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Abstract

This short paper considers the validity of assuming that principals
make their common agent a single take it or leave it contract offer
instead of negotiating over the contract in a more complex way. The
interest in this question arises from recent examples in the literature
that illustrate equilibrium allocations that can be supported with ne-
gotiation, but not with simple take it or leave it offers. It is shown
that with symmetric information, pure strategy equilibrium with take
it or leave it offers are also equilibria when principals are allowed to
negotiate. We also provide a class of environments in which ’pure
strategy’ equilibria with negotiation can all be supported with simple
take it or leave it offers. The environment is restrictive, but encom-
passes the environment studied by Bernheim and Whinston (1986), as
well as the environment involved in a simple Bertrand pricing problem
similar to Klemperer and Meyer (1989).

In common agency problems, many principals simultaneously attempt
to control the actions of a single agent. To accomplish this, the principals
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negotiate contracts with agents that promise the agent rewards in return
for carrying out specific efforts on behalf of the principals. It has recently
been observed if the negotiating scheme that a principal uses is sophisticated
enough, it will allow the principal to extract information from the agent
about what the other principals are doing. When this occurs, new equilib-
rium allocations arise that cannot be understood when principals simply offer
agents take it or leave it contracts as they do in single principal problems.

Simple examples illustrating this are provided in Martimort and Stole
(1997), Epstein and Peters (1997) or Peck (1995). A less abstract illustration
of the idea is given with a simple reinterpretation of the argument in Parlour
and Rajan (1997). In their model, multiple lenders offer a single borrower
contracts that specify the principle and interest associated with a loan. The
borrower (or the agent in this story) has the option of using the money in
some profitable endeavour, paying the interest then keeping all the residual
profit, or defaulting on the loan and retaining a fraction of the principle.
When the agent’s total borrowing is small, it is more profitable to repay the
loan. When total borrowings are very large however, the agent prefers to
default and keep a fraction of the principle of the loan.

It is tempting to model this by having each of the lenders announce a
single take it or leave it principal-interest package, then letting the bor-
rower decide which of the packages he wants to accept. However, if one of
the lenders has a more complex negotiation scheme, he can improve on this
outcome. The way he does this is to offer the borrower a single interest
rate-principal pair, along with an option to take out a second loan at a much
higher rate. The reason that the lender likes this scheme is that he knows
that the agent’s willingness to exercise the option on the second contract will
depend on what the other lenders have offered. The borrower would not be
interested in the high interest rate associated with the option unless a com-
petitor had offered an attractive interest-principal combination to compete
with the original lender. In this case the borrower will want to accept all
three loans and default on each of them. The advantage to the original
principal of offering this apparently unprofitable option arises from the fact
that the potential competitor knows that the agent will end up defaulting
if he is offered a third contract. So he is deterred from competing with the
incumbent lender who enjoys a monopoly rent as a reward for his negotia-
tion scheme.1 To put it slightly differently, the option of taking the second

1This is not exactly the argument made in Parlour and Rajan (1997) - but in essence
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loan gives the agent an incentive compatible way of telling the first principal
that the second principal has deviated from the equilibrium path. The first
principal then has the chance to punish the deviation.

The upshot is that when there are many principals, negotiation and sell-
ing schemes play a role that they do not in the single principal case. This is
unfortunate for two reasons. First, the set of potential negotiation schemes
is rich, involving possibly complicated extensive form games between the
principal and agent. The reasoning above suggests that the principal may
get some benefit from forcing the agent to play these games. Secondly the
powerful results concerning common agency with symmetric information de-
rived by Bernheim and Whinston (1986) or Dixit, Grossman, and Helpman
(1997) assume that principals compete by offering agents simple take it or
leave it contracts. The examples in the literature suggest that very differ-
ent allocations may be supported as equilibria once principals can use more
complex negotiating schemes to determine the contracts that they offer their
agents.

At a conceptual level, the appropriate way to model competition among
principals has been discussed in (Epstein and Peters 1997) for the general case
and in (Peters 1999) more specifically for the case of common agency. The
purpose of the present paper quite different. It is to try to characterize the
’cost’ of ignoring negotiation and assuming that principals make simple take
it or leave it contract offers. One of the principal motivations for doing this is
that this is what has been done in some of the most widely cited papers in the
literature on common agency (i.e. (Bernheim and Whinston 1986) and (?)).
It is interesting to ask whether the results in these papers are misleading in
an important way. To anticipate a little, the results here suggest that for
the environments studied in these papers, the take it or leave approach is a
reasonable one. In an odd way, this motivates the study of negotiation in
common agency - an understanding of the general case provides some insight
into cases where a naive modelling approach works reasonably well.

