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Abstract

A multi-unit auction environment similar to Ebay is studied. Sellers
who wish to sell a single unit of a homogenous good set reserve prices
for their own independently run auctions. Buyers who hope to acquire
a single unit bid as often as they like in a dynamic second price auction.
When the number of buyers and sellers is large but finite, there is a
Bayesian equilibrium for this completely decentalized trading procedure
in which the ex post efficient set of trades occurs at a uniform trading
price. Remarkably, the strategy rules that buyers and sellers use in this
equilibrium are very simple. They do not depend in any way on beliefs,
or on the number of buyers and sellers.

One of the central features of auction theory is the centralized nature of
trade. Specifically, the seller, or auctioneer, establishes trading rules centrally
processes information contained in messages sent by buyers and adjusts prices.
Some recent examples include algorithms developed by Gul and Stacchetti
(2000) and Ausubel (2000), both of which support efficient competitive trade as
a Bayesian Nash equilibrium. Theory is less well developed in the case of mul-
tilateral exchanges, like the stock exchange and some business to business sites
on the internet, yet centralized processing of demand and supply information is
a common feature.1 It is natural to think in these terms since standard compet-
itive reasoning is typically explained using a fictitious auctioneer who collects
demand and supply information then uses some sort of tatonement process to
compute market clearing prices.2

The theoretical literature that does exist on multilateral trade follows this
lead by assuming that messages like bid and ask prices are centrally processed
and used to compute efficient trades. Double auctions, for example Wilson

1For example, the NTE truck exchange (http://www.nte.net) allows truckers with excess
carrying capacity to match with shippers who have small and unusual packages to send. The
exchange does not use auctions, but instead uses what they call ’market based pricing’ to
complete the trade. Apparently the ‘commodities’ used in this exchange are so narrowly
defined that mechanisms similar to a double auction that use only demand and supply for a
single ’commodity’ to determine the price attract too few buyers and sellers, so supply and
demand information for related routes and times is aggregated and used to generate market
prices.

2For example, Herings (1997).
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(1985), are known to be incentive efficient. Rustichini, Satterthwaite, and
Williams (1994) (following previous work by Satterthwaite and Williams (1089))
show that surplus lost by trading in centralized double auctions shrinks to zero
very quickly as the number of traders gets large. Older experimental work by,
for example, (Smith (1962)) seems to confirm these theoretical predictions.

At first glance, the trading technology offered by the internet appears to
enhance this trend toward centralization since computers make it easier to as-
semble and process large amounts of information. Large trading institutions
such as Ebay,Ubid, and other business-to-business exchanges have emerged,3

and are growing quickly. For example, Ebay had 18.9 million registered users
as of April 2001. Total sales volume at Ebay in 2000 was $ 5 bln. and this
number is expected at least to double in 2001 (see Morneau (2001)).The volume
of trade at business-to-business marketplaces has grown from $5 bln. in 1999,
to $43 bln. in 2000 and, according to ActivMedia Research, is expected to reach
$263 bln. in 2001 (see Wilson and Mullen (2000), Morneau (2001)).

On closer inspection, the notion that electronic trade promotes centralization
of trade is less convincing. Though Ebay certainly presents a focal location for
trade, Ebay itself does not do the processing of demand and supply information
that occurs in a double auction, or in the single auctioneer mechanisms of Gul
and Stacchetti (2000), orAusubel (2000). It is up to sellers to choose their own
reserve prices and buyers to decide where to submit bids. Experienced traders
apparently buy and sell in many locations. For example, it is possible to buy
computers on Ebay, but they can also be purchased on line at suppliers own
websites and at a variety of on line retail locations. Suppliers who do try to
sell on Ebay, typically also offer their computers on other on line trading sites
like Amazon, or Ubid.

The same technology that makes it possible to process large volumes of in-
formation also promotes decentralized trade because it makes it possible for
individual traders to collect dispersed information about prices and availability
and react to it. For example, one could easily imagine that the robot guided
bidding on Ebay could be carried out on a host or small private servers (owned
by sellers) which simply enforced the trading rules used at the larger institution.
Arguably the widespread use of relatively low power personal computers would
seem to enhance decentralized decision making as much as it does central com-
putation. This may be one reason that institutions like Ebay are so successful
- they leave the responsibility for coordinating trade up to traders themselves.

Whether decentralized trade works or not depends on whether the algorithm
used to compute prices and efficient trades can be broken up into bits that can
be solved by individual traders, and whether traders have any incentive to follow
the rules of the algorithm once this occurs. This issue has been addressed many
times before, for example, it has been shown that in the context of random
matching - bargaining may or may not produce competitive outcomes when
trade frictions are small (see, for example, Rubinstein and Wolinsky (1990)). In

3The examples of large-scale business-to-business internet exchanges include CheMatch
and Chem Connect (chemical industry), Covisint (auto parts), MetalSpectrum (aluminum,
stainless steel, copper, iron, and other metals).
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this paper, we extend this line of inquiry into an environment that has many of
the characteristics of internet auctions and exchanges. Frictions are small and
the appropriate way to match buyers and sellers is not obvious.

First, in regards to breaking up the algorithm into smaller parts, we allow
sellers to (independently) run ascending price auctions similar to those that
occur on Ebay. Buyers submit bids at these auctions, but when these bids
are unsuccessful, we allow buyers to adjust their bids and move between sellers
costlessly. We then provide a ’simple’ bidding rule that buyers can use to select
among sellers’ auctions and choose their bids. This bidding rule uses information
on publicly observable prices, and on the last bid submitted at each auction.
Otherwise it is independent of buyers’ beliefs about the valuations of the other
buyers and on the number of other buyers bidding. When buyers follow this
bidding rule, all trades occur at a uniform price that coincides with the price
in a ’sellers bid double auction’ where all bids and asks are processed in the
centralized way4 and sellers’ ask prices are equal to their reserve prices. If the
sellers’ reserve prices happened to be equal to their true valuations, then the
uniform trading price would be equal to the lowest market clearing price.

Then we show that the bidding rule that we specify constitutes a Bayesian
Nash (continuation) equilibrium for buyers given the reserve prices of sellers.
So not only does the algorithm parcel out the problem of computing equilibrium
prices and trades, but buyers involved have the correct incentive to follow this
algorithm.

In the second part of the paper, we show that there is a large but still
finite number of buyers and sellers such that it is a Bayesian equilibrium for
sellers to set their reserve prices equal to their true costs. So in this sense our
decentralized market along with the simple bidding rule we describe for sellers
always supports efficient trade at a uniform price when the market is large.5 So
the ’competitive outcome’ is completely decentralized.

The significance of the bidding procedure we descibe is not so much that
it generates a competitive outcome, for it is known that there are many al-
gorithms that will accomplish this. The algorithms described by Gul and
Stacchetti (2000) and Ausubel (2000) are examples in the single seller case.
Roth and Sotomayor (1990) describe an auction like mechanism that generates
competitive trade in the environment we study. Demange (1982) and Leonard
(1983) study the incentive properties of this mechanism. These procedure are
not decentralized in the sense that ours is, since they require that a centralized
auctioneer collect information and change prices6 The interest in our procedure

4The sellers’ bid double auction is described in Satterthwaite and Williams (1089).
5We get stronger results in this regard than Rustichini, Satterthwaite, and Williams (1994)

concerning the existence and efficiency of equilibria because we assume that there is a finite
set of feasible valuations rather than a continuum. This assumption also allows us to get
around the impossibility result of Myerson and Satterthwaite (1983).

6Roughly each buyer tells the auctioneer which sellers he would be willing to purchase from
at the current set of prices. The auctioneer checks to see whether a matching of buyers to
sellers is feasible given this information. If not prices are increased a bit at all the sellers where
there is an excess demand. Buyers could send messages to each of the sellers in their ’demand
sets’ informing them they are willing to trade, but sellers who have an excess demand can’t
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stems from the fact that the price adjustments are done by traders themselves
without any need for centralized intervention. The strategy rules that traders
use to conduct themselves are simple. Buyers need to know only the current
set of prices as well as whether or not the last bid with each seller (if there was
one) was successful (in the sense that the buyer who submitted the bid became
high bidder).

Apart from its theoretical value, this result has potentially important prac-
tical implications since a decentralized market is less prone to technological
failures7. We emphasize that our decentralization result does not require that
traders themselves carry out the sophisticated calculations that otherwise might
have to be done by the mechanism designer intermediating the trades, or by buy-
ers and sellers attempting to foresee future trading prices in a rational expec-
tations model. The strategies that buyers and sellers use ’work’ independently
of the tastes, beliefs about costs or valuations and, for buyers, even the num-
ber of traders who participate in the process. Thus, traders need very little
information in order to carry out their equilibrium strategies.

Despite the fact that the market is completely decentralized in our model,
the rules that govern exchange are very similar to the ones that are used on well-
known internet auction markets since they are themselves quite decentralized.
In this sense, our model gives some insight into the workings of markets like
Ebay8 and other business-to-business marketplaces.

