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Abstract

Pre-marital investments by spouses are largely viewed as public
goods within the marriage. So individuals may underinvest. But indi-
viduals also use their investments to compete for spouses with higher
investments. In a large marriage market, the higher equilibrium match
quality obtained by increasing pre-marital investment exactly internal-
izes the external benefit of the investment so the competitive equilib-
rium is efficient. This model of competing investments in local public
goods is a special case of Rosen’s hedonic market model. In small
marriage markets, the competition for spouses will raise incentives to
invest in pre-marital investments as well as making these investments
less predictable.

1 Introduction

In marriage, an individual derives utility from own pre-marital investment
and the pre-marital invesment of his or her spouse. Much of this investment
is human capital investment made by altruistic parents. Since pre-marital
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investment is a public good in marriage, parents may under invest in their
children.

The under investment conjecture is premature. It ignores the competition
for spouses in the marriage market. In this paper, we study pre-marital
investments when children use these investments to compete for spouses. We
are primarily interested in the implications of assortative matching equilibria
which occur when wealthy individuals are matched with wealthy partners.
Then altruistic parents take into account the additional utility their children
will enjoy from wealthier partners, and this will increase their incentive to
invest in their children on the margin.

Our first model considers the case where the number of families is very
large. We study a competitive equilibrium in which all families on the same
side of the market believe that they face the same non-stochastic return to
their investment in their children. This return function adjusts until families
beliefs are fulfilled in equilibrium.

Perhaps the most remarkable property of investment in the competitive
equilibrium is the fact that the externalities associated with families’ invest-
ments in their children are completely internalized by this return function.
Any pair of families whose children match on the competitive equilibrium
path, will make investments that are bilaterally pareto optimal. Despite the
fact that neither family can directly compensate the other family for the
investment that it makes in its child, the marriage market and the assorta-
tive matching that occurs there forces each family to compensate the other
indirectly through the investment that it makes in its own child.

This efficiency result is an application of Rosen’s hedonic pricing (Rosen
1974) approach to large matching problems. The market return function
provides what is essentially a hedonic value for every investment level that
a family might consider making. Families on the other side of the market
need to provide these hedonic values in order to attract partners with specific
investment levels. In equilibrium, each family’s indifference curve (in the
space of investments) will be tangent to this hedonic return function, and
consequently, families whose children match will have indifference curves that
are tangent to each other. The investments that families undertake will then
be bilaterally efficient in the sense that there will not be another pair of
investments that will make both of the matched families better off at the
same time. Since the joint payoffs that we employ are supermodular ((Becker
1973),(Smith 1996)), assortative matching along with bilateral efficiency are
sufficient to guarantee that the distribution of investments for the economy
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is efficient.
Matters are more complicated in small marriage markets. When the

number of families and children is small, assortative matching among children
will raise families incentive to invest and at the same time make families
investments less predictable. If there are significant wealth disparities on
the other side of the market, parents may find that they can increase the
wealth of their child’s partner significantly by raising their investment only
slightly. This makes parental payoff functions discontinuous, which rules out
pure strategy equilibria in some situations. In the mixed strategy equilibria
that do prevail, parental investment is stochastic. Though rich families will
invest more in their children on average than poor families do, there will
be a positive probability that the poor families will invest more than rich
families so that their children move up the wealth distribution. This creates
endogenous intergenerational mobility.

Equilibria always exist for the families investment game when there is
assortative matching. Since the equilibria involve mixed investment strate-
gies, they can be complex. To get around this, we begin by looking at the
simplest non-trivial market structure imaginable, in which there are only two
families on each side of the market. For this case, we can give a complete
characterization of equilibrium. We show that all families will invest more on
average in their children than if there is no competition for spouses. While
richer families will invest more on average than poorer families, the proba-
bility that parents and children switch places in the wealth distribution is
non-zero. Furthermore, the investment levels that families do make will not
generally be efficient.

The mixed strategy equilibria for this special case illustrate some of the
properties of mixed strategy equilibrium for the more general case, but are
otherwise quite special. Mixed strategy equilibria with arbitrary numbers of
families are difficult to characterize, especially in the case where there are
different numbers of families on each side of the market.

Our paper innovates primarily by making the level of investment that
occurs on both sides of the market endogenous. Various authors have con-
sidered matching problems where investments occur prior to matching on
one side of the market (for example (Shi 1997)). However, the impact of
match quality on investment does not arise in these models. The paper that
is most closely related to our own is (Cole, Malaith and Postlewaite 1998)
who analyze a two sided matching investment problem. There are two impor-
tant differences between our paper and theirs. First, they consider the case
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of transferable utility - partners can make agreements to transfer money or
share surplus in a way that depends on investments. This approach is more
appropriate to modelling firm worker matching problems where firms can
make wages depend on human capital investments by firms. Incentives to
invest are much stronger in such environments because the market provides
an explicitly monetary reward for investment. No such reward exists in our
paper. Furthermore, (Cole et al. 1998) use a cooperative matching process to
pair traders and determine how surplus is shared in each match. For small
marriage markets, our matching process is non-cooperative. (Siow and Zhu
1998) also study a two side matching investment problem with transferable
utility and two wealth classes on each side of the market. They also study
multigenerational equilibria. (Acemoglu 1997) studies a two side matching
investment model with workers and firms. He obtains underinvestment be-
cause due to potential random matching, workers and firms are unable to
fully capture the returns to their pre-employment investments.

While this paper focuses on the marriage market, our analysis applies to
other partnerships in which the share of surplus in the partnership is not
conditioned on the level of pre-partnership investment. Members of ama-
teur sports teams and co-authors in economics usually do not divide surplus
according to their levels of pre-partnership investments. In most of these
markets, agents invest in pre-partnership human capital and then compete
for partners. The results in this paper should be useful for thinking about
those markets as well.

