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Abstract

Retail trade absorbs vast scarce resources because the physical process of trading is time con-

suming, buyers match with sellers without coordination, and consumers prefer to purchase a diverse

basket of goods. Sellers post prices to attract customers, but buyers care also about the expected

time it takes to make a purchase. Retail prices can be non-linear due to packaging and quantity

discounts. However, prices cannot depend on buyers preferences because these are private infor-

mation. To capture these features, we adopt directed search and assume that sellers ignore their

clients preferences. If, realistically, sellers cannot charge a ßat fee to all potential buyers, then

in equilibrium the average lineup of buyers in front of a seller is inefficiently long. In contrast,

the directed search equilibrium is efficient with full information. Our model is easily inserted in a

Neoclassical growth framework. The retail trade sector can be calibrated using commercial margins

and resources employed in that sector.
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1 Introduction

Commercial margins constitute a very large fraction of the cost of purchasing a typical good. On

average, for every dollar spent before tax in a retail store in the United States, only 57 cents reach

the producers of the merchandise. The remaining 43 cents cover the margins of the merchant

wholesaler (15 cents) and the retailer (28 cents).1 Models with Walrasian markets abstract from

commercial activities. This abstraction would be of little importance if these activities were limited

to transporting commodities from factories to consumers, for then we could think of commerce as a

stage of production with a conventional technology. However, a large fraction of commercial costs

are incurred in the process of contacting and dealing with buyers in bilateral meetings. Moreover,

the size of these costs is independent of the quantities that buyers end up acquiring and cannot

be recovered if the buyer chooses to buy nothing. These facts can only be properly modeled with

non-Walrasian markets. To develop an appropriate framework of analysis, we advance a directed

search model of commerce. This model incorporates the multidimensional competition we observe

in retail trade where buyers and sellers care not only about prices but also about the expected time

it takes to perform a trade.2 Moreover, the model incorporates the fact that sellers cannot directly

observe the buyers� willingness to pay.

Even though the purchase of a single item appears to involve minimal costs, the retail trade

sector absorbs vast scarce resources for three main reasons: First, the physical trading process is

time consuming and requires proper facilities, commercial inventories, and other inputs. Second,

buyers do not coordinate their decisions as to when and where to go shopping, so quite often some

buyers are lining up for assistance in front of a seller, while another seller is idle. Third, consumers

are willing to sacriÞce some of their time to purchase a diverse basket of goods.

To capture these features in a simple model, we consider an environment where buying and

selling are separate activities which require some of the scarce time available in the economy. As

explained below, traders can direct their search to a segment of the market, but inside this segment
1This break-up assumes that the good goes through one merchant wholesaler and one retailer. In our calculations,

we use the gross commercial margins over sales ratios calculated by the Bureau of the Census, Service Sector Statistics

Division for 2000 (0.278 for retail and 0.2054 for wholesale). This data was downloaded in July 1, 2002 from

http://www.census.gov/svsd/www/artstbl.html and http://www.census.gov/svsd/www/atspur.txt.
2The concept of directed search was introduced by Peters (1991) and Montgomery (1991). While these authors

assume a Þnite number of traders, we Þnd it convenient to simplify strategic considerations by assuming a large

number of traders as in Moen (1997) and Shimer (1996). The concept is then sometimes referred to as competitive

search. See also Mortensen and Wright (2002).
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buyers and sellers meet randomly in bilateral pairs according to a matching technology as in the

search model of Mortensen (1982) and Pissarides (1990). Finally, due to a technological constraint,

sellers specialize in selling a single good. Therefore, households face a trade-off between the diversity

of goods they purchase and the time they spend shopping. In equilibrium, they choose to buy many

goods because of their preference for diversity. Although our model provides a natural framework

to address the endogenous creation of stores which sell many goods simultaneously, the holding of

commercial inventories, and the inclusion of Þxed capital in retail trade, we leave these extensions

for future work.

Competition among retailers is keen. Sellers post and commit to prices to attract customers

to visit their outlets. However, buyers care not only about prices. They also care about the

expected time it takes for them to complete a purchase, or the probability of making a purchase in

a given time interval. Since matching between buyers and sellers is uncoordinated, the probability

of making a purchase in a given time interval depends on the average lineup of buyers in front of

a seller (the ratio of buyers to sellers).

To model the combination of random matching and competition that we observe in retail trade,

we assume that sellers post prices, and buyers direct their search towards the subset of sellers

announcing a particular price offer. We refer to the set of sellers announcing a particular price offer

and the buyers that direct their search towards them as a submarket. The assignment of buyers to

sellers in a submarket is dictated by an exogenous matching technology. As noted by Acemoglu and

Shimer (1999), this framework encompasses many reasonable possibilities. For example, it includes

the possibility that symmetric buyers use identical mixed strategies to select the seller they visit as

in the frictional assignment literature (Peters (1991), Montgomery (1991), Burdett, Shi, and Wright

(2001), and Peters (2000)). Another possibility is that submarkets are located in separate places

(malls or streets) and matching in each submarket takes place according to a matching technology.

As in Moen (1997) and Shimer (1996), we Þnd that a directed search equilibrium with full

information is efficient. However, we Þnd that the qualiÞcations to this efficiency result are more

interesting than the result itself. In retail trade, each seller potentially serves a variety of buyers,

each one with a particular willingness to pay. We refer to this willingness to pay as the buyer�s type.

With many types purchasing in the same submarket, pricing in a directed search equilibrium with

full information must have one of two unrealistic properties. Either prices must be type dependent,

or they must include a ßat fee that all potential buyers must pay to cover retail costs.

The type dependent prices necessary to implement the direct search equilibrium with full infor-
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mation requires that preferences be directly observable. This is clearly unrealistic and trivializes the

complexities of retail trade pricing. In our baseline model, we assume that buyers� preferences are

private information, so prices cannot depend on them. As we show, this is equivalent to assuming

that in equilibrium bilateral trades between buyers and sellers must be incentive compatible, in the

sense that buyers have no incentive to misrepresent their preferences.3

The second way to implement the directed search equilibrium with full information is by in-

troducing ßat fees. In retail trade, we observe some instances in which ßat fees are charged to

buyers prior to their purchasing decision. For example, some warehouse clubs charge membership

fees. However, these fees are the exception rather than the rule. Moreover, even when they are

present, they cover only a small fraction of retail costs. Explaining why ßat fees are not common

practice is an open question of upmost importance. We do not give a Þnal answer to this question.

Rather we construct a stylized model of retail trade where ßat fees cannot arise as an equilibrium

outcome. In our baseline model, buyers learn their valuations as soon as they meet a seller and

observe the good the seller carries. This assumption, combined with the fact buyers� valuations can

be arbitrarily low, rules out ßat fees. Buyers with small valuations will simply refuse to pay the

fee.4 However, our environment does not rule out other forms of non-linear pricing. In fact, the

model predicts that per unit prices should decline with quantity. This may sound counterfactual.

However, retailers use both packaging and explicit quantity discounts to offer these decreasing per

unit prices. For instance, when we purchase a gallon of paint we pay much less than when we

purchase four separate quarters of a gallon of the same paint.

With the informational environment of our baseline model, the directed search equilibrium is

not efficient. In equilibrium the average lineup of buyers in front of a seller is inefficiently long.

Nevertheless, a policy maker who faces the same informational constraints as the sellers and whose

only policy instrument is to regulate market prices cannot improve upon the equilibrium allocation

when the production technology is linear (affine production function).5 Thus, if the production
3Admittedly, some transactions in retail trade involve bargaining, and the bargaining process may partially reveal

the willingness to pay of a buyer. Yet, the amount of information revealed in the bargaining process is also limited

by incentive compatibility constraints. Indeed, in the environment we study in this paper there is no exogenous

bargaining rule that attains the efficient outcome when buyers� preferences are unobservable. Moreover, bargaining

in retail trade is rare and is inconsistent with ex-ante price posting.
4Using standard terminology in the mechanism design literature, pricing mechanisms which include ßat fees

violate the individual rationality constraints of the buyers. On the other hand, the type dependent prices necessary

to implement an efficient allocation violate the buyers� incentive compatibility constraints.
5 In general equilibrium, efficiency in the commercial sector is not enough. We also need production efficiency.
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technology is linear, the directed search equilibrium is second best efficient.6 Assuming a linear

technology is certainly restrictive. However, as long as the production function is continuously

differentiable, we can approximate it with an affine production function. Therefore, as long as the

policy maker faces the same informational constraints as the sellers, the welfare gains of regulating

market prices are second order of magnitude. We use numerical simulations to check that these

potential welfare gains are minimal.

Our model can be easily incorporated in a Neoclassical growth framework with two sectors.

One of these sectors produces goods combining capital and labor as is typical in the Neoclassical

framework, while the other exchanges goods in retail markets. The combined model can be es-

timated using standard empirical data. In particular, the parameters of the retail sector can be

identiÞed and estimated using commercial margins and the average time allocation of households.7

The tractability of the model makes it suitable for further extensions. For example, one can use

this framework to introduce money along the lines of the search theoretical approach of Kiyotaki

and Wright (1989 and 1993). Faig (2001) constitutes a Þrst attempt in this direction in a simpler

version of the present model. In this simpler version, sellers are restricted to make offers to the

buyers they are paired with which consist of a single quantity-payment pair. Our main improve-

ment with respect to Faig (2001) is the relaxation of this constraint by allowing sellers to make

offers that consist of a price schedule that maps the quantity chosen by a buyer into the payment

to be made to the seller. This price schedule serves as a mechanism to reveal the buyers� private

information about their preferences. Also, in Faig (2001) search is undirected and sellers make

take-it-or-leave-it offers to buyers.

