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1. INTRODUCTION

This paper proposes a class of nonparametric estimators for regression models based on least
squares over sufficiently smooth sets of functions. The estimators are closely related to penalized
least squares, (see e.g., Wahba (1990)). They easily permit the imposition of additional
constraints on estimation such as a partial linear specification, additive or multiplicative
separability and specifications involving monotonicity, concavity or the implications of demand
theory. Tests of a variety of hypotheses can be performed by inserting the constrained estimator
in a conditional moment statistic, (an approach used by Fan and Li (1996) to produce

nonparametric tests of specification and significance in a kernel regression setting).

There are technical benefits to working in the particular function space defined below.
(Estimation takes place over balls of functions in a Sobolev space.) First, the space is a Hilbert
space, thus allowing one to take projections, to decompose spaces into mutually orthogonal
complements, and to transform the search for the best fitting function in an infinite dimensional
space into a finite dimensional, (in the simplest cases quadratic) optimization problem.
Computation is straightforward for nonparametric regression models that are functions of one or
several variables. (Indeed, the computer code for the latter is hardly more complicated than for

the former.)

Second, balls of functions in Sobolev space are bounded, (in supnorm), and have a
number of bounded derivatives. From the point of view of asymptotic theory, this permits
estimation over rich sets of functions with sufficiently low metric entropy so that uniform (over
classes of functions) laws of large numbers, rate of convergence and central limit results apply.
In the result, it is straightforward to obtain consistency, rate of convergence, and certain
asymptotic normality results as well as T *-consistency in the partial linear model by using the
tools of empirical process theory. (See Dudley (1984), Pollard (1984) and the survey by Andrews
(1994b)). We rely upon the results of Van de Geer (1987,1990) to prove a number of our results.

The logical structure of the paper proceeds as follows. Section 2 assembles and proves

the necessary results on Sobolev spaces. Section 3 defines our nonparametric least squares
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problem, shows that it can be transformed into a finite dimensional problem, establishes the rate
of convergence and demonstrates asymptotic normality of the (suitably standardized) sum of
squared residuals. (The latter result is fundamental to demonstrating T “2_consistency and
asymptotic normality in the partial linear model estimator of Section 4.) Section 3 continues with
extensions to a multi-equation setting and cross-validation as a means of selecting the degree of
smoothness of the class of functions over which optimization takes place. A triangular array
convergence result, which is later used in demonstrating the validity of bootstrap inference (Efron

(1979)), is also derived.

Section 4 produces a T “-consistent estimator for the partial linear model
y=2z/B+R x)+e. The estimator follows Robinson (1988) except that in the first step, we use

nonparametric least squares rather than kemel estimators.

Section 5 focusses on devising constrained estimators and on a conditional moment test
procedure. A variety of hypotheses are considered including specification, significance, additive

and multiplicative separability, monotonicity, concavity and demand theory.

The literature on non/semiparametric estimation is massive. Surveys in the economics
profession include Delgado and Robinson (1992), Hirdle and Linton (1994), Matzkin (1994) and
Powell (1994), Yatchew (1997a), (see also Hirdle (1990)). Isotonic regression is covered
extensively in Barlow et al (1972) and Robertson et al (1988). Inequality constrained smooth
regression is considered by Wright and Wegman (1980), Wong (1984), Utreras (1985),
Villalobos and Wahba (1987), Mukarjee (1988), Mammen (1991) and Mukarjee and Stern (1994).
Specification tests against nonparametric alternatives are proposed by Bierens (1982, 1990),
Eubank and Spiegelman (1990), Whang and Andrews (1991), Lee (1991), Wooldridge (1992),
Hirdle and Mammen (1993), Gozalo (1993), Yatchew (1988, 1992), Horowitz and Hirdle
(1994), Li (1994), Hong and White (1995), Fan and Li (1996), (see also White (1994)).
Robinson (1989) proposes tests for semi/nonparametric time series models. Stoker (1989,1991)

proposes tests of significance, symmetry, homogeneity and linear separability. Gallant (1982),
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Varian (1985,1990) and Epstein and Yatchew (1985) propose nonparametric tests of the
maximization hypothesis. Hausman and Newey (1995) estimate consumer surplus using kernel
estimators. Pinske and Robinson (1995) propose a method for pooling nonparametric regressions
of similar shape. Partial linear models have been studied extensively, see Wahba (1984, 1985),
Engle et al (1986), Heckman (1986), Rice (1986), Robinson (1988), Chen (1988, 1991), Shiau
and Wahba (1988), Speckman (1988), Eubank and Whitney (1989), Chen and Shiau (1994),
Linton (1995a) , Yatchew (1997b), (see also Linton (1995b)), and Mammen and Van de Geer

(1995).

A notational convention throughout the paper will be the use of a ' B’ superscript to
denote a bootstrap sample, estimator, test statistic.... Subscripts are used to index elements of

sequences, vectors and matrices, e.g., [AB ] is the sz-th entry of the matrix AB .

2. SOBOLEV SPACE RESULTS

Let N be the non-negative natural numbers. Let Q9 cR? be the unit cube which will
be the domain of the nonparametric regression models below. (The proposed estimators are also
valid if the domain is a rectangular cube.) Suppose a=(a,....&,) € N, define ||, = max|a,|,
and let x =(x,....X q) eRI. We will use the following standard derivative notation

Def(x) = FNE() [ 0%, 0K,

Let C™ be the space of m-times continuously differentiable scalar functions, i.e.,

Ccm=lf. Q->R! | D*f€ C° | a | , < m} where CO={f: Q=R | f continuous on Q1}.

On the space C ™ define the norm, ||f|| ., = Y max.eqq | D2f(x) | in which case C ™ is
la| o=m

a complete, normed, linear space, i.e., a Banach space. Consider the following inner product

of scalar functions and the induced norm:



<fg>g,= Y quD"‘fD"g
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(2.1)

Y

and define the Sobolev space H™ as the completion of {fe C ™} with respect to |f [,,. The

following results on the Sobolev space " will be used extensively.
THEOREM 2.1: H™ is a Hilbert space. ®

The Hilbert space property will allow us to take projections and to express H™ as a direct sum

of subspaces that are orthogonal to one another. 2

THEOREM 2.2: Given aeQ9 and beN?, |b| . <m-1, there exists a function, r’e H™ called
a representor s.t. <r.,f >, = D*f(a) forall feH". Furthermore, rab(x) = f] ra:)"(xi) for all
xe QY, where ra’_bi () is the repre;vnentor in the Sobolev space of functions of onel:llzariable on Q!
with inner product <f,g>, = Y f 1 df ds .
a0 "9 dx® dx“

If b equals the zero vector, then we have representors of function evaluation which we will
often write as r, = rf . Theorem 2.2 further assures us of the existence of representors for
derivative evaluation (of order |b| <m-1). The problem of solving for representors is well
known in the literature, (see Wahba (1990)). For the inner product above, representors of
function evaluation consist of two functions spliced together, each of which is a linear
combination of trigonometric functions. Formulae may be derived using elementary methods,
in particular integration by parts and the solution of a linear differential equation. Details may
be found in Appendix 2. Finally, Theorem 2.2 states that representors in spaces of functions of
several variables may be written as products of representors in spaces of functions of one
variable, (a result which also applies if the domain is a rectangular cube rather than the unit cube
which we assume for most of this paper). This particularly facilitates their implementation.

When doing multiple (nonparametric) regression, we will want to calculate representors for
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functions of several variables, but this only requires writing a subroutine which calculates
representors for functions of one variable and calling it repeatedly. We note that one usually sees
the spaces C ™ defined using |a| 1=, +...+a . The version used in this paper yields the tensor
product of the corresponding univariate spaces which, as may be seen from Theorem 2.2, greatly

simplifies the computation.
THEOREM 2.3: The imbedding H" — C™ ' is compact. ®

Compactness of the imbedding means that given a ball of functions in H™ (with respect to
|£]g,s)s its closure is compact in C ™!, (with respect to || | .., ). This result ensures that
functions in a bounded ball in H" have all lower order derivatives bounded in supnorm. Our
estimation will take place over such balls of functions in a Sobolev space. The juxtaposition of
the Sobolev spaces and the C-spaces occurs here for the following reason. The Sobolev spaces,
because they are Hilbert spaces, facilitate calculation of least squares projections. The C-spaces,

on the other hand, facilitate the application of results from empirical process theory. 3

THEOREM 2.4: Divide x into two subsets x =(x,X;). If f(x,,x,) s of the form
fa(xa)fb(xb), then |f ]|§0b: If, 1|§0b If, [|§ob. If f(xa,xb) is of the form fa(xa)+fb (Xp) and
either [£,=0 or [f,=0 then If I3 = If, Isop * Ufy Isop - ®

These results will be useful for analyzing multiplicatively and additively separable models. If
the domain is a rectangular cube rather than the unit cube, then in the multiplicative case,
I£ |%05 and If, ||§0b are calculated over the domain of x, and x, respectively; in the additive

case, |f, I, and If, 13, are both calculated over the domain of (X0 %p)-



3. NONPARAMETRIC SOBOLEV LEAST SQUARES
3.1 Estimation

Consider the following model:

(3.1.1) ¥y, = L(x,) + v, t=1,..,T

ASSUMPTIONS FOR THE SINGLE EQUATION MODEL: i) x, are g-dimensional random variables,
i.i.d. with probability law P, and density p, bounded away from zero on the support Q9, the
unit cube in RY; ii) v, are i.i.d. random variables with probability law P, which has mean
0 and variance aio; P, eP, a collection of probability laws with mean 0 and support
contained in a bounded interval of R!; x, and v, are independent; iii) S is a family of

functions in the Sobolev space H" from R? to R, m >%, = {fE H™: |f niob < L}. .

The Sobolev ball & is compact in C ™', (It is pre-compact using Theorem 2.3, and it can be
shown to be closed.) The condition m >% is a minimum condition which ensures consistency
and asymptotic normality of the average sum of squared residuals. Generally we will also want
m= 2 in which case, S is an equicontinuous family of functions with respect to supnorm, since
by Theorem 2.3 first derivatives are bounded. Indeed, the set D23 ={D°f|feJ} is
equicontinuous with respect to supnorm for all b satisfying |b|,<m-2. (If § is the unit ball in
H™_ then D®J is a closed subset of the unit ball in m bl

so one can just apply the

imbedding theorem again.)

Next, let Tep = Ta, be the representors for function evaluation at x,,....x; respectively, i.e.
<r, >, = fix) forall fe J{". Let R be the TxT representor matrix whose columns (and
t

rows) equal the representors evaluated at x,,...x;; 1€, Rij = <rxi,rxj>50b = rxi(xj) = rxj(xi).



THEOREM 3.1.1: Let y = (yy,yp) and define
. 1
(3.1.2) & = min-, Y [T st. | £ll%s =L
¢
(3.1.3) s2 = min ”li [y-Rd [y-Rd] st. cRes<L

where ¢ is a Txl vector and R is the representor matrix . Then 62 =s? . Furthermore, there

exists a solution to (3.1.2) of the form f=EIT c‘,rx‘ where €= (c‘l,...,c‘T)’ solves (3.1.3). =

This theorem provides for the transformation of the infinite dimensional problem into a finite
dimensional (quadratic) optimization problem. The estimator f, can be expressed as a linear
combination of the representors with the number of terms equal to the number of observations.
(Perfect fit is precluded, except by extraordinary coincidence, since the coefficients must satisfy
the quadratic smoothness constraint.) However, unlike nonparametric series estimators that
approximate an infinite dimensional function space by an expanding sequence of finite
dimensional subsets, (i.e., sieve estimators), our estimating function is extracted from a fixed
set of functions 3, regardless of sample size. The estimator f is unique a.s., (since If I@Ob =L
a.s. and adding a function that is orthogonal to the space spanned by the representors will

increase the norm). Finally, we note that our optimization problem is closely related to penalized

least squares.*

THEOREM 3.1.2: Let f satisfy s* = min %Z(y;f(x,))2 s.t. fe3. Suppose f, €, then:
(@) s> = o,

1 F -r
® L T(F@)-f@) = O,T7) where r- i

(©) T%{sz—aio] D N(0,Var(v?). =

Var(v?) may be estimated consistently using fourth order moments of the estimated residuals
0,=y,~ flx). The rate of convergence, which is derived using a lemma of Van de Geer (1990),
is determined by the metric entropy of . Let N(8;3) bethe minimum number of balls of

radius & in supnorm required to cover the set of functions §.  If N(8; Q) <A8°¢ for positive
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A, (, then % X (f (x)- fo(xt))2 is shown to be O, (T—TC). For the Sobolev ball of Theorem

3.12, (=4 hence the resulting rate of convergence. Furthermore, if first derivatives are
m

bounded, (m = 2), convergence in mean square implies convergence of f to f in supnorm.

(In fact, sup |D°f-D bf,| 0 for |bl, =m-2)

The practical nonparametric estimation problem of equation (3.1.3) is straightforward as one is
minimizing a quadratic function subject to a quadratic constraint -- see e.g., Golub and Van
Loan (1989, p.564) for an efficient algorithm. Using Fortran code and a 90 MHz Pentium
processor, calculation of the representor matrix R with 7=100 takes about 60 seconds.
Subsequent solution of the optimization problem can be performed about 20 times per second,
thus the procedure is not only feasible but amenable to bootstrap resampling methods. (Code for
the calculation of the representor functions may be tested by taking inner products with various

functions to determine whether the value of the function is reproduced.)

3.2 Extensions to the Multi-Equation Setting

Consider now the multi-equation model with assumptions modified as follows:

(3.2.1) Yo =1, (x) + v, t=1,.,T

pxl pxl gxl oxl

ASSUMPTIONS FOR THE MULTI-EQUATION MODEL: i) x, are g-dimensional random variables
i.i.d. with probability law P_ and density p, bounded away from zero on the supportQ 4, the unit
cube in RY; ii) v, are p-dimensional i.i.d. random variables with probability law P, which
has mean 0 and covariance matrix £ ,; P, €P, a collection of probability laws with mean
0 and support contained in a bounded closed cube in R?; x, and v, are independent; iii) S,
a family of functions from R? to RP , is a cross-product of Sobolev balls:

§ = = k)| £ €H™ | £ 5 S Ly, i= 1,.,p) where m> 1.



THEOREM 3.2.1: Let A be a positive definite matrix and define:

(32.1) & = min lT Y @) A f)] st 1S Ly =1

t

RII RI] ql
(3.2.2) SzzmcmlTE y-c' | [Alyc7| ¢ || st (GpnCr)R| ¢ |SLys i=10p
t
Ry, R Cr;
where C is a Txp matrix, 1., .., I, are the representors for function evaluation and R is the

representor matrix of inner products of the r, . Then 62 = s2. Furthermore, there exists a solution
!
to the infinite dimensional problem (3.2.1) of the form F=(isnty)s f;=§:£1 i Ty i=heop,

where C solves the finite dimensional problem (3.2.2). ®

The estimator proposed here is an obvious generalization of the single equation estimator,
(indeed it reduces to it, equation by equation, if we replace A with the identity matrix). Now

define the natural estimator of the covariance matrix:

T
(3.2.3) 5 - iT > - Fx)) - F(x))”

For any symmetric pxp matrix A, define uvec(A4) to be the p(p+1)/2 dimensional column vector

consisting of the upper triangular elements {{A l.j\lsi <j};1<j<p} of A.

THEOREM 3.2.2: Let f satisfy the minimization problem of equation (3.2.1). If f, €8, then:
(@ £, I,

(b) —;—,Z (f;(x,)—fm.(x,))2 = O,(T7) for i=1,..,p where r= 21”;1

(c) T%uvec[ﬁu— Zw} D N(0,IL), I, = Cov[uvec (vv')]. =
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Apart from potential gains in efficiency, our interest in multi-equation nonparametric regression
models is three-fold. First, as Robinson (1988) demonstrated, estimation and inference on the
parametric component of the partial linear model can be reduced to analyzing the residuals of
an appropriate multi-equation nonparametric regression model. In our setting, T “-consistency
and asymptotic normality of our estimator of the parametric component -- which is a function
of £, - follow easily from Theorem 3.2.2(c). Second, the results of this theorem permit
inference on other functions of the elements of I ,, a subject which commands a substantial

statistical literature.5 Third is the application to systems of demand equations.

It is straightforward to verify that the results of Theorem 3.2.2 hold if A is replaced by a
consistent estimate of 2 ;2 Thus, estimation can proceed by first estimating the system equation
by equation, using the residuals to estimate %, consistently, then performing the finite

dimensional multi-equation regression of Theorem 3.2.1.

3.3 Triangular Array Convergence

Staying with the multi-equation model of Section 3.2, fix a sequence x,,f=1,...,0 that is dense
in Q9 the support of x. Each ordered pair 8 = (f,P,) that is an element of ® = JoP, defines
a data generating mechanism (DGM), and the set @ collects all possible DGMs. Where there may
be ambiguity, we will indicate which DGM is being used to generate the data as in the following.
Define a triangular array of random variables where each row corresponds to a (possibly)
different DGM:

0, AN,

0, 71(8,),55(6,)

(3.3.1) : :
0, 707 ...y (07)



11

0 =1 (x)+Vv (P, t= 1,...,T. Note that the dependence of v, on the DGM 6, is only
through P,,.. Let / be the estimator of Theorem 3.1.1 applied equation by equation. For a

given DGM @, define the estimated residuals 0, () =y,(8;)-f(x,;0;), t=1,...,T . Then,

THEOREM 3.3.1: For any sequence of data generating mechanisms (0.} = {(frsPyp)I= ®,
T T

(3.3.2) T* uvec(iT; 0,(68p 0,(0p - ith; v (2, u,’(PUT)] 2 0 =
Consider a sequence 0,= (fT »Pyr) with associated covariance matrices X, which converges to
0,=(f,,P,,)- Then under our assumptions, (indeed uniformly bounded fourth order moments
are sufficient), the Lindberg-Feller Theorem implies that:

T
(3.3.3) T* uvec ( lT ; v,(P,0) v, (Byy) - zuT) 2 N(0,I)
where II = Cov[uvec (U(PUO) U(PUO)/H. Combining this with Theorem 3.3.1, we have the
following triangular array distributional result. Let 6= (fr,P,;) —> 0,=(f,>P) » then

T

(3.3.4) T* uvec (iTZ 0,(0,) 0,0, - zur) 2 N(0,IL)

1
We also note the following triangular array consistency result which follows immediately:

T
(3.3.5) Ly o,0p0,06p £ 3,
TS

Below, we will use these triangular array convergence results to justify bootstrap procedures.
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3.4 Selection of Sobolev Norm Bounds Through Cross Validation

Cross validation is used extensively in nonparametric estimation for the purpose of
selecting smoothing parameters. Examples include selection of the penalty parameter in
penalized least squares and bandwidth selection in kemel regression. In our case, we are
interested in selecting Sobolev norm bounds for the regression function f,. If we select bounds
that are much larger than the true norm, then heuristically, we should expect our estimators to
be less efficient though they will be consistent. On the other hand, if we select bounds that are
smaller than the true norm, then our estimator will in general be inconsistent. Consider the cross

validation function:

T
(3.4.1) cvin - Ly i E(x)T
T+
where £ , is obtained by solving
T
(3.4.2) min Y [p-f(x)P st Iflgy S L
f sEt

As in other applications of cross validation, the idea is to select the smoothing parameter
based on its ability to predict outside the sample, (hence the omission of the t-th observation
from estimation when the t-th observation is being predicted). The difference here is that the

smoothing parameter is the actual squared norm of the regression function.

Elsewhere the minimum of the cross validation function has been used to estimate the
smoothing parameter and is known to have certain optimality properties. While this paper does
not contain theoretical results of this nature, (see Li (1986, 1987) for related results), simulations
are encouraging as may be seen from Figure 1. The data were generated using linear and
multiplicative specifications. In each case the simulated cross validation function, CV(L),
exhibits a rapid initial decline. The minima are in the neighbourhood of the square of the true

norm.



FIGURE 1: CROSS VALIDATION OF SOVOLEV NORM BOUNDS
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Cross validation functions CV(L) defined in equations (3.4.1) and (3.4.2). Sobolev fourth order norm is used
(m=4 in equation (2.1)).
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4. THE PARTIAL LINEAR MODEL

Consider the partial linear model y =z 'B,+f,(x)+¢€, where x and z are independent of €; 2z

is a p -dimensional vector. We begin by specifying the conditional distribution of z,y |x :

@.1) z = E(@x +u = g +u
' y = E(n+v = 4, v
where h, (x)=g,(x) B,*f,(x), v=u'B,*€. Equation (4.1) is a multi-equation regression

examined in Sections (3.2) and (3.3) except that the dependent variable now consists of the p +1

vector (z,y). Let P, denote the true joint distribution of «,v and define
z Z zz|x )y zz|xB o

2 .
O+ B o Z zz|xB o

Omix

o
yix

zz|x

(4.2) COV(”J =
Vv,

ASSUMPTIONS FOR THE PARTIAL LINEAR MODEL: i) X,, t=1,...,° is dense in Q7 the unit cube

in RY; ii) B,€3, a compact subset of R?; iii) let H™ be the Sobolev space from R? to R!,

gl’ 2
go € G:{ g(X):(gl(X)""gp(X))/ 1 giei}{m’ “gi".zS'obSLgl.s izl’--,p }
£, e F={ f(x) | feH", | ep=Ly }
h,e H-{ h(x) | he Ho, A <Ly ) Ly=sup{ 120 BrL(X) s | 8€G, feF,BeB |

iv) conditional on x, u and € are independent of each other; the probability laws P,, and P,

m>4, fix constants L_,...L,, L, then
2 8y °f

have zero means and bounded support. ®

Note that the DGM for (4.1) is completely determined by the elements f,, g,, P,,, P.,, B, Of
equivalently by g_,h,, B,,P,, - The results below form the basis for asymptotic as well as
bootstrap inference on 3. Given independent observations, apply the estimator of Theorem 3.1.1
to each equation to obtain estimates of h,, 8, ,1= 1,...,p. (These estimates may then be used to
produce a multi-equation estimator as in Section 3.2.) Calculate sample moments of the
estimated residuals to obtain E;ZI'X s Opyix Define S = Eu|x ol and
o= L E[( v, h(x))-(z,- 2(x)) B ] Finally, re-centre the estimated residuals from each equation

€

of (4. 1) and construct the empirical distribution function P The estimator 3 can be shown



FIGURE 2: PARTIAL LINEAR MODEL

DATA GENERATING MECHANISM:
f(x)=x,g{x)=x,B,=1,e~N(0,1), u~N(09), x equispaced on [0,10]

Hence using equation (4.1):
y=2zB, +f(x)+e =2x+u+e
z= gy{x)¥u = x+u

V£, Py = 12, oy = 343.33 |1, I%p= 434333

ESTIMATION:
Sobolev least squares of y on x subjectto | g llgo,, =5%343.33 1o obtain g andu.
Sobolev least squares of z on x subject to |k |5, = 5*x4%343.33 to obtain & andV.

B-Sap Tal, S-TalT, &= T Ke) @ -ge)BT

t

ROOT: (sce Theorem 4.1 where cri = Eulx).

r Bl a0y
6,/]6,

T=25
S ———  Sampiing Distribution of Root
© Bootstrap Distribution of Root
Standard Normal Density
o~
o
o
=]
T=100
J
s
o — Sampiing Distribution of Root
h I - Bootstrap Distribution of Root
L Standard Normel Density
o~
o
o
(=)

Sobolev fourth order norm is used (m=4 in equation (2.1)). Sampling distribution of the root based on 5000
samples. Bootstrap distribution based on 5000 resamples from a single initial sample. Simulations performed
using Fortran code on a 90 MHz Pentium processor.
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to satisfy the stochastic equicontinuity efficiency conditions of Andrews (1994a).

Let A be a full rank rxp matrix, r<p and define the root, (which is an asymptotic pivot)

n=T[AB-AB,]|"[A £, A" [4B-AB,] | 67 . Then,
THEOREM 4.1: T*(B-B,) 2 N (0,002}, = Dya

Bootstrap inference may be conducted as follows: sample with replacement from Puv to obtain
(0, v%){ur> v7).  Add these to the estimated regression functions in (4.1) to obtain

5 LzP x)...(yf 2zf,x;). Re-estimate g,,h, and from the estimated residuals, calculate
$8 58 p°, 6*PandnP - T(AB°-AB]) (4 (2] )'IA']'I[A BP-A B/ 6*F. Then,

zlx » Taloo zlx
TueoreM4.2: T*(f2-B) 2 N (0,0227,)., «* 2 % =

The results in this section can be extended straightforwardly to the situation where z (but not x )
is correlated with £. An instrumental variable estimator may be constructed by first regressing
the instruments on x using a nonparametric regression as in (4.1). Test statistics may be
bootstrapped and a Hausman (1978) type test procedure for testing endogeneity of the z's may
be constructed. Alternate resampling methodologies such as the wild bootstrap may also be
used. Simulation results for a simple example may be found in Figure 2. To our knowledge,
the only other partial linear model for which the bootstrap has been shown to be valid is

Mammen and Van de Geer (1995).
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5. CONSTRAINED ESTIMATION AND TESTING
5.1 Constrained Estimation

In section 3.1 we discussed estimation of the single equation model y =f, (x)+v subject to a
smoothness constraint f € S={fEH". | f ||§ob < L}. In the remaining sections we focus on
the imposition of additional constraints on f, and on the testing of such constraints. In particular,

we want to estimate subject to f € I < S where § combines smoothness with further functional

properties and to test H,:f, € &.

ASSUMPTIONS FOR THE CONSTRAINED SINGLE EQUATION MODEL: i) invoke the Assumptions For
the Single Equation Model, (section 3.1); ii) I c S is a closed set of functions such that the
metric entropy log N(8;3) < A 8¢ for some A >0,(>0; iii) {§9T }=, is a descending
sequence of closed and possibly random sets of functions {°8,2..28;2.58 such that

ﬂf;g’sT:SE’s a.s. and logN(S;gr) < A6¢ T=1,..% forsome A" >0. =

Think of { %T }::1 as a sequence of sets of functions that incorporates progressively more of the
restrictions of . (Since all are subsets of J, (= % where g is the dimension of x , m is
the order of the Sobolev norm. See section 3.1.)  The elaboration involving descending sets
is useful in models involving monotonicity, concavity or the implications of demand theory. (In
such cases, optimization over J is technically difficult except in a limiting sense.) The

elaboration will be redundant when performing significance or specification tests or when the

restricted model is separable, (in these cases we set Ji=...=23r = 5‘9).

PROPOSITION 5.1.1: Let f satisfy s*= min %Z(y,—f (x,))2 st fe §T. If foe§§ then the
Suppose f, ¢ 3,

conclusions of Th. 3.1.2 continue to hold with rate of convergence r= 23

"fonzs , is finite and there exists a unique f,€J  satisfying min f (f,~f P dP,. Then
O, _ f€§

§2 a0l f (£-f) dP,. =
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5.2 Conditional Moment Tests ¢

We outline a testing approach which generalizes Fan and Li (1996) and Li (1994).7 Let fo be
the ‘closest’ function to f, in 3, (as in Proposition 5.1.1). The motivation for the test is the

conditional moment condition:

(5.2.1) E, [(7-£,(x) B, [y-£,(0 | pm] = E[(f,-f,0)’ p®] = 0
where the inequality becomes an equality only if £, € J in which case fo =f,. Let8

Ly (i) K )

(52.2) U - —E(Yt %) o)

where K(-) is a product kernel with common smoothing parameter A. We assume that the

underlying univariate kernel is symmetric having support [-%,%]. The term in square brackets
may be thought of as an estimator of (fo (x,)- f_o (xt)> p,(x,). Expansion yields:
U= U+ U+ 1

Aqu Xt: E v K( XS}:X,)
523 mz % X (fhny- o) e >)K( - )
(XX i in) &[5

A" T3
As in Fan and Li (1996), the essence of the proof of the theorem below is to first show that U,

+

+

(suitably standardized), is approximately normally distributed. If the null hypothesis is true, then
the restricted estimator f — f,. If this convergence is sufficiently rapid, causing U, and Uj to
converge to zero rapidly, then the distribution of U (also standardized) is determined by the

distribution of U, . (If the null is false, then U diverges to +.)

Assert the Assumptions for the Constrained Single Equation Model, (section 5.1) and define f

as in Proposition 5.1.1. Then,
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THEOREM 5.2.1:  Suppose f € X, AIT— o and AT '"—>0 where r= ZLC is the rate of

convergence of the restricted estimator. Then
(5.2.4) APTU 2 N0, 2a‘f,fp2<x)f1(2<u))
Let the estimated variance of U be given by:

525 - 2N T e Ao H ()

AZ‘IT“
Then A9T%26% % 2of,fp2(x)fK2(u). Hence Ulé, 2 N(©O,1). =

It is important to keep in mind that in applying Theorem 5.2.1, g is the dimension of x in the
unrestricted model. We bootstrap critical values as follows. Estimate f, using a nonparametric
estimator which is consistent under both the null and the alternative, (e.g., the estimator of
section 3.1). (This ensures that the empirical distribution function of the estimated residuals PU
is consistent for P, whether or not the null hypothesis is true.) Construct recentered estimated
residuals  90;,....,07. Sample from these and construct the bootstrap dataset
( 7 ,X,) = (f(x,) + 07, X,) where f is the restricted estimator. Using these data reestimate f,
under the null hypothesis, (i.e., recalculate the restricted estimator) to obtain f 8 and calculate
the bootstrap value of the standardized test statistic U By a‘f} by inserting f 5 and the y ,B into
(5.2.2) and (5.2.5). Repeat many times to obtain the simulated distribution, (calculate the critical

value of the test statistic from the right hand tail). Continuing with the assumptions of Theorem

5.2.1, we have:

THEOREM 5.2.2: UB/6f 2 N(O,1) =

Significance Test: Define 3= {f (x,x) EH™M S 12, <L, fis constant wrt xz} to be the
restricted set of functions, x, and x, are scalars. From Theorem 3.1.2 we know that the
nonparametric least squares estimator over 3 converges at a rate r =2m /2m+1). Theorem 5.2.1

may then be used to obtain an appropriate rate of convergence for the kernel bandwidth A, (e.g.,

if m=2, then A =T " =0(T"'") suffices).
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Specification Test: suppose we want to test the partial linear specification y =z ‘B+f(x)+e.
Let g, be the dimension of x. A number of variants of semi/nonparametric least squares
procedures exist which, if the specification is correct, yield the optimal rate of convergence

1 Z( + f‘(x,)—zt/B - £(x) )2 = OP(T 2l (z'mq")) Theorem 5.2.1 may then be used to
produce a test against the alternative hypothesis that the regression function is of the general

nonparametric form f(z,x).

5.3 Additive Separability

The nonparametrics literature has devoted considerable attention to improving the rate of
convergence of nonparametric estimators using additive models, (see e.g., Stone (1985, 1986),
Hastie and Tibshirani (1990)). Indeed, Stone demonstrates that under general conditions, the
optimal rate of convergence for a spline regression that is additively separable in each
explanatory variable does not deteriorate as one increases the number of variables. Partition
x=(x,,x,) with dimensions q,,q, respectivelyand xe Q9% =10,1]""%. (Extensions of the
results in this section to more general additively separable specifications is straightforward.)
Define = {f(xa,xb)e H" f(x %) = fax) o) (1 faths %, < L, ffb=0} where the

integral constraint will be seen to be an identification condition.

THEOREM 5.3.1:  Given data (yl,xaj,xbl),....,(yT,xaT,be) let y =(y1,...,yT)/ and define

(53.1) & = min_ \;[ x)- )P st | Grh s = L ff,,=o

f.fy

1 : :
(53.2) s°-= min— V-R,c,~Rycy) [y R,e,mRycy] st R, cpR,c, < L, gcbfo
€y Cp
where c,,c, are TxI vectors, R, R, are the representor matrices on [O,l]q" at x5 ,eX,p and
on [0,1]% at x,,,,....x,; respectively. Then G2 = s2. Furthermore, there exists a solution to
the infinite dimensional problem (5.3.1) of the form £ )+ (x,) = E1T ¢, rxat(xa)+6btrxb!(xb)

where C,= (&, +Cr)s éb:(ébI""’ébT)/ solve the finite dimensional problem (5.3.2). =



FIGURE 3: CONDITIONAL MOMENT TEST OF ADDITIVE SEPARABILITY

DATA GENERATING MECHANISM:

y= £ () £, (X0 = X+ x, 0 v~ N(0,.25)
x,, x, lie on a uniform grid in [1,2}x[1,2]

| £+, lisop = 11.167

HYPOTHESES:
Hyy=£(x) (x4 0 Byiy=F(x,0)

RESTRICTED ESTIMATOR: Sobolev least squares
subject to [ f,*f, [|§ob < 11.167 and an identification
restriction f f,=0.

TEST STATISTIC: U/0y 2 N(0,1) underH, (see
equations 5.2.2 and Theorems 5.2.1 and 5.2.2).

T=25 , A=T5=525

4
<« 4
o ———  Samping Distribution of Statistic
Bootstrap Distribution of Statistic
Standard Norma! Density
N
o
[=]
o
-4 2 2 4
T=49 , A=T 15=.459
<
(=4 ———  Samping Distribution of Statistic
- Bootstrap Distribution of Statistic
Standard Normal Density
N
o
©
o

Sobolev fourth order norm is used (m=4 in equation (2.1)). A uniform product kernel is used in the computation
of U. From Theorem 5.2.1 we need A?2T'"—0. Withm=4, g=2, g,=¢,=1 the rate of convergence of the
restricted model is r = 2m/(2m+max{q,,q,}) = 8/9, (see section 5.3). We set A =T The sampling distribution
of the test statistic is based on 1000 samples. The bootstrap distribution is based on 1000 resamples from a single
initial sample. Fortran code was used to calculate the representor matrix. GAMS, (Brooke et al (1992)), was
used to solve the restricted optimization problem (about 3 seconds per optimization for T=25 on a 90 MHz

Pentium processor, 12 seconds for T=49).
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The sets of functions {f,(x,)} and WX | f fp= 0} are orthogonal in the Sobolev space H" on
Q%% Thus, using the Hilbert space property of H", (Theorem 2.1), a function f,+f, that
satisfies the infinite dimensional optimization problem has a unique representation as a sum of
functions in each of the two subpaces. The metric entropy for the set over which estimation

takes place is given by log N 8,3 < A& 900y . Suppose the true regression function is
2m

given by f, (x,)+f;,(x;), then Proposition 5.1.1 yields a rate of convergence r = prprr——

(Note that asymptotic normality of s2 holds as long as m >'smax{q,,q,}.) Theorem 5.2.1 then

provides a test of additive separability. (Figure 3 contains simulation results.) As long as first

derivatives are bounded then the component regressions are separately identified:

PROPOSITION 5.3.2 if m =2 then sup, |f,~f,| 0 and sup, fy Sl < 0. m

5.4 Multiplicative Separability

An alternative structure which mitigates the curse of dimensionality is multiplicative. Define
J= {f(xa,xb) e H™: £lx,x,) = £,(x,) 55,5, | £, 6 |l 5op < L)} where  x=(x,x,) Wwith
dimensions g,,q, respectively and x e Q%% =[0,1]%"%. Recall from Theorem 2.4 that in this
case |f(x,,* b)"Zs()b: I fa(xa)||§ob~ |5 b)||§ob. Recall also that for an arbitrary vector w, [(w],

denotes its ¢ -th element.

THEOREM 5.4.1: Given data (¥,,X,1:% ;)5 (YsXar>X 1) let y = (yl,...,yT)’ and define

.1
mint Y (5550 LI st | £ Gl < L

f,.f, ¢

(54.1) &

1
min—Y" (7~ [R,c]), [RyCs], |} st CIRc, cyRc,< L

54.2 s?
( ) A

: q
where c,c, are TxI vectors, R, R, are the representor matrices on [0,1]% at x ;550 X, and

on [0,1]* at x,,,,...,x,, respectively. Then 6*=s?. Furthermore, there exists a solution to the
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infinite dimensional problem (5.4.1) of the form f,(x,)"f, (x;) :(E{ ¢, rxm(xa)) (EIT Gy, b))
where ¢, = (éal""’éaT)/’ Cp= (ébl""’ébT)/ solve the finite dimensional problem (5.4.2). =

In order that £, and f, may be identified individually, f, and f, must be non-zero somewhere
in their respective domains. Even so, identification problems result from rescaling, (since
£ f,=cf f,[c). We will assume £,(0)=1 which may be implemented by imposing
IA:(O) = ElT éa,rX“(O) - 1. Other identifying restrictions are possible, such as | f““iob =1.
However, in general, it is necessary to know some region where either f, or f, is of known

sign, otherwise f,,f, are indistinguishable from ~f,»~f,- Suppose the true regression function

is given by £, (¥ fp(*;), then:

PROPOSITION 5.4.2: augment optimization problem (5.4.2) of Theorem 5.4.1 with the constraint

£,(0)= ZlTéa,rxt(O) =1. If m=2 then supxa[f;—fao| o, supxb[fb—fbo| a0, =

The metric entropy for & is given by log N ¢:Q) = 4 § M40}/ ™ - proposition 5.1.1 may be

applied to obtain a rate of convergence r= ___2m _  which in turn may be used in Theorem
2m +maxiq,,q,}
5.2.1 to obtain a test of multiplicative separability.

A natural application in economics is to models that are homogeneous of degree k. Let
x,, X, be scalars corresponding to levels of inputs and y the observed level of output. Define
unrestricted and restricted function sets: I = {f (XX, /%) EF: | f (%45 %,/%,) “iob < L} and

§’9 = { flx,, x,/x,) € H™: flx,,x,[x,) = ng(xb/xa), “ xfg(xb/xa) iob < L}. Then the restricted
optimization becomes: ming 1/T E (y,—xaf g (x,,/x at))?‘ , S.. "xak "iab I8 (* b/ %4) ||§ob < L. (See

Theorem 2.4.)
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5.5 Monotonicity and Concavity

The isotonic regression literature which in the simplest case considers least squares regression
subject only to monotonicity constraints, goes back several decades, (see e.g., Barlow et al (1972)
and Robertson et al (1988)). It differs from our setup in that we impose additional smoothness
constraints.  Monotonicity combined with smoothness assumptions has been studied by
Mukarjee (1988), Mammen (1991) and Mukarjee and Stern (1994).° Consider the model
y=f(x)+v, x isascalar. Define = {f€H™ | f ug,,,, <L }and 3= {fel, f non-decreasing} .
In examples considered in previous sections, it has been a simple matter to ensure that the
restricted estimator f satisfies the additional properties everywhere in its domain. However,
defining an estimator that is both smooth and monotone everywhere is more difficult. Instead,

we will have it lie in descending sets %T that converge to  as sample size increases.

Let :§T = closure {fEiH’": If ||§ob < L,f(x)Sf(x,)x =%, s,t,=1,...,T } where {xt}:';l is an
infinite random sequence. Estimation takes place over the sets @T which are random and which
will, in general, include functions that are not monotone. Note that with probability one the
sequence {x,} is dense in the domain and consider such a sequence. Bounded first derivatives
combined with the imposition of monotonicity inequalities at xi,...,x; ensure that for large
enough T, %T will contain only monotone functions and certain functions that are arbitrarily
close (in supnorm) to a monotone function.  Furthermore, ﬂf§9T= § since if monotonicity
restrictions are satisfied on a dense set, then given the smoothness of the family, they are

satisfied everywhere. Proposition 5.1.1 may be applied. In addition, the following result holds:

PROPOSITION 5.5.2: Let f:mr be the (smoothness constrained) estimator of Th. 3.1.1 and let f
be the monotonicity constrained smooth estimator satisfying min % E oS (x,))2 s.t. fe §T.

If f, is strictly monotone on Q' and m>2, then Prob[f = f;m] — 1las T—>». =

Essentially, the corollary states that if the true regression function is strictly monotone then the
monotonicity restrictions become nonbinding as sample size increases. In such cases, the

constrained estimator has the same convergence rate as the unconstrained estimator in Theorem
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3.12, ie, O, (T-?m/@m1)  (Utreras (1984) and (Mammen (1991) find similar results using
alternate monotonicity constrained nonparametric estimators.) Let R be the representor matrix
at x,,..,Xy, then the monotonicity restricted optimization problem may be implemented by

solving:

* = min + S AT AV ¢/Re< L
(5.5.1) § CT{I;T TE [yt .Yt] 7= [Rd],

y. <y, for x=x, st=1,..T
where c=(¢;,...,c). Concavity restrictions may be implemented by solving:

s? = min lTE WSP 5-LRel, c'ResL

(55.2) e T
A A t A —_
Joz=—="y+ Sy, for x, S X, <X, LSI= 1,...,.T

r
X~ X, X~ X,

If the regression function f, is strictly concave, and if second derivatives are estimated
consistently, (which will be the case if m>3), then the concavity constraints will become
nonbinding in large samples and the rate of convergence will be no faster than in the absence of

such functional structure. (See Matzkin (1994) for additional references on concave estimation.)

5.6 Homothetic Demand

Consider a two-equation regression model:

£,(x)

a

£, (x)

L,

Ya
Y

(5.6.1) +

2

0 (72 o
a ab
Op

Uy

In section 3.2 we discussed estimation of such models subject to smoothness constraints. In the
current section we add the constraints embodied by the homothetic demand model, (other
constraints may also be implemented) but first we provide the obvious generalizations of

asymptotic results on constrained estimation and testing.
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ASSUMPTIONS FOR THE CONSTRAINED TWO EQUATION MODEL: i) invoke the Assumptions for the
Multi-Equation Model setting p =2, (section 3.2); J=S,83,,isa cross-product of Sobolev
balls S, {f e H", |f, "s ,SL } and Sb {fbefH?" ||fb“s , S Lb} where m >g i) S S
is a closed set of vector functions; let J {f | o f3) € S} and Sb {fb aSb) € 8} with metric
entropies log N (8;3,) < A 8¢ and log N(8 S,) < A 8¢ for some A >0,(>0; iii) { }T 8
is a descending sequence of closed and possibly random sets of functions 83813 DST .58
such that (7 37 =S as.; let ﬁar— {f |(fasSs) € ST} Sbr = {fbl(fa,fb € ST} with metric entropies
satisfying log N ($;S,7) < ¢ and logN(8;8,;) < A8, T=1,.. for some A’'>0. =

Since 5’9” , 3,r are subsets of g, , S, respectively, (= 4 where g is the dimension of
m

x, m is the order of the Sobolev norm. (See section 3.1.) Let f;, fb satisfy:

(5.6.2) min LY (100, by (0) A (R £ (1) s ¥y £, ()Y
(£ 1) €3y ‘

where A is a positive definite matrix and let ¥, be the matrix of moments of the estimated

residuals.

PROPOSITION 56 1. If f, € then the conclusions of Theorem 3.2.2 hold with rate of

convergence r= are finite and there exists

Furthermore, suppose f, €S, Voo I o’ b0 I b

S satisfying mmfﬁf FasSarf oS 5) Moo fasS oo fo) APy~ Then 2,04
so) (oo~ Foor Fr~Fro) AP, ®

ao?

_ _C
a unique (fao,f )
%ot [(ErFoor fr~

Analogously to equation (5.2.2) define the statistics:

o F bt K[ )

Aqu S*EL

LY b)) K[ 25

AqT S*ELt

- —Z(ya, (%)
= ‘Z(th (%)

(5.6.3)
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THEOREM 5.6.2: Suppose (f,,f;,)€ S}, AIT— o and A’T'"—0 where r-= 22C' Then
2 0 0: azb
(5.6.4) gt Y > , (2 f pijZ)- = N0O,Q)
U, 0 . O
Define estimators of the three distinct elements of Q by:
0 - 2 - fx)\(y,. - Fx sz(XSGX’)
aa 19T2 2 Sz_;;t (),-’1 4 f)) (},3-9 2( S)) A
I 20 o2 22 X~ X
(565 Q, = a7 Z,: ; (Ve = B2 (7~ T4 X)) K (_———A )
2 . . . . XX
0, = “2oX T b Bl Hrlr Elon- i) K 2
AT T &t A
aa ab P -1 U; D 2
Then Q= £ Q and MTU,, U)Q 2 ox .
‘Qab be Us

Generalizing the bootstrapping procedure described in section 5.2 in the obvious fashion (note

that one samples from the joint empirical distribution of the estimated residuals), we have:

Ul
TheoREM 5.6.3: AsT2[US, US][QT | ° 1 2 % .
Ub

We now apply these results to a homothetic demand model where y,,y, are demands for each
of two goods, x =(x,,x,) are corresponding prices and income is fixed at 10. Homotheticity
implies that expenditure share functions m,(-),m,(") depend only on relative prices. The
budget constraint requires 1, + 1, =1. The remaining constraints implied by the maximization
hypothesis require that the ratios of demands are a monotone function of relative prices. 1©

Thus, the restricted model incorporates multiplicative separability, a cross-equation monotonicity

restriction and smoothness. Results of simulations are in Figure 4.



FIGURE 4: CONDITIONAL MOMENT TEST OF A HOMOTHETIC DEMAND MODEL

DATA GENERATING MECHANISM: RESTRICTED ESTIMATOR: multivariate Sobolev least squares on
-yg:f.;(Xa’Xb): '5*10/X3+Ua the mOdelu
Yy = Ly(XgsXp) = 5%10/ X, U Y, T, (X, 1%,) 10/ X, + v,

v, (0) (.25 0. )l Vs (X, Xp) 10/ X, + 0,

v, 0)\0. .25

. . 2 2 .
subject to: smoothness constraints: [} = 4|y lse < 45

. . . ints:- =1 and monotonici
price vectors (x,,,) lie on a uniform budget constraints: ‘rra<x,,/xb)+'rrb(xa/xb) ty

grid in [2,4)x[2,4]; x,/x, 2lies in the | constraints:
: 2 .
interval [.5,2]; If, lsop = Ufy lsop = 23765 | 7, (X X)) 10/ X, - 7o (Xus X) 10/ Xy poover 0 5 Yoo
wb(xa,/xu) 10/x,, ﬂ'b(X”/sz> 10/ x,, X, X4
HYPOTHESES: 4 |Va 2
H,: £, f, are smooth homothetic TEST STATISTIC: A2 T2(U,, U, Q2 g~ % under A, i
b

demand functions
H, : £, f, are smooth functions

T=25, A=2T"Y3-1.051

——  Sampiing Distribution of Statistic
- Bootstrap Distribution of Statistic
Chi-Square D.F =2

T-49, A=2T""=918

———— Samping Distribution of Statistic
- Bootstrap Distribution of Statistic
Chi-Square D F.=2

i For the fourth order Sobolev norm, calculation yields | 1/z |y, = 4752, if 2 <z <4.

Hence [f, 120 = e ui,,, = 4752 f ¢ (:5*10)* =23.76. See comments following Th.2.4. .
i v _,1r, are expenditure shares, 7 (- )=.5,m,(- =5 on [.5,2; I, 15 = I, B = S%2 --5) = 375 Objective function:
UTY (Far ™ Xud 2o ™ A Xl X, -
i See Th. 5.6.2. A uniform product kernel is used in the computation of U,, U,. Since (1,=0 we set Q,=0.
Sobolev fourth order norm is used (m=4 in equation (2.1)). From Theorem 5.6.2 we need A9?T!"—0. Since
each equation depends nonparametrically on only one variable, (relative prices), r = 2m/2m+1) = 8/9, (Proposition
5.6.1). We set A =2T V5. The sampling distribution of the test statistic is based on 1000 samples. The bootstrap
distribution is based on 1000 resamples from a single initial sample. ~Fortran code was used to calculate the
representor matrix. GAMS, (Brooke et al (1992)), was used to solve the restricted optimization problem (about
1.5 seconds per optimization for T=25 on a 90 MHz Pentium processof, 8 seconds for T=49).
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More general versions of the maximization hypothesis may be imposed by adding the Afriat
(1967,1973) inequalities to the optimization problem, (see Epstein and Yatchew (1985)).14
Estimation takes place over a descending sequence of sets of functions which satisfy Afriat

inequalities at points where data are observed.

6. CONCLUDING REMARKS

Many bodies of theory are incomplete without empirically determined constants.
Economic theory is in an unenviable position in that these unknowns are often functions,
constrained only by certain functional properties. Hence (constrained) nonparametric estimation
finds a natural home in economics. Given the curse of dimensionality, the single most important
contribution that economic theory makes to the nonparametric empirical exercise is in limiting
the number of distinct variables entering into the regression function. Other restrictions that
enhance the rate of convergence include forms of separability and various semiparametric
specifications. In large samples and given sufficient smoothness assumptions, functional
restrictions such as monotonicity and concavity are of lesser importance in that they do not
improve the rate of convergence, but in small samples or in the absence of smoothness

assumptions, they can be beneficial.

One of the reasons that nonparametric techniques have not seen wider use in applied work
is the absence of a unified framework for constrained estimation and particularly testing of
hypotheses. This paper describes a class of estimators, closely related to spline estimators, which
can accommodate a variety of restrictions. A conditional moment test procedure which
generalizes the work of other authors, and is useful for testing a broad range of hypotheses, is

also provided.
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FOOTNOTES
! The authors are grateful to the SSHRC for its support and to many individuals but especially to Larry Epstein, Zvi Griliches, Angelo
Melino, Per Mykland, Peter Robinson and Sara Van de Geer. Thanks are also due to Alex Meeraus and Peter Steacy at the GAMS
Development Corporation. This paper is dedicated to Mrs. Jeanette DeHaan.

2 For a recent review of Hilbert space methods in probability and statistics see Small and McLeish (1994).

3 See e.g., Kolmogorov's theorem (Dudley (1984, p.51)), relating metric entropy of a class of functions to the number of bounded
derivatives and dimension of the explanatory variable.

4 Penalized least squares optimizes a criterion function which balances fidelity of the regression function to the data against
smoothness of the regression function. The ‘penalty’ parameter for smoothness is typically selected using crossvalidation. In our set-
up, we select a bound on the smoothness of the regression function using cross validation, then maximize fit subject to the constraint
that the smoothness of the estimated regression function not exceed the selected bound. A further difference between the approaches
lies in the measure of smoothness. In penalized least squares, smoothness is typically measured using a semi-norm such as the
integrated squared second derivative. We use a Sobolev norm of sufficient order to permit the derivation of certain asymptotic
distribution results. If one solves our Lagrangian problem min,; 1/T Xy, fx)) - ArlLfllﬁab-L], then uses the resulting A in a
penalized least squares procedure with the same Sobolev norm, the identical minimum sum of squares will result.

5 Specific examples include tests of sphericity, confidence regions for eigenvalues of X, (which may be used in principal component
analysis), factor analysis and various particular structures arising from heterogeneity of the residuals. See Shao and Tu (1995, pp.373-
383) for references and an overview of related bootstrap inference.

6 The authors have investigated an altemative test procedure. For the purposes of this footnote define suzn, to be the solution to the
<unrestricted’ optimization problem of Th. 3.1.1. Define s,zes to be the solution to any of the ‘restricted’ optimization problems in
Section 5, (e.g., additive or multiplicative separability, monotonicity, concavity or homothetic demand). Then T‘/:(s,zes - suz,,,) -0
which precludes the use of this statistic (without re-normalization) for testing purposes. The degeneracy can be circumvented by
sample splitting (see e.g. Yatchew (1992), but not without loss in efficiency, (Hong and White (1995)). In simulations performed by
the authors, the analogue to the conventional F- statistic, given by F = T(s,zes - suz,,,)/ suz,,, was found to perform well when critical
values were obtained using bootstrap procedures, (suznr and s>, were computed without sample splitting). Simulations were performed
for tests of specification, significance, additive separability, monotonicity and the homothetic demand model. Results are available

from the authors. For related work see Cleveland and Devlin (1988).

7 See Fan and Li (1996) for significance and specification tests using the statistic in equation (5.2.2) where the restricted estimator
is based on kernel methods.

8 Although (5.2.2) is a kind of U _statistic, studied by Hall (1984) and De Jong (1987), we will not use those results but instead rely
directly on triangular array results for dependent processes to obtain our distributional results. This will simplify subsequent
demonstration of the validity of the bootstrap.

9 See also Wright and Wegman (1980), Wong (1984), Villalobas and Wahba (1987), Ramsay (1988) and Goldman and Ruud (1992).

10 To see that these conditions are sufficient, first note that with two goods, data that satisfy the weak axiom of revealed preference
are consistent with the maximization hypothesis (Varian (1984, p.143)). Then verify that with the budget constraints and the
monotonicity constraints in place, the weak axiom cannot be violated.

1t See also Diewert (1973) and Varian (1982, 1983, 1988). Other work in this area includes Yatchew (1985), Matzkin (1986, 1991,
1994) and Matzkin and Richter (1991). For references on a parallel literature in producer theory, see Matzkin (1994).
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APPENDIX 1 - PROOFS

PROOF OF THEOREM 2.1: It is straightforward to verify that " is a vector space and that

equation (2.1) defines an inner product on it. Furthermore, H" is complete by construction. ®

PROOF OF THEOREM 2.2: For functions of one variable, derivations of representors are well

known. Details are contained in Appendix 2. For functions of several variables, the proof

proceeds by producing the representor rab.

q ; : . .

Let rab(x) = 1] ral_"(x,.) forall xeQ 9, where ral_” (x,) is the representor at g, in H" (Q ). Since C "
=1 '

is dense in H™ it is sufficient to show the result for feC ™. We have then

b
| Fr,'(x) For, (x
(£hf)gy = (Mry 6 = T o ? pefy di
Sob 4 Sob la| <m a d A
== e 0x Xq
which may be rewritten as
a"‘rb‘( ) ajqu"(X e
= Z a] X_l . e aq q) al _ KX) dX
il,.,,iq = 0,..m 0 aXlll ax;q axlll...axé"
mo LA m ) m o (x fied
a 4 a K a av (X
= Z f I I f 2 7 ) ' E f : ) q) ’ 1 (1) (kq - dX2 Xm
0 0 ox' [0 o ox 70 0 ox, ox, ...0x,

Consider the centermost bracket. Since 8"""¢1f (x)/ dx,"...0x "] viewed as a function of x,,
. . . . b .
holding x,...,x ,-1 constant is a function in H™ (Ql) and r, * (x q) is the representor for the bq-th
q
derivative at a, in H"(Q'), the quantity within the centermost square bracket is equal to

3% f (X1 X,152,) | anb 7 . Proceeding in this way we obtain the value for the whole expression

to be equal to D®f(a). =
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PROOF OF THEOREM 2.3: In one variable, we may appeal to the standard case, (Adams
(1975), Theorem 6.2, p. 144), which states that the imbedding H"(Q!)— C™1(Q!) is
compact. In particular, for 0<b<m-1, and aeQ!, the mapping f — d’ (a)/dx?® is a
bounded linear functional on H"(Q'). By the Riesz-Frechet Representation Theorem there
is a representor r’eH™(Q') such that for all feH"(Q"), <! f > =df(a)/dx®.
Moreover, since compact sets are bounded, there is an M>0 such that if |fs, <1 then
|l 1 = M. Hence, we have |fl;, <1 = |<rab,f > =M for 0<b<m-1 and all

ae Q'. In which case:

b
(A1) < ,— > - 2 g S M
”‘ra ”Sob Sob

Furthermore, it is not difficult to see by the construction of these representors, (see Appendix 2),

that the mapping: Q' — H"(Q!) given by a—>r/ is continuous for 0 <b=<m-1.

Consider the several variable case and define rab(x):=r:1(x1)...rai"(xn). By Theorem 2.2
<r’, f>,,=D%(a) for all fe H"(Q) and b such that |b|, <m-1. It is straightforward to

show that:

(A2) I Dlg = I gy - - - - 15,0l

Furthermore, as we have indicated in the text, C ™ (Q ?) is a complete normed linear space, i.e.,
a Banach space. We will first show that 3" (Q 7) is imbedded in C™1(Q ), ie., fe H*(Q )
implies that fe C™ 1(Q 7). Let fe H"(Q9). By definition there is a sequence {f,} cC™(Q7)
such that |f -f, 5, = 0. We wish to show that {f,} is convergent in C m-1 (Q7) which we do
by showing that it is Cauchy in this space. But we know {f,} is Cauchy in H"(Q 7). Hence,

given £ >0, choose T large enough so that ¢,,¢, >T implies |lftl-ft2 leop < £ . Thenfor
mIM 9
4,4 > T we have:
- Flamy = Y max |[Df()-Df(0)|
lat|=m-1 xQ9
=Y max [<ry, £, ~£,> g, using Theorem 2.2

|| s m-1 x€Q9



= Y max |7 g V=1, o using Cauchy Schwartz
|t s m-1 xeQ9

< miM7 —& - &

mIM9

The last inequality follows by noting that |r{,, <M 9, using (A.1) and (A.2) above and noting
that there are m ¢ elements in the summation, (each «; taking on values 0,...,m-1). Hence,
we have that {f,} is indeed Cauchy in C"1(Q 7). Butas C m-1(Q 1) is complete, there exists
g€ C™'(Q9) such that f,—>g in C"'(Q7), that is, D %,—> D bg uniformly for all
5|, < m-1. Then D%,— D% in L,(Q) for all |b|, <m-1, or in other words, f,—> g
in H"1(Q9). But by definition, f,—>f in H"(Q?) and so automatically, f,—>f in
Hm™1( Q7). Hence, by uniqueness, f=g, feC™(Q).

To show compactness of the imbedding, we proceed by induction on . Consider m=1. In this
case, we must show that if {f,} is a bounded sequence in H!(Q?) then there is a subsequence
that converges in C?(Q 7). But by the Arzela-Ascoli Theorem it suffices to show that {f,} is
equicontinuous. This follows easily from the fact that
£@ - £@)] = <55 gl S ULl e

and that r, depends continuously on a. Now suppose that the imbedding H™(Q ) = C ™1 (Q )
is compact for particular m and consider m+1. Let {f,} be a bounded sequence in H™ Q).
Then {D°,} is bounded in H" (Q ?) for each a with la|,<1. Hence for each |a|,<1 there
is a subsequence of {D“f,} which converges in C m-1(Q9). By passing to subsequences (of
these 2n sequences) we may extract a single subsequence {D*f,/} which convergesin C" Q9

for all |a|,=<1. Thatis, {f,/}convergesin C"(Q7). =

PROOF OF THEOREM 2.4: Both results can be proved by expanding the norm defined in (2.1).
Note that for additively separable functions, {f,(x,)} and {f,(x,) | f f, =0} are orthogonal in the
Sobolev space H™ of functions f(x,,x,). ®
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PROOF OF THEOREM 3.1.1: Let M=span{rx': t=1,..,T}, ={heH": <1, , h>g, =0, Vt}.
Representors exist by Theorem 2.2 and we can write H™ = M ©M * since H" is a Hilbert space.

Note that the functions s e M * take on the value zero at x,,...,x; . Consider a function fe H".

Write f = El c,r,+h, he M*. Then

j X

Z Yt_f(xt)]z = E P,t_< rx, ’ EC-I’Xﬂ-Il >Sob]2 = Z [ Z< [ C I' Sob
J

t

=tz{ ~Yeg 1, r, s:;b} = Z[ E:R,jcj}2 = D"RC]/[)"RC]

t J t

Note further that

£l 55 = <££>500 = <E s D cj"x-> +<hh>gy = € Rov<hh>g,
J J Sob

J 7/

Suppose that f = Z Cfy, * h  minimizes ——Z Y, f(xt)]

f*=f-hsince h i zero at Xy,.,Xy . Hence, there exists a function f * minimizing the infinite

dimensional optimization problem that is a linear combination of the representors. Furthermore,

I

that the following two problems are equivalent:

. 1 * *
rr;m—T Yyt (X,)]2 st. || f

2 2 a2 .
< | F s 121500 =1 £ Nsos < L - = ¢'Rc . Finally, we observe

<L femM

and  min % y-Rdly-Rd st dRe<L ®

COMMENT: Lemmas 1 and 2 are used to prove rate of convergence and triangular array
convergence results. The latter are used to justify bootstrap procedures. Both Lemmas are
straightforward adaptations of Van de Geer (1990, Lemma 3.5). (Van de Geer uses a sub-
gaussianity assumption on the residuals. We assume bounded support. She also uses a somewhat
different definition of the set over which estimation takes place.) The rate of convergence results
also yield asymptotic normality of the estimated average sum of squared residuals. For an
alternate approach to these asymptotic normality results, see Yatchew (1992) who uses arguments

developed by Pollard (1984, p-140). =
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LEMMA 1: Invoke Assumptions for the Single Equation Model, (section 3.1). Assume f €S

and let f satisfy min% Y (vof (x))- Then 3 positive constants 4 ,C,, K, such that
feI

VK>K,

(LL1) Prob < exp[-CK7 =

T

Sl

2m
_K_zé)hﬂ*q

S (fx)-£x)) = (

PROOF: Let N(8;3) be the minimum number of balls of radius & in supnorm required to
cover the set of functions §. Using Kolmogorov and Tichomirov (1959), it can be shown that
3 A>0 such that for §>0, we have logN(8;3) = A §-9/m_ Use this result and Van de Geer
(1990) Lemma 3.5 to establish that there exist positive constants C,, K, such that V K>K,,

‘ —ETE V(£ (x) - fx,))

(L12) Prob| sup T*

I5esL L

4m

N =

(l > (fo(x,)—f(xt))z)
T

Since f,€ § and f minimizes the sum of squared residuals over fe J,
(L1.3) iT T (£(x)-Fx)P S —ETE v (£,06) - F(x))

Now combine (L1.2) with (L1.3) to obtain the result that ¥V K>K|

q

(i_g
L4 prob [T ‘|77 (f‘(x»—tz(x,))z)l(z W > Kkat | = ew[CK

which after straightforward manipulation yields (L1.1). =

LEMMA 2: Suppose that in addition to the assumptions of Lemma 1, we have a scalar random
variable w, where (v,, ) |x, are i.i.d. with probability law P, € P, , a collection of probability
laws with mean O and support a bounded subset of R2. Then 3 positive constants 4 , C,, K,

such that VK >K

> (ﬁi‘)ziﬁzq } < exp[-CK? =

(L2.1) Prob

»lT Yw ,(f(xt) - f;(xt))
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PROOF: Following the proof of Lemma 1, there are positive constants 4, CO/ ,K (f such that

VK>K,,

llT Yo, (fo(xt)—f(xt»
T > KA* | = exp[—CéKz]

(L2.2) Prob| sup .
IAGssL 1 v 22
—7_., (‘fg(xt)—ﬂxt))

which implies

% 1. g
(L2.3) prob > (%ﬁ ) (_lf E(fo(xt)—f(xt))z)z 4"’} < exp[—C;KZ]

_1% S, (£,00) - F(x)

Equation (L1.1) implies 3C,’,K,'s.. VK>K,

) 1 g 2 4\ 224
(L2.4) Prob{ (lTE (f(xt) - f;(xt))Z) 2 4m > (!i]'é) 2(2m+q)] < exp[— C;/KZ}

Combining (L2.3) and (L2.4) yields (L2.1). =

REMARKS ON LEMMAS 1 AND 2:

2m

1. From equation (L1.1) it is immediate that %‘ T (fx)- fo(xt))2 is Op (T 2meq ) But Lemma

1 implies a stronger triangular array result. In particular, let {6;} ={(f; ,P_ )} be a sequence of
bGM's such that ¥ T, f € S, P,y € P. Foreach T, y(67) = fr(x)* vi(Pur) 1= 1,..T . Let f;
satisfy mein% Y (vi(0r)f (x))*- Since the constants in equation (L1.1) are not dependent on the
specific DGM, lT E(fT (x;;07)-fr (x,))2 is also O (T2m/@m D), Similarly, Lemma 2
implies 1y w, [f(x;:0r)-fr (x,)) is Op (T-2m/@m+®)  Note that we may set ® = U in which
case—;: X vt(f(x,;OT)—fT(xt)) is Op (T72m/@m ),

7 Lemmas 1 and 2 may be generalized to the constrained estimation setting. Invoke the
Assumptions for the Constrained Single Equation Model, (section 5.1). Suppose f, € 3 and

let f satisfy m_inl Y oS (x))7. Let r= 2_26 . Then 3 positive constants 4 ,C,, K, such
fe]r i



that vV K>K_ we have

Prob —; b3 (i(xt) - fo()rt))2 > (—K—;‘é) } < exp [— CK 2]
. 2 4\
and Prob —17—, Yo ,(f(x,) - f;(Xt)) > (K TA) } < exp [— CK 2]

Thus — Z(f(xt)~f (x,)f and = Ew () ~F (%) are Op(T -r). Suppose (0} ={(fz,P,r)}
isa sequence of DGM's such that VT,fr€ ST, P,,eP. Then -1T— E(f(x,;91)~fT (x:)>2 and
1y (Fxs 0,)-f(x)) are Op (T 7). Note that we may again set @ =V in which case
T v, (Fx;07) - f(x) is Op(T 7).

3. Generalization to a multi-equation setting is also straightforward. Invoke the Assumptions
for the Multi-Equation Model (section 3.2) where for simplicity we will focus on the 2-equation
model £, (¥) = (fo (¥): fon (£1)'s ¥ = (05 7s)/- Let f satisfy min lT S s GaA 0 @)
suppose f, € and let r= an”iq. Then 3 positive constants A C,, K such that V K>K |

Prob lT }; P00 A [Fo)-f,()] = (K;A) } < exp[-CKY
1

hence ? Z (fa (x t)-f ao(x t))z’ _1]—1 E <f b (x z)_f bo(x t))z and ';: Z (f;z (x t)_f ao(x t)) (f b (x t)—f bo(x t))

t

are O, (T 7).

PROOF OF THEOREM 3.1.2: Part b), the rate of convergence result, follows directly from remark

1 following Lemma 2 above. To prove part ¢), expand s? to obtain:
T (s? ~0%,)= ( Y vi- UO) Ny X:(fo(,x't)—ff(,vrt))2 + T%%'E U[(fo(x,)—f(xt))

The first term is asymptotically N(0, Var(v?). The second and third terms go to zero. (See
remark 1 following Lemma 2 above and recall that m >%.) Finally, part a), the convergence
of s? is implicit in part ). (Alternatively and under weaker assumptions consistency can be

proved using Ranga Rao (1962, Th. 6.2, p.672). See e.g., Epstein and Yatchew (1985).) =



PROOF OF THEOREM 3.2.1: Let M =span{rxl ir=1,.,T}, M*={theH": <, ,h>, =0, Vr}.
Representors exist by Theorem 2.2 and we can write H™ = M ©M* since H" isa Hilbert space.
The functions he M* take on the value zero at xi,..,x;. Consider a vector function

f=(f1,... f)/ where £, e H™. Write fi:Zqu C, rx‘+h,., h,e M*. Then

»p

T T
filx,) = <r, ZC r.+h; >, E <1 G, o = %Cﬁ<rx,,r > = ER,].CJ.,.
a -

Ji'x;
1

Note further that
C'l .

1

T
C}irxj’ Z C;Jr'rxj>.5'ob+<b 111>Sob (q1”CT1)R 3 +<11 h; >Sob

J-1 CT'

7

‘M'“]

1l
—

I £ Sop = < £t 00 = <
J

Suppose that f minimizes % Yy [y &) Ay S &) st |1f,-|l§0,,sL,., i=1,...,p, then so
does f*=f-h where t

[XI bl I""i
f=C + | r=C
r/"r bP [XT

since the h; are zero at x,,...,x; . Hence, there exists a function f* minimizing the infinite
dimensional optimization problem whose components are linear combinations of the representors.

Furthermore, || f;” + || A, | 2, =<7 2, < L. We note also that

T (G- CH)R<qi""’Cﬁ>/' Finally, we observe that

min LY W] Ay W) st 16 TawSL, 1 1ep
t

is equivalent to the finite dimensional optimization problem (3.2.2). =

PROOF OF THEOREM 3.2.2: The proof is similar to that of Th. 3.1.2. See remark 3 following
Proof of Lemma 2 for rate of convergence results which may be then used to demonstrate

asymptotic normality and convergence of £ . ®
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PROOF OF THEOREM 3.3.1: Let {0} = {(f;, P,;)}c ©® be a sequence of DGM's. First show:

P

T . . ..
T iTE (£~ Fn(x0) (£5(x)-Ff(x,380) = O doj=Lowp

If i=j, equation (L1.1) of Lemma 1 is sufficient since the constants of (L1.1) do not depend on

the specific DGM and 1 _2m
2 2m+q

Cauchy-Schwartz then apply equation (L1.1). Next show that

<0. (See remark 1 following Proof of Lemma 2.) If i#j, use

P

T A
T E(le.(x,)—fTI-(X,;OT))Uﬁ(PuT) =0 ij=l..p
=1

1
T

for which equation (L2.1) is sufficient. (Lemma 2 is valid if = v, see remark 1 following Proof
of Lemma 2). Finally, note that the components of the vector in equation (3.3.2), after

expansion, are composed of sums of terms like the ones above. =

PROOF OF THEOREM 4.1: Define £.! , ¢, and B=3

ax > Ooyix as in the text by using the

2z |x zy|x
estimated residuals from the nonparametric regression (4.1). Define 3= Z;lexg where

2y |x
'Z“z;\ , @ are the sample moments of the true (unobserved) residuals u,,v,. Now consider

T4(B-B)= T L0104, 2,02, )

zz|x zy\

- 'Z‘;{x T/ ( zix " _zﬂx) - T/(E;\X— E;\x)az}'h'

zy|x

Th. 3.3.1 implies that T”(a‘zy‘x—azy ‘x)->0 and T%(Z?ulbt 2 )—>O Consxstency of
le‘; , 0, then implies that T*({B-B)—>0. Since T"(B-B,) N ( Zz|x) , so does
T#(B-B,). Finally, note that m is a continuous function of T*(B-B, ) hence its limiting

distribution is x> ®

PROOF OF THEOREM 4.2: Consistent estimation of g,k in (4.1) is established by Th. 3.1.2,
and consistent estimation of B, is implicit in Th. 4.1. Glivenko-Cantelli then ensures consistent

estimation of P,,. We need to show that along any path 8, of DGM's converging to 8,, (the
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true DGM), the exact sampling distribution of the statistic converges to the specified normal. For

given 0, define £ (6;), 6, (0r) and B(8;)=2 i (07) 6 (07) using the estimated
. . . _ _1

residuals from nonparametric regression estimation of (4.1). Define B(6;) = Lzz " (07) O (1)

where Zl;:lx (07) > Q. (07) are the sample moments of the true (unobserved) residuals

u,(0), v,(0), (the DGM for which is simply P, ;). Now consider

T#(B(87) - B(87)) = T £ 2407 0,107) - 2.1 (B2, (67)
=21 (07) T#(0,1d07) -2, (07)) * TH(E2d07) - 21 (07)6107)

. . 1 1% -1 -
Th. 3.3.1 implies that T/( 55 1 07) ~ szlx(oT))—)O and T/(<22zlx(0T>> -(Z‘Lalx(()T)) 1)—->0.
Consistency of le‘zllx (87) follows from the triangular array law of large numbers and that of
c‘rmx(()T) from equation (3.3.5). Thus TVZ(B(OT)—B_(GT))%O. Since TVZ(,B(OT)—BT) o
N(0,0%0,) % ,;.(0,)) , sodoes T"(B(6;) -Br)-

Hence, T"(B%-B) 2 N (0 ,03(90) 22,)‘(00)) Finally, m® is a continuous function of

7%(B2-P), hence its limiting distribution is 3. ®

PROOF OF PROPOSITION 5.1.1: If f € 3, the proof is analogous to that of Th. 3.1.2. See remark
2 following Proof of Lemma 2. If f ¢ 3 proceed as follows. Since each §9T is a subset of
a fixed Sobolev ball and closed by construction, the compact imbedding theorem, (Theorem 2.3)
implies that it is compact with respect to supnorm. Let foT satisfy minf6 5, f fo-f )2 dP.. To
show that sup, [foT - f— ,| = 0 as., restrict attention to those sequences {x,} which are dense in
the domain. The set of such sequences has probability one. We have ﬂ;’"%, -3 by assumption.
Consider the sequence }?oT . Each element of this sequence is in ;‘:’91 since §1 3...3§9T
Furthermore, .§1 is compact with respect to supnorm. Hence, there exists a convergent

subsequence which we label f; which converges to say f " in §1. Next consider the following

collection of sequences: {f; ,fs »- }CSI, T2 2 s S | Ay AP :”)T ,-...  Each
sequence converges to f and since $T is compact, f € ‘\YT V T, in which case f €S- ﬂf%r
Consider the sequence I, f (f - fT f (f - f I, is a nondecreasing sequence.

Furthermore, f (f fT f (f f f (f f ? since f "€ S. But fo is the unique function
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minimizing the integral over . Hence, f f Return to the original sequence f r- Since the
selection of the convergent sequence above was arbitrary, we have every convergent subsequence
of for converging to f Suppose f does not converge to f By compactness there exists a
subsequence converging to some function not equal to f which is a contradiction. Hence, fDT

converges to fo. Now, consider the following inequalities:

1Y pofef-o- It = S pA @0 fiTul = 22 bfedf -0t Vo

The left hand side converges to O using Ranga Rao (1962, Th. 6.2, p. 672). The right hand side
converges to 0 using the law of large numbers and the fact that f-oT converges to f_a. Hence

% g [[£EF

PROOF OF THEOREM 5.2.1:
K will refer to both the kernel function and to the corresponding 7x7T" matrix whose entries
are K = K((x;x,)/k), s,t=1,...,T . The matrix K when multiplied by a column vector of

AT
ones, yields the kernel estimate of the density of x at x,..x7. The matrix is symmetric and

may be decomposed as . ~AYTA  where A isorthogonal and Y is the diagonal matrix
aT
of eigenvalues. For given 7T the matrix K and hence the eigenvalues are determined by the

sequence X,,...,x; . Under our assumptions about the DGM for the x’s, max |Y,| is bounded
in probability. Similarly, if K 2 is the matrix whose elements are the squares of the elements of

2
K, then —f— is symmetric with largest eigenvalue bounded in probability.
aT

a) Variance of U,: Recall U, =

ATZES; ( S}:x'), andnotethatE(U)zo. To obtain
Var( Uy), proceed as follows where if x is a vector then the limits of integration 0 and 1 are the

corresponding vectors of zeros and ones:
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o5 (5
A9
f fo Y ( )PxXt)Px(Xs)dfdx

- o4 ['nd ,)(f“ ™ K p(Aurx )du)dx, u=(x-x)A  du=A"9dx,

-0 fo X,)(f KX uyp(Au+x) du) A—0, K(-)=0 outside [-};,]
- o, fo pi(x) ( f_ . K*u) du) . by dominated convergence
That is,
(*) l)2 1)2 Xs— X,
t Vs 2 2
E IV K ( ) - 0, fprK

Hence Var(A9? TU ) — 20tfpff[(2.

b) Distribution of U,: this portion of the proof may be obtained using Hall (1984, Theorem 1),
see e.g., Fan and Li (1996). We use a triangular array central limit result due to McLeish

(1974) which simplifies demonstration of bootstrap related results below. Rewrite

-1 2 XX '
[ TE,:U'MT[; usl(( : )anddefme
q/2 XX
z, = A v, iEUSK( SA t)
Ui 2fpf sz AT <
where A and K((x,-x)/A) are (implicitly) functions of T. Note that

EZT A9/? TU/(a ﬁprXsz) Now apply McLeish (1974, Corollary (2.6), p. 622) to
conclude Zz,T > N(0,1), ie., A?2TU, 2 N(O , ZUifpfsz).

c) Rate of Convergence of U, and U;: with moderate abuse of notation, let [fo(x)— f(x)]
be the TxI vector with elements f,(x,)-f(x,). Since Ik s.t. Prob|max |T,| >k]—>0 we have

with probability going to one:
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U, - iT[fo(x)—If(x)} AYAf(0)-F(x)| < lT[f;(x)—i(x)] CAKIA[£0) - F(x)]

in which case, U,= O (%E (f, & )Sx, )| Similarly, U;=0 (—;—E ut(fo(xt)—f(x,))).
0

Thus, U, and U are Op(T ) , (see remark 2 following Lemma 2).

d) Since by assumption, A?/2T'7—0, we have A2TU, £ 0and A12TU, 0, in which
case AMM2TU 2 N(O , 20tfpxsz2).

¢) To show that A9T247 200 f px) f K *(u), expand to obtain:
~2 _ 2 2.2 -2 X X,
MTE, - “TZEE V2K (T)
» LYY () >Wﬂ<WﬂPﬁ)
MTZ e A

X -X
vy (£ x,) 2( s ’)
AqTZ X,: s; ()~ Ay A
Using equation (*) and a law of large numbers the first term converges to 201 f pix) f K*u)

Using arguments similar to part c) above, the second and third terms converge to zero, in which

case A1T265 © 20 fp sz( ). Combining these results, we have U /6, 2 N(0,1).=

PROOF OF THEOREM 5.2.2: The proof is similar to that of Th. 5.2.1. We need to show that along

any path of DGM’s {0} = {(f;, P,7)}c © converging to {8,}={(fosPuo)} the distribution of the test

statistic converges to N (0,1). Define K =K ((xs—x,)/ A) and:
UWﬁ=qw>+Uw>lM0>

E E v, T)Kst

A"T :
' MTz 2,: E ( )T 02) (Fr(x)-F(x0)) K
+ Aqu Xt: Z ) (Fr(x)-F(x.07) Ky

Note that U, (-) depends only on P; while U, (-) and Uj(-) depend on the whole DGM 0.

v
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Take any sequence {8,}={(f;,P,)}c®. To show that AP?TU, (P,;) converges to a
N ( 0, 20‘:, f pf f K2> refer to the Proof of Th. 5.2.1 part b) and note that the McLeish result is

a triangular array central limit theorem so that

A2 T (8 )
o’ ,/2fpffK2

Next show that A92TU, (87) converges to zero. Refer to the Proof of Th. 5.2.1 part c) and

2 N(0,1)

T
%:er(oﬁ =

noting that since the x's are not resampled, we have for fixed k with probability going to one:
1 L 2
Gy(07) = k}E, (£7(x)~F(x:36)

hence U(8 E (fT ) From remark 2 following Proof of Lemma 2 we have
iTE,( £y ,) £ t,G,)) ’). Since A2 T1"—0 we have A7’TU,(6;) £0. Bya
similar argument, Aq/ZTU3<0T) ? 0. Hence AT U (07) b N(O, 20} fpx fKZ). .

PROOF OF THEOREM 5.3.1: In  H"(Q%%) consider the subspace GG, where
G,={f,e H"|£f(x,,x,) = £,(x,)} , G, = Uy € H [fy (%0 %5) =F5(05) ffb(xb) =0 . G,G,
are orthogonal subspaces, consisting of functions that depend only on x,,x, respectively.
Within G, let r,(x T, (X,) be representors of function evaluation at x,;..,X,, let
M, < G, be the span of these representors and write G, =M oM + . Similarly, within G,
let r, (x p)-e-Ty (x ,) be representors of function evaluation at x,;...,X,r , let M, <G, be thespan
of these representors and write G, =M, oM, . Note that the spaces M M, M, M, are

mutually orthogonal, hence any function in GG, can be expressed uniquely in the form:
frf, = ET Coilx, +h, + 2;1 cbjrxbj+11b where h e M}, h,e M, . The objective function

for the infinite dlmensmnal optimization problem may be rewritten as:

FE D)t

1
- %EP’: Zc 1 x +ba sob~ <7, x,,,’z,cbjfxbf 1’1?501;]2 = —T[)"Raca‘Rbcb]/[)"Raca”Rbcb]
z J

where R,, R, are the representor matrices on Q% and Q" at x 1 X and Xy e, Xpr

respectively. Suppose f +f, = E c,r, th,+ E ijrxh-+hb minimizes Z [y, /(. fb(xbt)]
)

an
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st || £+£,|| 5 = L. Then so does f,+f, = f,~h,+f,~h, = Yoty oy r,, Since h, and

af
h, are zero at (xal,xM),...,(xaT,be). Hence, there exists a function f, +f, minimizing the

infinite dimensional optimization problem that is a linear combination of the representors.
* * 2 * * 2 2 2 1
Furthermore, || £, +f, I sop = 1fa #Fs son * Il Bathty |l 506 = | futfsll 5p = L - Using

Th2.4 || f, +fy gob =\ f. §0b+ | fy gob =c, R, + ¢,’Rycy. Finally, note that for
f,eM, 0= f £ (x,) =<1, ,1>4,=Yc,, and observe that the following two problems

2 * *
oo = L, £, € M, f, € M,

. 1 * * * *
min— Y[y £ a)- G )[ st N4

£t
.1 ' ' -
rcmcn ra4 _Raca—Rbcb}’[y—Raca—Rbcb] st. ¢, Rercy Rye,<L, Xcy=0
2%b

are equivalent. =

PROOF OF PROPOSITION 5.3.2:  First note that Th. 3.1.2(b) combined with bounded first
derivatives implies S”Px,,,x,,lﬁz(xa)+ £ (%) = foo () ~Fro(x,) | %= 0. To show that f,, and f;,

are separately identified fix x, at x, and note that:

f-fa(xa*)_fao(xa*)+ﬂ(xb)_fbo(xb)dxb = f:;(xa*)”fao(xa*)“’ffb(xb)‘fbo(xb)dxb =0

But ffb(xb)dxb = 0 and ffbo(xb)dxb = 0. Hence, lfa(xa*) _fao(xa*) 45 0. In which case
sUbe‘;fb(Xl) = Lo(Xp) | 2% 0 and supxa|];(xa) - £,(x,) | as () u

PROOF OF THEOREM 54.1: In H" (Qq“+q”) consider the subspaces:

G, = {fo€ H"[fo(x,5%5) =falx2)} Gy = {fp € H"Ify(*ar%5) =fps) }
consisting of functions that depend only on x,x, respectively. Within G, let rxal(x a)...rxar(x 2
be representors of function evaluation at x;...,x,r, let M,cG, be the span of these
representors and write G,=M_ oM, . Similarly, within G, let r, (x b)...rx”(x ») be
representors of function evaluation at x,;...,x,, , let M, c G, be the span of these representors

and write G,=MeM, .  Consider G, = {fa-fb e H"(Q*?") : f,€G,,fye Gb} . Any
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function in G, can be expressed in the form:

- (B (Fevnc)

where h e M, ,h,e M, . The objective function for the infinite dimensional optimization

problem may be rewritten as:
XV ) fT
1
= = E[}’t (<1' , LGyl +]1 >Sob) (<"x ’Eclz/'[x + 111?501;)]2 = —E [yt—[Raca] . [Rss) ,]2

where R,, R, are the representor matrices on Q% and Q% at x ot Xy and Xy, Xpr
respectively. Suppose f,-f, = an] o ) (E ijr +h,\ minimizes ——E[yt £, (%) fb(xbt)]
st. || £, f, | 5 = L. Then so does f,-f, = (fa—h (E Cy x/) (Z Cy x) since h,

and h, are zeroat (Xx,;,X; Joeoo Xar > % bT)- Hence, there exists a function f,’ - f,” minimizing the

infinite dimensional optimization problem suchthat f," € M, , f, € M,. Furthermore, using Th.

=N£ s 2 o < W full 3 1 foll Sop = Ifurfy | 50p < L - Finally,

observe that the following two problems yield identical minima:

mint 3 [y £ ) G0 st 1575

LAN

2 . )
wo <L f, €EM, f, EM,

min - Z [-yt h [Raca],'[Rbchr st ¢/Rc, ¢/Re, =L =

P t

PROOF OF PROPOSITION 5.4.2: use supxa,xh[f;(xa)fb(xb) ~fuo () fro(x,) | 0 and the
condition f y=f,0)=1. =

PROOF OF PROPOSITION 5.5.2: Suppose f, is strictly monotone increasing so that 3 B>0 s.t.
£>Bon Q!. With m >2 second derivatives are bounded hence sup, \f’-f,”| 0. Thus, with

probability arbitrarily close to 1, f is eventually bounded away from 0. =

PROOF OF PROPOSITION 5.6.1 AND THEOREMS 5.6.2, 5.6.3: The proof of Proposition 5.6.1 is a
straightforward generalization of the Proof of Th. 5.1.1. See also Proofs of Th.’s 3.1.2 and 3.2.2.
Proofs of Th. 5.6.2 and 5.6.3 are similar to the Proofs of Th. 5.2.1 and 5.2.2 respectively. ®



APPENDIX 2 -- CALCULATION OF REPRESENTORS

Bracketed superscripts will denote derivatives. Letting < f:8>p = f E f ©c)g ©e)dx
we construct an r, € H” [0,1] such that < for,>sp = f(@) forall fe H [O 1] This representor

r, will be of the form:

_[L,&) 0
ra(x) - {Ra(x) a

A IA
=
A 1A

where L, and R, are both analytic functions. For r, of this form to be an element of H" [0,1],

it suffices that La(")(a) = Ra(k)(a) , 0<k=m-1. Now write:
f@ = <rof e = [*Y LEOP@dr + [T REWF O
0 ko =

We ask that this be true for all fe H" [0,1] but by density it suffices to demonstrate the result
for all fe C* [0,1]. Hence assume that fe C* [0,1]. Thus, integrating by parts, we have:

a

m k-1
f L,"60) f ©dx = E{Z -1y LEP@) f T @)

j=0 0

¢ (D fo * L) fe)dr }

m k-1 m
-y Y (VLo ”<x) A {Z 1F L @) }f(x)dx
k=0 j=0 k=0

letting i = k - j - 1 in the first sum, this may be written as

m k-1 R
Z j;)" La(k)(x) fO@dx = E Z (-1 La(zk—l-l)(x) FO)
=0 k1 i X

. {2 DF L0 }f(x)dx
k=0



a

3

— < (_l)k—i—l La(zk‘l“i)(x) f(i)(x)

i

- [ {fj - L@ }f(x)dx
0 (ko0

i
o

k=i+1 0

i=

k=i+1 i=0 k=i+1

m-1 m m-1 m ..
- Z f(i)(a) { Z (_l)k—i—l Lﬂ(?k—lﬂ‘)(a)} _ E f(i)(o) { E (_l)k-i—l La(?.k—z—t) (O)}

- [ {f: - L@ }f(x)dx
L

Similarly, f 1 RP@) f® (x)dx may be written as
¢ k=0

m m-1 m
@ { ¥ (—1)""'“‘Ra‘”‘"“"(a)} + Y fOm { Y CHEREY (1)}
k=it

1

i=0 i=0 k=i+1

! {fj D R @) }f(x)dx.

k=0

Thus we require that both L, and R, are solutions of the constant coefficient differential equation

m

(A2.1) Y Du®a)=0.
k=0

Boundary conditions are obtained by setting the coefficient of f ?(a), I<ism-1, fo0),
0<i<m-1andfi(l), 0 <i < m-1tozero and the coefficient of f(a) to I. That is,

Y L @) - RF V@) = 0 1sism-1
k=i+1

¥ 1 LET0) = 0 0<ism-1
(A2.2) keirl

Y 1 RET1) = 0 0O<ism-1

k=i+1

3 )¢ { L V@) - REV@) - 1
k=1

Furthermore, for r, e H" [0,1], we require, La(k)(a) = R‘fk)(a), 0<k<m-1. This results in
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(m-1)+m+m+1+m = 4m boundary conditions. The general solution of the differential
equation (A2.1) is obtained by finding the roots of its characteristic
polynomial P_(A) = i(—l)" A% . This 1is easily done by noting that
(1+A%) P_(A) = 1 + (I—czlo)’" 2272 and thus the characteristic roots are given by A, = el

N\, == + i, where

(2k+1)m m even
2m+2
6, =
2k m m odd
2m+2

The general solution is given by the linear combination E a,e (Re(hoy sin(Im (Ap where the

k
sum is taken over 2m linearly independent real solutions of (A2.1).

Let L,x) = %n:akuk () and R, (x) = %bkuk (x) where the u,, I < k < 2m are 2m basis
functions of thlglsolution space of (A2. 1){<:IT0 show that r, exists and is unique, we need only
show that the boundary conditions (A2.2) uniquely determine the @, and b,. Since we have 4k
unknowns (2m a,’s and 2m b,’s) and 4m boundary conditions, (A2.2) is in fact a square 4m, x
4m linear system in the a,’s and b,’s. Thus it suffices to show that the only solution of the
associated homogenous system is the zero vector. Now suppose that Lah (x) and Ra" (x) are the
functions corresponding to the solutions of the homogeneous system (i.e. with the coefficient of
f(a) in (A2.2) set to O instead of I). Then, by exactly the same integration by parts, it follows
that < rah f >, =0 forall fe C*[0,1]. Hence rah , Lah (x) and Rah (x) are all identically zero

and thus by the linear independence of the u,(x), so are the a, and b,. *®