2 Preliminaries

Families begin with an endowment of wealth y which can be used partly
as current consumption, and partly as an investment in children. Let w be
the amount invested in the child. If the child subsequently matches with a
partner whose wealth level is w′ then utility for the parents is given by

V (y − w) +
w + w′

z
, z > 0

and utility of the child is

w + w′

z
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If the family invests w and the child is not expected to match, then we assume
that the child has utility w/z. The actual value of the childrens’ utility when
no match occurs is unimportant as long as both the child and family are at
least weakly better off when a match occurs than if it doesn’t.1

Assumption The function V (·) is monotonically increasing, strictly con-
cave and satisfies

lim
x→0

V (x) = −∞

The bilateral Nash, or non-competitive investment levels for each family
are given by the solutions to

V ′ (yi − w∗i ) =
1

z
(1)

These are the investment levels that the families would make if they believed
(for whatever reason) that their children’s match partner is independent of
parental investment. In the case where there are only two families, one
on each side of the market, the investment of the family on the other side
of the market would be fixed and equilibrium investment would satisfy 1.
Investment would be inefficient in this case because 1 does not take account
of the positive effect that the family’s investment has on the family on the
other side of the market.

After the families have made their investments, the children compete for
partners in the marriage market. We will first study the investment and
matching problem in a large marriage market. Then we will investigate
properties of small marriage markets.

3 Large Marriage Markets

This section considers a large marriage market with a continuum of families
on each side of the market. We refer to families with female children as
families ‘in F ’ and similarly, families with male children are families ‘in M ’.
Let G and G′ be measure of the set of families in M and F respectively.

1It is possible that children might strictly prefer not to match if the best available part-
ner is too poor. This creates problems for our methodology, but these are not particularly
relevant for the issues we wish to discuss.
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Figure 1: Figure 1 - Matching Function

Interpret G (B) to be the measure of the set of families whose endowments
lie in the set B and similarly for G′. Let g (w) represent the wealth of the
wife that each family in M expects to match with from an investment of
w in their son. Similarly, g−1(w′) represents the wealth of the groom that
each family in F expects to match with from an investment of w′ in their
daughter.

g(w) is expected to be non-decreasing in w. Since it is costly for families
to supply w beyond the Nash level, families in M will be willing to supply
more w only if they can get a return for their investment. A non-decreasing
g(w) will imply assortative matching in equilibrium.

Definition 1 The return function g (w) is a rational expectations equilib-
rium if there is an interval [w,w] such that for every w ∈ [w,w] there exist
income levels y (w) and y′ (w) such that

1. G (y (w)) = 0; G′ (y′ (w)) = F −M ; G (y (w)) = M ; G′ (y′ (w)) = F
and M −G (y (w)) = F −G′ (y′ (w)) for w ∈ (w,w);

2. w ∈ arg maxx

{
u (y (w)− x) + x+g(x)

z

}
; and

g (w) ∈ arg max
x

{
u (y′ (w)− x) +

x+ g−1 (x)

z

}
Figure 1 illustrates a rational expectations equilibrium. The investment

levels for families in M are given along the horizontal axis, while investments
for families in F are along the vertical axis. The dark curve illustrates the
equilibrium matching function. The lighter curves that are convex upward
are indifference curves for families in M , those that are convex downward are
indifference curves for families in F . A family in M who invests w∗∗ should
expect their child to match with someone whose wealth is g (w∗∗). In equilib-
rium, if a family chooses investment w∗∗ then their indifference curve should
be tangent to the curve g (w) at the point (w∗∗, g (w∗∗)). The reason is that
the family thinks that g (w) represents the market return function that they
face. Similarly, any family in F who chooses to invest g (w∗∗) should expect
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return w∗∗. In equilibrium this family must have an indifference curve tan-
gent to the market trade-off function g−1 (·) at the point (w∗∗, g (w∗∗)).This
implies that the indifference curves of the families of every pair of children
who match in equilibrium will be tangent to each other and investment levels
are bilaterally efficient. As the picture is drawn, the family from M is the
one with the lowest endowment, while the family from F is the family with
the lowest endowment who actually succeeds in matching.

To see this more formally, focus on the case where both G and G′ are
monotonic, and let α (w) satisfy M −G (y) = F −G′ (α (y)). By assortative
matching, a family in M with income y should end up matching with a family
from F whose income is α (y) provided that each families investment is an
increasing function of its endowment. Suppose that the optimal investment
level in the rational expectations equilibrium for each family in M is some
function wm (y), while the corresponding function for families in F is wf (y).
A necessary condition for optimality is that a family whose income is y should
prefer to invest wm (y) to any investment level wm (y′). Since each family’s
payoff is given by

V (y − wm (y)) +
wm (y) + wf (α (y))

z

this gives the condition

w′m (y) =
w′f (α (y))α′ (y)

z
(
V ′ (y − wm (y))− 1

z

) (2)

The corresponding condition for the family α (y) from F is that

w′f (α (y)) =
w′m (y) 1

α′(y)

z
(
V ′ (y − wf (α (y)))− 1

z

) (3)

Substituting (3) into (2) gives the tangency of the indifference curves for
family y in M and α (y) in F .