The principal tool used in the analysis here is a theorem in Peters (1999)
that shows that no matter how complex are the negotiation mechanisms
available to the principals, any equilibrium allocation that can be supported
with negotiation can also be supported by allowing principals to offer agents
menus of contracts that associate actions by the principal with observable

it is the same, even when there is free entry in the credit market, the potential for default
will limit entry and create monopoly rents for encumbent lenders.
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efforts taken by the agent. The difference between this approach and that
used by Bernheim and Whinston (1986) is simply that to reproduce all poten-
tial equilibrium allocations the principals need to be allowed to offer agents
collections or menus of contracts from which they choose, rather than just
a single contract. Peters (1999) also shows that any equilibrium allocation
relative to this set of menus is robust in the sense that the allocation will
persist as an equilibrium allocation even if the set of mechanisms available
to the principals is enlarged.

It is shown first of all that in the case of symmetric information, every
pure strategy equilibrium of the game in which principals offer take it or leave
it contracts is also a pure strategy equilibrium if principals are allowed to
offer agents menus of such contracts.2 By the robustness of equilibria relative
to the set of menus established in Peters (1999), the equilibrium allocations
in Bernheim and Whinston (1986) or Dixit, Grossman, and Helpman (1997)
(where attention is restricted to pure strategy equilibrium) persist no mat-
ter how complex principals are allowed to make their mechanisms. Thus if
principals are free to structure their negotiations as they please, one possi-
ble equilibrium outcome will be that they simply make their agents take it
or leave it contract offers. Of course, as the various examples in the liter-
ature showed, alternative equilibrium allocations may also exist when more
complex contracts are feasible.

To get around this, the question is then addressed whether there are
interesting economics environments in which negotiation doesn not lead to
new equilibrium allocations. The environment identified here is one in which
there are no externalities, in the sense that the agent’s ranking of the simple
actions undertaken by one principal is independent of the actions taken by
any other principal, and in which principals care only about their own action
and the agent’s effort. This is very restrictive, but fits the environment
studied by Bernheim and Whinston (1986) as well as the Bertrand pricing
environment studied by Klemperer and Meyer (1989) and more generally
by non-linear pricing models (for example Biais, Martimort, and Rochet
(1997)) where agents have quasi linear preferences. In this environment we
consider a subclass of equilibria relative to the set of menus in which all of
the principals and the agent use pure strategies. Within this subclass of

2Mixed strategy equilibria in take it or leave it offers among the principals will not
generally survive if the principals are allowed to use menus. For examples see Epstein
and Peters (1997).

4



equilibria, it is shown that every equilibrium allocation can be supported
by having principals offer only single pay for effort contracts. Examples
are provided again to show that equilibrium payoffs attainable when mixed
strategy equilibria (or for that matter random mechanisms) are used cannot
generally be supported unless principals are allowed to use menus.

This theorem illustrates two properties of equilibria allocations attainable
when principals can use complex contracts. One way menus are used is sim-
ply to exploit random behavior of the principals or the agent as a correlating
device (see the examples in Peck (1995)). In equilibria where all players
use pure strategies, this role for menus disappears. However this still leaves
an alternative role in that menus can be used to deter deviations. This is
the basic argument in Martimort and Stole (1997). A principal may not
wish to change his contract offer if he believes this will affect the way the
agent chooses from another principal’s menu. In an environment without
externalities, the agent’s ranking of the options in any principal’s menu is
independent of what other principals are doing. So this role for menus disap-
pears. The net result of the theorem is that if principals and agents are using
pure strategies in an environment without externalities, any equilibrium allo-
cation attainable with menus is also attainable without them. Again, using
the revelation principal in Peters (1999), equilibrium allocations attainable
with arbitrarily complex negotiation mechanisms in an environment with-
out externalities, where principals and agents use pure strategies, can be
supported when principals simply compete in contracts.

1 Basic Properties

Common agency models have the following general structure: there are n
principals dealing with a single agent. Each principal j ∈ {1, . . . n} controls
a simple action in the set Yj, while the agent takes some effort from a set E.
The principal can write contracts contingent on all or part of the effort level
e ∈ E taken by the agent. To simplify it will be assumed that the sets Yj and
E are both finite. The set of feasible pay for effort contracts is denoted by Aj
and this set consists of a set of feasible mappings from E into the set of ac-
tions Yj controlled by principal j. Observe that the principals simple actions
could be more complex than a simple monetary payment. The agent’s pref-
erences are private information and are parameterized by elements in some
set Ω. Principals commonly believe that the agent’s preference parameter is
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distributed according to some distribution F on Ω.
Agents and principals have expected utility preferences. The payoff to

principal j ∈ {1, . . . , n} is represented by vj :
∏n

k=1 Yk×E×Ω −→ [0, 1]. For
the agent, payoffs are represented by the function u :

∏n
k=1 Yk × E × Ω −→

[0, 1]. Observe that no assumptions are made about the properties of the
utility functions of either the principal or the agent.