If bidders follow the strategies we descibe, predictable patterns of bids and
pricing will emerge. For example, the winning bid in our model is not necessarily
the last bid. However, because the bidders push up the standing bids slowly,
the winning bid will normally be submitted towards the end of an auction. It
would be rare in our mechanism for the winning bid to be submitted early in
the auction (in the sense that there are many bids submitted after it). There
is strong evidence that Ebay auctions are won by late bidders (Zheng (2001) or
Roth and Ockenfels (2000)). High valuation bidders who follow Ebay’s advice to
bid their true valuations early will win the auctions they participate in whether
they bid early or late.

It is readily apparent in our model why buyers do not want to follow Ebay’s
advice and bid their true valuations right away, leaving the robots to compute
the prices later. Buyers who do so may be accidentally trapped into paying a
higher price than they need to when a high valuation buyer bids against them.
Incrementing the standing bid as slowly as possible (by submitting the minimum
acceptable bid) avoids this.

tell whether a feasible match is possible or whether they should raise price without a signal
from the auctioneer.

7The Toronto Stock Exchange for example, has suffered continuing technical problems that
have shut down its computerized trading system repeatedly and resulted in millions of dollars
in trading losses.

8ebay is a more centralized mechanism than the one we have in mind since the bidding is
actually processed on ebay servers. It is not beyond the realm of possibility to imagine that
sellers conduct the same auctions on their own servers. The boundaries of the market defined
by the internet go far beyond the confines of a single server. Many companies who sell on
ebay (sun computers is an example) use ebay as one of many different on line trading centers.
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Another characteristic of the equilibrium is that winning bidders will tend to
do more bidding than losing bidders (not necessarily all in the same auction).
There is some preliminary evidence that activity and success are correlated
consistent with our prediction. Our model predicts strong negative correlation
between seller’s reservation price and bidding activity. Seller’s with high reser-
vation prices should get few bids. However, at least to the extent that the
commodities being sold are substitutes, our model also predicts that the units
with high and lower reservation price should end up trading at the same price -
so the correlation between trading price and the seller’s reserve price should be
very weak.

There are (at least) two branches in the literature that are closely related to
our paper. Our paper follows the lead of the literature on competing auctions
McAfee (1993), Peters (1997), Peters and Severinov (1997), Hernando-Veciana
(2000). The flavor of the results in that literature is similar to ours - when there
are many competing auctions, equilibrium indirect mechanisms are independent
of the characteristics of demand - second price auctions with reserve prices set
equal to costs are best mechanisms for sellers independent of their beliefs. We
provide the same kind of result here since sellers use second price auctions and
set their reserve prices equal to their costs (though sellers are only free to choose
a reserve price in our model, they cannot use mechanisms other than auctions).
The difference is that in the previous literature the cost of bidding is implicitly
very high in the sense that buyers are able to submit only a single bid. As a
consequence, the equilibrium outcomes in these models are not ex post efficient.
Coordination problems are large enough that there are unrealized gains to trade.
In our model bidders are allowed to submit as many bids as they like. In
effect, this costless communication allows buyers to get around the coordination
problems that arise in these earlier models.

We have mentioned already the connection between our work and the pric-
ing algorithms of Gul and Stacchetti (2000), Ausubel (2000) and Roth and
Sotomayor (1990). Our procedure is closer in spirit to the ’deferred acceptance’
algorithms of Gale and Shapley (1962) and Kelso and Crawford (1982) (the
latter studies the case with transferable utility). These algorithms have the
same decentralized feature that ours does in that proposal acceptance decisions
can be left up to individual traders. It is known that the deferred acceptance
algorithms are not information proof when utility is non-transferable. Less
is known about the incentive properties of these algorithms with transferable
utility. We do not address the incentive properties of this kind of algorithm in
general, rather we focus on Bayesian Nash equilibria when the number of traders
is large and valuations are drawn independently to show that efficient trade is
supported.

Our arguments can be broken up into two parts. In the next section we de-
scribe our model. This is followed with a description of the equilibrium strategies
for buyers. Once we show that on the equilibrium path outcomes are equiva-
lent to those that occur in a seller’s bid double auction, the analysis of sellers’
equilibrium strategies is then standard, but analytically demanding. In fact,
our argument shows that sellers’ bid double auctions have efficient equilibria
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when there is a finite set of valuations. This could be viewed as an independent
contribution of the paper.

1 The Model

There are n sellers and m buyers trading in a market. The number of buyers
and sellers is arbitrary in our model, and we do not assume that there are
more buyers than sellers. Each seller has one unit of a homogeneous good,
while each buyer has an inelastic demand for one unit of this good. Buyers’
valuations and sellers’ costs are private information and are distributed on the
grid D ≡

{
d, d+ d, d+ 2d, . . . d

}
that has a step size d > 0. Let F (·) and

G(·) be the probability distributions from which buyers’ and sellers’ valuations
respectively are drawn. Our results on equilibrium bidding behavior by buyers
are independent of whether or not buyers’ valuations are correlated, though our
equilibrium for the sellers’ part of the game relies on independence. A buyer
with valuation v who wins a single auction at a price p gets surplus v − p.
A buyer who wins more than one auction gets no additional utility from the
additional units of output (so his payoff will fall because he has to pay for the
additional units). A sellers with cost c who sells at price p get surplus p− c.

Trade is organized in the following way. At first, sellers simultaneously
announce reserve prices for their auctions. Thereafter buyers arrive sequentially.
When a new buyer arrives, he submits a bid at whichever of the sellers’ auctions
he likes best. Buyers are required to submit bids in the grid D.9 The grid size d
could be thought of as the minimum bid increment. When the seller receives a
bid, she publishes a number called her standing bid which is equal to the second
highest bid that she has received, or her reserve price if she has not received more
than 1 bid. Each seller immediately updates her standing bid announcement
when her standing bid changes. As in most existing on-line auctions, we also
assume that the identity of the winning bidder is known at all times10.

We assume throughout that the second-highest bid means second highest
bid submitted by a distinct bidder. The standing bid is assumed to remain
unchanged if the high bidder revises his bid. A new bid submitted at a seller’s
auction must always exceed that seller’s current standing bid. If two or more
bidders have submitted the same high bid, then the buyer who was the first to
submit this bid is declared the high bidder. The standing bid in this case is
equal to the high bidder’s bid.

After a new bid is submitted, each buyer in order of his or her entry into
the market is given the opportunity either to submit a new bid (not necessarily
with the same seller) or pass. Once each buyer in the market chooses to pass, a
new buyer enters. After all buyers have entered the market, the bidding process

9This assumption is natural in view of our interpretation that the grid on which the traders’
valuations are distributed is determined by the minimal monetary unit.

10As will be show later, this assumption, or more precisely, the observability of the change
in the identity of the winning bidder is important for the uniform price result. When such
changes are not observable, price dispersion may occur

6



continues as bidders update their bids one after another. The order of bidding
at this stage is the same as the order of entry with the last bidder followed by
the first bidder and so on. The bidding continues until all buyers pass. Then
the high bidder at each seller trades at the final standing bid with that seller.

These rules approximate the trading rules on Ebay and on the Amazon
auction site (which differs from Ebay primarily in that auctions do not have a
definite ending date (see Roth and Ockenfels (2000))). The key property of the
auction rules is that they generate a type of the second price auction in which
the high bid is never observed.

Despite the second price nature of the auction mechanism, the presence of
multiple auctions implies that it is not a dominant strategy for buyers to bid
their true valuations when they start bidding (despite the advice offered on the
ebay website). To see this, consider the data in Figure 1. For the moment,
ignore the point b3, and suppose that there are two buyers with true valuations
b1 and b2 and two sellers who announce reserve prices s1 and s2. Assume that
the buyer with valuation b1 enters first and expects the other buyer to bid his
true valuation wherever he decides to bid.

To show that it is not a dominant strategy, we only need to show that
valuation bidding can be strictly improved upon for some strategy of buyer 2,
so suppose that buyer 2 is expected to bid his valuation where the standing
bid is lowest. Buyer 1 could bid her valuation with seller 2. She should then
expect buyer 2 to bid his valuation with seller 1 who has a lower reserve price.
No matter what bid buyer 2 submits, buyer 1 will trade at price s2. Buyer
1 can strictly increase her expected payoff by initially bidding s2 at seller 1,
provided she believes that buyer 2 has a valuation below s2 with strictly positive
probability.

So if buyer 1 is going to start off bidding her valuation, she will bid with
seller 1. When buyer 2 enters, the standing bid with seller 1 remains at s1

because seller 1 has yet to receive a second bid. So by the rule that buyer 2 is
supposed to be using, buyer 1 should expect buyer 2 to bid against her provided
he bids at all.