This bilateral efficiency is enough to ensure full pareto optimality of the
equilibrium allocation. To show this, it is sufficient to demonstrate that
pareto improvements cannot be achieved by rematching the families’ chil-
dren then adjusting the ex ante investment levels of families. Figure 1 can
be used to illustrate this. Children are initially matched assortatively. Sup-
pose that a pareto improvement can be obtained by rematching in such a
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way that family A in M is rematched with family B from F . To illustrate
the argument, suppose that family A is the family in Figure 1 who chooses
the point A while family B is the family from F who chooses the outcome
B. If matching family B with family A results in a pareto improvement,
then investment levels need to be adjusted so that both families end up on
higher indifference curves than they attain in the initial assortative matching
equilibrium. Since the allocations that A prefers to the allocation in the as-
sortative matching equilibrium lie everywhere above the market return line
g (w) while the allocations that B prefers lie everywhere below it, this will
not be possible.

4 Existence of a Rational Expectations Equi-

librium

In some simple problems existence of a rational expectations equilibrium is
immediate. For example, suppose that G = G′. Then set g (w) = w. Then
each family chooses the (efficient) level of investment w∗∗ that equates the
marginal utility of consumption and 2. For a variety of reasons, this is not a
good example of the rational expectations solution concept. We return to it
momentarily.

A more illuminating example occurs when G and G′ differ. Suppose as
before that F > M but that all the families in F have the same endow-
ment. In figure 1, let the indifference curve touching the vertical axis be the
common indifference curve for all these families. Define g (x) to be equal to
this indifference curve, and let the families in M choose the point on this
indifference curve that they most desire. Families in F can be spread over
the indifference curve in a manner that ensures the market clearing condition
holds. The market return function will have a closed form solution provided
that the indifference curve can be represented in closed form.

To see the solution for the more general case, suppose that G and G′ are
both strictly monotonic with differentiable inverse functions whose deriva-
tives are bounded away from 0 and infinity. Let u be strictly concave and
differentiable with marginal utility bounded above. Define for each y in the
support of G γ (y) = {y′ ∈ suppG′ : F −G′ (y′) = M −G (y)}. Since G and
G′ are both monotonic and differentiable, so is γ. Furthermore, the deriva-
tive of γ is bounded away from 0 and ∞. The first order condition for the
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optimal investment for a family of income y is given by

−u′ (y − w) +
1 + g′ (w)

z
= 0

Since u′ is monotonic, it has an inverse. This implies that the income of the
family in M who invests w must be equal to

u′−1

(
1 + g′ (w)

z

)
+ w

The family in F who invests g (w) has an income level such that g (w) satisfies

−u′ (y′ − g (w)) +
1 + 1

g′(w)

z
= 0

In equilibrium, this family matches with the family in M who invests w.
If g (·) is a rational expectations solution, the measure of families who are
wealthier than this family from M must be equal to the measure of families
who are wealthier that y′. This requires that

y′ = γ

(
u′−1

(
1 + g′ (w)

z

)
+ w

)
This yields the ordinary differential equation

−u′
(
γ

(
u′−1

(
1 + g′ (w)

z

)
+ w

)
− g (w)

)
+

1 + 1
g′(w)

z
= 0

Re-arranging gives

g (w) = γ

(
u′−1

(
1 + g′ (w)

z
+ w

))
− u′−1

(
1 + 1

g′(w)

z

)

Let φ (g′, w) denote the expression on the right hand side of this equation.
Since φ is monotonically decreasing in g′ the inverse function φ−1 (·, w) exists.
So the market return function must satisfy

g′ (w) = φ−1 (g (w) , w) (4)

To see the initial condition, let y∗ be the poorest family from F who suc-
cessfully matches with some family from M in equilibrium (y∗ satisfies F −
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G′ (y∗) = M). Let I∗ be the highest indifference curve that the family with
endowment y∗ can attain when they do not match. Let (w, g (w)) be the
point where this indifference curve is tangent to the indifference curve for a
family in M who endowment is y. The equilibrium market return function is
then any solution to (4) with initial condition (w, g (w)). To ensure existence
and uniqueness of the solution we need to impose additional restrictions on
the problem to ensure that φ−1 satisfies the usual Lipshitz condition in g.
We do not pursue these issues here.

5 A Hedonic Pricing Interpretation

The above model can be interpreted as a special case of Rosen’s hedonic
market model. To see this most easily, consider families in M as suppliers.
Let y be the characteristic of a supplier. Let w be the level of output (pre-
marital investment) that a supplier produces. Note that w also provides
consumption value for the supplier and thus is not purely costly. g(w) is
the return that a son gets for supplying w. We may consider families in
F as demanders. If a demander pays w′, the daughter will match with a
supplier whose output is g−1(w′). Unlike Rosen, demanders value paying
w′. However this does not cause any analytic difficulty because a demander,
that is matched, will pay a higher w′ than she is willing to pay if she is not
matched. So as in the case of Rosen’s firms, the demander will prefer to pay
less w′ for her matched supplier if she could.

With this interpretation, results that apply to Rosen’s hedonic market
model may apply here as well. For example, the difficulties of estimating
hedonic pricing functions is well known (E.g. (Epple 1987) or (Kahn and
Lang 1988)). These difficulties appear here as well (Botticini and Siow 1999).

6 Small Marriage Markets

In discussing small marriage markets, we have to first discuss the non-
cooperative matching process among the children. The key property of this
process is that it involves assortative matching. One non-cooperative pro-
cedure that will ensure this is the Gale-Shapley (Gale and Shapley 1962)
algorithm. Male children publicly advertize their wealth levels. After seeing
the wealth levels available, each female child chooses one and only one male
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as a potential partner and proposes a match to the male. The male can select
one and only one of the proposals he receives and can form a match with the
female who made the proposal.

To analyze this matching and investment process, we begin with equilib-
rium for the matching process. We can then proceed to the investment stage
assuming that families foresee the impact that their investment will have on
the outcome of the matching process.