Two recent papers, Soller-Curtis andWright (2000) and Camera and Delacroix (2001) also study

search-theoretic models where the buyers� willingness to pay for a good is private information. In

both of these papers, goods are indivisible and search is undirected. Soller-Curtis and Wright

assume that sellers make take-it-or-leave-it offers to buyers and they focus on the coexistence of

two prices for the same good in equilibrium. Camera and Delacroix focus on the endogenous

determination of the trade mechanism - sellers can choose if they want to commit to a posted

With a linear technology, the marginal return to labor in the production sector is Þxed. Thus, the global allocation

of labor is optimal as long as buyers and sellers are given the right incentives in the commercial sector.
6With full information, the restriction to linear technologies is not necessary.
7Shi (1999 and 2001a) also incorporates a search model in a Neoclassical growth framework. The model in Shi

does not differentiate between producers and sellers as we do. Also, his model assumes full information and random

(undirected) search.
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price or to bargain once they meet a buyer. When buyers have identical preferences and search

is undirected, pre-committing to a price is preferable from the sellers point of view because it

allows them to extract the whole trading surplus. However, when the preferences of the buyers

are heterogeneous, the bargaining process allows the seller to infer information about the buyers�

preferences and hence to price discriminate. In our paper, goods are divisible, so sellers can commit

to a non-linear price schedule which allows a restricted form of price discrimination even without

bargaining. Also, we incorporate the equilibrium concept of directed search which endogeneizes the

market power of sellers in a reasonable fashion.

Peters and Severinov (1997) also study a model of directed search where the preferences of the

buyers are private information. However, in their model the price setting mechanism is an auction

among the buyers that meet a seller. Moreover, because a single unit is sold in each auction, their

paper does not deal with the price incentives to endogenously determine the size of each purchase.

The paper is organized as follows. Section 2 presents an overview of the model and our equi-

librium concept. Section 3 characterizes the optimal behavior of a representative household for

given prices. Section 4 studies how prices are endogenously determined under directed search by

analyzing the interaction between buyers and sellers in the market place. Section 5 combines the

analyses of the previous two sections into a general equilibrium model where both the behavior of

households and prices in retail trade are endogenous. Section 6 studies the welfare properties of a

directed search equilibrium. Section 7 incorporates a generalized version of our model in a dynamic

Neoclassical growth framework and discusses how to identify the parameters using standard data.

Section 8 brießy discusses some of the issues one must confront when extending the present model

and concludes. The proofs are gathered in the Appendix.

2 Overview of the Model

The economy consists of a continuum of households with measure one who produce and consume

differentiated goods. Households do not consume the goods they produce so they need to trade.

Trading activities involve some degree of idiosyncratic uncertainty to be speciÞed below. To avoid

the ex-post heterogeneity induced by idiosyncratic uncertainty, which severely limits the tractability

of the model, we follow Shi (1997) in assuming that each household is composed of a large number of

individuals. These individuals independently perform the production and exchange activities in the

household. Thanks to the large household assumption, each household faces no uncertainty, even
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though the members of the household who perform trading activities are subject to idiosyncratic

risks. All members of the household equally share the consumption of goods which is their only

source of utility, so there is no conßict of interests among them.8

To construct a simple environment where households buy the goods they consume in a retail

trade sector, we make the following assumptions. Each household produces a single divisible good

and likes to consume the goods produced by other households. Because of physical constraints, the

members of the household who perform manufacturing activities (producers) cannot simultaneously

sell the good they produce. Likewise, sellers must remain in their retail outlets to sell their products.

Therefore, for trade to take place the buyers of a household must go around visiting sellers of other

households. Since sellers never meet each other, direct barter is ruled out.

All payments are denominated in an abstract numeraire. In the version of the model analyzed

in this paper, buyers do not need to carry money with them. Instead, all traders have access to a

central clearing-house that records the credits (payments received by sellers) and debits (payments

made by buyers) of all households and ensures that their budget constraint is satisÞed.

Trading activities are subject to two kinds of uncertainty. First, buyers sometimes Þnd goods

that, because of idiosyncratic factors, Þt well the needs of their households while in other occasions

they do not. Second, because of matching frictions, trading meetings between buyers and sellers

are partially random. Thus, a trader may or may not be able to perform a transaction during a

given period.

We model the Þrst type of uncertainty by assuming a preference shock ε that scales the utility

that a good brings to the household. Preference shocks are realized once a buyer of the household

meets a seller. The realized value of ε is the buyer�s own private information and cannot be

observed by the seller. Therefore, in a trading meeting the seller ignores the willingness to pay of

the buyer. We believe that this ignorance is key for understanding retail pricing in the same way

that unobservable characteristics of taxpayers are key for understanding income tax schedules.

In order to model both the matching frictions and the price competition that characterize retail

markets, we assume the following form of directed search.9 Prior to the trading period, each

seller j simultaneously posts and commits to a price schedule Zj(q). This schedule speciÞes the
payment required in a transaction as a function of the quantity exchanged.10 In the next stage,

8The absence of a conßict of interests between the household and its members is an important difference between

this paper and Shi (1997).
9Our description of this concept parallels the formulation in Acemoglu and Shimer (1999).
10Equivalently, because each seller j may meet buyers with different private valuations ex post, the seller announces
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buyers observe the menu of price schedules posted by all sellers and simultaneously choose where

to shop. That is, each buyer i decides to trade at a particular price schedule Zi(q) in the set of
posted schedules {Zj(q) : for all j}.11 If buyer i meets a seller posting Zi(q) during the trading
period, the buyer privately observes his valuation ε for the seller�s good, chooses the quantity to be

transacted and pays for it according to the posted price schedule. Buyers can always choose not to

buy anything in which case they pay nothing. If no meeting takes place, then there is no trade.12

We refer to the set of sellers posting Zj(q) and the set of buyers that direct their search to this
price schedule as submarket j.

Depending on buyers�s search decisions, there may be longer lineups in some submarkets than

in some others. To capture this, we let θj ∈ [0,∞] be the ratio of buyers to sellers in the submarket
with a posted price schedule Zj(q) :

θj =
Bj
Sj
, (1)

where Sj is the measure of sellers posting Zj(q) and Bj is the measure of buyers who decide to trade
at this price schedule. We refer to θj as the congestion in submarket j, or the average queue of buyers

in front of a seller in this submarket. For the time being and to facilitate the exposition, we assume

that buyers and sellers may perform at most one trade during the trading period (Subsection

5.1 relaxes this assumption). In a submarket with congestion θj , the probability that a seller

meets a buyer is ms(θj), where ms : [0,∞] → [0, 1] is continuously differentiable, decreasing, and

concave. Symmetrically, a buyer meets a seller with probability mb(θj), where mb : [0,∞]→ [0, 1]

is continuously differentiable, increasing, and convex. If many buyers seek a few sellers (θj is high),

then it is easy for a seller to Þnd a buyer and hard for a buyer to Þnd a seller. By having ms and

mb depend only on θj , we implicitly assume constant returns in matching,13 so

M(Bj , Sj) = Bjm
b(θj) = Sjm

s(θj), (2)

a list of quantity-payment pairs {qjv, zjv}v∈V . It is not restrictive to assume that the number of items in this list
is equal to the number of ex post buyer types. A seller�s strategy is summarized by a price schedule Zj : Qj → <
where Qj = {qjv}v∈V and zjv = Zj(qjv) for all v ∈ V . See Maskin and Riley (1984) which analyzes the problem of a

monopolistic seller who faces no price competition. In their model, however, there are no matching frictions.
11Buyers can also play mixed strategies and randomize over price schedules for which they are indifferent.
12By the revelation principle, the formulation a seller announces a price schedule and buyers with different real-

izations of ε self-select along this schedule by choosing their most preferred price quantity combination is equivalent

to a formulation where the seller announces a direct revelation mechanism which induces truthful revelation by the

buyers. See Section 4.
13See Pissarides (1990).

8



whereM is a standard matching function that maps the measures of buyers and sellers in submarket

j onto the measure of trading meetings in this submarket.

An interesting special case of ms is:

ms(θj) = 1− exp(−θj). (3)

This case arises if buyers use identical mixed strategies to select a seller among those who post

equivalent price offers and, because selling is time consuming, each seller can serve at most one

customer (see Peters (2000)). This is the typical setup in the frictional assignment literature.

Another interesting special case is

ms(θj) =
θj

1 + θj
. (4)

This special case arises if each buyer is randomly matched with a trader (buyer or seller) in the

submarket where search is directed. (In this case, ms(θj) is equal to the fraction of buyers over

traders in submarket j).

We consider an environment where buyers and sellers are ex-ante symmetric. Given that buyers

are free to choose among different price schedules, in a directed search equilibrium, all buyers must

attain the same expected payoff. Furthermore, in equilibrium no seller should have an incentive

to deviate by posting a different price schedule. To attract buyers, the offer of the deviating seller

must yield at least the common expected payoff buyers attain in equilibrium.14 Therefore, in a

directed search equilibrium the price schedules and the degree of congestion associated with them

must maximize the expected payoff of sellers subject to the constraint that the buyers get the

common expected payoff. As we show in Section 4, this implies that in our framework there is a

single price schedule and a single submarket in equilibrium.

We proceed to develop our model with the following steps. In Sections 3, 4, and 5, we construct

a static version of the model. In Section 3, we analyze the optimal behavior of a household for a

given price schedule Z(q). Section 4 studies the endogenous determination of the price schedule

Z(q) under directed search. Section 5 collects the results of Sections 3 and 4 in a general equilibrium

model where both the behavior of the household and prices are endogenous.
14Since buyers can play mixed strategies, the expected number of buyers attracted by a single deviator need not

be an integer.
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3 A Representative Household

In this section, we describe the behavior of a household whose buyers and sellers trade in a retail

market with a given price schedule Z(q) and a given degree of congestion θ. Because there is a

continuum of households in the economy, the household takes the price schedule and the degree of

congestion as given. We assume Z(q) to be continuously differentiable and concave with Z(0) = 0.

The next section endogeneizes Z(q) and validates these assumptions. We adopt the following nota-

tion. Lower-case letters denote the decision variables of the household. Upper-case letters denote

the decisions of the other households and hence aggregate quantities, which are also taken as given

by our household. In a symmetric equilibrium, lower-case letters are equal to the corresponding

upper-case letters.

The household is composed of an inÞnite number of individuals. The individuals of the house-

hold are assigned to one of three different tasks: production (producers), purchase (buyers), and

sale of commodities (sellers). Each individual is endowed with one unit of labor and can perform

at most one task. The timing of the model is as follows. First, the members of the household are

divided into producers, buyers, and sellers. The measure of individuals assigned to each activity

is denoted by n, b, and s, respectively. Second, all members perform their assigned activities.