If buyer 2 bids at or below s2, then buyer 1’s initial strategy works out fine,
and she trades at a price at or below s2. If buyer 2 submits any bid above
b2, then buyer 1 will be displaced as high bidder, and will trade at price s2

with seller 2 - again a reasonable outcome. The difficulty arises when buyer
2 submits a bid strictly above s2 but strictly below b2. In this case, buyer 1
will pay a price strictly above s2. It is not hard to see that if buyer 1 starts
with a bid s2 with seller 1 (instead of b1), then everything works out the same
way, except that when buyer 2 bids something between s2 and b1, buyer 1 is
displaced as high bidder and trades at price s2 with seller 2. Deviating to the
price s2 ensures that buyer 1 will never have to pay a price above s2. This
strictly improves upon the bid b2 provided buyer 1 believes that buyer 2 has a
valuation between s2 and b1 with strictly positive probability.
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2 Efficient Bidding

The advantage of sequential bidding is that buyers whose valuations are high,
but who had the bad luck of bidding against another buyer with an even higher
bid, have an option to bid again elsewhere. Unfortunately, this option is not
sufficient to guarantee that, conditional on seller’s reserve prices, the efficient
trades are carried out. The following example demonstrates this.

In Figure 2, given sellers’ reserve prices s1 and s2 the efficient outcome is for
buyer 1 to trade with seller 1. However, consider the following strategies. If a
buyer finds that no other bids have been submitted and his valuation is at least
s1, then he submits a bid equal to s2 with seller 1. If there is a bid at seller 1,
then the buyer bids his valuation with seller 2 provided his valuation is at least
as large as s2, and refrains from bidding otherwise. This strategy is optimal for
the buyer who enters first because she ends up trading with seller 1 at price s1.
Following this strategy is also optimal for the buyer who enter last, because he
believes (correctly) that the buyer who has already entered has bid s2 at seller
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1. Therefore, there is an equilibrium in which both buyers use this strategy.
Given the data in Figure 2, if buyer 2 enters first then in this equilibrium he
will trade with seller 1, and then buyer 1 with a higher valuation will trade with
seller 2. Thus, equilibrium outcome of the bidders’ game could be inefficient.

It is easy to demonstrate that in this example, as well as in many other ones,
the dynamic bidding game has multiple equilibria. We will not attempt to char-
acterize all of them. Rather, our objective is to try to identify bidding equilibria
that have nice properties, especially, the ones that are efficient conditional on
the announced reserve prices.

To begin, let b = {b1, . . . bm} be the vector of buyers’ valuations, and let
s = {s1, . . . sn} be the vector of sellers’ reserve prices. Without loss of generality,
assume that sellers are indexed in such a way that s1 ≤ s2 · · · ≤ sn, while buyers
are indexed the opposite way so that b1 ≥ b2 · · · ≥ b3. Following Satterthwaite
and Williams (1089), let v = {v1, v2, . . . vm+n} be vector with entry vi equal to
i-th lowest value among buyers’ valuations and sellers’ reserve prices. If sellers’
reserve prices were equal to their true valuations, then the efficient set of trades
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occurs if buyers whose valuations exceed vm trade with sellers whose reserve
prices are equal or less than vm. To see why, note that initially there are n
sellers holding one unit of output and m buyers. Therefore, after all trades
are completed exactly n traders will own the good and the other m will not.
Efficiency requires that the traders who end up without the good have the lowest
valuations or costs.

We now define the symmetric strategy σ∗ by specifying how each buyer
should bid when his (her) turn comes. To help describe the strategy, make the
natural definition and say that a bid is successful if the bidder who makes it
becomes high bidder, and that the bid is unsuccessful otherwise.

Definition 1 The symmetric strategy σ∗ is defined as follows: if it is the
buyer’s turn to bid then

(a) if the buyer is the current high bidder at any auction, or if the buyer’s
valuation is less than or equal to the lowest standing bid, the buyer should
pass;

(b) otherwise, if there is a unique lowest standing bid, the buyer should submit
a bid with the seller offering this lowest standing bid. The bid should be
equal to the lowest value on the grid that exceeds this low standing bid;

(c) otherwise, if more than one seller has the lowest standing bid, the buyer
should submit the same bid as in (b) with equal probability at each such
seller where either the seller has not recevied a bid, or the last bid the
seller received was unsuccessful. If the last bid was successful with all
sellers holding the lowest standing bid, then the buyer should bid with each
of them with equal probability.

Before proceeding, it might help to visualize the path generated when buy-
ers use strategy σ∗ in a simple demand-supply style diagram. We refer again
to Figure 1, where the valuations and reserve prices of three buyers and two
sellers are shown. This is simply an example designed to illustrate the way
the strategies work, so for convenience we can assume that the grid of feasible
bids coincides with the set of sellers’ reserve prices s1, s2 and buyers’ valuations
b3, b2, b1. Assume further than buyers enter in reverse order of their valuations,
so buyer 3 with valuation b3 enters first, then buyer 2 then buyer 1. According
to strategy σ∗, when buyer 3 enters he bids s2 with seller 1 because seller 1
initially has the lowest standing bid and s2 is the lowest valuation on the grid
that exceeds s1. This bid will be successful but it will have no effect on seller
1’s standing bid. Buyer 2 will bid the same amount with seller 1, since seller
1’s standing bid still has the lowest standing bid.

The bid by Buyer 2 is unsuccessful, but it makes the standing bid with seller
1 rise to s2. Observe that unsuccessful bids will always change a seller’s standing
bid, since buyers must submit bids above the current standing bid. As buyer 3
was the first to submit this bid, he remains the high bidder and passes by (a),
so buyer 2 has the chance to submit a new bid. Now both sellers have the same
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standing bid. The last bid with seller 1 was not successful, and seller 2 has not
yet received a bid. The lowest value that exceeds the standing bid s2 is b3, so
by (c) buyer 2 will bid b3 with equal probability at seller 1 (case (a)) or seller 2
(case (b)). In either case, buyer 2’s bid will be successful and it will not affect
either of the standing bids. Note that a successful bid may or may not change
a seller’s standing bid.

Consider case (a) first. Since buyer 2 displaces buyer 3, buyer 3 immediately
submits a bid equal to b3 with seller 2, since seller 2 has yet to receive a bid in
this case. The bid is successful, and again, this bid does not affect either of
the standing bids which remain equal to s2. When buyer 1 enters he finds that
the last bid with both sellers was successful, so he will randomize. Whichever
sequence he chooses, the bid b3 will be unsuccessful and will raise the standing
bids at both sellers will rise to b3. Then buyer 1 will bid b2 choosing randomly
between the two sellers (since the last bid was unsuccessful at both locations).
If buyer 1 bids first with seller 1, then he will displace buyer 2, who will, in
turn, bid b2 at seller 2 and become a winning bidder there. Bidding will then
stop, and buyers 1 and 2 will trade at price b3. If he bids first with seller 2, his
bid will be successful and all bidding will stop.

Now consider case (b). When buyer 1 enters, he will submit bid b3 at seller
1 and displace bidder 3 without raising the reserve price above s2. Buyer 3
will then submit bid b3 at sellers 1 and 2 in random order, which will raise the
standing bid at both sellers to b3, but bidder 3 will still not be a winning bidder.
The bidding will then stop and buyer 1 and 2 will trade.

This example conveys the essential idea. Buyers bid up prices with each
seller as slowly as possible. For this reason, high valuation buyers are never
trapped into paying higher prices if another high-valuation buyer accidentally
bid against them. In this example, the efficient trades occur and both sellers
trade at a uniform price equal to buyer 3’s valuation. The randomness on the
equilibrium path makes possible different profiles of winning bids and different
pairwise matching between buyers and sellers who trade. However, the uniform
trading price is uniquely determined by the profiles of buyers’ valuations and
sellers’ reserve prices. These properties of the strategy rule σ∗ are quite general,
as the following theorem demonstrates.

Theorem 2 The outcome in which all buyers use the strategy σ∗ is a perfect
Bayesian equilibrium. For each array of valuations and reserve prices v, each
buyer whose valuation is above vm trades with some seller whose reserve price
is no larger than vm. All trades occur at the price vm.

The proof of this and the other main theorems in the paper is included in
the appendix.

According to strategy σ∗, all active buyers focus their bids on seller(s) with
the lowest standing bids irrespective of buyers’ valuations, beliefs and the stand-
ing bids. The active bidders continue to bid up the standing bid with this group
of sellers (which could consist of only one seller) until their standing bids reach
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the level of the standing bids or reserve prices at the next group of sellers, i.e.
the second lowest level. Then bidding continues with sellers from both groups
until the lowest standing bid reaches the level of reserve price or standing bid at
the next group of sellers, and so on. This process continues until all remaining
active bidders become high bidders with different sellers.

It is notable that strategy σ∗ contains the same set of rules on the equilib-
rium path as well as off the equilibrium path. But, although σ∗ generates a
relatively simple path, the proof that playing σ∗ constitutes an equilibrium is
not straightforward because the dynamic bidding game is sufficiently complex.

We provide the proof by showing that a buyer who at any stage of the bidding
game submits a higher bid than what is prescribed by σ∗, or who bids above his
valuation can at best raise the trading price. At the same time, a buyer who
bids as if his valuation is lower than what it is in reality, can sometimes lower
the trading price, but only by giving up a desirable trading opportunity.