7 The Matching Process

Without loss of generality, we can assume that there are n families in F
and m families in M with n > m. The families in M have income levels
{y1, . . . , ym} listed in descending order, so that family 1 is richest and family
m is poorest. Similarly for F the endowments are {y1, . . . , yn} in descending
order, so that family n in F is poorest. Denote

w∗i = arg max
{
V (yi − w) +

w

z

}
for i = 1, . . .m as the bilateral Nash investment level for each family in M ,
as discussed above. Similarly, let

{
w
′∗
j

}
j=1,n

be the bilateral Nash investment

levels for the various families in F . To simplify the argument, it will be
assumed that y1 > y2 > y3... for income levels in both M and F (which
implies that the same property will hold for the Nash investment levels).

Fix an array w = {w1, . . . wm} of wealth levels for children in M and
an array w′ = {w′1, . . . w′n} of wealth levels for children in F . Alternatively,
we will refer to the empirical distribution functions φ and φ′ generated by
these investments. Without loss of generality, it can be assumed that these
wealth levels are listed in descending order, so that wj ≥ wj+1 for all j, and
w′k ≥ w′k+1 for all k.

Males advertize their wealth levels, females make proposals, then males
accept one of the ones they most prefer. This is a simple finite game played
between the children, and as such it always has a Nash equilibrium. Some
equilibria are problematic. For example, suppose there are two children on
each side of the market and that all four children have the same wealth
level. There is a mixed strategy equilibrium in which each female proposes
to each male with equal probability, and each male accepts each female who
proposes to him with equal probability. In this equilibrium, it can occur
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with positive probability that a male and female remain unmatched. This
outcome does not seem reasonable. However, it is straightforward to show
that the proposal game described above always has a pure strategy assortative
matching equilibrium in which the child in M with investment wi matches
with probability 1 with the child from F who has investment w′i. Call the
children in the ith position on each side of the market designated partners.
Then a shorthand would be to say that there is a pure strategy equilibrium
in which i matches with probability 1 with his or her designated partner.

Assortative matching is the property of this equilibrium and this match-
ing process that will be used below. Since the arguments are the same on
both sides, focus on families in M . Let φ′ denote the empirical distribution of
investment levels for families in F and let φ be the distribution of investments
for all the families in M . Let g̃i (wi;φ, φ

′) be the investment level of i’s des-
ignated partner in F given the distribution φ′ and given that i’s investment
level in φ has been replaced with wi. We will also use the notation φ̂ (w) to de-
note the empirical distribution generated by the array of investments w. The
function g̃i represents family i’s return to investment. The assortative prop-
erty of the matching process ensures that g̃ is non-decreasing. The matching
process will not generally be anonymous since in the event of ties, equal in-
vestments by families in M might yield different investments on the part of
the children with whom their children match. However if w = (w1, . . . wm)
has no two components in common (which is generic at least with respect
to Lebesgue measure) then the matching process is anonymous in the sense
that g̃i (wi;φ, φ

′) = g̃j (wi;φ, φ
′).

In the sequel, we will be interested in situation in which the distribution
φ′ is itself random with some known distribution Φ. Let φ be the distribu-
tion of the mean values of the order statistics associated with the random
distributions φ′. Observe that for any φ

Eg̃i (wi;φ, φ
′) =

∫
g̃i (wi;φ, φ

′) dΦ (φ′) = g̃i
(
wi;φ, φ

)
8 Investment and Equilibrium

The families choose investment levels in the first stage of the game, tak-
ing full account of the effect that their investment has on the continuation
equilibrium in which their children match. Given distributions φ and φ′ of
investments for families in M and F respectively, the payoff to family i is
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given by

vi (w,w
′) = V (yi − wi) +

wi + g̃i (wi;φ, φ
′)

z

This payoff function is discontinuous because if family i and family i − 1
both have the same investment level, then family i can increase the wealth
of their child’s partner from w′i to w′i−1 by raising investment slightly. Thus
we cannot generally hope to find pure strategy equilibria for the investment
game. However, the payoff functions have the properties required by the
Reny (Reny 1999) existence theorem for equilibrium in mixed strategies.

Theorem 2 The investment game has at least one equilibrium in mixed
strategies.

9 Minimal Competition Induces Additional

Investments

The usefulness of the existence result in the previous section is limited by
the fact that equilibrium strategies are quite complex. It is very difficult to
give a useful characterization of equilibrium in the general case. To begin, we
consider a very simple case where a complete characterization is possible. We
follow by pointing out the properties of the equilibrium that do generalize.

We begin with the case where there are four families. One of the families
from F and one from M have and initial endowment yl while the other pair of
families each have endowment yh. Consider investment levels wfl , w

f
h, w

m
l , w

m
h ,

where, in an obvious notation the superscript f refers to children of families
from F while the superscript m refers to children of families in M . In the case
where the investments levels differ in the sense that for example wfh > wfl the
continuation equilibrium is straightforward. The wealthy child from F will
propose to the wealthy child from M with probability 1 and this proposal
will be accepted. Similarly for the less wealthy children. The poor F has no
incentive to propose to the wealthy M because she expects the wealthy F to
propose there with probability 1 and she knows that the wealthy male will
always prefer her proposal.

If the wealth disparity of the families is large enough, it will never pay
families to try to improve their children’s match quality. In that case there
will be an obvious equilibrium where families make non-cooperative invest-
ments and never mix. To avoid this we assume
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Assumption

V
(
yil − w∗ih

)
+

2w∗ih
z

> V
(
yil − w∗il

)
+

2w∗il
z

The assumption says that a poor family would be willing to raise invest-
ment to w∗h if they believed that this would generate a match with a child
from a wealthy family making the non-cooperative investment.

