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Abstract

We introduce state dependent recursive preferences into the Mehra-Prescott
economy. We show that such preferences can match the historical first two mo-
ments of the returns on equity and the risk free rate. Other authors have reported
similar results using state dependent expected utility preferences. These authors
have tended to emphasize the importance of countercyclical risk aversion in ex-
plaining the equity premium puzzle. We find that countercyclical risk aversion
plays an important role but only when combined with modest cyclical variation in
intertemporal substitution.
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1. Introduction

Representative agent models that embed the Lucas-Breeden (Lucas (1978), Breeden
(1979)) paradigm for explaining asset returns are generally regarded as inconsistent with
the empirical data. Difficulties such as the equity premium puzzle (Mehra and Prescott
(1985)), and the risk free rate puzzle (Weil (1989)) are well documented and it has
been shown that these puzzles are very robust (Kocherlakota (1996), Campbell (1996),
and Cochrane (1997) provide good surveys). Recently, several authors (Campbell and
Cochrane (1999), and Gordon and St-Amour (2000,2001), among others) have pointed to
countercyclical risk aversion as a potential source of mis-specification that may account
for these puzzles. However, risk aversion and intertemporal substitution are intertwined
in these models, just as they are in the additive expected utility model, therefore it is
difficult to interpret which feature of preferences varies over the cycle and the role played
by each. Moreover, it is useful to investigate the role of state dependent preferences in
a simpler setting, where it is easier to control the various ingredients in the mix, and
where we can abstract from sampling error.

The preferences suggested by Epstein and Zin (1989) separate the coefficient of
relative risk aversion (CRRA) from the elasticity of intertemporal substitution (EIS),
and in doing so provide a partial separation of attitutes toward risk from preferences
over deterministic consumption paths. This paper generalizes the model of Epstein and
Zin (1989) by allowing the representative agent to display state dependent preferences
and assesses if the resulting choices can add to the explanation of various empirical
puzzles that have been investigated in finance and macroeconomics. For simplicity, we
work within the simple environment introduced by Mehra and Prescott (1985). We
investigate various combinations of state dependent CRRA with state dependent EIS.
In the case of constant elasticity of intertemporal substitution and time varying CRRA,
our results look very similar to those generated without state dependence. However, we
also investigate the same model but with time variation in other features of preference.
We find that introducing an EIS that varies only slightly with the state while keeping
the other features of preferences constant provides a good approximation to the first two
moments of the returns on equity and the risk free rate. Combining a state dependent
EIS with a state dependent CRRA allows us to match perfectly the US historical data.
For completeness, we also consider in our calculations the possibility that patience is
state dependent, but find that adding state dependence to the discount factor adds little
to the story described above.

There is a long tradition in finance of showing, in the absence of arbitrage, that asset
prices can be rationalized by a representative agent with some utility function (for two
recent examples, see Duffie (1992) or Kubler (2003a,2003b)). Although these results are
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for finite horizon economies and do not cover the state dependent recursive preferences
that we investigate, it suggests that at some level the results in this paper should not be
particularly surprising. However, we think it is useful to have an explicit example of a
preference ordering that does the job. Our preferences introduce no new state variables
beyond the exogenous state variables required to describe the endowment consumption
process and they allow us to generate a stationary recursive equilibrium. If nothing else,
our results should remind readers that statements such as “representative agent models
are inconsistent with the data” or “consumption is too smooth to explain the equity
premium” must be preceded by the qualifying phrase “given standard preferences”. Our
example also suggests that economists need to sharpen their intuition on the role played
by state dependent risk aversion in explaining asset returns. We find that the received
wisdom is supported by our findings, but this support only occurs when we also allow
features of the preferences that govern choices over deterministic sequences to be state
dependent as well.

Section 2 reviews the equity premium puzzle. Sections 3 and 4 provide new results
that are useful in interpreting both the usefulness of the Mehra and Prescott economy
as an approximation, and why standard preferences fail in this setting. In Section 3,
we show how the first two moments of consumption growth, the return on equity, and
the risk-free rate, combined with no arbitrage and a simple behavioural assumption can
be used in the Mehra-Prescott economy to uniquely determine the points of support for
these three processes. We also report summary statistics on the implied Sharpe ratios
and predictability of asset returns that arise from this general setting. In Section 4,
we go a bit further and compute the unique stochastic discount factor process that is
required to match the data on asset returns in the Mehra and Prescott economy; we
also report some properties of this process that can be compared to estimates obtained
elsewhere. Some new intuition is provided for the inability of the class of isoelastic
expected utility preferences to match the data and a heuristic argument is made to
motivate state dependent preferences. Sections 5 and 6 provide a formal statement of
the agent’s problem and a characterization of the equilibrium. Technical results are
relegated to an appendix. Our numerical results are reported in Section 7, and we end
with a brief conclusion.

2. Equity Premium Puzzle

Mehra and Prescott (1985) report that the unconditional mean of the risk premium
observed in the US stock market is much larger than that predicted by a standard
version of the representative agent model. From 1898 to 1978 in the United States,
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the average annual real rate of return on short-term bills was 0.80 percent and the
average annual real rate of return on stocks was 6.98 percent. Thus the average equity
premium was 618 basis points. They calibrated an asset pricing model with time-
additive isoelastic expected utility to see if the model could deliver unconditional rates
of return close to the historical average rates of return on stocks and bills. They used
a 2-point Markov process for consumption growth with mean E (gt) = 1.018, standard
deviation σ (gt) = 0.036, and correlation (gt, gt−1) = −0.14. They found that the model
cannot account for both the average level of the risk-free rate (0.8%) and the difference
(6.18%) between the average rates of return on equity (6.98%) and on risk free securities
during the period 1898-1978. With the CRRA below 10, the model could not produce
more than a 35 basis point equity premium. This result is called the equity premium
puzzle. Although there is some debate over the moments used by Mehra and Prescott
to calibrate their economy, we choose to proceed using their estimates in order to make
our results as comparable as possible; at various points below, however, we comment
briefly on the sensitivity of our results to modest variations in these moments.

In the time-additive isoelastic expected utility framework, the coefficient of relative
risk aversion and the elasticity of intertemporal substitution are intertwined. The
elasticity of intertemporal substitution is constrained to be the inverse of the coefficient
of relative risk aversion. A very high coefficient of relative risk aversion (of the order of
40 or 50) makes it possible to replicate the large secular risk premium on equity, yet, the
implied very low elasticity of intertemporal substitution also leads to the counter-factual
prediction of an extremely high risk free rate. Conversely, a low coefficient of relative
risk aversion leads to a counter-factually low equity premium, although it does imply a
relatively low risk free rate.

