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Abstract

This paper integrates limited participation into monetary search theory to analyze the
liquidity effects of open market operations. The centralized bonds market features limited
participation and shocks to government bond sales, while the decentralized goods market
features bilateral matches. Unmatured bonds can be used together with money to purchase
goods in a fraction of matches, but in other matches a legal restriction forbids the use of
bonds as the means of payments. In this economy, a shock to bond sales has two distinct
liquidity effects. One is the immediate liquidity effect on the bond price and the nominal
interest rate. The other is a liquidity effect in the goods market starting one period later, i.e.,
the effect on the amount of unmatured bonds circulating in the goods market. Thus, even
independent shocks can affect the household’s money allocation between the two markets,
affect real output and the term structure of interest rates, and cause nominal interest rates
to be serially correlated. I establish the existence of the equilibrium and, with numerical
examples, examine equilibrium properties.
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1. Introduction

This paper integrates goods market search into a model with limited participation to analyze

the liquidity effect of open market operations. Limited participation refers to the assumption

that the participants in the bonds market cannot adjust their money holdings immediately to

shocks to government bond sales. In an influential paper, Lucas (1990) has shown that limited

participation enables open market operations to generate a liquidity effect, i.e., positive shocks

to bond sales depress the bond price and drive up the nominal interest rate while negative shocks

reduce the nominal interest rate. A central assumption in his model is that all transactions are

constrained by cash. In this paper, I will replace the Walrasian goods market in his model by a

decentralized search market in order to support a role for money and to relax the cash-in-advance

constraint in the goods market.

One motivation for this analysis is to provide a microfoundation for the role of money in

Lucas’s analysis. As Wallace (2001) forcefully argued, cash-in-advance constraints are not suitable

for monetary theory and policy analysis. Search theory of money originated in Kiyotaki and

Wright (1989) provides a microfoundation for money, but so far the models based on it are not

tractable for analyzing nominal bonds, not mentioning the liquidity effect arising from stochastic

bond sales. The current paper is an attempt to construct such a tractable model. Another

motivation is that relaxing the cash-in-advance constraint in the goods market might improve

the empirical performance of limited participation models. There is convincing evidence that

the correlation between nominal interest rates and money is negative for very narrow monetary

aggregates but positive for broad aggregates (see Chari et al. 1995). One interpretation of this

evidence is that the cash-in-advance constraint does not apply in some transactions.

The economy in this paper has a bonds market and a goods market, which operate separately

in each period. The bonds market is centralized and functions in exactly the same way as in

Lucas’s model. That is, the government issues nominal bonds at the market price and accepts

only money as payments. The amount of new bonds is stochastic, which is the only aggregate

uncertainty in the economy. This shock is realized after the households have already allocated

the assets between the markets, and hence the familiar liquidity effect arises in the bonds market.

The goods market is decentralized, where agents meet randomly and determine how much

to trade bilaterally. Money can be used in all trades for goods, but bonds can only be used

in a fraction of trades called unrestricted trades. In the other fraction g ∈ (0, 1) of matches,
which are called restricted trades, a legal restriction forbids the use of bonds as the means of

payments for goods. With this legal restriction, bonds are redeemed immediately after they

mature, but unmatured bonds can circulate as an imperfect substitute for money. The imperfect

substitutability generates an additional discount on long-term bonds, relative to short-term bonds.

As this additional discount responds to open market operations, the term structure of interest
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rates varies. I set the bonds’ maturity to be two periods — the shortest length that allows bonds

to circulate in the goods market before maturity.

Allowing unmatured bonds to purchase a subset of goods is a crude way to capture the idea

that an actual economy has more than cash as the means of payments. However, it may not

be useful to insist on the literal interpretation that unmatured bonds act directly as a medium

of exchange. In reality, bonds are a large part of money market checking accounts that the

households have in financial institutions, on which checks can be written to pay for goods.

When unmatured bonds circulate in the goods market, open market operations generate a

delayed liquidity effect in the goods market, in addition to the immediate liquidity effect in the

bonds market. In particular, a high shock to bond sales in the previous period increases the

quantity of unmatured bonds circulating in the current goods market. The additional bonds

provide liquidity to the buyers who are in unrestricted trades. Thus, in addition to changing

the price level, shocks to bond sales in the previous period change the current dispersion of

real quantities of goods produced and traded in unrestricted matches versus restricted matches.

This liquidity effect of unmatured bonds in the goods market induces a number of new features

regarding output, interest rates and the term structure.

Before examining these features, I will devote a large part of this paper to establishing the

existence of the equilibrium. Although the existence proof follows the general route used by

Lucas (1990), the details necessarily differ for the following reasons. First, the goods market

here is non-Walrasian, and so prices are determined bilaterally. Second, output is determined

endogenously in the equilibrium, rather than being given by endowments. Third, there are two

types of trades in the goods market — the restricted trades and unrestricted trades — and so prices

are different in the two types of trades.

Because this paper attempts to integrate limited participation into search models of money,

it is naturally related to both literatures. The literature on limited participation is large and a

reference list can be found in Christiano et al. (1999). The goods market in this literature is

centralized, Walrasian, and with cash-in-advance constraints. The literature on search models of

money is also sizable, but only a few are tractable enough to incorporate elements such as money

growth and nominal bonds. The precursors to the current paper, Shi (2002, 2003), incorporate

such elements in deterministic environments.

2. A Search Economy with Legal Restrictions

In this section I describe an economy with a legal restriction in the goods market, analyze indi-

viduals’ decisions, and define the equilibrium.
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2.1. Households, Matches, and Markets

The economy has discrete time and many types of households. The number of households in each

type is large and normalized to one. The households in each type are specialized in producing a

specific good, which they do not consume, and exchange for consumption goods in the market.

Goods are perishable between periods. The utility of consumption is u(.) for consumption goods

and 0 for other goods. The cost (disutility) of production is ψ(.). The utility function satisfies

u0 > 0 and u00 ≤ 0. The cost function satisfies ψ(0) = 0, ψ0 > 0 and ψ00 > 0. Moreover,

u0(0) =∞ > ψ0(0) and u0(∞) < ψ0(∞). To simplify the algebra, I will use the form ψ(q) = ψ0q
Ψ,

where Ψ > 1 and ψ0 > 0.

Each household consists of a large number of members normalized to one. A fraction σ of

these members are sellers and the remaining are buyers, where σ ∈ (0, 1). A seller produces

and sells goods, and a buyer purchases goods for consumption. The members share consumption

and regard the household’s utility function as the common objective. As a result, individual

matching risks are smoothed out within each household, and the distribution of asset holdings

across households is degenerate. This degeneracy maintains tractability as it enables me to focus

on the equilibrium that is symmetric across households.1

There are two assets in the economy. One is money and the other is nominal bonds issued by

the government. These assets can be stored without cost. Both are intrinsically worthless; i.e.,

they do not yield direct utility or facilitate production. Nominal bonds are default-free and their

maturity is two periods. A bond in its second period is called an unmatured bond. Each bond

can be redeemed for one unit of money at, and only at, maturity.2

Let me describe the goods market first. In this market agents meet their trading partners

bilaterally and randomly. Of interest are trade matches, in which the buyer likes the seller’s

goods. These matches are the only meetings in which a trade can take place. A buyer encounters

a trade match at rate ασ, and a seller at rate α(1 − σ), where α < 1. The total number of

trades matches that all buyers (or sellers) of a household have in a period is ασ(1 − σ). There

is no chance for a double coincidence of wants to support barter, nor public record-keeping of

transactions to support credit trades. As a result, every trade entails a medium of exchange,

which may be money or unmatured bonds.

A legal restriction forbids the use of bonds as a means of payments for goods in a fraction

g ∈ (0, 1) of matches. In these matches, money is the only means of payments. In other matches
the buyers can combine money and bonds to purchase goods. An example of how the legal

1The assumption of large households, used by Shi (1997, 1999), is a modelling device extended from Lucas
(1990). Lagos and Wright (2001) use a different set of assumptions to achieve essentially the same purpose of
smoothing individual matching risks.

2One can allow bonds past the maturity to be redeemed. As shown in Shi (2002), however, no agent in the
described environment would choose to hold bonds beyond maturity. Hence, matured bonds do not circulate in
the goods market.
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restriction is enforced, which I do not explicitly model here, is that a fraction g of all agents in

the economy are government agents who accept only money as payments. A trade is called a

restricted trade if the legal restriction is imposed and an unrestricted trade otherwise.

I model the legal restriction as a matching shock in the following way: All members of a

household will be located in restricted matches with probability g and all in unrestricted matches

with probability 1− g. These shocks are independent across households and over time. Thus, a
specific household experiences either restricted or unrestricted trades in a period, but not both.

Among all households, a fraction g are in restricted matches and a fraction (1−g) in unrestricted
matches. This formulation simplifies the analysis.3

In contrast to the goods market, the bonds market has no transaction cost and trades take

zero measure of agents. In this market, the government conducts open market operations by

selling new two-period bonds at the competitive price. As in Lucas (1990), the government only

accepts money as payments for the purchase. However, agents can bring unmatured bonds into

the bonds market, sell them to other households for money, and then use the receipt to purchase

new bonds, although the net amount of such transactions is zero in a symmetric equilibrium.