The set Aj of feasible contracts varies in different applications depending
on how sensitive the principal’s contract can be to the agent’s action. Let
Ej be a partition of E that captures principal j’s ability to contract on the
agent’s effort in the sense that every feasible contract for principal j must
be measurable with respect to (the σ field generated by) the partition Ej.
For example, in Bernheim and Whinston (1986) principals are interpreted as
lobbyists making transfers to a government agency in an attempt to influence
policy (the agent’s action). Transfers can depend on the policy that is
chosen, so in this sense each principal can write contracts fully contingent
on the agent’s effort. Then Ej is just the set consisting of all single element
subsets of E. In Martimort and Stole (1997) or Biais, Martimort, and Rochet
(1997) the principals are sellers while the agent is a buyer. The principals
are allowed to write contracts in which the prices they charge depend on the
quantity that the agent buys from them (but not on the quantity the agent
buys from other principals). Then think of E ⊂ Qn where Q is some finite
set of feasible demands. Then Ej is the collection of sets of the form

B (x) = {(q1, . . . qn) : qj = x;∀i qi ∈ Q} .

Of course, it is possible that the principal’s contract might have to be com-
pletely independent of the agent’s action. In this case Ej = E.

Principals decide which contracts to offer by designing a mechanism. A
mechanism specifies the rules that guide communication between the prin-
cipal and agent. The basic idea is that the agent sends messages to the
principal. Based on these messages, the principal takes an action and re-
sponds to the agent. Finally the agent chooses the effort level he wants.

For any measurable set X, Let 4 (X) denote the set of probability mea-
sures on X. When a topology on 4 (X) is needed, the topology of weak
convergence is assumed. For any x ∈ 4 (X), let suppx be the support of
x. Let Cj be the (measurable) set of messages that the agent can send to
a principal j. Let Rj be the (measurable) set of responses that principals
can send back to the agent. These message spaces are intended to be quite
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general in the degree and nature of the communication about the other prin-
cipals’ mechanisms that they permit. For example, the messages could allow
the agent to communicate the mechanisms being used by other principals.

The role of the principal’s messages is to provide the agent with informa-
tion about the action that the principal has chosen. An indirect mechanism
γj for principal j specifies a measurable map from Cj into4 (Aj×Rj). For
each message the agent sends, the principal responds by committing himself
to a joint probability measure over actions and messages. To simplify the no-
tation a little, it will be assumed that the set of feasible actionsAj is the same
for each principal. Then define Γ to be a topological space of feasible indi-
rect mechanisms available to each of the principals. Let γ = {γ1 . . . γn} ∈ Γn

refer to the entire array of mechanisms offered by the principals. Without
loss of generality, it can be assumed that the message spaces Cj and Rj are
the same for each principal3. Then each mechanism γj is a measurable map
from C into 4 (A×R).

Agent behavior in each mechanism depends on the agent’s valuation and
on the mechanisms that he or she observes being offered by the other prin-
cipals. A communications strategy is a measurable mapping c̃ : Ω × Γn →
4 (Cn) that describes the (probability distribution over) messages that the
agent will send to the principals as a function of the agent’s type and the
array of mechanisms that he is offered by the principals. A decision strategy
π̃ : Ω× Γn × Cn × Rn → 4 (E) is a measurable mapping that describes the
probability distribution the agent will use to choose his action as a function
of his type, the array of mechanisms that he has been offered, the messages
he has sent, and the array of messages received from the principals. The pair
(c̃, π̃) together constitute a continuation strategy for the agent. Say that the
continuation strategy (c̃, π̃) is a continuation equilibrium if for every array
of mechanisms γ ∈ Γn offered by the principals and for almost every (with
respect to F ) valuation ω ∈ Ω, (i) the randomizations c̃ (ω, γ) and π̃ (ω, γ, ·, ·)
maximize∫
· · ·
∫ {∫

u (a1 (e) , . . . an (e) , e, ω) dπ (c1, . . . cn, r1, . . . rn)

}
dγ1 (c1) . . .dγn (c2) .

A continuation equilibrium (c̃, π̃) determines a normal form game among the

3If the message spaces are different, simply redefine the message spaces used by each
firm to be the union of the messages spaces being used by all firms, then redefine principal
j’s allocation rule γj so that it produces an undesirable action whenever the agent sends
a message that is not in the message space that the principal wants.
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principals in which the actions spaces are Γ for each principal and payoffs
are given by

v̄j (γ1, . . . γn, c̃, π̃) =

∫
· · ·
∫ {∫

v (a (e) , e, ω) dπ̃ (ω, γ1, . . . γn, c, r)

}
dc̃ (γ1, . . . γn) · dγ1 · · · dγn

An equilibrium relative to the set of feasible mechanisms Γ is an array of
randomizations {δ1, . . . δn} and a continuation equilibrium (c̃, π̃) such that
{δ1, . . . δn} is a Nash Equilibrium for the normal form game defined by the
continuation equilibrium (c̃, π̃).