This line of argument is similar in spirit to the one that is used to show that
bidding the true valuation is an equilibrium in a standard static second price
auction. But the analogy is only approximate.11 A substantially more complex
argument is needed because of the dynamic nature of the bidding process and
presence of multiple auctions. To compute the payoff that a buyer gets by
following σ∗ from the outset of the game, as well as the payoffs that he could get
by deviating, we need to consider arbitrary information sets and characterize the
outcomes that occur after the play of the game has reached them. In particular,
we need to show that playing σ∗ remains optimal for a buyer no matter what
information set is reached, if in the continuation all other buyers follow σ∗.

An important property of the equilibrium where buyers use σ∗ is absence of
price dispersion in the final outcome: all trades are executed at the same price.
Rule (c) in σ∗ plays the crucial role in achieving this. This rule describes buyers’
behavior when there are several sellers with the lowest standing bid, and so the
buyer faces the uncertainty regarding the winning bids at these sellers.

The essence of rule (c) is that it allows the buyer to identify which of the
sellers with the same standing bid have lower winning bids. Bidding only at
such sellers is optimal for the buyer, because then with some probability the
buyer will trade at a lower price. At the same time, such bidding ensures that
standing bids rise uniformly and eliminates the possibility of price dispersion.

Rule (c) tells the buyer to focus on such sellers with lowest standing bids
where there had been less action at the current standing bid, or more precisely,
where the last submitted bid was unsuccessful in the sense that the bidder who
submitted it did not succeed in displacing the high bidder at the auction. On
the path generate by our strategies, a successful bid will be strictly above the
standing bid and will displace the lead bidder without changing the standing
bid. An unsuccessful bid will raise the standing bid without displacing the
winner. Thus, when two standing bids are the same, the one where the last bid
was successful will have a larger high bid.

11As shown above, bidding one’s valuation is not an optimal strategy in the dynamic bidding
game.
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For each array v of buyers’ valuations and sellers’ reserve prices, theorem 2
uniquely specifies the price at which all trades will be completed. Precisely, the
trading price will be equal to vm which is either the highest valuation among
buyers whose bids are unsuccessful, or the highest reservation price among sell-
ers who trade, depending on the actual array of valuations and reserve prices.
At the same time, the randomization on the equilibrium path (buyers random-
ize between the sellers among whom they are indifferent) implies that certain
aspects of the outcome will also be random. First, the final matching between
sellers and buyers who trade is going to be random. Second, if there are k > 1
traders whose valuations or costs are equal to vm, then any number of them
between zero to k − 1 may trade in equilibrium.

To better understand whether buyers and sellers with valuations and costs
equal to vm trade, let us divide the set of buyers into three groups. For any
array v, let M1 be the set of buyers whose valuations are strictly lower than
vm, M2 be the set of buyers who have valuations exactly equal to vm, while M3

be the set of buyers whose valuations are strictly higher than vm. Similarly, let
N1, N2, and N3 be the sets of sellers who set their reserve prices below, equal
to and above vm respectively. Let mi (ni) be the number of buyers (sellers) in
the set Mi (Ni). Theorem 2 says that buyers in M3 will surely trade, and that
buyers in M1 and sellers from N3 will not trade.

Corollary 3 Let vm be the m-th lowest element in the array v of buyers’ valu-
ations and sellers’ reserve prices. If all buyers use the strategy σ∗ in the bidding
game, a seller who sets reserve price s s.t. s < vm trades for sure. The number
of sellers with reserve price equal to vm who trade trade is between

max [0,m3 − n1] and min [n2,m3 −min{0, n1 −m2}]

The number of buyers with valuation equal to vm who trade is between:

max [0, n1 −m3] and min [m2, n1 −min{0,m3 − n2}]

Proof: see the appendix.
Since all sellers from N2 (buyers from M2) are identical, they have the same

chances of trading. Therefore the probability that a seller from N2 (buyer from
M2 trades lies in the interval with boundaries that are derived by dividing the
corresponding boundaries on the number of sellers from N2 (buyers from M2)
who trade over N2 (M2).12

12By modifying the definition of strategy σ∗ appropriately, we can support equilibria in
which the number of sellers from N2 who trade is equal to the lower or upper bound established
in corollary 3. To obtain the lower bound, modify σ∗ in the following way. When a buyer faces
the choice between several sellers who have the lowest standing bid and who are equivalent
with respect to rule (c), he bids at first with those sellers whose original reserve prices were
lower than their current standing bid. Then the buyers in M3 will submit bids with sellers in
N1 before they will consider the sellers in N2. When the opposite modification on the strategy
σ∗ is imposed, we can support an equilibrium that reaches the upper bound on the number
of sellers from N2 who trade.
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The central implications of the corollary 3 is that the outcome of the bidding
game is efficient: traders who are left without the good at the end of the day
are the ones who have the lower valuations and costs. Note that no matter how
many sellers from N2 and buyers from M2 trade, this has no effect on the other
traders and the efficiency of the outcome.

We view the presence of randomness in the final outcome as a strength of
our model. In large decentralized markets it is unrealistic to expect all aspects
of the bidding process to be entirely deterministic. Yet, we demonstrate that
despite the presence of randomness on the equilibrium path, the final price will
be uniform and independent of the actual path of bidding.

It is also worth pointing out the connection between our result and equi-
librium in the double auction market. Consider a double auction with uniform
trading price set equal to m-th lowest value among buyers’ bids and sellers’
asks. Satterthwaite and Williams (1089) refer to it as ‘seller’s bid double auc-
tion’. They show that buyers would bid their true valuations in it and therefore,
conditional on the seller’s ask prices (reserves), the trading price will be equal
to vm. Bidding his valuations is optimal for a buyer because his bid can only
affect the trading price if the buyer fails to trade. The usual second price logic
then implies then applies. Thus, the dynamic bidding game studied here has an
equilibrium that generates an outcome identical to the outcome in a seller’s bid
double auction when sellers’ reserves prices are the same set in both markets.

Concluding the discussion of the bidding game, note that neither the de-
scription of strategy σ∗ nor the proof that σ∗ is a best reply depends in any
way on the distribution of valuations, or the number of buyers and sellers in
an auction.13 For example, if there is only a single seller, the trade will occur
at the reserve price if there is only a single buyer whose valuation is above the
reserve, and at the second highest valuation otherwise. This is the same as the
outcome in a second price auction. Playing strategy σ∗ remains an equilibrium
when there is a large number of sellers. On the other hand, as in the seller’s
bid double auction, a seller’s behavior in our mechanism will typically depend
on her beliefs and the number of traders. We turn to the this issue in the next
section.

3 Sellers’ Strategies and the Efficiency Result

The results of the previous section indicate that buyers’ equilibrium strategies
guarantee that the efficient set of trades occurs when sellers set reserve prices
equal to their true valuations. Buyers behavior is efficient because buyers affect
the trading price only when they forego attractive trading opportunities.

At the same time, the outcome will not necessarily be efficient if sellers
13This statement has to be qualified slightly since we impose restrictions on beliefs off the

equilibrium path, for example to ensure that no buyer believes that the high bidder in a any
auction has a valuation below the standing bid in that auction. This restriction may seem
unreasonable if valuations are correlated and prior beliefs conditional on the buyer’s own
valuation are inconsistent with this.
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set reserve prices that are different from their true costs. So we turn to an
examination of sellers’ behavior in this section.

It may not be optimal for a seller to set a reserve price equal to her true
valuation, because her reserve price may affect the trading price in some cases.
For example, consider the situation depicted in Figure 1 without buyer 3 (the
one with the lowest valuation). From the Figure it is clear that, if buyers use
strategy σ∗, the uniform trading price will be equal to the higher reserve price
as long as it is below b2. Sellers, of course, do not know b2. Thus, seller 2
could raise the trading price with a strictly positive probability by raising his
reservation price above s2. Clearly, the cost of increasing her reserve price to
seller 2 is that she would fail to trade if either buyer has valuation between s2

and her new higher reserve price.
This tradeoff is similar to the one which traders face in a standard double

auction. The rate of convergence of the optimal reserve prices to their true costs
in a double auction has been analyzed by Satterthwaite and Williams (1089)
in the case where the costs and valuations are independently and continuously
distributed over an interval. In the analysis below, we will also maintain the
independence assumptions. However we consider a finite grid of valuations
which allows us to get a somewhat tighter result.

Thus, assume that buyers’ valuations and sellers’ costs are distributed inde-
pendently. Let f(p) ≡ F (p)− F (p− 1) and g(p) ≡ G(p)−G(p− 1) denote the
probability that a buyer’s valuation and a seller’s cost respectively are equal to
p exactly. Let ḡ = minp∈D g(p) and f̄ = minp∈D f(p). We further assume that
ḡ > 0 and f̄ > 0.

We consider a sequence of markets that get larger as the number of traders
increases. For simplicity, we hold the ratio of the number of buyers to the
number of sellers constant at k > 0 i.e., m = kn where m is the number of
buyers and n is the number of sellers.

The main result of this section is the following theorem which establishes
that setting a reserve price equal to the true cost constitutes an equilibrium
strategy for sellers when the number of traders in the market is sufficiently
large.

