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Abstract

We provide simple mechanisms to implement the efficient allocation of
pollution, first assuming complete information across firms and then al-
lowing for incomplete information. Both mechanisms operate by inducing
firms to monitor one another, using firms’ reports to determine pollution
allotments and transfers. The complete information mechanism deter-
mines a firm’s transfer according to a linear pollution price, set by other
firms. Both mechanisms can be modified to be budget-balanced, in and
out of equilibrium. The complete information mechanism implements the
efficient allocation even when firms are allowed to use mixed strategies.
Under a “single-crossing” condition, the same holds for the incomplete
information mechanism.



1 Introduction

Markets to allocate pollution rights play an important role in current efforts to control

pollution efficiently — the Environmental Protection Agency has allowed firms to

trade pollution permits since 1977 — and this role is likely to grow as pollution

abatement efforts intensify. It is clear that a solution to the pollution control problem

must involve decentralization of some sort: efficient pollution emissions depend on

revenue and cost characteristics of firms, which are typically unknown to regulatory

authorities. And with decentralization there arises the possibility of strategic behavior

on the part of firms. The extensive literature on the theory of implementation is

concerned with precisely this problem, but the mechanisms proposed there, while

general in scope, are typically quite complex. In this paper, we construct simple

mechanisms to solve the specific problem of efficiently allocating pollution emissions

among a fixed set of firms, assuming the regulatory authority can observe pollution

emissions and knows the social cost of pollution. The regulator need not know the

characteristics of the firms. We initially assume that firms have complete information

about each other’s characteristics, and we then relax that assumption to allow for

incomplete information.

In much of the existing pollution control literature, it is assumed that the regula-

tor knows the efficient level of total pollution — or at least an appropriate “target”

level — and the problem is only to allocate that given quantity of pollution permits

among firms. As discussed by Dale (1968), a competitive market for pollution permits

is well-suited for this task: in equilibrium, firms equate the marginal benefit of pollu-

tion to a common price and, therefore, marginal benefits are equated across firms. If

the impact of pollution is independent of its source, an efficient allocation of pollution

permits is achieved. Kwerel (1977) shows how a combination of licensing and effluent

charges can induce firms to reveal their technological characteristics truthfully, allow-

ing the regulator to determine the efficient level of total pollution, but his result relies

on price-taking behavior in the market for permits, an untenable assumption if, as

Hahn (1984) supposes, some firms have market power. Lewis and Sappington (1995)

generalize the simplest problem by allowing firms to have incomplete information but

still assume the regulator knows the socially optimal level of pollution.1

Our mechanisms endogenously produce the efficient level of total pollution and

allocates this total efficiently, while recognizing the strategic incentives of firms to

exercise market power, i.e., to influence the prices they pay for pollution emissions.

To address this problem, the complete information mechanism replicates the most

important feature of competitive markets: each firm purchases a quantity of pollution

1Xepapdeas (1991), Kritikos (1993), and Herriges, Govidasamy, and Shogren (1994) consider the
problem of abatement monitoring in an imperfect information environment with budget–balancing.
However, they also assume that the regulator knows the optimal pollution level.
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at a price that is independent of the firm’s actions. In contrast to the above work,

we allow the social impact of pollution to depend on the firm that produces it,2 so

efficiency cannot always be achieved with a uniform price. Nonetheless, by designing

incentives for the firms to monitor each other, each firm’s price is set appropriately and

the allocation of pollution is determined efficiently in the unique pure strategy Nash

equilibrium of the mechanism. The incomplete information mechanism still induces

the firms to monitor each other, but, because firms may have insufficient information

to set prices accurately, pollution emissions are no longer allocated according to a

system of linear prices.

The complete information mechanism not only produces the efficient allocation

of pollution as an equilibrium outcome, but — since the equilibrium is unique — it

ensures that no other allocations can arise as a result of equilibrium behavior. Thus,

we implement the efficient allocation in Nash equilibrium using a mechanism that is

especially simple compared to those in the implementation literature.3 Problematic

constructions, such as integer games, modulo games, and other forms of “unwinnable

competition,” are not used. Firms simply select quantities of pollution, used to set

prices, and are charged accordingly. The outcome function of the mechanism is con-

tinuous, and it is therefore robust to small mistakes in the strategic choices of firms.

As long as the regulator can place an upper bound on the efficient level of total pollu-

tion (which we will assume), the strategies of firms can also be restricted to compact

sets. Duggan and Roberts (1998) show that, under these conditions, the equilibrium

outcomes of the mechanism are robust to “small” departures from the complete infor-

mation assumption. We show that the mechanism is easily adapted to handle mixed

strategies and to produce a balanced budget, both in and out of equilibrium. More-

over, we can extend the mechanism to allow for negative externalities across firms as

the result of pollution emissions.

Though our analysis takes place in the context of firms and pollution emissions, it

applies equally well to the general problem of implementing social welfare optima in

quasi-linear environments. Thus, our complete information mechanism is related to

the “Nash-efficient” mechanisms surveyed by Groves (1979), and our extension to the

case of negative externalities is reminiscent of Hurwicz’s (1979) and Walker’s (1981)

mechanisms for implementing Lindahl equilibria in public good economies. Moore

and Repullo (1988) and Varian (1994) propose simple multi-stage mechanisms and,

in contrast to other work cited here, use the refinement of subgame perfect equilibrium

to implement efficient outcomes.4 While our approach is distinguished by the specific

2The assumption of “anonymous” pollution is unrealistic, for example, if firms are geographically
distinct and pollution is localized: the social cost of a medium amount of pollution, spread very
thinly, may be insignificant; when concentrated at just one locality, however, it may be quite costly.