Let m be a probability measure on the set Y × 4 (Y ). Let my be the
marginal measure on Y , mλ the marginal measure on 4 (Yj) and m (·|λ) the
conditional measure. The probability measure m is said to be consistent if
for each m ∈ Φj; λ (·) = m (·|λ) for all λ in the support of mλ. Let Φ be
any subset 4 (Y ×4 (Y )) . The set Φ is said to be consistent if each of the
measure in Φ is consistent. Consistent probability measures randomly choose
a simple action from Y and a message consisting of a probability measure
over Y . Consistency means that the message accurately conveys the true
(conditional) probability measure over actions. One property of consistent
measures that is relevant for common agency is the fact that∫

λ (·) dmλ =

∫
m (·|λ) dmλ = my

by the definition of conditional probability. In other words, the marginal
distribution on Yj coincides with the ’reduced’ distribution on Yj associated
with the marginal mλ. In the sequel, the principal will choose a simple
action from Y then send a message to the agent that is correlated (possibly
perfectly) with the action choice. If the action that the principal chooses
is random, then the message that the agent receives is also random. If the
randomizing device used to select actions and messages is consistent then
the ex ante distribution of actions faced by the agent will coincide with the
expected message.

There are some notable examples of consistent sets of measure. One
special (and relatively simple) class contains only measures that assign unit
probability mass to a single point in Y and to a single measure in 4 (Y ) that
in turn assigns unit mass to the same point. ’Random’ devices of this kind
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simply choose and element of Yj non-randomly, then inform the agent of this
choice.4 Another interesting set is the set of joint distributions Φ such that
the projection of the support of each φ ∈ Φ onto 4 (Y ) is contained in the
set of degenerate distributions that assign unit mass to a single point in Y .
These distributions choose elements of Y randomly, but then send messages
that reveal the choice exactly.

Let A∗ be the set of joint probability measures a over A ×4 (A). Any
such measure induces a family of joint probability measures on Y × 4 (Y )
defined by

ma
e (B) = a {x ∈ A×4 (A) : x (e) ∈ B} (1)

for each B ⊂ Y × 4 (Y ). To continue, an obvious extension is to say
that a ∈ A∗ is consistent if every member of the family of measures ma

e is
consistent, and that any collection of measures A ∈ A∗ is consistent if each of
its members is consistent. A menu is a mechanism γj whose message spaces
are given by C = A∗ and R = 4 (A), and whose range γj (·) is a closed and
consistent subset of A∗. In other words, a menu is simply a closed subset
of A∗ containing consistent probability measures. By sending a message to
the principal the agent essentially chooses a consistent probability measure.
This probability measure chooses a contract and sends a message to the
agent describing a probability measure over contracts. The agent uses this
to associate a measure over simple actions with each level of effort. The
notation Γ∗ is used to refer to the set of menus.

The following Theorem is proved in Peters (1999):

Theorem 1 Let {v∗1 (ω) , . . . v∗n (ω) , u∗ (ω)} be the equilibrium payoffs of each
of the principals and the agent when the agent’s type is ω and the set of
feasible mechanisms is Γ. Then there is an equilibrium relative to the set of
menus Γ∗ that preserves these payoffs for all ω in the support of F .

The theorem says that all payoffs that can be supported as equilibrium
payoffs with competition among the principals can be supported when the
principals are restricted to use menus. Furthermore, Peters (1999) also

4In this simple case with degenerate probability measures consistency requires that the
message coincide with the simple action chosen. So an inconsistent measure would simply
misinform the agent about the action. If the agent knows the joint distribution that the
principal has chosen, he will ignore the message since he knows the action the principal
has taken anyway. That is why inconsistent random devices need not be considered.
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shows that equilibrium payoffs supported with menus are all ’interesting’ in
the sense that these equilibrium payoffs persist when principals are allowed to
use more complex mechanisms (provided that the continuation equilibrium
in the enlarged set of mechanisms is constructed properly). This suggest that
menus provide a powerful simplification of a complicated conceptual problem.
As mentioned above, the menus that the principals need to offer are menus of
’contracts’, not menus of simple actions. In the problem discussed Bernheim
and Whinston (1986) for example, each principal should offer the agent the
choice between a number of different pay for effort schemes. In a simple
problem with Bertrand competition, each seller should offer the buyer a menu
of non-linear pricing schemes.

The set of menus is conceptually simple relative to the set of mechanisms.
Apart from the examples in the literature, this may lead to interesting ap-
plications.5 The primary focus in this paper, however, is to try to use the
theorem above to determine the usefulness of the standard approach. In
Bernheim and Whinston (1986), the ’standard approach’ ignores the possi-
bility that principals might offer menus and instead has them competing by
offering single elements from A∗ (the set of joint probability measures on con-
tracts and messages). So in the remainder of the paper, an attempt is made
to contrast equilibrium outcomes when principals offer the agents menus (i.e.
collections of contracts from which the agent can choose) to outcomes when
each principal is allowed to offer the agent only a single contract. Let ΓC
denote the set of contracts (i.e., probability measures on A×4 (A)). Note
that ΓC ⊂ Γ∗ (in the sense that single element menus are nonetheless menus).
Formally a menu is a map γ : A∗ → A∗. To make the argument slightly more
transparent we will sometimes speak about choosing the member element g
from the menu γ. Formally this means sending a message g ∈ A∗ to the
principal such that γ (g) = g.