The amount of newly issued bonds is stochastic, which is the only aggregate uncertainty in the

economy. Let M be the average amount of money holdings per household. The amount of newly

issued bonds is zM , where z is a random variable following a Markov process. The realizations of

z lie in a compact set Z, with a lower bound zL > 0 and an upper bound zH <∞. The transition
probabilities of z are described by a function Φ(dz, z−1), where the subscript −1 indicates the
previous period. Assume that Φ has the Feller property (i.e., f : Z×Z → R is continuous impliesR
f(z, z−1)Φ(dz, z−1) is continuous).
To focus on “pure” liquidity effects, I maintain Lucas’s assumption that the money stock

grows at a constant rate γ; i.e., M = γM−1. This is made possible by lump-sum monetary

transfers that eliminate the effect of the shock z on money growth.

2.2. Timing of Events

Let me clarify three pieces of notation. First, like Lucas (1990), I normalize nominal quantities

by the aggregate money holding per household, M . Second, I suppress the generic time subscript

t, denoting t ± j as ±j for j ≥ 1. Third, I pick an arbitrary household as the representative

household and use lower-case letters to denote the decisions of this household. The corresponding

capital-case letters denote other households’ decisions or aggregate variables.

Figure 1 depicts the timing of events in each period. At the beginning of the period the

household redeems bonds that were issued two periods ago and receives a lump-sum monetary

transfer, L. After these events, the household’s holding of money (divided by M) is measured as

3The formulation is not critical. In a deterministic version of the current model (Shi 2003), I explored a different
formulation where a household experiences both restricted and unrestricted trades in each period.
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m, and of unmatured bonds as b.

Then, the household chooses a fraction of money, a, and a fraction of unmatured bonds, l,

that will be taken to the goods market. This part of the assets the household divides evenly

among the buyers; so, each buyer carries am/(1 − σ) units of money and lb/(1 − σ) units of

unmatured bonds. The household takes the remaining assets to the bonds market. At the time

of choosing the portfolio divisions (a, l), the household also chooses the quantities of goods and

money in a trade. These quantities are contingent on whether the household members will be

located in restricted or unrestricted trades. The quantities are (qg, xg) for a restricted trade and

(qn, xn) for an unrestricted trade.

t
redeem

portfolio
(a, l)

markets open,
shocks realized

markets
closed

t+ 1

|−−−−−−−→ −−−−−−−→ −−−−−−−−−→ −−−−−−−−−−−−−→ −−−−−−→ |−→
money
transfer L

(m, b)
measured

decisions on
goods trade
(q, x)

trades: d, bu

and (q, x)
pooling,
consume

Figure 1 Timing of events in a period

Next, the two markets open simultaneously and separately. In the goods market, the match-

ing shock implied by the legal restriction is realized, and agents trade according to the quantities

(qg, xg) and (qn, xn) prescribed by the household. In the bonds market, the shock (z) to govern-

ment bond sales occurs. Let d denote the amount of new bonds that the household purchases

and bu the amount of unmatured bonds that the household carries out of the bonds market when

the market closes. The price of two-period bonds is S and of unmatured bonds Su.

Then, the markets close and agents go home. The household pools the receipts from the

trades and allocates consumption evenly among all members. After consumption, time proceeds

to the next period.

With the above timing, one-period bonds do not have a chance to circulate in the goods market

before maturity. Once matured, bonds are redeemed immediately, because it is not optimal to

hold bonds beyond maturity, even though they can be used as a means of payments in a fraction of

trades (see Shi 2002). Thus, only unmatured long-term bonds can circulate in the goods market.

The temporary separation between the bonds market and the goods market implies that there

is an opportunity cost for bringing assets into the bonds market. Also, because the household

must choose the portfolio divisions (a, l) before the current state z is realized, these decisions can

depend on the past shock z−1 but not on the current shock z. In contrast, the household chooses
the amounts of bonds to purchase after observing the current state z. Thus, d and bu can depend

on z, as well as on z−1. Similarly, bonds prices (S, Su) depend on both z and z−1.
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2.3. Quantities of Trade in the Goods Market

The household chooses the quantities of money and goods in each trade match. To describe

these choices, let v(m, b, z−1) be the household’s value function, given the realization of the
previous period’s shock z−1 and the asset holdings (m, b) at the beginning of the current period
after redeeming bonds and receiving monetary transfers. The discount factor is β ∈ (0, 1). Let
ωm(z−1) be the expected shadow value of next period’s money discounted to the current period,
where the expectation is calculated before observing the current shock z. Similarly, let ωb(z−1)
be the expected shadow value of unmatured bonds. Then,

ωi (z−1) =
β

γ

Z
vi(m+1, b+1, z)Φ (dz, z−1) , i = m, b, (2.1)

where vm = ∂v(m, b)/∂m and vb = ∂v(m, b)/∂b. Notice that the discounting involves the money

growth rate γ, because the variables m and b are normalized by the aggregate money stock which

grows over time at rate γ. The expected values, ωm and ωb, are computed before the current

shock z is realized, in order to make them relevant for the portfolio decisions in the current period.

Other households’ expected value of future money is Ωm and of future unmatured bonds Ωb.

In a trade match, the buyer makes a take-it-or-leave-it offer. The offer specifies the quantity of

goods that the buyer asks the seller to supply, q, and the quantity of assets that the buyer gives,

x. These quantities are (qg, xg) in a restricted trade and (qn, xn) in an unrestricted trade. In an

unrestricted trade, it is not necessary to specify the division of the amount xn into money and

unmatured bonds, because the two assets are equivalent to each other to the seller who receives

the assets as payments: Upon exiting from the trade, the seller will not have the opportunity to

use the assets to purchase goods in the current period and, at the beginning of next period, the

received bonds mature and can be redeemed for money at par.4

Because of the assumption that the buyer makes a take-it-or-leave-it offer, the quantities

(qi, xi) yields zero surplus for the seller. Thus,

xi(z−1) =
ψ(qi(z−1))

Ωm
, i = n, g. (2.2)

Also, the buyer is constrained by the sum of money and unmatured bonds in an unrestricted

trade, and by the amount of money in a restricted trade. These asset constraints are:

xn(z−1) ≤ a(z−1)m+ l(z−1)b
1− σ

, (2.3)

xg(z−1) ≤ a(z−1)m
1− σ

. (2.4)

When an asset constraint binds, I say that the asset yields liquidity service in the goods market.

Similarly, money may generate liquidity in the bonds market.
4For the same reason, a trade in the goods market between a money holder and a bond holder is inconsequential,

and so it is omitted here.
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2.4. A Household’s Decision Problem

In a typical period, the household’s choices are the portfolio division, (a, l), the quantities of

trade, (qn, xn, qg, xg), the amount of new bonds to purchase, d, the amount of unmatured bonds

exiting the bonds market with, bu, consumption, (cn, cg), future money holdings, m+1, and future

holdings of unmatured bonds, b+1. Recall that the decisions (a, l, q, x, c) are functions of the

previous period’s state z−1, but (d, bu) can depend on the current state z as well. In principle,
future money holdings depend on whether the household members are all located in restricted or

unrestricted trades in the current period. I distinguish these two situations with mg+1 and m
n
+1.

Taking other households’ decisions and aggregate variables as given, the representative house-

hold solves the following problem:

(PH) v(m, b, z−1) =

max
(a,l,q,x,c)(z−1)

(
g

"
u(cg(z−1))− ασ(1− σ)ψ(Qg) + β

Z
max

(d,bu)(z,z−1)
v(mg+1, b+1, z)Φ(dz, z−1)

#

+(1− g)
"
u(cn(z−1))− ασ(1− σ)ψ(Qn) + β

Z
max

(d,bu)(z,z−1)
v(mn+1, b+1, z)Φ(dz, z−1)

#)
.

The constraints are as follows:

(i) the constraints in the goods market, (2.2) — (2.4), and

ci(z−1) = ασ(1− σ)qi(z−1), i = n, g; (2.5)

(ii) the constraints in the bonds market: bu(z) ≥ 0 and

S(z, z−1)d(z, z−1) ≤ [1− a(z−1)]m+ Su(z, z−1) {[1− l(z−1)] b− bu(z, z−1)} ; (2.6)

(iii) the laws of motion of asset holdings:

b+1 =
1

γ
d(z, z−1), (2.7)

mi
+1 =

1
γ {m− S(z, z−1)d(z, z−1) + Su(z, z−1) [(1− l(z−1)) b− bu(z, z−1)]
+ασ(1− σ)

£
Xi − xi(z−1)

¤
+ [l(z−1)b+ bu(z, z−1)] + L+1

ª
, i = g, n.

(2.8)

(iv) and other constraints: 0 ≤ a(z−1) ≤ 1 and 0 ≤ l(z−1) ≤ 1.
The objective function in the above problem contains two groups of terms, one for the case

where the household’s members are located in restricted matches and the other for the case

in unrestricted matches.5 The outer maximization determines the choices (a, l, q, x, c), which are

made before the realization of the shock z. The inner maximization determines the choices (d, bu),

which maximize the future value function for each realization of z.
5The implicit assumption here is that the goods in a restricted trade yield the same marginal utility as the

goods in an unrestricted trade. For a relaxation of this assumption, see Shi (2003).
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The constraints in (i) are explained before, while the constraints in (iv) are self-explanatory.

There are two constraints in the bonds market, as in (ii). First, because the government does

not buy back unmatured bonds, the household cannot hold a negative amount of unmatured

bonds. Second, the household must finance the purchase of new bonds by the assets it brings

into the bonds market, as (2.6) requires. The last term in (2.6) is the receipt of money that the

household obtains by selling some of the unmatured bonds it brought to the bonds market.