3See Maskin (1977) and Moore and Repullo (1990) for general analyses of Nash implementation.
4Eyckmans (1997) adapts Varian’s mechanism to implement a proportional solution to a complete
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way in which announcements determine prices, our approach also differs from that

taken in these papers by explicitly allowing the presence of social externalities (here,

the cost of pollution) due to the agents’ actions.

The incomplete information mechanism implements the efficient allocation of pol-

lution in Bayesian equilibrium. That this is possible follows from the general analysis

of Matsushima (1993), who shows that Bayesian monotonicity, a critical condition for

implementation,5 is automatically satisfied in quasi-linear environments satisfying a

condition called “No Consistent Deceptions.” This condition restricts the distribu-

tion of firms’ characteristics and is somewhat weaker than the condition employed in

this paper. While Matsushima proves the possibility of implementation, he does not

provide a simple mechanism suitable for the task. As before, our mechanism gives

firms incentives to monitor each other, but, because information is incomplete, one

firm can no longer give a point prediction of another’s pollution emissions — using

a method of belief revelation in Duggan (1998), we ask each firm to report its beliefs

about its neighbor. The mechanism can be adapted to achieve budget-balance, both

in and out of equilibrium, and, if a “single-crossing” property is imposed, efficiency

is maintained even if the firms can use mixed strategies.

Dasgupta, Hammond, and Maskin (1980) consider the problem of efficient pollu-

tion control, allowing, as we do, for differential impact of pollution and for incom-

plete information. Their mechanism, a simple adaptation of the mechanism of Groves

(1973), Clarke (1971), and Vickrey (1960), has the advantage that firms have dom-

inant strategies leading to efficient pollution. It is well known, however, that the

Groves-Clarke-Vickrey (GCV) mechanisms are not generally budget-balanced, and

the Dasgupta-Hammond-Maskin mechanism inherits that flaw. Our incomplete in-

formation mechanism uses GCV transfers, but only off the equilibrium path. Thus,

when there are at least three firms, it is a simple matter to balance the budget in

equilibrium. Modifying the mechanism somewhat further, we achieve budget-balance

out of equilibrium as well.

Crémer and McLean (1985, 1988) and McAfee and Reny (1992) consider a general

mechanism design problem in which agents have incomplete information and offer a

mechanism that, under a weak informational condition, generates the optimal allo-

cation as a Bayesian equilibrium outcome and extracts all surplus from the agents.

Their restriction on the distribution of agents’ types neither implies nor is implied by

the condition we impose. Indeed, the objective of these papers is essentially different

than ours: they seek to design a mechanism supporting a particular sort of allocation

(surplus-extracting) as an equilibrium, but, as noted by Crémer and McLean, their

information pollution abatement problem. This solution requires that individuals bear abatement
costs in proportion to their willingness to pay for abatement.

5See Jackson (1991) for a general analysis of Bayesian implementation.
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mechanism may have multiple equilibria, some of them inefficient. Our objective, in

contrast, is to design a mechanism with an efficient and unique equilibrium, avoiding

the problem of selecting from multiple equilibria. Less critically, we are concerned

with achieving budget-balance, while these papers achieve a net flow of transfers,

equal to the total surplus of the agents, to the planner.

In Section 2, we describe our complete information model; we present our first

mechanism and show that its unique Nash equilibrium yields the socially optimal

allocation of pollution; and we discuss possible extensions of our model, some men-

tioned above. For another example, while we focus on the problem of negative social

externalities in this paper, our mechanism works equally well in the “dual” problem of

positive social externalities, where firms produce a social good as a byproduct of their

actions. In Section 3, we describe the incomplete information model and mechanism;

we show that it uniquely implements the efficient level of pollution; and we extend

our results to account for mixed strategies and budget-balancing.

We close this section by mentioning several issues that, although beyond the

scope of this work, merit future consideration. First, while we do not assume that

the regulator knows the cost and revenue characteristics of firms, we do assume the

regulator observes the pollution outputs of each firm — but in many situations only

the aggregate level of pollution may be observed and may not be easily attributed

to the firms separately. Thus, we have focused on one important type of asymmetric

information in regulatory problems (adverse selection) while abstracting away from

another (moral hazard). Second, we have not considered the issue of collusion, which

would be a particularly relevant issue when the number of firms is small and firms

interact over long time horizons. One approach to this issue would be to design

mechanisms that implement the efficient allocation of pollution not only in Nash

equilibrium but also in strong Nash equilibrium, which captures the incentives of

coalitions to engage in cooperative behavior.6 Last, as just hinted, pollution control is

a dynamic problem, and the analysis of efficient pollution control should be extended

to cover situations in which output/pollution decisions are made repeatedly over time.

2 Complete Information

2.1 The Model

We consider n ≥ 2 firms, indexed by i. Denote i’s level of pollution (or equivalently i’s

quantity of pollution permits) by Qi. The monetary benefit that i receives from pro-

ducing Qi units of pollution is denoted Bi(Qi), and C(Q1, . . . , Qn) is the social cost,

measured in monetary terms, imposed on society by the firms’ pollution. We assume

6See Maskin (1979) for a general analysis of implementation in strong Nash equilibrium.
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that each Bi(·) is concave and differentiable, that C(·) is continuously differentiable,7

and that [
∑n
i=1 Bi(Qi)] − C(Q1, . . . , Qn) is strictly concave. The benefit and cost

functions are common knowledge among the firms, while the regulator is assumed to

know only the form of the cost function.

The regulator’s problem is to implement the socially optimal allocation of pollu-

tion, i.e., the solution to

maxQ1,...,Qn [Σn
i=1Bi(Qi)]− C(Q1, . . . , Qn)

s.t. Q1 ≥ 0, . . . , Qn ≥ 0.

We assume this problem has a solution, which, by strict concavity, must be unique.