2 Pure Strategy Theorem

The first theorem applies directly to the problem studied by Bernheim and
Whinston (1986) or Dixit, Grossman, and Helpman (1997). The principals
and the agent are said to have symmetric information if the distribution F
of types for the agent is degenerate.

5For example, the application described by Parlour and Rajan (1997).
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Theorem 2 Suppose the principals and the agent have symmetric informa-
tion and let γ∗ = {γ∗1 , . . . γ∗n} be any pure strategy equilibrium relative to the
set of contracts ΓC. Then γ∗ is also an equilibrium relative to the set of
menus Γ∗.

Proof. Let (π, c) be the continuation equilibrium relative to ΓC . Since
each γ∗j ∈ ΓC it follows that γ∗j contains a single element g∗j ∈ A∗. Then
principal j’s payoff could be written as∫

· · ·
∫ {∫

v (a1 (e) , . . . an (e) , e) dπ (γ∗1 , . . . γ
∗
n, r1, . . . rn)

}
dg∗1 . . . dg

∗
n

The problem at hand is simply to extend the continuation equilibrium from
ΓC to all of Γ∗ in a way that preserves the equilibrium allocation. For any
array of offers

{
γ′j
}

such that γ′j ∈ ΓC for all j define

π̃ (γ′1, . . . γ
′
n, r1, . . . rn) = π (γ′1, . . . γ

′
n, r1, . . . rn)

which simply means that in the continuation equilibrium relative to Γ∗, the
agent responds to single element menus (contracts) the same way that he
does relative to ΓC . If two or more offers in the array

{
γ′j
}

are different from
the corresponding offer γ∗, the continuation strategy for the agent can be
defined in any convenient way6. If a single principal j deviates from γ∗j to a
non-degenerate menu γ′ of contracts in Γ∗ choose g ∈ γ′ and π′ to maximize∫

· · ·
∫ {∫

u (a1 (e) , . . . an (e) , e) dπ (r1, . . . rn)

}
dg∗1 · · · dg∗j−1dg

′ · · · dg∗n

Now define

π̃
(
γ∗1 , · · · γ∗j−1, γ

′ . . . γ∗n, r1, . . . rn
)

= π (r1, . . . rn)

and

c̃j
(
γ∗1 , · · · γ∗j−1, γ

′ . . . γ∗n
)

= g

In words, when principal j offers the menu γ′, the agent selects g from the
menu and then acts as if the principal had offered a degenerate menu con-
sisting only of the offer g. The strategy π

(
γ∗1 , · · · γ∗j−1, γ . . . γ

∗
n, r1, . . . rn

)
6An optimal continuation strategy exists because expected utility implies that prefer-

ences are linear (hence continuous) in the distributions in Γ∗ = 4 (A×4 (A)), while by
definition, menus are compact (in the weak topology) subsets of Γ∗.
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must be at least as good as π, else the definition of π as the maximizer is
contradicted.

The construction ensures that when principal j offers the non-degenerate
menu γ′ the agent responds in a way that gives the same principal the same
payoff he would have received if he had deviated and offered the degenerate
menu consisting only of the contract g. Since γ∗j is a best reply to γ∗1 , · · · γ∗n
by the definition of equilibrium, this deviation cannot be profitable.

By the robustness theorem, since the contracts γ∗ constitute an equilib-
rium relative to the set of menus, then the allocation associated with these
contracts can be supported as an equilibrium allocation no matter what the
set of feasible mechanisms is for the principals. In one sense this justifies the
approach adopted in Bernheim and Whinston (1986) and Dixit, Grossman,
and Helpman (1997). Yet most of the examples of the use of menus cited
in the literature refer to equilibrium allocations that can only be supported
when principals are allowed to offer menus. The question remains whether
there are interesting environments where all equilibrium allocations can be
determined by allowing principals to compete in contracts alone.

3 Environments without Externalities

The literature has identified two distinct sorts of equilibria with menus that
are eliminated by restricting contracts. In one sort of equilibrium deviations
by one principal are deterred by the possibility that the agent will change
his selection from the other principal’s menu. This means that principals
indirectly respond to one another’s deviations by modifying their own actions
(an example is Martimort and Stole (1997)). This is the sense in which com-
plicated communications mechanisms allow the agent to communicate mar-
ket information to the principal (Epstein and Peters (1997)). Alternatively,
(Peck (1995)) the agent can act as a correlating device for the principals
(or the principals can act as correlating devices for the agent) in a way that
generates payoffs that cannot be attained in the absence of such devices.