SpeciÞcally, producers use their labor n to generate output, which immediately becomes available

for sale. Buyers visit sellers from other households. Upon meeting a seller, they experience a ran-

dom shock ε that scales the incremental utility that the good brings to the household. Shocks are

uniformly distributed in [0, 1] and are independent across trading meetings. While the distribution

of these shocks in public information, the realized value of ε is the buyer�s own private information.

Contingent on the realized value of ε, buyers choose the quantity qε they want to acquire from the

seller, and pay zε = Z(qε).
15 This payment is immediately debited from the household�s account

in the clearing-house. Sellers go to retail outlets where they wait for buyers to visit them. When

a seller of the household is visited by a buyer who purchases a quantity Qε, the seller fetches this

quantity from the current household production and collects a payment Zε = Z(Qε), which is im-

mediately transferred to the household�s account in the clearing-house. Finally, once all their tasks

are completed, all the individuals of the household get together and equally share the consumption

of the goods purchased.

The assumption that there is an inÞnite number of members in the household ensures full
15We use ε subscript to denote that q and z are functions of ε.
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diversiÞcation of trading risks. Further, we assume that this number is countable to ensure that

the set of buyers in the household is of measure zero relative to the set of goods for sale by other

households.16 This assumption is technically important because it implies that there are no repeated

purchases of the same good with probability one.17 For convenience, we normalize the measure

of individuals in the household to one, that is we measure sets of individuals in the household as

fractions of the individuals in the set relative to the individuals in the household.

The household�s utility is U(c), where U : <+ → < is continuously differentiable, strictly

increasing, and concave. The variable c is a hedonic measure of consumption, which satisÞes

c =

·
bmb(θ)

Z 1

0
εq1−σε dε

¸ 1
1−σ

, σ ∈ (0, 1) . (5)

The term bmb(θ) is the measure of goods located by the b buyers in the household who on average

visit mb(θ) sellers each. The law of large numbers implies that, ex post, the realizations of the

preference shocks for these goods are uniformly distributed in [0, 1]. This consumption aggregator

implies that c doubles when qε doubles for all ε, and cmore than doubles when b doubles. Therefore,

the household has a preference for variety,18 which increases with the parameter σ and vanishes

when σ → 0. The Appendix derives the hedonic measure of consumption in (5) from a standard

Dixit-Stiglitz aggregator. Finally, to avoid dealing with uninteresting corner solutions, we assume

that U is sufficiently concave, so utility is a concave function of b.
Production y depends on the amount of labor n employed:

y = f(n). (6)

The production function f : <+ → <+ is assumed continuously differentiable, strictly increasing,
and concave. The sales of the household are equal to the measure of buyers contacted by the

sellers of the household times the average quantity sold by each seller, Q =
R 1
0 Qεdε. Since there

is no aggregate uncertainty in a large household, the amount of output both produced and sold is

identical:

y = sms(θ)Q. (7)
16Remember that there is a continuum of households and thus a continuum of differentiated goods that each

household can purchase.
17Also, the standard Law of Large Numbers assumes a countable inÞnite number of random variables.
18Note that the household does not buy inÞnitesimal amounts of the goods it purchases because it is costly to send

extra buyers to the market.
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The household must satisfy the budget constraint, that is, total expenditure cannot exceed total

sales revenue:

sms(θ)Z − bmb(θ)z ≥ 0. (8)

Here, Z =
R 1
0 Z (Qε) dε is the average revenue of a seller, and z =

R 1
0 Z (qε) dε is the average

expenditure of a buyer.

The measure of individuals assigned to the three different activities in the household must add

up to one:

b+ s+ n = 1. (9)

The household chooses {qε}ε∈[0,1], b, s, n, c and y to maximize U subject to (5) to (9), and

non-negativity constraints for all variables. Condition (7) can be substituted into (6) to form a

single resource constraint. Also, (5) can be substituted into the objective function U (c). Using
Lagrange multipliers µ, λ, and ϑ for the resource constraint, the budget constraint, and the labor

allocation constraint respectively, the Þrst-order conditions for an interior maximum are:

U 0(c)cσεq−σε = λZ 0 (qε) for ε ∈ [0, 1], (10)

mb(θ)

Z 1

0

·
εU 0(c)cσq1−σε

1− σ − λzε
¸
dε = ϑ, (11)

ms(θ)

Z 1

0
(λZε − µQε) dε = ϑ, and (12)

µf 0(n) = ϑ. (13)

Condition (10) states that, conditional on each possible realization ε, buyers must equate the

marginal utility of purchasing an extra unit of a good with the marginal value of the payment

required in return. The other conditions imply that the value of the marginal product of labor in

all three occupations must be the same. This common value is ϑ. Condition (11) equates ϑ to the

expected consumer surplus obtained by a buyer. Condition (12) equates ϑ to the expected surplus

generated by a seller. Finally, condition (13) equates ϑ to the value of the marginal product of

labor of a producer.

4 Commercial Pricing

In this section, we model the interaction between buyers and sellers in the marketplace in a di-

rected search equilibrium when sellers do not know how much buyers are willing to pay for their

merchandise. A bilateral trade is described by a pair (q, z) ∈ <2+ specifying the quantity q supplied
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by the seller and the payment z given in return by the buyer. In the previous section, the two

elements of this vector were linked by an exogenous price schedule z = Z(q). The purpose of this
section is to endogeneize Z.

The revelation principle allows us to reformulate the problem where sellers post price schedules

and buyers, with different realizations of the preference shock, self-select along the schedule of

the sellers they are matched with. Without loss of generality, we may assume that sellers posts

direct revelation mechanisms that induce truth-telling by the buyers (that is, incentive compatible

mechanisms). Feasible mechanisms must also satisfy the individual rationality constraints of the

buyers. Buyers observe the mechanisms posted by the sellers and decide to trade according to a

particular mechanism. In a directed search equilibrium, all posted mechanisms and the degrees of

congestion associated with them must maximize the expected payoff of the seller subject to the

constraint that buyers get a common expected payoff. This result has two direct implications.

First, the mechanisms posted by sellers must be optimal in the set of incentive compatible and

individually rational mechanisms. That is, any posted mechanism must be incentive efficient.

Second, the congestion associated with the mechanism must be such that no other combination of

an incentive efficient mechanism and a congestion level yield the same expected payoff to the buyer

and higher expected payoff to the seller.

4.1 Incentive Efficient Direct Revelation Mechanisms

We begin by characterizing the set of incentive efficient direct revelation mechanisms. That is, we

characterize the direct mechanisms that maximize a weighted sum of the expected payoffs of the

buyer and the seller subject to the incentive compatibility and individual rationality constraints.

We show that the outcome of each incentive efficient direct revelation mechanisms is implemented

when sellers post a price schedule in a particular class, and buyers who choose to trade at these

prices select their most preferred price-quantity combination depending on the realization of the

preference shock.19

In a meeting between a buyer and a seller, the buyer knows the realized value of ε, but the seller

does not. All the seller knows is that ε is a random variable uniformly distributed on the interval

[0, 1]. We refer to the realization of ε as the buyer�s type.

All traders maximize the objectives of the households they belong to. SpeciÞcally, the incre-
19One element in this class corresponds with the monopolistic price schedule derived in Maskin and Riley (1984)

and Mussa and Rosen (1978).
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mental utility of a buyer�s purchase to the household is the consumer surplus:

Ub (q, z; ε) = εψq1−σ

1− σ − λz, (14)

where

ψ ≡ U 0(c)cσ, (15)

and λ is the Lagrange multiplier associated with (8). The incremental utility of a seller�s sale is

the gross commercial margin:

Us (q, z) = λz − µq, (16)

where µ is the multiplier associated with (7).20 By symmetry, the variables ψ, λ, and µ are identical

across households. Because each buyer and each seller are inÞnitesimal in the household they belong

to, the values of ψ, λ, and µ are not affected by their individual actions. For ease of exposition, we

shall refer to Ub and Us as the utility functions of buyers and sellers respectively.
A direct revelation mechanism is a schedule of type-contingent trades {qε, zε}ε∈[0,1]. A direct

revelation mechanism is incentive efficient if it maximizes a weighted sum of the expected utilities

of buyers and sellers:

{qε, zε}ε∈[0,1] = argmax
·
(1− ω)

Z 1

0
Ub (qε, zε; ε) dε+ ω

Z 1

0
Us (qε, zε) dε

¸
(17)

where ω ∈ [0, 1], subject to the following constraints:
1. Incentive Compatibility : Buyers must have no incentive to lie about their type:

ε0 ∈ arg max
ε∈[0,1]

h
Ub ¡qε, zε; ε0¢i , for all ε0 ∈ [0, 1]. (18)

2. Individual Rationality : Buyers and sellers must receive non-negative utility in all meetings:21

Ub (qε, zε; ε) ≥ 0, for all ε ∈ [0, 1], and (19)

Us (qε, zε) ≥ 0, for all ε ∈ [0, 1]. (20)

In the appendix, we use standard arguments in the mechanism design literature to characterize

the set of incentive efficient direct revelation mechanisms. This solution is summarized in the

following proposition:
20Ub and Us are deÞned so that they are aligned with the household�s Þrst order conditions (11) and (12).
21This property follows from the combination of two facts: the buyer observes the variety offered by the seller as

soon as they meet, and both buyers and sellers have the option of not trading. If sellers could hide their variety for

sale, then they could demand a payment from the buyers to reveal this information. In this case, buyers could end

up with negative utility in some meetings.

14



Proposition 1 The incentive efficient direct revelation mechanisms which solve program (17) sub-

ject to (18) to (20), are the following:

qε =


0 for ε ∈ [0, γ)³

ψ
µ
ε−γ
1−γ

´ 1
σ

for ε ∈ [γ, 1]
and (21)

zε =
1

λ

·
γ
ψq1−σε

1− σ + (1− γ)µqε
¸
, (22)

where

γ =

 0 for ω ∈ [0, 0.5)
2ω−1
3ω−1 for ω ∈ [0.5, 1]

(23)

The following proposition establishes that the outcome of an incentive efficient direct revela-

tion mechanism can be implemented if sellers post a simple non-linear price schedule and buyers

optimally choose the quantity they want to acquire at these prices.

Proposition 2 The outcome of an incentive efficient direct revelation mechanism can be attained

when buyers choose q facing the following price schedule:

Z(q) = 1

λ

·
γ
ψq1−σ

1− σ + (1− γ)µq
¸
, (24)

where γ ∈ [0, 0.5] satisÞes (23). We refer to a price schedule with parameter γ as the price schedule
γ.