Within the context of representative agent models, various authors have attempted
to solve the equity premium puzzle by introducing more general preferences. One
approach disentangles risk aversion attitudes from intertemporal substitution using a
special class of recursive preferences (e.g. Epstein and Zin (1989), Weil (1989)). The
intuition behind this approach is that given the risk free rate is mainly controlled by
the magnitude of the elasticity of intertemporal substitution, while the risk premium
is a reflection of the coefficient of relative risk aversion, a preference ordering that can
parametrize the elasticity of intertemporal substitution and the coefficient of relative
risk aversion independently should provide the additional degree of freedom required
to replicate both the level of the risk free rate and the risk premium. The results
reported in Epstein and Zin (1990) and Weil (1989), however, were not very encouraging
(although Epstein and Melino (1995) do much better). A second approach modifies
the preferences by introducing habit formation. Habit formation leads to a form of
state dependent preferences that can generate substantial variation in the price of risk.
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A very successful example is Campbell and Cochrane (1999). However, risk aversion
and substitution are intertwined in their model; therefore it is hard to interpret which
feature of preferences varies over the cycle, and, in particular, if changes in attitudes
towards risk are all that is required. In a third approach, that is in many ways closest in
spirit to this paper, Gordon and St. Amour (2000,2001) use expected-utility preferences
but allow the CRRA to be a latent process. They also introduce a scaling parameter
and show that the ratio of consumption to their scaling parameter plays a crucial role
in matching the data. Using Bayesian methods, they find that they can provide a good
match to post WWII data even though the CRRA process shows very little variation
over the cycle. Again, it is not obvious which feature of preferences is varying over the
cycle in their model. By working with an artificial economy we can simplify what’s
going on and provide an interesting perspective on their results.

3. The Environment

To highlight the role played by state dependent preferences, we shall follow as closely
as possible the environment introduced by Mehra and Prescott (1985). We work with
a Lucas endowment economy in which consumption growth follows a Markov process
that takes on two values. We assume both points of support for consumption growth
are equally likely and choose (gl, gh) to match the first two moments of consumption
growth given for the US historical data: E(g) = 1.018 and σ (g) = 0.036. This involves
solving the equation system:

0.5gl + 0.5gh = E(g), (3.1)

0.5 (gl −E(g))2 + 0.5 (gh −E(g))2 = s2 (g) ,

Because the first equation is linear in the unknowns (gl, gh), and the second is quadratic,
there are two solutions. Under the obvious requirement gl < gh, we obtain·

gl
gh

¸
=

·
0. 982
1. 054

¸
. (3.2)

These parameters for the endowment process and its points of support are the same
as those used by Mehra and Prescott (1985), along with Weil (1989), Epstein and Zin
(1990) and Epstein and Melino (1995). Mehra and Prescott (1985) also assume that the
probability of staying in the same state is 0.43 and the transition probability matrix for
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consumption is symmetric, that is1,

Π =

·
πll πlh
πhl πhh

¸
=

·
0.43 0.57
0.57 0.43

¸
. (3.3)

Our objective in this environment is to find preferences that match the first two
moments of the returns on equity and the risk-free rate. Mehra and Prescott (1985) es-
timate the historical average return and standard deviation of equity to be E (M) = 1.07
and σ (M) = 0.165, and estimate the historical average return and standard deviation
of T -bills to be E (rf ) = 1.008 and σ (rf ) = 0.056.

Melino and Epstein (1995) point out that if we assume consumption growth is a
sufficient statistic for asset returns, then we can use the first two moments of asset
returns to solve for the points of support for the risk free rate and equity processes
in the Mehra-Prescott economy. They restrict attention to economies with stationary
asset returns and a state vector given by St = (st, ct), where ct denotes the economy’s
endowment of consumption at time t and st is an exogenous process that determines the
evolution of endowment consumption growth gt. Stationarity of the risk free process and
the assumption that behaviour doesn’t add any additional endogenous state variables
implies that the risk free process is measurable with respect to st. This means that, just
as with consumption growth, the risk-free rate process can take on only two values, and
fitting the first two moments exactly leads to a quadratic equation with two solutions,
namely (rl, rh) = (0.952, 1.064) or (rl, rh) = (1.064, 0.952). In order for equity returns to
be stationary, the price-earnings2 ratio at time t must also be expressable as a function
of st; then the first two moments of equity returns can be used to solve for the two
values that the price-earnings ratio can realize in this economy. Again, this leads to a
quadratic equation, so there are two solutions for the support of the price-earnings ratio:
(Pl, Ph) = (23. 4671, 27. 8385) and (Pl, Ph) = (28.9511, 22.7302) . At first glance it looks
like there are four solutions for the points of support of the risk-free rate and price-
earnings process that will match the first two moments of the asset returns. However,
among these four ‘solutions’, three imply arbitrage opportunities and can be discarded.
Therefore, in this simple Mehra-Prescott environment, rather than focus on the first two
moments of asset returns, our objective can be phrased as matching the data (Pl, Ph) =
(23. 467, 27. 839) and (rl, rh) = (1.064, 0.952). Note that the required price-earnings

1Cecchetti, Lam, and Mark (1993) use a slightly later sample and more carefully constructed con-
sumption data and estimate this probability to be 0.47. Yang (2001) shows that the conclusions in this
paper are robust to small increases in πll.

2Earnings and dividends are equal in the Lucas endowment economy, so the price-earnings ratio is
also the price-dividend ratio. The return on the market can be written as Mt+1 = (Pt+1+1)/Pt ∗ gt+1
where P is the price-dividend ratio.
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ratio is procyclical, but the required risk-free rate is countercyclical. These cyclical
patterns for returns have been obtained simply by assuming that they are measurable
with respect to the same process that determines consumption growth, matching their
first two moments, and excluding arbitrage. If we also assume there are no other
sources of uncertainty in the economy beyond St, then the price of all other assets can
be determined in the Mehra-Prescott environment from the price-earnings and risk-
free rate processes. In the next section, we develop a particularly convenient way to
summarize the asset pricing implications of this environment. Before doing so, it is
straightforward to calculate the returns to equity, Mij , that obtain when consumption
growth goes from state i at time t to state j at time t + 1 and to summarize some of
their important properties:

M l h

l 1.024 1.295
h 0.863 1.092

(3.4)

So when the low consumption growth state is realized, i.e. the economy is ‘recession’,
the representative agent faces a random return to holding equity of 2.4% if the economy
stays in the low growth state next period, but an almost 30% return if the economy
draws a high consumption growth next period. Similarly, when the high consumption
growth state is realized, she faces a potential loss of about 14% if the economy falls into
recession and a gain of 9.2% if the expansion continues. By construction, the returns
in this two state economy fit the historical Sharpe ratio, defined by E(M − rf )/σ (M),
equal to 0.376. The conditional Sharpe ratio, equal to 0.852 and 0.083 in the low and
high growth states respectively, is strongly countercyclical.

Several authors have reported that excess returns are forecastable by a variety of
variables, such as the short-term interest rate, rft, (e.g. Campbell (1991)), the dividend
price-ratio, 1/Pt (Fama and French (1988) and Campbell and Shiller (1987)), and the
consumption-wealth ratio (Lettau and Ludvigson (2001)); we show below that in a Lucas
endowment economy the consumption-wealth ratio is just 1/(1 + Pt). To assess the
forecastability of excess returns using these variables, as well as lagged excess returns,
consider a regression of the form:

Mt,t+1 − rft = α+ βXt + ut (3.5)

We can easily calculate the population counterparts of β and the R2 from (3.5) for
the choices of X listed in the previous paragraph. The results are summarized in the
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following table:
Xt β R2

Mt−1,t − rf,t−1 −0.375 .141
rft 0.938 .152
1/Pt 15.706 .152
1/(1 + Pt) 16.963 .152

(3.6)

Not surprisingly, the negative serial correlation in the consumption endowment
process induces a negative serial correlation in the excess return to holding equity. The
corresponding population R2 is higher than what we would compute using historical
samples based on annual data. It would be lowered if we reduced the negative serial
correlation in the consumption growth process; a similar comment applies to the R2

corresponding to the remaining regressors reported in (3.6). To anticipate our later
results, reducing the serial correlation in consumption growth also makes it ‘easier’ to
rationalize the asset return processes in that it increases the set of parameters within our
preference ordering that does so. It also us to do so with somewhat lower coefficients
of risk aversion.