Theorem 4 Suppose that every seller except seller z sets her reserve price equal
to her true cost and buyers follow the strategy σ∗. If m and n are sufficiently
large, it is optimal for seller z to set reserve price equal to her true cost.

The proof of this theorem is provided in the appendix. It demonstrates
that, provided that the number of traders is sufficiently large, a seller with cost
c obtains a higher expected payoff by setting reserve price equal to p− d rather
than p for p > c. The two expected payoffs are the same if the trading price
is either above p or below p − d. Thus, we need to focus on the situations
where seller j’s choice between p and p− d affects the trading price, and where
the trading price is equal to p − d or p irrespective of seller j’s choice. The
latter situation occurs if several other sellers post the reserve price equal to
the trading price. The probability of this event is zero when the costs are
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distributed continuously. Yet, with a discrete set of valuations it occurs with a
positive probability and has an important effect. When several sellers are tied
at the trading price, a seller may fail to trade even if her reserve price is equal
to the trading price, because of the competition from the other sellers posting
this reserve price.

Precisely, seller j gets different expected payoffs by setting reserve price equal
to p− d or p in the following four cases:

1. the trading price is equal to p− d whether the seller sets her reserve price
equal to p− d or p, and seller j trades after setting price p− d.

2. the trading price is equal to p−d (p) when the seller sets her reserve price
equal to p− d (p) and the seller fails to trade at price p14.

3. the trading price is equal to p whether the seller sets her reserve price
equal to p− d or p, and seller j fails to trade after setting reserve price p.

4. the trading price is equal to p−d (p) when the seller sets her reserve price
equal to p− d (p) and the seller trades at price p.

The seller gets a higher expected payoff by setting reserve price equal to
p− d if the effects of (1)-(3) outweigh the effect of (4). In the proof, we ignore
the effect of (1) and (2) and show that the effect of (3) alone dominates (4).
The effects of (1) and (2) are ignored because when p − d = c, the net surplus
to seller j from trading at price p − d is zero. Comparing (3) and (4), we
can reinterpret our findings as follows: a seller posting price p − d has higher
chances of trading at price p than a seller posting price p. To understand the
intuition behind this result, note that the expected number of sellers posting a
reserve price equal to the trading price increases as the number of traders grows.
Competition from these sellers implies that with a significant probability a seller
posting such reserve price fails to trade. Yet, if this seller posts a reserve price
that is slightly lower than the trading price, she will trade with probability 1
and obtain a positive surplus.

4 Conclusion

At least two remarks are in order about the results of this paper. First, the
equilibrium in buyers’ bidding game that we describe is not unique. Although
the behavior that occurs in our equilibrium is plausible, alternative equilibria
exist and do not generally guarantee efficient allocations. Examples in the paper
illustrate this. We do not have a complete characterization of all equilibria in the
dynamic bidding game, and of sellers’ optimal behavior with respect to reserve
prices when they believe that buyers are to play a different equilibrium.

Part of the job of an equilibrium in a decentralized market is to coordinate
the matching decisions that buyers and sellers make. Coordination problems

14It is easy to show that seller j will always trade after posting reserve price p − d in this
case
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almost always have multiple equilibria and having to choose among them seems
inevitable. Second-price auctions, for example, possess asymmetric equilibria in
which bidders do not bid their true valuations. There are multiple equilibria in
centralized mechanisms like double auctions as well.

Taking the multiplicity problem seriously, we do not want to suggest that
traders will play the equilibrium described in this paper under all circumstances.
At the same time, the equilibrium behavior that we identify has a number of
advantages. It is reasonable-looking, i.e. simple, requires very little computation
on the part of traders, and is invariant to the form of the distributions from
which costs and valuations are drawn. It also implements the efficient allocation.
These properties make us believe that this equilibrium has focal nature, and
eventually traders will learn to play it.

Of course, our model does not reproduce all details of the bidding behaviour
on the ebay, Amazon or other auction sites. These auctions typically possess
additional dynamic aspects that we do not consider. For example, sellers enter
at random times, as do buyers. Auctions close at different times. Furthermore,
bidding is not completely costless on these sites. Roth and Ockenfels (2000)
suggest network congestion and unexpected demands by the family as reasons
why bidders may not be able to revise a bid as intended. Nonetheless, our model
does provide some insight into the workings of these institutions.

As mentioned above, our model gives a very simple explanation for the fact
that buyers do not bid their true valuations. Patient revision of bids provides
buyers with the signals that they need in a decentralized market to coordinate
their bidding behavior. Deviating from this pattern will often force a buyer to
trade at a price that is higher than necessary. The empirical implications of our
theory are discussed in the introduction. An extension of the logic of our model
suggests an explanation for observed flurry of active bidding close to the end
dates in the ebay auctions. In our model, all the available trading opportunities
are visible at the beginning of the bidding process. On ebay, these opportunities
arise at random times. One of the opportunity costs of submitting a bid on ebay
arises from the possibility that a new seller will enter at a lower reserve price
after the buyer submits his bid. The buyer may then end up trading at a higher
price than he needs to. Effective coordination of bidding among buyers then
demands that they refrain from starting the bidding as long as possible. Since
auctions at ebay have fixed end dates, at some point the probability that new
sellers will enter before the current auction ends becomes small, and buyers will
start bidding. One of the implications of our theory is that this late bidding on
an auction that is ending will induce a flurry of bidding at other auctions for
similar goods.

5 Appendix

Proof of Theorem 2:
At first, let us introduce the following notation. Let the state of the game

be the array of buyers’ valuations, sellers’ standing bids together with the iden-
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tities of buyers who have submitted them, the winning bids together with the
identities of the winning bidders, the history of the standing bids and winning
bids, plus the identity of the buyer who is the next to move, and the order in
which buyers will move in the continuation. Typical state of the game will be
denoted by Γ. Note that there is a one-to-one relationship between the nodes
in the game and states of the game. Precisely, state of the game is a full de-
scription of the situation at the corresponding node in the game. Define public
state of the game as the components of the state of the game that are publicly
known. Specifically, public state of the game includes the standing bids, the
winning bids, the identities of the winning bidders, the history of all these, and
the order of moves.

We will say that state of the game Γ is regular if every buyer’s valuation is
at least as large as any high bid that he holds at Γ. Note that whether the state
of the game is regular or not is unobservable.

We will say that bidder i’s position is consistent with σ∗ if each of i’s high
bids has the following property: if i is a high bidder with seller j then either (i)
i’s bid is one grid point above seller j’s standing bid and no seller has a lower
standing bid than does seller j; or (ii) i’s high bid is equal to j’s standing bid. It
is not hard to see from the definition that on the path generated by σ∗ all states
of the game are regular, and that every buyer’s position in these information
sets will be consistent with σ∗.

If in state Γ one or more buyers are high bidders at more than one seller, we
will replace the continuation of the true game from the node that corresponds to
Γ with the one where additional ’phantom’ buyers are added to the game, but
where each buyer (real or phantom one) has a winning bid at one seller at most.
The phantom buyers are added in the following way. If buyer i is a winning
bidder at multiple (say, l > 1) sellers, choose any one of i’s highest winning bids
and consider that buyer i possesses only this winning bid. For each of i’s l − 1
other high bids, create a phantom buyer ik (2 ≤ k ≤ l − 1) whose valuation is
equal to this winning bid. Then, define ṽ to be the vector of the valuations of
the real and phantom bidders, and the current standing bids in state Γ. If there
are m̃ ≥ m buyers and phantom buyers, then ṽ has dimension m̃+ n. Let ṽr is
the r-th smallest element of vector ṽ.

Define BΓ to be the smallest set of buyers (including phantom buyers) at
state Γ such that if BΓ contains mΓ bidders, every buyer who is not in BΓ is
high bidder with a seller whose standing bid strictly exceeds ṽmΓ .

Lemma 5 If state of the game Γ is regular, then the set BΓ is non-empty and
unique. Furthermore if BΓ contains mΓ buyers, no buyer in BΓ is high bidder
at a seller with standing bid above ṽmΓ .

Proof. Let B0 be the set of buyers who are not high bidders at any seller.
Suppose that B0 includes τ0 buyers. By definition, B0 ⊂ BΓ. Let s0 be the
lowest standing bid. If ṽτ0 < s0 then BΓ = B0, and we are done. Otherwise, BΓ

must contain all buyers who are high bidders at sellers with standing bid s0. To
see this, consider any candidate set B1 with τ1 ≥ τ0 members which contains
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B0. Since ṽτ1 ≥ ṽτ0 ≥ s0, a high bidder at s0 does not satisfy the condition for
exclusion from B1.

We can now apply the same argument recursively. Let Bl be the set that
includes all buyers from B0 and all buyers who are high bidders at the lowest,
second lowest, ..., l-th lowest standing bids. Suppose that there are τl buyers in
Bl, and no subset of Bl satisfies the definition of BΓ. If ṽτl < sl+1, where sl+1

is the l + 1-th lowest standing bid, then BΓ = Bl. Otherwise, BΓ must contain
all buyers who are high bidders with sellers whose standing bids are less than
or equal to sl+1. Continue in this way until l′ s.t. Bl′ satisfies the definition of
BΓ or until all buyers have been included in BΓ.