As long as commercial margins are positive (γ > 0), the pricing schedule Z(q) is strictly concave.
This concavity implies that the per unit price of goods declines with q, or equivalently buyers obtain

quantity discounts. This is not unrealistic. In retail trade, sometimes we observe explicit quantity

discounts, but most often quantity discounts are implicit in the packaging of products (the larger

is the box of nails, the lower is the per unit price).

When buyers have full market power, that is when ω = 0, prices cover only the marginal cost

of production (γ = 0). In this case, buyers capture the whole trading surplus and the individual

rationality constraint of the seller binds. This constraint continues to bind as long as ω ≤ 0.5. For
ω > 0.5, commercial margins are positive and both the buyer and the seller appropriate a fraction

of the trading surplus. Even when sellers have full market power, that is when ω = 1 and γ = 0.5,

they are not able to extract the whole trading surplus because they do not know their clients�
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type. The latter case is an interesting benchmark, which we denote monopolistic search. With

monopolistic search, sellers post the prices that maximize their expected proÞts in an environment

where their price schedules have no effect on the number of clients visiting their outlets. This might

be the relevant equilibrium concept for some tourist areas where buyers have little knowledge about

where to shop. However, in most commercial areas sellers are aware that by posting low prices

they can attract clients to their outlets. To capture these competitive pressures on prices, we adopt

directed search as our concept of equilibrium.

4.2 Trade-off between prices and congestion

Let Vb(θj , γj) and Vs(θj , γj) respectively be the expected utility of buyers and sellers in a submarket
with congestion θj and price schedule γj :

Vb(θj , γj) = mb(θj)

Z 1

0

µ
εψq1−σε

1− σ − λzε
¶
dε, and (25)

Vs(θj , γj) = ms(θj)

Z 1

0
(λzε − µqε) dε (26)

where qε and zε are given by (21) and (22). Integrating these expressions we obtain

Vb(θj , γj) = mb(θj)
σ2

1− σ2ψ
1
σµ

σ−1
σ (1− γj)2, and (27)

Vs(θj , γj) = ms(θj)
2σ2

1− σ2ψ
1
σµ

σ−1
σ γj(1− γj). (28)

In a directed search equilibrium, Vb must be common to all active submarkets, because buyers
are free to choose the submarket where they direct their search. Also, the pair (θj , γj) must

maximize Vs(θj , γj) subject to the constraint that Vb(θj , γj) is equal to the common expected
utility attained by buyers in all active submarkets. The solution to this maximization problem, if

one exists, is unique.22 Hence, there is a unique submarket in a directed search equilibrium, and the

subscript j can be omitted. As long as sellers capture a fraction of the expected trading surplus,23

the equilibrium pair (θ, γ) is interior and satisÞes the following Þrst order condition:

∂Vb(θ,γ)
∂θ

∂Vb(θ,γ)
∂γ

=
∂Vs(θ,γ)
∂θ

∂Vs(θ,γ)
∂γ

. (29)

22Substituting the constraint in the objective function and dropping unnecessary constants, θj must maximize the

strictly concave function: ms(θj)
n
1− £vmb(θj)

¤−0.5o £
vmb(θj)

¤−0.5
, where v is a constant inversely proportional to

the given value for Vb.
23 In our model, a zero expected payoff for sellers cannot be an equilibrium because there would be no sellers. See

next section.
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That is, buyers and sellers must have a common marginal rate of substitution of θ for γ. Differen-

tiating (27) and (28) and substituting into (29), we obtain

γ =
1− η(θ)

2
, (30)

where η(θ) is the elasticity of the function ms:

η(θ) =
ms0(θ)θ
ms(θ)

. (31)

Equation (30) provides a simple restriction that pricing schedules and congestion levels must satisfy

in a directed search equilibrium. In the next section, we pinpoint the equilibrium pair (θ, γ) by

combining this restriction with the optimal choice of the measure of buyers and sellers in each

household.

5 General Equilibrium

In this section, we characterize a directed search equilibrium by combining the optimal behavior of

households in Section 2 with the endogenous determination of the pricing function in Section 3.

DeÞnition: The tuple {θ, n, b, s, c, y, qε, zε, ψ, µ, λ,Z(q)} is a symmetric directed search equilibrium
if

1. All households choose {n, b, s, c, y, qε} taking as given the payment schedule Z(q)
and the market congestion ratio θ, and the implied payments are zε = Z (qε) .

2. The payment schedule Z(q) satisÞes (24) when ψ satisÞes (15) and µ and λ are the
Lagrange multipliers associated with the resource constraint and the budget constraint

in the household�s optimization program.

3. The pair (γ, θ) satisÞes condition (30).

4. Congestion ratios are consistent with individual behavior: θ = b/s.

Since in a symmetric search equilibrium all households behave identically, lower-case and upper-case

letters coincide.

In equilibrium, a household must obtain the same utility from allocating an individual to any

of the three activities, as it is implied by the Þrst-order conditions (11) to (13). Therefore, Vb(θ, γ)
and Vs(θ, γ) must be equal. Using (27) and (28) together with (2), this equality implies

θ =
1− γ
2γ

. (32)
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According to (32), the congestion of buyers in the market θ is inversely related to γ. As γ increases

buyers capture a smaller fraction of the trade surplus (see Proposition 2), so households respond

by sending fewer buyers and more sellers to the marketplace. Combining (32) with (30), we obtain

that congestion θ in a directed search equilibrium is the solution to

1
1
2 + θ

= 1− η(θ). (33)

Consequently, the efficiency condition (29) together with the equality of expected payoffs of buyers

and sellers determine the two key variables in the retail sector: congestion θ and price schedule γ.

To determine the remaining variables in the model, we must combine the resource constraints,

the household�s Þrst order conditions, and the deÞnitions of θ, c, and ψ. Equating Vb(θ, γ) to the
marginal payoff of a producer, µf 0(n), we obtain

f 0(n) = ms(θ)
2σ2

1− σ2
µ
ψ

µ

¶ 1
σ

γ (1− γ) . (34)

Integrating the quantities traded when buyers face a price schedule γ which are given by (21), we

obtain the average sales

q =
σ

1 + σ

µ
ψ

µ

¶ 1
σ

(1− γ) . (35)

Combining (6), (7), (34), and (35) gives

f 0(n)
f(n)

=
2σ

1− σ
γ

s
. (36)

Using the equilibrium condition θ = b/s, and the labor resource constraint (9), we have

s =
1− n
1 + θ

. (37)

Finally, combining (36) with (37) and using (32), we obtain

(1− n) f 0(n)
f(n)

=
σ (1 + γ)

1− σ . (38)

Equation (38) determines n for a given value of γ. In a directed search equilibrium, γ and θ are

obtained from (30) and (33). Given θ, γ, and n, the equilibrium values for s, b, ψ/µ, qε, c, y, ψ,

and µ are recursively determined by (36), (1), (34), (21), (5), (6), (15), and (34). The utility value

of the payment schedule λZ (q) is determined by (24), but the precise values of λ and Z (q) are
indeterminate because they depend on the units in which payments are measured.

The following proposition summarizes the conditions for the existence and uniqueness of a

directed search equilibrium (the proof is in the Appendix):
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Proposition 3 If the elasticity η(θ) is non-increasing and belongs to the interval (0, 1),24 and

the following terminal conditions are satisÞed: f (0) = 0 and f 0(0) > 0, then a directed search

equilibrium exists and is unique.25

To calculate the average commercial margin in a directed search equilibrium, we use (21) to

obtain the following relationship:

ψ

Z 1

0
εq1−σε dε = (1 + γσ)µq. (39)

Substituting (39) and (32) into (11) and (12), we get

2γ

1− γ
µ
1 + γσ

1− σ µq − λz
¶
= λz − µq. (40)

Using (40), we obtain that the average commercial margin

λz − µq
µq

=
σ

1− σ [1− η (θ)] . (41)

The commercial margin increases with both the preference for diversity σ and the contribution of

sellers in the matching process measured by 1− η (θ) .26

5.1 Multiple Matches

In our model, there is no logical reason to restrict buyers and sellers to at most one match each

period. The extension to multiple matches is straightforward for the following reasons. Individual

traders (buyers or sellers) are inÞnitesimal in the household where they belong, so their individual

actions have no effect on the shadow valuations of goods, labor, and payments in the household:

ψ, µ, and λ. Moreover, thanks to the clearing-payments mechanism, an individual buyer is not

restricted by the money he or she carries. Likewise, thanks to the immediate access to current

production, an individual seller is not restricted by available commercial inventories. Therefore,

the optimal strategies of buyers and sellers in successive trading meetings do not depend on their
24The two examples (3) and (4) satisfy these conditions.
25This proof also uses the continuity and concavity of ms and f, and the continuity and convexity of mb assumed

throughout the paper.
26With full information, 1 − η (θ) is the fraction of the trade surplus appropriated by sellers in a directed search

equilibrium. This division of the surplus endogeneizes the matching externalities, so the equilibrium allocation is

efficient. See Hosios (1990).
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individual histories. Our analysis and results apply with almost no modiÞcation to a generalized

model where buyers and sellers can perform multiple matches each period. In that model, we

reinterpret ms(θ) and mb (θ) as the expected number of trading matches that a seller and a buyer

perform during a period respectively. With this reinterpretation, the image of these two functions

is [0,∞) instead of [0, 1].27 Conveniently, this allows for a Cobb-Douglas matching technology for
which the elasticity of ms (θ) is a constant.

6 Welfare

This section studies the welfare properties of the directed search equilibrium. To this end, it

characterizes the optimal allocation that a benevolent central planner would choose in order to

maximize the utility of a representative household. Following standard practice, the central planner

is not only bound by the resources available in the economy, but also by the bilateral matching

among traders. In addition, it is sensible that we restrict the central planner to information that

is publicly available. However, imposing this restriction is much more subtle than it Þrst appears.