Denote it (Q∗1, . . . , Q
∗
n). We impose the appropriate Inada-type conditions on C(·) and

each Bi(·) to ensure an interior solution,8 so that the social optimum is characterized

by the condition that each firm’s marginal benefit equals the marginal social cost of

pollution:
dBi

dQi

(Q∗i ) =
∂C

∂Qi

(Q∗1, . . . , Q
∗
n)

for all i. Lastly, we assume the regulator knows some bound K such that Q∗i < K for

all i.

Because social costs may depend differentially on the emissions of different firms,

the efficient allocation cannot generally be obtained by fixing a price common to all

firms. Optimality could be achieved if the regulator were to set price ∂C
∂Qi

(Q∗1, . . . , Q
∗
n)

for each firm i, but this requires knowledge of the social optimum itself. And this

in turn requires a familiarity with the firms’ benefit functions that is unlikely to be

found in practice. In the next subsection, we construct a simple mechanism that

implements the efficient allocation of pollution, without presuming such familiarity

on the part of the regulator.

2.2 The Mechanism

The mechanism is defined as follows. Firm i purchases a quantity Q̂i ∈ [0, K] for

itself and reports a quantity Qi−1 ∈ [0, K] for its “neighbor,” firm i − 1, where we

treat n as firm 1’s neighbor. As a function of these reports, firm i pays

Q̂i
∂C

∂Qi

(Q̂1, . . . , Q̂i−1, Qi, Q̂i+1, . . . , Q̂n) + |Qi−1 − Q̂i−1|.

7Continuity of the derivative is used only to ensure that the mechanism defined in Section 2.3 is
continuous.

8Specifically, limQi→0[ ∂Bi∂Qi
(Qi)− ∂C

∂Qi
(Q1, . . . , Qn)] =∞, for all Q1, . . . , Qn.
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Thus, firm i faces the price ∂C
∂Qi

(Q̂1, . . . , Q̂i−1, Qi, Q̂i+1, . . . , Q̂n), which is independent

of its own reports. The second term in the firm’s payment is a penalty for misrepre-

senting the demand of its neighbor.

Proposition 1. The unique pure strategy Nash equilibrium of the above mechanism is

given by (Qi−1, Q̂i) = (Q∗i−1, Q
∗
i ) for all i, and this yields the socially optimal allocation

(Q∗1, . . . , Q
∗
n) of pollution.

It is straightforward to verify, using concavity of each Bi(·), that the above specifi-

cation of strategies is indeed a Nash equilibrium. To verify that it is unique, consider

an arbitrary pure strategy equilibrium, and note that, because firm i cannot affect

its own price, Q̂i solves

max
Qi∈[0,K]

Bi(Qi)−Qi
∂C

∂Qi

(Q̂1, . . . , Q̂i−1, Qi, Q̂i+1, . . . , Q̂n).

By our assumptions on Bi(·), Q̂i > 0 and

dBi

dQi

(Q̂i) ≥
∂C

∂Qi

(Q̂1, . . . , Q̂i−1, Qi, Q̂i+1 . . . , Q̂n)

are satisfied. Assume for now that the first order condition holds with equality for

each i.9 Also note that (Qi, Q̂i+1) is a best response for firm i+ 1 only if Q̂i = Qi, so

we have
dBi

dQi

(Q̂i) =
∂C

∂Qi

(Q̂1, . . . , Q̂i−1, Q̂i, Q̂i+1, . . . , Q̂n)

for all i, which is satisfied only at the social optimum.

Now suppose that the first order condition of some firm i is not met with equality.

Writing

W (Q1, . . . , Qn) =

[
n∑
i=1

Bi(Qi)

]
− C(Q1, . . . , Qn),

this is equivalent to ∂W
∂Qi

(Q̂1, . . . , Q̂n) 6= 0 and implies that ∂W
∂Qi

(Q̂1, . . . , Q̂n) > 0 and

Q̂i = K > Q∗i . Thus, ∇W (Q̂1, . . . , Q̂n) > 0 and

0 > ∇W (Q̂1, . . . , Q̂n) · [(Q∗1, . . . , Q∗n)− (Q̂1, . . . , Q̂n)]

≥ W (Q∗1, . . . , Q
∗
n)−W (Q̂1, . . . , Q̂n),

where the weak inequality follows from concavity of W (·) and Sundaram’s (1996)

Theorem 7.9. But then W (Q̂1, . . . , Q̂n) > W (Q∗1, . . . , Q
∗
n), a contradiction.

9If the firms were not restricted to the compact set [0,K], equality would obviously obtain. Drop-
ping that restriction would simplify the proof but would result in a less “well-behaved” mechanism.

6



2.3 Extensions

The model of Section 2.1 and the result of Section 2.2 can be extended in several

interesting ways.

Mixed Strategies. Proposition 1 restricts firms to pure strategies, but the result

can be extended if we assume each Bi(·) is strictly concave. In this case, consider an

arbitrary mixed strategy equilibrium. Then ∂C
∂Qi

is a random variable, and firm i’s

strategy can put positive probability only on solutions to

max
Qi∈[0,K]

Bi(Qi)−QiE

[
∂C

∂Qi

(Q̂1, . . . , Q̂i−1, Qi, Q̂i+1, . . . , Q̂n)

]
.

Since Bi(·) is strictly concave, this problem has a unique solution, say Q̂i. Thus, i’s

mixed strategy is to play Q̂i with probability one. A similar observation holds true

for the other firms, so the argument of Section 2.2 applies.

Budget-balancing. When n ≥ 3, the mechanism is easily modified to achieve

budget-balance in equilibrium: simply subtract from firm i’s payment to the regulator

the amount

Q̂i+1
∂C

∂Qi+1

(Q̂1, . . . , Q̂i−1, Qi, Qi+1, Q̂i+2, . . . , Q̂n),

where we use Qi here instead of Q̂i and we drop the term |Qi − Q̂i|, so firm i cannot

affect this adjustment. Since Qi = Q̂i and Qi+1 = Q̂i+1 in equilibrium, this amount

equals firm i+ 1’s equilibrium payment, yielding a balanced budget.