4. Intuition on Why State Dependent Preferences will Work

Hansen and Richard (1987) show that in the absence of arbitrage opportunities, there
exists a (positive) stochastic discount factor Qt,t+1 that allows us to price assets via the
fundamental equation

Et(Qt,t+1R
m
t,t+1) = 1 (4.1)

where Et denotes the conditional expectation operator, and Rmt,t+1 denotes the return
to holding asset m from time t to t+ 1.

In the simple Mehra-Prescott economy, we have two states and two assets (equity
and the risk-free bond), so the stochastic discount factor process is uniquely determined
from the asset return processes derived in the previous section. Let Qij denote the
discount factor that is applied in state i to payoffs next period in state j. Using
the results from the previous section3 and eq(4.1), we can compute the 2x2 matrix of
discount factors for this economy:

Q l h

l 1.862 0.244
h 1.127 0.949

(4.2)

3Recall that the return to equity realized if we go from state i at time t to state j at time t + 1 is
given by Mij = (Pj + 1)/Pi ∗ gj and the risk-free rate in state i is ri.
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Looking at the Mehra-Prescott economy from this new perspective introduces some
useful insights. To match the data on the first two moments of asset returns, we re-
quire a stochastic discount factor that is very sensitive to the current state. When the
representative agent experiences a low draw for consumption growth, she assigns a very
high value to assets that will pay off one unit of consumption if the low state is realized
next period (1.862) but a relatively low value to assets that will pays off one unit of
consumption if the high state is realized next period (0.244). By contrast, when the
representative agent draws a high value for consumption growth, she assigns approxi-
mately equal weights to the payoffs in the two states. Informally, the representative
agents acts as if she is very risk averse during recessions, but only modestly risk averse
during booms.

As a check on the reasonableness of the required Q process given by (4.2), and
indirectly on the reasonableness of using the two-state process underlying the Mehra-
Prescott economy as an approximation, it is useful to point out that its mean and stan-
dard deviation, E(Q) = .995 and σQ) = .573, satisfy the bounds computed by Hansen
and Jaganathan (1991) (see their Figure 1). The first moment of Q varies somewhat
across states, but most of its variation comes from the high conditional variance of Q
in the low growth state. A further check on the required Q process can be obtained by
computing the predicted return processes for various other assets. Yang (2001) shows
that the required Q yields an average real yield on 10 year discount bonds of 3.5%;
the conditional yields are 4.3% in the low growth state and 2.7% in the high growth
state. We stress that these predictions, as well as the results in the previous section
on the returns to holding the risk-free asset and equity, follow from a fairly small set of
inputs: a) the two-state Markov process for consumption growth; b) the estimated first
and second moments of the returns to the risk-free asset and equity; c) the assumption
that consumption growth is a sufficient statistic for the risk-free rate and price-dividend
ratio in each period; and d) no arbitrage. Any model consistent with the environment
(a-b) and behaviour (c-d) inherits all of the other features described above.

Mehra and Prescott (1985) tried to approximate the required stochastic discount
factor process using an equilibrium model with the environment above and a represen-
tative agent with isoelastic expected utility preferences. With such preferences, it is
well known that the predicted stochastic factors turn out to be of the formeQij = βg−γj (4.3)

where β denotes the subjective discount rate and γ is the coefficient of relative risk
aversion.

Notice that with isoelastic expected utility preferences, the stochastic discount factor
varies over time only with the rate of consumption growth realized next period. Com-
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paring to (4.2), this says that the predicted two rows in the Q matrix must be identical;
obviously these preferences are not going to work. If we naively fit the parameters β
and γ to the first row of the Q matrix (this would amount to assuming that the agent
behaved myopically and did not realize her preferences were likely to change in the fu-
ture), we obtain the estimates β = 1.105 and γ = 28.722. If we fit these parameters to
the second row of the Q matrix, we obtain the estimates β = 1.079 and γ = 2.415. The
two values of beta are fairly similar, although both indicate a preference for postponing
consumption and would be ruled inadmissible. The implied value of the EIS/CRRA
parameter, however, varies sharply across the two states.

Epstein and Zin (2001) and Weil (1989) looked at this same economy but replaced
the isoelastic expected utility preferences with a recursive preference ordering having a
CES aggregator and an expected utility certainty equivalent. This leads to predicted
stochastic discount factors of the form

eQij = βg−γj (βMij/gj)
δ (4.4)

where Mij denotes the return to holding equity from state i to state j, and δ is a
function of preference parameters. The dependence of the predicted stochastic discount
factor on Mij removes the restriction that both rows of the predicted Q matrix must
be identical. However, the failure of Epstein and Zin (2001) and Weil (1989) to find
a significant improvement over results based on eq (4.3) indicates that the additional
flexibility afforded by eq (4.4) is insufficient to match the data. Indeed, as we’ll show
below, once the stochastic discount factors of eq (4.4) are calibrated to match the
equity return process, the predicted stochastic discount factors obtained with these
preferences are virtually indistinguishable from those obtained using isoelastic expected
utility preferences.

Various other preference orderings have appeared in the literature. Typically, they
introduce additional state variables to the equilibrium asset pricing process and so do not
yield the prediction that the price-dividend and risk free rate processes are measurable
with respect to consumption growth. In some cases, a further drawback is that they
do not lead to stationary asset returns. Two examples merit special attention.

Campbell and Cochrane (1999) consider a preference ordering with habits that leads
to a stochastic discount factor of the form

eQt,t+1 = βg−γt+1(Ht+1/Ht)
−γ (4.5)

where Ht denotes the proportion of consumption in excess of the inherited habit level
at time t. The coefficient of relative risk aversion with these preferences is γ/Ht.
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Notice that the stochastic discount factor of eq (4.5) varies explicitly with the current
and the subsequent period. Campbell and Cochrane (1999) cleverly ‘reverse engineer’
a stochastic process for H and show that this allows them to match the historical
behaviour of asset returns, but find that this requires that the representative agent
has very high values of risk aversion during recessions. Introducing habit persistence
augments the state space and in this paper we show that we can rationalize the first two
moments of the equity return and risk free rate processes without introducing additional
state variables. Notice, however, that with these preferences it is straightforward to
obtain stationary returns as long as the model for habits yields a stationary process for
Ht+1/Ht

4.

Gordon and St. Amour (2000) examine a version of state dependent expected utility
preferences. Their preference ordering leads to a stochastic discount factor of the form

eQt,t+1 = βg
−γ(st)
t+1

³ct+1
θ

´γ(st)−γ(st+1)
(4.6)

where the coefficient of relative risk aversion depends on a latent state variable, st (not
necessarily the process that determines consumption growth, and ct+1/θ is the ratio
of next period’s level of consumption to a scale parameter θ. Notice the stochastic
discount factor depends upon both the level and growth rate of consumption. Adding
the level of consumption as a state variable for asset returns augments the state space.
It also leads to the result that in a growing economy asset returns will not be stationary,
even if st is stationary. Our state dependent Epstein-Zin preferences will not include
the Gordon-St. Amour state dependent expected utility preferences as a special case.
However, our preferences have the benefit of leading to a stationary recursive equilibrium
in a growing economy.

To match the first two moments of the returns on equity and the risk free rate, we
require a stochastic discount factor process that varies sharply with the current state.
Our naive calculation above suggests that state dependent preferences are one way to
account for why the representative agent assigns such different values to next period’s
outcomes as the current state varies, and may be able to match the required stochastic
discount factor process and therefore the first two moments of the returns on equity
and the risk free rate. Of course, if preferences are state dependent, then the agent will
take this account in forming her state contingent plans and the form of the equilibrium
stochastic discount factor will not be a simple variation of (4.3). To proceed, we must
describe the environment, the agent’s preferences, and the equilibrium more formally.

4 It is tempting to simply assume that H can only take on two values indexted by st and then treat
the ratio Hi/Hj as a parameter to be determined (the individual terms Hi and Hj are not identifiable).
However, our calculations show that this leads to an economy that cannot match the asset return data.
We did not investigate richer specifications for the H process.
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5. The Representative Agent’s Problem

Consider an infinitely-lived representative agent who receives utility from the consump-
tion of a single good in each period. At time t, current consumption is non-stochastic
but future consumption levels are generally stochastic. It is convenient to discuss first
the budget constraint and then the agent’s preferences.

5.1. Budget Constraint Facing a Representative Agent

Assume there are n assets that pay dividends dt = (d1t, d2t, ...., dnt) and are traded
competitively at prices pt = (p1t,p2t, ..., pnt). The agent starts each period with asset
holdings denoted by zt = (z1t, z2t, ..., znt).

Let xt represent beginning-of-period wealth,

xt = (dt + pt)zt, t ≥ 0. (5.1)

Define the portfolio share vector w = (w1, w2,..., wn) and the gross return vector rt =
(r1t, r2t, ..., rnt) by

wi =
pitzit
ptzt

, (5.2)

and

rit =
dit + pit
pi,t−1

, t ≥ 1. (5.3)

Then we see that wealth evolves according to

xt+1 = (xt − ct)wtrt+1 (5.4)

5.2. Preferences of the Representative Agent

We assume the agent has preferences defined on random consumption sequences that
may be constructed by means of the following recursive functional relation:

Ut =

Ã
c
ρ(st)

t + β(st)
h
Et

³
U

α(st)
t+1

´i ρ(st)
α(st)

! 1
ρ(st)

, 0 6= α < 1, 0 6= ρ < 1. (5.5)

where Et is the expectation conditional on period-t information, β(st), α(st) and ρ(st)
are parameters that depend on an exogenous state variable st. The coefficient of relative
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risk aversion (CRRA) for ‘timeless gambles’ is 1−α(st). The parameters β(st) and ρ(st)
are harder to interpret. When ρ (st) = ρ, a constant, β(st) is the discount parameter
and measures time preference while the elasticity of intertemporal substitution (EIS)
is 1/(1− ρ). For this reason, we will refer to β(st) as the discount parameter and ρ(st)
as the EIS parameter throughout the paper. Some comments on the interpretation of
these parameters when ρ(st) varies with the state are provided below.

Maximizing Ut subject to the wealth accumulation constraint given in eq(5.4) yields
the following first order conditions

Et (IMRSt,t+1Mt,t+1) = 1, (5.6)

Et (IMRSt,t+1rj,t+1) = 1, j = 1, 2, ..., n , (5.7)

where Mt,t+1 = w∗t rt+1 =
Pn
i=1w

∗
itri,t+1 is the gross return to holding the optimal

portfolio w∗t from time t to t+1, and the intertemporal marginal rate substitution from
time t to t+ 1 (IMRSt,t+1) is given by

IMRSt,t+1 = β(st)g
α(st)−1
t+1

µ
β(st)Mt,t+1

gt+1

¶α(st)
ρ(st)

−1

(at+1)

α(st)
ρ(st)

− α(st)
ρ(st+1)

(5.8)

where at ≡ ct/xt is the consumption wealth ratio. See Appendix A for a derivation of
this expression. Note that eq (5.8) exploits only information about the agent’s prefer-
ences and her budget constraint. In the Lucas endowment economy, the equilibrium
conditions afford a further simplification, see eq(6.8) , that will be exploited below.

If α (st) = α (a constant), ρ (st) = ρ (a second constant), and β(st) = β (a third
constant), then eq(5.6) and eq(5.7) reduce to the model of Epstein and Zin (1989),
namely

IMRSEZt,t+1 = βg
α−1
t+1

µ
βMt,t+1

gt+1

¶α
ρ −1

(5.9)

with EIS = 1/ (1− ρ) and CRRA = 1− α.

If α (st) = ρ(st) = ρ (the same constant), and β(st) = β (another constant), eq(5.6)
and eq(5.7) reduce further to the familiar Euler equations of the expected utility model
(see Hansen and Singleton (1983)), i.e.

IMRSeut,t+1 = βg
ρ−1
t+1 (5.10)

with EIS = 1/(1− ρ) and CRRA = 1− ρ.
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5.3. Some interpretation of the preference parameters

As we shall see below, having a state dependent EIS parameter plays a crucial role in
rationalizing the Mehra-Prescott data, so some intuition as to its interpretation would
indeed be welcome. Suppose the future states {st, st+1, ...} are known and we consider
only deterministic consumption sequences. In this case, the recursive definition of the
preference ordering simplifies to

U
ρ(st)
t = c

ρ(st)

t + β(st)U
ρ(st)
t+1 (5.11)

Suppose we consider consumption paths that are small perturbations around a ref-
erence path {ct}. For example, we could have a reference path such as the endowment
sequence ct = g(st)ct−1. Let V t denote the value of utility associated with the refer-
ence path. (We show in the Appendix that if {c}t is the endowment path, then the
maximized value of V t is proportional to ct). Without loss of generality, we can rewrite
(5.11) as µ

Ut

V t

¶ρ(st)

=

µ
ct

V t

¶ρ(st)

+ β(st)

µ
V t+1

V t

¶ρ(st)µUt+1
V t+1

¶ρ(st)

(5.12)

Assume that the perturbations are such that we can use a first order approximation
to the left hand side of (5.12) around Ut = V t, i.e.µ

Ut

V t

¶ρ(st)

= 1 + ρ(st)

µ
Ut

V t
− 1
¶

(5.13)

Use the same approximation for the last term on the right hand side of (5.12).
Simplifying yields a linear difference equation in Ut of the form

Ut = u(ct; st) + β(st)

µ
V t+1

V t

¶ρ(st)−1
Ut+1 (5.14)

where the felicity function has derivative

u0(ct; st) =
µ
ct

Vt

¶ρ(st)−1

(5.15)

When Vt is a constant, as we might expect if the reference sequence is more or
less stationary, and assuming that β(st) is a constant, the approximation (5.14) leads
to the same preferences over deterministic sequences as those used by Gordon and St-
Amour (2001). In general, however, the parameter ρ(st) influences the curvature of
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the felicity function, the reference level of utility, and the rate of time preference. The
first effect is relatively straightforward. Let Q(t, t+1) denote the (absolute value of the
intertemporal) marginal rate of substitution between c(t) and c(t + 1). The elasticity
of intertemporal substution, EIS(t, t+ 1), measures the elasticity of c(t+ 1)/c(t) with
respect to Q(t, t+ 1) along an isoquant. Using the approximation (5.14), we obtain

Q(t, t+ 1) =
β(st)

³
V t+1
V t

´ρ(st)−1 ³ ct+1
V t+1

´ρ(st+1)−1
³
ct
Vt

´ρ(st)−1 (5.16)

Therefore, the inverse of EIS(t, t+ 1) is given by

d lnQ(t, t+ 1)

d ln(ct+1/ct)
= 1− ρ(st) + [ρ(st+1)− ρ(st)]

d ln(ct+1)

d ln(ct+1/ct)
(5.17)

= 1− ρ(st) +
ρ(st+1)− ρ(st)

1 +Q(t, t+ 1) ct+1ct

where the second line in (5.17) follows from noting that along an isoquant we have
dct = −Q(t, t+ 1)dct+1. In those adjacent periods for which the state doesn’t change,
we have ρ(st+1) = ρ(st), so EIS(t, t+ 1) = 1/ (1− ρ(st)) . In general, we EIS(t, t+ 1)
lies between 1/ (1− ρ(st)) and 1/ (1− ρ(st+1)), as Q(t, t+ 1)ct+1/ct is strictly positive.

In ranking random consumption sequences, the roles played by the various para-
meters is more involved. The intuition provided by Epstein and Zin (1989) that the
certainty equivalent function describes risk preferences over timeless gambles is still
valid. Intuitively, timeless gambles can be thought of those risks where the uncertainty
is realized in an atemporal setting such as an experiment. Epstein and Zin (1989)
showed that if the preference parameters are not state dependent, then risk aversion is
strictly increasing in α for fixed values of (β, ρ). They also showed that some random
consumption sequences could be ranked having only knowledge of the certainty equiva-
lent function. These two properties constituted what they called a ‘partial separation’
of attitudes toward risk and intertemporal substitution. We have been unable to verify
either of these two properties for our state-dependent version of the Epstein-Zin prefer-
ences. In fact, it appears that all three parameters play an important role in ranking
growing random consumption sequences that is difficult to separate. To illustrate,
suppose we consider random consumpton sequences of the form {ct, egct+1, eg2ct+1, ...},
so that next period’s growth rate is random but once realized it will continue forever
thereafter so that eg = gt+1 = gt+2 = ..., etc. Notice that all uncertainty is eliminated
at time t+1, so from then the preference parameters can be treated as constants. For
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such random sequences, the utility function (5.5) reduces to

U
ρ(st)
t = c

ρ(st)

t + β(st)c
ρ(st)

t

"
Et

Ã
g
α(st)
t+1

³
1− β(st+1)g

ρ(st+1)
t+1

´ −α(st)
ρ(st+1)

!# ρ(st)
α(st)

6. Equilibrium

We consider a Lucas-style endowment economy. There is a single perishable consump-
tion good, the total supply of which is described by the endowment process c = {ct}.
Equity, interpreted as a claim to the endowment process, is the only asset in non-zero
net supply. Without loss of generality, we take equity to be the first asset in the vector z
and we normalize the number of shares of equity in this economy to 1. The equilibrium
is described by the price process p such that the goods market and asset markets clear.
That is, the solution to the utility maximization above with price process p has ct = d1t
and zt = (1, 0, 0, ..., 0) for t ≥ 1.

The return to the market portfolio Mt,t+1, under the previous assumption, equals
the return to wealth

Mt,t+1 =
p1,t+1 + ct+1

p1,t
. (6.1)

For convenience, we will drop the first subscript and subsequently will refer to the
price of equity and its dividend at time t as pt and dt.

Following Mehra and Prescott (1985), we assume that the endowment process for
consumption is such that the growth rate gt+1 = ct+1/ct follows a first-order, two-state
Markov process. Further we assume the only component of the exogenous state variable
st that indexes the parameters of the agent’s preferences is the consumption growth
rate. Now we will determine the supporting equilibrium price process.

We consider only equilibria where the ex-dividend price of equity is described by
the time-invariant and positive function, p (gt,ct) of the variables gt and ct. It follows,
because of the homogeneity of preferences, that the price is linearly homogeneous in
consumption; that is,

p (g, c) = p (g, 1) c = P (g) c. (6.2)

Thus eq(6.1) simplifies to

16



Mt,t+1 =
p (gt+1, ct+1) + ct+1

p (gt, ct)
=
P (gt+1) + 1

P (gt)
gt+1. (6.3)

We also assume that the exogenous variable gt takes only two values and is distrib-
uted as

gt+1 = { gh w.p. πh
gl w.p. πl

high state,
low state.

(6.4)

with transition probability matrix

Π =

·
πll πlh
πhl πhh

¸
(6.5)

where πij is the probability of going from state i to state j and its value is given by
(3.3). Note that this transition probability matrix yields the marginal probabilities
πh = πl = 0.5.

The conditional expected return on equity (which is the same as the return to the
market portfolio given there is only one outside asset) if today’s (time t) state is i ∈ {l, h}
and t+ 1 state is j ∈ {l, h} will be:

E (Mt,t+1|gt = gi) =
X
j∈{l,h}

πijMij , (6.6)

where πij is transition probability from eq(6.5) and Mij is given by eq(6.3). For
convenience, we use Pj and rj to denote the price-dividend ratio and risk-free rate that
obtain when the realized state is gj .

In the Lucas endowment equilibrium, the agent’s wealth, given by (5.1), reduces to

xt = (ct + pt) · 1 (6.7)

so the consumption-wealth ratio in equilibrium can be written as

at ≡ ct
xt
=

1

1 + pt/ct
=

1

1 + Pt
(6.8)

where Pt ≡ pt/ct is equity price-earnings ratio. Using eq(6.3) to replace Mt,t+1,
and eq(6.8) to replace at+1 with 1/(1 + Pt+1), we see that in the equilibrium for this
economy, the representative agent’s intertemporal marginal rate substitution5 from time

5We use the term ‘stochastic discount factor’ to describe the IMRS after substituting terms involving
market equilibrium.
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t to t + 1, given by eq(5.8) , simplifies to give us a stochastic discount factor for this
economy of the form

Qt,t+1 = β(st)g
α(st)−1
t+1 [Pt/β(st)]

1−α(st)
ρ(st) [(1 + Pt+1)]

α(st)
ρ(st+1)

−1
(6.9)

For future reference, notice that Qt,t+1 varies explicitly with the current period’s
coefficient of relative risk aversion, α (st), but only implicitly on α (st+1) through the
endogenous price-earnings process. By contrast, Qt,t+1 in equilibrium varies explicitly
with both current and next period’s elasticity of intertemporal substitution, indexed by
ρ (st) and ρ (st+1).

7. Results

In this section we report our results for various combinations of state dependent CRRA,
EIS and discount parameters. We begin with the case in which the coefficient of
relative risk aversion (CRRA) varies with the state, but the elasticity of intertemporal
substitution (EIS) is a constant. We show that this generalization does little to improve
the match between the historical data and the predicted asset returns in the Mehra-
Prescott economy. We then consider the case of a constant CRRA but a state dependent
EIS. Somewhat unexpectedly, we find that this is a more promising direction. Finally,
we allow both features of preference to vary with the state. This allows us to match
the historical first two moments exactly. This is done with very modest procyclical
variation in the EIS but with strong countercyclical risk aversion on the part of the
representative agent. We also investigate the potential contribution of allowing the
discount parameter to also vary with the state and find that not much changes.

In what follows, it is convenient to denote by αl the value of α(st) in the low growth
consumption state. The parameters αh, ρl, and ρh are defined analogously.