In (iii), the law of motion of unmatured bonds states that the amount of unmatured bonds at

the beginning of the next period is equal to the amount of new bonds purchased in the current

period. The factor 1/γ appears on the right-hand side of (2.7) because b+1 is normalized by

future money stock M+1 while d by M .

To explain the law of motion of money, (2.8), recall that the household’s money holding is

measured at the time immediately after receiving monetary transfers and redeeming matured

bonds (see Figure 1). Between two adjacent points of time of this measurement, money holdings

can change as a result of the following transactions: purchasing newly issued bonds, selling

unmatured bonds in the bonds market, selling and buying goods, redeeming matured bonds and

receiving the monetary transfer next period. The terms following m on the right-hand side of

(2.8) list the net changes in money holdings from these five types of transactions. Again, the

factor 1/γ appears on the right-hand side because of the normalization of variables.

To characterize optimal decisions, let ρ(z, z−1) be the Lagrangian multiplier of the constraint
in the bonds market, (2.6). Let λn(z−1) be the multiplier of the asset constraint in an unrestricted
trade, (2.3), and λg(z−1) the multiplier of the asset constraint in a restricted trade, (2.4). To
simplify the equations, multiply λn by ασ(1 − σ)(1 − g) and λg by ασ(1 − σ)g. Incorporating

these constraints and use (2.2) to eliminate x, I have the following modified objective function:

v(m, b, z−1) = max
(a,l,q,x,c)(z−1)

"
J1 +

Z
max

(d,bu)(z,z−1)
(J2) Φ(dz, z−1)

#
,

where

J1 = g
n
u(cg(z−1)) + ασ(1− σ)

h
−ψ(Qg) + λg(z−1)

³
a(z−1)m
1−σ − ψ(qg(z−1))

Ωm

´io
+(1− g)

n
u(cn(z−1)) + ασ(1− σ)

h
−ψ(Qn) + λn(z−1)

³
a(z−1)m+l(z−1)b

1−σ − ψ(qn(z−1))
Ωm

´io
,

J2 = βgv(mg
+1, b+1, z) + β(1− g)v(mn+1, b+1, z)

+ρ(z, z−1) {[1− a(z−1)]m+ Su(z, z−1) [(1− l(z−1))b− bu(z)]− S(z, z−1)d(z, z−1)} .
Notice that Xi = xi in all symmetric equilibria, and so mg

+1 = m
n
+1. The superscripts (g, n)

on m will then be suppressed. In the following conditions for optimal choices, I also suppress the

dependence of (a, l, q, x, c,λ) on z−1 and the dependence of (d, bu, S, Su, ρ) on (z, z−1).
(i) Quantities qn and qg:

u0(ci) =
³
ωm + λi

´ ψ0(qi)
Ωm

, i = n, g. (2.9)
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(ii) Portfolio divisions (a, l) and bonds market decisions (bu, d):

for a: ασ [(1− g)λn + gλg] =
Z

ρΦ (dz, z−1) ; (2.10)

for l: ασ(1− g)λn + ωm =

Z µ
ρ+

β

γ
vm+1

¶
SuΦ(dz, z−1); (2.11)

for bu:
β

γ
vm+1 =

µ
ρ+

β

γ
vm+1

¶
Su; (2.12)

for d:
β

γ
vb+1 =

µ
ρ+

β

γ
vm+1

¶
S. (2.13)

In each of these conditions, the variable attains the lowest value in the specified domain if the

equality is replaced by “<”, and the highest value if “>”, where a, l ∈ [0, 1] and d, bu ∈ [0,∞).
(iii) The envelope condition for m and b:

vm = ωm + aασ [(1− g)λn + gλg] + (1− a)
Z

ρΦ (dz, z−1) ; (2.14)

vb = l [ω
m + ασ(1− g)λn] + (1− l)

Z µ
ρ+

β

γ
vm+1

¶
SuΦ(dz, z−1). (2.15)

The condition (2.9) requires that the net gain to a buyer from asking for an additional amount

of goods be zero. By getting an additional unit of good, the household’s utility increases by u0(c).
The cost is to pay an additional amount ψ0(q)/Ωm of assets in order to induce the seller to trade
(see (2.2)). By giving an additional unit of asset, the buyer foregoes the discounted future value

of the asset, ωm, and causes the asset constraint in the trade to be more binding. Thus, (ωm+λ)

is the shadow cost of each additional unit of asset to the buyer’s household and the right-hand

side of (2.9) is the cost of getting an additional unit of good from the seller.

In (ii), (2.10) says that for the household to allocate money to both the goods market and

the bonds market, money must generate the same expected liquidity service in the two markets.

The liquidity services, derived from relaxing the money constraints in the markets, are λn and

λg in the goods market and ρ in the bonds market.

The condition (2.11) is a similar requirement on the allocation of unmatured bonds between

the two markets. If the household takes a unit of unmatured bond to the goods market, the bond

can generate liquidity services ασ(1−g)λn by relieving the asset constraints and will have a future
value β

γ vm+1 upon redemption. If the household instead takes the unit of unmatured bond to the

bonds market, the bond can be sold for Su units of money, which will generate liquidity service

ρ in the bonds market and will have a future value β
γ vm+1 . Because the household must choose
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l before seeing the realization of z, it compares the expected values of allocating a marginal unit

of unmatured bonds to the two markets, and this comparison leads to (2.11).

The condition (2.12) specifies the optimal demand for unmatured bonds in the bonds market.

The value of keeping a unit of unmatured bond for future redemption is the discounted future

value of one unit of money, β
γ vm+1 . The value of selling a unit of unmatured bond for money is³

ρ+ β
γ vm+1

´
Su, as explained above. For the choice bu to be interior, these two values must be

equal to each other. The condition (2.13) is a similar requirement for the quantity of new bonds

purchased, except that the price and future value of a new bond are different from those of an

unmatured bond. Notice that (2.12) and (2.13) apply to every realization of z.

Finally, the envelope conditions require the current value of each asset to be equal to the sum

of the expected future value of the asset and the expected liquidity service generated by the asset

in the current markets. Take the condition for money for example. The current value of money

is vm+1 . The right-hand side of (2.14) consists of the expected future value of money, ω
m, the

liquidity service generated by money in the current bonds market, ρ, and the liquidity service

generated by money in the current goods market, λ. The liquidity services in the two markets

are weighted by the division of money into the two markets.

2.5. Equilibrium Definition and Interest Rates

A (symmetric) monetary equilibrium consists of a value function v: R+×R+×Z → R, portfolio

division functions a, l: Z → [0, 1], functions of trade quantities in matches qn, xn, qg, xg: Z → R+,

consumption function c: Z → R+, bonds purchase functions d, b
u: Z × Z → R+, bonds price

functions S, Su: Z × Z → R++ such that

(i) Given other households’ choices and (m, b), the household’s choices solve (PH);

(ii) The choices are the same across households and, in particular, m = 1;

(iii) The bonds market clears, i.e., d (z, z−1) = z and bu(z, z−1) = [1− l(z−1)] b for all
(z, z−1) ∈ Z × Z;
(iv) 0 < ωm(z),ωb(z) <∞ for all z ∈ Z.

Part (i) of the definition requires that the household’s choices be optimal, given other house-

holds’ choices, and Part (ii) requires symmetry across households. In part (iii), the supply of new

bonds (normalized by M) is z, and the supply of unmatured bonds is (1− l) b. In part (iv), the
restriction that the value of each asset be positive is necessary for a meaningful examination of

the coexistence of money and bonds. The restriction that these values be bounded away from

infinity is necessary for the first-order conditions to characterize optimal decisions.

Moreover, I restrict attention to equilibria in which money serves as a medium of exchange

in the goods market in all states of the economy. This restriction requires a(z−1) > 0 for all

10



z−1 ∈ Z. The restriction also requires that, for all z−1, at least one of λn(z−1) and λg(z−1) be
positive; otherwise money would be only a store of value.

By invoking equilibrium conditions, I can simplify some of the optimality conditions. First,

because d(z) = z ∈ (0,∞) in equilibrium, the optimal condition for d must hold as equality, as in
(2.13). Second, because m = 1 and b = d−1/γ = z−1/γ in equilibrium, I can shorten the notation
for the shadow values of the assets as follows:

µi(z−1) ≡ vi
µ
1,
1

γ
z−1, z−1

¶
, i = m, b. (2.16)

The expected value of µ, defined in (2.1), can be expressed as ωi = O(µi), where

O(µi)(z−1) =
β

γ

Z
µi(z)Φ (dz, z−1) , i = m, b. (2.17)

Third, for all S > 0, the bonds market clearing conditions imply a < 1. Under the restriction

a > 0, then 0 < a < 1, and the equality in (2.10) holds. The condition (2.14) can be simplified as

µm(z−1) = ωm(z−1) + ασ [(1− g)λn(z−1) + gλg(z−1)] . (2.18)

Define the two-period (net) nominal interest rate as r = 1
S − 1. If money yields liquidity in

the bonds market (i.e., if ρ > 0), then (2.6) binds and S = (1− a)/z. In this case, (2.13) implies
S < µb(z)/µm(z). If ρ = 0, then (2.6) does not bind. In this case, S ≤ (1 − a)/z, and (2.13)
implies S = µb(z)/µm(z). Combining the two cases, I express the two-period bond price as

S (z, z−1) = min
(
1− a(z−1)

z
,
µb(z)

µm(z)

)
. (2.19)

The two-period nominal interest rate is

r(z, z−1) = max
½

z

1− a(z−1) − 1,
µm(z)

µb(z)
− 1

¾
. (2.20)

From (2.13), I can compute the shadow price of the asset constraint in the bonds market as

ρ (z, z−1) =
β

γ
max

½
z

1− a(z−1)µ
b(z)− µm(z), 0

¾
. (2.21)

This shadow price may be zero for particular realizations of z, but the expected value of ρ(z, z−1)
over z must be positive for all z−1 ∈ Z, in order to satisfy the earlier restriction that at least one
of λg(z−1) and λn(z−1) be positive (see (2.10)).