To balance the budget out of equilibrium as well, we modify the original mecha-

nism somewhat. In addition to purchasing quantity Q̂i, firm i reports quantities Qi−1

and Qi−2 for two neighbors. As a function of these reports, firm i pays the “base

amount”

Q̂i
∂C

∂Qi

(Q̂1, . . . , Q̂i−2, Qi−1, Qi, Q̂i+1, . . . , Q̂n) + |Qi−1 − Q̂i−1|+ |Qi−1 − Q̂i−2|.

As with the original mechanism, firm i’s reports of Qi−1 and Qi−2 will match Q̂i−1

and Q̂i−2 in equilibrium. The difference that allows us to fully balance the budget

is that now the first part of the base payment is independent of firm i− 1’s reports.

Budget-balance is achieved by subtracting from firm i’s payment the amount

Q̂i+1
∂C

∂Qi+1

(Q̂1, . . . , Q̂i−2, Qi, Qi+1, Q̂i+1, . . . , Q̂n) + |Qi+1 − Q̂i+1|+ |Qi−1 − Q̂i−1|,

which is independent of firm i’s reports. The first term above is exactly the first term

in firm i+1’s base payment, whereas the second and third terms above are the second

term in firm i+ 2’s base payment and the third term in firm i+ 1’s base payment.

7



Negative Externalities Across Firms. We have assumed each firm’s benefit from

polluting is independent of the levels of pollution of other firms. A more general model

would allow for externalities: firms may experience either market externalities (as

when high levels of pollution by other firms may reflect high levels of production and

a competitive output market) or production externalities as pollution levels rise. We

now allow for externalities among the firms, usingBi(Q1, . . . , Qn) to denote the benefit

of firm i corresponding to pollution quantities Q1, . . . , Qn. We assume externalities

are negative, i.e., ∂Bi
∂Qj

< 0 for i 6= j, and we impose the appropriate Inada-type

conditions to guarantee interior solutions. The regulator’s problem is defined as

before, with unique solution (Q∗1, . . . , Q
∗
n) given by the first order conditions

n∑
i=1

∂Bi

∂Qj

(Q∗1, . . . , Q
∗
n) =

∂C

∂Qj

(Q∗1, . . . , Q
∗
n),

j = 1, . . . , n.

We modify the mechanism as follows. We have each firm i purchase a vector

Q̂i = (Q̂i
1, . . . , Q̂

i
n) of pollution quantities, one quantity for each firm,10 where Q̂i

j is

interpreted as an amount added to firm j’s pollution by firm i. Note that Qi
i is the

amount of firm i’s pollution purchased by itself. If Q̂i
j < 0, which we allow, then firm

j’s outputs are decreased by −Q̂i
j. Along with these purchases, firm i reports a vector

Q
i−1

= (Q
i−1
1 , . . . , Q

i−1
n ), where Q

i−1
j represents the increment to firm j’s pollution

purchased by firm i− 1. Firm i is then allocated the total amount,

Qi = max{0,
n∑
j=1

Q̂j
i},

of pollution purchased for it, and is charged for its own purchases according to a

vector of prices. Once again, it is important that firm i not be able to influence its

prices, so for each k we let

Qk = max{0, Qi
k +

∑
j 6=i

Q̂j
k},

which is the total amount of firm k’s pollution with firm i’s increment replaced by

Q
i
k, reported by firm i+ 1. Firm i then faces price

2
∂C

∂Qi

(Q1, . . . ,Qn)

for its own pollution output, and faces prices

− 1

n− 1

∂C

∂Qj

(Q1, . . . ,Qn),

10If externalities among firms are limited, we can simplify the mechanism by having firm i only
purchase pollution quantities for firms imposing externalities on i.
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j = 1, . . . , n, for other firms’ pollution outputs. Note that the latter prices are

negative, so firm i pays for the reduction of other firms’ pollution outputs and is

compensated for increases in their pollution levels. In addition, i pays the penalty

||Qi−1 − Q̂i−1|| for misrepresenting its neighbor’s pollution purchases.

The argument that this mechanism implements the socially optimal allocation of

pollution is similar to our earlier one. Ignoring corner solutions, every equilibrium

pollution allocation must satisfy

∂Bi

∂Qi

(Q1, . . . ,Qn) = 2
∂C

∂Qi

(Q1, . . . ,Qn)

∂Bi

∂Qj

(Q1, . . . ,Qn) = − 1

n− 1

∂C

∂Qj

(Q1, . . . ,Qn)

for all i and all j 6= i. Because of the strict incentive for each firm i to report its

neighbor’s purchases accurately, we also have Q = Q in equilibrium. Making this

substitution and summing up the firms’ first order conditions with respect to each

Qj, we see that the first order conditions for the socially optimal allocation are met.

Positive Social Externalities. In Sections 2.1 and 2.2, we analyzed the problem

of negative social externalities, of which pollution is a special case, but our mecha-

nism also implements solutions to problems of positive social externalities. We now

interpret Qi as an activity of firm i that costs Ci(Qi), where Ci(·) is differentiable

and convex, and the social benefit of activity is B(Q1, . . . , Qn), where B(·) is also

differentiable. We now assume that B(Q1, . . . , Qn) −∑n
i=1 Ci(Qi) is strictly concave

and that the social optimization problem has an interior solution. The mechanism

is unchanged, except that payments from firms become payments to firms. For an

example of positive social externalities, suppose that Qi measures the attractiveness

of storefronts in a downtown area, Ci(Qi) is the cost to firm i of maintaining a store-

front of quality Qi, and B(Q1, . . . , Qn) is the corresponding social benefit. Of course,

the agents under consideration need not be firms. They may be workers in a factory,

where Qi denotes i’s contribution of effort, Ci(Qi) a cost of effort, and B(Q1, . . . , Qn)

the monetary worth of output, as a function of the vector of efforts expended by

workers.