To illustrate the latter role consider the following trivial example - two
principals play a coordination game in which each of them has two possible
simple actions. If both principals take action A, each of them gets a payoff
5, while if they coordinate on action B each of them gets a payoff 1. Each
principal gets 0 if they fail to coordinate. There is an agent who takes
no effort, and who gets payoff 0 no matter what happens to the principals.
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There is an equilibrium in menus in which each principal offers the agent the
choice between action A and B. The agent choose A from both principals
half the time and B from both principals the other half of the time. If
one principal deviates and eliminates an option from the menu, the agent
is expected to choose the combination of actions that gives the principals 0
payoff. The payoff to the principals in this equilibrium is 3, and this cannot
be supported if principals are forced to choose a single action.

It is hard to see how this role for menus could be ruled out by imposing
interesting restrictions on the environment alone. The necessary restrictions
would have to rule out mixing by the agent. However, if mixing can be ruled
out for some other reason, it may be reasonable to focus contracts alone
without worrying about menus. This brings up the much more difficult
problem of agent indifference. In general, menus may consist of various
alternatives among which the agent is indifferent. Principals, on the other
hand, may not be indifferent about how the agent chooses from the menu.
If this is the case, deviations can be used to trigger changes in the way the
agent chooses from the menu, and this can be used to support all kinds of
equilibrium outcomes that are unattainable without menus.

As an extreme example of this, consider the following

a b
a
b

0, 0, 0 2, 1, 0
1, 2, 0 3, 3, 0

In this each principal has two possible simple actions a and b. The agent
takes no effort and is completely indifferent among the combinations of simple
actions taken by the principals. For simplicity, rule out random contracts.
Then the set of feasible contracts is simply the set of simple actions available
to the principal. If we model the game as one where principals compete in
simple contracts, the only pure strategy equilibrium is the one where each
principal chooses the simple action b. However, the outcomes (a, b) and (b, a)
can be supported in competition in menus by having each principal offer the
agent the menu consisting of both outcomes a and b. If either principal
deviates, the agent selects the action from the non-deviating principal’s menu
that gives the deviator the lowest payoff. It is reasonably easy to see from
this example, that if the agent is wholly indifferent about the principals’
simple actions, then any outcome that gives both principals a payoff at least
as large as their maximin payoff can be supported with menus.
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There are, nonetheless, some interesting environments in which competi-
tion in contracts is sufficient to understand most equilibrium behavior. The
qualifier in the previous sentence is related to the fact, as already established,
that continuation equilibria involving mixing cannot ordinarily be supported
by having sellers compete in contracts alone.

Say that the no-externalities assumption holds relative to some set of
measures Φ ⊂ 4 (Yj ×4 (Yj)) if the agent has a strict preference ordering
over the elements of Φ that is independent of his effort and the randomiza-
tions in Φ being offered by the other principals, and the principal’s utility is
determined only by his own randomization and the agent’s effort. Formally
for each j

(i) for each pair (y1, . . . , yj−1, yj+1, . . . yn) and
(
y′1, . . . , y

′
j−1, y

′
j+1, . . . y

′
n

)
and

for each effort level e ∈ E;

v (y1, . . . yj, . . . yn, e, ω) = v (y′1, . . . yj, . . . y
′
n, e, ω) ;

and

(ii) if there is an e ∈ E and φ−j such that∫
· · ·
∫
U (y, y−j, e, ω) dφ (y) dφ−j (y−j) >

∫
· · ·
∫
U (y, y−j, e, ω) dφ′ (y) dφ−j (y−j)

then for every e′ ∈ E either∫
· · ·
∫
U (y, y−j, e

′, ω) dφ (y) dφ−j (y−j) >

∫
· · ·
∫
U (y, y−j, e

′, ω) dφ′ (y) dφ−j (y−j)

for all φ−j ∈ ΦN−1 or∫
· · ·
∫
U (y, y−j, e

′, ω) dφ (y) dφ−j (y−j) =

∫
· · ·
∫
U (y, y−j, e

′, ω) dφ′ (y) dφ−j (y−j)

and
∫
v (yj, e, w) dφ (yj) =

∫
v (yj, e, w) dφ′ (yj) for all φ−j ∈ ΦN−1.

14



The complexity of the second condition stems from the fact that in many
problems the agent can take an action that insulates him completely from
the action of the principal - for example, the agent can refuse to trade with
the principal. If so, then neither the agent or the principal involved should
care what action the principal tries to implement.