It is immediate that no buyer in BΓ is a high bidder at a seller whose standing
bid exceeds ṽmΓ (where mΓ is the number of bidders in Γ), for such a bidder
can be excluded from BΓ to form a strictly smaller set satisfying the definition.

v
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Figure 3:

Figure 3 provides an example of a situation with phantom bidders. Buyers’
valuations b1, b2, b3 and sellers’ reserve prices s1, s2 are the same as in Figure 1.
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However, in the state which we are considering buyer 1 has submitted two high
bids, p1 with seller 1 and p2 = b3 with seller 2, but no other buyer has entered
yet. The standing bids remain s1 at seller 1 and s2 at seller 2. Since buyer
1 is high bidder at two sellers, we generate a phantom buyer whose valuation
and bid are both equal to p2. There are then 4 buyers including the phantom
buyer, instead of only 3 in the original game). The vector ṽ of valuations and
standing bids in increasing order is given by (s1, s2, p2, b3, b2, p1, b1). BΓ is the
whole set of buyers, including the phantom buyer. Consequently, mΓ = 4 and
ṽ4 = p2 = b3. None of the buyers is a high bidder with a seller whose standing
bid is above p2, so this is the right choice for BΓ.

To understand the outcome on the continuation path where all buyers follow
σ∗, assume that buyer 3 enters first. Buyer 3 will bid up the standing bid with
each of the two sellers until both standing bids reach his valuation b3. Buyer
two will then choose between the two sellers randomly. Whichever choice buyer
2 makes, he will trade at price p2, while buyer 1 will trade either at price p2 or
p1 depending on where buyer 2 ends up submitting his bid first.

Figure 3 illustrates why σ∗ may not generate uniform prices in the con-
tinuation after arbitrary states. It also shows why buyers will want to avoid
submitting high bids early, even though each seller runs a second price auction.
Buyer 1 may have to pay p1 instead of p2 if bidder 2 bids at seller 1 first.

To see another example where non-uniform prices can result, suppose that
the high bids p1 and p2 are held by buyers 1 and 2 respectively and eliminate
buyer 3 from the data in Figure 3. In this case no buyer is a high bidder at
more than one seller, but both buyers use strategies that are inconsistent with
σ∗. If they subsequently revert to σ∗ then bidding will stop and buyer 1 will
trade at the current standing bid s1, and buyer 2 will trade at price s2.

Lemma 6 Consider any regular state Γ and suppose that all buyers use σ∗ in
the continuation. Then no buyer whose position is consistent with σ∗ from the
start of the game up to Γ will trade at a price above ṽmΓ .

Proof. The proof is by contradiction. Thus, suppose that some buyer i
from BΓ whose position is consistent with σ∗ in all states of the game up to Γ
ends up trading at price p > ṽmΓ with some seller j. We need to consider three
cases:

Case (a). When buyer i submits her last bid bi > ṽmΓ , the standing bid at
seller j is equal to p. Since i follows σ∗, the lowest standing bid at this point
must be p.

Let k be the number of buyers and phantom bidders in BΓ whose valuations
are greater than ṽmΓ . By the definition of ṽmΓ , there must be at least k sellers
whose standing bids in state Γ are ṽmΓ or lower. All these sellers have standing
bids of at least p when i submits bid bi at seller j. When buyer i submits her bid
bi, he cannot be a high bidder with some seller, so there are only k − 1 bidders
and phantom bidders who can be high bidders with these k sellers at standing
bids of at least p. So at least one of the bidders and phantom bidders other than
i must be high bidder with more than one seller. Since by construction each
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bidder and phantom bidder is high bidder with at most one seller in state Γ, some
buyer must have submitted multiple high bids above ṽmΓ in the continuation
following Γ. This is inconsistent with part (i) in the definition of σ∗.

Case (b). Buyer i submits his last bid bi in the continuation following state
Γ when the standing bid sj at seller j is below p.

Since i follows σ∗, bi = sj + d. Hence, bi = p. As buyer i ends up trading
at p, bid bi makes him the winning bidder. However, the standing bid cannot
change at this point, because if it did, it would imply that bi > sj + d.

Since the standing with seller j eventually rises to p, some other buyer, say
i′, must submit a bid p with seller j after i has submitted her last bid bi = p and
while the standing bid is still sj . The identity of the winning bidder at seller j
has changed after the standing bid has reached sj . Therefore, buyer i′ will bid
at j only if sj is the lowest standing bid and the identity of the winning bidder
has changed at all sellers with standing bid sj including sellers whose standing
bids are below ṽmΓ in state Γ. This implies that all k sellers who in state Γ have
standing bids below ṽmΓ have winning bids above sj ≥ ṽmΓ .

Since the state Γ is regular and since buyer i′ will not submit bid p if he is
already high bidder with some seller, there are only k − 1 buyers from BΓ and
phantom bidders who can be high bidders with these k sellers at standing bids
of at least p = sj + d. So at least one of the bidders and phantom bidders other
than i′ must be high bidder with more than one seller. By construction, each
bidder and phantom bidder is high bidder with at most one seller in state Γ.
Therefore, some buyer must have submitted multiple high bids above ṽmΓ in
the continuation following Γ. This is inconsistent with part (i) in the definition
of σ∗.

Case (c). At state Γ i is holding her final winning bid bi > ṽtau at seller
j with standing bid sj

′ ≤ ṽmΓ . Since i is in BΓ and his position is consistent
with σ∗, we must have sj

′
= ṽtau and p = bi = ṽtau + d. Since i’s position is

consistent with σ∗ on the whole path to Γ, bidder i’s last bid has changed the
identity of the winning bidder but not the standing bid.

Since the standing with seller j eventually rises to p, some other buyer, say
i′, must submit a bid p with seller j after i has submitted her last bid bi = p
and while the standing bid is still sj .

Since the standing with seller j eventually rises to p = ṽtau + d, some other
buyer, say i′′, must submit a bid ṽtau with seller j in the continuation following
state Γ. To complete the proof, apply the same argument as in (b).

Lemma 7 Let Γ be a regular state. If all buyers use σ∗ in the continuation,
then no trader will trade at a price below vmΓ .

Proof. Suppose that some buyer trades at price p < vmΓ . Then there is at
least one seller whose standing bid in state Γ is strictly less than vmΓ . Let the
number of such sellers be r1. Also, let B1 be the set of buyers with valuations
equal to or greater than vmΓ and who in state Γ are either winning bidders with
sellers whose standing bids are below vmΓ or are not winning bidders at any
seller. Denote the number of buyers in B1 by k1. By definition B1 ⊂ BΓ.
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First, we will show that k1 > r1. The proof is by contradiction. Thus,
suppose otherwise i.e. k1 ≤ r1. By definition of vmΓ , there are k2 > r1 buyers
and phantom buyers in BΓ whose valuations are vmΓ or higher. Therefore, there
are k2−k1 > 0 buyers in BΓ each of whom has valuations at or above vmΓ and is
a high bidder with a seller whose standing bid in Γ is equal to vmΓ . Eliminating
these buyers from set BΓ we obtain a strictly smaller set B′Γ.

Thus, B′Γ is the union of the set of buyers who have valuations below vmΓ

(let there be k0 of them) and set B1. The total number of buyers in BΓ is
mΓ′ = k0 + K1. Since r1 > k1, vmΓ′ < vmΓ . Hence, every buyer who is not
in BΓ′ is a high bidder with a seller whose standing bid exceeds vmΓ′ . This
contradicts the fact that BΓ is the smallest set that has such property in Γ.

If trade occurs in the continuation at price p < vmΓ , then on the continuation
path no buyer submits a bid when the standing bid with some seller is p. Since
k1 > r1, it follows that in the continuation following Γ at least one of the buyers
from the set B must has become a high bidder with a seller whose standing
bid in Γ is vmΓ or higher. Submitting such a bid when there is a standing bid
below vmΓ is inconsistent with σ∗, so at least one buyer has to deviate from σ∗

in order for this outcome to occur. This contradiction proves the result.

Lemma 8 Let Γ be any regular state. If all buyers use σ∗ in the continuation,
then every buyer who is not in BΓ trades with the seller with whom he is high
bidder in state Γ at this seller’s standing bid in Γ.

Proof. Buyers who are not in BΓ are all high bidders with sellers whose
standing bids exceed vmΓ . If they all use σ∗ in the continuation, none of them
will be displaced as a higher bidder unless some buyer from BΓ submits a bid
with one of the sellers whose standing bid is strictly above vmΓ . Such a bid
cannot occur because by Lemma 7, a buyer from BΓ whose valuation is above
vmΓ and who follows σ∗ is guaranteed to trade if he submits a bid equal to
vmΓ +d at one of the sellers whose standing bid in state Γ does not exceed vmΓ .