Abatement. We have assumed that firm i may emit pollution in quantities not

exceeding Q̂i, the quantity of pollution purchased by i. In some situations, it would

be equally reasonable to let firm i produce any amount Q̃i of pollution, so long as it

cleans up the quantity Q̃i − Q̂i of pollution not paid for. Letting C∗i (Qi) denote i’s

cost of abating Qi units of pollution, we can extend our results to this case. Define

B∗i (Q
′
i) = max

Qi∈[Q′i,∞]
Bi(Qi)− C∗i (Qi −Q′i),

9



which reflects the monetary benefit to firm i of Q′i pollution permits. Since pollution

in excess of Q′i is cleaned up, it need not be included in the regulator’s calculation of

social cost, so the maximization problem of Section 2.1 (with B∗i substituted for Bi)

is still the appropriate one. If B∗i (·) is differentiable and concave, the remainder of

our analysis carries over without change.

3 Incomplete Information

3.1 The Model

Each firm i now has a finite set Θi of possible characteristics, or “types,” denoted θi,

θ′i, etc., representing the profitability of pollution to firm i. Let Θ = ×i∈NΘi be the

set of characteristic profiles θ = (θ1, . . . , θn), and let p denote the joint distribution

of the firms’ characteristics. For simplicity, we assume p(θ) > 0 for each profile θ.

In this section, we can allow firm i’s benefit to depend on the pollution levels of all

firms: thus, Bi(Q1, . . . , Qn, θi) denotes the profit of firm i when the pollution outputs

of the firms are Q1, . . . , Qn and i’s characteristic is θi. The social cost function

is C(Q1, . . . , Qn), as before. We assume that each firm’s characteristic is private

information, and that the distribution of characteristics, the benefit functions, and

the social cost function are common knowledge among the firms. The regulator is

assumed to know the distribution, the benefit functions, and the cost function, but

not the characteristics of the firms. We assume that the regulator’s problem,

maxQ1,...,Qn [
∑n
i=1 Bi(Q1, . . . , Qn, θi)]− C(Q1, . . . , Qn)

s.t. Q1 ≥ 0, . . . , Qn ≥ 0,

has a unique solution, denoted Q∗(θ) = (Q∗1(θ), . . . , Q∗n(θ)), for every profile θ of

characteristics. Further, we assume the solution is sensitive to the characteristics of

the agents: θi 6= θ′i implies Q∗(θi, θ−i) 6= Q∗(θ′i, θ−i) for all θ−i. Neither concavity nor

differentiability are required in this section.

Once we allow for incomplete information, we must address the issue of incentive

compatibility.11 That is, along with an allocation of pollution, we must specify a

vector of payments from the firms for every profile of characteristics such that truth-

ful reporting of characteristics is a Bayesian equilibrium (see Harsanyi (1967-68)).

To state this condition formally, we let ti(θ) denote the payment from firm i when

characteristic profile θ is realized; we let t(θ) = (t1(θ), . . . , tn(θ)) be the profile of

payments; and we let pθi(θ−i) denote the probability that the characteristic profile

11Jackson (1991) shows that incentive compatibility is a necessary condition for Bayesian im-
plementation. It is automatically satisfied in complete information environments with quasi-linear
preferences, as in Section 2.
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θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) is realized, conditional on θi. Then incentive compat-

ibility is the requirement that, for all i, all θi, and all θ′i,∑
θ−i∈Θ−i

[Bi(Q
∗(θ), θi)− ti(θ)] pθi(θ−i)

≥
∑

θ−i∈Θ−i

[Bi(Q
∗(θ′i, θ−i), θi)− ti(θ′i, θ−i)] pθi(θ−i).

In words, if every other firm reports is characteristics truthfully, no type of firm i has

an incentive to misreport its type. D’Aspremont and Gerard-Varet (1979) establish

the existence of a function t∗(·) such that (Q∗, t∗) is incentive compatible. Moreover,

when the characteristics of the firms are independently distributed, they show that

t∗ can be constructed to be budget-balanced:
∑n
i=1 t

∗
i (θ) = 0 for all θ. We will

assume only that (Q∗, t∗) is incentive compatible for now, though later we entertain

the possibility of balanced transfers.

Our main result on incomplete information makes use of the following technical

restriction on the distribution of the firms’ characteristics — it should be apparent

that it holds generically (i.e., for an open, dense set of distributions on characteristic

profiles). Below, let qθi denote the distribution of θi−1 conditional on θi, i.e., qθi is the

marginal of pθi on firm i− 1’s characteristic.

(•) For all i, all θi, and all θ′i, if A and B are distinct subsets of Θi−1, then qθi(A) 6=
qθ′i(B).

The condition can be broken into two parts. First, for a given characteristic θi of

firm i, no two distinct sets of i − 1’s characteristics are realized with exactly the

same conditional probability. Second, distinct types of firm i never assign identical

probabilities to distinct sets of i − 1’s types. Though (•) holds generically, it is

potentially restrictive: the first part of the condition rules out uniformly distributed

characteristics; the second part rules out complete information.12 Later, we impose

a “single-crossing” property on the firms’ benefit functions that allows us to weaken

(•).
The mechanism of the next section makes use of a pairwise monitoring scheme

similar to that of the previous section. Now, however, we ask firms to report their

characteristics directly rather than pollution quantities. Because firm i has incomplete

information about i−1, we cannot ask firm i to report i−1’s type. Instead, we ask firm

i to report the distribution of i−1’s reported types. Assuming type θi of firm i reveals

the actual distribution conditional on θi, an implication of condition (•) is that any

deception by i− 1 will be revealed to the regulator in this distribution. For example,

12Complete information models, formulated in Bayesian terms, give firms identical sets of types
jointly distributed along diagonal of Θ.
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suppose there two firms with sets of characteristics Θ1 = {θ′1, θ′′1} and Θ2 = {θ′2, θ′′2}
distributed with the following probabilities, which clearly satisfy condition (•).