Then we have:

Theorem 3 There exists a symmetric mixed strategy equilibrium in which
the wealthy families both use mixture Hh while the poor families both use
mixture Hl. These mixtures have the following properties:

1. Hl has an atom at w∗l and Hh has an atom at w∗h with Hh (w∗l ) <
Hl (w

∗
h) ;

2. Hl and Hh both have smooth density functions on some interval [w∗h, w
∗∗]

with H ′l (s) < H ′h (s) for all s ∈ [w∗h, w
∗∗]

The proof of this theorem is constructive. The argument resembles the
argument for a Bertrand competition with capacity constraints. If one family
invests more than the other, that family’s child will match with the wealthi-
est child on the other side of the market. In the mixed strategy equilibrium
investments generate random returns since the investment level of the com-
peting family is random. The major complication involved in this argument
arises from the fact that family who invests most gets a random return equal
to the first order statistic for investment levels on the other side of the mar-
ket. The distribution of this order statistic is endogenous. This constitutes
the main technical difficulty to be overcome in the proof.

The theorem illustrates nicely the inherent unpredictability of investment.
Both kinds of families choose their bilateral Nash investment level with pos-
itive probability. However, they also use a strategy that involves investment
at a level strictly above w∗h with positive probability. It follows immediately
that both families will invest, on average, strictly more than their bilateral
Nash investment levels. From the position of the atoms, and the restriction
on densities, it is immediate that the family with the highest endowment
will invest more, on average, than the family with the low endowment. With
randomization however, there is a strictly positive probability that the poor
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family will end up investing more than the wealthy family. Their child will
then be at the top of the wealth distribution. We interpret this as endogenous
intergenerational mobility in wealth.

10 Discussion

There is also a close connection between the models in this paper and the
directed search models of the labor market (for example (Shi 1999) or (Moen
1997)). To see this suppose that there is a measurable set of firms who
invest in physical capital and workers who invest in human capital. Firms
have different technologies parameterized by some variable y ∈ R with the
marginal product of capital increasing in y. Workers differ according to a
parameter y′ that determined the cost at which the worker can acquire human
capital. This cost is assumed to be decreasing as y′ increases. Each firm has a
single job to be filled and each worker wishes to fill one job. The total output
produced by the firm is some increasing function of the physical capital w
invested by the firm and the human capital w′ invested by the worker who
fills the job. Physical capital is purchased by the firm at a fixed price r
while human capital is acquired by the worker according to a convex and
increasing cost e (w′). For the moment, assume that when a firm and worker
match, each receives a fixed share of the profit that is created. So if a firm
who invests physical capital w is matched with a worker with human capital
w′, the profit of the firm is

αf (w,w′; y)− rw

while the profit of the worker is

(1− α) f (w,w′)− e (w′; y′)

The functional form used in this example differs slightly from that used in the
marriage market above, but otherwise the problems are identical. If we allow
the firms to advertize their capital stocks after they make their investments
so that workers can apply to the firm that they like, all the equilibria will
involve assortative matching exactly as in the marriage problem.

The hedonic value of the firms investment w is given by some function
g (w) that gives the human capital that will be embodied in the worker that
the firm expects to be able to attract. Conversely, any worker who wants
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a job at a firm with physical capital w will have to provide the level g (w)
of human capital to get the job. In equilibrium, this hedonic value will en-
sure that firms and workers will invest efficiently. This is similar to the
result in (Moen 1997), though it generalizes that result by allowing firms
and workers to differ, and by endogenizing the investments on both sides of
the market. There are also some important differences. In the existing
literature on directed search in labor markets, frictions generated by workers
inability to coordinate their search decisions play an important role.2 The
hedonic value of any given wage that a firm offers to pay workers is then
measured by the size of the queue of applicants that the firm attracts. The
model here shows that when families or workers differ in equilibrium, the
mixed strategy equilibria that support these frictions disappear - the match-
ing equilibria that occur after wages are posted or capital stocks are chosen
involve pure assortative matching - families use their own characteristics to
coordinate their search decisions. Despite this, the hedonic interpretation in
which the market responds to specific investments with a predictable return
is supported.

The other major difference is that there are no side payments in the model
studied here (in the labor market interpretation, firms do not offer wages but
instead simply give workers an exogenously determined split of the profit).
The case where workers and firms have multidimensional characteristics is
certainly likely to support a hedonic interpretation, but so far models of this
form have not been studied.

One of the predictions of the model studied here is certainly too strong -
pure assortative matching. Clearly the model needs to be extended to allow
for unobservable or match specific characteristics. The payoff to focussing
on the case with perfect information is the simplicity of the model that it
delivers. A synthesis of the directed search models of the kind discussed
here and the random matching models that characterize the older literature
is clearly an important topic for future research.

11 Appendix

11.1 Pure strategy equilibria in the matching game
2Frictions are generated by the fact that workers use mixed strategies when they choose

which firms to apply to (Shi 1999), or (Peters 1999).
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played among the children 4:

Males choose a selection rule that specifies for each subset of the set of
females, the probability with which he will accept each different proposal
from that set. Let P be the set of all subsets of females. A selection rule for
male i is a mapping σi : P →RM satisfying σij (S) ≥ 0 for all j = 1, . . .M ;∑M

j=1 σ
i
j (S) ≤ 1; and σij′ = 0 whenever j′ /∈ S. Each female can make a

proposal to one and only one male. Let πij be the probability that female j
proposes to male i.Write Qi

j (π, σ) as the probability with which a proposal
by female j to male i is accepted when males and females are using the
strategies π and σ. Let (σ∗, π∗) be a Nash (continuation) equilibrium for
the matching game. Equilibrium for this game exists by the finiteness of the
underlying pure action space.

