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Abstract

A de¯nition of uncertainty or ambiguity aversion is proposed. It is ar-
gued that the de¯nition is well-suited to modelling within the Savage (as
opposed to Anscombe and Aumann) domain of acts. The de¯ned property
of uncertainty aversion has intuitive empirical content, behaves well in spe-
ci¯c models of preference (multiple-priors and Choquet expected utility)
and is tractable. Tractability is established through use of a nonstandard
notion of di®erentiability for utility functions, called eventwise di®erentia-
bility.
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1. INTRODUCTION

1.1. Objectives

The concepts of risk and risk aversion are cornerstones of a broad range of models
in economics and ¯nance. In contrast, relatively little attention is paid in formal
models to the phenomenon of uncertainty that is arguably more prevalent than
risk. The distinction between them is roughly that risk refers to situations where
the perceived likelihoods of events of interest can be represented by probabilities,
whereas uncertainty refers to situations where the information available to the
decision-maker is too imprecise to be summarized by a probability measure. Thus
the terms `vagueness' or `ambiguity' can serve as close substitutes. Ellsberg, in
his famous experiment, has demonstrated that such a distinction is meaningful
empirically, but it cannot be accommodated within the subjective expected utility
(SEU) model.
Perhaps because this latter model has been so dominant, our formal under-

standing of uncertainty and uncertainty aversion is poor. There exists a def-
inition of uncertainty aversion, due to Schmeidler [21], for the special setting
of Anscombe-Aumann (AA) horse-race/roulette wheel acts. Its intuitive appeal
within the AA framework is (arguably) open to question. More importantly,
though it has been transported and widely adopted in models employing the Sav-
age domain of acts, I feel that it is both less appealing and less useful in such
contexts. Because the Savage domain is typically more appropriate and also more
widely used in descriptive modelling, this suggests the need for an alternative
de¯nition of uncertainty aversion that is more suited to applications in a Savage
domain. Providing such a de¯nition is the objective of this paper.
Uncertainty aversion is de¯ned for a large class of preferences. This is done

for the obvious reason that a satisfactory understanding of uncertainty aversion
can be achieved only if its meaning does not rely on preference axioms that are
auxiliary rather than germane to the issue. On the other hand, Choquet expected
utility (CEU) theory [21] and its close relative, the multiple-priors model [7], pro-
vide important examples for understanding the nature of our de¯nition, as they
are the most widely used and studied theories of preference that can accommodate
Ellsberg-type behaviour. Recall that risk aversion has been de¯ned and character-
ized for general preferences, including those that lie outside the expected utility
class (see [27] and [3], for example).
There is a separate technical or methodological contribution of the paper. Af-

ter the formulation and initial examination of the de¯nition of uncertainty aver-
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sion, subsequent analysis is facilitated by assuming eventwise di®erentiability of
utility. The role of eventwise di®erentiability may be described roughly as follows:
The notion of uncertainty aversion leads to concern with the `local probabilistic
beliefs' implicit in an arbitrary preference order or utility function. These beliefs
represent the decision-maker's underlying `mean' or `ambiguity-free' likelihood as-
sessments for events. In general, they need not be unique. But they are unique
if utility is eventwise di®erentiable (given suitable additional conditions). Fur-
ther perspective is provided by recalling the role of di®erentiability in decision
theory under risk, where utility functions are de¯ned on cumulative distribution
functions. Much as calculus is a powerful tool, Machina [12] has shown that dif-
ferential methods are useful in decision theory under risk. He employs Frechet
di®erentiability; others have shown that Gateaux di®erentiability su±ces for many
purposes [2]. In the present context of decision making under uncertainty, where
utility functions are de¯ned over acts, the preceding two notions of di®erentiability
are not useful for the task of uncovering implicit local beliefs. On the other hand,
eventwise di®erentiability `works'. Because local probabilistic beliefs are likely to
be useful more broadly, so it seems will the notion of eventwise di®erentiability. It
must be acknowledged, however, that eventwise di®erentiability has close relatives
in the literature, namely in [16] and [13].1 The di®erences from this paper and
the value-added here are clari¯ed later (Section 4.1 and Appendix C). It seems
accurate to say that this paper adds to the demonstration in [13] that di®erential
techniques are useful also for analysis of decision-making under uncertainty.
The paper proceeds as follows: The current de¯nition of uncertainty aversion

is examined ¯rst and the choice between a Savage domain and an Anscombe-
Aumann domain of acts is discussed. Then, because the parallel with the well
understood theory of risk aversion is bound to be helpful, relevant aspects of that
theory are reviewed. A new de¯nition of uncertainty aversion is formulated in the
remainder of Section 2 and some attractive properties are described in Section 3.
In particular, uncertainty aversion is shown to have intuitive empirical content
and to admit simple characterizations within the CEU and multiple-priors mod-
els. The notion of `eventwise derivative' and the analysis of uncertainty aversion
given eventwise di®erentiability follow in Section 4. It is shown that eventwise
di®erentiability of utility simpli¯es the task of checking whether the correspond-
ing preference order is uncertainty averse and thus enhances the tractability of
the proposed de¯nition.

1After a version of this paper was completed, I learned of a revision of [13], dated 1997, that
is even more closely related.
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Two important limitations of the analysis should be acknowledged at the start.
First, uncertainty aversion is de¯ned relative to an exogenously speci¯ed collection
of events A. Events in A are thought of as unambiguous or uncertainty-free.
They play a role here parallel to that played by constant (or risk-free) acts in the
standard analysis of risk aversion. However, whether or not an event is ambiguous
is naturally viewed as subjective or derived from preference. Accordingly, it seems
desirable to de¯ne uncertainty aversion relative to the collection of subjectively
unambiguous events. Unfortunately, such a formulation is beyond the scope of this
paper. In particular, there exists as yet no satisfactory de¯nition of `subjectively
unambiguous events'.2 In defense of the exogenous speci¯cation of the collection
A, observe that Schmeidler [21] relies on a comparable speci¯cation through the
presence of objective lotteries in the Anscombe-Aumann domain. In addition,
it seems likely that in any future success in endogenizing ambiguity, the present
analysis of uncertainty aversion relative to a given collection A will be useful.
The other limitation concerns the limited success in this paper in achieving the

ultimate objective of deriving the behavioural consequences of uncertainty aver-
sion. The focus here is on the de¯nition of uncertainty aversion. Some behavioural
implications are derived but much is left for future work. In particular, applica-
tions to standard economic contexts, such as asset pricing or games, are beyond
the scope of the paper. However, the importance of the groundwork laid here for
future applications merits emphasis - an essential precondition for understanding
the behavioural consequences of uncertainty aversion is that the latter term have
a precise and intuitively satisfactory meaning. Admittedly, there have been sev-
eral papers in the literature claiming to have derived consequences of uncertainty
aversion for strategic behaviour and also for asset pricing. To varying degrees
these studies either adopt the Schmeidler de¯nition of uncertainty aversion or
they do not rely on a precise de¯nition. In the latter case, they adopt a model of
preference that has been developed in order to accommodate an intuitive notion
of uncertainty aversion and interpret the implications of this preference speci¯ca-
tion as due to uncertainty aversion. (This author is partly responsible for such an
exercise [5]; there are other examples in the literature.) There is an obvious logical
°aw in such a procedure and the claims made (or the interpretations proposed)
are unsupportable without a satisfactory de¯nition of uncertainty aversion.

2Zhang [28] is the ¯rst paper to propose a de¯nition of ambiguity that is derived from
preference, but his de¯nition is problematic. An improved de¯nition is the subject of current
research by this author and Zhang.
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1.2. The Current De¯nition of Uncertainty Aversion

In order to further motivate the paper, turn to a discussion of Schmeidler's de¯-
nition of uncertainty aversion.
Fix a state space (S;§) and outcome set X . Denote by F and H the sets of

all ¯nite-ranged (simple) and measurable acts e from (S;§) into X and ¢(X ),
respectively.3 The domain F was used by Savage, while H is the domain of
horse-race/roulette-wheel acts used by Anscombe and Aumann. Each such act
h involves two stages - in the ¯rst, uncertainty is resolved through realization of
the horse-race winner s 2 S and in the second stage the risk associated with the
objective lottery h(s) is resolved. Schmeidler assumes that preference º and the
representing utility function U are de¯ned on the larger domain H. He calls U
uncertainty averse if it is quasiconcave, that is, if

U(e) ¸ U (f) =) U (®e+ (1¡ ®)f) ¸ U(f), (1.1)

for all ® 2 [0; 1], where the mixture ®e+ (1¡ ®)f is de¯ned in the obvious way.
The suggested interpretation (p. 582) is that \substituting objective mixing for
subjective mixing makes the decision-maker better o®."
This de¯nition is then examined further within Choquet expected utility the-

ory, according to which uncertain prospects are evaluated by a utility function
having the following form:

U ceu(e) =
Z

S
u(e) dº. (1.2)

Here, u is a vNM utility index, assumed to be mixture linear on the set of lotteries
¢(X ), º is a capacity (or non-additive probability) on §, integration is in the sense
of Choquet and other details will be provided later.4 Schmeidler shows that U ceu

is uncertainty averse if and only if the corresponding capacity º is convex, that is,

º(A [ B) + º(A \B) ¸ º(A) + º(B), (1.3)

for all measurable events A and B. Additivity is a special case that characterizes
uncertainty neutrality (suitably de¯ned).
Subsequently, the identi¯cation of convexity of º with uncertainty aversion

has been widely adopted in the literature developing or applying the CEU model,

3¢(¢) denotes the set of ¯nitely additive probability measures. Unless otherwise speci¯ed, §
is assumed to be an algebra.

4See Section 3.2 for the de¯nition of Choquet integration.
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including many instances where the Savage domain F is adopted rather than the
AA domain.5 This paper is concerned with situations in which F is the appro-
priate domain, that is, in which choice behaviour over F is the object of study
and in which only such behaviour is observable to the analyst. Accordingly, it is
assumed that preference º and the representing utility function U are de¯ned on
F . Turn to the relevance for such modelling situations of the preceding de¯nition
of uncertainty aversion.
Ellsberg's single-urn experiment illustrates the weak connection between con-

vexity of the capacity and behaviour that is intuitively uncertainty averse. The
urn is represented by the state space S = fR;B;Gg, where the symbols repre-
sent the possible colors, red, blue and green of a ball drawn at random from an
urn. The information provided the decision-maker is that the urn contains 30 red
balls and 90 balls in total. Thus, while he knows that there are 60 balls that are
either blue or green, the relative proportions of each are not given. Let º be the
decision-maker's preference over bets on events E ½ S. Typical choices in such a
situation correspond to the following rankings of events:6

fRg Â fBg » fGg, fB;Gg Â fR;Bg » fR;Gg. (1.4)

The intuition for these rankings is well known and is based on the fact that fRg
and fB;Gg have objective probabilities, while the other events are `ambiguous',
or have `ambiguous probabilities'. Thus these rankings correspond to an intuitive
notion of uncertainty or ambiguity aversion.
Next suppose that the decision-maker has CEU preferences with capacity º.

Then convexity is neither necessary nor su±cient for the above rankings. For
example, if º(R) = 8=24, º(B) = º(G) = 7=24 and º(fB;Gg) = 13=24,
º(fR;Gg) = º(fR;Bg) = 1=2, then (1.4) is implied but º is not convex. For
the fact that convexity is not su±cent, observe that convexity does not even
exclude the `opposite' rankings that intuitively re°ect an a±nity for ambiguity.
(Let º(R) = 1=12, º(B) = º(G) = 1=6, º(fB;Gg) = 1=3, º(fR;Gg) =
º(fR;Bg) = 1=2.)
This failure of the convexity de¯nition of uncertainty aversion to conform with

typical behaviour in the Ellsberg example is troubling because it is precisely such

5While the relaxation from additivity to convexity is intended to accommodate behaviour
such as that exhibited in the Ellsberg Paradox, convexity is neither necessary nor su±cient for
such behaviour (see section 3.4).

6In terms of acts, fRg Â fBg means 1R Â 1B and so on. For CEU, a decision-maker always
prefers to bet on the event having the larger capacity.
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behaviour that motivates recent generalizations of subjective expected utility. One
possible reaction is to suggest that the single-urn experiment is special and that
convexity is better suited to Ellsberg's other principal experiment involving two
urns, one ambiguous and the other unambiguous.7 Because behaviour in this ex-
periment is also prototypical of the behaviour that is to be modelled and because it
might be unrealistic to expect a single de¯nition of uncertainty aversion to perform
well in all settings, good performance of the convexity de¯nition in this setting
might restore its appeal. Moreover, such good performance might be expected be-
cause the Cartesian product state space that is natural for modelling the two-urn
experiment suggests a connection with the horse-race/roulette-wheel acts in the
AA domain, where convexity of the capacity has been motivated behaviourally
by Schmeidler. According to this view, the state space for the ambiguous urn
`corresponds' to the horse-race stage of the AA acts and the state space for the
unambiguous urn `corresponds' to the roulette-wheel component.
In fact, the performance of the convexity de¯nition is no better in the two-urn

experiment than in the single-urn case. Rather than providing speci¯c examples
of capacities supporting this assertion, it may be more useful to point out why
the grounds for optimism described above are unsound. In spite of the apparent
correspondence between the AA setup and the Savage domain with a Cartesian
product state space, these are substantially di®erent speci¯cations because, as
pointed out by Sarin and Wakker [17], only the AA domain involves two-stage
acts (the horse-race ¯rst and then the roulette-wheel) and in Schmeidler's formu-
lation of CEU, these are evaluated in an iterative fashion. Eichberger and Kelsey
[4] show that this di®erence leads to di®erent conclusions about the connection
between convexity of the capacity and attitudes towards randomization. For the
same reason the di®erence in domains leads to di®erent conclusions about the con-
nection between convexity of the capacity and attitudes towards uncertainty. In
particular, convexity is not closely connected to typical behaviour in the two-urn
experiment.
While the preceding discussion has centered on examples, albeit telling ex-

amples, there is a general point that may be worth making explicit in light of
the widespread acceptance of convexity as modelling uncertainty aversion within
CEU. The general point concerns the practice of transferring to the Savage domain

7Each urn contains 100 balls that are either red or blue. For the ambiguous urn this is all
the information provided. For the unambiguous urn, the decision-maker is told that there are
50 balls of each colour. The choice problem is whether to bet on drawing a red (or blue) ball
from the ambiguous urn versus the unambiguous one.
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notions, such as uncertainty aversion, that have been formulated and motivated
in the AA framework. The di®erence between the decision-maker's attitude to-
wards the second-stage roulette-wheel risk as opposed to the uncertainty inherent
in the ¯rst-stage horse-race is the basis for Schmeidler's de¯nition of uncertainty
aversion.. The upshot is that uncertainty aversion is not manifested exclusively
or primarily through the choice of pure horse-races or acts over S. Frequently,
however, it is the latter choice behaviour that is of primary interest to the mod-
eller. This is the case, for example, in the Ellsberg experiments discussed above
and is the reason for the weak (or non-existent) connection between convexity
and intuitive behaviour in those experiments. This is not to deny that convexity
may be a useful hypothesis even in a Savage framework nor that its interpretation
as uncertainty aversion may be warranted where preferences over AA acts are
observable, say in laboratory experiments. Accordingly, this is not a criticism of
Schmeidler's de¯nition within his chosen framework. It argues only against the
common practice of interpreting convexity as uncertainty aversion outside that
framework. (An alternative behavioural interpetation for convexity is provided in
[25].)
I conclude with one last remark on the AA domain. The extension of the

Savage domain of acts to the AA domain is useful because the inclusion of second-
stage lotteries delivers greater analytical power or simplicity. This is the reason for
their inclusion by Anscombe and Aumann - to simplify the derivation of subjective
probabilities - as well as in the axiomatizations of the CEU and multiple-priors
utility functions in [21] and [7] respectively. In all these cases, roulette-wheels are a
tool whose purpose is to help in delivering the representation of utility for acts over
S. Kreps [10, p. 101] writes that this is sensible in a normative application but \is
a very dicey and perhaps completely useless procedure in descriptive applications"
if only choices between acts over S are observable. Emphasizing and elaborating
this point has been the objective of this subsection.

2. AVERSION TO RISK AND UNCERTAINTY

2.1. Risk Aversion

Recall ¯rst some aspects of the received theory of risk aversion. This will provide
some perspective for the analysis of uncertainty aversion. In addition, it will
become apparent that if a distinction between risk and uncertainty is desired,
then the theory of risk aversion must be modi¯ed.
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Because a subjective approach to risk aversion is the relevant one, adapt Yaari's
analysis [27], which applies to the primitives (S;§), X ½ RN and º, a preference
over the set of acts F.
Turn ¯rst to `comparative risk aversion'. Say that º2 is more risk averse than

º1 if for every act e and outcome x,

x º1 (Â1) e =) x º2 (Â2) e. (2.1)

The two acts that are being compared here di®er in that the variable outcomes
prescribed by e are replaced by the single outcome x. The intuition for this
de¯nition is clear given the identi¯cation of constant acts with the absence of risk
or perfect certainty.
To de¯ne absolute (rather than comparative) risk aversion, it is necessary to

adopt a `normalization' for risk neutrality. Note that this normalization is exoge-
nous to the model. The standard normalization is the `expected value function',
that is, risk neutral orders ºrn are those satisfying:

e ºrn e0 ()
Z

S
e(s) dm(s) ºrn

Z

S
e0(s) dm(s), (2.2)

for some probability measure m on (S;§), where the RN -valued integrals are
interpreted as constant acts and accordingly are ranked by ºrn. This leads to the
following de¯nition of risk aversion: Say that º is risk averse if there exists a risk
neutral order ºrn such that º is more risk averse than ºrn . Risk loving and risk
neutrality can be de¯ned in the obvious ways.
In the subjective expected utility framework, this notion of risk aversion is the

familiar one characterized by concavity of the vNM index, with the required m
being the subjective beliefs or prior. By examining the implications of uncertainty
aversion for choice between binary acts, Yaari [27] argues that this interpretation
for m extends to more general preferences.
Three points from this review merit emphasis. First, the de¯nition of compar-

ative risk aversion requires an a priori de¯nition for the absence of risk. Observe
that the identi¯cation of risklessness with constant acts is not tautological. For
example, Karni [9] argues that in a state-dependent expected utility model `risk-
lessness' may very well correspond to acts that are not constant. Thus the choice
of how to model risklessness is a substantive normalization that precedes the def-
inition of `more risk averse'.
Second, the de¯nition of risk aversion requires further an a priori de¯nition

of risk neutrality.
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The ¯nal point is perhaps less evident or familiar. Consider rankings of the
sort used in (2.1) to de¯ne `more risk averse'. A decision-maker may prefer the
constant act because she dislikes variable outcomes even when they are realized on
events that are understood well enough to be assigned probabilities (risk aversion).
Alternatively, the reason for the indicated preference may be that the variable out-
comes occur on events that are ambiguous and because she dislikes ambiguity or
uncertainty. Thus it seems more appropriate to describe (2.1) as revealing that
º2 is `more risk and uncertainty averse than º1,' with no attempt being made
at a distinction. However, the importance of the distinction between these two
underlying reasons seems self-evident; it is re°ected also in recent concern with
formal models of `Knightian uncertainty' and decision theories that accommodate
the Ellsberg (as opposed to Allais) Paradox. The second possibility above can be
excluded, and thus a distinction made, by assuming that the decision-maker is
indi®erent to uncertainty or, put another way, by assuming that there is no uncer-
tainty (all events are assigned probabilities). But these are extreme assumptions
that are contradicted in Ellsberg-type situations. This paper identi¯es and focuses
upon the uncertainty aversion component implicit in the comparisons (2.1) and,
to a limited extent, achieves a separation between risk aversion and uncertainty
aversion.

2.2. Uncertainty Aversion

Once again, consider orders º on F , where for the rest of the paper the outcome
set X is arbitrary rather than Euclidean. The objective now is to formulate
intuitive notions of comparative and absolute uncertainty aversion.
Turn ¯rst to comparative uncertainty aversion. It is clear intuitively and

also from the discussion of risk aversion that one can proceed only given a prior
speci¯cation of the `absence of uncertainty.' This speci¯cation takes the form of
an exogenous family A ½ § of `unambiguous' events.
Assume throughout the following intuitive requirements for A: It contains S

and

A 2 A implies that Ac 2 A;
A1,A2 2 A and A1 \A2 = ; imply that A1 [A2 2 A.

Zhang [28] argues that these properties are natural for a collection of unambigu-
ous events and calls such collections ¸-systems. Intuitively, if an event being
unambiguous means that it can be assigned a probability by the decision-maker,
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then the sum of the individual probabilities is naturally assigned to a disjoint
union, while the complementary probability is naturally assigned to the comple-
mentary event. Note that A need not be an algebra, because it need not be
closed with respect to nondisjoint unions or intersections.8 Denote by Fua the set
of A-measurable acts, also called unambiguous acts.
The following de¯nition parallels the earlier one for comparative risk aversion.

Given two orderings, say that º2 is more uncertainty averse than º1 if for every
unambiguous act h and every act e in F ,

h º1 (Â1) e =) h º2 (Â2) e . (2.3)

There is no loss of generality in supposing that the acts h and e deliver the identical
outcomes. The di®erence between the acts lies in the nature of the events where
these outcomes are delivered (some of these events may be empty). For h, the
typical outcome x is delivered on the unambiguous event h¡1(x), while it occurs
on an ambiguous event given e. Then whenever the greater ambiguity inherent
in e leads º1 to prefer h, the more ambiguity averse º2 will also prefer h. This
interpretation relies on the assumption that each event in A is unambiguous and
thus is (weakly) less ambiguous than any E 2 §.
Fix an order º. To de¯ne absolute (rather than comparative) uncertainty

aversion for º, it is necessary to adopt a `normalization' for uncertainty neu-
trality. As in the case of risk, a natural though exogenous normalization exists,
namely that preference is based on probabilities in the sense of being probabilis-
tically sophisticated as de¯ned in [14]. The functional form of representing utility
functions reveals clearly the sense in which preference is based on probabilities.
The components of that functional form are a probability measure m on the state
space (S;§) and a functional W : ¢(X ) ¡! R1, where ¢(X ) denotes the set
of all simple (¯nite support) probability measures on the outcome set X . Using
m, any act e induces such a probability distribution ªm;e. Probabilistic sophisti-
cation requires that e be evaluated only through the distribution over outcomes
ªm;e that it induces. More precisely, utility has the form

Ups(e) = W (ªm;e) , e 2 F : (2.4)

8To see that closure with respect to intersections is not a natural property for a family of
unambiguous events, consider the following example taken from [28]: An urn contains 100 balls
in total, with colour composition R, B, W , and G, such that R + B = 50 = G+ B. Then it is
natural to think that fR; Bg and fG;Bg are unambiguous, but that fBg is ambiguous.
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Following Machina and Schmeidler (p. 754), assume also that W is strictly in-
creasing in the sense of ¯rst-order stochastic dominance, suitably de¯ned.9 De-
note any such order by ºps. A decision-maker with ºps assigns probabilities to
all events and in this way transforms any act into a lottery, or pure risk. Such
exclusive reliance on probabilities is, in particular, inconsistent with the typical
`uncertainty averse' behaviour exhibited in Ellsberg-type experiments. Thus it
is both intuitive and consistent with common practice to identify probabilistic
sophistication with uncertainty neutrality. Think of m and W as the `beliefs' (or
probability measure) and `risk preferences' underlying ºps.10

This normalization leads to the following de¯nition: Say that º is uncertainty
averse if there exists a probabilistically sophisticated order ºps such that º is
more uncertainty averse than ºps. In other words, under the conditions stated in
(2.3),

h ºps (Âps) e =) h º (Â) e . (2.5)

The intuition is similar to that for (2.3).
It is immediate that º and ºps agree on unambiguous acts. Further, ºps is

indi®erent to uncertainty and thus views all acts as being risky only. Therefore,
interpret (2.5) as stating that ºps is a `risk preference component' of º. The
inde¯nite article is needed for two reasons - ¯rst because all de¯nitions depend
on the exogenously speci¯ed collection A and second, because ºps need not be
unique even given A. Subject to these same quali¯cations, the probability mea-
sure underlying ºps is naturally interpreted as `mean' or `uncertainty-free' beliefs
underlying º. The formal analysis below does not depend on these interpreta-
tions.
It might be useful to adapt familiar terminology and refer to ºps satisfying

(2.5) as constituting a support for º at h. Then uncertainty aversion for º means
that there exists a single order ºps supporting º at every unambiguous act. A
parallel requirement in consumer theory is that there exist a single price vector
supporting the indi®erence curve at each consumption bundle on the 45± line.

9Write y ¸ x if receiving outcome y with probability 1 is weakly preferable, according to
Ups, to receiving x for sure. ª0 ¯rst-order stochastically dominates ª if for all outcomes y,
ª0(fx 2 X : y ¸ xg) · ª(fx 2 X : y ¸ xg) . Thus the partial order depends on the utility
function Ups, but that causes no di±culties. See [14] for further details.

10Subjective expected utility is the special case of (2.4) with W (ª) =
R

X u(x) dª(x). But
more general risk preferences W are admitted, subject only to the noted monotonicity restriction.
In particular, probabilistically sophisticated preference can rationalize behaviour such as that
exhibited in the Allais Paradox. It follows that uncertainty aversion, as de¯ned shortly, is
concerned with Ellsberg-type, and not, Allais-type, behaviour.
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Two possible variations of the preceding de¯nition merit mention. First, refer
to º as `locally uncertainty averse' if for every unambiguous h there exists ºps,
depending on h, that satis¯es (2.5). The innovation here is that the supporting
ºps is not required to be the same for all unambiguous acts h. Adoption of such
a local notion would invalidate most of our results, including the behavioural
implications of uncertainty aversion described in Section 3.4, the uniqueness of
the support ºps delivered by eventwise di®erentiability (Section 4.3) and possibly
the negative conclusion in the next section regarding the connection between
uncertainty aversion of a CEU utility function and convexity of its capacity.11

However, the weaker local notion seems to have too little empirical content to be
of much use or interest.
A second variation would involve comparisons of conditional acts. It is well

known that in the context of the theory of risk aversion, comparison with con-
ditional perfect certainty delivers a stronger de¯nition of risk aversion, though
the conditional and unconditional de¯nition are equivalent given expected utility
theory.12 A conditional version of (2.5) might take the form: For all T 2 § and
acts g,

(h;T ; g; T c) ºps (e; T ; g; T c) =) (h; T ; g; T c) º (e; T ; g; T c) ,

and similarly for strict preference. But this is an intuitively problematic condition.
The intuition surrounding (2.5) is that the act preferred by the probabilistically
sophisticated order is unambiguous. But here (h; T ; g; T c) is ambiguous without
further restrictions on T and g. Furthermore, there is no sensible notion of `con-
ditionally unambiguous'.13 The nature of T c and the outcomes delivered on T c by
g a®ect the nature of the subacts (h on T ) and (e on T ); for example, for some
T and g, it could be the latter subact that is less ambiguous. This is precisely
the message of the Ellsberg Paradox and the violation of the Sure-Thing Princi-
ple that it reveals. On other hand, if T and g are restricted so that (h; T ; g; T c)
is unambiguous, then one obtains a de¯nition that is equivalent to the uncondi-

11An intermediate de¯nition that would preserve most results would require that for each
unambiguous A there exists ºps that serves as a support at both A and Ac; otherwise, ºps

could vary with A.
12See [12] and [3] for the relation between these two de¯nitions of `more risk averse than'.

Yaari deals with the weaker unconditional form of risk aversion.
13This is in contrast to the case of conditional certainty. The property

(x;T ; g; T c) º1 (e; T ; g; T c) =) (x;T ; g; T c) º2 (e; T ; g; T c)
seems appropriate as a (strong) de¯nition of `º2 is more risk averse than º1'.
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tional one. Thus, there does not seem to be an acceptable and distinct conditional
formulation of uncertainty aversion.
Turn next to uncertainty loving and uncertainty neutrality. For the de¯nition

of the former, reverse the inequalities in (2.5). That is, say that º is uncertainty
loving if there exists a probabilistically sophisticated order ºps such that, under
the conditions stated in (2.3),

h ¹ps (Áps) e =) h ¹ (Á) e . (2.6)

The conjunction of uncertainty aversion and uncertainty loving is called uncer-
tainty neutrality.
As emphasized earlier, the meaning of uncertainty aversion depends on the

exogenously speci¯ed A. Two extreme speci¯cations for A illustrate this depen-
dence. IfA = f;; Sg, then only constant acts are unambiguous. Thus uncertainty
aversion is de¯ned by the appropriate form of (2.1). In terms of the discussion at
the end of Section 2.1, the comparison (2.1) re°ects uncertainty aversion exclu-
sively. At the other extreme where A = §, all acts in F are unambiguous. Thus
every preference order is indi®erent to uncertainty and (2.1) re°ects risk aversion
exclusively.
Consider further the question of a separation between attitudes towards un-

certainty and attitudes towards risk. Suppose that º is uncertainty averse with
support ºps. Because º and ºps agree on the set Fua of unambiguous acts, º
is probabilistically sophisticated there. Thus, treating the probability measure
underlying ºps as objective, one may adopt the standard notion of risk aversion
(or loving) for objective lotteries (see [12], for example) in order to give precise
meaning to the statement that º is risk averse (or loving). In the same way,
such risk attitudes are well de¯ned if º is uncertainty loving. That a degree of
separation between risk and uncertainty attitudes has been achieved is re°ected
in the fact that all four logically possible combinations of risk and uncertainty
attitudes are admissible. On the other hand, the separation is partial: Given
two preference orders º1 and º2 that are comparable in the sense of uncertainty
aversion, they must agree on Fua and thus embody the same risk aversion.

3. IS THE DEFINITION ATTRACTIVE?

3.1. Some Attractive Properties

The de¯nition of uncertainty aversion has been based on the a priori identi¯cation
of uncertainty neutrality (de¯ned informally) with probabilistic sophistication.
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Therefore, internal consistency of the approach should deliver this identi¯cation
as a formal result. On the other hand, because attitudes towards uncertainty have
been de¯ned relative to a given A, such a result cannot be expected unless it is
assumed that A is `large'. Suppose, therefore, that A is rich: There exist x¤ Â x¤,
such that for every E 2 §, there exists A 2 A, satisfying

(x¤; A; x¤; A
c) » (x¤; E; x¤; E

c).

A corresponding notion of richness is valid for the roulette-wheel lotteries in the
Anscombe-Aumann framework adopted by Schmeidler [21]. The assumption that
A is rich corresponds to the common assumption in risk theory that every act has
a certainty equivalent.
The next theorem (proved in Appendix A) establishes the internal consistency

of our approach.

Theorem 3.1. If º is probabilistically sophisticated, then it is uncertainty neu-
tral. The converse is true if A is rich.

The potential usefulness of the notion of uncertainty aversion depends on being
able to check for the existence of a probabilistically sophisticated order supporting
a given º. This concern with tractability motivates the later analysis of eventwise
di®erentiability. Anticipating that analysis, consider here the narrower question
\does there exist ºps that both supports º and has underlying beliefs represented
by the given probability measure m on §?" On its own, the question may seem to
be of limited interest. But once eventwise di®erentiability delivers m, its answer
completes a procedure for checking for uncertainty aversion.

Lemma 3.2. Let ºps support º in the sense of (2.5) and have underlying prob-
ability measure m on §. Then:
(i) For any two unambiguous acts h and h0, if ªm;h ¯rst-order stochastically

dominates ªm;h0, then U(h) ¸ U (h0).
(ii) For all acts e and unambiguous acts h,

ªm;e = ªm;h =) U(e) · U(h).

The converse is true if m satis¯es: For each unambiguous A and 0 < r < mA,
there exists unambiguous B ½ A with mB = r.
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The added assumption for m is satis¯ed if S = S1 £ S2, unambiguous events
are measurable subsets of S1 and the marginal of m on S1 is convex-ranged in
the usual sense. The role of the assumption is to ensure that, using the notation
surrounding (2.4),

fªm;h : h 2 Fuag = ¢(X ).

3.2. Multiple-Priors and CEU Utilities

The two most widely used generalizations of subjective expected utility theory
are CEU and the multiple-priors model. In this subsection, uncertainty aversion
is examined in the context of these models.
Say that º is a multiple-priors preference order if it is represented by a utility

function Ump of the form

Ump(e) = min
m2P

Z

S
u(e) dm , (3.1)

for some set P of probability measures on (S;§) and some vNM index u : X ¡!
R1. Given a class A, it is natural to model the unambiguous nature of events in
A by supposing that all measures in P are identical when restricted to A; that is,

mA = m0A for all m and m0 in P and A in A. (3.2)

These two restrictions on º imply uncertainty aversion, because º is more un-
certainty averse than the expected utility order ºps with vNM index u and any
probability measure m in P . More precisely, the following result obtains:

Theorem 3.3. Any multiple-priors order satisfying (3.2) is uncertainty averse.

Proof. Let ºps denote an expected utility order with vNM index u and any
probability measure m in P . Then h ºps e () R

u(h) dm ¸ R
u(e) dm =)

Ump(h) =
R
u(h) dm ¸ R

u(e) dm ¸ Ump(e).

A commonly studied special case of the multiple-priors model is a Choquet
expected utility order with convex capacity º. Then (3.1) applies with

P = core(º) = fm : m(¢) ¸ º(¢) on §g.

Thus convexity of the capacity implies uncertainty aversion given (3.2).
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Focus more closely on the CEU model, with particular emphasis on the connec-
tion between uncertainty aversion and convexity of the capacity. The next result
translates Lemma 3.2 into the present setting, thus providing necessary and su±-
cient conditions for uncertainty aversion combined with a prespeci¯ed supporting
probability measure m. For necessity, an added assumption is adopted. Say that
a capacity º is convex-ranged if for all events E1 ½ E2 and º(E1) < r < º(E2),
there exists E, E1 ½ E ½ E2, such that º(E) = r. This terminology applies
in particular if º is additive, where it is standard.14 For axiomatizations of CEU
that deliver a convex-ranged capacity, see [6, p. 73] and [17, Proposition A.3].
Savage's axiomatization of expected utility delivers a convex-ranged probability
measure.
Use the notation U ceu to refer to utility functions de¯ned by (1.2), restricted

to Savage acts, where the vNM index u : X ¡! R1 satis¯es

u(X ) has nonempty interior in R1.

For those unfamiliar with Choquet integration, observe that for simple acts it
yields

U ceu(e) = §n¡1i=1 [ u(xi)¡ u(xi+1)] º
³
[i1Ej

´
+ u(xn) , (3.3)

where the outcomes are ranked as x1 Â x2 Â ::: Â xn and the act e has e(xi) =
Ei, i = 1; :::; n.

Lemma 3.4. Let U ceu be a CEU utility function with capacity º.
(a) The following conditions are su±cient for U ceu to be uncertainty averse

with supporting U ps having m as underlying probability measure: There exists a
bijection g : [0; 1] ¡! [0; 1] such that

m 2 core
³
g¡1(º)

´
; and (3.4)

m(¢) = g¡1 (º(¢)) on A. (3.5)

(b) Suppose that º is convex-ranged and that A is rich. Then the conditions
in (a) are necessary in order that U ceu be uncertainty averse with supporting U ps

having m as underlying probability measure.
(c) Finally, in each of the preceding parts, the supporting utility U ps can be

taken to be an expected utility function if and only if in addition g is the identity
function.

14See [15]. Given countable additivity, convex-ranged is equivalent to non-atomicity.
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See Appendix A for a proof. The supporting utility function Ups that is provided
by the proof of (a) has the form (2.4), where the risk preference functional W is

W (ª) =
Z

X
u(x) d(g ±ª)(x),

a member of the rank-dependent expected utility class [2].
Observe ¯rst that attitudes towards uncertainty do not depend on properties of

the vNM index u. More surprising is that given m, the conditions on º described
in (a) are ordinal invariants, that is, if º satis¯es them, then so does '(º) for any
monotonic transformation '. In other words, º and g satisfy these conditions if
and only if '(º) and bg = '(g) do. Consequently, under the regularity conditions
in the lemma, the CEU utility function

R
u(e) dº is uncertainty averse if and

only if the same is true for
R
u(e) d'(º). The fact that uncertainty aversion

is determined by ordinal properties of the capacity makes it perfectly clear that
uncertainty aversion has little to do with convexity, a cardinal property.
Thus far, only parts (a) and (b) of the lemma have been used. Focus now on

(c), characterizing conditions under which U ceu is \more uncertainty averse than
some expected utility order with probability measure m." Because the CEU util-
ity functions studied by Schmeidler are de¯ned on horse-race / roulette-wheels and
conform with expected utility on the objective roulette-wheels, this latter com-
parison may be more relevant than uncertainty aversion per se for understanding
the connection with convexity. The lemma delivers the requirement that º be
additive on A and that it admit an extension to the measure m lying in core(º).15

It is well known that convexity of º is su±cient for nonemptiness of the core, but
that seems to be the extent of the link with uncertainty aversion. An example in
the next subsection shows that U ceu may be more uncertainty averse than some
expected utility order even though its capacity is not convex.
To summarize, there appears to be no logical connection in the Savage frame-

work between uncertainty aversion and convexity. Convexity does not imply un-
certainty aversion, unless added conditions such as (3.2) are imposed (see also the
interval beliefs example in Section 4.2). Furthermore, convexity is not necessary
even for the stricter notion `more uncertainty averse than some expected utility or-
der' that seems closer to Schmeidler's notion. As emphasized in the introduction,
this is not to say that convexity and the asssociated multiple-priors functional

15The following observation may be useful in a future extension that partially endogenizes A:
Let A1 and A2 be two ¸-systems and m1 and m2 probability measures on §, such that º = mi

on Ai and mi 2 core(º), i = 1; 2. Then m1 = m2 on A1 [ A2.
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structure that it delivers are not useful hypotheses. Rather, the point is to ob-
ject to the widely adopted behavioural interpretation of convexity as uncertainty
aversion.

3.3. Inner Measures

Zhang [28] argues that rather than convex capacities, it is capacities that are inner
measures that model uncertainty aversion. These capacities are de¯ned as follows:
Let p be a probability measure on A; its existence re°ects the unambiguous nature
of events in A. Then the corresponding inner measure p¤ is the capacity given
by

p¤(E) = sup fp(B) : B ½ E, B 2 Ag, E 2 §.
The fact that the capacity of any E is computed by means of an inner approxi-
mation by unambiguous events seems to capture a form of aversion to ambiguity.
Zhang provides axioms for preference that are consistent with this intuition and
that deliver the subclass of CEU preferences having an inner measure as the ca-
pacity º.
It is interesting to ask whether CEU preferences with inner measures are un-

certainty averse in the formal sense of this paper. The answer is `sometimes' as
described in the next lemma.

Lemma 3.5. Let U ceu(¢) ´ R
u(¢)dp¤, where p¤ is the inner measure generated

as above from the probability measure p on A.
(a) If p admits an extension to a probability measure on §, then U ceu is more

uncertainty averse than the expected utility function
R
u(¢)dp.

(b) Adopt the auxiliary assumptions in Lemma 3.4(b). If U ceu is uncertainty
averse, then p admits an extension from A to a measure on all of §.

Proof. (a) p¤ and p coincide on A. For every B ½ E, p(B) · p(E). Therefore,
p¤(E) · p(E). From the formula (3.3) for the Choquet integral, conclude that
for all acts e and unambiguous acts h,

Z
u(h) dp¤ =

Z
u(h) dp and

Z
u(e) dp¤ ·

Z
u(e) dp.

(b) By Lemma 3.4 and its proof, p = p¤ = g(m) on A and m(A) = [0; 1].
Therefore, g must be the identity function. Again by the previous lemma, m lies
in core(p¤), implying that m ¸ p¤ = p on A. Because A is closed with respect
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to complements, conclude that m = p on A and hence that m is the asserted
extension of p.

Both directions in the lemma are of interest. Because in general, a probability
measure on A need not admit an extension to §, part (a) shows that the intuition
surrounding `inner approximation' is °awed or incomplete, demonstrating the
importance of a formal de¯nition of uncertainty aversion. On the other hand,
part (b) provides a class of examples of Choquet expected utility functions that
are more uncertainty averse than some expected utility order. These can be used
to show that even if this stricter notion of (more) uncertainty averse is adopted,
the capacity p¤ need not be convex. This follows from Zhang's observation that
an inner measure is not convex in general.16 For the convenience of the reader, I
repeat here Zhang's counterexample, consisting of an Ellsberg urn with balls of 4
colors: S = fR;B;G;Wg, A = f;; S; fB;Gg; fR;Wg; fB;Rg; fG;Wggg and
§ is the power set. Let p be the equally likely (counting) probability measure on
the power set. Using the restriction of p to A, de¯ne the inner measure p¤. Then
the conditions of part (b) are satis¯ed, but p¤ is not convex because

1 = p¤(fB;Gg) + p¤(fB;Rg) > p¤(fB;G;Rg) + p¤(fBg) = 1=2.

It is worth mentioning also that in this example, A is rich because for every E
there exists some unambiguous A such that p¤(E) = p¤(A) = p(A).

3.4. Bets, Beliefs and Uncertainty Aversion

This section examines some implications of uncertainty aversion for the ranking of
binary acts. Because the ranking of bets reveals the decision-maker's underlying
beliefs or likelihoods, these implications clarify the meaning of uncertainty aver-
sion and help to demonstrate its intuitive empirical content. The generic binary
act is denoted xEy, indicating that x is obtained if E is realized and y otherwise.
Let º be uncertainty averse with probability sophisticated order ºps satisfying

(2.5). Apply the latter to binary acts, to obtain the following relation: For all
unambiguous A, events E and outcomes x1 and x2,

x1Ax2 ºps (Âps)x1Ex2 =) x1Ax2 º (Â)x1Ex2.

Proceed to transform this relation into a more illuminating form.

16p¤ is convex if A is an algebra [23, Theorem 5.1]. But recall that ¸-systems are more
appropriate for modelling the class of unambiguous events.
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Exclude the uninteresting case x1»x2 and assume that

x1 Â x2.

Then x1Ex2 can be viewed as a bet on the event E. As noted earlier, ºps nec-
essarily agrees with the given º in the ranking of unambiguous acts and hence
also constant acts or outcomes, so x1 Âps x2. Let m be the subjective probability
measure on the state space (S;§) that underlies ºps. Then the monotonicity
property inherent in probabilistic sophistication implies that

x1Ax2 ºps (Âps)x1Ex2 () m(A1) ¸ (>)m(E1).

Conclude that uncertainty aversion implies the existence of a probability measure
m such that: For all A, E, x1 and x2 as above,

m(A) ¸ (>)m(E) =) x1Ax2 º (Â)x1Ex2.

One ¯nal rewriting is useful. De¯ne, for the given pair x1 Â x2,

º(E) = U (x1Ex2 ) .

Then,
mA ¸ (>)mE =) ºA ¸ (>) ºE, (3.6)

which is the sought-after implication of uncertainy aversion.17

In the special case of CEU (1.2), with vNM index satisfying u(x1) = 1 and
u(x2) = 0, º de¯ned as above coincides with the capacity in the CEU functional
form. Refer to º more generally as a capacity, even when CEU is not assumed.18

The interpretation is that º represents º numerically over bets on various events
with the given stakes x1 and x2, or alternatively, that it represents numerically
the likelihood relation underlying preference º. From this perspective, only the
ordinal properties of º are signi¯cant.19 An implication of (3.6) is that º and m
must be ordinally equivalent on A (though not on §).

17This condition is necessary for uncertainty aversion but not su±cient, even if there are only
two possible outcomes. That is because by taking h in (2.5) to be a constant act, one concludes
that an uncertainty averse order º assigns a lower certainty equivalent to any act than does the
supporting order ºps. In contrast, (3.6) contains information only on the ranking of bets and
not on their certainty equivalents. (I am assuming here that certainty equivalents exist.)

18Contrary to common usage of the term `capacity', º need not be monotone with respect to
set inclusion unless º is suitably monotone.

19These ordinal properties are independent of the particular pair of outcomes satisfying x1 Â
x2 if (and only if) º satis¯es Savage's axiom P4.

22



In other words, uncertainty aversion implies the existence of a probability
measure m that supports fE 2 § : º(E) ¸ º(A)g at each unambiguous A, where
support is in a sense analogous to the usual meaning, except that the usual linear
supporting function de¯ned on a linear space is replaced by an additive function
de¯ned on an algebra. Think of the measure m as describing the (not necessarily
unique) `mean ambiguity-free likelihoods' implicit in º and º. This interpretation
and the `support' analogy are pursued and developed further in Section 4.3 under
the assumption that preference is eventwise di®erentiable.
In a similar fashion, one can show that uncertainty loving implies the existence

of a probability measure q on (S;§) such that

q(A) · (<) q(E) =) º(A) · (<) º(E), (3.7)

for every E 2 § and A 2 A. The conjunction of (3.6) and (3.7) imply, under a
mild additional assumption, that º is ordinally equivalent to a probability measure
(see Lemma A.1), which is one step in the proof of Theorem 3.1.
Because choice between bets provides much of the experimental evidence re-

garding nonindi®erence to uncertainty, the implication (3.6) is convenient for
demonstrating the intuitive empirical content of uncertainty aversion. The Ells-
berg urn discussed in the introduction provides the natural vehicle. Consider
again the typical choices in (1.4). In order to relate these rankings to the formal
de¯nition of uncertainty aversion, adopt the natural speci¯cation

A = f;; S; fRg;fB;Ggg .
Given this speci¯cation, it is easy to see that these rankings imply uncertainty
aversion - the measure m assigning 1=3 probability to each color is a support in
the sense of (3.6).
Equally revealing is that the notion of uncertainty aversion excludes behaviour

that is interpreted intuitively as re°ecting an a±nity for ambiguity.20 To see
this, suppose that the decision-maker's rankings are changed by reversing the
strict preference `Â' to `Á'. These new rankings contradict uncertainty aversion:
Let m be a support as in the implication (3.6) of uncertainty aversion and take
A = fB;Gg. Then fB;Gg Á fR;Bg implies that m(fB;Gg) < m(fR;Bg).
Because m is additive, conclude that m(G) < m(R). But then uncertainty
aversion applied to the unambiguous event fRg implies that fRg Â fGg, contrary
to the hypothesis.

20Alternatively, we could show that the rankings in (1.4) are inconsistent with the implication
(3.7) of uncertainty loving.
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Though a general formal result seems unachievable, there is an informal sense
in which these results seem to be valid much more broadly than the speci¯c
Ellsberg experiment considered. Typically when choices are viewed as paradoxical
relative to probabilistically sophisticated preferences, there is a natural probability
measure on the state space that is `contradicted' by observed choices. This seems
close to saying precisely that the measure is a support.
Another revealing implication of uncertainty aversion is readily derived from

(3.6). Notation that is useful here and below is, given A, write an arbitrary event
E in the form

E = A+ F ¡G, where F = EnA and G = AnE. (3.8)

Henceforth, E + F denotes both E [ F and the assumption that the sets are
disjoint. Similarly, implicit in the notation E ¡ G is that G ½ E. Now let
m be the supporting measure delivered by uncertainty aversion. Then for any
unambiguous A0 and A, if F ½ A0 \Ac and G ½ A0c \A,

A0 ¡ F +G º A0 =) A+ F ¡G ¹ A, (3.9)

because the ¯rst ranking implies (by the support property at A0) that mF ·
mG and this implies the second ranking (by the support property at A).21 In
particular, taking A0 = Ac,

Ac ¡ F +G º Ac =) A+ F ¡G ¹ A, (3.10)

for all F ½ Ac and G ½ A. The interpretation is that if F seems small relative to
G when (as at A0) one is contemplating subtracting F and adding G, then it also
seems small when (as at A) one is contemplating adding F and subtracting G.
This is reminiscent of the familiar inequality between the compensating and equiv-
alent variations for an economic change, or the property of diminishing marginal
rate of substitution. A closer connection between uncertainty aversion and such
familiar notions from consumer theory is possible if eventwise di®erentiability of
preference is assumed, as in the next section.

21A slight strengthening of (3.9) is valid. Suppose that

A0 ¡ F i + Gi º A0 all i ,

for some partitions F = §F i and G = §Gi. Only the trivial partitions were admitted above.
Then additivity of the supporting measure implies as above that mF · mG and hence that
A + F ¡ G ¹ A.
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4. DIFFERENTIABLE UTILITIES

Tractability in applying the notion of uncertainty aversion raises the following
question: Is there a procedure for deriving from º all probabilistically sophis-
ticated orders satisfying (2.5), or for deriving from º all candidate supporting
measures m satisfying (3.6)? We turn now to this question and show that event-
wise di®erentiability of preference provides such a procedure in some cases. More
precisely, conditions are provided that deliver a unique supporting measure from
the eventwise derivative of utility. When combined with Lemmas 3.2 and 3.4, this
provides the sought after procedure.

4.1. De¯nition of Eventwise Di®erentiability

The standard representation of an act, used above, is as a measurable map from
states into outcomes. Let e : S ¡! X be such an act. An alternative represen-
tation of this act is by means of the inverse correspondence e¡1, denoted by be.
Thus be : X ¡!§, where be(x) denotes the event E on which the act assumes the
outcome x. For notational simplicity, it is convenient to write e rather than be and
to leave it to the context to make clear whether e denotes a mapping from states
into consequences or alternatively from outomes into events.
Henceforth, when examining the decision-maker's ranking of a pair of acts,

view those acts as assigning a common set of outcomes to di®erent events. This
perspective is `dual' to the more common one, where distinct acts are viewed
as assigning di®erent outcomes to common events. These two perspectives are
mathematically equally valid; the choice between them is a matter of convenience.
The latter is well suited to the study of risk aversion (attitudes towards variability
in outcomes) and, it is argued here, the former is well suited to the study of
uncertainty aversion. The intuition is that uncertainty or ambiguity stems from
events and that aversion to uncertainty re°ects attitudes towards changes in those
events.
Because acts are simple,

fx 2 X : e(x) 6= ;g is ¯nite. (4.1)

In addition,
fe(x) : x 2 X , e(x) 6= ;g partitions S. (4.2)

The set of acts F may be identi¯ed with the set of all maps satisfying these two
conditions. In particular, F ½ §X , where the latter is de¯ned as the set of all
maps from X into § satisfying (4.1).
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Let U : F ¡! R be a utility function for º and de¯ne the `eventwise deriva-
tive of U '. Because utility is de¯ned on a subset of §X , it is convenient to de¯ne
derivatives ¯rst for functions © that are de¯ned on all of §X . Continue to refer
to elements e 2 §X as acts even when they are not elements of F .
The following structure for §X is useful. De¯ne the operations `[', `\' and

`complementation' (e 7¡! ec) on §X co-ordinatewise; for example,

(e [ f) (x) ´ e(x) [ f(x), for all x 2 X .
Say that e and f are disjoint if e(x)\f(x) ´ ; for all x, abbreviated e\f = ;. In
that case, denote the above union by e+ f . The notation e0ne and e0¢e indicates
set di®erence and symmetric di®erence applied outcome by outcome. Similar
meaning is given to g ½ e.
Say that ff jgnj=1 partitions f if ff j(x)g partitions f(x) for each x. De¯ne

the re¯nement partial ordering of partitions in the obvious way. Given an act f ,n
ff j;¸gn¸j=1

o
¸
denotes the net of all ¯nite partitions of f , where ¸ < ¸0 if and

only if the partition corresponding to ¸0 re¯nes the partition corresponding to ¸.
A real-valued function ¹ on §X is called additive if it is additive across disjoint

acts. Refer to such a function as a (signed) measure even though that terminology
is usually reserved for functions de¯ned on algebras, while §X is not an algebra.22

Expected utility functions, U(e) = §x u(x) p (e(x)), are additive and hence mea-
sures in this terminology. For any additive ¹, ¹(;) = 0 and

¹(e) = §x ¹x (e(x)) , (4.3)

where ¹x is the marginal measure on § de¯ned by ¹x(E) = the ¹-measure of the
act that assigns E to the outcome x and the empty set to every other outcome.
Apply to each marginal the standard notions and results for ¯nitely additive

measures on an algebra (see [15]). In this way, one obtains a decomposition of ¹,

¹ = ¹+ ¡ ¹¡,

where ¹+ and ¹¡ are non-negative measures. De¯ne

j ¹ j= ¹+ + ¹¡.

Say that the measure ¹ is bounded if

sup
f

j ¹ j (f) = sup
n
§n¸j=1 j ¹(f j;¸) j : f 2 §X , ¸

o
< 1. (4.4)

22In particular, §X is not the product algebra on SX induced by §. However, the operations
we have de¯ned make §X a ring, that is, it is closed with respect to unions and di®erences.
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Call the measure ¹ on §X convex-ranged if for every e and r 2 (0; j ¹ j (e)), there
exists b, b ½ e such that j ¹ j (b) = r, where e and b are elements of §X . Lemma
B.1 summarizes some properties of convex-ranged measures on §X .
De¯ne di®erentiability for a function © : §X ¡! R1.

De¯nition 4.1. © is (eventwise) differentiable at e 2 §X if there exists a
bounded and convex-ranged measure ±©(¢; e) on §X , such that: For all f ½ ec

and g ½ e,

§n¸j=1 j ©
³
e+ f j;¸ ¡ gj;¸

´
¡© (e)¡ ±©(f j;¸; e) + ±©(gj;¸; e) j ¡!¸ 0. (4.5)

The requirement of convex range for ±©(¢; e) is not needed everywhere below, but
is built into the de¯nition for ease of exposition.
Any utility function U is de¯ned on the proper subset F of §X . De¯ne ±U (¢; e)

as above, with the exception that the perturbations f j;¸ and gj;¸ are restricted
so that e + f j;¸ ¡ gj;¸ lies in F . Say that U is eventwise di®erentiable if the
derivative exists at each e in F .
To clarify the notation, suppose that e is an act in F that assumes the outcomes

x1 and x2 on E and Ec respectively. Let f assume (only) these outcomes on events
F ½ Ec and G ½ E, while g assumes (only) x1 and x2 on G and F respectively.
Then f and g lie in §X , f ½ ec, g ½ e and e + f ¡ g is the act in F that yields
x1 on E + F ¡ G and x2 on its complement. Further if fF j;¸g and fGj;¸g are
partitions of F and G and if f j;¸ and gj;¸ are de¯ned in fashion paralleling the
de¯nitions given for f and g, then ff j;¸g and fgj;¸g are partitions of f and g that
eneter into the de¯nition of ±U(¢; e).
The rest of this subsection is devoted to clarifying and interpreting eventwise

di®erentiability. The essence of the de¯nition can be more easily understood by
adapting it to the case where the domain of © is §. Then each act e is simply an
event E. One can think of © as a capacity and of ±©(¢;E) as its derivative at E.
The following discussion deals with the general case, but some readers may wish
to keep the special case in mind.
For each ¸, ff j;¸gn¸j=1 and fgj;¸gn¸j=1 are partitions of f and g respectively and

these partitions are ¯ne when ¸ is large. Therefore, di®erentiability at e states that
the di®erence ©(e+f¡g) ¡ ©(e) can be approximated by ±©(f ; e) ¡ ±©(g; e) for
suitably `small' f and g, where the small size of the perturbation \f ¡g" is in the
sense of the ¯neness of the partitions as ¸ grows. Naturally, it is important that
the approximating functional ±©(¢; e) is additive (a signed measure). There is an
apparent parallel with Gateaux (directional) di®erentiability of functions de¯ned
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on a linear space - \f ¡ g" represents the `direction' of perturbation and the
additive approximation replaces the usual linear one. Note that the perturbation
from e to e+ f ¡ g is perfectly general; any e0 can be expressed (uniquely) in the
form e0 = e+ f ¡ g, with f ½ ec and g ½ e (see (3.8)).
Though I use the term derivative, ±©(¢; e) is actually the counterpart of a

di®erential. The need for a signed measure arises from the absence of any mono-
tonicity assumptions. If ©(¢) is monotone with respect to inclusion ½, then each
±©(¢; e) is a non-negative measure.
The notion of eventwise di®erentiablity is nonstandard, (for example, its def-

inition does not refer to anything resembling a di®erence quotient), and some
readers may wonder about tractability, (that is, can we compute derivatives?). In
the hope of addressing these concerns, a stronger form of di®erentiability (similar
to that in [13]) is described in Appendix C. The examples to follow should also
help in this respect. Finally, observe that for a function ' : R1 ¡! R1 that
is di®erentiable at some x in the usual sense, elementary algebraic manipulation
of the de¯nition of the derivative '0(x) yields the following expression paralleling
(4.5):

§Ni=1
h
'(x+N¡1) ¡ '(x) ¡ N¡1'0(x)

i
¡!N¡!1 0.

These clari¯cations and `justi¯cations' for our de¯nition are largely mathe-
matical. At least as important is that the eventwise derivative of utility U and
expressions involving the derivative that play a role below admit behavioural in-
terpretations. The suggested interpretation is that ±U(¢; e) represents the `mean'
or `uncertainty free' assessment of acts implicit in utility, as viewed from the per-
spective of the act e. It may help to recall that in the theory of expected utility
over objective lotteries or risk, if the vNM index is di®erentiable, then utility is
linear to the ¯rst order and hence preference is risk neutral for small gambles.
The suggested parallel here is that a di®erentiable utility is additive (rather than
linear) and uncertainty neutral (rather than risk neutral) to the `¯rst-order'.
To support this suggestion, consider inequalities of the form

±U (f ; e) < (>) ±U (g; e), (4.6)

where e 2 §X , f ½ ec and g ½ e. Such inequalities play a prominent role
below. That they have behavioural signi¯cance is apparent from the fact that they
are invariant to (suitable) monotonic transformations of U ; that is, consider the
ordinally equivalent utility function ' ± U , where ' is continuously di®erentiable.
Then the Chain Rule for eventwise di®erentiability (Theorem B.2) implies that

±(' ± U)(¢; e) = '0(U (e)) ±U(¢; e):
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Thus (4.6) is satis¯ed also by the derivative of ' ± U .
The behavioural meaning of these inequalities may be described as follows:

Given (4.6), then

8¸0 9¸ > ¸0 such that U(e+ f j;¸ ¡ gj;¸) < (>) U (e), j = 1; :::; n¸. (4.7)

(Let ±U(f ; e) > ±U(g; e). Because ±U (¢; e) is convex-ranged, Lemma B.1 implies
that there exist partitions, as ¯ne as desired, satisfying ±U(f j;¸; e) > ±U(gj;¸; e),
for all j. Now apply the de¯nition of eventwise di®erentiability.) Conversely, (4.7)
implies ±U(f ; e) · (¸) ±U(g; e) by the de¯nition of eventwise derivative. In other
words, overlooking the distinction between weak and strict inequalities, (4.7) is
the behavioural characterization of the inequalities (4.6).23

In the case of preference over lotteries or risk, it is well known that a decision-
maker with suitably Gateaux di®erentiable utility function will always (strictly)
choose one side of an actuarially non-neutral bet or random variable if she can
also choose the scale of the bet. This applies in particular to an expected utility
maximizer with di®erentiable vNM index. As a result, if the gamble is actuarially
favourable and is represented by the random variable X, then X can be decom-
posed into a sum §Xj of small gambles (X j = tX for some small scalar t), such
that each single Xj would be accepted by the decision-maker. The parallel with
(4.7) is apparent, though the meanings of \actuarially non-neutral' and `small
gamble' and the nature of the decomposition are di®erent. The reason for the
noted property of preference in the case of risk is that, if the vNM index is di®er-
entiable, then utility is linear to the ¯rst order and hence preference is risk neutral
for small gambles.24 Thus, expected value alone dictates the direction of prefer-
ence for small gambles. Similarly here, the direction of preference for su±ciently
small gambles is determined by the eventwise derivative of utility. If one views
such small gambles as uncertainty free, then ±U (¢; e) must re°ect uncertainty-free
assessments for small gambles. But by additivity, ±U(¢; e) is completely deter-
mined by the values it assigns to small gambles. This completes the justi¯cation
for the behavioural interpretation of (4.6).25

23Some readers may feel that the de¯nition of eventwise di®erentiability is somewhat arbitrary
and that there exist alternative mathematical de¯nitions, seemingly as plausible, that might be
adopted. The behavioural characterization provided for (4.6) may serve to distinguish between
alternative de¯nitions on economic grounds. We are not aware of alternative de¯nitions of
di®erentiability consistent with the characterization (4.7).

24For a recent discussion see [22]. They study also preferences that are risk averse even for
small gambles, a property that they term `¯rst-order risk aversion.'

25This may not be totally convincing because of the identi¯cation of additivity (here of
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A natural question is \how restrictive is the assumption of eventwise di®eren-
tiability?" In this connection, the reader may have noted that the de¯nition is
formulated for an arbitrary state space S and algebra §. However, eventwise dif-
ferentiability is potentially interesting only in cases where these are both in¯nite.
That is because if § is ¯nite, then © is di®erentiable if and only if it is additive.
Examples and further discussion below should clarify the meaning and scope of
the assumption of eventwise di®erentiability.
Another question concerns the uniqueness of the derivative. The limiting

condition (4.5) has at most one solution, that is, the derivative is unique if it
exists: If p and q are two measures on §X satisfying the limiting property, then
for each g ½ ec, j p(g) ¡ q(g) j · §n¸j=1 j p(gj;¸) ¡ q(gj;¸) j ¡!¸ 0. Therefore,
p(g) = q(g) for all g ½ e. Similarly, prove equality for all f ½ ec and then apply
additivity.
The marginals of ±©(¢; e) are de¯ned as in (4.3). The marginal ±x©(¢; e) is

a measure on §, that is non-negative under suitable monotonicity for ©. Its
interpretation is roughly that ±x©(F ; e) describes the `¯rst-order' change induced
in the value of ©(e) as a result of a small perturbation of e in the x-component
only and in the `direction' F ½ (e(x))c; similarly ¡±x©(G; e) describes the e®ect
of a perturbation in the `direction' G ½ e(x). Roughly, ±x©(¢; e) is a partial
derivative (or di®erential) with respect to the x component.

Remark 1. Eventwise di®erentiability is inspired by Rosenmuller's notion, but
there are di®erences between them. Rosenmuller deals with convex capacities
de¯ned on §, rather than with utility functions de¯ned on acts. Even within that
framework, his formulation di®ers from (4.5) and relies on the assumed convexity.
Moreover, he restricts attention to `one-sided' derivatives, that is, where the inner
perturbation g is identically empty (producing an outer derivative), or where the
outer perturbation f is identically empty (producing an inner derivative). Finally,
Rosenmuller's application is to co-operative game theory rather than to decision
theory.

4.2. Examples

Turn to some examples that illustrate both di®erentiability and uncertainty aver-
sion. All are special cases of the CEU model (3.3), though other examples are

±U(¢; e)) with uncertainty neutrality. While expected utility functions are additive over acts,
there are many probabilistically sophisticated (and hence uncertainty neutral) utility functions
that are not. The answer seems to be that their non-additivity vanishes in the small.
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readily constructed. Because the discussion of di®erentiability dealt with func-
tions de¯ned on §X rather than just F , rewrite the CEU functional form here
using this larger domain. If the outcomes satisfy x1 Â x2 Â ::: Â xn and the act
e has e(xi) = Ei, i = 1; :::; n, then

U ceu(e) = §n¡1i=1 [ u(xi)¡ u(xi+1)] º
³
[i1Ej

´
+ u(xn) º ([n1Ej) .

Suppose that the capacity º is eventwise di®erentiable with derivative ±º(¢;E) at
E; naturally, di®erentiability is in the sense of the last section (with j X j= 1).
Then U ceu(¢) is eventwise di®erentiable with derivative

±U(e0; e) = §n¡1i=1 [u(xi)¡ u(xi+1)] ±º
³
[i1E0j;[i1Ej

´
+ u(xn) ±º

³
[n1E0j;[n1Ej

´
,

(4.8)
where e0(xi) = E0i. (This follows as in calculus from the additivity property of
di®erentiation.) Because di®erentiability of utility is determined totally by that of
the capacity, it is enough to consider examples of di®erentiable (and nondi®eren-
tiable) capacities. In each case where the capacity is di®erentiable, (4.8) describes
the corresponding derivative of utility.
The CEU case demonstrates clearly that eventwise di®erentiability is distinct

from more familiar notions, such as Gateaux di®erentiability. It is well-known
that a CEU utility function is not (two-sided) Gateaux di®erentiable, even if the
vNM index is smooth, unless it is an expected utility function. In contrast, many
CEU utility functions are eventwise di®erentiable, regardless of the nature of u(¢).
Veri¯cation of the formulae provided for derivatives is possible using the def-

inition (4.5). Alternatively, veri¯cation of the stronger ¹-di®erentiability (see
Appendix C) is more straightforward. (De¯ne ¹ by (C.2) and ¹0 = p in the ¯rst
two examples, = q in the third example and = `¤=`¤(S) in the ¯nal example,
where only `one-sided' derivatives exist.)

Example (Probability measure): Let p be a convex-ranged probability mea-
sure. Then ±p(¢;E) = p(¢), the same measure for all E. Application of (4.8)
yields

±U(e0; e) = §ni=1 u(xi) pE
0
i.

Thus the jth partial derivative is ±jU(¢; e) = u(xj) p(¢).

Example (Probabilistic sophistication within CEU): Let

º = g(p), (4.9)
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where p is a convex-ranged probability measure and g : [0; 1] ¡! [0; 1] is increas-
ing, onto and continuously di®erentiable. The corresponding utility function lies
in the rank-dependent-expected-utility class of functions studied in the case of
risk where p is taken to be objective. (See [2] and the references therein.) Then

±º(¢;E) = g0(pE) p(¢) and

±U(e0; e) = §ni=1[u(xi)¡ u(xi+1)] g0(p([i1Ej)) p([i1E0j),
where u(xn+1) ´ 0.

Example (Quadratic capacity): Let

º(E) = p(E) q(E),

where p and q are convex-ranged probability measures with p << q. Then

±º(¢;E) = p(E) q(¢) + p(¢) q(E),

a formula that is reminiscent of standard calculus.
Direct veri¯cation shows that º is convex. As for uncertainty aversion, if p

and q agree on A, then the probability measure on § de¯ned by

m(¢) = ±º(¢;A) = ±º(S;A) = [q(¢) + p(¢)] = 2,

serves as a support in the sense of (3.6). That the implied CEU utility function
is uncertainty averse in the full sense of (2.5) may be established by application
of Lemma 3.4. Observe that º = p2 = m2 on A; thus g(t) = t2. Then m lies

in the core of (pq)1=2, because [p(¢) + q(¢)]2 ¸ 4 p(¢) q(¢). The probabilistically
sophisticated supporting utility function Ups is

U ps(e) =
Z

S
u(e) dm2.

Example (Interval beliefs): Let `¤ and `¤ be two non-negative, convex-ranged
measures on (S;§), such that

`¤(¢) · `¤(¢) and 0 < `¤(S) < 1 < `¤(S):

De¯ne » = `¤(S)¡ 1 and

º(E) = maxf`¤(E); `¤(E)¡ »g. (4.10)
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Then º is a convex capacity on (S;§) and has the core

core(º) = fp 2 M(S;§) : `¤(¢) · p(¢) · `¤(¢) on §g.

This representation for the core provides intuition for º and the reason for its
name. See [26] for details regarding this capacity and its applications in robust
statistics.
Because the capacity is \piecewise additive", one can easily see that though

it has `one-sided derivatives', º is generally not eventwise di®erentiable at any E
such that `¤(E) = `¤(E)¡ ».
It follows from Theorem 3.3 and the nature of core(º) that a CEU utility U ceu

with capacity º is uncertainty averse for any class A such that `¤(¢) = `¤(¢) on
AnfSg. Because any such class A excludes events that are `close to' S, such an
A cannot be rich.
In fact, one can show using Lemma 3.4, that it is impossible for U ceu to

be uncertainty averse relative to any rich class of unambiguous events, unless
U ceu is probabilistically sophisticated, providing another illustration of the lack
of a connection between uncertainty aversion and convexity. The proof may be
outlined as follows: Let m be a supporting measure. Assume that A is rich.
Lemma 3.4(b) (and its proof showing m(A) = [0; 1]) imply that m = `¤=`¤(S)
on A and that º = g(m) there where

g(t) = max f`¤(S) t; `¤(S) t ¡ »g.

Again by Lemma 3.4, for all E in §,

max f`¤(S)m(E); `¤(S)m(E) ¡ »g ¸ maxf`¤(E); `¤(E)¡ »g.

For su±ciently `small' events E, both maxima are achieved at the ¯rst term in the
respective brackets because the other terms are negative. Thus for such events

`¤(S)m(E) ¸ `¤(E), or m(¢) ¸ `¤(¢)=`¤(S).

By additivity, this obtains for all events E. But the latter inequality involves two
probability measures and thus implies equality throughout. In a similar fashion
one can show that

`¤(¢) = `¤(S) = m(¢) = `¤(¢) = `¤(S) on §,

implying that º is ordinally equivalent on § to m, that is, U ceu is probabilistically
sophisticated.
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4.3. Uncertainty Aversion under Di®erentiability

To begin this section, the discussion will be restricted to binary acts; that is,
uncertainty aversion will refer to (2.6), or equivalently, to (3.6). Implications are
then drawn for uncertainty aversion in the full sense of general acts and (2.5).
The relevant derivative is ±º(¢;E), where ºE ´ U(x1Ex2) and U need not be

a CEU function. Assume that ºE is increasing with E. Thus ±º(¢;E) is a non-
negative measure, though not necessarily a probability measure. The suggested
interpretation from Section 4.1, specialized to this case, is that ±º(¢;E) repre-
sents the `mean' or `uncertainty free' likelihoods implicit in º, as viewed from the
perspective of the event E. This interpretation is natural given that ±º(¢;E) is
additive over events and hence ordinally equivalent to a probability measure on
§.
Turn to the relation between di®erentiability and uncertainty aversion. When

º is di®erentiable, analogy with calculus might suggest that the support at any
event A, in the sense of (3.6), should be unique and given by ±º(¢;A), perhaps up to
a scalar multiple. Though the analogy with calculus is imperfect, it is nevertheless
the case that, under additional assumptions, di®erentiability provides information
about the set of supports.
The principal additional assumption may be stated as follows: A0 ´ fA 2

A : º(S) > maxfºA; ºAcg g , the set of unambiguous events A such that A and
its complement are each strictly less likely than S. Say that º is coherent if there
exists a positive real-valued function · de¯ned on A0, such that

±º(¢;A) = ·(A) ±º(¢;Ac) on §, (4.11)

for eachA inA0. Coherence is satis¯ed by all the di®erentiable examples in Section
4.2. By the Chain Rule for eventwise di®erentiability (Theorem B.2), coherence
is invariant to suitable monotonic transformations of º and thus is an assumption
about the preference ranking of binary acts. It is arguably an expression of the
unambiguous nature of events in A. To see this, it may help to consider ¯rst the
following addition to (3.10):

A+ F ¡G ¹ A =) Ac ¡ F +G º Ac.

This is a questionable assumption because the events Ac ¡F +G and A+F ¡G
are both ambiguous. Therefore, there is no reason to expect the perspective on
the change `add F and subtract G' to be similar at Ac as at A. However, if F and
G are both `small', then only mean likelihoods matter and it is reasonable that
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the relative mean likelihoods of F and G be the same from the two perspectives.
In fact, such agreement seems to be an expression of the existence of `coherent'
ambiguity-free beliefs underlying preference. This condition translates into the
following restriction on derivatives:

±º(F ;A) · ±º(G;A) =) ±º(F ;Ac) · ±º(G;Ac).

By arguments similar to those in the proof of the theorem, this implication delivers
(4.11) under the assumptions in part (b). (Observe that the reverse implication
follows from (3.10)).
We prove the following in Appendix A:26

Theorem 4.2. Let º be eventwise di®erentiable.
(a) If º is uncertainty averse, then for all A 2 A, F ½ Ac and G ½ A,

±º(F ;Ac) · ±º(G;Ac) =) º(A+ F ¡G) · º(A). (4.12)

(b) Suppose further that § is a ¾-algebra and that m and each ±º(¢; A), A 2
A0, are countably additive, where m is a support in the sense of (3.6). Then for
each A in A0,

±º(F ;A)m(G) · ±º(G;A)m(F ) and (4.13)

±º(G;Ac)m(F ) · ±º(F ;Ac)m(G). (4.14)

(c) Suppose further that A0 is nonempty and that º is coherent. Then the
unique countably additive supporting probability measure m is given by m(¢) =
±º(¢;A) = ±º(S;A), for any A in A0.

When division is permitted, the inequalities in (b) imply that

±º(F ;A)

±º(G;A)
· m(F )

m(G)
· ±º(F ;Ac)

±º(G;Ac)
, (4.15)

which suggests an interpretation as an interval bound for the `marginal rate of
substitution at any A between F and G'.
The relation (4.12) states roughly that for each A, ±º(¢;Ac) serves as a support

at A. Given our earlier interpretation for the derivative, it states that if the
decision-maker would rather bet on A + F ¡ G than on A when ambiguity is

26It would be desirable to express assumptions for ±º and m in terms of the primitive º, but
we have not succeeded in doing so.
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ignored and when mean-likelihoods are computed from the perspective of Ac,
then she would make the same choice also when ambiguity is considered. That
is because the former event is more ambiguous and the decision-maker dislikes
ambiguity or uncertainty.
Finally, part (c) of the theorem describes conditions under which the parallel

with calculus is valid - the (countably additive) supporting measure is unique
and given essentially by the derivative of º. Note that the support property in
question here is global in that the same measure `works' at each unambiguous
A, and not just at a single given A.27 This explains the need for the coherence
assumption, which helps to ensure that ±º(¢;A) = ±º(S;A) is independent of A.
Even given coherence, uncertainty averse preferences may exhibit the following

property:
±º(F ;A) > ±º(G;A) and º(A+ F ¡G) < º(A). (4.16)

In words, a decision-maker may decline to bet on the event A+ F ¡ G, in spite
of its attractiveness in terms of `mean likelihoods', because of its ambiguity. Of
course, another possible explanation for the ranking º(A+F ¡G) < º(A) is that
F has lower `mean likelihood' than G, that is, ±º(F ;A) < ±º(G;A). But one can
distinguish between these two explanations - only in the former case is it true that
the decision-maker would accept any small portion of `add F and subtract G' (see
(4.7)). Recall that su±ciently small portions would be attractive because they
involve very little ambiguity. It is hoped that this observation can be developed
into a partial explanation of the international portfolio diversi¯cation puzzle; that
is, that the seemingly suboptimal diversi¯cation into foreign assets may be due
to the greater ambiguity associated with their returns.
Turn to uncertainty aversion for general nonbinary acts, that is, in the sense

of (2.5). Lemma 3.2 characterizes uncertainty aversion for preferences or utility
functions, assuming a given supporting measure. Theorem 4.2 delivers the unique-
ness of the supporting measure under the stated conditions. Combining these two
results produces our most complete characterization of uncertainty aversion.

Theorem 4.3. Let U be a utility function, x1 Â x2, º(E) ´ U(x1Ex2) and
suppose that º is eventwise di®erentiable. Suppose further that each ±º(¢; A),

27Even given (4.11), the supporting measure at a given single A is not unique, contrary to the
intuition suggested by calculus. If the support property \mF · mG =) º(A+F ¡G) · ºA",
is satis¯ed by m, then it is also satis¯ed by any m0 satisfying m(¢) · m0(¢) on § \ Ac and
m(¢) ¸ m0(¢) on § \ A. For example, let m0 be the conditional of m given Ac.
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A 2 A0, is countably additive, A0 is nonempty and º is coherent. Then (1) im-
plies (2), where:
(1) U is uncertainty averse with countably additive supporting probability mea-
sure.
(2) U satis¯es conditions (i) and (ii) of Lemma 3.2 with measure m given by

m(¢) = ±º(¢;A) = ±º(S;A), for any A in A0. (4.17)

Conversely, if ±º(¢;A) is convex-ranged on A for any A in A0, then (2) implies
(1).

The combination of Theorem 4.2 with Lemma 3.4 delivers a comparable result for
CEU utility functions. Its statement is omitted in the interest of brevity.
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A. APPENDIX: Proofs

Proof of Lemma 3.2: Ups and U agree on Fua. Therefore, (i) follows from (2.4)
and the monotonicity assumed for W . That U ps supports U implies by (2.5) that
for all e 2 F and h 2 Fua,

W (ªm;e) ·W (ªm;h) =) U(e) · U (h).

This implies (ii).
For the converse, de¯ne ºps as the order represented numerically by Ups,

U ps(e) = W (ªm;e), e 2 F ,

where W : ¢(X ) ¡! R1 is de¯ned by

W (ª) = U(h) for any h 2 Fua satisfying ªm;h = ª.

Part (i) ensures that W (ª) does not depend on the choice of h, making W well-
de¯ned. The assumption added for m ensures that this de¯nes W on all of ¢(X ).
Then U ps supports U .

Proof of Lemma 3.4: (b) U ceu and Ups must agree on Fua, implying that º
and m are ordinally equivalent on A. Because º is convex-ranged and A is rich,
º(A) = º(§) = [0; 1]. Conclude that m(A) = [0; 1] also. Thus (3.5) is proven.
Lemma 3.2(ii) implies that for all acts e and unambiguous acts h,

U ceu(e) = §n¡1i=1 [ u(xi)¡ u(xi+1)] º
³
[i1e(xj)

´
+ u(xn) ·
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§n¡1i=1 [ u(xi)¡ u(xi+1)] º
³
[i1h(xj)

´
+ u(xn) = U ceu(h)

= §n¡1i=1 [ u(xi)¡ u(xi+1)] g ±m
³
[i1h(xj)

´
+ u(xn)

if m (e(xj)) = m (h(xj)) for all j. Because this inequality obtains for all u(x1) >
::: > u(xn) and these utility levels can be varied over an open set containing some
point (u(x); :::; u(x)), it follows that

g
³
m

³
[i1e(xj)

´ ´
= g

³
m

³
[i1h(xj)

´ ´
¸ º

³
[i1e(xj)

´
,

for all e and h as above. Given E 2 §, let e(x1) = E and e(x2) = Ec, x1 Â x2.
There exists unambiguous A such that mE = mA. Let h(x1) = A and h(x2) =
Ac. Then g (m(E)) ¸ º(E) follows, proving (3.4).
The su±ciency portion (a) can be proven by suitably reversing the preceding
argument.

Proof of Theorem 3.1 : The following lemma is of independent interest because
of the special signi¯cance of bets as a subclass of all acts. Notation from Section
3.4 is used below.

Lemma A.1. Suppose that A is rich, with outcomes x¤ and x¤ as in the de¯ni-
tion of richness. Let º(E) ´ U(x¤Ex¤). Then the conjunction of (3.6) and (3.7)
implies that º is ordinally equivalent to a probability measure on § (or equiva-
lently, º satis¯es (4.9)). A fortiori, the conclusion is valid if º is both uncertainty
averse and uncertainty loving.

Proof. Let m and q be the hypothesized supports. Their de¯ning properties
imply that

mF · mG =) qF · qG,

for all A 2 A, F ½ Ac and G ½ A. But if this relation is applied to Ac in place of
A, noting that Ac 2 A, then the roles of F and G are reversed and one obtains

mF ¸ mG =) qF ¸ qG.

In other words,
mF · mG () qF · qG,

for all A 2 A, F ½ Ac and G ½ A. Conclude from (3.6) and (3.7) that

mF · mG () º(A+ F ¡G) · ºA
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for all A 2 A, F ½ Ac and G ½ A; or equivalently, that for all A 2 A,

mE · mA () ºE · ºA.

In other words, every indi®erence curve for º containing some unambiguous event
is also an indi®erence curve for m. The stated hypothesis regarding A ensures
that every indi®erence curve contains some unambiguous A and therefore that º
and m are ordinally equivalent on all of §.
Complete the proof of Theorem 3.1. Denote by ºps and ºps

¤ the probabilisti-
cally sophisticated preference orders supporting º in the sense of (2.5) and (2.6),
respectively, and having underlying probability measures m and q de¯ned on §.
From the proof of the Lemma,

m and q are ordinally equivalent on §.

Claim: For each act e, there exists h 2 Fua such that

e »ps h and e »ps
¤ h.

To see this, let e = ((xi; Ei)ni=1). By the richness of A, there exist unambiguous
events Hi, such that, x¤Hix¤ » x¤Eix¤, i = 1; :::; n; or, in the notation of the
Lemma, º(Hi) = º(Ei) for all i. But since º and m are ordinally equivalent,

m(Hi) = m(Ei), all i.

By the ordinal equivalence of m and q,

q(Hi) = q(Ei), all i.

Let h = ((xi;Hi)ni=1). The claim now follows immediately from the nature of
probabilistic sophistication.
>From (2.5), º and ºps agree on Fua. Similarly, º and ºps

¤ agree on Fua.
Therefore, ºps and ºps

¤ agree there. From the claim, it follows that they agree
on the complete set of acts F . The support properties (2.5) and (2.6) thus imply
that

h ºps e () h º e, for all h 2 Fua and e 2 F .
In particular, every indi®erence curve for ºps containing some unambiguous act
is also an indi®erence curve for º. But the quali¯cation can be dropped because
of the claim. It follows that º and ºps coincide on F .
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Proof of Theorem 4.2: (a) Let m satisfy (3.6) at A. Show ¯rst that

mF · mG =) ±º(F ;A) · ±º(G;A), (A.1)

for all F ½ Ac and G ½ A: ±º(F ;A) > ±º(G;A) =) (by (4.7))9¸ such that
A+ F j;¸ ¡Gj;¸ Â A for all j =) mF j;¸ > mGj;¸ all j =) mF > mG.
Replace A by Ac, in which case F and G reverse roles and deduce that

mF ¸ mG =) ±º(F ;Ac) ¸ ±º(G;Ac)

or equivalently,
±º(F ;Ac) · ±º(G;Ac) =) mF · mG. (A.2)

Because m is a support, this yields (4.12).

(b) Let A 2 A satisfy
S Â A and S Â Ac. (A.3)

Claim 1: ±º(Ac;A) > 0. If it equals zero, then ±º(Ac;A) = ±º(;;A) implies, by
(4.12), that A + Ac ¹ A, or S » A, contrary to (A.3).
Claim 2: mAc > 0. If not, then mS · mA = 1 and (3.6) implies that S » A,
contrary to (A.3).
Claim 3: ±º(A;Ac) > 0 and mA > 0. Replace A by Ac above.
Claim 4: ±º(Ac;Ac) > 0. If it equals zero, then ±º(A;Ac)mAc = 0 by (4.13),
contradicting Claim 3.
Claim 5: For any G ½ A, ±º(G;A) = 0 =) mG = 0: Let F = Ac. By Claim
1, ±º(F ;A) > 0. Therefore, (4.7) implies that 8¸0 9¸ > ¸0, ±º(F j;¸;A) > 0 =
±º(G;A) for all j. By (A.1), 8¸0 9¸ > ¸0, m(F j;¸) > m(G) for all j, and thus
also mF > §n¸j=1 (mG). This implies mG = 0.
Claim 6: For any F ½ Ac, mF = 0 =) ±º(F ;A) = 0: mF = 0 =) (by (A.1))
±º(F ;A) · ±º(G;A) for all G ½ A. Claim 4 implies ±º(G;A) > 0 if G = A.
Therefore, ±º(¢;A) convex-ranged implies (Lemma B.1) that ±º(F ;A) = 0.
Claim 7: m is convex-ranged: By Claim 5, m is absolutely continuous with respect
to ±º(¢;A) on A. The latter measure is convex-ranged. Therefore, m has no atoms
in A. Replace A by Ac and use the convex range of ±º(¢;Ac) to deduce in a similar
fashion that m has no atoms in Ac. Thus m is non-atomic. Because it is also
countably additive by hypothesis, conclude that it is convex-ranged [15, Theorem
5.1.6].
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Turn to (4.13); (4.14) may be proven similarly. De¯ne the measures ¹ and p
on Ac £ A as follows:

¹ = m  ±º(¢;A), p = ±º(¢;A)  m.

Claims 5 and 6 prove that p << ¹. Denote by h ´ dp=d¹ the Radon-Nikodym
density. (Countable additivity is used here.)
Claim 8: ¹ f(s; t) 2 Ac £ A : h(s; t) > 1g = 0: If not, then there exist F0 ½ Ac

and G0 ½ A, with ¹(F0 £G0) > 0, such that

h > 1 on F0 £G0.

Case 1: mF0 = mG0. Integration delivers
R
F0

R
G0
[h(s; t) ¡ 1] d¹ > 0, implying

that
±º(F0;A)mG0 ¡ mF0 ±º(G0;A) > 0.

Consequently, mF0 = mG0 and ±º(F0;A) > ±º(G0;A), contradicting (A.1).
Case 2: mF0 < mG0. Because m is convex-ranged (Claim 7), there exists G1 ½
G0 such that mG1 = mF0 and ¹(F0 £ G1) > 0. Thus the argument in Case 1
can be applied.
Case 3: mF0 > mG0. Similar to Case 2.
This proves Claim 8. Finally, for any F ½ Ac and G ½ A, ±º(F ;A) (mG) ¡

(mF ) ±º(G;A) =
R
F

R
G (h¡ 1) d¹ · 0, proving (4.13).

(c) Though at ¯rst glance the proof may seem obvious given (4.15), some
needed details are provided here. Let A 2 A0. Multiply through (4.13) by
±º(G;Ac) to obtain that

±º(F ;A) ±º(G;Ac)mG · ±º(G;A) ±º(G;Ac)mF ,

for all F ½ Ac and G ½ A. Similarly, multiplying through (4.14) by ±º(G;A)
yields

±º(G;A) ±º(G;Ac)mF · ±º(G;A) ±º(F ;Ac)mG,

for all such F and G. Conclude from coherence that

±º(G;A) ±º(G;Ac)mF = ±º(G;A) ±º(F ;Ac)mG, (A.4)

for all F ½ Ac and G ½ A.
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Take G = A in (A.4) to deduce

±º(F ;Ac) = ±º(A;Ac)m(F ) =m(A), for all F ½ Ac. (A.5)

Next take F = Ac in (A.4). If ±º(G;A) > 0, then

±º(G;Ac) = ±º(Ac;Ac)m(G) =m(Ac), for all G ½ A. (A.6)

This equation is true also if ±º(G;A) = 0, because then (4.12), with F = Ac,
implies ±º(Ac;A)m(G) = 0, which implies mG = 0 by Claim 1.
Substitute the expressions for ±º(F ;Ac) and ±º(G;Ac) into (A.4) and set F =

Ac and G = A to derive

±º(Ac;Ac) =m(Ac) = ±º(A;Ac) =m(A) ´ ®(A) > 0.

Thus

±º(¢;Ac) =
(
®(A)m(¢) on § \Ac
®(A)m(¢) on § \A.

By additivity, it follows that ±º(¢;Ac) = ®(A)m(¢) on all of §. Thus ±º(¢;A) =
·(A)®(A)m(¢), completing the proof.

B. APPENDIX: Miscellaneous

The following implications of convex range for a measure on §X are used often
and are collected here for the convenience of the reader. See [15, pp.142-3] for
comparable results for measures on an algebra. In [15], property (b) is referred to
as strong continuity.

Lemma B.1. Let ¹ be a measure on §X . Then the following statements are
equivalent:
(a) ¹ is convex-ranged.
(b) For any act f , with corresponding net of all ¯nite partitions ff j;¸gn¸j=1, and

for any ² > 0, there exists ¸0 such that

¸ > ¸0 =) j ¹ j (f j:¸) < ², for j = 1; :::; n¸ .

(c) For any acts f , g and h ´ f + g, if ¹(f) > ¹(g), then there exists a

partition fhj;¸gn¸j=1 of h, such that ¹(hj;¸) < ² and ¹
³
hj;¸ \ f

´
> ¹

³
hj;¸ \ g

´
,

j = 1; :::; n¸.
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Next I describe a Chain Rule for eventwise di®erentiability.

Theorem B.2. Let © : §X ