to make this choice prior to the other activities that take place during the day.

At night, individuals search for one of the markets trading specific goods. Sellers search

for the market trading the specific good of their own village. Buyers search for the market

trading the specific good they would like to consume. Individuals successful in finding the

market they are searching for trade money for goods at the competitive price. As a result

of these trades, sellers produce, buyers consume, and money changes hands from buyers to

sellers.

One of the objectives of the paper is to investigate alternative sets of financial securities

that complete the financial markets inside the villages (equate the intertemporal marginal

rates of substitution for the general good across all villagers.) At this point, it is assumed

that individuals can trade two type of instruments: credit and insurance. As it will be seen,

these instruments are sufficient to complete the financial markets inside the village. Later

on, the paper inquires for conditions that make one or both of these types of instruments

redundant. In so doing, the paper characterizes alternative informational requirements that

support equilibria with simple distributions of money holdings.

The credit instrument individuals can trade inside their village is a risk-free real bond.

This bond is a promise to deliver one unit of the general good next period at the price of

(1 + r)−1 general goods today. Individuals demand bonds in this model because in some

periods they accumulate wealth (while they are sellers), while other periods they spend

their wealth (while they are buyers). Also, individuals may use these bonds to self-insure.

The only informational requirement for the viability of this financial instrument is that the

issuers of these bonds are known and they can be punished upon default. These bonds

cannot be traded across villages because the buyers of these bonds would not know the

issuer.

In addition to credit, individuals can buy insurance in their village against the risks on
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trading opportunities at the night markets. Specifically, buyers can purchase a contract

for the delivery of µb general goods next morning contingent upon reaching the targeted

search market at night. To implement this contract, buyers must be able to prove that

they reached the market. This is clearly accomplished if all other fellow villagers can

observe this event. However, it can also be accomplished with less demanding informational

requirements. For example, it is sufficient if one can take the proverbial self-portrait holding

today’s newspaper with the targeted market in the background. Certainly, the requirement

that the buyer can provide such as proof is not logically incompatible with being anonymous

at night. Likewise, sellers can purchase a contract for the delivery of µs general goods

next morning contingent upon failing to meet the market where the specific village good

is traded. Again, the seller must be able to prove that such event occurred, which is not

incoherent with the anonymity required for money to be essential. For example, since all

sellers of the same village go to the same market, it is reasonable to assume that the list of

those who reached such a market and the list of those who did not is public knowledge in

the village. Even if sellers in that market are known by other sellers, this does not mean

that buyers cannot be anonymous, which is what makes money essential. The fair premia

to acquire the insurance contracts are respectively µbπb and µs (1− πs).5 For notational

ease, these premia are assumed to be payable next morning.

The paper focusses on symmetric, stationary, monetary competitive equilibria. In a

competitive equilibrium, individuals maximize utility taking as given the sequence of

prices of the following items: the general good, the specific goods, the real bonds, and the

insurance premia. They also take as given the lump-sum transfers from the government

and the aggregate fraction of individuals that choose to be sellers at night. The equilibrium

is monetary if money is valued. The equilibrium is stationary if the price of specific goods

relative to the price of the general good, p, the real quantity of money held by buyers in

terms of the general good, mb, and the fraction of individuals that choose to be sellers, θ,

are constant over time. The equilibrium is symmetric if these magnitudes are equal across

5 To avoid cumbersome expressions, the argument θ is dropped in πb (θ) and πs (θ).
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both villages and markets for specific goods.

In a stationary equilibrium, the nominal prices of the general good and the specific

goods must grow at the gross rate γ. Moreover, the real interest rate must be equal to

the subjective discount rate: r = β−1 − 1, otherwise consumption would grow or decline
over time. Therefore, to characterize an equilibrium we will proceed as follows. First, we

will characterize the behavior of individuals in a stationary environment with a constant

inflation rate and a real interest rate equal to the subjective discount rate. Then, we will

determine the relative price p and the measure of sellers θ that clear the markets for general

and specific goods.

2.1 The Behavior of Individuals

Consider an individual facing fair insurance and a constant vector (p, θ, γ, r) where

r = β−1 − 1. Early each day, the individual receives a monetary transfer which real value is
constant and equal to τ .

Prior to all trades, the individual chooses day by day the trading role to be performed

at night. This is a binary non-convex choice, in which the individual picks the alternative,

buyer or seller, that yields the highest utility. As a result, the value function V of the

individual at the beginning of each day obeys:

V (a) = max
©
V b (a) , V s (a)

ª
; (2)

where a is the wealth (in units of the general good), and V b and V s are the value functions

conditional on being, respectively, a buyer or a seller during the day.

To characterize the optimal plans of an individual as a buyer and as a seller, it is

convenient to start with the conditional optimal demands for money. In the environment

considered, the gross real rate of return on bonds is β−1. Meanwhile, the gross real rate of

return on money is γ−1 (the inverse of the gross inflation rate.) Therefore, the assumption

γ > β implies that bonds earn a higher return than money. As long as V is increasing (it

will be), it is never optimal for an individual to demand a dollar today that with certainty
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will not be spent tonight. Therefore, the demand for money of a seller is zero, while the

real demand for money of a buyer is mb = pqb, where qb is the quantity of specific goods

demanded at night if search is successful.

Conditional on being a buyer, the individual chooses the quantities of the general

good to be consumed xb and produced yb, the real demands for money mb and bonds

bb, and the insurance coverage µb. These choices must satisfy the budget constraint:

xb +mb + bb (1 + r)−1 = yb + a+ τ . Using mb = pqb, this constraint simplifies to:

xb + pqb + bb (1 + r)−1 = yb + a+ τ . (3)

The optimal plan for the individual as a buyer is represented by a vector (xb, yb, qb, bb, µb)

that solves the following maximization program:

V b(a) = max
©
Ud
¡
xb, yb

¢
+ πb

£
Un
¡
qb, 0

¢
+ βV

¡
ab1+1
¢¤
+
¡
1− πb

¢
βV

¡
ab0+1
¢ª

, (4)

subject to (3). The terms ab1t+1 and ab0t+1 denote the wealth next morning contingent on

succeeding to encounter a trading opportunity (superscript b1) or not (superscript b0).

Therefore,

ab0+1 = bb +mbγ−1 − µbπb, and (5)

ab1+1 = bb + µb
¡
1− πb

¢
. (6)

With probability πb, the individual is successful searching at night. In this case, the

individual consumes qb at night, and the wealth next period is given by (6). With

complementary probability, the individual fails to find the targeted market. As a result,

the individual consumes nothing at night, which yields zero utility. In this instance, the

wealth next period is (5). Analogously, conditional on being a seller the individual chooses

(xs, ys, qs, bs, µs) to solve:

V s(a) = max
©
Ud (xs, ys) + πs

£
Un (0, qs) + βV

¡
as1+1
¢¤
+ (1− πs)βV

¡
as0+1
¢ª

, (7)
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subject to the budget constraint

xs + bs (1 + r)−1 = ys + a+ τ . (8)

The terms ab1+1 and as0+1 denote, respectively, the wealth next morning if the individual finds

or not a trading opportunity. Therefore,

as0+1 = bst + µstπ
s, and (9)

as1+1 = bs + γ−1pqst − µs (1− πs) . (10)

In addition to all constraints specified above, the individual faces a No-Ponzi game

condition. That is, there is an endogenous lower bound on next period’s wealth to ensure

that the individual will be able to repay the amounts borrowed with probability one without

reliance to unbounded borrowing:

a+1 ≥ amin with probability one. (11)

In general, the wealth at the beginning of next period, a+1, is stochastic because it depends

not only on the buyer-seller choice but also on the random success of the night’s search.

The lower bound amin is equal to minus the present discounted value of the maximum

guaranteed income the individual can obtain as a seller.

The optimization program described in equations (3) to (11) can be characterized using

standard recursive methods. This is a convenient feature of this model, which is absent

with quasi-linear preferences and unbounded demands for the general good. A key step in

this characterization is the following properties about the value function:

Proposition 1: The value function V is continuously differentiable, increasing, and

concave. Furthermore, V is affine in an interval [a, a] ⊆ [amin,∞) :

V (a) = v0 + va, for a ∈ [a, a] ; (12)

where v0 and v are coefficients independent of wealth. The interval [a, a] is absorbing

in the sense that optimal behavior implies that if a ∈ [a, a] , then a+1 ∈ [a, a] with
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probability one.

The linear segment of V (12) is due to the daily endogenous choice of trading role by

each individual. Intuitively, if an individual is not rich enough to be a buyer forever and

not so poor to have to be a seller at perpetuity, then the individual will alternate between

being a buyer and a seller. As the individual does so, wealth does not affect the quantities

consumed or produced conditional on being a buyer or a seller. Instead, wealth affects how

often and how early the individual decides to be a buyer or a seller. Since utility is linear

on the times and the timing an individual gets the incremental expected utilities of being a

buyer or a seller for one period, the value function is linear.

The property that the interval [a, a] is absorbing simplifies the characterization of an

equilibrium dramatically. As long as all individuals have initial wealth in the interval [a, a] ,

as it will be assumed from now on, the behavior of all buyers and all sellers is independent

from their wealth. Therefore, the distribution of money holdings is easily characterized.

The proof of Proposition 1 is in the Appendix. The crucial step in this proof is presented

here. This step uses the Bellman’s equation (3) to (11) to define a mapping T from the

value function V for period t + 1 in the right hand sides of (4) and (7) onto the value

function for period t in the left hand side of (2), to be denoted for the rest of this proof TV .

As shown in the next few paragraphs, if V is increasing and concave, and it has the linear

segment (12), then, for a particular set of values of the coefficients v0, v, a, and a, TV is

also increasing and concave, and it has an identical linear segment to the one V has. Since

T is a contraction mapping (see the Appendix), the unique true value function must have

all these properties.

Consider an individual whose value function V for period t+ 1 is increasing and concave

with the linear segment (12). Because V is concave, it is an optimal plan at t to fully insure

risks on trading opportunities. Hence, it is optimal for the individual to purchase contracts

that satisfy: µb = γ−1pqb and µs = γ−1pqs. Furthermore, only plans with full insurance are

optimal if there is a positive probability that a+1 will lie on a strictly concave region of V.

With full insurance, a+1 is not stochastic. Let ab+1 and a
s
+1 be the respective wealths at t+1
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that the individual attains as a fully insured buyer or as a fully insured seller. If ab+1 lies in

the linear interval [a, a], then (12) and mb = pqb imply that the utility at t conditional on

being a buyer (4) is equal to:

V b (a) = Sb + βv0 + vτ + va; (13)

where Sb is the expected trade surplus of the individual as a buyer:

Sb = max
{xb,yb,qb}

·
Ud
¡
xb, yb

¢
+ πbUn

¡
qb, 0

¢
+ v

µ
yb − xb − pqb

πb + i

1 + i

¶¸
, (14)

and i ≡ (γ − β) /β = (1 + r) γ − 1 is the nominal rate of interest earned on bonds. Since Sb

is independent from a, the value function V b (a) has a linear segment with the same slope

as the one in V. Similarly, if as+1 ∈ [a, a] , the utility at t conditional on being a seller (7) is

V s (a) = Ss + βv0 + vτ + va; (15)

where Ss is the expected trade surplus of the individual as a seller:

Ss = max
{xs,ys,qs}

·
Ud (xs, ys) + πsUn (0, qs) + v

µ
ys − xs + pqs

πs

1 + i

¶¸
. (16)

Again, V s (a) has a linear segment with the same slope as V.

The optimal plan
¡
x∗b, y∗b, q∗b, x∗s, y∗s, q∗s

¢
that solves the maximization programs (14)

and (16) is characterized by the following set of first order conditions:

Ud
1

¡
x∗b, y∗b

¢
= Ud

2

¡
x∗b, y∗b

¢
= v,

Un
1

¡
q∗b, 0

¢
=

vp

1 + i

µ
1 +

i

πb

¶
, (17)

Ud
1 (x

∗s, y∗s) = Ud
2 (x

∗s, y∗s) = v, and

Un
2 (0, q

∗s) = − vp

1 + i
.

The properties of Ud and Un ensure that (17) has a unique solution, which is interior.

Moreover, the structure of the system of equations (17) implies that

y∗b = y∗s and x∗b = x∗s. (18)

14



Define the optimal net expenditure of a buyer and a seller at t respectively as:

z∗b = x∗b − y∗b − τ + pq∗b
πb + i

1 + i
, and (19)

z∗s = x∗s − y∗s − τ − pq∗s
πs

1 + i
. (20)

With these definitions, the flow budget constraint for an individual simplifies into

aj+1 = (1 + r) (a− z∗j) for j = b and s. Let
£
aj , aj

¤
be the interval of present wealth that

leads to aj+1 ∈ [a, a] next period for j = b and s. That is,
£
ab, ab

¤
and [as, as] are respectively

the linear segments in V b (a) and V s (b). Using the flow budget constraint, we obtain:

aj =
a

1 + r
+ z∗j, and aj =

a

1 + r
+ z∗j for j = b and s. (21)

Let the values of the coefficients v0, v, a, and a be implicitly defined by the following set

of equations:

a =
z∗b (1 + r)

r
, (22)

a =
z∗s (1 + r)

r
, (23)

v0 =
(S∗s + vτ) (1 + r)

r
, and (24)

S∗b = S∗s, (25)

where S∗b and S∗s are the optimized values of (14) and (16).6 With these coefficient values,

the linear segments of V b and V s lie on a common affine function as displayed in Figure 1.

In Figure 1, the value functions V s and V b have been displayed with linear intervals

with bounds that obey: as < ab < as < ab. These inequalities are implied by r ∈ (0, 1) ,
(18), (19), (20), and (21) to (23).7 Moreover, V b and V s cross only in the interval that

they share a common slope. This property is implied by the following argument. The

inequality z∗b > z∗s implies that ab+1 < as+1. Using the Envelope Theorem, the derivatives

6 The existence of a unique solution to this system of equations can be easily established using the

following facts: If v → 0, S∗b > S∗s. If v →∞, S∗b < S∗s. S∗b is decreasing with v. S∗s is increasing with v.

7 If β were lower than 0.5, then r > 1 and ab > as. As a result, the segment [a, a] is not absorbing and the proof fails.
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of V b and V s are respectively proportional to V 0(ab+1) and V 0(as+1). Hence, the concavity of

V combined with ab+1 < as+1 implies that V
b cannot be flatter than V s when evaluated at

the same wealth. Therefore, V b and V s can only cross once. This crossing must be in the

linear interval for the inequalities stated above to hold.

Figure 1 is useful to describe when an individual chooses to be a buyers or a seller. At

each level of wealth, the individual picks the trading role that brings maximum utility.

Therefore, the individual chooses to be a seller if a < ab. The individual is indifferent

between being a buyer and a seller if a ∈ £ab, as¤. Finally, the individual decides to be a
buyer if a > as. Given the definitions of

£
ab, ab

¤
and [as, as] , these choices imply that if

a ∈ [a, a] = £as, ab¤, then a+1 ∈ [a, a] . Therefore, [a, a] is absorbing. Moreover, TV (a) is
increasing and concave, and it has the same linear segment as V. As a result, the true value

function must have these properties.

2.2 Equilibrium

In a competitive equilibrium, the markets for the general good during the day and the

specific goods at night must clear. Therefore, the equilibrium relative price of specific and

general goods and the fraction of individuals choosing to be sellers (p and θ) are determined

by the following two market clearing conditions:

(1− θ) x∗b + θx∗s = (1− θ) y∗b + θy∗s, and (26)

(1− θ)πb (θ) q∗b = θπs (θ) q∗s. (27)

The lump-sum transfer must satisfy the government budget constraint:

τ =
¡
1− γ−1

¢
(1− θ) pq∗b. (28)

Formally, an equilibrium is an optimal plan
¡
x∗b, y∗b, q∗b, x∗s, y∗s, q∗s

¢
, a marginal value of

wealth (v) , and a triple (p, θ, τ) that satisfy (17), the equality of trading surpluses (25), the

market clearing conditions (26) and (27), and the government budget constraint (28).

The characterization of an equilibrium is greatly simplified by the fact that (18) and (26)
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imply x∗s = x∗b = y∗s = y∗b ≡ x∗. Using (17), these equalities imply that the equilibrium

value of x∗ is determined by

Ud
1 (x

∗, x∗) = Ud
2 (x

∗, x∗) . (29)

Consequently, consumption and production in the general goods market is independent

from monetary policy. Using this result, (17) and (25) simplify into

Un
1

¡
q∗b, 0

¢
−Un

2 (0, q
∗s)

= 1 +
i

πb (θ)
, and (30)

Un
¡
q∗b, 0

¢− Un
1

¡
q∗b, 0

¢
q∗b

Un (0, q∗s)− Un
2 (0, q

∗s) q∗s
=

πs (θ)

πb (θ)
. (31)

Hence, the equilibrium values of q∗b, q∗s, and θ are determined by (28), (30), and (31).

Most of the literature that follows the seminal contributions of Shi (1997) and Lagos and

Wright (2005) assume bilateral matching:

(1− θ) πb (θ) = θπs (θ) (32)

With bilateral matching, the market clearing condition (27) simplifies to q∗s = q∗b ≡ q∗.

Using this equality, equations (30), and (31) become equivalent to the equations that

define an equilibrium in Rocheteau and Wright (2003) without having assumed quasi-linear

preferences.

2.3 The Role of Insurance

In the equilibrium characterized above, all individuals have wealths in the linear interval of

the value function. Therefore, individuals, being locally risk neutral, are indifferent as to

whether or not they purchase insurance as long as their future respective wealths remain

inside the interval [a, a] with probability one. The role of insurance is to allow individuals to

insure against risks that would drive their future wealths into the strictly concave regions of

the value function. This role is essential if individuals cannot avoid these type of risks while

following optimal strategies. Otherwise, the insurance of trading risks is not an essential

financial instrument to complete the markets inside the villages. This subsection studies
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the conditions that make insurance essential or redundant.

Consider again the optimization problem of an individual whose value function V for

period t + 1 is increasing and concave with the linear segment (12). Define the mapping

T as in subsection 2.1 (except that now the individual has no access to insurance), so TV

is the value function for period t. The absence of insurance only matters for actions that

would lead the individual outside the interval [a, a] . Therefore, it only makes a difference in

the characterization of the bounds of the linear interval of TV .

In the absence of insurance, the optimal saving at t depends not only on the trading role

chosen but also on the outcome of the random search at night. Denoting with superscript 1

a successful search and with superscript 0 a failed search, the contingent net expenditures

as a seller and as a buyer are respectively:

z∗s1 = x∗s − y∗s − τ − pq∗s

1 + i
and z∗s0 = x∗s − y∗s − τ , and (33)

z∗b1 = x∗b − y∗b − τ + pq∗b and z∗b0 = x∗b − y∗b − τ +
i

1 + i
pq∗b. (34)

With these definitions, the flow budget constraint for the individual is ajk+1 =

(1 + r)
¡
a− z∗jk

¢
for j = b and s, and k = 0 and 1. Let

£
ab, ab

¤
be the interval that

contains the values of a with optimal strategies that lead to ab0+1, a
b1
+1 ∈ [a, a]. Graphically,£

ab, ab
¤
is the linear interval of V b (a). Since z∗b1 > z∗b0, the bounds ab and ab are implicitly

characterized by the following two equations:

a = (1 + r)
¡
ab − z∗b0

¢
and a = (1 + r)

¡
ab − z∗b1

¢
. (35)

Similarly, since z∗s1 < z∗s0, the bounds of the interval [as, as] which contains the values of a

with optimal strategies that lead to as0+1, a
s1
+1 ∈ [a, a] are characterized by

a = (1 + r)
¡
as − z∗s1

¢
and a = (1 + r)

¡
as − z∗s0

¢
. (36)

The values of the coefficients v0, v, a, and a that are candidates to generate a linear

interval in TV identical to that of V are implicitly defined by (24), (25), and the following
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two equations:

a =
z∗b1 (1 + r)

r
, and (37)

a =
z∗s1 (1 + r)

r
. (38)

With these coefficient values, the linear segments of V b and V s lie on a common affine

function as it happened with insurance. However, now two possible cases may arise. In the

first case, the intervals
£
ab, ab

¤
and [as, as] overlap in which case their union constitutes

[a, a] in TV. In this case, insurance is redundant because an individual with a ∈ [a, a] can
always pick an optimal strategy that leads to a+1 ∈ [a, a] without purchasing insurance.
In the second case, the intervals

£
ab, ab

¤
and [as, as] do not overlap so their union does

not generate [a, a] in TV . In this case, the conjecture that the true value function has a

linear interval cannot be validated. As a result, insurance is essential in the sense that their

existence strictly improves the well being of individuals.

To characterize when the intervals
£
ab, ab

¤
and [as, as] overlap, note that even without

insurance (18) holds, so z∗s1 > z∗b0 and z∗s0 < z∗b1. These inequalities together with (36)

imply as < ab and as < ab. Therefore, the intervals
£
ab, ab

¤
and [as, as] overlap if an only if

ab ≤ as. Using (35) to (38), this condition is equivalent to

z∗b0 + rz∗s1 ≥ z∗s0 + rz∗b1. (39)

Finally, using (18) and the definitions (33) and (34), (39) simplifies into condition (40) in

the following proposition:

Proposition 2: Consider the equilibrium allocation that solves the system of equations

(25) to (28). The insurance of trading risks is redundant to implement this equilibrium

if and only if parameter values are such that the following condition holds:

i ≥ r

1− r

µ
1 +

q∗s

q∗b

¶
. (40)

With bilateral matching, condition (40) can be further simplified because then q∗b = q∗s.
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Using this equality together with i ≡ (1 + r) γ − 1, we obtain the following corollary to
Proposition 2:

Corollary 1: With bilateral matching (32), the insurance of trading risks is redundant

if and only if the following condition holds:

γ ≥ 1

1− r
. (41)

The simplicity of Corollary 1 helps to provide intuition on Proposition 2. Consider an

equilibrium with a constant money supply (γ = 1 and τ = 0) . According to Corollary 1

this monetary policy makes insurance essential, so let us see why this is the case. In the

equilibrium with complete markets inside the village, individuals produce the quantity

of the general good that they consume day after day. In the absence of insurance, an

individual may fail to find a trading opportunity at night for an indefinite time. If this

happens, any positive holdings of bonds produces interest, so wealth accumulates above

any potential upper bound a. Similarly, if night trading opportunities are not realized, a

positive debt increases without bound, so wealth falls below any potential lower bound a.

Consequently, no credit can take place without incurring a positive probability of escaping

a potential interval [a, a] .

Conversely, if condition (41) holds, even if a buyer fails to be able to purchase the specific

good, the opportunity cost of holding money is sufficiently large to avoid wealth from

overtaking the value of a that satisfies (37). Similarly, the lump-sum transfers associated

with the growth of the money supply are sufficient to guarantee a minimum income to

sellers to avoid wealth falling below a in (38). Therefore, if (41) holds, there is a set of

optimal strategies for the individual that allows wealth to remain in the linear interval

forever, so insurance is redundant.

3 Financial Contracts versus Lotteries

The linearity of the value function found in the previous section is related to the derivation
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of quasi-linear preferences in the Rogerson (1988) model of indivisible labor. In both cases,

the linearity arises from a binary choice in the space of feasible policies. In the indivisible

labor literature, lotteries are commonly used to support equilibrium allocations.8 This

section shows that under certain conditions lotteries can play a similar role here. That

is, it shows that a fair lottery can substitute for credit and insurance to attain market

completeness inside the villages, even if these lotteries require no memory about personal

histories and no observability of trading opportunities.

Consider an environment identical to the one studied in the previous section except

that now individuals are anonymous both inside and outside their village. As a result,

individuals have no access to credit and insurance contracts. Instead, individuals can play a

fair lottery during the day. A lottery ticket delivers the same day δ goods with probability

ψ at the cost ψδ. As long as ψδ is paid, the individual is able to choose both δ and ψ

subject to the constraints δ ≥ 0 and ψ ∈ [0, 1] .
The optimal plans of a representative individual are characterized using similar recursive

methods to those of the previous section. Let V (a+1) be the value function at the beginning

of period t+ 1 and consider the optimal plans for period t. Conditional on being a buyer,

the utility of having wealth ã after playing the lottery is given by a value function V b (ã)

that satisfies:

V b(ã) = max
{xb,yb,qb}

©
Ud
¡
xb, yb

¢
+ πb

£
Un
¡
qb, 0

¢
+ βV

¡
ab1+1
¢¤
+
¡
1− πb

¢
βV

¡
ab0+1
¢ª

, (42)

subject to the flow budget constraints:

ab0+1 =
¡
ã+ τ + yb − xb

¢
γ−1, and (43)

ab1+1 =
¡
ã+ τ + yb − xb − pqb

¢
γ−1. (44)

8 See Rocheteau, Rupert, Shell, and Wright (2004) for a monetary search model that uses the indivisibility of labor to

motivate the quasi-linear preferences in a Lagos and Wright (2005) model.
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Analogously, conditional on being a seller, the value function V s(ã) satisfies:

V s(ã) = max
{xs,ys,qs}

©
Ud (xs, ys) + πs

£
Un (0, qs) + βV

¡
as1+1
¢¤
+ (1− πs)βV

¡
as0+1
¢ª

, (45)

subject to

as0+1 = (ã+ τ + ys − xs) γ−1, and (46)

as1+1 = (ã+ τ + ys − xs + pqst ) γ
−1. (47)

Since money is the only asset to carry wealth, the gross return of the unspent wealth

after the night market is equal to inverse of the inflation factor γ. Furthermore, since the

individual cannot hold negative amounts of wealth, the wealth at the beginning of next

period must obey:

a+1 ≥ 0. (48)

Depending on the trading role picked and the success or failure in finding a trading

opportunity, the wealth a+1 is equal to ab1+1, a
b0
+1, a

s1
+1, or a

b0
+1.

Each day, after the lottery has been played, the individual chooses the trading role to be

played at night. This binary choice implies that the utility of an individual prior to any

consumption-production activity but after the lottery has been played is given by:

Ṽ (ã) = max
©
V b(ã), V s(ã)

ª
. (49)

The individual can randomize initial wealth using the lottery. Therefore, the value function

TV (a) at the beginning of period t must satisfy:

TV (a) = max
{δ,ψ}

n
ψṼ [a+ δ (1− ψ)] + (1− ψ) Ṽ (a− ψδ)

o
, (50)

subject to ψ ∈ [0, 1] and δ ≥ 0. The wealth ã after the lottery outcome is stochastic. If

the individual wins the lottery, ã = a+ δ (1− ψ) . Otherwise, ã = a− ψδ. The true value

function V must obey the Bellman’s equation: V = TV .

The following proposition states the conditions for the lottery to complete the markets

inside the village. Also, it characterizes the value function in a stationary equilibrium in
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which this condition is satisfied.

Proposition 3: Let
¡
x∗b, y∗b, q∗b, x∗s, y∗s, q∗s, v, p, θ, τ

¢
be a monetary equilibrium

vector of the model in Section 2, so it solves (25) to (28). Define

z̄b = x∗b − y∗b − τ + pq∗b, and z̄s = x∗s − y∗s − τ . (51)

If the following inequalities are satisfied:

pγ−1max
©
q∗b, q∗s

ª ≤ z̄b, z̄s ≤ 0, (52)

then the following statements hold in a monetary equilibrium with lotteries:

1 - The lottery supports
¡
x∗b, y∗b, q∗b, x∗s, y∗s, q∗s, v, p, θ, τ

¢
as an equilibrium, so the

markets inside the village are complete without credit and insurance.

2 - The value function V (a) is continuously differentiable, increasing, and concave.

Moreover, V (a) is affine in the interval
£
0, z̄b

¤
with slope v and intercept (24).

The linear segment of V comes now from the randomization of wealth at the beginning of

a period. This randomization convexifies the binary choice of trading role to be performed

at night. Intuitively, inside the linear segment, higher wealth allows the individual to

purchase lottery tickets with a higher probability of winning. Therefore, wealth changes

the probabilities of being a buyer or a seller, but conditional on a particular trading role

individuals consume and produce quantities that are independent from their initial wealth.

With expected utility preferences, utility is linear on these probabilities, so V is an affine

function of wealth in the interval
£
0, z̄b

¤
.

The proof of Proposition 3 is in the Appendix. The crucial step of this proof is

summarized here and illustrated in Figure 2. Consider an individual whose value function

V for period t+ 1 is increasing and concave. Conditional on being a buyer or a seller, the

individual is maximizing a concave objective subject to a convex set of feasible policies.

Moreover, the set of feasible policies unambiguously expands with ã. Therefore, the value

functions V b (ã) and V s (ã) are increasing and concave as it is depicted by the thin lines
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in Figure 2. In general, the value function Ṽ (ã) , defined as the maximum of V b (ã) and

V s (ã) , is not concave (see Figure 2). However, the individual has an incentive to gamble

the initial wealth a to avoid the values of ã that lie in the regions where Ṽ is not concave.

In Figure 2, an individual with a inside the interval
£
z̄s, z̄b

¤
has an incentive to gamble

a− z̄s of the initial wealth to buy a lottery ticket with payout z̄b − z̄s0. As a result of this

gamble, the individual attains ã = z̄b with probability (a− z̄s) /
¡
z̄b − z̄s

¢
, and ã = z̄s with

complementary probability. The expected utility of the gamble is the straight line tangent

to V b and V s, which lies above Ṽ . The value function TV for period t (thick line in Figure

2) is the concave hull of Ṽ . Therefore, TV is increasing and concave. Furthermore, as

long as V b and V s cross (as it is implied by the premises of Proposition 3), it has a linear

segment.

In Proposition 3, we need to impose condition (52) to ensure that the interval of wealth

for which the value function is linear is absorbing. With bilateral matching, condition (52)

simplifies neatly to a restriction on the rates of growth of the money supply. This restriction

is stated in the following corollary.

Corollary 2: With bilateral matching (32), in a stationary monetary equilibrium a

fair lottery substitutes for credit and insurance of trading risks to complete the markets

inside the village if the net rate of growth of the money supply is not negative, so

γ ≥ 1. (53)

As in the previous section, the first order conditions (17) and equilibrium in the goods

market (26) imply x∗s = x∗b = y∗s = y∗b. In addition, bilateral matching implies q∗b = q∗s.

Consequently, the equalities in (51) simplify to z̄s = −τ , and z̄b = pq∗b− τ . These equalities

together with the government budget constraint (28), imply that (53) is equivalent to (52).

The intuition why condition (53) is needed for the lottery to achieve market completeness

inside the villages is the following. Individuals use the lottery to gamble in such a way that

if they win they finish the day with the money balances needed to pay the night purchases
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of a successful buyer, and if they loose they finish the day with zero money balances. With

deflation (γ < 1) the monetary transfer is negative (it is a lump-sum tax). Therefore,

individuals that start the day with zero wealth (successful buyers and frustrated sellers)

cannot afford any lottery gamble that delivers at least the wealth necessary to pay the

lump-sum tax that finances the deflation while maintaining x∗b = y∗b or x∗s = y∗s. These

individuals have to break one of these equalities to finance the lump-sum tax. In doing so,

they break the condition for the markets inside the village to be complete.9

4 Discussion

The analysis of the preceding sections shows that complete financial markets in each village

support an equilibrium with simple distributions of money holdings. In this sense, complete

financial markets substitutes for the representative household in the framework advanced

by Shi (1997) and for the quasi-linear preferences in the framework advanced by Lagos and

Wright (2005). Moreover, with the assumptions made so far, individuals have an absorbing

linear segment in their value functions. This linearity is convenient not only to characterize

an equilibrium, but also to provide mild conditions under which either a lottery or a

risk-free bond are sufficient to achieve market completeness inside a village. This section

discusses the generality of these results.

An endogenous buyer-seller choice at the beginning of each day is crucial for the

individuals to have a linear segment in their value function. However, the endogenous

buyer-seller choice is not needed to have market completeness inside the villages. For

example, if exogenously some individuals (buyers) are capable of consuming at night but

not producing, while other individuals (sellers) have the complementary abilities, then

the insurance of trading risks leads to the equality of the intertemporal marginal rates of

substitution for the general good. As a result, an equalitarian distribution of wealth is

9 This outcome is reminiscent to Bewley’s (1983) difficulty of deflationary policies although it does

not hinge on the existence or not of a well defined equilibrium.
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perpetuated indefinitely. Hence, the distribution of money holdings is easy to characterize.

To support an equilibrium in this variation of the model, insurance is always essential. That

is, neither credit nor lotteries can substitute for insurance to achieve market completeness

inside the villages.

The frameworks introduced by Shi (1997) and Lagos and Wright (2005) are applicable

to a wide variety of equilibrium concepts. For example, Rocheteau and Wright (2005)

show how the Lagos and Wright framework can be adapted to three alternative ways of

determining the terms of trade in the frictional markets that use money as the medium of

exchange: generalized Nash bargaining, Walrasian competition, and competitive search.

This paper assumes Walrasian competition because it is the simplest and most widely used

equilibrium concept in economics. However, the key results summarized in Propositions

1 to 3 are applicable to the other equilibrium concepts used by Rocheteau and Wright

(2005) with the following qualifications. First, the concavity of the value function is harder

to prove in non-Walrasian environments. In particular, with generalized Nash bargaining

the conditions on first principles that ensure the concavity of value functions are quite

restrictive. This technical problem is well discussed in Lagos and Wright (2005) and their

discussion applies to the framework of this paper. Second, insurance contracts may be

more complicated in non-Walrasian environments. Again, generalized Nash bargaining

offers special difficulties in this respect because the outcome of bargaining depends on

the reservation utilities of potential traders. To calculate these reservation utilities, we

have to allow for the possibility that bargaining in a trade meeting breaks down. Once

this possibility is introduced, if the value function is strictly concave, individuals have an

incentive to insure not only trading opportunities but also the outcome of bargaining. To

accomplish this, insurance contracts have to specify the details of bargaining strategies.

This raises the issue of how these contracts can be enforced if trades occur in decentralized

markets. This difficulty does not appear either with an endogenous buyer-seller choice

(individuals are locally risk neutral so they have not incentive to insure the outcome of

bargaining) or with competitive search.
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Appendix

Proof of Proposition 1

Let C (a) be the space of bounded and continuous functions f : [amin,∞)→ R with the

sup norm. Use the Bellman’s equation implied by (3) to (11) to define the mapping T of

C (a) onto itself by substituting f for V in the right hand sides of (4) and (7) and denoting

as Tf(a) the left hand side of (2). For a given a, the set of feasible policies is non-empty,

compact-valued, and continuous. The utility function U is bounded and continuous on the

set of feasible policies, and 0 < β < 1. Therefore, Theorem 4.6 in Stokey and Lucas with

Prescott (1989) implies that there is a unique fixed point to the mapping T, which is the

value function V.

Let V (a) be the subset of functions in C (a) that are increasing, concave, and with the
linear segment (12). Consider again the mapping T defined in the previous paragraph. The

argument following Proposition 1 in the main text shows that if the coefficients v0, v, a,

and a have the values specified in (22) to (24) with z∗j and S∗j for j = b and s consistent

with (17), T maps V (a) onto itself. Therefore, since T is a contraction mapping and V (a)
is closed, V satisfies the properties of Proposition 1 with the coefficients specified by (22)

to (24). With the Inada conditions assumed on U, the choices of the individual are interior,

so V is continuously differentiable¥
Proof of Proposition 3

Using the mapping T defined by (42) to (50), construct a sequence of value functions V0,

V1, ... that satisfy: Vn = TVn−1 for n = 1, 2, ... Since money is the only asset and money

holdings cannot be negative the domain of these functions is [0,∞) .
Let V0 be the affine value function V0(a) = v0 + va, where v0 and v are the values that

solve (24) to (28). Conditional on being a buyer or a seller, the value functions that map

wealth ã after playing the lottery onto utilities are:

V b (ã) = max
{xb,yb,qb}

Ud
¡
xb, yb

¢
+ πbUn

¡
qb, 0

¢
+ βv0 + βvγ−1

¡
ã+ yb + τ − xb − πbpqb

¢
, (54)
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subject to

ã+ yb + τ ≥ xb + pqb; and (55)

V s (ã) = max
{xs,ys,qs}

Ud (xs, ys) + πsUn (0, qs) + βv0 + βvγ−1 (ã+ ys + τ − xs + πspqs) , (56)

subject to

ã+ ys + τ ≥ xs. (57)

The timing of events allows the wealth ã to be negative, in which case the individual

gambles part of the net earnings made during the day in the lottery. Therefore, the domain

of V b and V s is [−ȳ − τ ,∞), where ȳ is the maximum possible production during the

day. In the domain of V b and V s, the programs (54) to (57) maximize a continuously

differentiable, increasing, and concave objective on a non-empty and convex set of policies.

Therefore, the solutions to (54) to (57) are unique, and the value functions V b and V s

are well defined, increasing, and concave. With the Inada conditions assumed on U,

the non-negativity constraints on xb, yb, and qb are not binding, so V b and V s are also

continuously differentiable.

The conditions that characterize the buyer’s maximization program (54)-(55) are:

U1
¡
xb, yb

¢
= λ+ βvγ−1,

U2
¡
xb, yb

¢
= − ¡λ+ βvγ−1

¢
, and (58)

πbU1
¡
qb, 0

¢
=

¡
λ+ βvγ−1πb

¢
p;

where λ is the Lagrange multiplier associated with (55). If this multiplier is equal to

v − βvγ−1, the first order conditions (58) are identical to (17). So for λ = v − βvγ−1,

the solution to (58) is
¡
x∗b, y∗b, q∗b

¢
. With this solution, the constraint (55) holds with

equality if ã = z̄b (see [51]). Therefore, for ã = z̄b the unique solution to (54)-(55) is¡
x∗b, y∗b, q∗b

¢
. Using the Envelope Theorem, the marginal value of wealth at ã = z̄b is

V b
a

¡
z̄b
¢
= λ + βvγ−1 = v. Moreover, the concavity of V b implies V b

a (ã) ≤ v if ã ≥ z̄b,

and V b
a (ã) ≥ v if ã ≤ z̄b. An analogous treatment to the seller’s maximization program
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(56)-(55) yields the following results. At ã = z̄s, the optimal choice is (x∗s, y∗s, q∗s) . If

ã ≥ z̄s, then V s
a (ã) ≤ v. If ã ≤ z̄s, then V s

a (ã) ≥ v. Since the solution of (54)-(55) for ã = z̄b

is
¡
x∗b, y∗b, q∗b

¢
and the solution of (56)-(55) for ã = z̄s is (x∗s, y∗s, q∗s) , using (25) and (51),

we obtain:

V b
¡
z̄b
¢− V s (z̄s) = v

¡
z̄b − z̄s

¢
. (59)

Furthermore, at z̄s the individual replicates the same consumption and production as with

credit and insurance, and the relevant portion of next period’s value function and wealth

are the same. Therefore, V s (z̄s) = v0 + vz̄s.

Figure 2 uses the properties derived in the previous paragraph to display V b and V s.

In Figure 2, V b and V s are continuously differentiable, increasing, and concave functions.

The slopes of these functions must satisfy: V b
a

¡
z̄b
¢
= V s

a (z̄
s) = v. Furthermore, the linear

segment that connects V b
¡
z̄b
¢
and V s (z̄s) must also have slope v. For a given wealth ã after

the lottery is played, the individual picks the trading role that brings maximum utility. In

Figure 2, the individual chooses to be a buyer for ã > â and to be a seller for ã < â. The

individual is indifferent between the two roles at ã = â. Therefore, utility of the individual

after the lottery is given by the function: Ṽ (ã) = max
©
V b (ã) , V s (ã)

ª
.

Consider now the optimal lottery gamble of an individual with initial wealth a . As

long as the probability ψ is between zero and one, the individual can use the lottery to

randomize between any two values of ã : ã0 and ã1. The respective probabilities of these

two outcomes are: (a− ã0) / (ã1 − ã0) and (ã1 − a) / (ã1 − ã0) . The condition ψ ∈ [0, 1]
is equivalent to a ∈ [ã0, ã1] . Graphically, the utility achieved from this gamble is given

by the vertical distance from the horizontal axis to the straight segment connecting the

utilities achieved with the two possible outcomes of ã. It is clear from observing Figure 2

that the optimal gamble for an individual with a ∈ £z̄s, z̄b¤ is two pick ã0 = z̄s and ã1 = z̄b.

Algebraically, the same result is attained from the first order conditions of problem (50).

The utility of the individual prior playing the lottery is given by V1 (a) = TV0 (a) ,

which graph is the convex-hull of the graph of Ṽ (a) . The value function V1 is continuously

differentiable, increasing, and concave. Furthermore, in the interval comprised between z̄s
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and z̄b the function V1 is affine with the same coefficients v0 and v as V0. The behavior of

an individual whose value function for next period is V1 is identical to the behavior just

described for an individual whose value function is V0 as long as the next period wealth

under the actions described is in the affine interval with slope v. Condition (52) ensures

that this is the case. That is, if the individual is a failed buyer or a successful seller ends up

with real wealth pγ−1q∗b, and pγ−1q∗s respectively. These values cannot be greater than z̄b.

If the individual is a successful buyer or a failed seller ends up with zero real wealth, so z̄s

cannot be greater than zero. For initial wealths outside the interval comprised between z̄s

and z̄b, the concavity of V1 implies that V1 (a) ≤ V0 (a) .

The same arguments apply to all members of the sequence of value functions V0, V1, ...

As long as (52) is satisfied, all these functions are increasing and concave with an identical

affine interval
£
0, z̄b

¤
. The monotonicity of T implies Vn (a) ≤ Vn−1 (a) for all n = 1, 2, ...

Moreover, all these functions are bounded below by zero. Therefore, they must converge

point-wise to a function V, which is a fixed point of T. (If U is bounded on the set of

feasible policies, T is a contraction and so the convergence must be uniform to the unique

fixed point of T .) The fixed point V must be increasing and concave with the same affine

interval
£
0, z̄b

¤
as all members of the sequence. Since V is concave and U is differentiable,

the function V must be continuously differentiable because the Inada conditions on U

imply that the consumption and production choices are interior (non-negative). The first

statement in Proposition 3 has been proved above given that the optimal policies with

terminal value functions V0 and V coincide¥
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