Epsilon cores of games and economies with limited side payments.^{*}

Abstract

We introduce the concept of a parameterized collection of games with limited side payments, ruling out large transfers of utility. Under the assumption that the payo[®] set of the grand coalition is convex, we show that a game with limited side payments has a nonempty "-core. Our main result is that, when some degree of side-paymentness within nearly-e[®]ective small groups is assumed, then all payo[®]s in the "-core treat similar players similarly. A bound on the distance between "-core payo[®]s of any two similar players is given in

^a This paper revises Autonomous University of Barcelona Working Paper number WP 392.97. ^yThis research was undertaken with support from the European Union's Tacis ACE Programme 1995. At that time, this author was in the IDEA Ph.D Program of the Autonomous University of Barcelona. Support by DGICYT grant PB92-590 is gratefully acknowledged.

^zThe support of the Direccio General d'Universitats of Catalonia, the Social Sciences and Humanities Research Council of Canada, and the Department of Economics of the Autonomous University of Barcelona is gratefully acknowledged.

terms of the parameters describing the game. These results add to the literature showing that games with many players and small e[®]ective groups have the properties of competitive markets.

1 Introduction.

In many game theoretic and economic situations side payments may be freely made only within small groups of players. For example, marriage games may permit some side-paymentness between matched pairs of players but may rule out side payments between marriages. Even if side payments were possible it may require cooperation and agreement among a large numbers of players to make large transfers of payo® and such agreements may be di ± cult to obtain.¹ In this paper we introduce the concept of games with limited side payments and demonstrate conditions under which "-cores are nonempty and all payo[®]s in the "-core of a game treat similar players nearly equally. The "-core consists of those feasible payo[®]s that cannot be improved upon by any coalition by at least " for each member of the coalition. Side payments are limited in the sense that coalitions bounded in size are e[®]ective for achievement of almost all gains to increasing coalition size and large transfers of payo[®] are ruled out. We show that games with limited side payments and convex total payo[®] sets have nonempty "-cores, where for games with many players, " can be chosen to be small. Our main result is that any "-core payo[®] has approximately the equal-treatment property; that is, all players who are substitutes or approximate substitutes are treated nearly equally.

Our interest in approximate cores stems from our interest in competition in diverse economic settings, such as those with local public goods, clubs, production, location, indivisibilities, non-monotonicities, and other deviations from the classic Arrow-Debreu-McKenzie model. Both of our results contribute to a line of research investigating the \market-like" properties of large games under conditions limiting returns to group size, cf. Wooders (1983,1994b). An important precursor is Shapley and Shubik (1966), which shows that large exchange economies have non-empty approximate cores; another is Shapley and Shubik (1969), which demonstrates an equivalence between markets and totally balanced games. From an economic perspective, the remarkable paper of Tiebout (1956), in which he conjectured that large economies with local public goods were \market-like," contains insights similar to those that lead to the current research.²

In large games, the core is a \stand-in" for the competitive equilibrium.³ Thus,

¹This point is stressed in Kaneko and Wooders (1997).

²See Wooders (1997) and references therein.

³See, for example, see Shapley and Shubik (1969) and Wooders (1994a,b) for market-games with side payments. Also relevant are Billera (1974) and Mas-Colell (1975). Hildenbrand and Kirman (1988, Chapter 4), among others, treat the core more explicitly as the stand in for the competitive

a crucial result is that in large games cores or approximate cores are nonempty. Since the competitive equilibrium has the equal-treatment property, for games to approximate competitive markets it is also crucial that approximate cores converge to equal-treatment payo®s. Our result showing "-cores treat similar players similarly demonstrate that the equal treatment property of competitive equilibrium extends to approximate cores of large games with small e®ective groups and limited side payments.

Our results apply to parameterized collections of games. The parameters describing the games are: (a) a bound on the number of approximate player types and the accuracy of the approximation and (b) a bound on the size of nearly e[®]ective groups of players and their distance from exact e[®]ectiveness. Two players are approximately the same types if they make similar contributions to coalitions; that is, they are approximate substitutes. That nearly-e[®]ective groups are bounded in size means that all or almost all gains to collective activities can be realized by coalitions no larger than the bound. This can be viewed as a sort of \small group e[®]ectiveness" assumption.

To place our research in the context of the literature, we remark that prior to the introduction of parameterized collections of games, other papers showing nonemptiness of approximate cores of large games relied on the construct of a pregame.⁴ Recall that a pregame consists of a set of player types and a single worth function assigning a payo[®] to any group of players. The payo[®] to a group of players depends on the numbers of players of each type in the group. Given a total player set and a speci⁻cation of the numbers of players of each type in the set, the worth function of the pregame induces a worth function on the player set and thus determines a game. The pregame structure, which requires that all games considered are subgames of some larger game, has hidden consequences. To illustrate, in the pregame framework, when there are su±ciently many players of each type that appears in the games, the assumptions of small group e[®]ectiveness and per capita boundedness are equivalent (Wooders 1994b, Section 5); this does not hold for parameterized collections of games. In addition, the pregame framework dictates that the payo[®] to a group is independent of the player set in which it's embedded; thus, widespread externalities are ruled out.

Results in the literature on convergence of approximate cores to equal-treatment payo[®]s have also relied on the pregame structure. In the context of a pregame with side payments, when there are many close substitutes for each player, under the mild condition of per capita boundedness of average payo[®], "-cores of large games with side payments are nonempty and approximately equal-treatment in the sense that most players of the same type receive nearly the same payo[®]s (Wooders 1980,1994a)⁵. In

equilibrium in non-classical exchange economies.

⁴See, for example, Wooders (1983,1994a,b) and Wooders and Zame (1984).

⁵See also Shubik and Wooders (1982), who apply the game-theoretic results of Wooders (1980) to economies with clubs and multiple memberships and provide a discussion of related literature.

large games with strictly e[®]ective small groups { that is, all gains to cooperation can be realized by groups bounded in size { and with strongly comprehensive payo[®] sets, all payo[®]s in the core have the equal treatment property (Wooders 1983, Theorem 3).

Since the games we consider in the current paper have limited side payments we are able to obtain a result close to Wooders' (1983) result for games with strictly e[®]ective small groups. Thus, our equal-treatment result is stronger than prior results in three important ways: First, although it is not required that small groups are strictly e[®]ective, we demonstrate that all players of the same approximate type are treated approximately equally. Second, when there are su±ciently many players of an approximate type, our result provides an explicit bound on the distance between the "-core payo[®]s for any two players of that approximate type. Third, our results are not restricted to games with transferable utility nor to games derived from pregames.

In the next section we introduce required de⁻nitions. Section 3 states our nonemptiness result and provides a number of examples. Section 4 introduces games with \side-paymentness" uniformly bounded away from zero only for nearly-e[®]ective small groups, states our result that the "-core is approximately equal-treatment, and provides additional examples. Section 5 provides some remarks on our model and results and relates our work to prior literature. Section 6 discusses related economies with limited side payments. Proofs are collected in Section 7 and two additional examples appear in an appendix.

2 De⁻nitions.

2.1 Cooperative games: description and notations.

Let N = f1; ::; ng denote a set of players. A nonempty subset of N is called a coalition. For any coalition S let R^S denote the jSj-dimensional Euclidean space with coordinates indexed by elements of S. For x 2 R^N; x_S will denote its restriction to R^S. To order vectors in R^S we use the symbols >>; > and _ with their usual interpretations. The nonnegative orthant of R^S is denoted by R^S₊ and the strictly positive orthant by R^S₊₊. For A ½ R^S; co(A) denotes the convex hull of A. We denote by 1_S the vector of ones in R^S, that is, 1_S = (1; ...; 1) 2 R^S. Each coalition S has a feasible set of payo®s or utilities denoted by V_S ½ R^S. By agreement V_; = f0g and V_{fig} is nonempty, closed and bounded from above for any i. Moreover we will

The results of Wooders (1980) should not be confused with other results published the same year in Econometrica, dealing with local public good (or club) economies with anonymous crowding. In that context, coalitions can be restricted to consist of identical individuals and the core will be unchanged; game-theoretically this is a very special case. In contrast, Wooders (1980), referenced herein, treats the general case of pregames with a *-*nite number of types and requires only boundedness of per capita payo®s.

assume that

(a) max
$$x : x \ge V_{fig} = 0$$
 for any i $\ge N$:

It must be noted that (x) is by no means restrictive since it can always be achieved by a normalization. It is convenient to describe the feasible utilities of a coalition as a subset of \mathbb{R}^{N} . For each coalition S let

$$V(S) := {n \atop x \ 2 \ R^N} : x_S \ 2 \ V_S \text{ and } x_a = 0 \text{ for a } 2 \ S^{o}:$$

A game without side payments (called also an NTU game or simply a game) is a pair (N;V) where the correspondence V : 2^{N} i! R^{N} is such that V(S) $\frac{1}{2}$ x 2 R^{N} : $x_{a} = 0$ for a 2 S for any S $\frac{1}{2}$ N and satis es the following properties :

(2.1) V (S) is non-empty and closed for all S 1/2 N.

(2.2) V (S) $\ R^N_+$ is bounded for all S ½ N, in the sense that there is real number K > 0 such that if x 2 V (S) $\ R^N_+$ then $x_i \cdot K$ for all i 2 S.

(2.3) V (S₁ ${}^{\mathbf{S}}$ S₂) ${}^{3}_{4}$ V (S₁) + V (S₂) for any disjoint S₁; S₂ ${}^{1}_{2}$ N (superadditivity). (2.4) V (S) = V (S)₁ ${}^{\mathbf{n}}_{\mathbf{x}}$ 2 $\mathbf{R}^{\mathbf{N}}_{\mathbf{x}}$: x_a = 0 for a 2 S for all S ${}^{1}_{2}$ N (comprehensiveness).

2.2 Games with limited side payments.

To de ne parameterized collections of games we will need the concept of Hausdor[®] distance. For every two nonempty subsets E and F of a metric space (M;d) de ne the Hausdor[®] distance between E and F dist(E;F) (with respect to the metric d on M) by

dist(E; F) := inf f" 2 (0; 1) : E $\frac{1}{2}$ B_"(F) and F $\frac{1}{2}$ B_"(E)g;

where $B_{-}(E) := fx \ 2 \ M : d(x; E) \cdot "g$ denotes the "-neighborhood of E.

Since payo[®] sets are unbounded below, we will use a modi⁻cation of the concept of the Hausdor[®] distance so that the distance between two payo[®] sets is the distance between the intersection of the sets and a subset of Euclidean space. Let m^{*} be a ⁻xed positive real number. Let M^{*} be a subset of Euclidean space R^N de⁻ned by M^{*} := x 2 R^N : x_a _j m^{*} for any a 2 N . For every two non-empty subsets E and F of Euclidean space R^N let H₁[E;F] denote the Hausdor[®] distance between E\M^{*} and F\M^{*} with respect to the metric kx _j yk₁ := max_i jx_i j y_ij on Euclidean space R^N.

The concepts de-ned below lead to the de-nition of parameterized collections of games. To motivate the concepts, each is related to analogous concepts in the pregame framework.

 \pm i substitute partitions: In our approach we approximate games with many players, all of whom may be distinct, by games with *-*nite sets of player types. Observe that for a compact metric space of player types, given any real number $\pm > 0$ there is a partition (not necessarily unique) of the space of player types into a *-*nite number of subsets, each containing players who are \pm -similar'' to each other. Parameterized collections of games do not restrict to a compact metric space of player types, but do employ the idea of a *-*nite number of approximate types.

Let (N; V) be a game and let \pm 0 be a non-negative real number. A \pm -substitute partition is a partition of the player set N into subsets with the property that any two players in the same subset are \within \pm " of being substitutes for each other. Formally, given a set W ½ R^N and a permutation ¿ of N, let $\frac{3}{2}$ (W) denote the set formed from W by permuting the values of the coordinates according to the associated permutation ¿. Given a partition fN [t] : t = 1; ::; Tg of N, a permutation ¿ of N is type ¡ preserving if, for any i 2 N; ¿ (i) belongs to the same element of the partition fN [t]g as i. A \pm -substitute partition of N is a partition fN [t] : t = 1; ::; Tg of N with the property that, for any type-preserving permutation ¿ and any coalition S,

Note that in general a ±-substitute partition of N is not uniquely determined. Moreover, two games may have the same partitions but have no other relationship to each other (in contrast to games derived from a pregame).

 (\pm,T) - type games. The notion of a (\pm,T) -type game is an extension of the notion of a game with a -nite number of types to a game with approximate types.

Let \pm be a non-negative real number and let T be a positive integer. A game (N; V) is a (\pm ; T)-type game if there is a T-member \pm -substitute partition fN [t] : t = 1; ::; Tg of N. The set N [t] is interpreted as an approximate type. Players in the same element of a \pm -substitute partition are \pm -substitutes. When \pm = 0; they are exact substitutes.

 $i e^{\text{e}}$ ective B_i bounded groups: In all studies of approximate cores of large games, some conditions are required to limit gains to collective activities, such as boundedness of marginal contributions to coalitions, as in Wooders and Zame (1984) or the less restrictive conditions of per capita boundedness and/or small group e[®]ectiveness, as in Wooders (1980,1983,1994a,b), for example. Small groups are e[®]ective if all or almost all gains to collective activities can be realized by groups bounded in size of membership. The following notion formulates the idea of small e[®]ective groups in the context of parameterized collections of games.

Informally, groups of players containing no more than B members are $-e^{\text{e}}$ ective if, by restricting coalitions to having fewer than B members, the loss to each player is

no more than $\bar{}$: This is a form of \small group e[®]ectiveness" for arbitrary games. Let (N; V) be a game. Let $\bar{}_{,}$ 0 be a given non-negative real number and let B be a given positive integer. For each group S ½ N; de ne a corresponding set V (S; B) ½ R^N in the following way:

$$V(S;B) := \begin{bmatrix} "x \\ k \end{bmatrix} V(S^{k}) : S^{k} \text{ is a partition of } S, \begin{bmatrix} z \\ S^{k} \end{bmatrix} \cdot B^{k}$$

The set V (S; B) is the payo[®] set of the coalition S when groups are restricted to have no more than B members. Note that, by superadditivity, V (S; B) $\frac{1}{2}$ V (S) for any S $\frac{1}{2}$ N and, by construction, V (S; B) = V (S) for jSj · B. The game (N; V) has $-e^{\text{@}}$ ective B-bounded groups if for every group S $\frac{1}{2}$ N

$$H_1$$
 [V (S); V (S; B)] · $-$.

When $\bar{} = 0$, 0-e[®]ective B-bounded groups are called strictly e[®]ective B-bounded groups.

games with limited side payments $G((\pm; T); (\bar{}; B))$. Let T and B be positive integers. Let $G((\pm; T); (\bar{}; B))$ be the collection of all $(\pm; T)$ -type games that have $\bar{}$ -e[®]ective B-bounded groups. Then $G((\pm; T); (\bar{}; B))$ is called a parameterized collection of games with limited side payments.

Our results hold for all parameters \pm and $\overline{}$ that are su \pm ciently small, speci⁻cally, for $2(\pm + \overline{}) < m^{\alpha}$; where m^{α} is a positive real number used in the de⁻nition of the Hausdor[®] distance. In Section 4 we introduce one additional parameter to describe subcollections of games with limited side payments.

It may not be immediately apparent how side payments are limited by the above de⁻nition. To illustrate this feature, consider a game $(N^m; V^m)$ in which any two players can earn two dollars and side payments are unrestricted. Suppose there are 2m players in the game. Thus the total payo[®] to the grand coalition is 2m dollars. Although at <code>-</code>rst glance it may seem that this game has <code>-</code>-e[®]ective 2-bounded groups, it does not. Moreover, given any <code>-___</code> 0 and any positive integer B; for su±ciently large m the game $(N^m; V^m)$ has no <code>-</code>-e[®]ective B-bounded groups. To make this clear, consider a payo[®] x that gives 2m dollars to one selected player and nothing to the others. The payo[®] x is feasible in the game, that is x 2 V (N): But for 2m > B, x 2 V (N; B), de⁻ ned above. Moreover, for large m, the Hausdor[®] distance H₁ from x to V (N; B) is large.: Thus, the form of <code>-</code>-e[®]ective B-bounded groups used in the current paper rules out games with side payments.⁶ In fact, similar examples will show that q-comprehensiveness of payo[®] sets for all coalitions with q > 0 are ruled out by the de⁻ nition of <code>-</code>-e[®]ective B-bounded groups introduced in this paper. This motivates our use of the term \limited side payments."

⁶The notion of small group e[®]ectiveness used in our prior papers permitted games with side payments.

3 Non-emptiness of equal-treatment "-cores of games with limited side payments.

<u>the core and epsilon cores.</u> Let (N; V) be a game. A payo[®] x is "-undominated if for all S ½ N and y 2 V (S) it is not the case that $y_S >> x_S + 1_S$ ". The payo[®] x is feasible if x 2 V (N). The "-core of a game (N; V) consists of all feasible and "-undominated allocations. When " = 0, the "-core is the core.

<u>the equal treatment epsilon core.</u> Given non-negative real numbers " and ±, we will de ne the equal treatment "-core of a game (N; V) relative to a partition fN [t]g of the player set into ±-substitutes as the set of payo®s x in the "-core with the property that for each t and all i and j in N[t], it holds that $x_i = x_j$. Thus, a payo® for a game is in the equal-treatment "-core if all players of the same approximate type are assigned equal payo®s.

3.1 The Theorem.

Some additional restrictions are required to obtain non-emptiness of epsilon cores of large games with limited side payments. We will discuss the indispensability of these conditions in the next subsection.

<u>per capita boundedness.</u> Let C be a positive real number. A game (N; V) has a per capita payo[®] bound of C if, for all coalitions S $\frac{1}{2}N$,

 $\begin{array}{c} \textbf{X} \\ \text{a2S} \end{array} x_a \cdot \ \ \text{C jSj for any x 2 V (S)}. \end{array}$

<u>thickness.</u> Let ½ be a positive real number, $0 < ½ \cdot 1$. A (±; T)-type game (N; V) is ½-thick if for each t it holds that jN [t]j $_{2}$ ½jNj.

Our ⁻rst Theorem demonstrates that, with convexity of payo[®] sets of grand coalitions, all su±ciently large games in a parameterized collection have non-empty equaltreatment "-cores. The size of a game required to ensure non-emptiness of the equaltreatment "-core depends on the parameters describing the games, a bound on feasible per capita payo[®]s, and a bound on the thickness (the percentage of players of each approximate type) of the player set.

Theorem 1. Let T and B be positive integers. Let C and ½ be positive real numbers, $0 < \% \cdot 1$. Then for any " > 0 exists an integer ("; T; B; C; %) such that if

(a) (N; V) 2 G((±; T); (⁻; B)),

(b) V (N) is convex,

(c) (N; V) is ½-thick,

(d) (N; V) has a per capita payo[®] bound of C, and

(e) jNj (''; T; B; C; ½)

then the equal treatment $(" + \pm + -)$ -core of (N; V) is nonempty.

The proof of the Theorem uses the following de⁻nition of the "-remainder core and another nonemptiness result. Informally the "-remainder core allows some small proportion of agents to be ignored. A payo[®] is in the "-remainder core if it is feasible and if it is in the core of a subgame whose player set contains all the remaining players. The "-remainder core is de⁻ned as follows.

<u>the "-remainder core.</u> Let (N;V) be a game. A payo[®] x belongs to the "-remainder core if, for some group S $\frac{1}{2}$ N, $\frac{jNj_i jSj}{jNj}$ · " and x_S belongs to the core of the subgame (S;V):

non-emptiness of the "-remainder core. (Kovalenkov and Wooders 1999, Theorem 1 (subcase for q = 0)). Let T and B be positive integers. For any " > 0; there exists an integer f_1 ("; T; B) such that if

(a) (N; V) 2 G((0; T); (0; B)) and

(b) jNj _ ("; T; B)

then the "-remainder core of (N; V) is non-empty.

A sketch of the proof: In the proof of Theorem 1 we rst approximate a game (N; V) with T approximate types and $-e^{\otimes}$ ective B-bounded groups by another game $(N; V^0)$ with T exact player types and strictly e^{\otimes} ective B-bounded groups, that is, by a game $(N; V^0) 2 G((0; T); (0; B))$: Then we use the above result on nonemptiness of the "-remainder core to obtain non-emptiness of the "-remainder core of $(N; V^0)$. This result implies that there is a core payo[®] in a large subgame (S; V) and that the proportion of \leftover" players is bounded by ". Then using per capita boundedness and thickness of the player set, we can \smooth" payo[®]s in the "-remainder core across players of the same approximate types and thus compensate leftovers. The convexity assumption allows us to obtain equal treatment by averaging the payo[®]s across players of the same type while maintaining feasibility. We present the formal proof of Theorem 1 in the special section.

In the next subsection we present examples clarifying Theorem 1.

3.2 Examples.

Our ⁻rst example illustrates the statement of Theorem 1.

Example 1: Let (N; V₀) be a superadditive game where, for any two-person coalition S = fi; jg; j & i;

 $V_0(S) := fx \ 2 \ R^N : x_i \cdot 1; x_j \cdot 1; and x_k = 0 \text{ for } k \in i; jg$

and for each i 2 N,

$$V_0(\text{fig}) := \text{fx } 2 \mathbb{R}^{\mathbb{N}} : x_i \cdot 0 \text{ and } x_i = 0 \text{ for all } j \in \text{ig}:$$

For an arbitrary coalition S the payo[®] set $V_0(S)$ is given as the superadditive cover, that is,

$$V_0(S) := \frac{L}{P(S)} \frac{X}{S^0 2 P(S)} V_0(S^0);$$

where the union is taken over all partitions P(S) of S:

We now de ne a game (N; V_{co}) in the following way. For each S $^{1\!\!/}_2$ N , let $V_{co}(S)$ denote the convex cover of the payo® set $V_0(S)$, that is

$$V_{co}(S) := co(V_0(S)):$$

Obviously the game (N; V_{co}) has convex payo[®] sets, one player type, and per capita bound of 1. We leave it to the reader to verify that for any positive integer m _ 3 the game (N; V_{co}) has $\frac{1}{m}$ -e[®]ective m-bounded groups. Thus the game (N; V_{co}) is a member of the class G((0; 1); ($\frac{1}{m}$; m)) and is 1-thick. Then, by Theorem 1, for jNj _ ("; 1; m; 1; 1) the equal treatment (" + $\frac{1}{m}$)-core of (N; V_{co}) is nonempty.

Therefore for any "⁰ > 0 there is a positive integer N ("⁰) such that for any jNj N ("⁰) the game (N; V_{co}) has a non-empty equal treatment "⁰-core. (For example take an integer m⁰ $\frac{2}{m_0}$ and de ne N ("⁰) $\int (\frac{m_0}{2}; 1; m^0; 1; 1)$:)

The next two examples illustrates that neither convexity of V(N) nor thickness of the game can be omitted in the statement of Theorem 1.

- Example 2. Convexity of V (N): Consider a sequence of games without side payments $(N^m; V^m)_{m=1}^1$ where the mth game has 2m + 1 players. Suppose that any player alone can earn at most 0 units. Suppose that any two-player coalition can distribute a total payo® of 2 units in any agreed-upon way, while there is no transferability of payo® between coalitions. Suppose only one- and two-player coalitions are e®ective. Then the game is described by the following parameters: T = 1; $\frac{1}{2} = 1$; B = 2; $\pm = = 0$ and has per capita bound C = 1: Thus the game satis es all the assumptions of Theorem 1 except convexity of V (N). The $\frac{1}{3}$ -core of the game, however, is empty for arbitrarily large values of m: (At any feasible payo®, at least one player gets 0 units and some other player no more than 1 unit. These two players can form a coalition and receive 2 units in total. This coalition can improve upon the given payo® for each of its members by $\frac{1}{2}$.)
- Example 3. Thickness. Consider a sequence of games without side payments $(N^m; V^m)_{m=1}^1$ where the mth game has m + 3 players. Suppose that there are

two types of players. Let the mth game have 3 players of type A and m players of type B. Assume that only players of the type A are essential in the following sense: Any coalition with less than two players of type A can get only 0 units or less for each of its players. Suppose that any coalition with two or three players of type A can get only 2 units to be distributed between players of type A in the coalition and 0 units or less for each of its players of type B. Note that there is no transferability of payo[®] from the players of type B to the players of type A. Then the game is described by the following parameters: T = 2; B = 3; $\pm = ^{-} = 0$; C = 1: Moreover, $V^{m}(N)$ is convex: The $\frac{1}{7}$ -core of the game, however, is empty for arbitrarily large values of m: (For any feasible payo[®] there is a player of type A who receives no more than $\frac{2}{3}$ units. There is another player of type A that gets no more than 1 unit. These 2 players can form a coalition and receive 2 units in total. This coalition can improve upon the given payo[®] for each of its members by $\frac{1}{6}$; since $(2 i - \frac{5}{3})\frac{1}{2} = \frac{1}{6}$.)

Remark. Per capita boundedness and small group e[®]ectiveness. Recall that for large games with side payments derived from pregames, Wooders (1994b) establishes an equivalence between small group e[®]ectiveness and per capita boundedness.⁷ Within the framework of parametrized collections of games, this equivalence no longer holds. This raises the question of whether either one or the other of the conditions can be dropped. Example A1, in an appendix, shows that the condition of small group e[®]ectiveness cannot be disregarded. The necessity of the assumption of per capita boundedness is not clear. Example A2 in the appendix illustrates that per capita boundedness is not a consequence of the other conditions in Theorem 1 but we have no example showing per capita boundedness is indispensible. Note, however, that per capita boundedness is a very mild assumption satis⁻ed by most economic examples.

4 The equal treatment property of "-cores of games with limited side payments.

In the previous Section we presented results on non-emptiness of the "-cores for large games with limited side payments. In fact, Theorem 1 shows non-emptiness of the equal-treatment "-core as well. In the current Section we focus on games where some degree of side payments is required for small groups. Speci⁻cally, we require q-comprehensiveness for nearly-e[®]ective groups. We then demonstrate that under this condition, the "-core of a game with limited side payments is equal-treatment in a very strong sense: any payo[®] in this "-core treats all players that are approximate substitutes nearly equally.

⁷The games must be large in the sense that any player that appears in the game must have many close substitutes.

4.1 The Theorem.

Consider a set W ½ R^S. Recall that W is comprehensive if x 2 W and y \cdot x implies y 2 W. The set W is strongly comprehensive if it is comprehensive, and whenever x 2 W; y 2 W; and x < y there exists z 2 W such that x << z:⁸

Our second Theorem requires a uniform version of strong comprehensiveness. Given x 2 R^s, i; j 2 S, 0 · q · 1 and " $_{\rm s}$ 0; de ne a vector $x_{i;j}^q$ (") 2 R^s; by

$$\begin{array}{rcl} (x_{i;j}^{\mathfrak{q}}("))_{i} &=& x_{i \ i} &"; \\ (x_{i;j}^{\mathfrak{q}}("))_{j} &=& x_{j} + \mathfrak{q}"; \mbox{ and } \\ (x_{i;i}^{\mathfrak{q}}("))_{k} &=& x_{k} \mbox{ for } k \ 2 \ Sn \ fi; \ j \ g: \end{array}$$

The set W is q-comprehensive if W is comprehensive and if, for any x 2 W, it holds that $(x_{i;j}^q("))$ 2 W for any i; j 2 S and any " $_{\circ}$ 0.

This condition for q > 0 bounds the slope of the Pareto frontier of the set away from zero. For q equal to one, q-comprehensiveness is equivalent to the assumption of transferable utility. For q equal to zero, q-comprehensiveness means simply comprehensiveness. Note that if a set is q-comprehensive for some q > 0 then the set is q^0 -comprehensive for all q^0 with $q = q^0 = 0$:

games with side payments limited to nearly-e[®]ective groups $G((\pm; T); (\bar{}; B; q))$. Let $G((\pm; T); (\bar{}; B))$ be a parameterized collection games with limited side payments that was de ned in Section 2. Let $0 \cdot q \cdot 1$ be given. Let $G((\pm; T); (\bar{}; B; q))$ denote the subcollection of games in $G((\pm; T); (\bar{}; B))$ with the property that if (N; V) is a member of the subcollection then for all S ½ N with jSj \cdot B; V_S is q-comprehensive. Note that

 $G((\pm; T); (-; B; q)) \ \frac{1}{2} G((\pm; T); (-; B; q^{0})) \ \frac{1}{2} G((\pm; T); (-; B; 0) = G((\pm; T); (-; B))$

for all q and q⁰ such that q $_{g}$ q⁰ $_{g}$ 0. When q > 0 will call this collection of games, games with side payments limited to nearly-e[®]ective groups.