Equilibrium for this process involves assortative matching - a child who
has wealth w′ > w will have a wealthier partner than a child whose wealth is
w. The rationale is as follows. Consider a candidate non-assortative matching
equilibrium in which female j is matched with male i and female j′ < j is
matched with male i′ > i or unmatched. Since female j′ has wealth larger
than female j, she can make a marriage offer to male i and her offer will be
accepted. Moreover she will have the incentive to do so. Thus the candidate
non-assortative matching equilibrium cannot be an equilibrium (Lam 1988).

More formally, think of male i as the designated partner for female i and
conversely. Then we have the following lemma

Lemma 4 There exists a pure strategy Nash equilibrium for the choice pro-
cess in which each child matches with his or her designated partner with
probability 1. In particular, πMj = 1 for j > M ; πjj = 1 for j = 1, . . . ,M ;
and for i = 1, . . . N , σi is defined by

σij (S) =


1 if j ∈ S; j = i; w′j′ ≤ w′i for all j′ ∈ S and

wi+w
′
i

z
≥ w

1 if j ∈ S; w′j > w′j′ for all j′ ∈ S and
wi+w

′
j

z
≥ w

1 if j ∈ S; j ≥ j′ for all j′ ∈ S ;i /∈ S and
wi+w

′
j

z
≥ w

0 otherwise

Remark 5 Observe that each male i selects his ‘designated partner’ female
i if she is available among the set S who propose, and if her wealth is at least
as large as the wealth of all the others who propose. In particular, if there
is some female other than i who proposes to male i but who has the same
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wealth as male i’s designated partner, male i will always select his designated
partner. So this equilibrium is not anonymous - the probability with which a
male accepts a female proposal depends both on her wealth and her identity.

The proof of this lemma is straightforward. The male’s strategy is clearly
optimal, he simply chooses from all the females who propose to him, the one
with the highest wealth level. If there are multiple proposals in this cate-
gory, he chooses his designated partner when she is available, or the highest
index in the group if she is not. Females with very low wealth levels (indices
M+1 through N) all propose to male M . Their proposals are all rejected on
the equilibrium path, either because male M does not find it worthwhile to
match, or because male M accepts the proposal from his designated partner
female M . Female j proposes with probability 1 to her designated partner
male j. Females with higher wealth (lower indices) propose to male j with
probability 0, so that female j can expect her proposal to be accepted with
probability 1. Thus she can never gain by deviating and proposing to a male
whose wealth level is no higher than the wealth level of her designated part-
ner. On the other hand, if she deviates by proposing to a male whose wealth
is strictly higher than the wealth of her designated partner, her proposal
will be rejected with probability1 since the seller to whom she proposes will
either have a proposal from a female with more wealth, or will choose his
designated partner. Since males and females share the same ex post payoff
and the same payoff when they do not match, they will agree on whether or
not to form a match ex post.�

11.2 Proof of Theorem 2:

To verify the existence of a mixed strategy equilibrium, we take the approach
of Reny (Reny 1999) and show that the mixed extension of the first stage
game conditional on the continuation equilibrium described in Lemma 4 is
reciprocally upper semi-continuous and payoff secure. Observe first that the
match value g̃ is weakly increasing in investment. This means that family
i will never invest less than it’s bilateral Nash investment level w∗i . By
Assumption 2, no family will invest more than it’s endowment yi. So without
loss of generality, we can restrict each families strategy space to the convex
interval [w∗i , yi]. Furthermore, since the matching function is determined
by the equilibrium of the second stage, the return to investment is bounded
above by the endowment of the richest family on the other side of the market.
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The first stage game is the normal form game in which families have strategy
spaces [w∗i , yi] and payoffs

V (yi − wi) +
wi + g̃i

(
wi; φ̂ (wi, w−i) , φ̂ (w′)

)
z

.

This first stage ’game’ is a compact game with metric strategy spaces.
Let 4i be the compact set of regular countably additive probability mea-

sures on (the Borel sets of) [w∗i , yi]. The mixed extension of the first stage
game is the game in which the families’ strategy spaces are given by 4i and
for any vector of probability measures µ = {µ1, . . . µn, µn+1, . . . µn+m} the
payoffs are

ui (µ) ≡
∫
V (yi − wi) +

wi + g̃i

(
wi; φ̂ (wi, w−i) , φ̂ (w′)

)
z

dµ

The sum of payoffs in the first stage game is given by

m∑
i=1

V (yi − wi) +
n∑
j=1

V
(
yj − w′j

)
+

∑m
i=1

{
wi + g̃i

(
wi; φ̂ (wi, w−i) , φ̂ (w′)

)}
+
∑n

j=1

{
wj + g̃j

(
wj; φ̂

(
w′j, w

′
−j
)
, φ̂ (w)

)}
z

Since the g̃ are simply the wealth levels of families designated partners, this
is equal to

m∑
i=1

V (yi − wi) +
n∑
j=1

V
(
yj − w′j

)
+

∑m
i=1 wi + maxj1,...jm

∑jn
k=j1

w′k +
∑n

j=1 w
′
j +
∑m

i=1 wi

z

By assumption 2, this is continuous in (w,w′), and therefore upper semi-
continuous. Therefore by (Reny 1999, Proposition 5), the mixed extension
of the first stage game is reciprocally upper-semicontinuous.
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The mixed extension of the first stage game is payoff secure if for every
array of strategies µ and for any each player i has a strategy µi such that

ui
(
µi, µ

′
−i
)
≥ ui (µ)− ε

for all µ′−i in some neighborhood of µ−i. To show that this property holds,
rewrite the payoff function using linearity as

ui (wi, µ−i) ≡ V (yi − wi) +
wi +

∫
g̃i

(
wi; φ̂ (wi, w−i) , φ̂ (w′)