The no-externalities assumption is obviously a strong one, but there are a
couple of interesting environments that satisfy it provided the set of measures
is suitably restricted. The simplest is probably the model in which several
sellers compete in price to sell to a single buyer. Since sellers can condition
price on the quantity that the agent chooses to purchase, this might be mod-
elled as an equilibrium in supply functions Klemperer and Meyer (1989). In
this case let Φ be the set of degenerate distributions that assign all probabil-
ity mass to a single price and to a message that assigns all probability mass
to that same price. Then Φ is effectively the set of possible price offers.
The buyer will strictly prefer the lowest price offered unless he or she chooses
not to buy from the seller. In that case, the buyer will be indifferent about
the seller’s price. Each seller’s utility is just his own revenue, which is the
product of the per unit price that he offers and the quantity that the buyer
purchases (which would be the agent’s effort in this interpretation). Thus
the no-externalities assumption is satisfied relative to the set of prices. Notice
the environment will not typically satisfy the no-externalities assumption for
alternative sets of distributions Φ. To see why, suppose that distributions
are admitted into Φ in which the marginal measure my is non-degenerate (or
the seller offers the buyer a lottery over price). Suppose as well that some
seller has offered the buyer a choice between a fixed price and a lottery over
price (but that the message that the seller sends with the random contract
perfectly informs the buyer about price). Suppose that the two contracts are
such that if the buyer purchases all his output from the seller, then the buyer
is just indifferent between the two contracts. Then when the other seller
sets a very high price, the buyer will (weakly) prefer the non-random price.
On the other hand, if the other seller matches the non-random price of the
first seller, then the buyer will strictly prefer the random contract because of
the option value that it provides (i.e., to buy from the first seller when his
random device generates a lower price). So the non-externalities assumption
fails.

An alternative environment without externalities is the one studied by
Bernheim and Whinston (1986) in which multiple principals offer the agent
a (non-random) payment in return for some effort that the agent undertakes.
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The simple actions available to each principal are just payments, and if ran-
dom payment schemes are ruled out, then the agent will always strictly prefer
the largest payment. Principals’ utility depends on the utility that they get
from the agent’s effort, and on the payment that they make, so again the
environment is separable.

An example was described above in which randomization by the agent
along with menus could be used to generate correlated equilibrium allocations
in contracts. A very similar effect can be accomplished if principals are
allowed to use random mechanisms that involve randomized messages sent
to the agent. Again, the best way to illustrate this is probably a trivial
example that extends the coordination example given above.

a b c
a
b
c

5, 5, 0 0, 0, 0 0, 0, 0
0, 0, 0 1, 1, 0 0, 0, 0
0, 0, 0 0, 0, 0 0, 0, 0

As before, the first two payoffs in each cell are the payoffs to the two prin-
cipals, while the third payoff is the agent’s payoff (which is always 0). One
equilibrium in menus has each principal randomizing initially over menus,
selecting the menus {a, b} and {a, b, c} with equal probability then sending
the agent a message saying which choice he made. If both principals send the
same message, the agent chooses a from both menus while if the messages
differ, the agent chooses b. As before, any deviation from this behavior by
the principals induces the agent to punish by selecting the elements from the
non-deviator’s menu that is worst for the deviator.

The agent plays a pure strategy in this example, but the payoff to the
principals is again the correlated equilibrium payoff 2, which is not supported
if the principals compete in contracts alone. This assumption doesn’t satisfy
the no-externalities assumption,7 but similar arguments can be made with
more complicated examples in a no-externalities environment. The point of
the example is just to illustrate that to prove some kind of revelation prin-
cipal when principals compete in contracts alone requires restrictions on the
set of feasible contracts to rule out randomization, for the same reason that
it is necessary to rule out randomization by the agent. In what follows we
simply rule out mechanisms in which the principal can communicate with

7It does fit for the agent, but the principals’ payoffs depend on what the other principals
do which is necessary in a coordination game.

16



the agent before the agent takes effort (Martimort and Stole (1997) uses this
assumption for example). The revelation principle 1 is readily adjusted to fit
this situation - menus are simply mechanisms in which the set of feasible mes-
sages for the agent is4 (A) while the set of feasible messages for the principal
is R =∅. Rather than pursuing this formally, we simply impose a restriction
on the set of feasible menus. Let A0 ⊂ A∗ be the set of feasible probabil-
ity measures that principals can offer. Each contract in a ∈ A0 induces a
family of probability measures ma

e as in 1 above. Let Φ0 ≡ ∪a∈A0,e∈Em
a
e .

By the revelation principle 1, the set of measures Φ0 is consistent. The set
of indirect mechanisms satisfies no communication by the principal if every
m ∈ Φ0 has the property that m4 is a degenerate measure with all of its mass
assigned to the distribution my. In words, this means that the principal is
constrained always to send the same message to the principal. Consistency
requires that this message be the marginal distribution on the set of simple
actions.

Theorem 3 Suppose the set of feasible mechanisms satisfies no communi-
cation by the principal and that the environment satisfies the no-externalities
assumption relative to Φ0. Let {γ∗1 , . . . γ∗n} be a pure strategy equilibrium
relative to the set of menus Γ∗ and suppose that in the continuation equilib-
rium associated with Γ∗ the agent uses pure strategies. Then there exist an
equilibrium {γ̃1, . . . γ̃n} relative to the set of contracts ΓC which preserves the
payoffs of the principals and the agent, for almost all values of the agent’s
type.