The price of unmatured bonds in the bonds market, Su, depends on whether the household

takes all unmatured bonds to the goods market. If l = 1, the supply of and the demand for

unmatured bonds in the bonds market are both zero, in which case Su is indeterminate. If l < 1,

11



the supply of unmatured bonds in the bonds market is positive. In this case, the equality in

(2.12) holds and so

Su(z, z−1) =
µm(z)

ρ(z, z−1)γβ + µm(z)
. (2.22)

Unmatured bonds are discounted if ρ(z, z−1) > 0.
Although the price of unmatured bonds may be indeterminate, the price of newly issued

one-period bonds is determinate. If one-period bonds were issued, the price would obey (2.22)

(regardless of whether l < 1). Denote this price by SI(z, z−1). Then (2.13) and (2.22) yield:

S(z, z−1)
SI(z, z−1)

=
µb(z)

µm(z)
. (2.23)

The ratio µm/µb is the expected future discount on unmatured bonds. As shown later, µb(z) <

µm(z) in the equilibrium, because unmatured bonds are not perfect substitutes for money in the

goods market. Thus, there is a deeper discount on two-period bonds than on one-period bonds.

3. The Characterization of the Equilibrium

The equilibrium can be one of two cases, 0 ≤ l < 1 and l = 1. When l = 1, the household takes
all unmatured bonds to the goods market and such bonds generate liquidity in a fraction g of

trades. In the case 0 ≤ l < 1, unmatured bonds do not generate liquidity (at the margin) in the
goods market, i.e, λn = 0, although some unmatured bonds may still be used to buy goods.6

Money generates liquidity service in both cases. When λn = 0, money does not generate

liquidity service in an unrestricted trade, but it does in a restricted trade. This is because, when

λn = 0, λg must be positive in order to satisfy the earlier restriction that at least one of λg and λn

be positive. When λn > 0, money generates liquidity services in both unrestricted and restricted

trades. In particular, λg > 0 because the buyer in a restricted trade has a smaller amount of asset

to use than in an unrestricted trade; if a buyer faces a binding asset constraint in an unrestricted

trade, then he must be even more severely constrained in a restricted trade.

The condition λn > 0 is equivalent to u0(cn) > ψ0(qn) (see (2.9) for i = n). Define Q0 as the
solution to the following equation:

u0 (ασ(1− σ)Q0) = ψ0(Q0). (3.1)

Then, λn > 0 iff qn < Q0. Similarly, λ
g > 0 iff qg < Q0.

I will transform the equilibrium as a fixed point of the assets’ value functions (µm, µb,ωm)

and the money allocation function a. First, I express the above conditions for binding asset

6The proof for λn = 0 in this case is as follows. When 0 ≤ l < 1, the optimality condition for l holds as “≤”;
That is, (2.11) holds as “≤”. Because bu = (1 − l)b ∈ (0,∞) when 0 ≤ l < 1, the equality in (2.12) holds, which
leads to (2.22). Substituting (2.22) into the inequality form of (2.11) yields λn ≤ 0. Thus, λn = 0.
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constraints as conditions on the shadow value of money. Intuitively, an asset constraint binds

in a trade if the value of assets used in that trade is low. In an unrestricted trade, the total

value of assets is am+lb1−σ ωm, and the asset constraint binds iff this value is less than ψ(Q0). This

binding asset constraint also implies l = 1, as discussed above. Since m = 1 and b = z−1/γ in the
equilibrium, then the asset constraint binds in an unrestricted trade iff 0 < ωm < w1, where

w1(a, z−1) =
1− σ

a+ z−1/γ
ψ(Q0). (3.2)

Similarly, the asset constraint binds in a restricted trade iff 0 < ωm < w2, where

w2(a) =
1− σ

a
ψ(Q0). (3.3)

Clearly, w2 > w1.

Second, I express the quantity of goods in a trade as a function of the expected value of money.

When the asset constraint does not bind in a trade (restricted or unrestricted), the quantity of

goods traded in a match is Q0, which is independent of the value of money. When the asset

constraint binds in an unrestricted trade, the buyer spends all his assets to buy goods. So, the

quantity of goods in the trade is qn = Q1 where

Q1(ω
m; a, z−1) = ψ−1

µ
a+ z−1/γ
1− σ

ωm
¶
. (3.4)

Similarly, when the asset constraint binds in a restricted trade, the quantity of goods in the trade

is qg = Q2 where

Q2(ω
m; a) = ψ−1

µ
aωm

1− σ

¶
. (3.5)

Clearly, Q2 < Q1.

Third, I express the liquidity service that an asset generates in the goods market as a function

of the shadow value of money. When the asset constraint binds in a trade, the assets used in that

trade generate liquidity service. The total amount of liquidity services that unmatured bonds

generate over all trades is ασ(1−g)λn. When λn > 0, I can substitute λn from (2.9) and compute

the bonds’ liquidity service as ωm(z−1)Fn, where Fn is defined as:

Fn(ωm; a, z−1) = ασ(1− g)
·
u0 (ασ(1− σ)Q1(ω

m; a, z−1))
ψ0(Q1(ωm; a, z−1))

− 1
¸
. (3.6)

When λn > 0, money also generates the above liquidity services in unrestricted trades. In

addition, money generates liquidity services in restricted trades. The total amount of such services

is ασgλg = ωm(z−1)F g, where F g is defined as:

F g(ωm; a) = ασg

·
u0(ασ(1− σ)Q2(ω

m; a))

ψ0(Q2(ωm; a))
− 1

¸
. (3.7)
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The total amount of liquidity that money generates in the goods market is ασ [gλg + (1− g)λn].
This amount is equal to ωm(z−1)F , where

F (ωm; a, z−1) =


F g(ωm; a) + Fn(ωm; a, z−1), if 0 < ωm ≤ w1
F g(ωm; a), if w1 ≤ ωm ≤ w2
0, if ωm ≥ w2.

(3.8)

Now I can obtain the functional equations for (µm, µb,ωm, a). The equation for µm comes

from rewriting (2.18) as:

µm(z−1) = ωm(z−1) [1 + F (ωm(z−1); a(z−1), z−1)] . (3.9)

This is a functional equation for µm, since ωm = O(µm). Similarly, the functional equation for

µb comes from rewriting (2.15) as follows:7

µb(z−1) =
(

ωm(z−1) [1 + Fn(ωm(z−1); a(z−1), z−1)] , if 0 < ωm ≤ w1
ωm(z−1), if ωm ≥ w1. (3.10)

Finally, using (2.10) to eliminate (λg,λn) in (2.18) and using (2.21) to eliminate ρ, I have:

a(z−1) = 1− β/γ

µm(z−1)

Z
max

n
zµb(z), [1− a(z−1)]µm(z)

o
Φ(dz, z−1). (3.11)

The strategy for determining the equilibrium is as follows. Start with an arbitrary continuous

function a(.) bounded in the interior of [0, 1] and solve the fixed point for µm from (3.9). Substitute

the solution into ωm = O(µm) to get ωm and into (3.10) to get µb. Then, substitute (µm, µb)

into the right-hand side of (3.11) to obtain a new function, denoted as Γa(z−1). The equilibrium
solution for a(.) solves a(z−1) = Γa(z−1). Once the functions (µm, µb,ωm, a) are determined, I
can recover the traded quantities of goods and consumption (output) through (3.4) and (3.5),

the bond price S through (2.19) and the nominal interest rate through (2.20). The fraction of

unmatured bonds taken to the goods market is l = 1 if ωm < w1 and l ∈ [0, 1) if ωm > w1.8
The equilibrium requires ωm < w2; otherwise, µ

m = ωm = O(µm), which would not have a

stationary solution for µm when γ > β. For all ωm < w2, (3.9) and (3.10) imply that µ
m(z) >

µb(z) for all z. Thus, unmatured bonds are not perfect substitutes for money in the goods

market and, as (2.23) shows, this imperfect substitutability induces a deeper discount on two-

period bonds than on one-period bonds. Of course, the imperfect substitutability relies on the

existence of the legal restriction.

7The derivation is straightforward when ωm < w1 (i.e., when l = 1). When ωm > w1, 0 ≤ l < 1 and λn = 0,
as discussed above. Then bu = (1 − l)b ∈ (0,∞), and so the equality in (2.12) holds. This equality and the fact
λn = 0 reduce (2.15) to µb = ωm.

8When ωm > w1, the equilibrium is consistent with a range of values of l in [0, 1). This indeterminacy of l
has no effect on real variables, because unmatured bonds do not generate liquidity service at the margin. The
indeterminacy does not affect the equilibrium value of a, either, and hence the bond price S and the corresponding
interest rate r do not depend on such indeterminacy.
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4. A Special Case: Independent Shocks

Let me first study the special case where the shocks to bond sales are independent over time. This

special case helps illustrating some key differences between the current model and Lucas’s (1990)

model. The equilibrium behaves differently depending on whether unmatured bonds generate

liquidity service in the goods market.

Consider first the case where unmatured bonds do not generate liquidity service, i.e., where

ωm > w1. Since only the money constraint binds in this case, the equilibrium behaves like that in

Lucas’s model. With independent shocks, the shadow values of assets (µm, µb) and the fraction

a are numbers, rather than functions. To solve for these constants, note that F = F g in this

case. Also, ωm = O(µm) = β
γµ

m. Then, (3.9) becomes F g(ωm; a) = γ
β − 1. Substituting F g from

(3.7), this equation solves for the quantity of goods in a restricted trade, which is a constant.

Because the quantity of goods in an unrestricted trade is equal to the constant Q0 when ωm > w1,

consumption and output are constant. Moreover, µb = ωm by (3.10), and so µb = β
γµ

m. With

these numbers (µb, µm), (3.11) yields:

γ

β
=

Z
max

½
zβ/γ

1− a, 1
¾
Φ(dz).

This solves for the constant a under suitable conditions.9

In this case, the interest rate depends only on the current shock, because (2.20) becomes:

r(z) = max

½
z

1− a − 1,
γ

β
− 1

¾
.

A tightening open market operation, modelled as an increase in z, raises the interest rate when

z < (1− a)γβ . This liquidity effect in the bonds market does not translate into any effect on real
activities. Nor does it affect the additional discount on two-period bonds relative to one-period

bonds, which is γ/β − 1 (see (2.23)).
Continue the examination of the economy with independent shocks but consider the case

where unmatured bonds generate liquidity service, i.e., where 0 < ωm < w1. This case of the

equilibrium behaves quite differently from that in Lucas’s model. In particular, µm and a are

no longer constants. Because the asset constraint binds in an unrestricted trade, the quantity of

goods in such a trade depends on the amount of unmatured bonds, as well as the money stock.

Since the amount of unmatured bonds in a period is equal to the quantity of new bonds issued

in the previous period, the quantity of goods in an unrestricted match depends on the realization

of the previous period’s shock, z−1 (see (3.4)). That is, the previous period’s shock affects the
amount of liquidity in the current goods market. As a result, the current shadow values of the

two assets are functions of the previous shock (see (3.9) and (3.10)). Since these asset values

9A sufficient condition is that the left-hand side of the equation is greater than the right-hand side when a = 0.
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affect the allocation of money between the two markets, a is a function of z−1, even though the
shocks are independent over time.

The nominal interest rate now depends on both the current shock and the previous period’s

shock. Thus, nominal interest rates are serially correlated even though the shocks are independent

over time. Moreover, open market operations affect the relative value of unmatured bonds to

money, and hence affect the term structure of interest rates. Determining the equilibrium in this

case is not so much easier than in the case of dependent shocks. So, I will go directly to the

equilibrium with dependent shocks.

5. The Equilibrium with Dependent Shocks

I now study the equilibrium in which the shocks are dependent. All proofs are collected in

Appendix A. For various proofs I need to restrict attention to µm(.) ∈ V and a(.) ∈ A, where V
denotes the set of continuous functions whose values lie in [ γβωL,

γ
βωH ] and A the set of continuous

functions whose values lie in [aL, aH ]. Norm both V and A by the supnorm. In addition to some
restrictions described later in Lemmas 5.1 and 5.2, the bounds satisfy:

0 < aL ≤ aH < 1, 0 < ωL ≤ ωH <∞. (5.1)

By (2.17), ωL ≤ ωm(z) ≤ ωH for all z.

The first task to determine the equilibrium is to solve for µm from (3.9) under a fixed function

a(.). Denote the right-hand side of (3.9) as T (ωm; a, z−1) and define

TO(µm; a, z−1) = T (O(µm); a, z−1). (5.2)

Then, (3.9) requires µm to be the fixed point of TO. I will find conditions under which TO is a

monotone, contraction mapping from V to V. Impose the following assumption.

Assumption 1. Denote the relative risk aversion by δ (c) = −cu00 (c) /u0 (c). Assume that (i)
δ(c) ≤ 1, and (ii) the function [1− δ(c)]u0(c)

.
ψ0
³

c
ασ(1−σ)

´
is decreasing in c.

Part (i) of the assumption is sufficient for T (ωm; a, z−1) to be increasing in ωm. Part (ii) is

necessary and sufficient for T to be concave in ωm in each of the three segments (0, w1), (w1, w2),

and (w2,∞). Part (ii) is satisfied if, for example, the utility function exhibits constant relative
risk aversion. Figure 2 depicts T as a function of ωm. Notice that ∂T/∂ωm is larger at w1+ than

at w1-, and larger at w2+ than at w2-. Thus, T is not concave in the entire region (0,∞).
The mapping TO is monotone under part (i) in Assumption 1, because T (ωm; a, z−1) is

increasing in ωm and because ωm = O(µm) is a monotone linear mapping of µm. However, TO

fails to satisfy the contraction mapping requirement when ωm is sufficiently small. This is because

when ωm → 0, Q1, Q2 → 0, in which case ∂T/∂ωm is infinite. To ensure that TO is a contraction,

I impose a lower bound on ωm and hence an upper bound on ∂T/∂ωm.
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Denote Tω = ∂T (ωm; a, z−1)/∂ωm. Since T is concave in ωm in each of the three segments,

Tω ≤ max{Tω(w1+; a, z−1), 1} for all ωm ≥ w1. Also, because Tω(w1-; a, z−1) < Tω(w1+;a, z−1),
there exists w3 < w1 such that for all ω

m ≥ w3, Tω ≤ max{Tω(w1+; a, z−1), 1}. Under (ii) of
Assumption 1, Tω(w1+; a, z−1) decreases in a and increases in z−1, after the dependence of w1 on
(a, z−1) is taken into account. Setting a = aL, z−1 = zH and w1 = w1(aL, zH), I have

Tω(w1+; a, z−1) ≤ T̄ω ≡ 1− ασg +
ασg

Ψ

[1− δ(bc)]u0(bc)
ψ0
³ bc
ασ(1−σ)

´ , all (a, z−1),
where bc = ασ(1− σ)ψ−1

µ
aLψ(Q0)

aL + zH/γ

¶
.

I choose the upper bound on Tω as

K = κ max{T̄ω, 1}, where 1 ≤ κ <∞.

T(ωm)

slope = K
 45o line

     0 ωL         w1  w2    ωm

Figure 2

The upper boundK leads to a lower bound on ωm. Let ω0(a, z−1) (< w1) solve Tω(ω0; a, z−1) =
K. Because Tω(ω; a, z−1) is decreasing in (ω, a, z−1), ω0 is decreasing in (a, z−1). The lower bound
of ωm is then defined as ωL = ω0(aL, zL). Clearly, ωL is smaller if a larger κ is chosen (see Figure

2), and ωL > 0 for all finite κ. Also, for all ω
m ≥ ωL, 0 < Tω ≤ K.

Lemma 5.1. Let ε > 0 be a small number. Given any function a(.) ∈ A, the mapping TO
defined in (5.2) is a monotone contraction mapping from V to V if the following condition holds:

max {K + ε, F (ωH , aL, zL) + 1} ≤ γ/β ≤ F (ωL, aH , zH) + 1. (5.3)

Under this condition, TO has a unique fixed point µma (.) ∈ V.
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The set of parameter values that satisfy (5.3) is nonempty. To see this, note that F (ωL, aH , zH) >

0 by construction. By choosing κ sufficiently close to 1, I can ensure K + ε < F (ωL, aH , zH) + 1.

Then, there are values of γ (> β) that satisfy K+ε ≤ γ/β ≤ F (ωL, aH , zH)+1. Finally, because
F (ω; a, z) = 0 when ω is large, I can choose a large value for ωH to ensure F (ωH , aL, zL)+1 ≤ γ/β.

Clearly, these conditions require γ > β and ωH > ωL.

The notation µma emphasizes the dependence of the fixed point on the arbitrarily chosen

function a. Similarly, the expected future shadow value of money is ωma (z−1) = O(µma )(z−1) and
the shadow value of unmatured bonds is µba(.), obtained by substituting µ

m
a into (3.10). Clearly,

ωma (.) and µ
b
a(.) are continuous. Also, ω

m
a (z) ∈ [ωL,ωH ], all z ∈ Z.

The task now is to determine the equilibrium fraction of money in the goods market, a.

Substituting µma and µ
b
a into (3.11), I have a(z−1) = Γa(z−1), where

Γa(z−1) ≡ 1− β/γ

µma (z−1)

Z
max

n
zµba(z), [1− a(z−1)]µma (z)

o
Φ(dz, z−1). (5.4)

Since I required a ∈ A, the equilibrium satisfies this requirement only if Γa ∈ A. The following
lemma gives the sufficient conditions:

Lemma 5.2. Given any a ∈ A, Γa ∈ A if aH is close to one and if

F (ωH , aH , zH) ≥ max
½

zH
1− aL , 1

¾
. (5.5)

The condition (5.5) is satisfied if zH and aL are small. This restriction on zH is necessary to

ensure that the households allocate a positive fraction of money to the goods market. If the size

of the open market operation were very large, instead, new bonds would be heavily discounted;

given that the money growth rate is fixed, the households would allocate all the money to the

bonds market to obtain the discount.

In light of Lemma 5.2, I can interpret Γ as a mapping from A to A. Then, the equilibrium
function a is a fixed point of Γ. Γ is continuous (see the proof of the following theorem in

Appendix A). Since A is compact and convex, Brouwer’s fixed point theorem implies that Γ has

a fixed point in A. This fixed point is the equilibrium function a(.). Using this function in the

computation of µma (.) and µ
b
a(.), I can recover the shadow values of money and unmatured bonds.

The following theorem summarizes the above results.

Theorem 5.3. Maintain Assumption 1 and (5.1). Let (zH , aL) satisfy (5.5) and let aH be close

to 1. Choose (γ,K,ωH) to satisfy (5.3) and define ωL by Tω(ωL; aL, zL) = K. An equilibrium

exists, which satisfies µm(.) ∈ V, a(.) ∈ A, and ωL ≤ ωm(z) ≤ ωH for all z ∈ Z.

Because the mapping that defines the function a is implicit, it is difficult to check whether

the solution is monotone. Likewise, it is difficult to check whether consumption is a monotonic

function of the past shock. To study equilibrium properties, I turn to numerical examples.

18



6. Numerical Examples

Assume the following forms of utility and cost:

u (c) = u0
c1−δ − 1
1− δ

, ψ (q) = ψ0q
Ψ.

Let the shock z have two realizations, z1 and z2, with z2 > z1. Refer to z2 as the high shock

and z1 as the low shock. The transition probability from zi to zi is θ and to zi0 (i
0 6= i) is 1− θ,

i = 1, 2. Consider the following parameter values:

preference: δ = 0.5, u0 = 4, ψ0 = 1, Ψ = 2, β = 0.995;
goods market: α = 1, σ = 0.5, g = 0.2
monetary policy: z1 = 0.02, z2 = 0.08, γ = 1.005.

I choose g to be the size of the government relative to the economy, using the interpretation

that the legal restriction in the goods market is imposed in trades between private households

and the government. The values of (β, z1, z2) are the ones chosen by Lucas (1990). With the

particular value of β, I can interpret the length of a period as one month and the interest rate

r as the bi-monthly interest rate. Also following Lucas, I explore a large range of values of θ:

0.01, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99.

Choose aL = 0.90, aH = 0.98, κ = 1, ωL = 0.543 and ωH = 3.375. These parameter values

satisfy all conditions required for existence in Theorem 5.3. Moreover, the equilibrium lies in the

region ωm ∈ (0, w1). That is, unmatured bonds generate liquidity in the goods market and the
household takes all unmatured bonds to the goods market.10

To display the results, let me add a subscript i to variables that depend only on the previous

period’s shock zi, where i = 1, 2. Add subscripts ji to variables that depend on both the current

shock zj and the previous period’s shock zi, where i, j = 1, 2. Table 1 describes equilibrium prop-

erties of the fraction of money taken to the bonds market (1−a), interest rates, consumption, the
quantities of goods in trades, the shadow values of assets and the term structure of interest rates.

The mean, the standard deviation, and serial autocorrelations are calculated using the unique

invariant measure prob(zi) = 1/2 for i = 1, 2. Since goods have different prices in unrestricted

trades and restricted trades, I compute aggregate real output (consumption) as follows:

ci = ασ(1− σ)

·
gpg(zi)q

g(zi) + (1− g)pn(zi)qn(zi)
gpg(zi) + (1− g)pn(zi)

¸
,

where pg is the price of goods in a restricted trade, normalized by the money stock, and pn is

the normalized price in an unrestricted trade. The term structure of interest rates is represented

by the percentage difference between the yield to newly issued two-period bonds, S−1/2, and the
10This is the case for a large range of parameter values. In fact, the range (w1, w2) 3 ωm, in which unmatured

bonds do not generate liquidity service in the goods market, is very narrow.
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yield to one-period bonds, 1/SI . Letting rI be the one-period interest rate corresponding to SI

and using (2.23), I can write this percentage difference as:

termji =

Ãµm(zj)/µb(zj)
1 + rI(zj , zi)

!1/2
− 1
× 100. (6.1)

Three results in Table 1 resemble those found by Lucas (1990). First, interest rates change

significantly with the persistence of the shock when the current shock is high. Also, interest

rates have a large (unconditional) standard deviation. However, the mean of interest rates does

not vary significantly with the persistence of the shock, even if the degree of persistence varies

between 0.1 and 0.9. Thus, if one is interested only in the mean of interest rates, one can ignore

the persistence and simply examine the case of independent shocks (i.e., θ = 0.5).

Second, the fraction of money allocated to the bonds market is insensitive to the previous

period’s shock. As in Lucas’s model, this insensitivity is puzzling especially when the shocks are

negatively dependent. With negatively dependent shocks, a high shock in the previous period

implies that the amount of bond sales is likely to be low in the current period and the bond price

likely to be high. Since the discount on bonds will be small, there is not much need to allocate

more money to the bonds market to take advantage of the discount on new bonds. Thus, when

the shocks are negatively correlated, one would expect that the household would reduce (1− a)
significantly upon observing a high shock in the previous period. This does not happen in the

numerical examples.

The insensitivity is more puzzling here than in Lucas’s model, because the goods market

provides an additional reason for the household to adjust the money allocation significantly. A

high past shock increases the amount of assets used in an unrestricted trade relative to the

assets in a restricted trade. This widens the gap between the quantities of goods obtained in the

two types of trades, and hence increases the variation in consumption. To smooth consumption

between the two types of trades, the household should increase the fraction of money allocated to

the goods market, so as to maintain a stable ratio of assets used in an unrestricted trade relative

to a restricted trade. Despite this additional reason, the negative response of (1− a) to the past
shock is not significant. Even when θ = 0.1, an increase of z−1 from z1 to z2 reduces (1−a) from
7.83% to 7.65%. This reduction is small in comparison with the variation in the shock.

Third, the insensitivity of the money allocation leads to a strong liquidity effect in the bonds

market, as measured by changes in nominal interest rates. Interest rates are significantly higher

when the current shock is high than when the current shock is low; that is, r2i is much higher

than r1i for i = 1, 2. When the money allocation is insensitive, a higher supply of new bonds

must be absorbed by a fall in the bond price, resulting in a higher interest rate. Notice that,

when the current shock is low, the one-period interest rate is zero (see (2.22)) and the two-period

interest rate does not depend on past shocks. This is because there is more money than what is
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needed in the bonds market when the current shock is low.

Table 1. Simulation results

θ

0.01 0.1 0.3 0.5 0.7 0.9 0.99

1− a1 (%) 7.84 7.827 7.789 7.722 7.578 7.003 3.923

1− a2 (%) 6.17 7.646 7.852 7.890 7.900 7.885 7.863

r11 (%) 0.474 0.452 0.444 0.438 0.409 0.379 0.326

r12 (%) 0.474 0.452 0.444 0.438 0.409 0.379 0.326

r21 (%) 2.045 2.210 2.714 3.601 5.566 14.23 103.9

r22 (%) 29.66 4.632 1.884 1.392 1.261 1.454 1.736

E(r) (%) 1.397 1.452 1.455 1.468 1.481 1.556 1.542

StD(r) (%) 2.151 1.124 1.045 1.292 1.759 2.955 7.291

corr(r, r−1) -0.126 -0.461 -0.535 -0.341 -0.165 -0.028 0.004

corr(r, r−2) 0.124 0.368 0.214 0 -0.066 -0.023 0.004

corr(r, r−3) -0.121 -0.295 -0.086 0 -0.026 -0.018 0.004

c1 0.616 0.617 0.617 0.617 0.618 0.619 0.622

c2 0.627 0.627 0.626 0.626 0.626 0.625 0.622

E(c) 0.622 0.622 0.622 0.622 0.622 0.622 0.622

StD(c) 0.0058 0.0049 0.0047 0.0044 0.0041 0.0026 0.0002

corr(r, c) -0.294 -0.518 -0.533 -0.427 -0.270 -0.071 0.025

qn1 2.469 2.472 2.473 2.474 2.476 2.482 2.492

qn2 2.519 2.519 2.519 2.519 2.519 2.518 2.508

qg1 2.442 2.446 2.447 2.448 2.449 2.456 2.466

qg2 2.473 2.455 2.450 2.446 2.437 2.416 2.406

µm1 3.293 3.298 3.299 3.298 3.294 3.285 3.197

µm2 3.269 3.276 3.272 3.262 3.242 3.190 3.174

µb1 3.277 3.283 3.284 3.247 3.246 3.273 3.187

µb2 3.260 3.263 3.258 3.247 3.225 3.169 3.151

term11 (%) 0.236 0.226 0.222 0.219 0.204 0.189 0.163

term12 (%) 0.236 0.226 0.222 0.219 0.204 0.189 0.163

term21 (%) -0.726 -0.698 -0.906 -1.304 -2.167 -5.824 -29.47

term22 (%) -11.93 -1.854 -0.504 -0.235 -0.108 -0.069 -0.149

The model generates several results that are absent in Lucas (1990). I will describe these

results below for the case of independent shocks, since the contrasts with Lucas’s model are the

sharpest in this case.

First, open market operations have real effects — A high shock in the previous period increases

current real output. The difference between output in the two realizations of the shock is about

0.7% of the mean. This real effect arises because (unmatured) bonds generate liquidity in the

goods market. A high shock in the previous period increases the stock of unmatured bonds in

the current goods market. This allows a buyer to purchase a larger quantity of goods in an

unrestricted trade than if the previous period’s shock was low, i.e., qn2 > q
n
1 . The presence of a

21



larger quantity of nominal assets in the goods market also pushes up the price level and reduces

the quantity of goods purchased in a restricted trade, i.e., qg2 < q
g
1 . In the numerical examples,

the increase in qn dominates the decrease in qg, and so aggregate output rises.11

Second, a high past shock reduces the current interest rate when the current shock is high. In

contrast, past (independent) shocks in Lucas’s model do not affect the current interest rate. To

explain this new effect, recall that a high past shock increases the amount of unmatured bonds

circulating in the current goods market and increases the price level. The higher price level

reduces real values of both money and unmatured bonds. However, the real value of unmatured

bonds (µb) falls by less than does the real value of money (µm), because the increased amount of

unmatured bonds increases liquidity in unrestricted trades. (In fact, µb barely changes at all with

past shocks when shocks are independent.) Thus, the relative value of unmatured bonds to money

increases, which induces the households to allocate more money to purchase new bonds. When

the current shock is high, the additional money in the bonds market pushes up the bond price

and depresses the current interest rate. When the current shock is low, the additional money in

the bonds market does not affect the current interest rate, as discussed above.

Third, the above effects of past shocks on current activities induce the following correlations:

(i) Interest rates in two adjacent periods are negatively correlated; (ii) Contemporaneous output

and interest rates are negatively correlated; (iii) Output is positively correlated with lagged

interest rates (not reported in Table 1).12 These correlations arise because a shock in the previous

period increases the interest rate in the previous period, increases current output, and reduces

the current interest rate. Note that the negative contemporaneous correlation between output

and interest rates is −0.427, which is comparable with the sample value in the US data (see
Christiano et al., 1995). However, the positive correlation in (iii) is unrealistic.

Finally, the term structure of interest rates responds to open market operations. The yield

curve is negatively sloped when the current shock is high and positively sloped when the current

shock is low. In light of (6.1), this negative response of the yield curve to the current shock is

not surprising. For example, a high current shock increases the one-period interest rate; at the

same time, it reduces the expected future discount on unmatured bonds (µm/µb) by generating

liquidity in next period’s goods market. Both effects reduce the slope of the yield curve.

Moreover, the slope of the yield curve can depend on the previous period’s shock. When the

11Because consumption varies between the states of the shock, the real interest rate varies with the shock.
However, the real interest rate varies by less than the nominal interest rate does. Also, real output (consumption)
is serially correlated (not reported in Table 1). The coefficient of correlation between current consumption and
k-period past consumption is equal to (2θ−1)k. Thus, positively correlated shocks induce positive autocorrelations
in consumption.
12The formulas for the correlations between r and c are as follows:

corr(r, y) = y2−y1
2

[θ(r22 − r11) + (1− θ)(r12 − r21)] ,
corr(r, y+1) =

y2−y1
2

[θ(r22 − r11) + (1− θ)(r21 − r12)] .

Moreover, corr(r, y−j) = (2θ − 1)jcorr(r, y) and corr(r, y+j) = (2θ − 1)j−1corr(r, y+1), for j = 1, 2, ....
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current shock is high, a high past shock makes the yield curve less negatively sloped. To explain

this result, recall that a high past shock increases the money allocation to the current bonds

market. This higher money allocation reduces current interest rates when the current shock is

high. However, the expected future discount on unmatured bonds depends only on the current

shock, not on past shocks. Thus, by (6.1), the yield curve becomes less negatively sloped.13

Clearly, the role of unmatured bonds in the goods market is important for this dependence of the

yield curve on past shocks, because it is the reason why the households condition their money

allocation on past shocks. In contrast, in Lucas’s model, bonds play no role in the goods market

regardless of the maturity, and so the yield curve is independent of past shocks when the shocks

are independent.

Most of the above features with independent shocks continue to exist when shocks are de-

pendent. However, there are a few changes. First, when shocks are highly negatively dependent

(i.e., θ ≤ 0.1), a high past shock increases (rather than decreases) the current interest rate when
the current shock is high. That is, r22 > r21. This is because, given the high past shock and the

negative serial dependence, the households anticipate bond sales to be low in the current period

and so they allocate less money to the bonds market. When the current bond sales turn out to be

high, the interest rate will be high. Second, when the shocks are highly persistent (i.e., θ ≥ 0.99),
the correlation between the current and one-period past interest rates becomes positive. This is

not surprising because a permanent shock will generate a positive correlation between interest

rates in all periods. Similarly, the contemporaneous correlation between output and interest rates

becomes positive when the shocks are highly persistent.

Table 2 reports the results of the sensitivity analysis. In this analysis, shocks are independent

and I perturb the money growth rate (γ), the scope of the legal restriction (g), the relative

risk aversion (δ) and the variation in the shock. These perturbations have small effects on real

variables but large effects on the nominal interest rate.

First, an increase in the money growth rate increases the mean of interest rates and reduces

the mean of real consumption (output); it also increases the standard deviations of interest rates

and real output. By eliminating net money growth from the baseline case, the mean and standard

deviation of interest rates fall by about a half, and the standard deviation in output falls by more

than a half. Real output and the nominal interest rate are still negatively correlated with each

other but the magnitude seems to first increase, and then decrease, with money growth.

Second, an increase in the scope of the legal restriction increases the mean of interest rates

but affects the standard deviation of interest rates in a hump-shaped pattern. The mean of real

consumption barely changes with the increase in the scope of the legal restriction, the standard

deviation of consumption decreases, and the negative correlation between consumption and in-

13Of course, when the current shock is low, the one-period interest rate is zero and unaffected by the money
allocation , in which case the slope of the yield curve is independent of past shocks.
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terest rates weakens. Real consumption responds in this way because the wider coverage of the

legal restriction reduces the liquidity effect of unmatured bonds in the current goods market and

reduces the variation in the quantity of goods between a restricted trade and an unrestricted

trade. Because consumption varies less and interest rates vary more between different states, the

two variables become less correlated with each other.

Table 2. Sensitivity results

z1 = 0.001

baseline γ = 1 γ = 1.05 g = 0.01 g = 0.5 δ = 0.05 z2 = 0.099

1− a1 (%) 7.722 7.863 6.983 7.688 7.749 7.720 9.542

1− a2 (%) 7.890 7.932 7.216 8.000 7.807 7.895 9.794

E(r) (%) 1.468 0.788 7.024 1.038 1.826 1.435 1.375

StD(r) (%) 1.292 0.601 5.839 0.012 1.062 1.320 1.404

corr(r, r−1) -0.341 -0.314 -0.154 -0.331 -0.175 -0.343 -0.352

c1 0.617 0.624 0.581 0.614 0.620 0.502 0.616

c2 0.626 0.627 0.594 0.629 0.623 0.513 0.627

E(c) 0.622 0.626 0.588 0.622 0.622 0.507 0.622

StD(c) 0.0044 0.0018 0.0066 0.0079 0.0015 0.0056 0.0052

corr(r, c) -0.427 -0.368 -0.158 -0.581 -0.181 -0.434 -0.474

term11 (%) 0.219 0.137 0.665 0.021 0.399 0.196 0.166

term12 (%) 0.219 0.137 0.665 0.021 0.399 0.196 0.166

term21 (%) -1.304 -0.581 -5.259 -1.966 -0.778 -1.335 -1.471

term22 (%) -0.235 -0.147 -3.693 0.003 -0.407 -0.225 -0.181

Baseline parameters: θ = 0.5, γ = 1.005, g = 0.2, δ = 0.5, z1 = 0.02, z2 = 0.08, θ = 0.5.

Third, a decrease in the relative risk aversion reduces the mean and increases the variation

in interest rates. It also reduces the mean of output, increases the variation in output, and

strengthens the negative correlation between output and the nominal interest rate. A remarkable

feature is that the allocation of money between the two markets remains very insensitive to the

previous period’s shock even when the utility function is almost linear (i.e., when δ = 0.05). This

is not a feature special to the case of independent shocks; it also occurs when shocks are highly

persistent, e.g., when θ = 0.99.

Fourth, an increase in the mean-preserving spread in the shock reduces the mean and increases

the variation in interest rates. It also increases the variation in output, without affecting the mean

of output much, and strengthens the negative correlation between output and the interest rate.

Finally, the above changes in the parameter values change the magnitude of the slope of the

yield curve but have very little effect on the sign of the slope. Not surprisingly, when the scope

of the legal restriction becomes very narrow (g = 0.01), the yield curve becomes very flat in most

cases. When g → 1, the equilibrium approaches the one analyzed by Lucas (1990).
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7. Conclusion

In this paper I combine a decentralized goods market and a centralized bonds market to analyze

the liquidity effects of open market operations. The bonds market features limited participation,

while the goods market features bilateral matches. In a fraction of trades, a legal restriction

forbids the use of bonds as the means of payments for goods. In such a restricted trade, the

buyer faces a money constraint. In an unrestricted trade, the buyer can use both money and

unmatured bonds to buy goods, and so unmatured bonds can provide liquidity. A shock to bond

sales in this economy has two distinct liquidity effects. One is the immediate liquidity effect in

the bonds market, as emphasized by Lucas (1990), and the other is a liquidity effect in the goods

market starting one period later.

The liquidity effect in the bonds market arises because there is limited participation in the

bonds market and because the households’ money allocation between the markets is insensitive

to past shocks, even when shocks are highly persistent. With this insensitive money allocation,

the bond price and hence the nominal interest rate absorbs most of the shock to current bond

sales. This liquidity effect is short-lived, as in Lucas’s model.

The liquidity effect in the goods market is new and it occurs with a delay.14 For example,

a high shock to bond sales in the previous period increases the amount of unmatured bonds

circulating in the current goods market, relaxes the asset constraints in unrestricted trades, and

hence increases the quantity of goods traded in an unrestricted trade relative to that in a restricted

trade. Important for this liquidity effect is the temporary separation between trades in the goods

market, implied by random matches. If all exchanges in the goods market were centralized in the

Walrasian style, then a high past shock would simply push up the price level without affecting

real output. In contrast with the liquidity effect in the bonds market, the liquidity effect in the

goods market can be long-lived and, in principle, the duration of this effect increases with the

length of maturity of the bonds that are used in open market operations.15

The liquidity effect of unmatured bonds in the goods market generates a number of new fea-

tures. These features are best illustrated in the case of independent shocks. First, a high shock

to bond sales in the previous period leads to higher current output by increasing liquidity in the

current goods market. This also implies that the real interest rate varies with past shocks. Sec-

ond, the shock in the previous period affects the current interest rate by changing the allocation

of money between the two markets. In particular, a high past shock reduces the relative value of

money to unmatured bonds and increases the amount of money allocated to the current bonds

14A popular variation of Lucas’s model assumes that there is a separate cash-in-advance constraint on firms’
wage payment and that open market operations affect firms’ available funds before affecting the price level (e.g.,
Fuerst 1992). This variation allows open market operations to affect real activities, but such real effects are quite
different from the liquidity effect in the goods market that I emphasize here.
15If the government attaches repurchase agreements to bond sales, then the duration of the liquidity effect of

bonds in the goods market will be reduced.
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market, which reduces the current nominal interest rate. Third, because of the last two features,

the contemporaneous correlation between interest rates and output is negative, and the auto-

correlation between interest rates in two adjacent periods is negative. Finally, past and current

shocks both affect the slope of the yield curve. In particular, when the current shock is high, the

yield curve is negatively sloped and it is more so when the previous period’s shock was low.

Another way to understand this set of new features is that the goods market eliminates the

“one-factor” character of Lucas’s model. Although money and bonds of different maturities are

traded in the same centralized market, the liquidity services generated by these assets in the

goods market are different, depending on the lengths of maturity and the dependence of shocks.

Open market operations affect the relative value between these assets and, especially, between

unmatured bonds and money. This effect leads to the re-allocation of money between different

markets, which in turn affects real output and generates the serial correlation in interest rates.

In order to focus on the liquidity effects, I have retained several assumptions in Lucas’s model.

First, open market operations do not affect money growth. Second, there is no element (other

than the one-period separation between markets) to delay the transmission of shocks from the

bonds market to the goods market. Third, the shock to bond sales is the only shock in the

economy. Relaxing these assumptions might improve the predictions of the model. For example,

the current model generates the unrealistic result that future output is positively correlated with

the current interest rate. This result might be overturned if there are money demand shocks

as well as the shocks in open market operations. One example of a money demand shock is

stochastic changes in the scope of the legal restriction, g.

Finally, there may be a need to model explicitly how financial institutions turn unmatured

bonds into instruments that can circulate in the goods market temporarily. Such an explicit role

of intermediation may produce a more realistic mechanism of monetary propagation.
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Appendix

A. Proofs of Lemmas 5.1, Lemma 5.2 and Theorem 5.3

Consider Lemma 5.1. First, TO maps from V to V. For any µm ∈ V, O(µm) is continuous
because Φ has the Feller property. Since a(.) ∈ A is continuous, TO(µm) is continuous. Because
µm ≥ γ

βωL, then O(µ
m) ≥ ωL. Hence,

TO(µm) ≥ ωL [1 + F (ωL; a, z−1)] ≥ ωL [1 + F (ωL; aH , zH)] .

The first inequality comes from the fact that T is an increasing function of ωm and the second
inequality from the fact that, for given ωm, F (ωm; a, z−1) is a decreasing function of (a, z−1).
Similarly, O(µm) ≤ ωH and

TO(µm) ≤ ωH [1 + F (ωH ; a, z−1)] ≤ ωH [1 + F (ωH ; aL, zL)] .

Thus, TO(µm) ∈
h
γ
βωL,

γ
βωH

i
if

F (ωH , aL, zL) + 1 ≤ γ/β ≤ F (ωL, aH , zH) + 1.
This is part of the condition (5.3) in the lemma.

Second, TO is a contraction under the supnorm. Take any µ0, µ00 ∈ V. Let ω0 = O(µ0) and
ω00 = O(µ00). Then, ω0,ω00 ≥ ωL and¯̄

ω0 − ω00
¯̄
=
¯̄
O(µ0)−O(µ00)¯̄ ≤ β

γ

°°µ0 − µ00°° .
Because T is concave in each of its segments and because Tω is bounded above by K for all
ωm ≥ ωL, I have: ¯̄

T (ω0)− T (ω00)¯̄ ≤ K ¯̄
O(µ0)−O(µ00)¯̄ ≤ β

γ
K
°°µ0 − µ00°° .

Thus, kTO(µ0)− TO(µ00)k ≤ β
γK kµ0 − µ00k. The mapping TO is a contraction if γ/β ≥ K + ε,

where ε > 0. This condition is part of the condition (5.3) in the lemma.
Because TO: V → V is a contraction mapping under (5.3), and V (with the supnorm) is a

complete metric space, TO has a unique fixed point µma ∈ V.
Now turn to Lemma 5.2. Since (µma , µ

b
a) are continuous, µ

m
a ≥ γ

βωL > 0, and Φ has the

Feller property, then Γa(.) defined by (5.4) is continuous. To show Γa ∈ A, it suffices to show
Γa(z) ∈ [aL, aH ] for all z ∈ Z. Notice that the right-hand side of (5.4) is increasing in a(z−1) for
given (µma , µ

b
a). Since a(z−1) ∈ [aL, aH ], the sufficient conditions for Γa(z−1) ∈ [aL, aH ] are:

µma (z−1) ≤
β

γ

Z
max

½
z

1− aH µ
b
a(z), µ

m
a (z)

¾
Φ(dz, z−1), (A.1)

µma (z−1) ≥
β

γ

Z
max

½
z

1− aLµ
b
a(z), µ

m
a (z)

¾
Φ(dz, z−1). (A.2)

The first condition is satisfied when aH is close to 1. For the second condition, note that µ
b
a(z) ≤

µma (z) for all z (see (3.9) and (3.10)), and so

max

½
z

1− aLµ
b
a(z), µ

m
a (z)

¾
≤ µma (z)max

½
z

1− aL , 1
¾
≤ µma (z)max

½
zH

1− aL , 1
¾
.
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Then, a sufficient condition for (A.2) is

µma (z−1) ≥ max
½

zH
1− aL , 1

¾
β

γ

Z
µma (z)Φ(dz, z−1) = ωma (z−1)max

½
zH

1− aL , 1
¾
.

Because µma /ω
m
a = F (ω

m
a , a, z−1) and F is a decreasing function of its three arguments, a sufficient

condition for the above condition is (5.5).
Now turn to Theorem 5.3. It suffices to show that Γ is continuous in a. Interpret µma , µ

b
a

and ωma as functions of a. I show that (µma , µ
b
a,ω

m
a ) are continuous in a in the supnorm. Once

this is done, it is clear from (5.4) that Γ is continuous in a in the supnorm. Because the proofs
for (µma , µ

b
a,ω

m
a ) to be continuous in a are similar, I describe only the proof for µ

m
a . For the

latter, I need to show that for any ε > 0, there exists ∆ > 0 such that
°°µma2 − µma1°° < ε whenever

ka2 − a1k < ∆, where the norm is the supnorm. Let ε > 0 be an arbitrary number. Define

B(ωm, z−1) = max
a,ba∈A

¯̄̄̄
F (ωm, a(z−1), z−1)− F (ωm, ba(z−1), z−1)ba(z−1)− a(z−1)

¯̄̄̄
,

where F is defined in (3.8). Since F is decreasing in a, B > 0. Also, because the intervals
[aL, aH ] , [ωL,ωH ], and [zL, zH ] are bounded away from zero and bounded above, it can be verified
that B(ωm, z−1) <∞. For any a1, a2 ∈ A, if ka2 − a1k < ∆, then

|F (ωm, a2(z−1), z−1)− F (ωm, a1(z−1), z−1)|
≤ B(ωm, z−1) |a2(z−1)− a1(z−1)| ≤ B(ωm, z−1) ka2 − a1k < B(ωm, z−1)∆.

Because T (ωm, a, z−1) = ωm (1 + F ) and ωm ≤ ωH , then

|T (ωm, a2(z−1), z−1)− T (ωm, a1(z−1), z−1)|
= ωm |F (ωm, a2(z−1), z−1)− F (ωm, a1(z−1), z−1)| < ωHB(ω

m, z−1)∆.

Since µma = T (ω
m
a , a(z−1), z−1) and kTO(µ0)− TO(µ00)k ≤ β

γK kµ0 − µ00k, I get:¯̄
µma2 (z−1)− µma1(z−1)

¯̄
=

¯̄
T
¡
ωma2 , a2(z−1), z−1

¢− T (ωma1 , a1(z−1), z−1)¯̄
≤ ¯̄

TO
¡
µma2 , a2(z−1), z−1

¢− TO(µma1 , a2(z−1), z−1)¯̄
+
¯̄
T
¡
ωma1 , a2(z−1), z−1

¢− T (ωma1 , a1(z−1), z−1)¯̄
< β

γK
°°µma2 − µma1°°+ ωHB(ω

m
a1(z−1), z−1)∆.

Taking the maximum over z−1 on both sides of the inequality yields

°°µma2 − µma1°° < ∆

1− β
γK

ωH kBk .

Let ∆ = ε
³
1− β

γK
´.
[ωH kBk]. Because γ/β > K, kBk < ∞ and 0 < ωH < ∞, then ∆ > 0.

For all a1, a2 ∈ A such that ka2 − a1k < ∆,
°°µma2 − µma1°° < ε. QED
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