)
dµ

z

This function is linear, and therefore continuous in the strategies {µ−i, µ′}.
Using assortative matching, the payoff function family i faces can be further
specialized to

= V (yi − wi) +
wi +

∫
g̃i

(
wi; φ̂ (wi, w−i) , φ̂ (w′)

)
dµ1 . . . dµm

z

where w′ is the vector of expected values of the order statistics generated
by draws from the distributions µ′ = {µ′1, . . . µ′n} used by the families in F .
Finally, this can be written as

V (yi − wi) +
wi +

∑m
k=1 qk (wi)w

′
k

z

where qk (wi) is the probability with which the designated partner of family
i ∈ M is family k ∈ F . Let w′′ > wi. Then by assortative matching, in any
state in which an investment of wi earns return wk, raising investment to w′′

will either leave i’s designated partner unchanged, or raise it. Thus

V (yi − w′′) +
w′′ +

∑m
k=1 qk (w′′)w′k
z

≥ V (yi − w′′) +
w′′ +

∑m
k=1 qk (wi)w

′
k

z

Then the continuity of V , for any ε/2 > 0, there is a w′′ such that

V (yi − w′′) +
w′′ +

∑m
k=1 qk (w′′)w′k
z

> V (yi − wi) +
wi +

∑m
k=1 qk (wi)w

′
k

z
− ε/2

By the continuity of the payoff in the strategies {µ−i, µ′} of the other fami-
lies, this inequality holds on some open neighborhood of µ−i. To get payoff
security in the mixed extension, choose wi such that

V (yi − wi) +
wi +

∑m
k=1 qk (wi)w

′
k

z
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is within ε/2 of the supremum of this payoff. This implies that family i can
secure a payoff within ε of the supremum of this payoff function.

By (Reny 1999, Corollary 5.2), reciprocal upper semi-continuity and pay-
off security of the mixed extension together imply that the first stage game
has a mixed strategy equilibrium.�

11.3 Proof of Theorem 3:

Restrict attention for the moment to families in M . The proof is constructive.
Let w and w be the ex post expected level of investment of the poorest and
wealthiest child in F . Let Hw and Hl denote the probability mixtures used by
the wealthy and rich families in M respectively and suppose that these satisfy
the hypothesis of the theorem. In other words, Hl and Hh have atoms at w∗l
and w∗h respectively, and are otherwise smooth on some interval [w∗h, w

∗∗].
Consider the wealthy family first. If it turns out that it’s child has the

highest investment level ex post, then he will match with the wealthiest child
in F who will have expected investment w. If he is poorest ex post, he will
match with the poorest child in F , gaining a partner whose expected wealth
is w. The only tie we need to worry about occurs when the poor family
invests exactly w∗h and this is matched by the rich family. In this case we
assume that the wealthy child from F proposes to the male from the poor
family for sure.3 Under these conditions, the expected payoff when the family
invests w ∈ [w∗h, w

∗∗] is

Hl (w)

{
V (yh − w) +

w + w

z

}
+ (1−Hl (w))

{
V (yh − w) +

w + w

z

}
(5)

To support the equilibrium this must be constant along [w∗h, w
∗∗] and equal

to

V (yh − w∗h) +
w∗h + (1−Hl (w

∗
h))w +Hl (w

∗
h)w

z

to induce the wealthy family in M to make the investment. If the function
is constant, it’s derivative should be almost everywhere 0, or

−V ′ (yh − w) +
1

z
+H ′l (w)

w − w
z

= 0

3This is for notational convenience only - our results are unaffected by the tie breaking
rule. If the rich child from F randomizes in some fashion, the payoff to playing w∗h exactly
will still be smaller than the limit of the payoffs associated with playing slightly more than
w∗h and this is all that is required to support our equilibrium.
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which gives

H ′l (w) =
V ′ (yh − w)− 1

z
w−w
z

The function Hl is then determined (up to a constant) by integrating

Hl (w)−Hl (w
∗
h) =

∫ w
w∗h

{
V ′ (yh − s) ds− 1

z

}
ds

w−w
z

=
V (yh − w∗h)− V (yh − w)− w−w∗h

z
w−w
z

(6)

where Hl (w
∗
h) is the probability with which the low wealth family invests w∗l .

This atom, and the value of w∗∗ are determined below.
The poor family faces a similar problem. Let Hh be the distribution of

investments by the wealthy family. The poor family’s payoff is

Hh (w)

{
V (yl − w) +

w + w

z

}
+ (1−Hh (w))

{
V (yl − w) +

w + w

z

}
and this should be constant on the interval [w∗h, w

∗∗] and equal to

Hh (w∗h)

{
V (yl − w∗h) +

w∗h + w

z

}
+ (1−Hh (w∗h))

{
V (yl − w∗h) +

w∗h + w

z

}
(7)

where Hh (w∗h) is the probability with which the wealthy family invests w∗h.
The poor family will choose the investment level w∗l on the equilibrium

path, so the atom in Hh (w∗h) should be chosen to make the poor family
indifferent between the investment levels w∗l and w∗h conditional on the as-
sumption that if the poor family invests w∗h it will match with the rich family
on the other side of the market in the event of ties. To accomplish this,
assign the atom Hh (w∗h) so that

Hh (w∗h)

{
V (yl − w∗h) +

w∗h + w

z

}
+ (1−Hh (w∗h))