The incentive compatibility constraint (18) arising from the fact that the buyers� types are private

information is only binding when selling costs must be Þnanced with the revenue from sales (see

below). Moreover, the central planner can easily affect this revenue with policy tools that, in

principle, are respectful to private information, for example, a sales tax or a sales subsidy. Due to

the subtleties of restricting the central planner to public information, we start by characterizing

the Þrst best allocation, in which the central planner is not bound by the incentive compatibility

constraints imposed by private information. This allocation is an interesting benchmark in itself

and is useful to evaluate the welfare costs of private information. Later, we introduce private

information with speciÞc assumptions about the policy tools at the disposal of the central planner.

6.1 The Optimum with Complete Information

The Þrst best allocation is one in which the central planner maximizes the utility of a representative

household subject to the resources available in the economy and the bilateral matching among

traders. LetM(b, s) be the aggregate matching function, that isM(b, s) = bmb(b/s) = sms(b/s).

27With multiple matches, it is important that buyers can play mixed strategies when they choose which prices

to search. Otherwise, a deviating seller would have a hard time attracting prospective buyers because these would

dislike being in a submarket where there is a single good.
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The planner must solve the following program:

max
b,s,n,qε

U(c), where c =
·
M(b, s)

Z 1

0
εq1−σε dε

¸ 1
1−σ

, (42)

where subject to (9) and

M(b, s)

Z 1

0
qεdε = f (n) . (43)

The Þrst-order conditions of this problem are:

εψq−σε = µ, (44)

Mb(b, s)

Z 1

0

εψq1−σε

1− σ dε− µMb(b, s)

Z 1

0
qεdε = µf

0(n), (45)

Ms(b, s)

Z 1

0

εψq1−σε

1− σ dε− µMs(b, s)

Z 1

0
qεdε = µf

0(n), (46)

where µ is the Lagrange multiplier of (43) and ψ = U 0(c)cσ. In the Þrst best, the marginal utility
of consuming each good must be equal to the marginal production cost. Also, the marginal social

beneÞt of employment in all three activities must be the same. Comparing (45) and (46), we obtain

Mb(b, s) =Ms(b, s). (47)

Equality (47) implies that for a given number of traders the number of trading meetings is max-

imized. Equations (9) and (43) to (46) can be easily manipulated to obtain an almost explicit

solution of the Þrst best allocation (see the Appendix for details):

Proposition 4 The Þrst best allocation, in which the central planner has both complete information

and control over all variables, is characterized by the following equations:

1

1 + θ
= 1− η(θ), (48)

(1− n) f 0(n)
f(n)

=
σ

1− σ , (49)

s =
1− n
1 + θ

, (50)

b = θs, and (51)

qε =
1 + σ

σ

f(n)

M(b, s)
ε
1
σ . (52)

The following proposition compares the allocations in the Þrst best and in the directed search

equilibrium. To facilitate this comparison, it specializes the production and matching technologies

to standard functional forms:
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Proposition 5 Suppose all the assumptions used in Proposition 3 to ensure existence and unique-

ness of an equilibrium hold. Let an asterisk denote Þrst best and no asterisk denote directed search

equilibrium. The following relations hold:

b

s
>
b∗

s∗
, (53)

n < n∗. (54)

In addition, if the f is isoelastic,

s

n
≥ s∗

n∗
, with equality if η (θ) is constant. (55)

Finally, if f is constant returns to scale,

q < q∗. (56)

In a directed search equilibrium, selling costs are Þnanced with commercial margins that create

a wedge between the marginal production cost of merchandises and the price paid by buyers. This

wedge reduces the quantities that buyers purchase in each transaction for given valuations of goods

and labor ψ and µ (compare (21) and (44)). However, ex-ante price competition among sellers

narrows commercial margins so the congestion of buyers to sellers in equilibrium is higher than

in the Þrst best. Intuitively, the equilibrium price schedule must play two conßicting allocational

roles: It must signal buyers the opportunity cost of the goods they are considering to purchase,

and it must Þnance retail costs in order to induce an efficient ratio of sellers over buyers. The

equilibrium price schedule settles on a compromise between these two roles. Prices are higher than

the social opportunity cost of goods but not high enough to Þnance the Þrst best ratio of sellers

over buyers. Even though, commercial margins induce buyers to purchase smaller quantities, the

comparison between qε and q∗ε is ambiguous because the equilibrium and the Þrst best assign a

different shadow value to the cost of production relative to the utility of consumption (µ/ψ). In

the special case where f is constant returns to scale, we can prove that on average buyers purchase

an inefficiently low quantity when they meet a seller.

In the baseline case where both f and ms are isoelastic, the ratio (s/n) is identical in the

equilibrium and the Þrst best allocations. Therefore, in this baseline case the inefficiently high

(b/s) ratio implies that in equilibrium the measure of buyers is inefficiently high and the measures

of sellers and producers are inefficiently low. In general, the equilibrium allocation of labor relative

to the Þrst best depends on whether the elasticities f and ms are increasing or decreasing with

respect to n and θ respectively.
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As in Moen (1997) and Shimer (1996), the Þrst best allocation can be implemented as a directed

search equilibrium when buyers and sellers have complete information. In this case, a bilateral trade

must maximize the joint surplus of buyers and sellers. Moreover, the ex-ante price competition

among sellers leads to sharing this surplus according to Hosios�s (1990) rule, that is buyers get

a fraction η(θ) of the surplus and sellers get 1 − η(θ), and θ is the Þrst best level of congestion.
With private information about buyers� types, this equilibrium breaks down because the incentive

compatibility constraint (18) is violated.

The Þrst best allocation can be decentralized as a directed search equilibrium where buyers�

types are private information if sellers can charge a ßat fee to prospective buyers prior to the

realization of the preference shock ε. In this case, the fee covers selling costs without having to add

a positive commercial margin on the price of merchandises. In our model, such a fee is prevented

by the assumption that buyers get the preference shock as soon as they meet a seller, so a buyer

is not willing to pay the fee if the realization of ε is low. That is, ßat fees violate the individual

rationality constraint of buyers. More generally, one could realistically assume that the buyers�

satisfaction from a commercial transaction depends on the service effort provided by the seller. In

this more complicated model, the ßat unconditional fee is also discouraged by the moral hazard

problem it generates on the effort exercised by sellers. In reality, we Þnd ßat fees in warehouse

clubs. However, sales in warehouse clubs are a small fraction of the economy-wide retail sales, and

even these clubs charge fees that cover a small fraction of their commercial costs.

The following proposition summarizes these two ways of decentralizing the Þrst best allocation:

Proposition 6 The Þrst best allocation where the planner has complete information can be imple-

mented as a directed search equilibrium if buyers and sellers have complete information or if sellers

can charge a lump-sum fee to prospective buyers prior to the realization of the preference shock ε.

6.2 The Optimum with Private Information

This subsection characterizes second best allocations when the central planner has limited infor-

mation. Given that buyers� types are private information it is natural to assume that the central

planner cannot directly observe them. However, if the central planner can monitor the allocation

of labor in each household, then the Þrst best allocation can be easily implemented by dictating

to households the allocation of labor, charging buyers the marginal cost of producing merchandise,

and transferring the proceeds of these payments to sellers. With this mechanism, buyers truthfully
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reveal their types without any efficiency loss. To make our analysis more realistic and more in-

teresting than this simple result, we assume that the central planner cannot directly observe how

households allocate their labor. This assumption is in line with the unobservability of leisure (and

so the allocation of time when there are two activities) in the standard theory of taxation.

SpeciÞcally, we assume that the planner can only observe market transactions and only has

control of the direct revelation mechanisms by which transactions are conducted, or equivalently

the price schedules faced by buyers and sellers. Given these price schedules, buyers choose the

quantities they want to purchase, which sellers supply as long as prices are above the marginal

costs of production. Households decide the allocation of labor taking into account the expected

returns from each activity.

In principle, buyers and sellers could face different price schedules. If so, the gap between the

two schedules is a sales tax (or a sales subsidy) to be collected (or distributed) by a government

who balances its budget with a lump-sum subsidy (or a lump-sum tax) on households. In the two

propositions that follow, we make alternative assumptions on the central planner�s ability to control

the pricing mechanism and to impose lump-sum taxes on households.

In the absence of any restriction on these policy instruments, the central planner can implement

the Þrst best allocation despite the presence of private information:

Proposition 7 If the central planner can resort to lump-sum taxes on households to Þnance a

linear sales subsidy, then the Þrst best allocation characterized in Proposition 4 can be decentralized

with the following price schedule faced by buyers:

Z(q) = η(θ)µq

λ
, (57)

and a linear sales subsidy at the gross rate:

T =
1− ση(θ)
(1− σ) η(θ) , (58)

where θ is the solution to (48). (The price schedule faced by sellers is TZ(q)).

This proposition implies that the planner could not do better by introducing additional control

instruments. Intuitively, the proposition holds because the planner picks the tab for the selling

costs with the sales subsidy. Hence, the prices faced by the buyers can be equated to the marginal

social cost of production of merchandises.
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The implementation of the Þrst best allocation in Proposition 7 depends on the existence of

lump-sum taxes. In the model, this is not problematic because all households are identical. How-

ever, this homogeneity is unrealistic and has been assumed only for simplicity. The next proposition

assumes the absence of lump-sum taxes.

Proposition 8 If the only policy instrument is to set the retail trade price schedule and the mar-

ginal product of labor is constant (the production function is affine), a directed search equilibrium

is optimal.

If the production function is affine,28 a central planner without recourse to lump-sum taxes

cannot improve upon the directed search equilibrium. When the production function is not affine,

regulation of the price schedule can be welfare enhancing because it has an indirect effect on the

marginal product of labor which differs from its Þrst best value. However, as long as the production

function is differentiable, it can always be approximated with an affine production function, and so

the welfare gains of deviating from the directed search equilibrium are second order of magnitude.

In the next section, we use numerical simulations to check that these gains are very small.

7 Commerce in a Neoclassical Growth Framework

This section sketches how to embed the model developed in the previous sections in a Neoclassical

growth framework. In the extended model, time is inÞnite and discrete. Each period in the life of

a household proceeds as in the static model. Also, in the resulting synthesis, the economy has two

sectors: one produces goods combining capital and labor as in the Neoclassical growth model, the

other exchanges goods in directed search markets where buyers� types are private information.29

To make our model as close as possible to the basic Neoclassical growth model, we assume that

investment does not require installation or commercial costs. However, future work could incorpo-

rate these features. For brevity, we omit all proofs, which are either standard in the Neoclassical

growth theory or parallel the arguments in the previous sections.