One implication of Lemmas 7- 8 is that any buyer with valuations above
vmΓ whose initial position is consistent with σ∗ and who follows the strategy
σ∗ in the continuation will trade at a price equal to vmΓ provided that all other
buyers follow σ∗. Consider the implications of this result starting from the
initial state Γ0 in which no buyer has yet submitted a bid. In this state state,
all buyers’ positions are consistent with σ∗ (trivially since no buyer is a high
bidder). Therefore, if all buyers follow σ∗ in the continuation, then all trades
will take place at price vm.

Lemma 9 Let Γ be a regular state, and suppose that every buyer’s position is
consistent with σ∗. Then in the continuation no buyer can increase his payoff by
choosing an action other than that specified by σ∗ provided that the other buyers
follow σ∗.

Proof. By lemmas 7 and 6, if in state Γ every buyer’s position is consistent
with σ∗ and all buyers follow σ∗ then: (i) all trades will take place at price vmΓ .
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(ii) A buyer i whose valuations strictly exceeds vmΓ will trade for sure at this
price.

Consider now any continuation path induced by a series of deviations by
buyer i when the other buyers follow σ∗. Each such path has finite length since
the other bidders will eventually stop bidding and i cannot bid against himself.
Thus i must trivially revert to σ∗ at some point along the path (for example
when he stops bidding). Since i must always submit bids at least as high as an
existing standing bid, the lower bound on i’s trading price given by Lemma 7
along any such path can never be lower than vmΓ .

Say that buyers’ beliefs are σ∗-consistent if each buyer believes that: (i)
every other buyer’s valuation is drawn from the prior distribution of valuations
conditional on each high bidder’s valuation being at least as large as the maxi-
mum of her high bids; (ii) each of the other buyers’ high bids is consistent with
σ∗. In other words, buyers’ beliefs are σ∗-consistent if every buyer believes that
the only states that occur with positive probability are regular states in which
all other buyers’ positions are consistent with σ∗.

The proof that σ∗ constitutes a Bayesian equilibrium in the bidding game
given sellers’ announced reserve prices then follows immediately from Lemma 9
since deviations from σ∗ may raise, but can never lower a buyer’s trading price
in every information set that the buyer thinks occurs with positive probability.

Proof of corollary 3:
Suppose that seller j posts reservation price s s.t. s < vm. According to

theorem 2, when buyers use strategy σ∗ all trades occur at price vm. Consider
the last bid in the bidding game submitted by some buyer i′. It must be equal
to vm or vm + d. If the last bid is equal to vm + d, then the lowest standing bid
at this point must be vm. Hence, seller j will trade.

Suppose now that the last bid in the game is equal to vm and is submitted
at some seller j′. Then before the last bid is submitted the standing bid at j′

must be equal to vm− d, and after the last bid is submitted the standing bid at
j′ must increase to vm. Therefore, bidder i is not a winning bidder at the end
of the auction. This can happen only if at this point the standing bid at seller
j is vm. Hence, seller j must trade in this case also.

Consider set of sellers N2 who post reserve prices equal to vm. A seller from
N2 trades only if a buyer from M3 bids with her. After accounting for sellers
from N1 who trade for sure, the number of sellers from M3 who are available to
bid with sellers from N2 is at least m3 − n1. This gives the lower bound on the
number of sellers from N2 who trade.

To obtain the upper bound, note that on the equilibrium path buyers from
M2 will bid only with sellers from N1 while the standing bids at these sellers
are below vm. Consider the first time t when the lowest standing bid in the
market reaches vm. With a positive probability, the realizations of random
order of bidding and the randomizations by buyers between the sellers among
whom they are indifferent is such that at time t m′ buyers from M2 are the
high bidders at sellers from N1, where m′ is between max{0, n1 − m3} and
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min{m2, n1}. Also, with a positive probability all buyers from M3 who at time
t are not winners yet, will bid at sellers from N2 first. The number of buyers
from M3 who will bid in this way is equal to: m3 − (n1 −m′). Substituting for
m′ we get the upper bound on the number of sellers from N2 who trade.

The proof establishing the lower and upper bounds on the number of buyers
from M2 who trade is similar and is, therefore, omitted.

Proof of theorem 4:
Consider seller z with cost c. We will demonstrate that seller z’s expected

payoff decreases in her reserve price p if p > c. To accomplish this, we will
compare the expected payoffs that the seller gets when she posts reserve prices
equal to p and p− d.

In the previous section we have demonstrated that all trades will be com-
pleted at a uniform trading price equal to vm-the m-th lowest element in v,
the vector of the true buyers’ valuations and sellers’ reserve prices which, by
assumption of the theorem, are equal to the true costs for all sellers except z.
Thus, the trading price will be equal to pT if and only if the following two nec-
essary and sufficient conditions hold. First, the number of sellers and buyers
whose reserve prices and valuations respectively are strictly below pT does not
exceed m − 1. Second, the number of sellers and buyers whose reserve prices
and valuations respectively are no greater than pT is at least m.

We will use the following notation that has been introduced above: m1/m2/m3

is the number of buyers with valuations strictly below p / equal to p /strictly
above p. Similarly, n1/n3 is the number of sellers with costs strictly below
p/strictly above p. Also, let n′2 be the number of sellers, other than z with costs
equal to p. Obviously, n′2 = n2−1, m1 +m2 +m3 = m and n1 +n′2 +n3 = n−1.

At first, let us establish the following two claims.
Claim 1. Suppose that if seller z sets reserve price p, then the trading price
is pT s.t.p < pT . Then, if seller z sets a different reserve price p′ < pT , the
trading price will also be pT . The buyer will trade in both cases.

Proof: The trading price is equal to vm which is not affected by a change
in the reserve price p set by z as long as p < vm.

Claim 2. Suppose that if seller z sets reserve price p, then the trading price
is pT s.t. p > pT . Then, if seller z sets reserve price p′′ > pT the trading price
will also be pT . The buyer will fail to trade in both cases.

Proof: The trading price is equal to vm which is not affected by a change
in the reserve price p set by z as long as p > vm.

Say that price p is pivotal if the trading price is equal to p when seller z sets
her reserve price equal to p. Claims 1 and 2 imply that seller z’s payoffs from
setting reserve price equal to p− d or p may be different only if at least one of
these reserve prices is pivotal.

Let P (Ω) denote the probability of event Ω and E(y) E(y|Ω) denote the
expectation (conditional expectation given event Ω) of the random variable y.
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Then the following lemma presents sufficient condition for theorem 4 to hold.

Lemma 10 Seller z with cost c gets a higher expected payoff by setting reserve
price p− d rather than p for p > c if the following condition holds:

P (p is pivotal , p− d is not pivotal, seller posting p fails to trade ) ≥
P (p is pivotal , p− d is pivotal, seller posting p trades ) (1)

Proof. By Claims 1 and 2, it is sufficient to compare the seller’s expected
payoffs from setting her reserve price equal to p − d and p when at least one
of these prices is pivotal. Let us consider all such cases. Note that a seller
may fail to trade when her reserve price is pivotal, because there may be other
sellers who post this reservation price. Alternatively, there may be buyers with
valuations equal to the pivotal price.

1. If p is pivotal, but p− d is not, then irrespective of seller z’s reserve price,
vm and hence the trading price are equal to p. This follows because in this
case we have: m1 + n1 < m− 1 ≤ m1 + n1 +m2 + n′2. Consequently, if z
sets reserve price p − d she trades at price p for sure. If she sets reserve
price p, she may fail to trade if m1 + n1 +m2 + n′2 ≥ m.

2. If p− d is pivotal, but p is not, then irrespective of seller z’s reserve price,
vm (and hence the trading price) is equal to p − d. This follows because
in this case we must have m1 + n1 ≥ m. Consequently, if z sets reserve
price p she fails to trade. If she sets reserve price p − d, she may or may
not trade.

3. If both p− d and p are pivotal, we must have: m1 + n1 = m− 1. Then if
seller z posts reserve price p−d she will trade at this price for sure. If the
seller sets reserve price p, the trading price will be equal to p but seller j
may fail to trade if m2 = n2 > 0.

Summing up these effects we conclude that seller z with cost c < p obtains
a higher payoff by setting reserve price p − d rather than p if and only if the
following inequality holds:

(p− c)P (p is pivotal, p− d is not pivotal, seller posting p fails to trade ) +
(p− d− c)P (p− d is pivotal, p is not pivotal, seller posting p− d trades ) +
(p− d− c)P (p− d is pivotal, p is pivotal ) ≥
(p− c)P (p is pivotal, p− d is pivotal, seller posting p trades ) (2)

Obviously, (2) holds when (1) holds, and these two inequalities are equivalent
when c = p− d.
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Lemma 11 Inequality (1) holds if:

E

(
1 + n′2 + n1 +m1 −m

n′2 + 1
|m1 + n1 < m− 1 ≤ m1 + n1 +m2 + n′2

)
×

× P (m1 + n1 < m− 1 ≤ m1 + n1 +m2 + n′2)

≥ E(
1

n′2 + 1
|m1 + n1 = m− 1)P (m1 + n1 = m− 1) (3)

Proof. First of all, p is pivotal and p− d is not pivotal if and only if
m1 + n1 < m − 1 ≤ m1 + n1 + n′2 + m2. Also, p and p − d are both pivotal if
and only if m1 + n1 = m− 1.