θ′2 θ′′2

θ′1
2
5

3
10

θ′′1
1
5

1
10

If firm 1 reports deceptively, say type θ′1 reporting θ′′1 and visa versa, consider the
distributions of 1’s reports conditional on firm 2’s types. Conditional on type θ′2, firm
2 expects 1 to report θ′1 with probability 1/3 and θ′′1 with probability 2/3. If firm
2 reports this accurately, the regulator can infer that firm 1 is acting deceptively:
under truthtelling, this distribution cannot arise as a conditional distribution of firm
1’s reports, regardless of firm 2’s type. In this manner, condition (•) allows the
regulator to identify any deceptions using conditional distributions of reports. In the
next section, we describe a payment scheme that gives the firms’ strict incentives to
reveal these conditional distributions accurately.

3.2 The Mechanism

The mechanism is defined as follows. Each firm i reports a type θ̂i ∈ Θi and a prob-
ability distribution q̂i on Θi−1, which is to be interpreted as the distribution of the
characteristics reported by i − 1. Pollution quantities are allocated as though the
reported types of the firms are true: firm i is allocated Q∗i (θ̂). Firm i’s reported dis-
tribution is used in determining its own payment as well as firm i−1’s. In determining
firm i− 1’s payment, the reported distribution q̂i is compared to the distributions in
the set {qθi | θi ∈ Θi}, the set of possible conditional distributions (depending on the
realization of i’s type) of firm i − 1’s reports when i − 1 is reporting truthfully. By
reporting q̂i not in this set, firm i indicates a deception by i−1. If q̂i ∈ {qθi | θi ∈ Θi},
then firm i− 1 pays t∗(θ̂); otherwise, firm i− 1 is paid ∑

j 6=i−1

Bj(Q
∗(θ̂), θ̂j)

− C(Q∗(θ̂)),

aligning firm i − 1’s incentives with those of the regulator in the manner of the
mechanism of Groves (1973), Clarke (1971), and Vickrey (1960). We minimize their
budget-balancing problem by employing their mechanism for out-of-equilibrium pay-
ments only.

12



To effectively use firm i’s reported q̂i to monitor firm i − 1, firm i’s reported
distribution must also affect its own payment: we augment the above transfer to elicit
truthful belief revelation as in Duggan (1998). Given q̂i and reported characteristic
θ̂i−1, firm i pays

−ε(1− q̂
i(θ̂i−1))2

2
+

∑
θi−1 6=θ̂i−1

εq̂i(θi−1)2

2
,

where ε > 0 is arbitrary. We show below that this payment makes it a strict best
response for every type θi to submit the actual conditional distribution of firm i− 1’s
reported types, regardless of i−1’s reporting strategy. Because we augment the firms’
payments by negative amounts, the belief revelation part of the mechanism creates a
net flow of transfers to the regulator, made arbitrarily small by choice of ε. We show
below that, when there are at least three firms, payments can be modified to achieve
full budget-balancing.

Proposition 2. The unique pure strategy Bayesian equilibrium of the above mech-
anism is given by (θ̂i, q̂

i) = (θi, qθi) for all i and all θi, and this yields the socially
optimal allocation Q∗(θ) of pollution for all θ.

We first argue that, in equilibrium, firm i correctly reports the distribution of firm
i − 1’s reported characteristics, regardless of i − 1’s reporting strategy. Let θ̂i−1(·)
denote firm i − 1’s (possibly deceptive) reporting rule, i.e., type θi−1 of firm i − 1
reports θ̂i−1(θi−1). Let rθi denote the distribution of i − 1’s reported characteristics
conditional on θi. That is,

rθi(θ
′
i−1) = qθi({θi−1 ∈ Θi−1 | θ̂i−1(θi−1) = θ′i−1}).

Given rθi and reported distribution q̂i for firm i, i’s expected belief revelation payment
to the regulator is

∑
θi−1∈Θi−1

−ε(1− q̂i(θi−1))2

2
+

∑
θ′i−1 6=θi−1

εq̂i(θ′i−1)2

2

 rθi(θi−1)

=
ε

2

∑
θi−1∈Θi−1

[
−(1− q̂i(θi−1))2rθi(θi−1) + q̂i(θi−1)2(1− rθi(θi−1))

]
.

This equality relies on∑
θi−1∈Θi−1

∑
θ′i−1 6=θi−1

q̂i(θ′i−1)2rθi(θi−1) =
∑

θ′i−1∈Θi−1

q̂i(θ′i−1)2(1− rθi(θ′i−1)),

which follows because, for all θ′i−1, q̂i(θ′i−1)2 appears on the lefthand side once for each
θi−1 6= θ′i−1, where it is multiplied by rθi(θi−1). For each θi−1, the unique solution to

min
0≤q≤1

−(1− q)2

2
rθi(θi−1) +

q2

2
(1− rθi(θi−1))
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is rθi(θi−1). Thus, type θi of firm i has a strict best response to report the actual

conditional probability distribution of θ̂i−1 for any reporting rule used by firm i− 1.
In particular, if firm i − 1 is reporting truthfully, type θi of firm i has a strict best
response to report qθi .

Now consider the strategy profile given in Proposition 2, which has each firm re-
porting its type truthfully and, conditional on its type, the true marginal distribution
on its neighbor’s type. We have shown that it is a best response for firm i to report
the actual conditional distribution of firm i− 1’s reported types, which in this case is
just qθi . Thus, the firms’ reported distributions minimize belief revelation payments
to the regulator. Since all firms, including firm i + 1, are reporting true marginal
distributions, firm i’s payment is given by t∗i (θ) for all θ and the additional payment
to elicit beliefs. Then, since all other firms report their characteristics truthfully, the
incentive compatibility of (Q∗, t∗) ensures that it is a best response for every type θi
of firm i to report θi. Therefore, the strategy profile described in Proposition 2 is a
Bayesian equilibrium.

To verify that it is the unique equilibrium, consider a pure strategy equilibrium
where some firm i uses a deceptive reporting rule: θ̂i(θ

′
i) 6= θ′i for some θ′i. We have

noted that every type θ̃i+1 of firm i + 1 has a unique best response to report the
actual conditional distribution rθ̃i+1

of i’s reported characteristics. We argue that

rθ̃i+1
/∈ {qθi+1

| θi+1 ∈ Θi+1}. Let A = {θ′i} and B = {θi | θ̂i(θi) = θ′i}, and
note that, because type θ′i is reporting falsely, A 6= B. Then, by condition (•),
qθi+1

(A) 6= qθ̃i+1
(B) for all θi+1. Equivalently, qθi+1

(θ′i) 6= rθ̃i+1
(θ′i) for all θi+1, as

claimed.
Since the claim holds for every θ̃i+1, type θi of firm i’s expected payment from the

regulator is

∑
θ−i∈Θ−i

∑
j 6=i

Bj(Q
∗(θ̂(θ), θ̂j(θj))

− C(Q∗(θ̂(θ)))

 pθi(θ−i),
where θ̂(θ) = (θ̂1(θ1), . . . , θ̂n(θn)) is the vector of reported characteristics, less the
additional payment to elicit beliefs. Thus, firm i’s expected payoff, conditional on
characteristic θi, is

∑
θ−i∈Θ−i

Bi(Q
∗(θ̂(θ)), θi) +

∑
j 6=i

Bj(Q
∗(θ̂(θ)), θ̂j(θj))

− C(Q∗(θ̂(θ)))

 pθi(θ−i),
less the expected belief revelation payment, which is independent of i’s reported type.
We analyze this expression term-by-term. Fix any θ−i, let θ̂−i = θ̂−i(θ−i), and rewrite
the θ−i term of the expression asBi(Q

∗(θ̂i, θ̂−i), θi) +

∑
j 6=i

Bj(Q
∗(θ̂i, θ̂−i), θ̂j)

− C(Q∗(θ̂i, θ̂−i))

 pθi(θ−i).
14



By assumption, the unique maximum of Bi(·, θi)+
[∑

j 6=iBj(·, θ̂j)
]
−C(·) is Q∗(θi, θ̂−i),

which type θi can obtain by reporting θi. Moreover, since we have assumed that any
false report would lead to a different pollution allocation, reporting θi is the unique
maximizer. Since this is true for the term corresponding to every θ−i, firm i’s expected
payoff, conditional on θi, is uniquely maximized by reporting the truth. But we began
with the assumption that some type of firm i was reporting falsely in equilibrium, a
contradiction.

Therefore, in any Bayesian equilibrium of the mechanism, every type of every firm
must be reporting truthfully. The belief revelation payment ensures that every type
θi of firm i reports the actual conditional distribution, qθi , of firm i − 1’s reports.

That is, (θ̂i, q̂
i) = (θi, qθi) for all i and all θi.

3.3 Extensions

As before, our incomplete information results can be extended in a number of ways.

Non-generic Distributions of Characteristics. The arguments above depend criti-
cally on condition (•). The condition implies that deceptions by firm i are necessarily
reflected in the distribution of its reported characteristic, allowing the regulator to de-
tect deceptions by firm i using firm i+1’s reported q̂i+1. We have mentioned that the
condition is generically satisfied but rules out some distributions of interest. We can
relax condition (•) by imposing the following single-crossing property on the benefit
functions of the firms: let each firm i’s characteristics be ordered θ1

i < θ2
i < · · · < θkii ,

and assume that this ordering is preserved by the firm’s marginal benefits, i.e.,

∂Bi

∂Qi

(Q1, . . . , Qn, θ
h
i ) <

∂Bi

∂Qi

(Q1, . . . , Qn, θ
h+1
i )

for all (Q1, . . . , Qn). In words, firm i’s higher types have higher marginal values of
pollution. Furthermore, we require the optimal allocation of pollution to a firm to be
monotonic in the firm’s characteristic: Q∗i (θ

h
i , θ−i) ≤ Q∗i (θ

h+1
i , θ−i) for all θ−i. With

these assumptions, we can drop the first part of condition (•), leaving

(◦) For all i, all θi, and all θ′i 6= θi, if A and B are distinct subsets of Θi−1, then
qθi(A) 6= qθ′i(B).

Because the condition now applies only across distinct θi and θ′i, the distribution qθi
is restricted only in its relation to other conditional distributions. It could now be,
for example, that qθi is uniform for some θi.

Our uniqueness argument must now be modified. If qθi is uniform, some deceptions
by firm i − 1 (such as those where two types switch reports) will not be reflected in
the distribution of i− 1’s reported types conditional on θi. We argue, however, that
such deceptions cannot be best responses for firm i − 1. To illustrate, suppose that
two types, θi−1 < θ′i−1, are switching reports. If it is a best response for type θi−1 to
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report θ′i−1, thereby increasing its allotment of pollution, it cannot be a best response
for type θ′i−1, which values this increment of pollution more, to report θi−1. Generally,
if it is desirable for one type θi−1 to report falsely in one direction (say, higher), then
it cannot be a best response for higher types to report θi−1 or lower. Therefore,
any deception that could be a best response for i − 1 will be reflected in the firm’s
distribution of reported characteristics, and our above analysis applies.