{
V (yl − w∗h) +

w∗h + w

z

}
=

V (yl − w∗l ) +
w∗l + w

z
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or

Hh (w∗h) =
V (yl − w∗l ) +

w∗l
z
− V (yl − w∗h)−

w∗h
z

w−w
z

(8)

Then reasoning as above, we have that

Hh (w) = Hh (w∗h) +
V (yl − w∗h)− V (yl − w)− w−w∗h

z
w−w
z

=
V (yl − w∗l )− V (yl − w)− w−w∗h

z
w−w
z

(9)

Finally, there can be no atoms at the top of the distribution of investments
because of the discontinuous increase in expected wealth that this creates.
So the atom at Hl (w

∗
h) (i.e., the probability that the poor family chooses

investment w∗l ) should be chosen so that the top of the supports of Hl and
Hh coincide. The top of the support of Hh is given by the solution to

V (yl − w∗l )− V (yl − w∗∗)−
w∗∗−w∗l

z
w−w
z

= 1 (10)

This determines

Hl (w
∗
h) = 1−

V (yh − w∗h)− V (yh − w∗∗)−
w∗∗−w∗h

z
w−w
z

(11)

Note that since the density of the distribution Hh is uniformly higher on
the interval [w∗h, w

∗∗] than the density of Hl, it follows that the atom H∗l (w∗h)
is strictly larger than the atom Hh (w∗l ) which verifies the two properties of
the distributions mentioned in the theorem. One implication of this is that
the mean investment of the wealthy family exceeds the mean investment of
the poor family.

Conditional on the mean payoff levels, w and w it is straightforward to
show that neither family can profitably deviate from this strategy. The poor
family is indifferent between investing w∗l and any investment level in the
support [w∗h, w

∗∗] by construction. Investment levels between w∗l and w∗h
guarantee a match with a partner whose expected wealth is w. Since this
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outcome is the same for every investment level on the interval [w∗l , w
∗
h) the

poor family’s expected utility is strictly higher when they invest w∗l than
it is when they invest any amount in (w∗l , w

∗
h) by the strict concavity of

V . Similarly, the quality of the poor family’s match is independent of it’s
investment level if it tries to invest more than w∗∗, so investments above w∗∗

are strictly dominated. The arguments supporting the rich families strategy
are identical.

These distributions generate mean wealth levels for the wealthy and rich
children in M as given by

w′ = Hh (w∗h) {Hl (w
∗
h)w

∗
l + (1−Hl (w

∗
h))w

∗
h}

+

∫ w∗∗

w∗h

H ′h (s)

{
Hl (w

∗
h)w

∗
l +

∫ s

w∗h

H ′l (t) tdt+ [1−Hl (s)] s

}
ds (12)

and

w′ = Hh (w∗h)

{
Hl (w

∗
h)w

∗
h +

∫ w∗∗

w∗h

H ′l (s) sds

}

+

∫ w∗∗

w∗h

H ′h (s)

{∫ w∗∗

s

H ′l (t) tdt+Hl (s) s

}
ds (13)

The problem faced by families in F is completely symmetric. So to verify
the existence of equilibrium it remains to show that if families in F also use
these distributions, then the mean wealth levels w′ and w′ that they generate
are equal to the wealth levels w and w used to construct the strategies. In
other words, this will constitute and equilibrium if there are values for w and
w that constitute a fixed point in equations (12) and (13).

To prove that such values exist, we simplify the approach slightly by
defining a single dimensional transformation. Let

4 ∈

[
V (yl − w∗l ) +

w∗l
z
− V (yl − w∗h)−

w∗h
z

z
,∞

]

represent the expected gain w−w
z

associated with matching with the wealthy
child. For each value 4, equations 6,9, 10, and 11 completely determine
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the ’equilibrium’4 mixed strategies for each of the families in M as described
above. From 10 and Assumption 2, an upper bound w∗∗ exists for each

w − w
z
∈

[
V (yl − w∗l ) +

w∗l
z
− V (yl − w∗h)−

w∗h
z

z
,∞

]
.

Furthermore, this upper bound varies continuously. Since

V (yl − w∗l ) +
w∗l
z
− V (yl − w∗h)−

w∗h
z

z
> 0

by the strict concavity of V , it is apparent by inspection that the right hand
sides of equations (12) and (13) both vary continuously with w−w

z
. Thus the

transformation

w − w
z
→ w′ − w′

z

defined by (12) and (13) is continuous. At the lower limit choose
w0−w0

z
such

that

V (yl − w∗l ) +
w∗l
z
− V (yl − w∗h)−

w∗h
z

w0−w0

z

= 1

so that the wealthy family puts all of it’s probability weight on w∗h by (8),
then

w0 − w0

z
→ w′ − w′

z
=
w∗h − w∗l

z
.

Observe that Assumption 9 says that

V (yl − w∗h) +
2w∗h
z

> V (yl − w∗l ) +
2w∗l
z

which implies that

w∗h − w∗l
z

> V (yl − w∗l ) +
w∗l
z
− V (yl − w∗h)−

w∗h
z

4Bear in mind that these may not be full equilibrium strategies, since the strategies
being used by the families in F may not support the expected gain 4.
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so that at the lower end of the interval

w0 − w0

z
<
w∗h − w∗l

z

On the other hand, as w−w
z

gets large, the support of the mixed strategies of
both families are constrained by Assumption 2 to lie in a bounded interval
[w∗l , yl]. Thus the maximum value for the transformed means is

yl−w∗l
z

. This

implies that for w−w
z

large enough

w − w
z
→ w′ − w′

z
<
w − w
z

Thus by the intermediate value theorem the transformation w−w
z
→ w′−w′

z

has a fixed point which defines the full equilibrium strategies.�
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