The household�s intertemporal utility function is
28Since labor is the only production input, this assumption is satisÞed with constant returns to scale. In the next

section, we add capital to the production technology. In that case, the restriction to affine production functions is

not implied by constant returns.
29 In the absence of capital, all periods are identical, so the equilibrium allocation is time invariant and identical to

the one constructed in Sections 2 to 4.
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∞X
t=0

βtU(ct), (59)

where β ∈ (0, 1) is the household�s discount factor.
Also, the production of goods requires not only labor but also capital:

yt = F(kt, nt). (60)

The production function F : <2+ → <+ maps capital and labor into output. This function is

continuously differentiable, increasing in both arguments, concave, and homogeneous of degree

one. Also, the Inada conditions for an interior solution are assumed to apply.

Goods can be used for both consumption and investment. When goods are used for consump-

tion, they are exchanged in the same type of markets as those described in the previous sections.

Goods used for consumption are perishable and must be sold in the same period in which they

are produced. When goods are used for investment, they are perfect substitutes for one another.

To save commercial costs, households use part of their own output to increase their capital stock.

Therefore, households allocate a fraction of their output to be sold and another fraction to invest-

ment:

yt = kt+1 − kt (1− δ) + stms(θt)qt, (61)

where δ ∈ (0, 1) is the depreciation rate. The fraction destined for sale is consumed by the pur-
chasing households.

Each period t the household is subject to constraints (5), (7) to (9), (60) and (61).30 The problem

of the household is to choose {qεt}ε∈[0,1], bt, st, nt, ct, yt and kt+1 to maximize (59) subject to this
system of constraints. We use Lagrange multipliers βtµt, β

tλt, and βtϑt for the resource constraint,

the budget constraint, and the labor allocation constraint respectively. Then, the optimal behavior

of a household is characterized by the same Þrst-order conditions as those in Section 2, that is (10) to

(13), with all variables indexed by the corresponding time subscript, and the obvious modiÞcation

that output and the marginal product of labor now depend on the capital stock. Moreover, the
30Regarding condition (8), we could allow the clearing-house to pay or charge interest on the balance of credits and

debits imposing only an intertemporal budget constraint on the households. However, since all households behave

identically, all balances must be zero in equilibrium. Therefore, we can simplify the exposition by assuming that the

balance of credits and debits for each household must be zero in each period.
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following two conditions must hold:

µt = µt+1 [Fk(kt+1, nt+1) + 1− δ]β, and (62)

lim
t→∞β

−tµtkt = 0. (63)

Equation (62) states that the value of one unit of output today is equal to the present discounted

value of the gross marginal product of capital, while equation (63) is a standard transversality

condition.

A directed search equilibrium is a set {θt, nt, bt, st, ct, yt, kt+1, qεt, zεt, ψt, µt, λt,Zt(q)}∞t=0 sat-
isfying conditions analogous to the ones in the deÞnition in Section 5. This equilibrium is now

described by a system of difference equations for the variables kt and µt: (61) and (62) together

with the time-indexed versions of conditions (1), (9), (15), (21), (30), (32), (34),31 (35), (37), and

(60). This system together with the initial condition k0 and the terminal condition (63) determines

the equilibrium path. For all capital stocks, equations (30) and (32) still determine the pricing

parameter γt and the congestion θt of buyers over sellers in the market for consumption goods.

Therefore, these two variables are constant along an equilibrium path.

Qualitatively, the dynamics of capital accumulation are identical to those of the Neoclassical

growth model. Capital converges monotonically to a steady state where kt and µt are constant.

For low capital stocks, both the marginal product of capital and the utility price of capital µt are

high relative to the steady state. High levels of µt induce low consumption and high supply of

labor into production, and as a result high saving. As capital is accumulated, households not only

increase the fraction of output allocated for consumption, but also the fraction of labor allocated

to the exchange of commodities.

In the steady state, equation (62) implies that the net marginal product of capital is equal to

the subjective discount rate:

Fk
µ
k

n
, 1

¶
− δ = 1

β
− 1. (64)

When net investment is zero, analogous steps to the derivation of (38) yield:

Fn
µ
k

n
, 1

¶
F
µ
k

n
, 1

¶
− δ k

n

1− n
n

=
σ (1 + γ)

1− σ . (65)

31Taking into account that the marginal product of labor depends on both capital and labor.
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Equations (64) and (65) determine the steady state capital stock and labor allocated into pro-

duction. The steady state values of the remaining variables (b, s, qε, and µ) are obtained from

equations analogous to those in Section 4.

As in the version of the model without capital, a central planner who faces the same informa-

tional constraints as the market and who only has control of the direct revelation mechanism by

which transactions are conducted cannot improve upon the allocation in a directed search equi-

librium when the production technology is linear. With the existence of capital, constant returns

to scale does not imply that the production technology is linear. However, with constant returns

to scale the difference in welfare between a directed search equilibrium and the allocation that is

attained when the central planner chooses the direct revelation trading mechanism are negligible

for reasonable parameters (see the numerical example in the following subsection).

As in the Neoclassical growth model, output and capital converge to a steady growth path if

the utility function U is isoelastic and the efficiency of labor in the production of goods grows at a
constant rate. Also, the utility function can be easily extended to include leisure or home services.

In this case, the restrictions on U for convergence to a steady growth path are the standard ones.

7.1 Numerical Calibration

In the context of the Neoclassical growth framework, our model of commerce can be estimated

using standard economic data. In this subsection, we discuss how to identify the parameters of

the model, and we provide a numerical calibration of the model. For this purpose, we assume

logarithmic preferences: U(ct) = ln ct, and Cobb-Douglas matching and production technologies:

M(bt, st) = A0b
η
t s
1−η
t and F(kt, etnt) = A1k

α
t (etnt)

1−α.32 We also assume that the efficiency of

labor in the production of goods (et) grows at a constant rate g.

As is standard in the Neoclassical growth model, the parameters α, β, δ, and g can be estimated

using capital and labor income shares in the sector producing goods, the real return on capital, the

durability of capital, and the average growth rate of output. In our numerical example in Table

2, we pick standard estimates for these parameters. The two remaining parameters of the model

to estimate are the preference for diversity (σ) and the elasticity of matches with respect to the

number of sellers (η).33 These two parameters can be identiÞed with empirical estimates of the
32When preferences are logarithmic, the system of difference equations characterizing a directed search equilibrium

is greatly simpliÞed because then stms (θt) qt = (1 + σγ)
−1 µ−1t .

33The values of the technological constants A0 and A1 are irrelevant for the calculations in Table 1, and affect

only the units in which we measure output and hedonic consumption.
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average commercial margin and the congestion in the retail sector. In a directed search equilibrium,

equations (30), (33), and (41) imply:

Average commercial margin
µ
λtzt − µtqt
µtqt

¶
=

σ (1− η)
1− σ , and (66)

Congestion
µ
bt
st

¶
=

1 + η

2 (1− η) . (67)

Therefore, with estimates of the average commercial margin and market congestion we can solve

for σ and η.

The Bureau of the Census of the United States reports that the average commercial margin for

retail trade has quite stable around 0.28 during the last decade.34 The Bureau of Labor Statistics

measures the number of production employees in retail trade and the average weekly hours that

these employees work. The product of these two measures is the empirical counterpart of st (465

million hours/week in 1986).35 To calculate bt, we multiply the average time spent shopping by

an adult (3.4 hours/week in 1986) reported in Robinson, Andreyenkov, and Patrushev (1989, p.

84)36 by the number of shoppers in the economy (United States population 16 and over). This

product measures the empirical counterpart of bt (630 million hours/week in 1986). This implies

that congestion is 1.35 (' 630/465). Applying these estimates to the system (66) and (67), we

obtain η = 0.46 and σ = 0.42.

Using the estimated parameters, Table 1 compares the directed search equilibrium and the

Þrst best allocation.37 In equilibrium, households spend less time producing and selling goods and

more time shopping than in the Þrst best. Also, in equilibrium buyers leave empty handed from

27 percent of the trading meetings while they always acquire a positive amount of goods in the

Þrst best. Welfare in the two allocations is quite different. Changing from the Þrst best balanced
34See http://www.census.gov/svsd/www/artstbl.html. The commercial margin varies widely by the type of busi-

ness of the retailers. For example, in 2000, at the lower end, we Þnd the commercial margins for Warehouse Clubs

and Superstores (0.167), Automotive Dealers (0.175), and Gasoline Stations (0.208). At the upper end, we have the

margins for Specialty Food Stores (0.419), Clothing and Footwear (0.426), and Furniture (0.441). In this paper we

abstract from the reasons why different goods may trade with different margins, although this is an interesting topic

for future research.
35We use 1986 to estimate congestion because the survey on the time individuals spend shopping that we have

on hand refers to that year. The data was downloaded in July 1, 2002 from http://stats.bls.gov/data/home.htm

(production employees in retail trade: 15.924 million, average hours worked by production employees: 29.2).
36This is the most recent estimate of average time allocated to shopping that we could Þnd. We do not expect that

indices of congestion vary dramatically over time.
37The balance growth paths are calculated using the formulas described in the previous sections. The transitional

dynamics necessary to calculate the last row are obtained using standard numerical methods.
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path to the equilibrium balanced path is equivalent to a 7.94 percent drop in consumption. When

the transitional costs of changing the capital stock are taken into account this percentage drops

slightly to 7.87.38 This large welfare cost is not easy to avoid with correcting policies. For example,

regulating the price schedule in a directed search equilibrium leads only to a negligible welfare

improvement equivalent to less than a 10−5 percent increase in consumption. (This improvement

would be zero if the production technology were linear instead of Cobb-Douglas). The large dif-

ference in welfare between a directed search equilibrium and the Þrst best allocation is due to the

necessity of Þnancing retail costs with large commercial mark-ups. This inefficiency is unavoidable

in the absence of some form of lump-sum taxes which would allow to subsidize retail trade.

8 Conclusion and Extensions

Search models have been used to study decentralized markets where traders meet bilaterally. These

models have been useful to analyse the labor market. Also, with the work of Kiyotaki and Wright

(1989 and 1993) they have become the dominant paradigm for the theoretical microfoundations of

money. Our paper uses search to capture some important features of the retail sector.

Our key assumption is that matching buyers with the sellers that carry their desired products is

costly. We model this cost with the search technology of Mortensen (1982) and Pissarides (1990).

We also assume that buyers are aware of the price schedules of sellers and as a result they direct

their search to a subset of sellers with the most desirable combination of prices and congestion.

To formalize this idea we incorporate the concept of directed search equilibrium in Peters (1991).

Finally, we assume that the buyers� willingness to pay for a particular product is not observable.

In this way, we extend directed search to a framework with private information.

In this framework, we study the welfare properties of a directed search allocation by comparing it

to the allocation chosen by a central planner. If the planner faces the same informational constraints

as the market and only has control of the direct revelation mechanism by which transactions are

conducted, then a directed search equilibrium coincides with the choice of the planner when the

production technology is linear. However, if the planner can use lump-sum taxes to subsidize sales,

the planner can improve upon the equilibrium outcome. In fact, the planner can achieve the Þrst

best allocation by introducing a linear subsidy on sales. The Þrst best also coincides with a directed

search equilibrium if sellers can charge a ßat fee to all buyers that seek to trade with them.
38 In this comparison, we assume that both the equilibrium path and the Þrst best path start with the same capital

stock (the one in the Þrst best).
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Even if large commercial margins are unavoidable in the absence of lump-sum taxation, their

existence is important for policy design. For example, large commercial margins have a profound

effect on the welfare cost of sales taxes, because a zero tax rate on sales is already a large departure

from the Þrst best, so the standard result that small taxes cause negligible dead-weight-losses does

not apply. Moreover, because of standard tax equivalence results, the welfare costs of income taxes

must also be much larger when commercial margins are taken into account.

For simplicity, we have abstracted from the existence of money by assuming that payments can

be made through a central clearing-house. In the absence of this centralized system of payments,

money is a useful device that facilitates trade as in Kiyotaki and Wright (1989 and 1993). Faig

(2001) introduces money in a simpler version of the present model where sellers are constrained

by the set-up to make offers that consist of a single quantity-payment pair (q, z). The main com-

plication of introducing money in the present set-up is that in equilibrium when buyers are lucky

to Þnd a good for which they have a high valuation they would like to spend more money than

they carry. Because this is not possible, they are liquidity constrained. Moreover, these liquidity

constraints affect equilibrium price schedules. Despite this complication, the model remains an-

alytically tractable, but the algebraic expressions are longer and harder to interpret than in the

present contribution. For this reason, we plan to study the monetary version of the present model

in a separate paper.

31



APPENDIX

Derivation of (5)

Let qj be the quantity purchased and εj be the preference shock in each match j between a buyer

of the household and a seller, where j = 1, 2, ... Assume the following Dixit-Stiglitz aggregator:

c =

 lim
J 0→∞

1

J 0

JX
j=1

εjq
1−σ
j

 1
1−σ

. (68)

Here, J and J 0 denote the number of matches and the number of household members respectively.

The goods acquired have different valuations for the household. For a given quantity purchased

qj , the household gets maximum utility when the realization of the shock in a match is εj = 1,

and this utility declines linearly to 0 as εj decreases to 0. Because there is a countable number of

potential purchases and a continuum of goods, with probability one an additional purchase brings

a new good to the set of goods consumed by the household.

Since the number of household members is large, the measure of matches between the buyers

of the household and a potential seller is limJ 0→∞ J/J 0 = bmb(θ). Hence,

c =

bmb(θ) lim
J→∞

1

J

JX
j=1

εjq
1−σ
j

 1
1−σ

. (69)

Moreover, the stochastic variables εj are uniformly distributed on the interval [0, 1] and are inde-

pendent across meetings. Let qε denote the quantity purchased by a buyer when the realization of

the preference shock is ε. The Law of Large Numbers implies the formula in (5).

Proof of Proposition 1

Let the indirect utility of a type-ε buyer be deÞned as

vε ≡ Ub (qε, zε; ε) . (70)

Using vε, the incentive compatibility constraint (18) can be restated with the help of the following

standard result (see Mas-Colell, Winston and Green, 1995, Proposition 23.D.2):

Lemma A direct revelation mechanism satisÞes the incentive compatibility constraint (18) if and

only if qε is non-decreasing in ε and the indirect utility function satisÞes

vε =

Z ε

0

∂

∂x
Ub (qx, zx;x) dx =

Z ε

0

ψq1−σx

1− σ dx, for all ε ∈ [0, 1]. (71)
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Using this lemma and constraints (19) and (20) together with the deÞnitions (14), (16), and

(70), the incentive efficient direct revelation mechanisms can be characterized as the solution to the

following program:

max
{qε,vε}ε∈[0,1]

Z 1

0

·
(1− ω)vε + ω

µ
εψq1−σε

1− σ − µqε − vε
¶¸
dε (72)

subject to39

úvε =
ψq1−σε

1− σ , (73)

qε ≥ 0, (74)

vε ≥ 0, (75)

πε ≡ εψq1−σε

1− σ − vε − µqε ≥ 0, (76)

qε is non-decreasing, (77)

q0 = 0, and v0 = 0. (78)

Here, πε denotes the seller�s surplus upon meeting a buyer of type ε. The payment in the transaction

satisÞes:

λzε =
εψq1−σε

1− σ − vε = πε + µqε (79)

This program can be solved with a standard application of the Pontryagin�s Maximum Principle.

We organize the solution to the program in three steps:

(a) Constraints (73) to (78) imply that there is a γ ∈ [0, 1) such that the solution {qε, vε}ε∈[0,1] to
program (72) obeys: qε = 0 and vε = 0 for ε ∈ [0, γ], and qε > 0 and vε > 0 for ε > γ.

Constraints (77) and (78) immediately imply that there is γ ∈ [0, 1] such that qε = 0 for

ε ∈ [0, γ], and qε > 0 for ε > γ. When qε = 0, constraints (75) and (76) imply that vε = 0. With

these results, constraint (73) implies that qε > 0 if and only if vε > 0. Finally, if γ were 1, the

optimized value of (72) would be zero, which cannot be a solution to the maximization program

because there are many feasible direct revelation mechanisms that achieve a positive value. For

example, qε = vε = 0 if ε < 0.5, and qε =
³
ψ(2ε−1)

µ

´ 1
σ and vε = 1

2
σ
1−σ [ψ (2ε− 1)]

1
σ µ

σ−1
σ otherwise.

¤40
39 úvε denotes the derivative of v with respect to ε evaluated at ε.
40This is the optimal direct mechanism for ω = 1.
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(b) For ω ∈ (0.5, 1], the solution to program (72) subject to (73) to (78), is the following:

qε =


0 for 0 ≤ ε < γ³

ψ
µ
ε−γ
1−γ

´ 1
σ for γ ≤ ε ≤ 1

and (80)

vε =


0 for 0 ≤ ε < γ

σµ(1−γ)
1−σ

³
ψ
µ
ε−γ
1−γ

´ 1
σ for γ ≤ ε ≤ 1

(81)

where

γ =
2ω − 1
3ω − 1 . (82)

Let ζε denote the co-state variable associated with the differential equation (73). The current-

value Hamiltonian of the program is:

H(qε, vε, ζε, ε) = (1− ω)vε + ω
µ
εψq1−σε

1− σ − µqε − vε
¶
+ ζε

ψq1−σε

1− σ . (83)

The Þrst-order necessary condition with respect to the control variable qε is (Hqε = 0) :

ω
¡
ψεq−σε − µ¢+ ζεψq−σε = 0. (84)

The co-state variable must obey
³
úζε = −Hvε

´
:

úζε = − (1− 2ω) . (85)

Finally, the transversality implies41

ζ1 = 0. (86)

The value of the co-state variable ζε can be solved for explicitly using conditions (85) and (86):

ζε = (2ω − 1) (ε− 1) . (87)

Substituting (87) into (84), solving for qε, and using (82), we obtain

qε =

µ
ψ

µ

ε− γ
1− γ

¶ 1
σ

. (88)

Integrating (73) from γ to ε and noting that vγ = 0, we obtain

vε =
σ

1− σ (1− γ)µqε. (89)

41The transversality condition is ζ1v1 = 0. However, v1 > 0 because of step (a).
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Finally, using the deÞnition of πε in (76), we obtain

πε = γ
µqε
1− σ

µ
σ +

1− ε
ε− γ

¶
(90)

So far, we have disregarded constraints (74) to (78). However, for ε ≥ γ, the values of qε, vε,

and πε in (88), (89), and (90) are well deÞned and satisfy these constraints. Moreover, at ε = γ,

qε = vε = 0. Hence, (a) implies qε = vε = πε = 0 for ε ≤ γ. The Hamiltonian is strictly concave
with respect to qε, and when the Hamiltonian is evaluated at the optimal choice of qε it is concave

with respect to vε. Therefore, (80) to (82) characterize the unique maximum of the program. ¤

(c) For ω ∈ [0, 0.5], the solution to program (72) subject to (73) to (78), is the following:

qε =

µ
ψ

µ
ε

¶ 1
σ

and (91)

vε =
σ

1− σµqε (92)

When ω = 0.5, the variable vε cancels in the objective (72) so the problem becomes separable

across types. Ignoring constraints (76) and (77), the Þrst-order conditions of the problem yield

(91). Integrating (73) from 0 to ε and noting v0 = 0, we obtain (92). Using the deÞnition in (76),

we obtain πε = 0 for all ε ∈ [0, 1]. The values of qε and vε in (91) and (92) satify constraints (76)
and (77), so they solve program (72) subject to (73) to (78). Furthermore, the solution for ω = 0.5

maximizes the expected payoff of the buyer subject to a zero expected payoff for the seller. A

fortiori, given constraint (76), the same solution must apply for ω ∈ [0, 0.5), which assigns a lower
weight to the seller in the maximized welfare function (72). ¤

Finally, Proposition 1 results from combining steps (b) and (c) together with (79). ¥

Proof of Proposition 2

A buyer facing a price schedule γ purchases a quantity that satisÞes the following specialization

of (10)

εψq−σε = γψq−σε + (1− γ)µ. (93)

Solving this equation for qε, we obtain (21). Using (24), the implied payments are given by (22).

