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have non-empty "-cores. Our result makes explicit the relationship between the
required size of " for non-emptiness of the "-core, the parameters describing the
collection of games, and the size of the total player set. Given the parameters
describing the collection, the larger the game, the smaller the " that can be
chosen.

1 Introduction.
We consider parameterized collections of games without side payments and obtain
an explicit bound on " as a function of the parameters so that all su±ciently large
games in the collection have non-empty "-cores. A parameterized collection of games
is described by (a) a number of approximate player types and the accuracy of this ap-
proximation; (b) an upper bound on the size of near-e®ective groups and the closeness
of these groups to being e®ective for the realization of all gains to collective activities;
(c) a bound on the supremum of per-capita payo®s achievable in coalitions; and (d)
a measure of the extent to which boundaries of payo® sets are bounded away from
being \°at." Given these parameters and an arbitrary positive real number "; we
obtain a lower bound on the number of players so that all games in the collection
containing more players than the bound have non-empty "-cores. Since the bound on
the number of players in the game is expressed in terms of the parameters describing
the games, this bound induces the desired bound on ".

Two results, using di®erent notions of distance to describe nearly e®ective small
groups, are established. Our Theorem uses the same notion of distance as in our
prior work (Kovalenkov and Wooders (1997a,b)). Corollary 2 uses a second, much
less demanding notion of distance, but nevertheless we obtain result analogous to
those of our Theorem. Due to the di®erent notion of distance, the bound on " may
be signi¯cantly improved by using Corollary 2 rather than the Theorem. An example
is provided illustrating such improvement. The key for both results is Corollary 1,
treating the central case of games with side payments.

The next section of this paper develops our model. Related literature and possible
applications are discussed in the concluding section of the paper. We note here, how-
ever, that we use techniques related to those of Scarf (1965) (an earlier unpublished
version of his well-known paper, Scarf (1967)), showing that balanced games have
non-empty cores. (See also Billera (1970)). Also, our work is related in spirit to the
\least "-core," introduced by Maschler, Peleg, and Shapley (1979), since we obtain a
lower bound on " ensuring that the "-core is non-empty.
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2 De¯nitions.

2.1 Cooperative games: description and notation.

Let N = f1; :::; ng denote a set of players. A non-empty subset of N is called a
coalition. For any coalition S let RS denote the jS j-dimensional Euclidean space
with coordinates indexed by elements of S . For x 2 RN ; xS will denote its restriction
to RS. To order vectors in RS we use the symbols >>; > and ¸ with their usual
interpretations. The non-negative orthant of RS is denoted by RS+ and the strictly
positive orthant by RS++. We denote by ~1S the vector of ones in RS, that is, ~1S
= (1; :::; 1) 2 RS. Each coalition S has a feasible set of payo®s or utilities denoted by
VS ½ RS . By agreement, V; = f0g and Vfig is non-empty, closed and bounded from
above for any i. In addition, we will assume that

max
n
x : x 2 Vfig

o
= 0 for any i 2 N ;

this is by no means restrictive since it can always be achieved by a normalization.
It is convenient to describe the feasible utilities of a coalition as a subset of RN.

For each coalition S let V (S), called the payo® set for S , be de¯ned by

V (S) :=
n
x 2 RN : xS 2 VS and xa = 0 for a =2 S

o
:

A game without side payments (called also an NTU game or simply a game)
is a pair (N; V ) where the correspondence V : 2N ¡! RN is such that V (S) ½n
x 2 RN : xa = 0 for a =2 S

o
for any S ½ N and satis¯es the following properties :

(2.1) V (S) is non-empty and closed for all S ½ N .

(2.2) V (S) \RN+ is bounded for all S ½ N , in the sense that there is a real number
K > 0 such that if x 2 V (S)\ RN+ ; then xi ·K for all i 2 S .
(2.3) V (S1

S
S2) ¾ V (S1) + V (S2) for any disjoint S1; S2 ½ N (superadditivity).

We next introduce the uniform version of strong comprehensiveness assumed for
our results. Roughly, this notion dictates that payo® sets are both comprehensive and
uniformly bounded away from having level segments in their boundaries. Consider
a set W ½ RS. We say that W is comprehensive if x 2 W and y · x implies
y 2 W . The set W is strongly comprehensive if it is comprehensive, and whenever
x 2 W; y 2 W; and x < y there exists z 2 W such that x << z:1Given (i) x 2 RS,

1Informally, if one person can be made better o® (while all the others remain at least as well o®),
then all persons can be made better o®. This property has also been called \nonleveledness."
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(ii) i; j 2 S, (iii) 0 · q · 1 and (iv) " ¸ 0; de¯ne a vector xqi;j(") 2 RS; where

(xqi;j("))i = xi ¡ ";
(xqi;j("))j = xj + q"; and
(xqi;j("))k = xk for k 2 Snfi; jg :

The set W is q-comprehensive if W is comprehensive and if, for any x 2W , it holds
that (xqi;j(")) 2W for any i; j 2 S and any " ¸ 0.2 This condition for q > 0 uniformly
bounds the slopes of the Pareto frontier of payo® sets away from zero. Note that for
q = 0; 0-comprehensiveness is simply comprehensiveness. Also note that if a game
is q-comprehensive for some q > 0 then the game is q 0-comprehensive for all q0 with
0 · q0 · q:

Let VS ½ RS be a payo® set for S ½ N: Given q, 0 · q · 1; let WqS ½ RS be the
smallest q-comprehensive set that includes the set VS. For V (S) ½ RN let us de¯ne
the set cq(V (S)) in the following way:

cq(V (S)) :=
n
x 2 RN : xS 2W qS and xa = 0 for a =2 S

o
:

Notice that for the relevant components { those assigned to the members of S { the
set cq(V (S)) is q-comprehensive, but not for other components. With some abuse
of the terminology, we will call this set the q-comprehensive cover of V (S): When
q > 0 we can think of a game as having some degree of \side-paymentness" or as
allowing transfers between players, but not necessarily at a one-to-one rate. This is
an eminently reasonable assumption for games derived from economic models.

2.2 Parameterized collections of games.
To introduce the notion of parameterized collections of games we will need the concept
of Hausdor® distance. For every two non-empty subsets E and F of a metric space
(M;d); de¯ne the Hausdor® distance between E and F (with respect to the metric d
on M ), denoted by dist(E;F ), as

dist(E;F ) := inf f" 2 (0;1) : E ½B"(F ) and F ½ B"(E)g ;

where B"(E) := fx 2M : d(x;E) · "g denotes an "-neighborhood of E .
Since payo® sets are unbounded below, we will use a modi¯cation of the concept

of the Hausdor® distance so that the distance between two payo® sets is the distance
between the intersection of the sets and a subset of Euclidean space. Let m¤ be a
¯xed positive real number. Let M¤ be a subset of Euclidean space RN de¯ned by

2The notion of q-comprehensiveness can be found in Kaneko and Wooders (1996). For the
purposes of the current paper, q-comprehensiveness can be relaxed outside the individually rational
payo® sets.
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M¤ :=
n
x 2 RN : xa ¸ ¡m¤ for any a 2 N

o
. For every two non-empty subsets E

and F of Euclidean space RN let H1[E;F ] denote the Hausdor® distance between
E\M ¤ and F\M ¤ with respect to themetric kx ¡ yk1 := maxi jxi ¡ yij on Euclidean
space RN.

The concepts de¯ned below lead to the de¯nition of parameterized collections
of games. To motivate the concepts, each is related to analogous concepts in the
pregame framework. Recall that a pregame3 is a speci¯cation of a set of player types
(a ¯nite set or, more generally, a compact metric space of player types) and a worth
function ascribing a payo® to any group of players, where the group is described by
the number of players of each type in the group.