Next, let us compute the upper bound on the probability with which seller
z posting pivotal price p trades conditional on the number of buyers and sellers
in each category. By rule (a) of σ∗, seller z can trade only with one of the m3

buyers whose valuations are above p. By corollary 3, n1 sellers who post reserve
prices below p trade for sure. Some of these n1 sellers may trade with buyers
whose valuations are equal to p. Therefore, the number of buyers who trade
with sellers posting p is at most m3 +min{0,m2−n1}, and will be lower if some
buyers with valuations equal to p do not trade and some buyers with valuations
above p trade with sellers whose reserve prices are below p.

Seller z competes with the other n′2 sellers who post reserve price p. Since all
buyers follow strategy σ∗, a buyer who chooses among such sellers will randomize
between them with equal probability. Therefore, the conditional probability that
seller z trades is at most

P t ≡ min{1, m3 + min{0,m2 − n1}
n′2 + 1

}

Correspondingly, the lower bound on the probability that seller z fails to trade
conditional on the number of buyers and sellers in each category is

P f ≡ max{0, n
′
2 + 1−m3 −min{0,m2 − n1}

n′2 + 1
}

Finally, taking expectation of P f conditional on the event that both p− d and
p are pivotal, which is equivalent to m1 + n1 < m− 1 ≤ m1 + n1 +m2 + n′2, we
obtain that the left-hand side of (1) is at least as large as the left-hand side of
(3). Taking expectation of P t conditional on m1 + n1 = m− 1 and simplifying
we obtain that the right-hand side of (1) is no greater than the right-hand side
of (3).

To complete the proof of the theorem it remains to show that (3) holds when
m and n are sufficiently large. First of all, note that the right-hand side of (3)
is equal to A1(α) +A2(α) where

A1(α) ≡
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m−1∑
m̂1=[αm]+1

E

(
1

n′2 + 1
|n1 = m− 1− m̂1

)
P (m1 = m̂1)P (n1 = m− 1− m̂1)

and

A2(α) ≡

[αm]∑
m̂1=max{0,m−n}

E

(
1

n′2 + 1
|n1 = m− 1− m̂1

)
P (m1 = m̂1)P (n1 = m− 1− m̂1)

where α ∈ [0, 1] and [αm] is defined as the largest integer not exceeding αm.
The expression on the left-hand side of (3) is greater than B1 + B2 where

B1 and B2 are defined as follows:

B1 ≡

m−2∑
m̂1=max{0,m−n}

E

(
1 + n′2 + n1 +m1 −m

n′2 + 1
|m1 = m̂1 + 1, n1 = m− m̂1 − 3

)
×

×P (m1 = m̂1 + 1)P (n1 = m− m̂1 − 3)

and

B2 ≡

m−1∑
m̂1=max{2,m−n+4}

E

(
1 + n′2 + n1 +m1 −m

n′2 + 1
|m1 = m̂1 − 2, n1 = m− m̂1 − 1, n′2 ≥ 4

)
×

×P (m1 = m̂1 − 2)P (n1 = m− m̂1 − 1, n′2 ≥ 4)

To complete the proof of the theorem, let us prove the following lemma:

Lemma 12 ∃α ∈ (0, 1) s.t. if and m (and hence n) is large enough then
A1(α) < B1 and A2(α) < B2.

Proof. The following expressions are used extensively in the sequel. Let
a+ b+ c = n− 1 and r + s+ t = m. Then we have:

P (n1 = a, n2 = b, n3 = c) =
(n− 1)!
a!b!c!

G(p− 1)ag(p)b(1−G(p))c (4)

P (m1 = r,m2 = s,m3 = t) =
m!
r!s!t!

F (p− 1)rf(p)s(1− F (p))t (5)
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Part 1: B1 > A1(α).
Step 1. Using (5), we have for 2 ≤ m̂1 ≤ m− 1:

P (m1 = m̂1 − 2) =
(1− F (p− d))2

(F (p− d))2

m̂1(m̂1 − 1)
(m− m̂1)(m− m̂+ 1)

P (m1 = m̂1) (6)

Since 1 − F (p − d) > f̄ > 0, ∃m′ and α1 > 0 s.t. if m̂1 > α1m
′, P (m1 =

m̂1 − 2) > P (m1 = m̂1).
Step 2. When n1 = m− m̂− 1, then n′2 + n3 = m̂1 + n−m = m̂1 − k−1

k m.
Let α = max{α1,

k−1/2
k }. (Note that α < 1.) In this case, m̂1 ≥ αm implies

that n2 + n3 ≥ m
2k . Since g(p) ≥ ḡ > 0, the law of large numbers implies that

there is m′′ s.t. if m > m′′ then P (n′2 ≥ 4|n′2 + n3 ≥ m
2k ) > 5/6, and hence

P (n1 = m− m̂1 − 1, n′2 ≥ 4) > 5
6P (n1 = m− m̂1 − 1). Therefore,

E(
1

n′2 + 1
|n1 = m− m̂1 − 1)P (n1 = m− m̂1 − 1) =

E(
1

n′2 + 1
|n′2 < 4, n1 = m− m̂1 − 1)P (n′2 < 4, n1 = m− m̂1 − 1)+

E(
1

n′2 + 1
|n′2 ≥ 4, n1 = m− m̂1 − 1)P (n′2 ≥ 4, n1 = m− m̂1 − 1)

< (1× 1/6 + 1/5× 5/6)P (n1 = m− m̂1 − 1) = 1/3P (n1 = m− m̂1 − 1) (7)

On the other hand, we have:

E

(
1 + n′2 + n1 +m1 −m

n′2 + 1
|m1 = m̂1 − 2, n1 = m− m̂1 − 1, n′2 ≥ 4

)
×

×P (n1 = m− m̂1 − 1, n′2 ≥ 4)

≥ 2
5
P (n1 = m− m̂1 − 1, n′2 ≥ 4) >

1
3
P (n1 = m− m̂1 − 1) (8)

Step 3. Choose m = max{m1,m2}. Combining (6), (7) and (8), we conclude
that the term corresponding to each m̂1 ≥ αm in A1(α) is dominated by the
corresponding term in B1. Therefore, B1 > A1(α).

Part 2. B2 > A2(α).
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Proof. Consider α defined in part 1. Fix m̂1 s.t. max{0,m − n} ≤ m̂1 ≤
[αm], n̂1 = m− m̂1 − 1 and n̂2 s.t. 0 ≤ n̂2 ≤ n− 1− n̂1. Let us show that the
following inequality holds for sufficiently large m. (Note that n̂1 > 2 when m is
not too small).

E

(
n2 + 1 + n1 +m1 −m

n2 + 1
|n1 = n̂1 − 2,m1 = m̂1 + 1, n2 = n̂2 + 2

)
×

P (n1 = n̂1 − 2,m1 = m̂1 + 1, n2 = n̂2 + 2) >

1
n2 + 1

P (n1 = n̂1,m1 = m̂1, n2 = n̂2) (9)

To establish this, note the following sequence of equalities which holds by com-
putation:

E

(
n2 + 1 + n1 +m1 −m

n2 + 1
|n1 = n̂1 − 2,m1 = m̂1 + 1, n2 = n̂2 + 2

)
×

P (n1 = n̂1 − 2,m1 = m̂1 + 1, n2 = n̂2 + 2) =

n̂2 + 1
n̂2 + 3

P (n1 = n̂1 − 2,m1 = m̂1 + 1, n2 = n̂2 + 2) =

n̂2 + 1
n̂2 + 3

P (n1 = n̂1,m1 = m̂1, n2 = n̂2)×

g(p)2

G(p− 1)2

(n̂1 − 1)n̂1

(n̂2 + 2)(n̂2 + 1)
F (p− 1)

1− F (p− 1)
m− m̂1

m̂1 + 1
=

1
n̂2 + 1

P (n1 = n̂1,m1 = m̂1, n2 = n̂2)×

g(p)2

G(p− 1)2

F (p− 1)
1− F (p− 1)

(n̂2 + 1)(n̂1 − 1)n̂1

(n̂2 + 2)(n̂2 + 3)
m− m̂1

m̂1 + 1

Since m̂1 ≤ αm and n̂1 = m− 1− m̂1, it follows that m− m̂1 ≥ (1− α)m and
n̂1 ≥ (1 − α)m − 1. Also, n̂2 ≤ n − 1 − n̂1 implies that n̂2 ≤

(
1
k + α− 1

)
m.

Therefore,

(n̂2 + 1)(n̂1 − 1)n̂1

(n̂2 + 2)(n̂2 + 3)
m− m̂1

m̂1 + 1
≥

1
2

((1− α)m− 2) ((1− α)m− 1)(
1
k + α− 1

)
m+ 3

(1− α)m
αm+ 1

The right-hand side of the above inequality if of the same order as m. Therefore,
(9) holds when m is sufficiently large (leaving α unchanged).

Finally, note that (9) implies that the term corresponding to each m̂1 ≥ αm
in A2(α) is dominated by the corresponding term in B2. Therefore, B2 > A2(α)
holds.
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