Finally, γ taking values in the interval [0, 0.5] spans all values of γ attained in (23) for ω ∈ [0, 1] .
Thus, Proposition 2 follows. ¥

Proof of Proposition 3

Given that the equilibrium variables are recursively determined by the set of equations described

in the main text. Existence and uniqueness is implied if equations (33) and (38) have a unique
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admissible solution. The right-hand side of (33) is a continuous and decreasing function of θ,

which image spans the interval (0, 2]. The left-hand side of (33) is a continuous and non-decreasing

function of θ, which is bounded away from 0 and 1. Therefore, equation (33) has a unique solution.

The left-hand side of (38) is a decreasing function of n that maps [0, 1] onto [0,∞), while the
right-hand side is positive and independent of n. Hence, equation (38) has a unique solution for n

in the interval (0, 1) . ¥

Proof of Proposition 4

Equation (47) together with the deÞnitions of θ, mb, and η in (1), (2), and (31), implies (48)

and (51). The labor allocation constraint together with (48) and (51) yields (50). Using (44) to

solve the integrals in (46) and (43), we obtain

f 0(n) =Ms(b, s)
σ2

1− σ2
µ
ψ

µ

¶ 1
σ

, and (94)

f(n) =M(b, s)
σ

1 + σ

µ
ψ

µ

¶ 1
σ

. (95)

The deÞnitions (1), (2), and (31) imply

Ms(b, s)

M(b, s)
=
1− η(θ)

s
. (96)

Equation (49) results from combining (50) with (94) to (96). Finally, combining (44) and (95), we

obtain (52). ¥

Proof of Proposition 5

The equations that determine θ and n in a directed search equilibrium, (33) and (38)-(30), and

the Þrst best allocation, (48) and (49), can be written as follows:

1

a1 + θ
= 1− η (θ) , and (97)

(1− n) f 0(n)
f(n)

=
σ

1− σa2, (98)

where a1 = a2 = 1 in the Þrst best, and a1 = 0.5, a2 = (1 + θ)/(0.5 + θ) > 1 in equilibrium. The

Implicit Function Theorem applied to (97) and (98) yields dθ/da1 < 0 and dn/da2 > 0. Hence, we

obtain (54) and (53).

If f has constant elasticity α, equations (37)-(38) and (49)-(50) imply

s

n
=
σ [1− η (θ)]
α (1− σ) (99)
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for both the Þrst best and the equilibrium. Therefore, (55) follows from (99), (53), and η being a

non-increasing function of θ.

The resource constraint (7) together with f being constant returns to scale implies that

q

q∗
=

s∗
n∗m

s(θ∗)
s
nm

s(θ)
. (100)

Therefore, (56) follows from (55), (53), and ms being increasing.

Proof of Proposition 6

(a) When buyer types are public information the directed search equilibrium and the Þrst best allo-

cations coincide.

As in Section 3, all bilateral trades must be pairwise efficient in equilibrium and the marginal

rates of substitution between θ and ξ of buyers and sellers must coincide. With full information,

the efficient quantities qε are calculated by maximizing the trade surplus, Ub + Us:

qε = argmax

µ
εψq1−σε

1− σ − µqε
¶

(101)

The solution to (101) is:

qε =

µ
ψε

µ

¶ 1
σ

. (102)

The expected trade surplus is:Z 1

0

µ
εψq1−σε

1− σ − µqε
¶
dε =

σ2

1− σ2ψ
1
σµ

σ−1
σ . (103)

When the market tightness is θ and buyers receive a fraction ξ of the trade surplus, the expected

utilities of buyers and sellers are:

Vb(θ, ξ) = ξmb(θ)
σ2

1− σ2ψ
1
σµ

σ−1
σ , and (104)

Vs(θ, ξ) = (1− ξ)ms(θ) σ2

1− σ2ψ
1
σµ

σ−1
σ . (105)

In a directed search equilibrium, the marginal rates of substitution between θ and ξ of buyers and

sellers must coincide. Differentiating (104) and (105), this implies:

ξ = η(θ). (106)

Households allocate b and s so Vb(θ, ξ) = Vs(θ, ξ). Using (104) and (105), this equality yields
(48). Also, households allocate s and n so Vs(θ, α) = µf 0(n). Using (105) and (106) this equality
implies:

µf 0(n) = ms(θ) [1− η(θ)] σ2

1− σ2ψ
1
σµ

σ−1
σ . (107)
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Using (102) to calculate the average sales, the resource constraint becomes

f(n) = sms(θ)
σ

1 + σ

µ
ψ

µ

¶ 1
σ

. (108)

Combining (107) and (108), and using (1), (48), and (9), we obtain (49) and (50). From (107),µ
ψ

µ

¶ 1
σ

=
f(n)

sms(θ)

1 + σ

σ
, (109)

which combined with (2) and (102) gives (52). This completes the proof of (a).

(b) If buyer types are private information but sellers charge a lump-sum fee to prospective buyers

prior to the realization of ε, then the directed search equilibrium and the Þrst best allocations

coincide.

Let p be the fee a seller charges to prospective buyers. After the fee p has been paid and ε

is realized, the trading game between a buyer and a seller is identical to the one in Section 3.

Hence, the payment schedule net of the fee p that implements incentive efficient direct revelation

mechanisms has still the functional form (24) and the quantities purchased by the buyer are given

by (21). The expected utilities of the traders in a market with congestion θ, price schedule γ, and

fee p are

Vb(θ, γ, p) = mb(θ)

µ
σ2

1− σ2ψ
1
σµ

σ−1
σ γ2 − λp

¶
, and (110)

Vs(θ, γ, p) = ms(θ)

·
2σ2

1− σ2ψ
1
σµ

σ−1
σ γ(1− γ) + λp

¸
. (111)

In a directed search equilibrium, the marginal rates of substitution of θ for γ, and of γ for p must

be equal for buyers and sellers, so

η (θ)− 1
η (θ)

=
γ

1− 2γ
2σ2

1−σ2ψ
1
σµ

σ−1
σ γ(1− γ) + λp

σ2

1−σ2ψ
1
σµ

σ−1
σ γ2 − λp

; (112)

γ = 1. (113)

Substituting (113) in (112) and solving for p,

p =
1

λ

σ2

1− σ2ψ
1
σµ

σ−1
σ [1− η (θ)] . (114)

Note that this fee implies Vb(θ, γ, p) > 0, so buyers are willing to pay the fee.
Households allocate b and s so Vb(θ, γ, p) = Vs(θ, γ, p). Using (113) and (114), this equality

yields (48). Also, households allocate s and n so Vs(θ, α) = µf 0(n). Using (113) and (114), this
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equality yields (107). To show that (49), (50) and (52) hold, we use the exact same steps used in

the proof of (a). ¥

Proof of Proposition 7

A type-ε buyer chooses

qε = argmax

½
εψq1−σ

1− σ − λZ(q)
¾
=

µ
ψε

µη

¶ 1
σ

. (115)

Hence, the return of a seller when matched with a type-ε buyer is

λTZ(qε)− µqε = (Tη − 1)µqε = σ(1− η)
1− σ

µ
ψε

µη

¶ 1
σ

µ, (116)

where η = η(θ) and θ is the Þrst-best level of congestion given by (48). By (48), η ≤ 1. Thus, the
seller�s individual rationality constraint is satisÞed.

When the market tightness is θ, the expected utilities of the traders are:

Vb(θ) = mb(θ)η
σ2

1− σ2
µ
ψ

µη

¶ 1
σ

µ; (117)

Vs(θ) = ms(θ) (1− η) σ2

1− σ2
µ
ψ

µη

¶ 1
σ

µ. (118)

The household chooses its labor allocation so that Vb(θ) = Vs(θ) = µf 0(n). The Þrst equality

implies that θ satisÞes (48) so η = η(θ). The second one implies

f 0(n) = ms(θ) (1− η) σ2

1− σ2
µ
ψ

µη

¶ 1
σ

. (119)

Using (115) to calculate the average sales, the resource constraint becomes

f(n) = sms(θ)
σ

1 + σ

µ
ψ

µη

¶ 1
σ

. (120)

Combining (119) and (120), and using (1), (48), and (9), we obtain (49) and (50). From (120),µ
ψ

µ

¶ 1
σ

=
f(n)

sms(θ)

1 + σ

σ
η
1
σ , (121)

which combined with (2) and (115) gives (52). ¥

Proof of Proposition 8

The direct revelation mechanism chosen by the planner must be incentive efficient, so we can

restrict our search to price schedules in (24) for some unknown parameter γ. Substituting (21) into

(5), solving for the integral, and using (2) we obtain:
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c =

½
sms(θ)σ

1 + σ
(1− γ) (1 + σγ)

¾ 1
1−σ

µ
ψ

µ

¶ 1
σ

. (122)

Denoting f(n) = a+wn, and using (6), (7), (32), (35), (37), and (38), equation (122) simpliÞes to:

c =

µ
2wσ2

1 + σ

¶ σ
1−σ

(1− σ) (a+ w) 1
1−σ [γ (1− γ)ms(θ)]

σ
1−σ . (123)

Since (32) holds, the maximization of c implies:

(2γ − 1)ms(θ) + γ(1− γ) (ms)0 (θ)
1

2γ2
= 0. (124)

Given (31) and (32), (124) implies (30). ¥
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Table 1

NUMERICAL EXAMPLE

Production function: F(k, en) = A1kα (en)1−α , α = 0.36
Depreciation rate: 0.1

Rate of interest: r = 0.04

Rate of growth of e: g = 0.018

Discount factor: β = (1 + g)/(1 + r)

One period utility: ln(c)

Preference for diversity: σ = 0.42

Matching technology: M(b, s) = A0bηs1−η, η = 0.46.

Directed First

Search Best

Equilibrium Allocation

Balanced Growth Path

Producers (n) 0.500 0.559

Sellers (s) 0.213 0.237

Buyers (b) 0.287 0.203

Capital/Labor Ratio (k/n) 4.374 4.374

Pricing Weight Parameter (γ) 0.270 0

Quantity Purchased When ε ≥ γ (qε) 11.23(1.37ε− 0.37)2.38 10.13ε2.38

Welfare Relative to the First Best

(Equivalent Percentage Change in Consumption)

Comparison Across Balanced Paths -0.0794 0

Comparison With Same Initial Capital -0.0787 0
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