±¡substitute partitions: In our approach we approximate games with many players,
all of whom may be distinct, by games with ¯nite sets of player types. Observe that
for a compact metric space of player types, given any real number ± > 0 there is a
partition (not necessarily unique) of the space of player types into a ¯nite number
of subsets, each containing players who are \±-similar" to each other. Parameterized
collections of games do not restrict to a compact metric space of player types, but do
employ the idea of a ¯nite number of approximate types.

Let (N; V ) be a game and let ± ¸ 0 be a non-negative real number. A ±-substitute
partition is a partition of the player set N into subsets with the property that any
two players in the same subset are \within ±" of being substitutes for each other.
Formally, given a set W ½ RN and a permutation ¿ of N , let ¾¿(W ) denote the set
formed fromW by permuting the values of the coordinates according to the associated
permutation ¿ . Given a partition fN [t] : t = 1; ::; Tg of N , a permutation ¿ of N is
type ¡ preserving if, for any i 2 N; ¿(i) belongs to the same element of the partition
fN [t]g as i. A ±-substitute partition of N is a partition fN [t] : t = 1; ::; Tg of N with
the property that, for any type-preserving permutation ¿ and any coalition S ,

H1
h
V (S); ¾¡1¿ (V (¿(S)))

i
· ±:

Note that in general a ±-substitute partition of N is not uniquely determined.
Moreover, two games may have the same partitions but have no other relationship to
each other (in contrast to games derived from a pregame).

(±,T )- type games. The notion of a (±,T)-type game is an extension of the notion of
a game with a ¯nite number of types to a game with approximate types. For our
purposes, this is signi¯cantly less restrictive than the extension of a ¯nite set of types
to a compact metric space.

3See, for example, Wooders (1983) or Wooders and Zame (1984).
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Let ± be a non-negative real number and let T be a positive integer. A game (N; V )
is a (±; T)-type game if there is a T -member ±-substitute partition fN [t] : t = 1; ::; T g
of N . The set N [t] is interpreted as an approximate type. Players in the same element
of a ±-substitute partition are ±-substitutes. When ± = 0; they are exact substitutes.

per capita boundedness. Let C be a positive real number. A game (N; V ) has a per
capita payo® bound of C if, for all coalitions S ½ N ,

X

a2S
xa · C jS j for any x 2 V (S).

¯¡e®ective B¡bounded groups : Informally, groups of players containing no more
than B members are ¯-e®ective if, by restricting coalitions to having fewer than
B members, the loss to each player is no more than ¯: This is a form of \small group
e®ectiveness" for arbitrary games. Let (N; V ) be a game. Let ¯ ¸ 0 be a given
non-negative real number and let B be a given positive integer. For each group S
½N; de¯ne a corresponding set V (S;B) ½ RN in the following way:

V (S;B) :=
[ "X

k
V (Sk) :

n
Sk

o
is a partition of S,

¯̄
¯Sk

¯̄
¯ · B

#
.

The set V (S;B) is the payo® set of the coalition S when groups are restricted to
have no more than B members. Note that, by superadditivity, V (S ;B) ½ V (S) for
any S ½ N and, by construction, V (S ;B) = V (S) for jSj · B. We might think of
cq(V (S ;B)) as the payo® set to the coalition S when groups are restricted to have
no more than B members and transfers are allowed between groups in the partition.
If the game (N; V ) has q-comprehensive payo® sets then cq(V (S ;B)) ½ V (S) for any
S ½N: The game (N; V ) with q-comprehensive payo® sets has ¯-e®ective B-bounded
groups if for every group S ½ N

H1 [V (S); cq(V (S ;B))] · ¯.

When ¯ = 0, 0-e®ective B-bounded groups are called strictly e®ective B-bounded
groups.

parameterized collections of games Gq((±; T ); C; (¯;B)).With the above de¯nitions in
hand, we can now de¯ne parameterized collections of games. Let T and B be positive
integers and let C and q be real numbers, 0 · q · 1. Let Gq((±; T); C; (¯;B)) be
the collection of all (±; T)-type games that are superadditive, have q-comprehensive
payo® sets, have per capita bound of C , and have ¯-e®ective B-bounded groups.

Less formally, given non-negative real numbers C; q; ¯ and ±; and positive integers
T and B; a game (N; V ) belongs to the class Gq((±; T ); C; (¯;B)) if:
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(a) the payo® sets satisfy q-comprehensiveness;

(b) there is a partition of the total player set into T sets where each element of the
partition contains players who are ±-substitutes for each other;

(c) maximum per capita gains are bounded by C; and

(c) almost all gains to collective activities (with a maximum possible loss of ¯ for
each player) can be realized by partitions of the total player sets into groups
containing fewer than B members.

3 The results.
First, we recall some de¯nitions.

The core and epsilon cores. Let (N; V ) be a game. A payo® x is "-undominated if
for all S ½ N and y 2 V (S) it is not the case that yS >> xS + ~1S". The payo®
x is feasible if x 2 V (N). The "-core of a game (N; V ) consists of all feasible and
"-undominated allocations. When " = 0, the "-core is the core.

The equal treatment epsilon core. Given non-negative real numbers " and ±, we will
de¯ne the equal treatment "-core of a game (N; V ) relative to a partition fN [t]g of
the player set into ±-substitutes as the set of payo®s x in the "-core with the property
that for each t and all i and j in N [t], it holds that xi = xj.

To motivate our Theorem, notice that a feasible payo® is in the "-core if no
coalition of players can improve upon the payo® by at least " for each member of
the coalition. This suggests that the distance of coalitions containing fewer than
B-members from being e®ective for the realization of all gains to coalition formation
should be de¯ned using the Hausdor® distance with respect to the sup norm, and
indeed this was the approach that we took in previous papers. Thus we ¯rst establish
a form of our result for the case with ¯-e®ective groups de¯ned as above. We then
consider another de¯nition of ¯-e®ective B-bounded groups and obtain a stronger
form of our result.

3.1 The Theorem.

Let (N; V ) 2 Gq((±; T); C; (¯;B)). The following Theorem provides a lower bound
on " so that for any "0 ¸ ", the game (N; V ) has a non-empty "0-core. In fact, the
Theorem shows non-emptiness of the equal-treatment "-core as well, de¯ned as the
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subset of payo®s in the "-core that assign equal payo®s to all agents of the same
approximate type. It is convenient to de¯ne ¯rst a constant:

K(T;B) :=
BX

l=1

(T + l¡ 1)!
(T ¡ 1)!(l ¡ 1)!

:

Then the lower bound on " is given by

®qN((±; T ); C; (¯;B)) :=
1
q
(
K(T;B)C

jN j + ¯) + ±:

Of course the interesting cases are those where this bound is small. To avoid trivial-
ities associated with large " we restrict attention to the case ®qN((±; T); C; (¯;B)) ·
m¤, where m¤ is the positive real number ¯xed in Section 2.2.

Theorem. Let (N; V ) 2 Gq((±; T); C; (¯;B)); where q > 0: Assume V (N) is convex.
Let " be a positive real number. If " ¸ ®qN((±; T); C; (¯;B)) then the equal treatment
"-core of (N; V ) is non-empty.

The relationships between the lower bound on ", the parameters describing the
game, and the number of players in the total player set are immediate. Note in par-
ticular, the smaller B, the size of ¯-e®ective groups, the smaller the lower bound. It is
easy to see that increasing ¯ increases the bound ®qN((±; T); C; (¯;B)) proportionally
while increasing B increases the bound much more rapidly.