7.1. State Dependent CRRA, Constant EIS, and Constant Discount Para-
meters

With ρ(st) = ρ (a constant) and β(st) = β (a second constant), but allowing for cyclical
variation in attitudes towards risk, eq(6.9)simplifies to

Qt,t+1 = βg
α(st)−1
t+1

µ
β(1 + Pt+1)

Pt

¶α(st)
ρ
−1

(7.1)
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Although many authors have stressed the role of countercyclical risk aversion in
accounting for asset pricing puzzles, in this section we show that the Q given by eq
(7.1) cannot match the observed first two moments of asset returns. Following Mehra
and Prescott (1985), we fix β = .95. For a grid of values for ρ, we use the pricing
equation for equity, eq (5.6), to solve for the values of αl and αh that match exactly the
equity return process6. We then use these parameter values to compute the risk-free
rate using (5.7). The results are reported in Table 1.

For ρ > 0, we see that matching the equity return process leads to inadmissible
values for αh. Taken at face value, this says that to match the equity process we need a
representative agent who is risk-loving during expansions. These preference parameters
lead to a risk free rate that is a) too high and b) procyclical rather than countercyclical
as shown to be required in Section 4.

When ρ is negative but greater than −9, there are no values of αl and αh that match
exactly the equity return process. For very small values of EIS = 1/(1− ρ), solutions
exist and lead to admissible values for the CRRA parameters, but the representative
agent now turns out to be very risk averse in both states. The implied risk free rate is
too low but is now countercyclical as required. However, as we vary ρ, not much happens
to the implied risk-free rate process; it improves in some directions but deteriorates in
others. Weil (1989) examined a special case of our economy. His preferences were not
state dependent, so he set α(st) = α (a constant). Weil concluded that the Epstein-Zin
preferences had very little to contribute to an explanation of the equity premium puzzle7.
He found no substantive improvement over using expected utility preferences. Although
he could come close to matching the first moments of equity and the equity premium
with a CRRA = 45 and an EIS = 1/10 (whereas with CRRA = 45 and EIS = 1/45
the match was horrible), he concluded that the need to rely on such high risk aversion
made the results very nonrobust and moreover the match in second moments was poor.
Our results in Table 1, and an enormous variety of additional experiments reported in
Yang (2001) lead to an even stronger statement. Epstein-Zin preferences with state
dependent risk aversion have very little to contribute to an explanation of the equity
premium puzzle: We can do about as well Weil (1989).

Some insight is gained by looking at the stochastic discount factors implied by the
6The values of αl = 0 and αh = 0 will always solve eq (5.6), but these values have been ruled out

by assumption to simplify our expressions. Care must be taken in the numerical work to avoid these
spurious solutions.

7Epstein and Melino (1995) give a stronger result. Using a revealed preference argument, they show
that no member of the class of state independent recursive preferences (with a CES aggregator) can
rationalize the Mehra-Prescott data.
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preference parameters in Table 1. These values when they exist do not vary much
with ρ, so we can make the point by focusing on one example. When ρ = −44, fitting
the risk aversion parameters leads to Qll = 2.11 and Qlh = 0.12. These are fairly
close to the required values given in eq (4.2). But we also obtain Qhl = 1.89 and
Qhh = 0.14, whereas the required values in the high growth state are much closer to
equality.8 We conclude that if we calibrate these preference parameters to the equity
process, we simply don’t move away much from the isoelastic expected utility prediction
that the stochastic discount factors will not vary with the initial state.

7.2. Constant CRRA, State Dependent EIS, and Constant Discount Para-
meters

With α(st) = a (a constant), and β(st) = β (a second constant), but allowing for cyclical
variation in the elasticity of intertemporal substitution, eq(6.9) simplifies to

Qt,t+1 = βg
α−1
t+1

[(1 + Pt+1)]
α

ρ(st+1)
−1

[Pt/β]
α

ρ(st)
−1 (7.2)

Note that the predicted stochastic discount factor for this economy varies with the
current state only through the denominator of the third term in eq(7.2).

Again, we fix β = .95. For a grid of values for α, we use the pricing equation for
equity, eq(5.6), to solve for the values of ρl and ρh that match exactly the equity return
process. We then use these parameter values to compute the risk-free rate using (5.7).
The results are reported in the first panel of Table 2.

For low values of risk aversion, the implied risk-free rates are too high on average,
and the implied equity premium is too low. For example, at α = 1 (equivalently,
CRRA = 0), we obtain a risk free rate in the low growth state, rl, that is too high
(1.17 vs. 1.064), but a value in the high growth state, rh, that is about right (0.95).
As we raise CRRA, both risk free rates fall but in a way such that the equity premium
rises. At the value of α = −14, we match the historical equity premium to within 15
basis points. As we are matching the equity process by construction, this means that
at these parameter values, we replicate the first moment of the return on equity and
the risk free rate. We also match the second moment of equity returns, although the
risk free rate process is too volatile. Unfortunately, the values of the EIS parameters

8When ρ > 0, the stochastic discount factors in the low state are similar to those reported for
ρ = −44, but in the high state they are reversed.
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obtained with β = .95 and α = −14 are inadmissible: They satisfy the agent’s first
order conditions only.

If we increase the value of β and repeat the exercise, however, we obtain admissible
parameter values. For a given CRRA, varying β changes the values of ρl and ρh that are
required to match exactly the equity return process, but the implied stochastic discount
factor does not change. As a result the predicted risk free rates in Table 2 depend only
on the value of α. The second through fifth panels of Table 2 give the values of ρl and
ρh that are required to match the equity return process for some values of β ranging
from .96 to .99. Increasing β lowers the required values of ρl and ρh so that at these
higher values of β, we can match the first moment of the return on equity and the risk
free rate with values of ρl and ρh less than one. Note also that the EIS parameters is
procyclical in panels 3-5.

Although the EIS parameter varies only a little across the two states, this is enough
to have a major effect on the predicted asset returns. We know from the work of Weil
(1989) and others, that the Epstein-Zin preferences without state dependence cannot
match the the first two moments on asset returns. Indeed, if we keep α = −14, but
set β = .98, and ρl = ρh = 1.85 (the average of the two values from Table 2), we get
E(M) = .96 and E(r) = 1.05, and an equity premium that is negative.

Although we do much better by allowing the EIS parameter to vary while holding
the CRRA constant than vice-versa, the excessive volatility in the risk free rate is
bothersome. A look at the implied stochastic discount factors from Table 2 obtained
setting α = −14 is also troubling: the implied stochastic discount factors do not vary
enough with the initial state to match the required pattern given in eq(4.2).

7.3. Cyclical CRRA, Constant EIS, and Cyclical Discount Parameters

Table 3 gives the results with ρ(st) = ρ (a constant), but with cyclical variation
in risk aversion and time preference. For each value of ρ, we solve for the values
of {βl,βh,αl,αh} that fit the required stochastic discount factor process and exactly
matches the first two moments of the return to equity and the risk free asset. Note
that as ρ falls, the values of βl and βh in Table 3 both increase. The value of βh, how-
ever, always exceeds 1. This example shows that having a flexible preference ordering
by itself is not enough to rationalize the asset return data. Although we have four
parameters to choose and exactly four moments to fit, we can’t do so within the set of
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admissible parameters9.

7.4. Cyclical CRRA, Cyclical EIS, and Constant Discount Parameters

We now consider the case where β(st) = β (a constant), but both α and ρ vary with
the state. Given β, eq (5.6) and eq (5.7) that price equity and the risk free asset reduce
to four equations in four unknowns in the Mehra-Prescott economy. The results from
choosing the preference parameters to match exactly the first two moments of asset
returns are given in Table 4.

For β = .95, the representative agent’s first order conditions price the two assets
exactly with values risk aversion parameters of αl = −23.25 and αh = 0.83. As
anticipated in Section 4, this means the agent is very risk averse during recessions (low
growth states) but almost risk neutral during booms (high growth states). The agent’s
implied values for the elasticity of intertemporal substitution parameters are ρl = 1.00
and ρh = 1.75. Unfortunately the latter value is inadmissible.

Increasing β has almost no effect on the risk aversion parameters needed to ratio-
nalize the first two moments of asset returns. But, as we increase β , the values for ρl
and ρh decrease. For values of β ≥ .97, both elasticity of intertemporal substitution
parameters fall in the admissible range. Although the values of ρl and ρh are very
similar in the two states, we can see comparing to Table 1 that this modest procyclical
variation in the EIS is crucial to fitting the moments of asset returns.

7.5. State Dependent CRRA, EIS and Discount Parameters

What happens if we allow all three of our preference parameters to vary with the state?
The stochastic discount factor, reproduced again for convenience, is given by

Qt,t+1 = β(st)g
α(st)−1
t+1

[(1 + Pt+1)]
α(st)

ρ(st+1)
−1

[Pt/β(st)]
α(st)
ρ(st)

−1
(7.3)

9As pointed out earlier, Epstein and Melino (1995) searched over an infinite dimensional parameter
space (the space of certainty equivalent functions) without finding an admissible set of parameters that
rationalized the asset returns in this setting.
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We have more parameters than equations, so there are lots of ways of combining
the parameters to match the data perfectly. To get some idea of what is possible,
we fix the values of βl and βh, keeping the average value at β = .98, then we use eq
(5.6) and eq (5.7) that price equity and the risk free asset to solve for the remaining
preference parameters so as to match exactly the first two moments of asset returns.
The results are given in Table 5. If β is procyclical, so that the agent is more impatient
in recessions than in booms, the coefficient of relative risk aversion required to match
the asset returns falls slightly in the recession and increases a bit during booms relative
to the values reported in Table 5. The opposite happens if β is countercyclical. While
the induced changes in the α parameters are interesting, what is most striking from
Table 5 is that there does not appear to be much value added in letting β vary with the
state, in addition to α and ρ.

8. Conclusion

State dependent preferences have a long history in economics (see Gordon and St.
Amour (2000,2001) and the references therein). Many authors have concluded recently
that countercyclical risk aversion plays an important role in explaining the behaviour
of asset prices. However, no distinction is made between attitudes toward risk and
intertemporal substitution. In this paper, we disentangle these features of preferences
to assess the role played by each in accounting for the first two moments of asset returns.
We conclude that countercyclical risk aversion and a constant elasticity of intertemporal
substitution adds very little to the predictions made using preferences that are state
independent and cannot rationalize the observed data. However, we can match the
average risk free rate and equity premium by keeping risk preferences constant and
allowing the elasticity of intertemporal substitution to vary. To match both moments of
the return on equity and the risk free rate, we require a strong countercyclical variation in
risk aversion, and a very modest procyclical movement in the elasticity of intertemporal
substitution.

Economists have developed a good deal of intuition about the role that countercycli-
cal risk aversion can play in explaining the pattern of asset returns. Much less is known
about the role played by state dependent intertemporal substitution or time preference.
We hope our paper stimulates further research.

23



Table 1: Cyclical CRRA
ρ EIS αl αh rl rh E(r) E(M − r)
1 ∞ −30.40 22.90 1.02 1.09 1.06 .013

0.5 2 −22.63 40.99 1.02 1.09 1.06 .012
−4 0.2 −10.40 n.a.
−9 0.1 −40.95 n.a
−14 1/15 −42.38 −106.2 1.05 .86 .95 .116
−19 0.05 −42.74 −63.12 1.05 .87 .95 .116
−44 1/45 −43.05 −35.01 1.04 .88 .96 .113
−99 .01 −43.10 −28.11 1.04 .88 .96 .111
−999 .001 −43.11 −24.04 1.04 .89 .96 .108

Notes: We fix β = .95. For each value of ρ, the parameters αl and αh are chosen to
price the required equity process exactly, and then the risk free rates and equity premium are
calculated from the implied stochastic discount factor process. The entry ‘n.a.’ means no
solution is available.
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Table 2: Cyclical EIS
β α ρl ρh rl rh E(r) E(M − r)
.95 1 .70 .74 1.17 .95 1.06 .01

0.5 .71 .75 1.16 .95 1.06 .01
−1 .73 .77 1.16 .95 1.05 .02
−3 .77 .81 1.15 .94 1.05 .02
−6 .83 .88 1.14 .93 1.04 .03
−10 .93 .98 1.12 .92 1.02 .05
−14 1.06 1.12 1.11 .91 1.01 .06
−19 1.30 1.37 1.09 .90 1.00 .07

.96 −10 −.01 -.01 1.15 .94 1.04 .03
−14 .13 .14 1.14 .93 1.04 .03
−19 .13 .14 1.13 .93 1.03 .04

.97 −10 −.71 −.74 1.12 .92 1.02 .05
−14 −.86 −.90 1.10 .91 1.00 .07
−19 −1.13 −1.19 1.08 .90 .99 .08

.98 −10 −1.51 −1.58 1.12 .92 1.02 .05
−14 −1.80 −1.89 1.10 .91 1.01 .06
−19 −2.32 −2.43 1.09 .90 .99 .08

.99 −10 −2.31 −2.42 1.12 .92 1.02 .05
−14 −2.74 −2.86 1.10 .91 1.01 .06
−19 −3.50 −3.66 1.09 .90 .99 .08

Notes: We fix β within each panel of Table 2 at the indicated value. Within a panel, for each
value of α, the parameters ρl and ρh are chosen to price the required equity process exactly,
and then the risk free rates and equity premium are calculated from the implied stochastic
discount factor process. For β = .96, there are two solutions at each value of α. The solutions
not reported resemble those reported in Table 1, with ρl ≈ ρh ≈−.015; at these values, the
stochastic discount factor assigns almost zero value to consumption in the high growth state,
and the equity premium is too high at 0.125.
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Table 3: Cyclical CRRA and Cyclical Time Preference

ρ βl βh αl αh

1.0 .90 1.05 −7.64 .27
0.5 .90 1.05 −4.50 .16
0.1 .90 1.06 −1.05 .04
−0.1 .90 1.06 1.14 −.04
−1.0 .91 1.07 19.20 −.69
−2.0 .92 1.09 157.19 −5.6
−3.0 .92 1.10 −112.6 4.0
−4.0 .93 1.11 −60.6 2.16
−9.0 .97 1.18 −34.2 1.22
−14.0 1.00 1.27 −30.5 1.09
−19.0 1.04 1.35 −28.94 1.03
Notes: For each value of ρ, the preference parameters βl, βh, αl and αh are chosen to price

the required equity and risk free rate processes exactly. There is a discontinuity in the solution
values for αl and αh that occurs for ρ just below -2.
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Table 4: Cyclical CRRA and Cyclical EIS
β αl αh ρl ρh
.95 −25.00 .89 1.25 1.31
.96 −51.89 1.85 .16 .17
.965 −18.91 .67 −.38 −.40
.97 −21.21 .76 −.92 −.97
.98 −22.25 .79 −1.98 −2.10
.99 −22.57 .81 −3.04 −3.22
Notes: For each value of β, the preference parameters αl, αh, ρl and ρh are chosen to price

the required equity and risk free rate processes exactly. There is a discontinuity in the solution
values of αl and αh that occurs around β=.961.
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Table 5: Cyclical Time Preference, Cyclical CRRA and Cyclical EIS
βl βh αl αh ρl ρh
.961 .999 −33.13 1.18 −1.49 −1.55
.965 .995 −29.34 1.05 −1.59 −1.67
.970 .990 −26.13 .93 −1.73 −1.81
.975 .985 −23.90 .85 −1.86 −1.96
.980 .980 −22.25 .79 −1.98 −2.10
.985 .975 −20.98 .75 −2.11 −2.24
.990 .970 −19.98 .71 −2.24 −2.38
.995 .965 −19.16 .68 −2.37 −2.53
.999 .961 −18.61 .66 −2.47 −2.65
Notes: For each value of βl and βh, the preference parameters αl, αh, ρl and ρh are chosen

to price the required equity and risk free rate processes exactly.
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Appendix A
First Order Conditions
Here we solve for the first order conditions of the following problem; for further de-

tails, please refer to Epstein (1988). The agent’s objective is to choose feasible consump-
tion and portfolio shares to maximize utility. The Bellman equation for this problem
is

J (xt,It) = max
{ct,wt}

³
c
ρ(st)

t + β(st)µt (J (xt+1,It+1))
ρ(st)

´ 1
ρ(st)

, (.1)

s.t:

xt+1 = (xt − ct)wtrt+1. (.2)

where It denotes “information variables” and µt (ez) ≡ [Et(ezα(st))] 1
α(st) for all random

variables ez.
The homogeneity of µt(·) and the linearity of xt+1 in (xt,ct), by eq(.2) , implies that

the solution has the form:

J (xt,It) = A (It)xt. (.3)

where A (It) denotes an It-measurable random variable.
Substituting eq(.3) into eq(.1) gives:

A (It)xt = max
{ct,wt}

µ
c
ρ(st)

t + β(st)µ
ρ(st)

t

¶ 1
ρ(st)

This maximization problem can be decomposed as the following two problems:

• Consumption is chosen by:

A(It)xt = max
ct∈[0,xt]

{c
ρ(st)

t + β(st) [(xt − ct)µ∗t ]
ρ(st)

}
1

ρ(st)

(.4)

• Portfolio choice can be described by:

µ∗t = max
{w∈Rn+,wι=1}

E
1

α(st)

t

h
(A(It+1)wrt+1)

α(st)
i

(.5)

where ι = (1, 1, ..., 1)0 .
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We first solve the consumption problem for arbitrary µ∗t . Again, the homogeneity
of eq(.4) implies that the optimal consumption policy can be written as

c∗t = a(It)xt (.6)

where a (It) denotes an It-measurable random variable. For convenience we use at =
a (It) below. Note that at can be thought of as the consumption wealth ratio.

Substitute eq(.6) into eq(.4):

A(It)
ρ(st)

/ρ (st) = max
at∈[0,1]

{a
ρ(st)

t + β(st) [(1− at)µ∗t ]
ρ(st)}/ρ (st)

The FOC of this problem is:

a
ρ(st)−1
t = β(st) (1− at)

ρ(st)−1
µ
∗ρ(st)
t (.7)

These last two equations combine to yield:

A(It) = a

ρ(st)−1
ρ(st)

t (.8)

Thus:

A(It+1) = a

ρ(st+1)−1
ρ(st+1)

t+1 (.9)

Equation eq(.8) shows that the optimal consumption wealth ratio is an invertible
function of A (It). We exploit this feature in our solution of the portfolio choice problem
below.

Now substitute eq(.9) into eq(.5); the portfolio choice problem becomes

µ∗t = max
{w∈Rn+,wι=1}

E
1

α(st)

t


a ρ(st+1)−1

ρ(st+1)

t+1 wrt+1

α(st)
 (.10)

Substituting eq(.10) into eq(.7) , we get

a
ρ(st)−1
t = β(st) (1− at)

ρ(st)−1

E 1
α(st)

t


a ρ(st+1)−1

ρ(st+1)

t+1 Mt,t+1

α(st)



ρ(st)

(.11)

where Mt,t+1 = w
∗
t rt+1 =

Pn
i=1w

∗
itri,t+1 is the gross return of the optimal portfolio w

∗
t .

Eq(.11) can be rearranged to get:
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Et

β(st)α(st)ρ(st)

µ
1− at
at

¶α(st)
ρ(st)−1
ρ(st)

a
α(st)

ρ(st+1)−1
ρ(st+1)

t+1 M
α(st)
t+1

 = 1 (.12)

Note that eq(.12) can be written in the form

Et [IMRSt,t+1 ∗Mt,t+1] = 1 (.13)

where

IMRSt,t+1 = β(st)

α(st)
ρ(st)

µ
1− at
at

¶α(st)
ρ(st)−1
ρ(st)

a
α(st)

ρ(st+1)−1
ρ(st+1)

t+1 M
α(st)−1
t,t+1 (.14)

Also note that the budget constraint, eq(.2) , implies xt+1 = (xt − ct)Mt,t+1 =
(1− at)Mt,t+1xt; therefore at+1 = ct+1/xt+1 = gt+1at/ [(1− at)Mt,t+1] .Using this iden-
tity, we can rewrite eq(.14) into a variety of equivalent expressions.

The FOC of eq(.10) with respect to wi gives

Et

a ρ(st+1)−1
ρ(st+1)

α(st)

t+1 M
α(st)−1
t,t+1 (ri,t+1 − rj,t+1)

 = 0, i ∈ (1, ..., n)

Multiple by wi for all i, and sum over i = 1, ..., n, we get:

Et

a ρ(st+1)−1
ρ(st+1)

α(st)

t+1 M
α(st)−1
t,t+1 (Mt,t+1 − rj,t+1)

 = 0 (.16)

Selecting rj,t+1 to be the risk free rate, rft, which is time t measurable (note we do
not use the notation rf,t+1 ), eq(.16) can also be written using eq(.13) as:

Et (IMRSt,t+1rft) = 1 (.17)

where IMRSt,t+1 is given by eq(.14).
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Numerical Solution

Given two states l and h, eq(.13) and eq(.17) can be written as:

X
j={l,h}

πijIMRSi,jMi,j = 1 (.18)

X
j={l,h}

πijIMRSi,jri = 1 (.19)

where i ∈ {l, h}. Using eq(6.3) and equilibrium condition eq(6.8) , then eq(.14) can be
written as

IMRSt,t+1 = β
αt
ρt

t P
αt

ρt−1
ρt

t

µ
1

1 + Pt+1

¶αt
ρt+1−1
ρt+1 µ

1 + Pt+1
Pt

gt+1

¶αt−1

= β
αt
ρt

t P
1−αt

ρt
t (1 + Pt+1)

αt
ρt+1

−1
gαt−1t+1 (.20)

Thus eq(.18) and eq(.19) can be written as

X
j={l,h}

πijβ
αi
ρi

i P
1−αi

ρi
i (1 + Pj)

αi
ρj
−1
gαi−1j Mi,j = 1

X
j={l,h}

πijβ
αi
ρi

i P
1−αi

ρi
i (1 + Pj)

αi
ρj
−1
gαi−1j =

1

ri

Equivalently,

X
j={l,h}

πijβ
αi
ρi

i

(1 + Pj)
αi
ρj

P
αi
ρi
i

gαij = 1 (.21)

X
j={l,h}

πijβ
αi
ρi

i

(1 + Pj)
αi
ρj
−1

P
αi
ρi
−1

i

gαi−1j =
1

ri
(.22)

where i ∈ {l, h}.
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