Mixed Strategies. Allowing firm i− 1 to use mixed reporting strategies raises the
possibility of a mixed deception that is not reflected in the conditional distributions
of i − 1’s reported characteristics. In 2 × 2 example in the previous subsection,
suppose that type θ′′1 reports θ′1 with probability one, and that type θ′1 reports the
truth with probability 1/2 and θ′′1 with probability 1/2. Consider the distribution of
firm 1’s reports conditional on type θ′2 of firm 2: firm 2 expects firm 1 to report θ′1
with probability 2/3 and θ′′1 with probability 1/3. In contrast to the pure strategy
case, the conditional distribution induced by this mixed deception is consistent with
truthtelling.

Such examples of consistent mixed deceptions require an exact balancing of re-
porting probabilities: if some type θi reports deceptively with positive probability,
other types must report θi to just offset that probability. Ordering the characteristics
of the firms and imposing the single-crossing property defined above, our previous
arguments show that this balancing cannot be a best response for all of a firm’s
types, and therefore cannot occur in equilibrium. Thus, under the single-crossing
assumption, our arguments can be extended to allow firms to use mixed strategies.

Budget-balancing. When n ≥ 3, the mechanism is easily modified to achieve
budget-balancing in equilibrium, assuming t∗ is balanced. We simply make firm
i+ 2’s belief revelation payment a transfer to firm i. That is, we deduct the amount

−ε(1− q̂
i+2(θ̂i+1))2

2
+

∑
θi+1 6=θ̂i+1

εq̂i+2(θi+1)2

2
,

depending on the reports of i + 1 and i + 2, from firm i’s payment to the regulator.
Because the added payment does not depend on the reports of firm i, the above
analysis is not affected.

By further modifying the mechanism, we can achieve budget-balance out of equi-
librium as well. We continue to have each firm i report θ̂i and q̂i, with belief revelation
payments specified as above. If exactly one firm, say i, reports q̂i inconsistent with
truth-telling by its neighbor, firm i− 1 is paid ∑

j 6=i−1

Bj(Q
∗(θ̂), θ̂j)

− C(Q∗(θ̂));
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each firm j 6= i− 1 pays t∗j(θ̂); and, letting l be the highest indexed firm other than i
or i− 1, in addition firm l pays ∑

j 6=i−1

Bj(Q
∗(θ̂), θ̂j)

− C(Q∗(θ̂))− t∗i−1(θ̂),

balancing the budget. If more than one firm reports a distribution inconsistent with
truth-telling by its neighbor, let i and k be the lowest indexed such firms; then firm
i− 1 is paid  ∑

j 6=i−1

Bj(Q
∗(θ̂), θ̂j)

− C(Q∗(θ̂));

firm k − 1’s payment is defined similarly, with “k − 1” replacing “i− 1”; each firm j
other than i− 1 and k − 1 pays t∗j(θ̂); and, letting l denote the highest indexed firm
other than i− 1 and k − 1, in addition firm l pays ∑

j 6=i−1

Bj(Q
∗(θ̂), θ̂j)

+

 ∑
j 6=k−1

Bj(Q
∗(θ̂), θ̂j)

− 2C(Q∗(θ̂))− t∗i−1(θ̂)− t∗k−1(θ̂),

balancing the budget. The strategy profile of Proposition 2 is still clearly an equilib-
rium: if, for example, some type θi of firm i deviates by reporting q̂i 6= qθi , its own
payments to the regulator are unchanged.

To see that there are no other equilibria, consider any equilibrium strategy profile.
We first claim that firm 1 reports the actual distribution of firm n’s reported char-
acteristics. We have shown that firm 1’s expected belief revelation payment to the
regulator, conditional on each type, is minimized by doing so, but we must verify that
doing so will not affect the remainder of firm 1’s payment. Consider any realization
of the other firms’ types and any reports by the other firms. If no other firms report
inconsistencies, then firm 1 pays t∗1(θ̂) regardless of its reported distribution. If some
other firm, say i, reports a distribution inconsistent with truth-telling by its neighbor,
then either i− 1 = 1, or firm 1 is used to balance the budget, or neither holds. In the
first case, firm 1 receives the Groves-Clarke-Vickrey transfer regardless of its reported
distribution. The second case can only occur when n = 3, firm 2 does not report
an inconsistency with truth-telling on the part of firm 1, and firm 3 does report an
inconsistency on the part of firm 2. In that case, firm 1 balances the budget regardless
of its reported distribution. If neither holds, then firm 1 receives t∗1(θ̂) regardless of
its reported distribution. Thus, the claim is proved.

We next claim that firm n reports its characteristic truthfully. If not, we have
just established that each type of firm 1 will report a distribution for n inconsistent
with truth-telling. Then, by construction, firm n receives the Groves-Clarke-Vickrey
transfer with probability one and, as explained in Section 3.2, firm n has a strict in-
centive to report its characteristic truthfully, a contradiction. Furthermore, it follows
that each type of firm 1 reports a distribution for n consistent with truth-telling.
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A similar argument establishes that firm 2 accurately reports the distribution of
firm 1’s reported characteristic. The only point that may require elaboration is when
some other firm, i, reports an inconsistency and firm 2 is used to balance the budget.
Since firm 1 does not report an inconsistency, this case can only occur when n = 4,
firm 3 does not report an inconsistency on the part of firm 2, and firm 4 does report an
inconsistency on the part of firm 3. In that case, firm 2 balances the budget regardless
of its reported distribution. Thus, firm 2 accurately reports the distribution of firm
1’s reported characteristic, and it follows as above that firm 1 must report its own
characteristic truthfully and that each type of firm 2 reports a distribution for 1
consistent with truth-telling. Arranging these arguments in the form of an induction
proof (omitted), we see that the same is true for all firms and, consequently, that the
equilibrium is exactly that of Proposition 2.

References

[1] E. Clarke (1971) “Multipart Pricing of Public Goods,” Public Choice, 8: 19-33.
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