Proof. Let γ be an arbitrary array of menus. For each e ∈ E and for
every j = 1, . . . n there is a gej ∈ γj such that

U (yj, y−j, e, ω) dg1 (e) · · · dgej (e) · · · dgn (e) ≥

U (yj, y−j, e, ω) dg1 (e) · · · dg′ (e) · · · dgn (e)

for each g′ ∈ γj such that g′ 6= gej ; for any gk ∈ γk for each k 6= i; and
for every ω ∈ Ω. This inequality will be strict unless the agent of type ω
is indifferent to all contracts in γj when he takes effort e. All this follows
from the separability of the agent’s preferences. By the definition of Ej, for
each B ∈ Ej, gej (e) = ge

′
j (e′) for each pair e, e′ ∈ B since every g′ ∈ γj must
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be measurable with respect to Ej. As E and Yj are both finite, the random
function g0

γj
: E →4 (Y ) defined by

g0
γj

(e) = gej (e)

is also an element of 4 (A) whose support consists of functions from E → Y
measurable with respect to Ej.

Again consider an arbitrary array of menus γ. Now replace each of these
menus with the degenerate menu consisting of the single element g0

γj
(·). Let

e∗ (ω) be the equilibrium effort level chosen by the agent of type ω when
principals offer the contracts γ. This function exists by the assumption that
the agent uses a pure strategy in the continuation equilibrium relative to
Γ∗. Observe that e∗ (ω) must describe an optimal effort level for every agent
type when the principals offer degenerate menus g0. For if this were false,
there would be an effort level and a selection of contracts that the agent
could have made relative to γ that would have improved his payoff for some
value of his type, a contradiction of the assumption that e∗ (ω) describes
equilibrium effort.8 By separability, an agent of type ω must either select
the contract g

e∗(ω)
j from principal j in equilibrium, or be indifferent to all

of the contracts that principal j offers. In either case, the payoff that the
principal and agent get from the combination of the effort level e∗ (ω) and

the randomization g
e∗(ω)
j is the same as their payoff when the principals offer

γ. Taking expectations over the agent’s possible types then guarantees that
each principal’s expected payoff when each of them offers g0

γj
is the same as

it would be if each of them offers γj.
Let V j (γ) and U (γ, ω) be principal j’s and agent ω’s payoff when the

array of menus is γ. This argument says that for any arbitrary array of
menus γ, V j (γ) = V j

(
g0
γ

)
and U (γ, ω) = U

(
g0
γ, ω
)

for each j and ω ∈ Ω.
Now consider the equilibrium array of menus γ∗ and the associated set of
simple contracts g0

γ∗ . Consider any unilateral deviation γ′j from the array
g0
γ∗ . Then from this argument

V
(
γ′j, γ

∗
−j
)

= V
(
g0
γ′j
, g0
γ∗−j

)
= V

(
γ′j, g

0
γ∗−j

)
≤ V

(
γ∗j , γ

∗
−j
)

= V
(
g0
γ∗j
, g0
γ∗−j

)
8Observe that this part of the argument does not require separability. It would be

true without separability provided that the agent uses a pure strategy in the continuation.
If the agent mixes among contracts and efforts, some of the choices that he made in the
original continuation would no longer be available to him after the principals replaced
their menus with single contracts.
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The first two inequalities follow because the argument above is true for any
array of contracts. The inequality follows from the fact that γ∗ is an equilib-
rium in menus. Thus the array of contracts g0

γ∗ not only preserves all players
payoffs, it is also an equilibrium relative to the set of menus Γ∗.

The upshot is that if there is some interesting allocation that can be
discovered by analyzing (pure strategy) equilibrium in which principals use
complex negotiation schemes to determine their contracts, then the alloca-
tion can also be characterized and studied by having principals compete by
offering the agent take it or leave it contracts exactly as is done the stan-
dard references like Bernheim and Whinston (1986) or Dixit, Grossman, and
Helpman (1997).

4 Conclusion

Complex negotiations can result interesting new behavior in common agency
when there are many principals. Standard approaches to common agency de-
veloped by Bernheim and Whinston (1986) or Dixit, Grossman, and Helpman
(1997) ignore this. This paper shows that provided one is interested in pure
strategy equilibria, these approaches lead to errors in omission rather than
errors in commission. With symmetric information, pure strategy equilibria
in take it or leave it contracts can be supported as equilibria when principals
are allowed to use arbitrarily complicated negotiation schemes. Furthermore
pure strategy equilibria involving negotiation schemes that generate non-
random outcomes can be supported as equilibria when principals compete in
take it or leave it contracts.

It may be possible to extend the theorem above to allow for random out-
comes and mixed strategy equilibria if one is interested in correlated equi-
libria of games in which principals offer take it or leave it contracts. Since
the environment without externalities is so restrictive, it would seem more
useful to accept menus of contracts as the appropriate way for principals to
compete in order to analyze the impact of externalities more directly.
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