Our main Theorem requires some degree of side-paymentness for small coalitions { those coalitions containing no more members than the given bound on nearly $e^{\text{e}}ec$ tive coalition sizes. Payo[®] sets for nearly-e[®]ective coalitions are required to satisfy q-comprehensiveness for some q > 0; that is, side payments can be made between players in nearly e[®]ective coalitions at a rate bounded below by q. For large coalitions, however, q can be arbitrarily small or zero. The Theorem demonstrates that if a game with limited side payments has su±ciently many players of any particular

⁸Informally, if one person can be made better $o^{\text{(while all the others remain at least as well o^{(m)})}$, then all persons can be made better o^(m). This assumption, called \quasi-transferable utility'' in Wooders (1983) has also been called \nonleveledness.''

approximate type, then all payo®s in the "-core treat all members of that type nearly equally { that is, any two players of such an approximate type receive approximately the same "-core payo®s. The distance between "-core payo®s of any of the two players is bounded above by a function of the parameters describing the game. From inspection of the bound, we can conclude that as approximate types become close to exact types, nearly e®ective groups become strictly e®ective and " goes to zero, the "-core \shrinks" to the equal-treatment "-core.

Theorem 2. Let $(N; V) \ge G((\pm; T); (-; B; q))$ where q > 0 and let fN[t]g be a partition of N into \pm -substitutes. If some payo[®] x belongs to the "-core of (N; V) and for some t it holds that jN[t]j > B, then for any $t_1; t_2 \ge N[t]$,

$$jx_{t_1} j x_{t_2} j \cdot \frac{2B}{q} (" + \pm + -):$$

The above theorem implies that, as "; \pm and ⁻ \became small," providing there are more than B players of each type, the "-core \shrinks" to the equal treatment " -core. It is important to bear in mind in interpreting the theorem that for large groups, q-comprehensiveness is not assumed. As noted previously, we have in mind situations such as economies with many small clubs or marriages, for example, where transfers may be made within the group, but large transfers, which would require the cooperation of large groups of players, are ruled out.

We present the proof of Theorem 2 in the special section. In the next subsection we present examples clarifying Theorem 2.

4.2 Examples.

The following simple example illustrates the statement of Theorem 2 and also shows that, in the central case of $\pm = -$ = 0; the bound provided can not be improved upon.

Example 4: Let (N; V *) be a superadditive game where for any two-person coalition S = fi; jg; j & i;

$$V^{x}(S) := fx \ 2 \ R^{N} : x_{i} + x_{j} \cdot 2; and x_{k} = 0 \text{ for } k \in i; jg$$

and for each i 2 N, let

$$V^{x}(fig) := fx 2 R^{N} : x_{i} \cdot 0$$
 and $x_{i} = 0$ for all j \in ig

For an arbitrary coalition S the payo[®] set V (S) is given as the superadditive cover, that is,

$$V^{\mathfrak{u}}(S) := \frac{L}{P(S)} \frac{X}{S^{\mathfrak{g}} 2P(S)} V^{\mathfrak{u}}(S^{\mathfrak{g}});$$

where the union is taken over all partitions P(S) of S:

Observe that the game $(N; V^{*})$ has one exact player type and strictly e[®]ective 2-bounded groups. Therefore $(N; V^{*}) \ 2 \ G((0; 1); (0; 2))$: Moreover V_{S}^{*} is 1comprehensive for any S $\frac{1}{2} N$, jSj · 2. Let the game $(N; V^{*})$ have an even number of players, that is jNj = 2m for some positive integer m. Observe that the payo[®] which gives one unit for each player belongs to the core of $(N; V^{*})$. Thus, for any " _ 0; the "-core of $(N; V^{*})$ is non-empty. Theorem 2 implies that for any a; b 2 N and any payo[®] x in the "-core of $(N; V^{*})$, providing that jNj > 2; we must have

$$\mathbf{j}\mathbf{x}_{a}\mathbf{j} \mathbf{x}_{b}\mathbf{j} \cdot \mathbf{4}''$$
:

It is easy to check that this statement can not be improved. Observe <code>-rst</code> that the restriction jNj > 2 is essential. If jNj = 2 then any division of two units between two players is a core payo[®]; thus, for " < $\frac{1}{2}$ the bound of the Theorem is not applicable. Now consider a payo[®] y that gives 1 unit to each of the players except two selected players (say players a and b), 1_i 2" to player a, and 1 + 2" to player b. The reader can observe that even in the case jNj > 2 this payo[®] is in the "-core of the game (N; V^{*}). (The payo[®] is obviously feasible, but it is also "-undominated, since any pair of players get at y at least 2_i 2".) But at this payo[®] it holds that $jy_{a i}$ y_bj = 4". Thus the bound given in Theorem 2 cannot be improved.

It is well known that a Theorem such as the above will not hold for games with side payments. The following example provides an illustration.

Example 5a: Fix any " > 0: Consider a game with side payments (N; v) that has one exact player type and a nonempty equal-treatment core. (There are many such games.) Take any payo® x 2 R^N in the equal-treatment core of (N; v). This determines a number x as the payo® for each player in N: Now select one player (say player a). Consider the payo® y that assigns x_i " for all players except player a and $x + (jNj_i \ 1)$ " to player a. Obviously the payo® y is feasible and "-undominated. Thus y belongs to the "-core of (N; v): However for a very large jNj; y treats player a much better than others.

The sharpest result that can be obtained for games with side payments induced by pregames satisfying per capita boundedness (or even strict small group e[®]ectiveness) is that for small values of ", most players of the same type are treated approximately equally (Wooders 1980,1994a). For games without side payments that have q-comprehensive payo[®] sets for q > 0 (q-sidepayments) it also does not hold that the "-core treats all players of the same type approximately equally. The following example, quite similar to the previous one, demonstrates this point.

Example 5b: Fix any " > 0, q > 0: Consider a game (N; V) with q-comprehensive payo[®] sets, one exact player type and a nonempty equal-treatment core. (As

above, there are many such games.) Take any payo[®] in the equal-treatment core of (N; V) and de⁻ne π as the payo[®] assigned to each player in N: Now select one player, say a. Consider the payo[®] y^q that assigns π_i " for all players except player a and $\pi + q(jNj_i \ 1)$ " for a player a. Then the payo[®] y^q is feasible and "-undominated. Thus y^q belongs to the "-core of (N; V): For very large jNj, however, y^q treats one player much better than the others.

The above examples show that Theorem 2 depends crucially on the fact that side payments are limited. The other condition of Theorem 2, q-comprehensiveness (q > 0) for payo[®] sets of small coalitions, is also crucial for equal-treatment property of the "-core. Example 6 below, which continues Example 1, shows that without this restriction the "-core may contain non-equal-treatment payo[®]s, even for games with limited side payments.

Example 6: Recall the game $(N; V_0)$ de ned in Example 1. Observe that the game $(N; V_0)$ has one exact player type, strictly e[®]ective 2-bounded groups, and a per capita bound of 1. Thus, $(N; V_0) \ge G((0; 1); (0; 2))$: But, for any q > 0 and any coalition S of two players; the payo[®] sets V (S) are not q-comprehensive. Let m be a positive integer. Let $(N^m; V_0^m)$ be a game where the number of players in the set N^m is 2m + 1 and for any coalition S $\frac{1}{2} N^m V_0^m(S) := V_0(S)$. Thus, each game $(N^m; V_0^m)$ has an odd number of players.