Now let us consider the central case of games with side payments.

3.2 Games with side payments.

A game with side payments (also called a TU game) is a game (N; V ) with 1-
comprehensive payo® sets, that is V (S) = c1(V (S)) for any S ½ N: This im-
plies that for any S ½ N there exists a real number v(S) ¸ 0 such that VS =n
x 2 RS :

P
i2S xi · v(S)

o
. The numbers v(S) for S ½ N determine a function v

mapping the subsets of N to R+. Then the TU game is represented as the pair
(N; v). Therefore all the de¯nitions that we have introduced can be stated for TU
games through the characteristic functions v: Moreover some of these de¯nitions are
essentially simpler and more straightforward than in the general case. For the pur-
poses of the illustration we state below the de¯nitions for TU games that became
essentially simpler:

1). A game (N; v) is superadditive if v(S) ¸ P
k v(Sk) for all groups S ½ N and

for all partitions
n
Sk

o
of S .
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2). Let (N;v) be a game and let ± ¸ 0 be a non-negative real number. A ±-
substitute partition of N is a partition fN [t] : t = 1; ::; T g of N with the property
that, for any type-consistent permutation ¿ and any coalition S,

jv(S) ¡ v(¿(S))j · ± jS j :

3). Let " be a given non-negative real number, and let B be a given integer. A
game (N; v) has "-e®ective B-bounded groups if for every group S ½ N there is a
partition

n
Sk

o
of S into subgroups with

¯̄
¯Sk

¯̄
¯ · B for each k and

v(S) ¡
X

k
v(Sk) · " jSj :

4). Let C be a positive real number. A game (N; v) has a per capita bound of C
if v(S)jSj · C for all coalitions S ½ N .

The case of TU games is central, since ¯rst we prove our result for these games
and then we extend the result to games without side payments. To make notations
simpler in the following sections, we denote parameterized collections of games with
side payments, G1((±; T); C; (";B)); by ¡((±; T); C; (";B)):4 For the convenience of
the reader a corollary of the Theorem corresponding to the case of TU games follows:

Corollary 1. Let (N; v) 2 ¡((±; T ); C; (¯;B)) and let " be a positive real number. If

" ¸ K(T;B)C
jN j + ± + ¯

then the equal treatment "-core of (N; v) is non-empty.

We present the proof of Corollary 1 in the next section. The proof of the Theorem
is provided in later sections. Now let us state some examples.

3.3 Examples.

Let us ¯rst concentrate on games with side payments.

Example 1. Exact types and strictly e®ective small groups. Let us consider a game
(N; v) with two types of players. Assume that any player alone can get only 0
units or less, that is v(fig) = 0 for all i 2 N . Let °11; °12 = °21; and °22 be
some numbers from the interval [0; 1] : Suppose that any coalition of the two
players of types i and j can get up to °ij units of payo® to divide. An arbitrary
coalition can gain only what it can obtain in partitions where no member of the

4Parameterized collections of games with side payments were introduced in Wooders (1994b) and
the following Corollary obtained.
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partition contains more than two players.

We leave it to the reader to check that (N; v) 2 ¡((0; 2); 12; (0; 2)): Since K(2; 2) =
2!+3! = 8; we have from Corollary 1 that for " ¸ 4

jNj the equal treatment "-core
of (N; v) is non-empty. Notice that this result holds uniformly for all possible
numbers °11; °12 = °21; and °22:

The following example illustrates how our result can apply to games derived from
pregames with a compact metric space of player types. For brevity, our example is
somewhat informal.

Example 2. Approximate player types. Consider a pregame with two sorts of
players, ¯rms and workers. The set of possible types of workers is given by the
points in the interval [0; 1) and the set of possible types of ¯rms is given by the
points in the interval [1; 2] : Formally, let N be any ¯nite player set and let » be
an attribute function, that is, a function from N into [0; 2]. If »(i) 2 [0; 1) then
i is a worker and if »(i) 2 [1; 2] then i is a ¯rm.

Firms can pro¯tably hire up to three workers and the payo® to a ¯rm i and
a set of workers W (i) ½ N , containing no more than 3 members, is given by
v(fig S

W (i)) = »(i) +
P
j2W(i) »(j):Workers and ¯rms can earn positive payo®

only by cooperating so v(fig) = 0 for all i 2 N . For any coalition S ½ N
de¯ne v(S) as the maximum payo® the group S could realize by splitting into
coalitions containing either workers only, or 1 ¯rm and no more than 3 workers.
This completes the speci¯cation of the game.

We leave it to the reader to verify that for any positive integer m every game
derived from the pregame is a ( 1

m ; 2m)-type game and even a member of the
class ¡(( 1m ; 2m); 2; (0; 4)). Then Corollary 1 implies that for any " ¸ 2K(2m;4)

jNj + 1
m

the equal treatment "-core of (N; v) is non-empty.

This implies that for any "0 > 0 there is a positive integer N("0) such that for
any jN j ¸ N("0) the game (N; v) has a non-empty equal treatment "0-core. (For
an explicit bound take an integer m0 ¸ 2

"0 and de¯ne N ("0) ¸ 4
"0K(2m0; 4).)

For completeness, we present a simple example with ¯-e®ective B-bounded groups
where ¯ 6= 0:

Example 3. Nearly e®ective groups. Call a game (N; v) a k-quota game if any
coalition S ½ N of size less than k can realize only 0 units (that is, v(S) = 0 if
jS j< k), any coalition of size k can realize 1 unit (that is, v(S) = 1 if jSj = k),
and an arbitrary coalition can gain only what it can obtain in partitions where
no member of the partition contains more than k players. Let Q be a collection,
across all k; of all k-quota games with player set N .
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We leave it to the reader to verify that for any positive integer m every game in
the collection Q has 1

m-e®ective (m¡1)-bounded groups. Moreover the class Q
is contained in the class ¡((0; 1); 1; ( 1

m;m ¡ 1)). Then Corollary 1 implies that
for any " ¸ K(1;m¡1)

jNj + 1
m and for any (N; v) 2 Q the equal treatment "-core of

(N; v) is non-empty. This implies that for any "0 > 0 there is a positive integer
N("0) such that for any jN j ¸ N("0) any game (N; v) 2 Q has a non-empty
equal treatment "0-core. (For an explicit bound take an integer m0 ¸ 2

"0 and
de¯ne N("0) ¸ 2

"0K(1;m0 ¡ 1).)

Our next example demonstrates how our Theorem can be applied to games with-
out side payments.

Example 4. Let (N; V0) be a superadditive game where for any two-person coalition
S = fi; jg; j 6= i;

V0(S) := fx 2 RN : xi · 1; xj · 1; and xk = 0 for k 6= i; jg

and for each i 2 N ,

V0(fig) := fx 2 RN : xi · 0 and xj = 0 for all j 6= ig:

For an arbitrary coalition S the payo® set V0(S) is given as the superadditive
cover, that is,

V0(S) :=
[

P(S)

X

S02P(S)
V0(S0);

where the union is taken over all partitions P(S) of S in the sets with one or
two elements.

Now let us de¯ne a game (N; V 1
3
) in the following way. For any S ½ N let V 1

3
(S)

be the 1
3-comprehensive cover of the convex cover of the payo® set V0(S); that

is,
V1

3
(S) := c 1

3
(co(V0(S))):

Obviously the game (N; V 1
3
) has 1

3 -comprehensive convex payo® sets, one player
type, and per capita bound of 1. We leave it to the reader to verify that for any
positive integer m ¸ 3 the game (N; V1

3
) has 1

m-e®ective m-bounded groups.
Thus the game (N; V 1

3
) is a member of the class G 1

3 ((0; 1); 1; ( 1m ;m)).

Since V 1
3
(N) is convex and K(1;m) = m(m+1)

2 ; the Theorem states that for any
" ¸ 3(m(m+1)

2jNj + 1
m) the equal treatment "-core of (N; V1

3
) is non-empty. This

implies that for any "0 > 0 there is a positive integer N("0) such that for any
jN j ¸ N("0) the game (N; V 1

3
) has a non-empty equal treatment "0-core. (For

an explicit bound take an integer m0 ¸ 6
"0 and de¯ne N ("0) ¸ 3m0(m0+1)

"0 :)
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The following example illustrates why either convexity or some degree of com-
prehensiveness is required for our result, even for games with just one exact player
type.

Example 5. Recall the game (N; V0) de¯ned in Example 4. Let m be a positive
integer. Let (Nm; Vm0 ) be a game where the number of players in the set Nm
is 2m + 1 and for any coalition S ½ Nm V m0 (S) := V0(S). Thus, each game
(Nm; V m0 ) has an odd number of players.
It is easy to see that the core of the game is non-empty: any payo® giving 1 to
each of 2m players is in the core. Since the total number of players is odd, at
least one person must be \left out." In a game with side payments this player
could upset the non-emptiness of the core. But the games of this example do
not satisfy strong comprehensiveness. Thus, a payo® giving 1 to each of 2m
players cannot be improved upon since the \left-out" player, in a coalition by
himself, cannot make both himself and a player in a two-person coalition better
o® { the player in the two-person coalition cannot be given more than 1. The
games, however, can be approximated arbitrarily closely by games with strongly
comprehensive payo® sets.5

Let (Nm; V msc ) be a game with strongly comprehensive payo® sets that approx-
imates the game (Nm; Vm0 ). For a su±ciently close approximation, the game
(Nm; V msc ) will have e®ective small groups and an empty core. This follows from
the observations that any payo® must give at least one player less than one and
the two worst-o® players a total of less than two. The two worst-o® players
form an improving coalition and hence the core is empty.6

Our results rely on convexity and q-comprehensiveness. Since there is only one
type of player, in this example either q-comprehensiveness or convexity will suf-
¯ce. The role of convexity is to average payo®s over similar players. Consider
the game (N; V mconv) where V mconv is de¯ned as the convex hull of Vmsc : Then the
payo® x = ( 2m

2m+1; :::;
2m

2m+1) is feasible and in the "-core of (Nm; V mconv) for any
"¸ 1

2m+1: Now instead of convexity of the total payo® set, suppose that payo®
sets are q-comprehensive. In this case for any payo® giving one to each of 2m
players, it is possible to take some small amount, say ", away from each of
2m players and \transfer" 2m"q to the leftover player. Thus, for any " and q
satisfying 2m"q ¸ 1¡ " the "-core is non-empty.

5The set W ½ RS is compactly generated if there exists a compact set C ½ RS such that
W = C ¡ RS

+. The approximation can be carried out for any game with comprehensive and
compactly generated payo® sets - see Wooders (1983, Appendix).

6It can be shown with a precise construction of (Nm; V m
sc ) that for a small but positive " the

"-core of (Nm; V m
sc ) can be empty even for a great number of players. The reader may also ¯nd it

interesting and informative to consider an example where any two-player coalition can distribute
a total of two units of payo® in any agreed-upon way, while there is no transferability of utility
between coalitions.
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A crucial feature of Example 5 is the restriction to one player type. Because of
this feature and the fact that two-player coalitions are e®ective, through convexity or
q-comprehensiveness we can construct equal-treatment payo®s in approximate cores.
This example suggests that either convexity or q-comprehensiveness is su±cient to get
non-emptiness of the epsilon core for large games. In fact, Theorem 3 in Kovalenkov
and Wooders (1997a) supports this intuition in the case of q-comprehensiveness. The-
orem 1 in Kovalenkov and Wooders (1997b) shows that convexity is su±cient for
nonemptiness but requires \thickness" of the player set (that is, the condition that
the proportion of any approximate player type is bounded above zero). Neither of
these papers, however, provide explicit bounds.

The Theorem shows that with both convexity and q-comprehensiveness, an ex-
plicit bound can be obtained on " for non-emptiness of the "-core. This bound appears
to be very simple and easily computable from the parameters.

3.4 A more general result.
We now generalize the Theorem using another notion of distance; we de¯ne ¯-e®ective
B-bounded groups using the Hausdor® distance with respect to the sum norm. This,
of course, provides a much less demanding notion of near-e®ectiveness. Nevertheless,
we are able to establish that all su±ciently large games have non-empty approximate
cores. An example is provided showing that when ¯-e®ective B-bounded groups are
de¯ned using the Hausdor® distance with respect to the sum norm, the lower bound
on " may be substantially smaller.

Let us ¯rst de¯ne this another notion of the Hausdor® distance, while maintaining
the previous de¯nition of the set M¤: For every two non-empty subsets E and F of
Euclidean space RN let H1(E;F ) denote the Hausdor® distance between E \M ¤ and
F \M ¤ with respect to the metric kx¡ yk1 :=

PN
i=1 jxi ¡ yij. Now we can de¯ne a

weaker notion of the ¯-e®ective B-bounded groups.

weakly ¯¡e®ective B¡bounded groups : The game (N; V ) with q-comprehensive pay-
o® sets has weakly ¯-e®ective B-bounded groups if for every group S ½ N

H1 [V (S); cq(V (S;B))] · ¯ jSj .

Notice that ¯-e®ective B-bounded groups are always weakly ¯-e®ective B-bounded
groups, but for TU games these two notions coincide. These notions also coincide in
the case when ¯ = 0.

We now introduce a new de¯nition of parametrized collections of games.

parameterized collections of games Gq((±; T ); C; (¯;B)). Let T and B be positive in-
tegers and let C and q be positive real numbers, q · 1. Let Gq((±; T); C; (¯;B)) be

13



the collection of all (±; T)-type games that are superadditive, have q-comprehensive
payo® sets, have per capita bound of C, and have weakly ¯-e®ective B-bounded
groups.

² Of course Gq((±; T); C; (¯;B)) ½ Gq((±; T); C; (¯;B)), but these two classes co-
incide for q = 1 (games with side payments), that is
G1((±; T); C; (¯;B)) = ¡((±; T); C; (¯;B)).

The following statement is a generalization of the Theorem. Although it is a
generalization, we prefer to call it a corollary since the proof of this statement is a
straightforward implication of the proof of the Theorem.

Corollary 2. Let (N; V ) 2 Gq((±; T ); C; (¯;B)); where q > 0: Assume V (N) is
convex. Let " be a positive real number. If " ¸ ®qN((±; T); C; (¯;B)) then the equal
treatment "-core of (N; V ) is non-empty.

Notice that Corollary 2 is a strict generalization of the Theorem. Two remarks
should be done about it. The ¯rst is that Corollary 2 can be applied to the larger class
of games than the Theorem. The second (and much less obvious) is that the use of
Corollary 2 rather than the use of the Theorem can improve the bound signi¯cantly.
The following example continues Example 5 and illustrates this feature.

Example 6. Recall the game (N; V 1
3
) 2 G 1

3 ((0; 1); 1; ( 1
m ;m)) de¯ned in Example

4. We leave it to the reader to verify that the game (N; V 1
3
) has weakly 1

jNj -
e®ective 2-bounded groups. Therefore the game (N; V1

3
) is a member of the

class G 1
3 ((0; 1); 1; ( 1

jNj ; 2)). Recall that V 1
3
(N) is convex. Then, since K(1; 2) =

1! + 2! = 3; Corollary 2 states that for any " ¸ 3( 3
jNj +

1
jNj) = 12

jNj the equal
treatment "-core of (N; V 1

3
) is non-empty while the Theorem gave the bound

"¸ 3(m(m+1)
2jNj + 1

m). (The bound of Corollary 2 implies that for any "0 > 0 and
for any jN j ¸ 12

"0 the game (N; V 1
3
) has a non-empty equal treatment "0-core.)

4 Proofs for games with side payments.
Let us ¯rst prove the following Lemma, from Wooders (1994b).

Lemma 1. Let (N; v) 2 ¡((0; T ); C; (0; B)). If " ¸ K(T;B)C
jNj then the equal treatment

"-core of (N; v) is non-empty.

Proof of Lemma 1: In this proof we will use the notion of a totally balanced cover
for a game. Let us ¯rst de¯ne balanced collections and balancing weights. Let (N; v)

14



be a game, let S ½ N , and let ­ denote a collection of subsets of S . The collection
­ is a balanced collection of subsets of S if there is a collection of non-negative real
numbers (!S 0)S 02­, called balancing weights, such that for each i 2 N ,

X

S0 :i2S 0; S02­
!S0 = 1.

Let (N; v) be a game and let vb be the characteristic function de¯ned for each subset
S of N by

vb (S) := max
­

X

S02­
!S0v (S 0) ,

where the maximum is taken over all balanced collections ­ of S with corresponding
balancing weights (!S 0)S 02­. Then (N; vb) is a game, called the totally balanced cover
of (N; v).

Bondareva (1962) and Shapley (1967) have shown that a TU game has a non-
empty core if and only if vb(N) = v(N ). It follows easily from their results that a
game has a non-empty "-core if and only if vb(N) · v(N) + " jN j.

To begin the proof of Lemma we place a bound on the di®erence vb(N) ¡ v(N).
Let

n
mk

oK(T;B)
k=1

denote the collection of all pro¯lesmk relative to the partition fN [t]g
of N; where

°°°mk
°°° · B for each mk in the collection. Let f denote the pro l̄e of N:

De¯ne a characteristic function ¹v mapping pro¯les into RT+ by

¹v(m) := v(M ) for any group M with pro¯le m:

Since (N; v) satis¯es boundedness of e®ective group sizes with bound B there is a
balanced collection ­ of pro¯les of N where each m 2 ­ is in

n
mk

o
and for some

collection of balanced weights (!k);

vb(N) =
X

k
!kv(mk):

From balancedness, it holds that
P
k !kmk = f.

Since there is a ¯nite number of distinct pro¯les in the set
n
mk

o
, we can write

each !k as an integer plus a fraction, say !k = lk + qk, where qk 2 [0; 1). Since the
game (N; v) satis¯es boundedness of e®ective group sizes and superadditivity it holds
that X

k
lk¹v(mk) · v(N):

Now

vb(N) ¡ v(N) ·
X

k
!k¹v(mk) ¡

X

k
lk¹v(mk) =

X

k
(!k ¡ lk)¹v(mk)

=
X

k
qk¹v(mk) =

X

k
¹v(mk) =

X

k

°°°mk
°°°C:
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Let us denote by k(T; l) the number of distinct pro l̄es with norm l: It is easy to
check that k(T; l) = (T+l¡1)!

(T¡1)!(l)! : Thus v
b(N) ¡ v(N) · P

k

°°°mk
°°°C · PB

l=1 k(T; l)lC =
PB
l=1

(T+l¡1)!
(T¡1)!(l¡1)!C = K(T;B)C: Hence, for any " ¸ K(T;B)C

jNj ; the "-core of (N; v) is
non-empty.

Note that if some payo® x belongs to the "-core then for any type-consistent
permutation ¿ of N; a payo® y, de¯ned by its components as ya := x¿ (a); belongs
to the "-core (since all agents of one type are exact substitutes and the payo® sets
are una®ected by any permutation of substitute players). Let us consider an "-core
payo® x. Then there is an equal treatment "-core payo® z de¯ned by its components
zt := 1

jN[t]j
P
a2N[t] xa (since the "-core of a TU game is convex). Therefore, the equal

treatment "-core of (N; v) is non-empty.

Now we will prove Corollary 1.

Proof of Corollary 1: Let (N; v) 2 ¡((±; T); C; (¯;B)) and let " be a positive real
number. We ¯rst construct another game with strictly e®ective groups bounded in
size by B: From the de¯nition of e®ective groups, for any S ½ N there exists a
partition

n
Sk

o
of S,

¯̄
¯Sk

¯̄
¯ · B for each k; such that v(S) ¡ P

k v(Sk) · ¯ jSj. Let
us de¯ne w(S) := maxfskg

P
v(Sk) where the maximum is taken over all partitionsn

Sk
o
of S with

¯̄
¯Sk

¯̄
¯ · B for each k. Then (N;w) 2 ¡((±; T ) ; C; (0; B)) and ¯ jS j ¸

v(S) ¡ w(S) ¸ 0 for any S ½N .
Next we construct a related game by identifying all players of the same approx-

imate type. First, for the game (N;w) let fN [t]g be a ±-substitute partition of N:
Given a group S ½ N let s denote the pro¯le of S: De¯ne

w¤(S) := max fw(S 0) : S0 has pro l̄e sg :

De¯ne wc as the superadditive cover of w¤, i.e. for any S ½ N;

wc(S) := max
fSkg

X

k
w¤(Sk);

where themaximum is taken over all partitions of S . Then (N;wc) 2 ¡((0; T); C; (0; B))
and

± jS j ¸ wc(S) ¡ w(S) ¸ 0 for each S ½ N:
By Lemma 1 the game (N;wc) has a non-empty equal treatment K(T;B)C

jNj -core.
Let x belong to the equal treatment K(T;B)CjNj -core of (N;wc). Hence

X

a2N
xa · wc(N) and

X

a2S
xa +

K(T;B)C
jN j jS j ¸ wc(S):
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Now de¯ne a payo® vector y by

y(fig) := x(fig) ¡ ±

for each i 2 N . Then
X

a2N
ya =

X

a2N
xa ¡ ± jN j

· wc(N)¡ ± jN j · w(N ) · v(N)

and for any group S it holds that

X

a2S
ya +

Ã
K(T;B)C

jN j + ± + ¯
!

jS j =
X

a2S
xa +

K(T;B)C
jN j jSj + ¯ jSj

¸ wc(S) + " jS j ¸ w(S) + ¯ jSj ¸ v(S):

It follows that y is in the "-core for any " ¸ K(T;B)C
jNj +±+¯. Since y has equal treatment

property by construction, the equal treatment "-core of (N; v) is non-empty.

5 The main part of the proofs.
We ¯rst provide a sketch of the proofs and the main argument. In appendix we relate
NTU games to TU games and provide proofs of several results used in this subsection.

Proof of the Theorem:
We begin the proof of the Theorem by ¯rst treating games where all players are exact
substitutes of each other. (Later in the proof we will construct such a game from an
arbitrary game.) We will use the following terminology: A set W ½ RN is symmetric
across substitute players if for any player type the set W remains unchanged under
any perturbations of the values associated with players of that type.

The symmetric case. Assume ¯rst that (N; V ) 2 Gq((0; T ); (¯;B)): Note that in this
case all payo® sets of the game (N; V ) are symmetric across substitute players. Let
us prove that for any " ¸ ®qN((0; T ); C; (¯;B)) the equal treatment "-core of (N; V )
is non-empty.

The idea of the proof for the symmetric case. In the proof for the symmetric
case we will use the following de¯nitions. Let A ½ Rm: A recession cone corresponding
to A, denoted by c(A), is de¯ned as follows:

c(A) := fy 2 Rm : x + ¸y 2 A for all ¸ ¸ 0 and x 2 Ag :
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The scalar product of x; y 2 Rm is denoted by x¢y: The negative dual cone of P ½ Rm
is denoted by d(P ) and de¯ned as follows:

d(P ) := fz 2 Rm : z ¢ y · 0 for any y 2 Pg :

A bound on the required size of the parameter " for our result in the symmetric
case is obtained by constructing a family of \¸-weighted transferable utility" games
(N; V¸) corresponding, in a certain way, to the initial game (N; V ). Next we consider
only those values of ¸ in a set L¤; de¯ned as the intersection of the equal treatment
payo®s in the simplex with the negative dual cone of the recession cone of the modi¯ed
game. For each ¸ there is corresponding TU game (N; v¸). We give the formal
construction of (N; v¸) in Step 1 of appendix.

In Step 2 of appendix we prove Lemma 2, that, for some parameters C0 and
"0; any game (N; v¸) is a member of the parameterized collection of TU games
¡((0; T ); C0; (¯0; B)). This allows us to use Corollary 1 proved in the previous Sec-
tion. In Lemma 3 we relate approximate cores of the game (N; v¸) to approximate
cores of the NTU game (N; V¸). Using the fact that we consider only values of ¸
in L¤, we obtain an explicit bound on " for the initially given parameters C and ¯ for
non-emptiness of the equal treatment "-core for all games (N; V¸). This result will
give us exactly the bound that we need to deduce for the conclusion of Theorem for
the symmetric case.

Now we need only prove that if, given some ", the equal treatment "-core of
(N; V¸) is non-empty for all ¸ 2 L¤, then the equal treatment "-core will be non-
empty for both the modi¯ed and initial games as well. With the help of Lemma 4,
Lemma 5, and a theorem about excess demand considered in Step 3, all in appendix,
we complete the proof in the symmetric case.

Remark. The initial approach in the following proof is similar to that introduced
in Scarf (1965) and usually used in proofs of the non-emptiness of the exact core
for strongly balanced NTU games (for a de¯nition of strong balancedness and for an
example of this technique see Hildenbrand and Kirman (1988, Appendix to Chapter
4)). But the proof below departs from the typical approach in that we construct games
(N; V¸) and (N; v¸) not for all ¸ in the simplex as usual, but only for ¸ belonging to a
speci¯c subset L¤ of the simplex. The set L¤ is the intersection of the equal treatment
payo®s in the simplex with the dual negative cone to the recession cone of the payo®
set for the grand coalition in the modi¯ed game. Later we use the structure of the
set L¤ and q-comprehensiveness to complete the proof.7

7Note that our technique is a generalization of the usual one, which does not involve recession
cone arguments. Nevertheless the usual approach is a special case of our technique. (The usual
technique is applied for T = N and to games having ¡RN

+ as the recession cone of the payo® set
V (N ). The negative dual cone to ¡RN

+ is RN
+ . Then RN

+ ¾ 4+ , so the relevant intersection is the
simplex itself.)
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The general case. Now let us consider the general case with no additional restrictions.
We ¯rst modify the game (N; V ). For any S ½ N de¯ne V 0(S) :=

T
¾¡1¿ (V (¿ (S)));

where the intersection is taken over all type-preserving permutations ¿ of the player
set N . Then from the de¯nition of V 0(S) it follows that V 0(S) ½ V (S). (Informally,
taking the intersection over all type-preserving permutations makes all players of
each approximate type no more productive than the least productive members of
that type.) From the de¯nition of ±-substitutes, it follows that H1[V 0(S); V (S)] · ±
for any S ½ N . Moreover,

(N; V 0) 2 Gq((0; T ); (¯;B)) and V 0(N) is convex:

Therefore, we can apply the result proved in the symmetric case and conclude that
the game (N; V 0) has some payo® x in the equal treatment 1

q(
K(T;B)C
jNj + ¯)-core. Now

de¯ne a payo® vector y by

y(fig) := x(fig) ¡ ± for each i 2 N:

The payo® y will be feasible and
³
1
q(
K(T;B)C

jNj + ¯) + ±
´
-undominated in the initial

game (N; V ). Obviously, y has the equal treatment property. Therefore for " ¸
®qN((±; T); C; (¯;B)) the equal treatment "-core of (N; V ) is non-empty.

Proof of Corollary 2: The proof follows the proof of the Theorem. The only place
in the proof of Theorem where we were using the fact that the given game has ¯-
e®ective B-bounded groups was application of Lemma 2. Note that the corresponding
generalization of Lemma 2 for weakly ¯-e®ective B-bounded groups is true. The same
exactly proof as it was for Lemma 2 applies.

6 Relationships to the literature.
Recall that Shapley and Shubik (1966) showed that exchange economies with many
players and with quasi-linear utility functions (transferable utility) have nonempty
approximate cores.8 There are now a number of results in the literature showing
that large games without side payments have non-empty approximate cores.9 These
results, however, are all obtained in the context of pregames. Recall that a pregame
speci¯es a topological space of player types and a payo® set (or number) for every
possible coalition in any game induced by the pregame. More precisely, given a
compact metric space of player \types" or \attributes" (possibly ¯nite), the payo®
function of a pregame assigns a payo® set to every ¯nite list of player types, repetitions

8 These results were obtained by convexifying preferences rather than by using assumptions of
small group e®ectiveness.

9See, for example, Wooders (1983), Kaneko and Wooders (1982,1996), and Wooders and Zame
(1984).
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allowed. Given any ¯nite player set and an attribute function, assigning a type to
each player in the player set, the payo® function of the game is determined by the
payo® function of the pregame. Thus, the payo® set to any collection of players
having a certain set of attributes is independent of the total player set in which it
is embedded. The pregame structure itself has hidden consequences. For example,
within the context of pregame with side payments, there is an equivalence between
per capita boundedness, ¯niteness of the supremum of average payo®, and small
group e®ectiveness, the condition that all or almost all gains to collective activities
can be realized by groups bounded in size (Wooders 1994a, Section 5). No such
consequences can be hidden within parameterized collections of games since there
is no necessary relationship between any of the games in the collection (other than
that they are all described by the same parameters). The pregame framework also
rules out widespread externalities, that is, the worth of any coalition of players is
independent of the total player set is embedded. This is a signi¯cant limitation in
economic applications.

To study large games generally, without the structure and implicit assumptions
imposed by a pregame, Kovalenkov and Wooders (1997a,b) introduce the concept of
parameterized collections of games without side payments and show non-emptiness
of approximate cores of large games. No explicit bound, however, on the required size
of the games is provided and the dependence of the required size on the parameters
is not explicitly demonstrated. In this paper using signi¯cantly di®erent techniques
and the assumption of convexity of payo® sets, we are able to derive an explicit lower
bound on ".

We remark that the results of this work may have application in economies with
local public goods and/or coalition production (see, for example, Conley and Wooders
(2000)) and other sorts of situations with coalitions. A possible very exciting appli-
cation is to economies with di®erential information, as in Allen (1994,1995), Forges
and Minelli (1999), or Forges, Heifetz, and Minelli (1999), among others. It may
be possible, for example, to derive a bound on the extent of the deviation of cores
involving di®erential information from the full information core.

7 Appendix: Relating games with and without
side payments.

Step 1: Construction of the TU games. Let us ¯rst modify the game (N; V ). Con-
sider the set

K :=
n
x 2 RN : xa ¸ ¡" for any a 2 N

o
:

De¯ne
K¤ := K

\
V (N)
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and observe that setK¤ is a compact set. Let c(V (N);K) be the smallest closed cone
such that

V (N) ½ K¤ + c(V (N);K):

Now let us de¯ne a modi¯ed game (N; V 1) so that

(a) V 1(S) : = V (S) for S 6= N and
(b) V 1(N) : = K¤ + c(V (N);K):

Notice that c(V (N);K) is a recession cone of V 1(N); that is,

c(V 1(N)) = c(V (N );K):

We are going to prove that the modi¯ed game (N; V 1) has an equal treatment "-
core payo®, which we will denote by x¤: Since V (S) ½ V 1(S) for any S , x¤ will be
"-undominated in the game (N; V ). Thus x¤ 2 K T

V 1(N) = K¤ ½ V (N ). So the
payo® x¤ will be feasible in the game (N; V ): It follows that x¤ is an equal treatment
"-core payo® for (N; V ).

De¯ne

C := co
n
x 2 RN : 9i; j 2 N; xi = ¡qxj ¸ 0; xk = 0; k 6= i; j

o

and observe that C is a cone. Since V 1(N) is q-comprehensive and convex, the cone
c(V 1(N)) will include C but will not be more than a half-space. Hence the negative
dual cone to the recession cone d(c(V 1(N ))) will be closed, non-empty and included
in the cone dual to C:

d(C) =
(
x 2 RN++ : q · xi

xj
· 1
q

8i; j
) [

f0g :

Now let us consider the simplex in RN+ :

4+ :=
(
¸ 2 RN+ :

NX

i=1
¸i = 1

)
:

De¯ne
L := d(c(V 1(N)))

\
4+:

Given a partition fN [t]g of the player set into T types of ±-substitutes, the set of
equal treatment allocations is denoted by ET and de¯ned as follows:

ET :=
n
x 2 RN : xi = xj for any t and any i; j 2 N [t]

o
.

Now de¯ne
L¤ := L \ ET :
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Observe that L¤ is a compact and convex set.
For any ¸ 2 L¤ there exists a tangent hyperplane to the set V (N) with normal ¸

such that the whole set V (N) is contained in a closed half-space, and at least one point
of the set V (N) lies on the hyperplane. Moreover, since the game is superadditive,
for any ¸ 2 L¤ and any S ½ N there exists a hyperplane in RS that has normal
parallel to ¸S and that is tangent to VS. Thus, for a ¯xed ¸ 2 L¤ there is a ¯nite real
number

v¸(S) := max
(X

a2S
¸axa : x 2 V (S)

)
:

The pair (N; v¸) is a TU game. We construct a \¸-weighted transferable utility"
game (N; V¸) by de¯ning, for each coalition S ½N :

V¸(S) :=
(
x 2 RN : xa = 0 for a =2 S and

X

a2S
¸axa · v¸(S)

)
:

Step 2 : Nonemptiness of the epsilon core for (N; V¸) games.
Consider a ¯xed ¸ 2 L¤. De¯ne ¸max := max f¸ig and ¸min := min f¸ig.

Lemma 2. Let (N; V ) 2 Gq((0; T); C; (¯;B)): Then

(N; v¸) 2 ¡((0; T ); C¸max; (¯¸max; B)):

Proof of Lemma 2:

1). We will prove that the (0; T)-partition fN [t]g of the game (N; V ) is a (0; T)-
partition of the game (N; v¸) : We must check that for any type-consistent permuta-
tion ¿ of N and any coalition S it holds that v¸(S) = v¸(¿ (S)). But we have:

v¸(¿(S)) ´ max

8
<
:

X

a2¿(S)
¸axa : x 2 V (¿ (S))

9
=
;

= max
(X

a2S
¸¿(a)xa : x 2 V (S)

)

= max
(X

a2S
¸axa : x 2 V (S)

)
´ v¸(S):

The second equality follows from the fact that V (¿(S)) = V (S), since fN [t]g is a
(0; T )-partition of the game (N; V ). The third equality holds since, by construction
of L¤ and ¿; for any a we have ¸a = ¸¿(a).

22



2). To show that the number ¸maxC is a per capita bound for the TU game (N; v¸),
it is necessary to show that v¸(S)jSj · ¸maxC for each coalition group S . Observe that
by the de¯nition of v¸(S); for some xa 2 VS it holds that

v¸(S)
jSj =

P
a2S ¸axa

jSj · ¸max

P
a2S xa
jSj · ¸maxC:

The last inequality follows from per capita boundedness of the game (N; V ).

3). To prove e®ectiveness of B-bounded ¸max¯-e®ective groups for the TU game
(N; v¸) we need to show that for any S ½ N there exists a partition fSkg of S
satisfying jSkj · B for each k and

¯̄
¯̄
¯v¸(S) ¡

X

k
v¸(Sk)

¯̄
¯̄
¯ · ¸max¯ jS j :

By superadditivity
v¸(S) ¸

X

k
v¸(Sk):

By the de¯nition of v¸ there exists a vector x such that x 2 V (S) and v¸(S) =P
a2S ¸axa: Since (N; V ) has ¯-e®ective B-bounded groups there exists a vector y 2
cq(V (S ;B)) such that X

a2S
jya ¡ xaj · ¯ jS j :

Then there exists a vector z 2 V (S ;B) such that y 2 cq(z): Note that since ¸ 2 L¤ ½
d(C) and y 2 cq(z) we have

X

a2Sk
¸aya ·

X

a2Sk
¸aza:

Then since z 2 V (S;B) we have that zSk 2 VSk for some partition fSkg of S (with
jSkj · B) and we get X

a2Sk
¸aza · v¸(Sk):

Hence
¯̄
¯̄
¯v¸(S) ¡

X

k
v(Sk)

¯̄
¯̄
¯ ·

¯̄
¯̄
¯̄
X

a2S
¸axa ¡

X

k

X

a2Sk
¸aza

¯̄
¯̄
¯̄ ·

¯̄
¯̄
¯̄
X

a2S
¸axa ¡

X

k

X

a2Sk
¸aya

¯̄
¯̄
¯̄

·
X

a2S
¸a jxa ¡ yaj · ¸max¯ jSj :

By 1), 2), 3) it holds that (N; v¸) 2 ¡((0; T); C¸max; (¯¸max; B)):
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Lemma 3. If the equal treatment "-core of (N; v¸) is non-empty, then the equal
treatment "

¸min
-core of (N; V¸) game is non-empty.

Proof of Lemma 3: Consider a payo® y in the equal treatment "-core of the game
(N; v¸) and de¯ne xa := 1

a̧
ya. Note that x also has equal treatment property. Then

X

a2N
¸axa =

X

a2N
ya · v¸(N );

thus x is feasible for the game (N; V¸). Moreover, for all S ½N;
X

a2S
¸a(xa +

"
¸min

) =
X

a2S
ya +

X

a2S
¸a
"
¸min

¸
X

a2S
ya + " jS j ¸ v¸(S)

thus x is "
¸min

-undominated in the game (N; V¸). Therefore, x is in the equal treatment
"
¸min

-core of (N; V¸).

We can now ¯nish Step 2 : Since (N; V ) 2 Gq((0; T); C; (¯;B)), by Lemma 2 we
have that

(N; v¸) 2 ¡((0; T ); C¸max; (¯¸max; B)):

But from Corollary 1 for any game with side payments in ¡((±0; T); C 0; (¯0; B))
and any "0 ¸ K(T;B)C0

jN j + ± 0 + ¯ 0; the equal treatment "0-core is non-empty. Hence, if
"0 ¸ ¸max(K(T;B)C

jNj + ¯); the equal treatment "0-core of (N; v¸) is non-empty. From
Lemma 3 this implies that the equal treatment "0

¸min
-core of (N; V¸) is non-empty.

Thus, since

®qN((0; T); C; (¯;B)) =
1
q
(
K(T;B)C

jN j + ¯) ¸ ¸max

¸min
(
K(T;B)C

jN j + ¯)

(¸max
¸min

· 1
q because ¸ 2 L¤ ½ d(C)), we can conclude that if

" ¸ ®qN((0; T); C; (¯;B))

the equal treatment "-core of (N; V¸) is non-empty. This is exactly the bound that
we need in the symmetric case.

Step 3: Nonemptiness of the epsilon core for the initial game. We need only to prove
that if the equal treatment "-core of (N; V¸) is non-empty for all ¸ 2 L¤ then the
equal treatment "-core of (N; V ) is non-empty. De¯ne

C"(¸) :=
(
x :

X

a2N
¸axa · v¸(N);

X

a2S
¸a(xa + ") ¸ v¸(S)

) \
ET ;
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the equal treatment "-core of the (N; V¸) game. Note that the equal treatment "-core
of (N; V¸) is non-empty for any ¸ 2 L¤. For any ¸ 2 L¤ and any x 2 C"(¸), x cannot
be "0-improved upon in the initial game (N; V ) for any "0 > ". (If a coalition S could
improve, we would have xS + "0S 2 VS and P

a2S ¸a(xa + "0a) > v¸(S); contradicting
the de¯nition of v¸(S).) Hence, it remains to show that there exists ¸¤ 2 L¤ such
that some x¤ 2 C"(¸) is feasible in the initial game.

Lemma 4. The correspondence ¸ 7¡! C"(¸) from L¤ to RN is bounded, convex-
valued and has a closed graph. Moreover, for any x 2 C"(¸) and for any player a it
holds that xa ¸ ¡":

Proof of Lemma 4:

1). If f , g 2 C"(¸) then ¹f+(1¡¹)g has equal treatment property and ¹f+(1¡¹)g 2
C"(¸) since:

(a)
X

a2N
¸a(¹fa + (1¡ ¹)ga) = ¹

X

a2N
¸afa + (1 ¡ ¹)

X

a2N
¸aga

· ¹v¸(N) + (1 ¡ ¹)v¸(N) = v¸(N) and

(b)
X

a2S
¸a(¹fa + (1¡ ¹)ga + ") = ¹

X

a2S
¸a(fa + ") + (1¡ ¹)

X

a2S
¸a(ga + ")

¸ ¹v¸(S) + (1 ¡ ¹)v¸(S) = v¸(S):

2). It is straightforward to see that graph is closed since v¸(S) depends continuously
on ¸.

3). Consider x 2 C"(¸). Since x is in the "-core of (N; V¸) game, x is "-individually
rational, that is, xa ¸ ¡":
4). Consider x 2 C"(¸). By construction,

X

a2N
¸axa · v¸(N) · 1

q
C jN j :

Since ¸ 2 L¤ ½ L ½ 4+, there exists i such that ¸i ¸ 1
jNj . Then ¸ 2 L implies

¸a ¸ q¸i ¸ q
jNj . Therefore, using 3) above we have that

q
jN jxa · ¸axa · 1

q
C jN j ¡ (1 ¡ q

jN j)(¡"):

This proves that

xa · 1
q2
C jN j2 + (

jN j
q

¡ 1)":

Now let us de¯ne
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ª(¸) := C"(¸) ¡
(
x 2 K¤ :

X

a2N
¸axa = max

z2V (N)

X

a2N
¸aza

) \
ET :

For ¸ 2 L¤ both the ¯rst term and the second term of this sum are non-empty,
bounded, convex-valued correspondences with closed graphs; this follows fromLemma
3 and the observations that (a) V (N ) is convex and symmetric across substitute
players and (b) K¤ is compact. Hence the sum ª(¸) is also bounded, closed and
convex-valued for ¸ 2 L¤. By construction

P
a2N za¸a · 0 for any z 2 ª(¸).

Now we can use the following theorem of excess demand, which is in fact a version
of Kakutani's theorem. (For a proof see Hildenbrand and Kirman (1988), Lemma
AIV.1)

Theorem (Debreu, Gale, Nikaido): Let 4¤ be a closed and convex subset of 4+.
If the correspondence ª from 4¤ is bounded, convex-valued, has closed graph and it
holds that for all p 2 4¤ , p ¢ z · 0 for all z 2 ª(p); then there exists p¤ 2 4¤ and
z¤ 2 ª(p¤) such that p ¢ z¤ · 0 for all p 2 4¤.

It follows, from the Debreu-Gale-Nikaido Theorem, that there exists ¸¤ 2 L¤ and
z¤ 2 ª(¸¤) such that ¸ ¢z¤ · 0 for all ¸ 2 L¤. Since z¤ 2 ª(¸¤), z¤ can be represented
as z¤ = x¤ ¡ y¤ with x¤ 2 C"(¸); y¤ 2 K¤T

ET . Therefore z¤ 2 ET . As we argued
at the beginning of this Step, x¤ is "-undominated in the initial game (N; V ). In
addition, x¤ has the equal treatment property.

We now deduce that x¤ is feasible for the game (N; V ). Observe that x¤ = y¤+z¤,
where y¤ 2 K¤ T

ET and ¸¢z¤ · 0 for all ¸ 2 L¤: Hence z¤ 2 d(L¤)T
ET.

Lemma 5. Let X be a convex and symmetric across substitute players subset of
RN . Let X¤ := X

T
ET . Then d(X¤)

T
ET ½ d(X).

Proof of Lemma 5: For any x 2 X , let us construct ¹x 2 RN as follows: for each
1 · t · T , for any a 2 N [t] de¯ne

¹xa :=
1

jN [t]j
X

i2N[t]
xi:

Since X is convex and symmetric across substitute players, ¹x 2 X. Obviously,
¹x 2 ET . Therefore ¹x 2 XTET =X ¤.

Now consider any y 2 d(X¤)TET . For any x 2 X we have

y ¢ x =
X

i2N
yixi =

X

1·t·T
yt(

X

i2N[t]
xi)

=
X

1·t·T
jN [t]j yt¹xt =

X

i2N
yi¹xi · 0;
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where the last inequality follows from the fact y 2 d(X ¤) and ¹x 2 X ¤. Hence, by the
de¯nition of the dual negative cone, d(X¤)

T
ET ½ d(X).

Since V (N) is convex and symmetric across substitute players, it follows from
construction of c(V 1(N)) that L = d(c(V 1(N)))T 4+ is convex and symmetric across
substitute players. Therefore, by Lemma 5,

z¤ 2 d(L¤)
\
ET ½ d(L) = c(V 1(N )):

Moreover
x¤ 2 K¤+ c(V 1(N)) ½ V 1(N);

that is, x¤ is feasible in the modi¯ed game. We also have x¤ 2 C"(¸): It follows
from Lemma 3 that x¤a ¸ ¡": It now follows from the de¯nition of K and K¤ that
x¤ 2 K¤ ½ V (N ); that is, x¤ is feasible in the initial game (N; V ). We have now
proven that x¤ is in the equal treatment "-core of the initial game; therefore the equal
treatment "-core is non-empty.
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