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Abstract
We study the effects of inflation in a competitive search model where each

buyer’s utility is private information, and money is essential. The equilibrium is
efficient at the Friedman rule, but inflation creates an inefficiency in the terms of
trade. Buyers experience a preference shock after they are matched with a seller,
and thus they have a precautionary motive for holding money. Sellers, who compete
to attract buyers, post non-linear price schedules. As inflation rises, sellers post rela-
tively flat price schedules, which reduce the need for precautionary balances. These
price schedules induce buyers with a low desire to consume to purchase inefficiently
high quantities because of the low marginal cost of purchasing goods. In contrast,
buyers with a high desire to consume purchase inefficiently low quantities as they
face binding liquidity constraints. The model fits historical US data on velocity and
interest rates.
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1 Introduction
Since the seminal work of Kiyotaki and Wright (1989, 1991), monetary search
models have become the dominant paradigm in monetary theory. The central as-
sumption in these models is that trade is bilateral and anonymous, and enforcement
is limited. Since a double coincidence of wants is rare in bilateral trade, this implies
that money is essential in facilitating transactions.1 Another important assumption
in these models is that the terms of trade are determined through bargaining under
full information. We think that there is a tension between these two assumptions:
on the one hand, trade is modelled as anonymous and, on the other hand, the traders
perfectly observe each others’ preferences.
In this paper, we propose an alternative environment that avoids this tension.

The key features of this environment are as follows. First, we maintain the cen-
tral assumption that the trading process is decentralized and anonymous, and en-
forcement is limited, so money plays an essential role in facilitating transactions.
Second, buyers have heterogeneous valuations for the sellers’ goods. Specifically,
due to a random component of the search process, buyers sometimes find goods
that have high value for them, while at other times they find goods that they do not
value much. For instance, buyers’ valuations may depend on certain idiosyncratic
characteristics of the sellers’ product that can only be verified by visiting a store to
try on a pair of pants, for example, or taste specific items in a restaurant’s menu.
To capture this feature, we introduce a preference shock that hits buyers after they
have both decided the demand for money and been matched with a seller. Third,
buyers have private information about how much they value goods as a result of
the realization of the preference shock. Finally, the search process is competitive.
This means that, prior to matching, sellers post price offers that specify the terms
at which they commit to trade. Buyers then observe all the posted offers and direct
their search to the sellers who post the most attractive offer for them.2
The effects of inflation in our model are quite different from earlier monetary

search models. We show that inflation distorts individuals’ decisions by inducing
some of them to purchase and consume goods they would otherwise not consume.
These individuals make such inefficiently high purchases in order to spend their
money fast and avoid the inflation tax.
Preference shocks, their timing, and their privately observed nature are the fea-

1 The idea that the role for money arises from the difficulties of barter exchange goes back to
Jevons and other classical writers. Earlier formalizations of this old idea go back to Ostroy (1973),
who emphasizes that restrictions in terms of resources, information and enforcement that char-
acterize bilateral exchange. See also Kocherlakota (1998) and Wallace (2001).
2 The concept of competitive search with infinitesimal traders was introduced by Moen (1997)
and Shimer (1996) in the context of the labor market following up earlier work by Peters (1991)
and Montgomery (1991) with a finite number of traders. Recently, Rocheteau and Wright (2005)
introduced this concept in monetary search theory.



tures of the environment that are most crucial for our results. With these features
we seek to capture two characteristics typical of retail markets. The first one is
that buyers usually face uncertain expenditure needs. Since money is essential in
some transactions, this uncertainty implies that buyers have a precautionary mo-
tive for holding money. The second characteristic is that sellers face a potential
clientele of buyers with different valuations for the products they sell. This char-
acteristic is important because it allows sellers to use pricing schemes that involve
cross-subsidization among buyers with different valuations, so it is possible that in
equilibrium some buyers end up purchasing inefficiently high quantities. Because
sellers cannot observe the valuations of buyers in our model, their pricing schemes
are restricted to satisfy incentive-compatibility constraints. As is standard in the
mechanism-design literature, sellers use non-linear price schedules to screen out
different types of buyers.3 With constant returns in production, these price sched-
ules implicitly give quantity discounts to buyers. These discounts are common in
retail trade where we observe deals of the sort, “Pay for two and get three,” and
we observe packaging that reduces per-unit prices in large purchases (the larger the
pizza, the lower the price of a slice).
The intuition for the market distortions caused by inflation in our model is as

follows. With inflation, buyers have an incentive to reduce their money balances.
Sellers, who are aware of this and compete against each other to attract buyers, re-
act by posting price schedules that are flatter than the variable cost of production.
These price schedules are attractive for buyers because they reduce the variance of
payments and hence the need for precautionary money balances. Crucially, how-
ever, these price schedules also reduce the marginal cost of additional purchases.
As a result, buyers with low realizations of the preference shock end up consum-
ing inefficiently high quantities. Meanwhile, buyers with high realizations of the
preference shock consume inefficiently low quantities because they face binding
liquidity constraints. The overall effect of inflation is then to reallocate goods from
buyers with high marginal utilities to buyers with low marginal utilities, which is
clearly an inefficiency. A positive opportunity cost of holding money is crucial to
this argument. If there is no opportunity cost of holding money or, equivalently, if
individuals can avoid this cost completely using alternative means of payment such
as credit,4 the competitive search mechanism internalizes the search externalities.
In this case, sellers post price schedules that reflect the cost of production, so the

3 SeeMussa and Rosen (1978) andMaskin and Riley (1984) who analyze the problem of a monop-
olistic seller who faces no price competition.
4 In reality, buyers can use credit to reduce the need for precautionary balances. However, if
credit could be costlessly used in all transactions, the demand for money would disappear. Our
results are robust to credit being available for some transactions, but not for others. In a companion
paper (Faig and Jerez (2005b)), we consider a variant of the model along these lines.



first best is attained under the Friedman rule.5
The key positive result of our model is that the demand for money is interest

elastic. An increase in the nominal interest rate increases the opportunity cost of
holding money relative to other assets, so it has a negative impact on the demand for
money. In addition to this standard direct effect, there is an indirect general equi-
librium effect as the equilibrium price schedule adjusts and becomes flatter. This
price adjustment reduces the probability that buyers are left with unspent balances
each period. While the demand for money falls in equilibrium, the decrease is lower
because of the price adjustment. The combined effect is then that buyers hold lower
money balances and that money circulates faster. The model is able to fit historical
data from the United States on the velocity of the circulation of money and nomi-
nal interest rates, without generating counterfactual predictions on the composition
of GDP or the length of the payments period. With the estimated parameters, we
find that the welfare cost of inflation is approximately 0.5 per cent of GDP, which
matches the area below the predicted money demand curve.
The idea that inflation provides incentives to change trading arrangements in

order to avoid idle or precautionary money balances is also found in two recent
papers. In Faig and Huangfu (2006), inflation gives market-makers an incentive
to intermediate between buyers and sellers with the objective of eliminating idle
money balances. In Berentsen, Camera, and Waller (2005), inflation gives banks a
similar incentive to do such intermediation. In our model, there is no intermediation
between buyers and sellers from any third party. Instead, it is the pricing mechanism
that adjusts in order to reduce the need for idle money balances. Our model is also
related to that of Lagos and Rocheteau (2005) in which moderate inflation rates
induce buyers to search more intensively when search is competitive. Instead of
searching more intensively, here buyers avoid the inflation tax by buying larger
quantities each time they shop. In general, the consequences of inflation in our
model are quite different from these earlier models. In particular, the reallocation
of goods from individuals with high valuations to individuals with low valuations
is a novelty of our model.
As we have already noted, the key theoretic novelty of the paper is to introduce

private information over preferences in monetary search models. We follow our
treatment of private information in Faig and Jerez (2005a) where we study a com-
petitive search model of commerce in a non-monetary economy. The introduction
of private information both in monetary models and competitive search models is a
natural development which is gaining momentum. Williamson and Wright (1994),
Camera and Winkler (2002), Berentsen and Rocheteau (2004) and Ennis (2005) in-

5 That is, the incentive compatibility constraints do not bind. In general, the revelation of private
information creates welfare costs (see Faig and Jerez (2005a) for an example). In our model these
costs can be avoided because, in addition to the cost of production, sellers can charge a flat fee
to buyers which remunerates the cost of their labor.



troduce private information in monetary models, but they assume that the terms of
trade are determined through bargaining rather than through competitive search. In
particular, Ennis (2005) considers a similar monetary environment where buyers’
preferences are private information, but he assumes that sellers have all the bar-
gaining power. Shimer and Wright (2004), Moen and Rosen (2004), and Guerrieri
(2005) recently introduce private information in competitive search models of the
labor market.
In a related paper (Faig and Jerez (2005b)), we also argue that the precaution-

ary demand for money explains well the dynamics of the historical velocity of the
circulation of money in the United States. The model in that paper simplifies the
effect of inflation on the terms of trade, which we study here, by assuming that pref-
erence shocks are realized after buyers decide their demand for money but prior to
matching. With the different timing, sellers are able to post price offers that target
particular buyer types. In competitive search equilibrium, buyers are then sepa-
rated in different submarkets according to their type, so the possibility of cross-
subsidization emphasized here is eliminated.
The structure of the paper is as follows. Section 2 describes the environment,

which extends the framework of Lagos and Wright (2005) to allow for competitive
search and private information. Sections 3 and 4 characterize the competitive search
equilibrium with full and private information, respectively. Section 6 concludes.
The proofs are gathered in the Appendix.

2 The Environment
There is a continuum of ex-ante identical individuals with measure one. Time is
infinite and discrete. As in Lagos and Wright (2005), each period consists of two
subperiods, day and night, during which the market structure differs.
During the day, individuals produce and consume goods that are traded in Wal-

rasian markets, and at night individuals trade bilaterally in search markets. There is
another object, called money, which is intrinsically useless, perfectly divisible, and
storable. Units of money are called dollars. We assume that individuals can either
be buyers (consume) or sellers (produce) in the search night market, and that they
must choose their trading role at the start of each period. One may think, for exam-
ple, that buyers and sellers must perform distinct preparatory tasks during the day
in order to trade at night.6 The ex-ante choice of trading roles generates a simple
double-coincidence problem which makes money essential in the search market,
because buyers are anonymous and enforcement is limited.
The timing of a typical period is as follows. Early in the day, the government

hands out monetary transfers that increase the money supply. Individuals then de-

6 A similar choice is present in Rocheteau and Wright (2003) and Faig (2004) with slightly dif-
ferent motivations.



cide whether to be buyers or sellers during the night. Sellers publicly announce
offers specifying the terms at which they commit to trade at night. Walrasian mar-
kets open, and individuals consume, produce, and adjust their money balances. In
particular, buyers need to take money into the night in order to trade, while sellers
need no money. When night falls, Walrasian markets close, and the competitive
search market opens.
The key assumption in Lagos andWright’s paper (2005) is that agents have iden-

tical quasi-linear preferences over the goods traded in Walrasian markets. This as-
sumption is particularly useful because it implies that all individuals who choose to
be buyers in a given period enter the search market with identical money holdings.
(Individuals who choose to be sellers enter this market with no money). Therefore,
the distribution of money holdings in the search market is degenerate, which makes
the model analytically tractable and allows for simple closed-form solutions.7 The
day period instantaneous utility of an individual is

v(xt)− yt, (1)

where xt and yt are respectively consumption and production during the day. The
key assumption, as noted above, is that utility is linear on yt.
The night period instantaneous utility of an individual depends on the choice of

trading role. The utility of an individual who chooses to be a buyer in the night of
date t is

Ub(qt; εt) = εtu(qt), (2)
where qt is consumption at night. The key assumption here is that the utility from
consumption at night depends on an idiosyncratic match-specific preference shock
εt which is realized the moment the buyer is matched with a seller. Since buyers
decide their money demand before the realization of the shock, they have a precau-
tionary motive for holding money. The preference shock is uniformly distributed in
the interval [1, ε̄], independent across time, and drawn in such a way that the Law
of Large Numbers holds across individuals. The cumulative distribution function is
then

F (ε) = ϕ (ε− 1) , (3)
where ϕ represents the constant density: ϕ = (ε̄− 1)−1 . Similarly, the night period
payoff of an individual who chooses to be a seller is

Us(qt) = −c(qt), (4)

where c(qt) denotes the disutility from production at night.

7 Shi (1997) and Faig (2004) propose alternative frameworks that simplify the distribution of
money holdings. We use Lagos and Wright’s (2005) framework because it is simpler and may
be more intuitive. However, the results in this paper do not depend on the particular framework used.



Individuals seek to maximize their lifetime expected utility:

E
∞X
t=0

βt[v(xt)− yt + U j(t)], (5)

where β ∈ (0, 1) is the discount factor, and j(t) ∈ {b, s} is the trading role
chosen in the night of date t.8 We assume v, u and c are continuously differen-
tiable and strictly increasing, v and u are strictly concave, and c is convex, with
u(0) = c(0) = 0, and c0(0) < u0(0) = v0(0) = ∞. Also, there is a set of positive
numbers

n
x∗, {q∗ε}ε∈[1,ε̄]

o
such that v0(x∗) = 1 and εu0(q∗ε) = c0 (q∗ε).

The supply of money grows at a constant factor γ, so

Mt+1 = γMt, (6)

whereMt is the quantity of money per capita. Each day new money is injected via
a lump-sum transfer τ t common to all individuals:

τ t = (γ − 1)Mt. (7)

We shall restrict attention to policies that satisfy β < γ < β (1 + ε̄) /2. The condi-
tion β < γ ensures that there is a positive opportunity cost of holding money, and
the condition β (1 + ε̄) /2 ensures existence of the type of monetary equilibria we
analyze.9
To complete the description of the environment, we need to describe how the

terms of trade are determined in the night market. At night, goods are traded in
a competitive search market, as in Moen (1997) and Shimer (1996). Prior to the
search process, each seller simultaneously posts an offer that specifies the terms
at which they commit to trade. Specifically, an offer is a schedule {qtε, dtε}ε∈[1,ε̄]
specifying the quantity traded qtε and the total payment in dollars dtε conditional
on the realization of the buyers’ preference shock ε (the buyer’s type). Buyers then
observe all the posted offers and direct their search towards those sellers posting the
most attractive offer (possibly randomizing over offers for which they are indiffer-
ent). The set of sellers posting the same offer and the set of buyers directing their
search towards them form a submarket. In each submarket, buyers and sellers meet
randomly according to the matching function specified below. When a buyer and
a seller meet, the buyer has to either accept the offer {qtε, dtε}ε∈[1,ε̄] and commit to
8 For simplicity, we assume that there is no discount factor between day and the night.
9 In Section 4 we show that, if inflation is sufficiently high (γ > β (1 + ε̄) /2), the precautionary
demand for money disappears and all buyer types become liquidity constrained at night. In this
case, higher inflation reduces the purchases of all buyer types. Here, we focus on monetary equilibria
where the lower types are not liquidity constrained, and show that moderate increases in the inflation
rate increase the purchases of these types.



the terms it specifies (say, by making a downpayment), or abandon all trade. If the
offer is accepted, the preference shock ε is then realized and the buyer purchases
qtε units for dtε dollars.
To focus on the pricing issues we are interested in and to avoid unnecessary

complications, we assume that individuals experience at most one match and that
matching is efficient, meaning that the short-side of the market is always served in
each submarket. The probability that a buyer meets a suitable seller is then

πb (αt) = min (1, αt) , (8)

where αt is the ratio of sellers over buyers in the submarket the buyer chooses to
visit. Similarly, the probability that a seller meets a suitable buyer is

πs (αt) = min
¡
1, α−1t

¢
. (9)

All traders have rational expectations about the mass of buyers that will be attracted
by each offer, and hence about the trading probabilities in each submarket.

Table 1: Summary of Activities during a Period

DAY NIGHT
Walrasian market is open Search market is open

Monetary Buyer-seller Centralized Buyers Realization Bilateral
transfers choice. trade and choose preference trade

Sellers choice of among shock
post offers money offers

balances

A typical period proceeds as it is summarized in Table 1. Early in the day, the
government hands out monetary transfers that increase the money supply. Individ-
uals then decide whether to be buyers or sellers, and sellers post their offers for
the night market. Walrasian markets open, and individuals consume, produce, and
adjust their money balances. When night falls, Walrasian markets close, and the
competitive search market opens. Submarkets are formed as a result of the com-
petitive search process. When a buyer and a seller meet in a submarket, the buyer
chooses whether to accept or reject the offer. If the offer is accepted, the preference
shock is realized and the two agents trade according to the pre-specified terms of
trade. As a result of trade, sellers produce, buyers consume, and money changes
hands from buyers to sellers.
Our equilibrium concept combines perfect competition in the day markets with

competitive search at night. In equilibrium, individuals make optimal decisions
taking as given the sequence of prices in the Walrasian markets, and the sequence
of conditions in the competitive search market to be detailed below (essentially



the expected reservation surpluses of other traders). Individuals also have rational
expectations about how these prices and conditions evolve over time.

2.1 The Conditional Demand for Money
This section examines how individuals choose the demand for money in the day
market conditional on the submarkets to be visited at night. To this end, we ex-
amine the optimal consumption and production decisions during the day, and the
choice of trading roles to be performed at night. The next two sections show that all
individuals visit the same submarket in equilibrium and solve for the offer sellers
choose to post, and the equilibrium ratio of sellers over buyers.
LetW b

t (mt) and V b
t (mt) be the value functions of a buyer withmt dollars when

entering the day and the night markets, respectively. Similarly,W s
t (mt) and V s

t (mt)
are the corresponding value functions for the seller. Since individuals choose the
trading role that yields maximal utility, the value function of an individual withmt

dollars at the start of each period is

Wt (mt) = max
©
W b

t (mt) ,W
s
t (mt)

ª
. (10)

Let the price of the consumption good in theWalrasian daymarket be normalized
to 1 and denote the price of one unit of money in units of consumption in period t
by φt. In the Walrasian market, the individual solves

W j
t (mt) = max

xt,yt,m̂t≥0
{v(xt)− yt + V j

t (m̂t)}, (11)

subject to
xt + φtm̂t = yt + φt(mt + τ t), (12)

where j = b if he/she chooses to be a buyer and j = s if he/she chooses to be a
seller at night. Here, m̂t represents the amount of money the individual carries into
the search night market conditional on the occupational decision.10 Because utility
is quasi-linear, the budget constraint can be substituted into the objective function
(11), so that the problem simplifies to11

W j
t (mt) = max

xt,m̂t≥0
{v(xt)− xt − φt(m̂t −mt − τ t) + V j

t (m̂t)}, j = b, s. (13)

Thus, it follows that for both buyers and sellers (i) the optimal choice of xt is in-
dependent of mt with v0(xt) = 1, so xt = x∗; (ii) the optimal choice of m̂t is also
independent of mt, and maximizes V j

t (m̂) − φtm̂t; and (iii) the value functions

10 The choices of xt, yt, and m̂t are conditional on j, but we omit the superscript to ease notation.
11 One needs to check that the non-negativity constraint on yt is not binding. As in Lagos and
Wright (2005), one can derive conditions that guarantee this.



W j
t (mt) are linear inmt, with

W j
t (mt) =W j

t (0) + φtmt, j = b, s. (14)

Finally,
Wt(mt) = φtmt +max{W b

t (0),W
s
t (0)}. (15)

The intuition behind these results is simple. Quasi-linearity implies that the
marginal utility of money at the start of the period is constant and equal to φt for all
individuals. Since there are no wealth effects, no matter what their money holdings
are at the start of the period, all buyers choose to carry a quantity of money that
maximizes V b

t (m̂t)−φtm̂t. Similarly, all sellers choose m̂t to maximize V s
t (m̂t)−

φtm̂t.
The value functions of buyers and sellers at night depend on the submarket

they visit in equilibrium, and on the money holdings they take into this submar-
ket. For notational convenience we drop the dependence of the value functions
on the submarket. Equilibrium will force the value of all active submarkets to be
equal. A submarket is characterized by a ratio of sellers over buyers αt and an offer
{qtε, dtε}ε∈[1,ε̄]. Let χ(m̂t ≥ dtε) denote an indicator function which is equal to one
if m̂t ≥ dtε, and is zero otherwise. The Bellman equation for a buyer at night is

V b
t (m̂t) = πb(αt)

Z ε̄

1

{[εu(qtε) + βWt+1(m̂t − dtε)]χ(m̂t ≥ dtε)

+
£
πb(αt)χ(m̂t < dtε) + 1− πb(αt)

¤
βWt+1(m̂t)}dF (ε)

= πb(αt)

Z ε̄

1

£
εu(qtε)− βφt+1dtε

¤
χ(m̂t ≥ dtε)dF (ε) (16)

+β
£
φt+1m̂t +Wt+1(0)

¤
,

where we use the fact that Wt+1(m̂t) is linear with slope φt+1. With probability
πb (αt), the buyer meets the seller and, conditional on the realization of the prefer-
ence shock ε, purchases qtε for dtε dollars. As a result, the buyer starts the next day
with m̂t − dtε dollars. Note that the buyer can only trade if he/she holds enough
money to meet the required contingent payment: m̂t ≥ dtε. If the buyer does not
trade, because he/she does not meet a seller or does meet a seller but does not have
enough money to pay, the buyer starts the next day with m̂t dollars.
Combining (13) and (16), and noting that Wt+1(0) is independent of m̂t, the

buyers’ optimal demand for money m̂t then solves:

max
m̂t≥0

πb(αt)

Z ε̄

1

£
εu(qtε)− βφt+1dtε

¤
χ(m̂t ≥ dtε)dF (ε) (17)

+
¡
βφt+1 − φt

¢
m̂t.



As in Lagos and Wright (2005), the objective of this problem is unbounded (its
value goes to infinity as m̂t → ∞) if βφt+1 > φt, so there is no solution to (17)
in this case. For an equilibrium to exist, the inflation rate must obey φt/φt+1 ≥ β.
If φt/φt+1 > β, the opportunity cost of holding money is strictly positive, and the
objective in (17) is decreasing in m̂t for m̂t > max {dtε}ε∈[1,ε̄]. The value of the
objective in (17) under

m̂t = max {dtε}ε∈[1,ε̄] . (18)
measures the buyer’s expected payoff from trading at night net of the opportunity
cost of holding the maximum contingent payment in the submarket the buyer visits.
Provided this value is positive and the ex post trade surplus εu(qtε) − βφt+1dtε is
increasing in the shock realization ε, the demand for money satisfies (18). As we
shall see, both conditions will be satisfied in equilibrium. This means that the buyer
will always hold just enough money to meet the highest contingent payment. If
φt/φt+1 = β (Friedman rule), the opportunity cost of holding money is zero and
the solution to (18) is not unique. In this case, we pick equilibrium choices that are
the limit φt/φt+1 ↓ β, so that (18) still holds.
Analogously, the Bellman equation for a seller at night is

V s
t (m̂t) = πs(αt)

Z ε̄

1

[−c(qtε) + βWt+1(m̂t + dtε)] dF (ε)

+ [1− πs(αt)]βWt+1(m̂t)

= πs(αt)

Z ε̄

1

£−c(qtε) + βφt+1dtε
¤
dF (ε) (19)

+β
£
φt+1m̂t +Wt+1(0)

¤
.

Combining (13) and (19), the optimal choice of m̂t solves maxm̂t

¡
βφt+1 − φt

¢
m̂t

subject to m̂t ≥ 0. Again, this problem has no solution if βφt+1 > φt, and the
solution is m̂t = 0 if this inequality is reversed. For sellers, money has no value at
night, so they optimally choose to carry none.
Collecting (13), (15), (16), (18), (19), and m̂t = 0 for sellers, the value function

at the beginning of the day simplifies into

Wt(mt) = v(x∗)− x∗ + φt(mt + τ t) + βWt+1(0) + max
©
Sb
t , S

s
t

ª
, (20)

if φt/φt+1 > β. Here, Sb
t and Ss

t represent the expected trade surpluses of a buyer
and a seller at night, respectively, which can be written as

Sb
t ≡ πb(αt)

Z ε̄

1

[εu (qtε)− ztε] dF (ε)− itẑt, and (21)

Ss
t ≡ πs(αt)

Z ε̄

1

[ztε − c (qtε)] dF (ε). (22)



In these expressions, ztε ≡ βφt+1dtε denotes real payments (discounted units of
consumption that can be purchased with dε dollars next period). Similarly,

ẑt ≡ βφt+1m̂t = max {ztε}ε∈[1,ε̄] (23)

denotes real money balances conditional on being a buyer, and

it ≡ φt
βφt+1

− 1 (24)

represents the nominal interest rate. As noted by Lagos and Wright (2005), in this
environment the market for bonds features no trade, but bonds can still be priced.
The equilibrium real interest rate is equal to the subjective discount rate: β−1 − 1.
Since the inflation rate is πt = φt/φt+1 − 1, the nominal interest rate satisfies
1 + it = (1 + r)(1 + πt) = φt/(βφt+1).
In summary, we have shown that an equilibrium cannot exist for inflation rates

below the Friedman rule. For inflation rates above the Friedman rule, the individual
optimal choices during the day are as follows. Each period t, the individual con-
sumes xt = x∗ and chooses the trading role j(t) ∈ {b, s} for which the expected
trade surplus Sj

t is higher. If the choice is to be a seller, the demand for money is
zero. If the choice is to be a buyer, the demand for money is the highest contingent
payment in the submarket to be visited at night. Finally, the optimal choices of
production yt are given by the budget constraint (12).

3 Equilibrium with Full Information
To provide some insight into the competitive search process in our environment
and to serve as a benchmark, this section characterizes a monetary equilibrium with
full information. Section 4 then characterizes a monetary equilibrium where the
preference shock realizations that buyers experience are private information. Both
sections focus on stationary monetary equilibria, where aggregate real variables
are constant over time (although non-stationary equilibria cannot be ruled out in
general). Since real money balances are constant, the gross rate of inflation is equal
to the rate of growth of the money supply: φt/φt+1 = γ. Therefore, the nominal
interest rate is i = (γ/β) − 1. Since all the variables we analyze are constant, we
drop the time subscripts in what follows.
The competitive search process proceeds as follows. Before the search market

opens and while buyers can still rebalance the amount of money they hold, sellers
post their offers {(qε, zε)}ε∈[1,ε̄] (by means of which they commit to sell qε units
of output in exchange for a real payment zε in the event of being matched with a
buyer of type ε). All individuals have rational expectations regarding the number of
buyers that will be attracted by each offer, and thus about the ratio α of sellers over
buyers in each submarket. Sellers are also aware that the buyers who decide to trade



according to a posted offer will carry an amount of money equal to the maximum
payment specified in the offer. The set of offers posted in equilibrium must be such
that sellers have no incentives to post deviating offers.
Let Ω be the set of all submarkets that are active in equilibrium. An element

ω ∈ Ω is then a list ω =
h
α, {(qε, zε)}ε∈[1,ε̄]

i
. A competitive search equilibrium at

night is a set {Ω, S̄b, S̄s} such that, for all ω ∈ Ω,
1. Buyers attain the same expected surplus S̄b.
2. Sellers attain the same expected surplus S̄s.
3. The expected surpluses of buyers and sellers are identical and non-negative:
S̄b = S̄s ≥ 0.

4. The list ω solves the following program:

S̄s = max
[α,{(qε,zε)}ε∈[1,ε̄]]

πs (α)

Z ε̄

1

[zε − c (qε)] dF (ε) (25)

subject to

S̄b = πb (α)

Z ε̄

1

[εu (qε)− zε] dF (ε)− iẑ, (26)

ẑ = max {zε}ε∈[1,ε̄] , and (27)
α, qε ≥ 0 for all ε. (28)

Conditions 1 to 3 are straightforward. Buyers are free to choose the submarket
they visit, and they have identical payoff functions (21), so they must attain the
same expected surplus. The same is true for sellers. Moreover, for trade to occur
there must be buyers and sellers present in the submarket so that individuals must be
indifferent between the two trading roles, and these roles must be preferable to no
trade. Condition 4 results from a combination of optimal behavior and competition
among sellers when they post their price offers. According to this condition, sellers
choose the offer that maximizes their expected surplus, taking as given the expected
surplus S̄b attained by buyers, and realizing that the ratioα is going to endogenously
adjust so that (26) and (27) hold.
The price offers solving (25) to (28) are not restricted to ensure that the buyers’

ex-post trade surplus (given by εu (qε)−zε) is positive for all realizations of ε. This
is because buyers are able to commit to the offer posted prior the realization of ε. A
variation of our model in which such a commitment is not possible would introduce
an extra individual rationality constraint in the program described by (25) to (28)
stating that the buyers’ ex-post trade surplus is non-negative for all ε ∈ [1, ε̄]. We
assume buyers are able to commit to the offers because the model delivers much
sharper results. However, we derive the equations characterizing an equilibrium in
the absence of this commitment for the case of private information in the Appendix



(see Statement 19).
A solution for the program described in (25) to (28) has the following two prop-

erties. First, buyers and sellers trade with probability one in any active submarket:

α = πb (α) = πs (α) = 1; (29)

otherwise, the sellers’ expected surplus in (25) could be easily increased while keep-
ing the buyers’ expected surplus in (26) constant. Second, the payments specified
by the offer are uniform:

zε = ẑ for ε ∈ [1, ε̄] . (30)
To see this, notice that the sellers’ expected surplus depends only on the buyers’
average payment. In contrast, for a given average payment, a buyer prefers a smooth
distribution of {zε}ε∈[1,ε̄] because the opportunity cost of holding money depends
on the maximum payment. Therefore, the optimal payments satisfy (30).
Substituting (29) and (30) into (25) yields

ẑ = S̄s +

Z ε̄

1

c (qε) dF (ε). (31)

Using (29) to (31), program described by (25) to (28) simplifies into

S̄s = max
{qε}ε∈[1,ε̄]

Z ε̄

1

·
εu (qε)

1 + i
− c (qε)

¸
dF (ε)− S̄b

1 + i
. (32)

The equilibrium quantities that solve this program are given by the following first-
order condition:

εu0 (qε) = (1 + i) c0 (qε) for ε ∈ [1, ε̄] . (33)
This expression shows that, under full information, the inflation tax (i > 0) creates
a proportional wedge (1 + i) between the marginal utility of consumption and the
marginal cost of production in the same fashion as in economies with a cash-in-
advance constraint. Also, for a given i, the quantity purchased increases with the
type of buyer involved because c is convex and u is strictly concave. So, buyers
with higher valuations purchase larger quantities.
To complete the characterization of a competitive search equilibrium, we need

to determine S̄b and S̄s. Since buyers and sellers attain the same expected surplus,
(31) and (32) imply:

S̄b = S̄s =

R ε̄
1
[εu (qε)− c (qε)] dF (ε)− iẑ

2
(34)

=
1 + i

2 + i

Z ε̄

1

·
εu (qε)

1 + i
− c (qε)

¸
dF (ε). (35)



That is, buyers and sellers share equally the expected gains from bilateral trade,
which are given by the expected bilateral trade surplus net of the cost of holding
money. Furthermore, the strict concavity of u and the convexity of c, together with
u0(0) = ∞ > c0(0) ensure that both S̄b and S̄s are positive. This verifies that it is
optimal for a buyer to demand ẑ units of money, as claimed in the previous section.
We are ready for a formal definition of a monetary equilibrium:

A monetary stationary equilibrium with full information is a vector of real
numbers

¡
α, ẑ, S̄s, S̄b

¢
and a set of real functions {(qε, zε)}ε∈[1,ε̄] that satisfy the

system of equations: (29), (30), (31), (33), and (34).

The system of equations characterizing an equilibrium is recursive: (29) and
(33) respectively determine α and {qε}ε∈[1,ε̄], (34) determines S̄s and S̄b, and (30)
and (31) determine ẑ and {zε}ε∈[1,ε̄]. The existence of a unique equilibrium follows
from our assumptions on u and c which guarantee a unique solution for this system
of equations.
Under full information, equilibrium offers minimize the opportunity cost of the

money balances held by buyers by having zε identical for all ε. Buyers optimally
choose an amount of money equal to this flat payment and spend all their cash
whenever they meet a seller. At the Friedman rule (i→ 0), the quantities of output
traded are the efficient q∗ε that satisfy εu0 (q∗ε) = c0 (q∗ε). Inflation above the Fried-
man rule implies a welfare cost as it generates a wedge between the marginal utility
of consumption and the marginal cost of production at night. The convexity of c
and the strict concavity of u imply that qε is a decreasing function of i. It is easy
to see that ẑ, S̄b and S̄s also decrease with i (from (31) and (34), respectively). An
increase in the inflation rate above the Friedman rule then distorts the equilibrium
allocation away from the first best, reducing the quantities purchased by all buyer
types: qε < q∗ε , which reduces the expected bilateral trade surplus at night. Sellers
absorb part of the welfare loss by reducing the flat payment they charge buyers, and
buyers’ real money balances fall as a result.
The result that buyers make a flat payment in the night market whenever the op-

portunity cost of holding money is positive seems highly counterfactual. While we
occasionally observe sellers charging flat fees (e.g. “all-you-can-eat” restaurants),
these seem to be the exception rather than the rule. Therefore, beyond a theoretical
illustration of the type of pricing incentives generated by inflation, we view this re-
sult as a reductio-ad-absurdum of assuming full information in the environment we
analyze. In Section 4, we analyze the same environment when preference shocks
are privately observed by buyers. Sellers do not post a flat payment in this case
because such payment schemes are not incentive compatible. Clearly, if buyers pay
the same for all realizations of ε but receive more output when ε is high, they have
an incentive to claim they experienced the highest realization ε̄ regardless of their
true type. Under private information, the extreme flat-fee result then disappears



and the model predicts that sellers post increasing, non-linear pricing schemes in-
stead (e.g., positive but decreasing per unit prices). This kind of pricing schemes
are quite common in retail markets, where we observe quantity discounts that are
either explicit or (most often) implicit in the packaging of products.

4 Competitive Search with Private Information
Consider the competitive search market described in the previous section, but sup-
pose shocks are privately observed by the buyers who experience them. In this case,
the offers posted by sellers must be incentive compatible. That is, buyers must have
no incentives to lie about their type. The program described by (25) to (28) is then
further restricted to satisfy the incentive compatibility constraint:12

ε0 ∈ arg max
ε∈[1,ε̄]

[ε0u (qε)− zε] , for all ε0 ∈ [1, ε̄] . (36)

As is standard, constraint (36) can be restated using the following well-known re-
sult. (See Mas-Colell, Winston and Green (1995) Proposition 23.D.2.)

Lemma 1 Let the ex-post trade surplus of a type-ε buyer be defined as

vε ≡ εu (qε)− zε. (37)

A trading offer satisfies the incentive-compatibility constraint (36) if and only if qε
is non-decreasing in ε, and vε satisfies

vε − v1 =

Z ε

1

∂

∂x
[xu (qx)− zx] dx =

Z ε

1

u (qx) dx, for all ε ∈ [1, ε̄]. (38)

Using Lemma 1, (29), and (37), the maximization program described by (25)
to (28) with the restriction (36) can be restated as the following optimal control
problem:

S̄s = max
[ẑ,{(qε,vε)}ε∈[1,ε̄]]

Z ε̄

1

[εu (qε)− c (qε)− vε] dF (ε) (39)

12 With private information, an offer is a direct revelation-mechanism that is incentive compat-
ible. While direct revelation mechanisms can in principle be random, this can only be optimal if ab-
solute risk aversion decreases with ε (see Maskin and Riley (1984)). In our environment, ran-
dom mechanisms are never used in equilibrium because absolute risk aversion is independent of
ε. We therefore restrict to deterministic mechanisms {(qε, zε)}ε∈[1,ε̄] without loss of general-
ity. See, however, Shimer and Wright (2004) for a different competitive search environment with in-
divisibilities where random mechanisms are optimal.



subject to

S̄b =

Z ε̄

1

vεdF (ε)− iẑ, (40)

εu (qε)− vε ≤ ẑ for ε ∈ [1, ε̄] , (41)
v̇ε = u (qε) for ε ∈ [1, ε̄] , and (42)
qε is non-decreasing in ε, (43)

ẑ, qε ≥ 0 for ε ∈ [1, ε̄] . (44)

The control variable of this problem is qε and the state variable is vε. Using the
Maximum Principle, the optimal path for the control variable qε must satisfy the
following equation (see the Appendix for the derivation):½

(ε− γ2)u
0 (qε) = γ1c

0 (qε) for ε ∈ [1, ε̂] , and
qε = qε̂ ≡ q̂ for ε ∈ [ε̂, ε̄] , (45)

where γ1, γ2, and ε̂ are positive numbers given by:

γ1 =
1 + i

1 + 2i
, (46)

γ2 =
i

1 + 2i
, and (47)

γ1 +
γ2
ε̄

=
ε̂

ε̄
+
1

2

"
1−

µ
ε̂

ε̄

¶2#
. (48)

Equation (45) shows that, with private information, the cash constraint becomes
binding at a break-point shock ε̂. Buyers with a realization of a preference shock
higher than or equal to ε̂ spend all their cash, while buyers with realizations lower
than ε̂ keep some unspent cash. It is useful to write ε̂ as an implicit function of i
combining (46) to (48): µ

i

1 + 2i

¶
ε̄

ϕ
=
(ε̄− ε̂)2

2
. (49)

This equation implies that ε̂ is a decreasing function the nominal interest rate i, with
ε̂ = ε̄ for i→ 0. The intuition for this result is simple. At the Friedman rule the cash
constraint never binds because holding money it is not costly for buyers. Inflation
above the Friedman rule induces buyers to reduce their real money balances, so
the probability of being liquidity constrained becomes positive and increases with
i. When the rate of growth of the money supply satisfies β < γ < β (1 + ε̄) /2
(as we have assumed), there is a unique solution to (49) which satisfies ε̂ ∈ (1, ε̄) .
So, there is always a subset of types who spend all their money and a subset of



types who end up with some unspent cash in a monetary equilibrium. A monetary
equilibrium with this property then emerges both at moderate and high inflation
rates if individuals face a lot of uncertainty about their cash needs (ε̄ is high). If this
uncertainty is low, equilibria of this kind emerge only at moderate inflation rates.
The other unknowns of the program described by (39) to (44) are determined

as follows. The optimal path for the state variable vε is implied by the differential
equation (42) for a given initial value v1. The optimal value of ẑ is given by (41)
with equality at the break-point ε̂. The value v1 in equilibrium is determined by the
condition S̄s = S̄b. That is, v1 must be such thatZ ε̄

1

vεdF (ε)− iẑ =

Z ε̄

1

[εu (qε)− c (qε)− vε] dF (ε). (50)

Using (50), the equilibrium values of S̄b and S̄s are

S̄b = S̄s =

R ε̄
1
[εu (qε)− c (qε)] dF (ε)− iẑ

2
(51)

since buyers and sellers share equally the expected gains from bilateral trade. It is
easy to show that S̄b and S̄s are positive, which verifies that equation (18) holds
also under private information. The argument is essentially the same as in the pre-
vious section and is thus omitted. Finally, the underlying payments {zε}ε∈[1,ε̄] are
calculated from (37).
The formal definition of the equilibrium is now the following:

A monetary stationary equilibrium with private information is a vector of
real numbers

¡
α, γ1, γ2, ε̂, ẑ, S̄

s, S̄b
¢
and a set of real functions {(qε, vε)}ε∈[1,ε̄] that

satisfy the system of equations: (29), (41) with equality at ε̂, (42), (45), (46), (47),
(49), (50), and (51).

The equilibrium is unique because the program described by (39) to (44) has a
unique solution (see the Appendix).
With private information, equilibrium payments do not consist of a flat fee. In-

stead, payments must be increasing with the quantity of output purchased in order
to satisfy the incentive-compatibility constraints generated by private information.
This can be shown by calculating the derivative of the payment zε relative to the
output qε in a transaction. Using the chain rule of differentiation together with (37),
(42), (45), (46), and (47):

dzε
dqε

= (1− γ2)c
0 (qε) + γ2u

0 (qε) for ε ∈ (1, ε̂) . (52)

This derivative is positive because γ2 ∈ [0, 1] , and c and u are increasing functions.
Equation(52) implies that the price schedule that maps the quantities of output pur-



chased with the corresponding payments is

Z(q) = γ0 + (1− γ2)c(q) + γ2u(q), (53)

where γ0 is a constant term that is determined endogenously as a function of i.
Depending on the quantity purchased, sellers then charge a variable payment given
by a convex combination of the cost of production and the utility of consumption
of type 1, and possibly a fixed transfer. (This transfer γ0 adjusts with i to ensure
that buyers and sellers each receive half of the expected gains from bilateral trade).
Writing (53) as Z(q) = c(q) + γ0 + γ2 [u(q)− c(q)] , we see that sellers charge
both a fixed and a variable markup. The total expected mark-up in equilibrium
is S̄s = γ0 + γ2

R ε̄
1
[u (qε)− c (qε)] dF (ε). This total markup falls when i rises

because, as we show below, the expected gains from bilateral trade fall. It can be
shown that the fixed mark up γ0 is maximal at the Friedman rule and that is minimal
as γ approaches the upper bound β (1 + ε̄) /2. The opposite is true for the expected
variable markup.
As in the full information model, the equilibrium is efficient at the Friedman rule.

The cash constraint never binds when i→ 0, as we have already noted. Also, γ1 =
1 and γ2 = 0, so the quantities traded are efficient because they obey: εu0 (qε) =
c0 (qε) . The price schedule in this case is given by Z(q) = S̄s + c(q),so that sellers
charge a total payment equal to the cost of production plus a fixed transfer that
covers their labor cost. This pricing scheme clearly leads to an efficient allocation
because the cost of purchasing additional units is equal to the marginal cost of
production (i.e., Z 0(q) = c0(q)).
The inefficiencies arising from the inflation tax are most easily identified by

examining how the equilibrium price schedule changes when i rises. In particular,
it is easy to see that the slope of the price schedule falls with the nominal interest
rate. The reason is that, as i rises, the price schedule puts more weight on the
concave function u and less weight on the convex function c because γ2 increases.
Using (45), (46), (47):

d

di

dzε
dqε

=
1

1 + 2i

1− ε

ε− γ2
c0 (qε) < 0 for ε ∈ (1, ε̂) . (54)

Consequently, inflation not only curtails consumption due to a lack of liquidity for
those buyers with a great desire to consume (ε > ε̂), but it also increases consump-
tion for those buyers with a low appetite for goods (ε < ε̂) . This key result is quite
intuitive. As the nominal interest i increases, the cost of being left with unspent
money rises. Aware of this, sellers have an incentive to post price offers that imply
a lower variability of payments, which is equivalent to posting flatter price sched-
ules. With these flatter price schedules, the quantities purchased increase as long
as ε ∈ (1, ε̂) because the marginal cost of purchasing goods is lower. In particular,



with inflation rates above the Friedman rule, the marginal cost of purchasing goods
is lower than the marginal cost of production. As a result, buyers purchase inef-
ficiently high quantities as long as they are not liquidity constrained. To establish
this formally we apply the Implicit Function Theorem to the system of equations
(45) to (47):

dqε
di
=

ε− 1
(1 + i) (1 + 2i)

u0 (qε)
(1− γ2) c

00 (qε)− (ε− γ2)u
00 (qε)

> 0, for ε ∈ (1, ε̂] .
(55)

Finally, it is easy to show that an increase in the nominal interest rate reduces the
buyers’ real money balances ẑ, as well as the quantity purchased q̂ when the liquid-
ity constraint binds.

5 Empirical Implementation
This section analyzes a quantitative version of the model. Our objective here is
to highlight the empirical implications of the key insight we seek to model in this
paper, that is, that sellers do not observe the preferences of a diverse clientele of
buyers who hold precautionary balances. In this analysis, we show that both the
model with full information in Section 2 and the model with incomplete information
in Section 3 fit well the United States time series of the velocity of the circulation
of money and nominal interest rates. However, the two models have markedly
different predictions in some important dimensions. For example, the model with
full information, as the standard cash-credit goods model, requires an extremely
long payment period to fit the observed low velocity of the circulation of money,
and it predicts that a moderate increase in the rate of inflation nearly collapses the
output produced in the sector where money is essential for transactions. In contrast,
the private information model does not generate these unrealistic predictions.
In the empirical implementation, we assume the same preferences as Lagos and

Wright (2005), modified to allow for preference shocks:

U b(xt, yt, qt; εt) = B ln(xt)− yt +
εtq

1−σ
ε

1− σ
, σ ∈ (0, 1) (56)

Us(xt, yt, qt) = B ln(xt)− yt − qt. (57)
With these functional forms, the average commercial margin at night is increasing
with the curvature parameter σ. In particular, the average commercial margin is
σ/(2−σ) at i = 0.13 Intuitively, if U has a large curvature parameter σ, individuals

13 The derivation of this formula is lengthy and unrelated to the main issues of the paper, so it
is not provided here.



seek to consume small quantities often because marginal utility is strongly decreas-
ing in qε.As a result, individuals require a large remuneration, in the form of a large
commercial margin, to sacrifice their time to be sellers.
The previous literature offers little guidance about the distribution of preference

shocks. So far, for analytical tractability, we have assumed that these shocks have
been uniformly distributed. However, in this section we consider the following gen-
eralization to capture that large preference shocks are relatively rare. We assume
now that with probability p buyers have a "normal" desire to consume, in which case
ε equals one; and, with complementary probability, buyers experience a larger than
normal desire to consume in which case ε is uniformly distributed on the interval
(1, ε̄]. Algebraically, the distribution function is

F (ε) =

½
p at ε = 1, and

1−p
ε̄−1 (ε− 1) for ε ∈ (1, ε̄]. (58)

Thus, the density for ε ∈ (1, ε̄] is constant and equal to

ϕ =
1− p

ε̄− 1 . (59)

Conveniently, this generalization of the distribution of shocks complicates relatively
little the analytical solution of the model as shown in the Appendix.
To estimate the parameters of the model, we use annual observations on the

velocity of the circulation of money and the short term commercial paper rate in
the United States from 1892 to 2004. The velocity of the circulation of money is
the ratio of GDP over M1*, defining M1* as M1 in circulation inside the United
States. (See the Appendix for details and data sources.) Figure 1 displays both time
series. For comparison purposes, it also displays the velocity of the circulation of
M1. From 1892 to 2004, the velocity of the circulation of M1* changed widely.
Until 1946, velocity seldom reached 4, but since then it has experienced a marked
upward trend reaching levels close to 12 at the end of the sample. This upward
trend is not explained well as a response to increasing interest rates because interest
rates at the end of the sample are similar to those at the beginning, and yet velocity
has tripled. Likewise, the upward trend in velocity is not explained well by GDP
growth combined with a transactions elasticity of the demand for money lower than
one because during the period when velocity exploded (the last 30 years of our
sample) GDP grew more slowly than average. Our view is that the trend of velocity
is due to an interaction between institutional changes and advances in information
technology. Since our model abstracts away from these factors, we detrend both the
velocity of the circulation of money and the commercial paper rate with a fourth
power polynomial of time.14 The detrended variables are displayed in Figure 2.

14 We preserve the mean, and normalize time to go from minus one in 1892 to one in 2004.



Figure 1: Velocity of M1 and Interest Rates in the United States
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Figure 2: Detrended Velocity and Interest Rates
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The model’s counterpart of the annual velocity of the circulation of money is
aggregate expenditure multiplied by the number of periods in one year (T ) and
divided by the demand for money: [T

R ε̄
1
Z(qε)dF (ε)]/ẑ. The counterpart of the

commercial paper rate is the nominal interest on a personal bond traded during
the day promising one dollar for the next day: i = (γ − β) /β. With quasi-linear
preferences the velocity of the circulation of money in a given period depends only
on the nominal interest rate for that period. Therefore, our analysis in Sections 2
and 3 carry through to a predictable time process of the money supply in which γ
and i vary over time.
Historical data on velocity and interest rates do not allow for the identification of

all the parameters of the model. Therefore, we restrict σ to 0.453 to match the av-
erage commercial margin reported by the Bureau of the Census (www.census.gov/
svsd/www/artstbl.htlm) (around 28 per cent). Likewise, we restrict ε̄ to 12σ, so that
quantities purchased vary from 1 to 12. The results we report are not very sensitive
to the particular values of these two parameters. However, with private informa-
tion, it is important for the type of separating equilibrium we study to exist that ε̄ is
sufficiently high.
Table 2 reports the estimated parameters using nonlinear least squares for the

following models: the full information model in Section 2 (model 1), the private
information model in Section 3 (model 2), and the private information model with
mass probability p at ε = 1 (model 3). This last model is introduced to capture
that large expenditures are relatively rare, and this added realism allows us to fit
the observed low velocity of circulation of money without relying on buyers having
to wait unrealistically long periods to have an opportunity to make a purchase. In
models 1 and 2, the parameters estimated are the number of periods in one year
(T ) and the weight in the utility function of the goods traded during the day (B).
Loosely speaking, velocity increases with T, and the elasticity of velocity with
respect to i falls with B. To fit the low and highly elastic velocity observed in the
United States, B must be a large number and T a low one. In particular, in the
full information model the estimate of T (0.41) implies that individuals take more
than two years to spend their money. A similar effective payment period is also
found in Lagos and Wright (2005) where individuals take on average two years to
spend their money. In contrast, with private information individuals do not spend
all their cash in each transaction. Hence, the private information model has the
advantage that it fits equally well data with shorter payment periods. In model 2
with a uniform distribution of shocks, the estimate of T is close to one. In model
3, we successfully fit the model with a realistic payment period lasting one month
(T = 12), in which case our estimate of p implies that abnormally large preference
shocks occur around once a year.



Table 2: Estimation of the Model

Sample: Annual series United States 1892-2004
Dependent variable: Detrended velocity (GDP/M1*)

Independent variables: Detrended commercial paper rate
Method: Non-linear least squares

σ = 0.435
ε̄ = 12σ

T B p R2

Model 1 0.41 31.50 0∗ 0.40
(0.07) (3.97)

Model 2 0.98 17.86 0∗ 0.42
(0.30) (4.58)

Model 3 12∗ 0.57 0.89 0.42
(0.04) (0.06)

Note: Asterisks denote constrained values. Parentheses denote standard devia-
tions of the estimates, which were calculated using the formula in Doan (2002) pp.
218-9 with k = 5. This formula is robust to heteroscedasticity and autocorrelations
of the error term up to five years apart.

Table 3 calculates the effect of a 10-per-cent increase in the annual rate of infla-
tion from the Friedman rule (i = 0). The first row shows that the welfare cost of
inflation is around 0.5 per cent of GDP in all three models. This similarity is not
surprising since all three models have been estimated to predict the same money
demand curve, and the welfare cost of inflation in these models is approximately
the area below this curve. The second row shows that the three models have also
similar predictions about the effect of inflation on GDP. However, the three models
make markedly different predictions about the effect of inflation on the composi-
tion of GDP. Model 1 predicts that a 10-per-cent increase in inflation slashes the
GDP produced at night by nearly 40 per cent, so that the fraction of GDP for which
money is an essential medium of exchange drops from 10.5 per cent to 6.6 per cent.
In contrast, these effects are much weaker in models 2 and 3. In particular, the
effect of inflation on the composition of GDP is quite small in model 3, in which
case the 10-per-cent increase in inflation reduces the fractions of GDP at night from
64.2 per cent to 62.9. Intuitively, the elasticity of the demand for money in model 3
is mainly due to a reduction in precautionary balances instead of sectorial shifts in
expenditures. We cannot directly test this discriminating prediction because the Na-
tional Income Accounts do not calculate the composition of GDP according to the
means of payment in transactions, but the consumption of nondurables and services



(CNS) is a reasonable proxy for the transactions for which M1 is held.15 Therefore,
the correlation between the ratio of CNS over GDP and the nominal interest rate
is informative to assess the source of elasticity of the demand for money. If the
high-interest elasticity observed in the United States is due to an increase in the
fraction of cash goods, then the ratio CNS/GDP should be volatile and correlated
with the commercial paper rate. This prediction is not supported by the data. The
detrended CNS/GDP ratio is smooth and weakly correlated with the commercial
paper rate. As a result, once the trend is removed, the OLS coefficient of CNS/GNP
on the commercial paper rate is small (-0.03) and not statistically significant.16 The
predictions of the private information model 3 are in line with this observation.

Table 3: Effect of 10-per-cent Inflation

Model 1 Model 2 Model 3
Effect of rising annual i from 0 to 0.1:

Welfare cost 0.54 0.42 0.45

Percentage change of GDP -4.2 -4.1 -3.7

Percentage change of GDP at night -39.7 -23.8 -5.8

Fraction of GDP at night for annual i = 0 0.105 0.172 0.642

Fraction of GDP at night for annual i = 0.1 0.066 0.136 0.629

Note: The welfare cost is measured as the equivalent reduction of income as a
percentage of GDP.

6 Conclusion
A precise modelling of private information in search-theoretic monetary models
brings interesting new insights about the effects of inflation. In particular, we have
constructed a competitive search monetary model where buyers are hit by privately
observed preference shocks. The primary effect of inflation in the model is that
it obstructs the role of prices in achieving an efficient allocation of goods. The
equilibrium allocation is inefficient because individuals sometimes end up buying
goods they value little, while at other times they lack the liquidity to buy goods they
value much more.
The intuition for how inflation distorts the composition of consumption is as fol-

lows. Buyers have a precautionary motive for holding money because their cash

15 See Mankiw and Summers (1986) and Faig (1989).
16 We used United States annual data from 1929 to 2004. See the Appendix for the sources.



needs are uncertain. The problem is that holding money is costly due to inflation.
Aware of this, sellers try to attract buyers to their stores by posting price offers that
reduce the precautionary money balances that buyers need to carry. Since they can-
not observe the preferences of the buyers, sellers use non-linear price schedules to
screen out different types of buyers. The key is that these non-linear price sched-
ules become relatively flat as inflation rises (reducing the variance of payments and
hence the need for precautionary balances). This means that the marginal cost of
purchasing goods falls, and thus individuals purchase inefficiently high quantities
as long as they are not cash constrained. Therefore, inflation ends up shifting con-
sumption goods from cash-constrained individuals with high valuations for goods
to individuals with low valuations who are not cash constrained.
We show that the model fits historical US data on velocity and interest rates.

With the estimated parameters, we find that the welfare cost of inflation is approx-
imately 0.5 per cent of GDP, which matches the area below the predicted money
demand curve. While an empirical test of the many alternative models of demand
for money is beyond the scope of this paper, we provide empirical evidence in sup-
port of the key feature we seek to capture in our model, namely that sellers do not
observe the preferences of a diverse clientele of buyers who, as a result, hold pre-
cautionary balances. We have shown that this feature not only allows for a fit to
United States data on velocity and interest rates, but also generates realistic impli-
cations about both the composition of output and the length of payment periods.



Appendices

Competitive Search Equilibrium with Private Information
Since both (39) and (40) are monotonic in vε, the solution of (39) to (44) is the

same as the solution of a dual program that maximizes (40) subject to (39) and the
remaining constraints of the original program. In this Appendix, we solve this dual
program in two stages. Stage 1 (Statements 1 to 13) solves for the program for a
given Lagrange multiplier λ associated with constraint (39), given ẑ and v1, and an
exogenous output floor q. Stage 2 (Statements 14 to 19) finds λ, ẑ, v1, and q for a
class of distribution functions which includes the uniform distribution.
1. Suppose λ > 1/2, q ≥ 0, and ẑ > ε̄U(q)−v1 (these inequalities will hold for
the endogenous values found in stage 2 of the proof if i is sufficiently small).
The terms of trade in a competitive search equilibrium with private preference
shocks solve the following program:17

J(λ, v1, ẑ, q) = max
{qε,vε}ε̄ε=1

Z ε̄

1

{vε + λ [εu (qε)− u (qε)− vε]}ϕdε (60)

subject to
v̇ε = u (qε) , (61)

zε ≡ εu (qε)− vε ≤ ẑ, (62)

qε ≥ q, and (63)

v1 given. (64)
2. Program (60) to (64) is a standard optimal control problem where qε is the
control variable and vε is the state variable. A solution to the program exists
because the set of feasible paths is non-empty, bounded, with a feasible path
for which the objective in (60) is finite. For example, the path qε = q for all ε
and vε = v1 + (ε− 1)u(q) is feasible, and with this path the objective in (60)
is finite.

3. Suppose there is an interval [a, b] ⊆ [1, ε̄] of values of ε where the inequality
constraint (63) is binding, that is qε = q for ε ∈ [a, b] . Then (61) and (62)
imply that in this interval zε is constant and equal to aU(q)−va ≤ au(q)−v1.
Since a ≤ ε̄ and ẑ > ε̄u(q) − v1, constraint (62) is not binding in [a, b] .
Therefore, constraints (62) and (63) never bind simultaneously.

17 The constraint qε must be a non-decreasing function of ε is omitted for the time being because as
it will be seen it is not binding with our distribution of shocks.



4. Suppose there is an interval [a, b] ⊆ [1, ε̄] of values of ε where the inequality
constraint (62) is binding, that is zε = ẑ for ε ∈ [a, b] . Then Statement 3
implies that in this interval qε > q ≥ 0, and so u(qε) > 0. Hence, (61) and
(62) imply that qε is constant in the interval [a, b].

5. Let'ε denote the co-state variable associated with (61), and ςε and ϑε be the
Lagrange multipliers associated with (62) and (63), respectively. The Hamil-
tonian of the program (60) to (64) is:

H = vεϕ+ λ [εu (qε)− c (qε)− vε]ϕ+'εu (qε) (65)
+ςε [ẑ − εu (qε) + vε]− ϑε(q − qε).

6. For the values of ε such that (62) is not binding, the Hamiltonian (65) is
strictly concave with respect to qε (for these values ςε = 0) and linear (and
so concave) with respect to vε. For the values of ε such that (62) is binding,
qε is a constant (Statement 4). Therefore, the solution to the program (60) to
(64) is unique; it is characterized by the first-order conditions that result from
applying the Maximum Principle, and both qε and vε are continuous functions
of ε.

7. The first-order condition with respect to the control variable qε is (Hqε =
0):

(λϕ− ςε) εu
0 (qε) +'εu

0 (qε) = λϕc0 (qε)− ϑε. (66)
The co-state variable must obey (Hvε = −'̇ε):

'̇ε = (λ− 1)ϕ− ςε. (67)

Finally, the transversality condition implies18:

'ε̄ = 0. (68)

Integrating (67) for an interval [ε, ε̄] and using (68), the value of the co-state
variable'ε is solved to obtain:

'ε = (λ− 1)ϕ (ε− ε̄) + Σε, (69)

where, to simplify the algebraic notation, we use the following definition:

Σε ≡
Z ε̄

ε

ςede. (70)

18 The transversality condition is'ε̄vε̄ = 0.However, vε̄ > 0 if v1 > 0 givenU(.) ≥ 0 and (61). If
v1 = 0 still vε̄ > 0. If vε̄ = 0 then vε = 0 for all ε (as vε is non-decreasing). But, this is
impossible since the buyer’s expected utility is strictly positive in equilibrium.



Using (69), the first-order condition (66) is transformed into:

[(2λ− 1)ϕ− ςε] εu
0 (qε) = [(λ− 1)ϕε̄− Σε]u

0 (qε) + λϕc0 (qε)− ϑε. (71)

8. Suppose there is an interval [a, b] ⊆ [1, ε̄] of values of ε where the two
inequality constraints (62) and (63) are not binding. Then the Kuhn-Tucker
Theorem implies ςε = ϑε = 0 for ε ∈ [a, b] , so that the first-order condition
(71) simplifies into

(ε− γ2)u
0 (qε) = γ1c

0 (qε) for ε ∈ [a, b] , (72)

where

γ1 =
λ

2λ− 1 , and γ2 =
(λ− 1) ε̄− Σbϕ

−1

2λ− 1 . (73)

Since both u0 (qε) and c0 (qε) are strictly positive, qε is strictly positive, and
λ > 1/2, (72) can only hold if ε > γ2. The Implicit Function Theorem
applied to (72) implies that qε is an increasing function of ε in the interval
[a, b]. This property combined with (61), (62) and u0 (qε) ≥ 0 implies that zε is
also increasing in the interval [a, b] .

9. Combining Statements 3, 4, 6, and 8, zε is a non-decreasing continuous
function for all ε ∈ [1, ε̄] . Therefore, either (62) is never binding, or it is
binding in an interval of high values of ε : [ε̂, ε̄] . In such an interval, Statement
5 implies that qε is positive and constant: qε = q̂ for ε ∈ [ε̂, ε̄] .

10. Combining Statements 3, 4, 8, and 9, qε is a non-decreasing continuous
function for all ε ∈ [1, ε̄] . Therefore, either (63) is never binding, or it is
binding in an interval of low values of ε : [1, ε0].

11. Statements 7 to 10 imply the following characterization of the optimal path
of the control variable:

qε = q for ε ∈ [1, ε0] if ε0 > 1,
(ε− γ2)u

0 (qε) = γ1c
0 (qε) for ε ∈ [ε0, ε̂] , and (74)

qε = q̂ for ε ∈ [ε̂, ε̄] if ε̂ < ε̄,

where

γ1 =
λ

2λ− 1 , and γ2 =
(λ− 1) ε̄− Σε̂ϕ

−1

2λ− 1 . (75)

The two real numbers ε0 and ε̂ obey: 1 ≤ ε0 ≤ ε̂ ≤ ε̄.

12. If ε̂ = ε̄ (condition (62) is never binding), then Σε̂ = 0. If ε̂ < ε̄, the first-
order condition (71) can be simplified using (74) and (75) for ε̂, to obtain

ςεε = (2λ− 1)ϕ (ε− ε̂) + Σε − Σε̂. (76)



Since ςε = −Σ̇ε, (76) is a differential equation. Its general solution is:

ςε =
1

2
(2λ− 1)ϕ+ K

ε2
, and (77)

Σε = Σε̂ − 1
2
(2λ− 1)ϕ (ε− 2ε̂) + K

ε
. (78)

The constant of integration K can be determined using the condition ς ε̂ = 0,
so that

K = −1
2
(2λ− 1)ϕε̂2. (79)

Also, the definition (70) implies Σε̄ = 0. Therefore,

Σε̂ =
ϕε̄

2
(2λ− 1)

"
1− 2 ε̂

ε̄
+

µ
ε̂

ε̄

¶2#
. (80)

Combining (80) and (75), we obtain:

γ1 +
γ2
ε̄
=

ε̂

ε̄
+
1

2

"
1−

µ
ε̂

ε̄

¶2#
. (81)

13. Conditional on ε0 and ε̂, the set of equations (74), (75), and (80) characterize
the optimal path of the control variable {qε}ε̄ε=1 . The optimal path {vε}ε̄ε=1 is
obtained from (61) and (64). If interior, the optimal values of ε0 and ε̂ are
obtained combining the interior first-order condition (72) with the constraints
(63) and (62), respectively. The values of ε0 and ε̂ are at a corner solution if
at ε0 = 1 and/or ε̂ = ε̄ the constraints (63) and (62) are satisfied together with
the associated Kuhn-Tucker complementary conditions.

14. The Lagrange multiplier λ is associated with constraint (39). Consider the
following generalization of the uniform distribution: ε = 1 with probability
p, and ε is uniformly distributed in the interval [1, ε̄] with probability 1 − p.
For this generalized distribution, the values q, λ, ẑ, and v1 solve the following
program:

max
{q1,q,ẑ,v1,λ}

(1− p) J
¡
q, λ, ẑ, v1

¢
+ p {v1 + λ [u (q1)− c (q1)− v1]}− iẑ (82)

subject to (39) and
q1 ≥ q.19 (83)

19 The incentive-compatibility constraints imposed by the private information of shocks imply that
at ε = 1 the value of vε is continuous and qε is non-decreasing.



15. The first-order interior conditions of program (82) can be written as fol-
lows:

(1− p) Jq
¡
q, λ, ẑ, v1

¢ ≥ 0, with equality if q1 > q, (84)

u0 (q1)− c0 (q1) ≥ 0, with equality if q1 > q, (85)

i = (1− p)Jẑ
¡
q, λ, ẑ, v1

¢
, and (86)

£
(1− p)Jv1

¡
q, λ, ẑ, v1

¢
+ p (1− λ)

¤
= 0. (87)

together with constraint (39).
16. Using the Envelope Theorem, (65), (70), and ϕ = (ε̄− 1)−1, conditions (86)
and (87) are transformed into:

i = (1− p)Σε̂ (88)

(1− p) (1− λ) + (1− p)Σε̂ + p (1− λ) = 0. (89)
Therefore,

λ = 1 + i. (90)
Conditions (88) and (90) combined with (73) implies that

γ1 =
1 + i

1 + 2i
, and γ2 =

i

1 + 2i

1− pε̄

1− p
. (91)

For i > 0, (88) implies Σε̂ > 0, so that constraint (62) binds. Given γ1 and
γ2, the value of ε̂ is obtained from (81).

17. Define q∗1 to be the solution to u0 (q∗1) = c0 (q∗1) . The value q = q∗1 solves
(82) because for this value (91) and (74) imply that qε > q so that (83) is not
binding. Moreover, if (83) is not binding, q = q∗1 solves (82). In addition, (63)
is never binding, so that ε0 = 1. Equation (88) also implies for all i > 0 that
(62) binds, so that ε̂ < ε̄.

18. In conclusion, the optimal path {qε}ε̄ε=1 is characterized by q1 = q∗1 together
with (74), (81), (91), and ε0 = 1. The inequalities assumed at the head of
Statement 1 are satisfied because (90) implies λ > 1/2. The assumptions
about u and c imply q∗1 > 0, so that q = q∗1 > 0. Finally, for i = 0 (88) implies
Σε̂ = 0, so that constraint (62) is never binding, so that continuity implies that
for i sufficiently small ẑ > ε̄U(q)− v1. In this case, the optimal value of ẑ is
ε̂u(q̂)− vε̂. Finally, the equilibrium value of v1 is determined by the condition



S̄s = S̄b, that is
R ε̄
1
vεdF (ε)− iẑ =

R ε̄
1
[εU (qε)− c (qε)− vε] dF (ε).

19. In the baseline model, the value of λ in (90) is independent of S̄b in (40)
because utility is transferable (modifying v1) at the rate 1 to 1 + i. If the
timing of shocks is such that we must impose the ex-post individual rationality
constraint: vε ≥ 0 for ε ∈ [1, ε̄], then transfers from buyers to sellers must
be such that v1 ≥ 0. If this constraint is not binding, the competitive search
equilibrium is the one characterized in previous statements because vε is non-
decreasing with ε. If v1 ≥ 0 binds, (63) binds for a subset of types, who prefer
not to purchase anything and to pay nothing, so ε0 > 1 and qε = zε = vε = 0
for [1, ε0). Equation (88) still holds, but (89) is now replaced by 1−λ+Σε̂ ≤ 0,
which yields the complementary condition for v1 ≥ 0 to be binding. For F
uniform, a solution is easily found combining the values of γ1 and γ2 in (73)
with (88) to obtain:

(1− γ1) ε̄− γ2
2γ1 − 1

=
i

ϕ
. (92)

Also, (74) implies ε0 = γ2. In this case, the optimal solution {qε}ε̄ε=1 is char-
acterized by (74), (81) and (92) together with v1 = 0, and ε0 = γ2.

20

Data Sources

The interest rate is the short-term commercial paper rate. For 1892-1971, it is
taken from Friedman and Schwartz (1982), Table 4.8, Column 6. For 1972-2004,
it is taken from the DRI series FYCP90 (averaged).
Money is M1* =M1 - currency outside the country. M1 is the stock at the end of

June of each year. For 1892-1928, the source of M1 is the United States Bureau of
the Census (1965), Series X267. For 1929-1958, it is the series constructed by the
St. Louis FED that extends backwards modern M1 http://research.stlouisfed.org/
aggreg. For 1959-2004, it is the DRI series FZM1. Currency in circulation abroad
is from the FED Flow of Funds Table L-204 in the file ltab204d.prn downloaded
from http://www.federalreserve.gov/releases/z1/current/data.htm.
For 1892-1928, GDP is calculated from the real GDP series in Kendrick (1961)

and the implicit price deflator in Friedman and Schwartz (1982), Table 4.8, Column
4. For 1929-2004, it is from BEA NIPA Table 1.1.5 downloaded from www.bea.
doc.gov/bea/dn/nipaweb. The same Table has data on consumption of nondurables
and services.

20 If there is mass probability at ε = 1, ε0 is not necessarily equal to γ2 and the equations character-
izing the optimal path are substantially more complicated.
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