It is easy to see that the payo[®] y giving 1 to each of 2m players and 0 to the last player (say player a) is in the core. (The \left-out" player, in a coalition by himself, cannot make both himself and a player in a two-person coalition better o[®] { the player in the two-person coalition cannot be given more than 1.) However for any player other than a; say for player b; we have $y_b = 1$. Thus $jy_{a i} y_b j = 1$; even though all players are exact substitutes and $\pm = - = 0$ but the core does not converge to the equal-treatment core, even for an arbitrarily large m:

5 Remarks.

Remark 1. Relationships to other papers using parameterized collections of games. Our prior results for the "-core depended on a notion of q-comprehensiveness. In fact, all our previous results require that payo[®] sets be q-comprehensive with q > 0; the case q = 0 has not been treated. The main goal of the current paper is to treat the case where q > 0 only for small coalitions, thus allowing transfers within small e[®]ective coalitions but ruling out arbitrarily large transfers.

Remark 2. Small group e[®]ectiveness for improvement. There are several possibilities for de⁻ning⁻-e[®]ective B-bounded groups. Our de⁻nition requires that partitions of the total player set into B-bounded groups can realize almost all payo[®]s in V (N): This approach has the advantage of ease of exposition. Another possibility is to require that all improvement can be carried out by groups bounded in size.

<u>improvement-e[®]ective B-bounded groups.</u> Let us say that a payo[®] x can be improved upon by some coalition S in a game (N; V) if there is a payo[®] y 2 V (S) such that $y_S >> x_S i$ 1_S : Suppose that a game (N; V) satis is the property that for each payo[®] x 2 V (N), if x can be $\frac{1}{2}$ -improved by some coalition then there is a coalition S satisfying jSj · B that can improve upon x. Then (N; V) has improvement-e[®]ective B-bounded groups.

The condition that a game has bounded group sizes that are $e^{\text{@}}$ ective for improvement is obviously less restrictive than the condition de⁻ned earlier of ⁻-e[®]ective B-bounded groups. The conditions are, however, interchangeable.⁹ The only di[®]erence in our results, were we to use ⁻-e[®]ectiveness for improvement, would be that the bounds change. Our motivation in choosing the condition of ⁻-e[®]ective B-bounded groups is that the condition is more easily veri⁻able since it only depends on what groups of individuals can do rather than on the entire game structure and it seems more consistent with the sort of examples most frequently used in the literature.¹⁰

Remark 3. E[®]ectiveness of relatively small groups. It may be possible to obtain analogues of the results of this paper for situations where bounds are placed on relative sizes of e[®]ective coalitions rather than absolute sizes. We've chosen to bound the absolute sizes of near-e[®]ective coalitions since familiar examples of games and economies have natural bounds on absolute sizes of e[®]ective coalitions, for example, marriage models.

6 Economies with limited side payments.

In application, the conditions of our results may not be unduly restrictive. Indeed, in some game theoretic and economic situations, limited side payments would appear to be natural, for example, in job matching models (Kelso and Crawford (1982), Roth and Sotomayor (1990) and others). Even if side payments were possible, in large games it may require cooperation and agreement between a large number of

⁹See Wooders (1994a, Proposition 3.8) for the relationship between these two notions of effectiveness in the context of games derived from pregames. In other contexts, an example of the interchangeability of these conditions is given by Mas-Colell (1979) and Kaneko and Wooders (1989). Mas-Colell uses the fact that almost all improvement in exchange economies can be carried out by groups bounded in size while Kaneko and Wooders use the fact that almost all feasible outcomes can be achieved by partitions of the total player set into groups bounded in size.

¹⁰For example: marriages involve two persons; softball teams have nine members; and when average costs of production are downward sloping and bounded away from zero, there is some size of plant that is $\mbox{almost e}\pm\mbox{cient."}$

players to make large transfers. In this case the framework of side payments, or even q-comprehensiveness for q > 0, may be quite problematic. On the other hand, the presumption of economics that there exists opportunities for gains to trade and exchange is at the heart of economics. Thus, the requirement of some degree of side paymentness within small coalitions may not be restrictive.

There are also speci⁻c examples to which our results apply. Consider a two-sided matching model where all gains to collective activities can be realized by groups consisting of one person from each side of the market and where utility is transferable within buyer-seller pairs. If there is some mechanism convexifying the total payo[®] set (for example, lotteries), then both our nonemptiness result and our equal-treatment result apply. These remarks also apply to partitioning games.¹¹

Another class of economic models whose derived games may well ⁻t into our assumptions include economies with local public goods or clubs. (A survey is provided in Conley and Wooders 1998). Kovalenkov and Wooders (1999) introduce a model of an economy with clubs (and multiple memberships) and, under remarkably nonrestrictive conditions, demonstrate nonemptiness of approximate cores. With appropriate conditions on the economic models, the results of the current paper could be applied to models of economies with clubs.

7 Proofs.

Proof of Theorem 1: Recall that we required $2(- \pm) < m^{\alpha}$. Assume for now that " \cdot min $\frac{m^{\alpha}}{2}$; BC , implying that (" $+ - \pm$) < m^{α}. We rst consider the case where the game (N; V) has strongly comprehensive payo[®] sets and then use the result for this case to obtain the result for the general case.

Case 1. Suppose the game (N; V) has strongly comprehensive payo® sets. De⁻ne for each S $\frac{1}{2}$ N

$$V^{0}(S) := \overset{*}{}_{\underline{\lambda}}^{i-1}(V(\underline{\lambda}(S)));$$

where intersection is taken over all type-consistent permutations i_{ℓ} . Then (N; V¹) 2 G((0; T); (⁻; B)) and V¹(N) is convex. Moreover, V¹(S) $\frac{1}{2}$ V (S) and

 $H_1(V^{0}(S);V(S)) \cdot \pm$

for any S $\frac{1}{2}$ N. Now let us de ne for any S $\frac{1}{2}$ N

$$V^{0}(S) := V^{0}(S; B):$$

Then (N; V⁰) 2 G((0; T); (0; B)). Moreover,

¹¹See Garratt and Qin (1997) for examples of games with lotteries, Kaneko (1982) for NTU assignment markets and Kaneko and Wooders (1982) and le Breton, Owen and Weber (1992) for partitioning games.

and

$$H_1(V^0(S); V(S)) \cdot H_1(V^0(S); V^0(S)) + H_1(V^0(S); V(S)) \cdot - + \pm$$

In addition, the game $(N; V^0)$ has a per capita payo[®] bound of C and strongly comprehensive payo[®] sets.

Applying Kovalenkov and Wooders (1999, Theorem 1) for the "⁰-remainder core, with

$$"^{0} := \frac{\frac{1}{2}}{BC}";$$

to the game (N; V⁰) it follows that for jNj $_{1}$ ("⁰; T; B) there is some coalition S such that the subgame (S; V⁰) has a non-empty core and $\frac{jSj}{jNj}$ 1 i "⁰: Let x be a payo[®] in the core of the subgame (S; V⁰). Note that $\frac{1}{2} >$ "⁰: We now prove that for jNj $\frac{(B+1)}{\frac{1}{2}}$ the payo[®] x will have the equal treatment

We now prove that for jNj $\frac{(B+1)}{k_1 \cdot 0}$ the payo® x will have the equal treatment property, that is, for every t and any i; j 2 N [t]; $x_i = x_j$: Suppose there is a type t and two players $i_{ij} i_2 2 N_[t] \cdot S$ satisfying $x_{i_1} > x_{i_2}$: By feasibility of x; there is some partition S^k of S; $\overline{S^{k-}} \cdot B$ for each k, such that x 2 $k \vee 0(S^k)$: Then, since jNj $\frac{(B+1)}{k_1 \cdot 0}$ we have that jN [t] $Sj \cdot k_jNj i = 0$ jNj > B and there must exist $j_1; j_2 2 N[t] \cdot S$ such that $x_{j_1} 2 S^{k_1}; x_{j_2} 2 S^{k_2}$ for $S^{k_1}; S^{k_2} k_2 S^k \cdot S^{k_1} \in S^{k_2}$ and $x_{j_1} > x_{j_2}$: (If $x_{i_1}; x_{i_2}$ are in the same element of S^k , there exists j 2 N[t] T S in the di®erent element of S^k than $i_1; i_2$ and it can't be $x_j = x_{i_1}$ and $x_j = x_{i_2}$ since $x_{i_1} \in x_{i_2}$. Thus we can suppose without loss of generality that j_1 and j_2 are in di®erent elements in S^k :) But then the agents of S^{k_1}nfj_1g can form the coalition S^{k_1}nfj_2gwith player j_2 rather then j_1 : By strong comprehensiveness of payo® sets and since players $j_1; j_2$ are exact substitutes in the game (S; V⁰); all players in the new coalition can be strictly better o® than in x: This contradicts the supposition that x is a core payo® for the game (S; V⁰); Thus x has the equal treatment property.

is a core payo[®] for the game (S; V⁰); Thus x has the equal treatment property. Now let $("; T; B; C; h) := \max (("; T; B); \frac{(B+1)}{h_i})$; where, as above, $"^0 = \frac{h}{BC}$. As we shown, for jNj ("; T; B; C; h) there is a coalition S h_2 N satisfying $\frac{jSj}{jNj}$ 1_i $"^0$ and, for each t, jS N [t]j > B and there is a payo[®] x 2 R^S in the equal treatment core of (S; V⁰).

Next, de ne a payo[®] z 2 R^N that, for each t, assigns to each a 2 N[t] the same payo[®] assigned to players of type t by x. This payo[®] z is undominated in the game (N; V⁰): (If payo[®] z were dominated by some coalition S₁ in (N; V⁰) then z could be dominated by some coalition S₂ ½ S₁; jS₂j · B: But there exists a coalition S₃ ½ S with the same pro le as S₂: This coalition S₃ dominates the payo[®] x in (S; V⁰) contradicting to the fact that x is in the core of (S; V⁰).) Moreover, since x 2 $_{k}^{P}$ V⁰(S^k) for some partition S^k of S with S^{k-} B; by per capita boundedness x_a · BC for any a 2 S: Thus z_a · BC for any a 2 S:

Now construct a payo[®] $x^{I} 2 R^{N}$ from the payo[®] for $x 2 R^{S}$ by

$$\mathbf{x}_{\mathrm{S}}^{\mathbb{I}} := \mathbf{x}_{\mathrm{S}}$$
 and $\mathbf{x}_{\mathrm{a}}^{\mathbb{I}} := 0$ for all a **2** S.

Let y 2 \mathbb{R}^N be the average of all payo[®]s $\frac{3}{2}(x^0)$ across all type-consistent permutations i of N. Then y has an equal treatment property. Moreover, for every t and any a 2 N [t]

$$z_{a i} y_{a} = z_{a i} \frac{j N [t]^{T} Sj}{j N [t]j} z_{a} \cdot \frac{j N [t]j_{i} j N [t]^{T} Sj}{j N [t]j} z_{a}$$
$$\cdot \frac{j N j_{i} j Sj}{j N [t]j} z_{a} \cdot \frac{"^{0}}{\hbar} z_{a} \cdot \frac{"^{0}}{\hbar} BC = ":$$

Case 2. Now we consider the general case, where the game (N; V) does not necessarily have strongly comprehensive payo® sets. We <code>-rst</code> approximate the game (N; V) by another game (N; V⁰) with strongly comprehensive payo® sets. This approximation can be done su±ciently closely, so that V (S) ½ V⁰(S) and H₁ (V (S); V⁰(S)) $\cdot \frac{\pi}{2}$ for any S ½ N. Note that the approximation is easy since, by our de⁻nition of the Hausdor® distance, we must ensure close approximation only on a compact set. (For details of such an approximation see Wooders (1983), Appendix.) Let (";T;B;C;h) := (";T;B;C;h). By Case 1 above, for jNj (";T;B;C;h) the equal treatment $(\pi + \pi + \pm)$ -core of the game (N; V⁰) is nonempty. But then for jNj (";T;B;C;h) the game (N; V) has a non-empty equal treatment $(" + \pi + \pm)$ -core. This is the conclusion we need for " \cdot min $\frac{m^{\pi}}{2}$; BC

core. This is the conclusion we need for " \cdot min $\frac{m^{\pi}}{2}$; BC Finally for "> min $\frac{m^{\pi}}{2}$; BC consider " $^{\emptyset}$:= min $\frac{m^{\pi}}{2}$; BC and let ("; T; B; C; %) := $("^{\emptyset}; T; B; C; \%)$. Since " \downarrow " $^{\emptyset}$; for jNj \downarrow ("; T; B; C; %) again the equal treatment $(" + - + \pm)$ -core of the game (N; V) is nonempty.

Proof of Theorem 2: Consider some payo[®] vector x in the "-core of (N; V). De⁻ne a payo[®] vector y by y(fig) := x(fig) i for each j 2 N. Since (N; V) has -e[®]ective B-bounded groups, there exists a partition S^k of N, with $S^{k-} \cdot B$ for each k, such that y 2 ${}^{P}_{k}$ V (S^k). Moreover, for the game (N; V); by construction the payo[®] y cannot be improved upon by any coalition S ½ N for each of it's member by more than (" + ⁻). Case 1. Consider the case, where according to the partition ${}^{n}S^{k}{}^{o}$; two players t_{1} and t_{2} of the same approximate type (that is, t_{1} ; $t_{2} 2 N[t]$) are in di[®]erent coalitions. Suppose $t_{1} 2 S^{1}$ and $t_{2} 2 S^{2}$. Suppose also that $y_{t_{1}} > y_{t_{2}}$. Then agents in S¹nft₁g would prefer to form a new coalition with t_{2} rather then t_{1} . Let $S = S^{1}nft_{1}g$. Let \dot{c} denote a permutation of N that permutes only t_{1} and t_{2} : Since players t_{1} and t_{2} are of the same approximate type, \dot{c} is a type-consistent permutation and

$$H_1 V(S^1); \frac{3}{4} (V(S [ft_2g) \cdot \pm:$$

Hence there exists a payo[®] z that is feasible for S ^S ft_2g and close to the payo[®] y with the loss for any agent in S ft_2g of not more then ±. Since transfers at rate q are possible, this new coalition can improve upon the payo[®] vector y by more than (" + ⁻) for each player if

$$q(jy_{t_1} \mid y_{t_2}j \mid (" + \bar{}) \mid \pm) > jSj \pm + jSj (" + \bar{}):$$

Since y is an (" + ⁻)-core payo[®] we must have: $jy_{t_1 j} y_{t_2} j_j (" + \pm + ^-) \cdot \frac{1}{q} jSj (" + \pm + ^-) \cdot \frac{1}{q} (B_j 1) (" + \pm + ^-)$: Hence, $jx_{t_1 j} x_{t_2} j = jy_{t_1 j} y_{t_2} j \cdot \frac{B}{q} (" + \pm + ^-)$.

Case 2. Now suppose that t_1 and t_2 are in the same element of the partition fS^kg . Then, since jN[t]j > B; there exists $t_3 \ge N[t]$ that belongs to a di®erent member of the partition fS^kg . Hence by Case 1 above: $jx_{t_1} i x_{t_2} j \cdot jx_{t_1} i x_{t_3} j + jx_{t_3} i x_{t_2} j \cdot \frac{2B}{q}(" + \pm + -)$.

8 Appendix: Additional examples.

In this Section we present two examples that were discussed in Section 3. Both illustrates the importance of the conditions in Theorem 1. Example A1 appeared previously in Kovalenkov and Wooders (1999, Example 4).

Example A1: The indispensability of the small group e[®]ectiveness assumption. Consider a sequence of games $(N^m; v^m)_{m=1}^1$ with side payments and where the mth game has 3m players. Suppose that any coalition S consisting of at least 2m players can get up to 2m units of payo[®] to divide among its members, that is, $v^m(S) = 2m$. Assume that if jSj < 2m; then $v^m(S) = 0$. Observe that each game has one exact player type and a per capita bound of 1. That is, $v_{2} = 1$; T = 1; C = 1; and $\pm = 0$: However, the $\frac{1}{7}$ -core of the game is empty for arbitrarily large values of m:

For any feasible payo[®] there are m players that are assigned in total no more than $\frac{2m}{3m}m = \frac{2}{3}m$: There are another m players that are assigned in total no more than $\frac{2m}{2m}m = m$: These 2m players can form a coalition and receive 2m in total. This coalition can improve upon the given payo[®] for each of its members by $\frac{1}{6}$; since $(2m_{i}, \frac{5}{3}m)\frac{1}{2m} = \frac{1}{6}$:

Example A2: The independence of the per capita boundedness assumption. Let m be an arbitrary positive integer. Let $(N; V^m)$ be a superadditive game where, for any coalition S; with jSj > 1;

 $V^{m}(S) := fx 2 R^{N} : x_{i} \cdot m \text{ for } i 2 S; \text{ and } x_{k} = 0 \text{ for } k 2 Sg$

and for each i 2 N,

$$V^{m}(fig) := fx 2 R^{N} : x_{i} \cdot 0 \text{ and } x_{j} = 0 \text{ for all } j \in ig:$$

Now let us de ne a collection of games

$$G^{a} := f(N; V^{m}) : m 2 Z_{+}g:$$

Obviously any game $(N; V) \ge G^{*}$ has convex payo[®] sets and non-empty core. Moreover, any game $(N; V) \ge G^{*}$ has one (exact) player type and thus is 1thick. We leave it to the reader to verify that any game $(N; V) \ge G^{*}$ has strictly e[®]ective 3-bounded groups. Thus, $G^{*} \cancel{2} G((0; 1); (0; 3))$ and all games in G^{*} are 1-thick, have convex payo[®] sets and non-empty cores.

However the class G^{α} is not restricted by any common per capita boundedness condition. For any positive integer C and any m > C the game (N; V^m) 2 G^{α} does not satisfy per capita bound of C. Hence the condition of the common per capita bound on the collection of games is independent of all other conditions (and the implication) in Theorem 1.

References

- [1] Billera, L.J. (1974) \On games without side payments arising from general class of markets," Journal of Mathematical Economics 1, 129-139.
- [2] le Breton, M., G. Owen and S. Weber (1992) \Strongly balanced cooperative games," International Journal of Game Theory 20, 419-428.
- [3] Garratt, R. and C-Z Qin (1997) \On a market for coalitions with indivisible agents and lotteries," Journal of Economic Theory 77, 81-101.
- [4] Conley, J. and M.H. Wooders (1998) \Anonymous pricing in Tiebout economies and economies with clubs," Topics in Public Finance, D. Pines and S. Zilcha eds., (to appear).
- [5] Hildenbrand, W. and A.P. Kirman (1988) Equilibrium Analysis, Advanced Textbooks in Economics, Amsterdam- New York- Oxford- Tokyo: North-Holland.

- [6] Kaneko, M. (1982) \The central assignment game and the assignment markets," Journal of Mathematical Economics 10, 205-232.
- [7] Kaneko, M. and M.H. Wooders (1982) \Cores of partitioning games," Mathematical Social Sciences 3, 313-327.
- [8] Kaneko, M. and M.H. Wooders (1989) \The core of a continuum economy with widespread externalities and -nite coalitions: From -nite to continuum economics," Journal of Economic Theory 49, 135-168.
- [9] Kaneko, M. and M.H. Wooders (1997) \Utility theory in cooperative games," Handbook of Utility Theory, P. Hammond and C. Seidel eds., Klauwer Academic Press (to appear).
- [10] Kelso, A.S. and V.P. Crawford (1982) \Job matching, coalition formation, and gross substitutes," Econometrica 50, 1483-1504.
- [11] Kovalenkov, A. and M.H. Wooders (1999) \Approximate cores of games and economies with clubs," Autonomous University of Barcelona WP 390.97 and WP 391.97, revised.
- [12] Mas-Colell, A. (1975) \A further result on the representation of games by markets," Journal of Economic Theory 10, 117-122.
- [13] Mas-Colell, A. (1979) \A re⁻nement of the Core Equivalence Theorem," Economic Letters, 307-310.
- [14] Shapley, L.S. and Shubik, M. (1966) \Quasi-cores in a monetary economy with nonconvex preferences," Econometrica 34, 805-827.
- [15] Shapley, L.S. and Shubik, M. (1969) \On market games," Journal of Economic Theory 1, 9-25.
- [16] Shubik, M. and M.H. Wooders (1982) \Near markets and market games," Cowles Foundation Discussion Paper No. 657, to appear in Topics in Mathematical Economics and Game Theory; Essays in Honor of Robert J. Aumann, eds. M. H. Wooders American Mathematical Society Fields Communication Volume.
- [17] Tiebout, C. (1956) \A pure theory of local expenditures," Journal of Political Economy 64, 416-424.
- [18] Roth, A. and Sotomayor, M. (1990) Two-sided Matching; A Study in Gametheoretic Modeling and Analysis, Cambridge University Press, Cambridge.

- [19] Wooders, M.H. (1980) \Asymptotic cores and asymptotic balancedness of large replica games," Stony Brook Department of Economics Working Papers No.184 and 215, revised 1980, on-line at http://www.chass.utoronto.ca/~wooders2.
- [20] Wooders, M.H. (1983) \The epsilon core of a large replica game," Journal of Mathematical Economics 11, 277-300.
- [21] Wooders, M. H. (1994a) \Large games and economies with e[®]ective small groups," in Game Theoretic Aproaches to General Equilibrium Theory, J.-F. Mertens and S. Sorin eds., Dordrecht- Boston- London: Kluwer Academic Publishers.
- [22] Wooders, M. H. (1994b) \Equivalence of games and markets," Econometrica 62, 1141-1160.
- [23] Wooders, M.H. (1997) \Equivalence of Lindahl equilibrium with participation prices and the core," Economic Thery 9, 115-127.
- [24] Wooders, M. H. and W.R. Zame (1984) \Approximate cores of large games," Econometrica 52, 1327-1350.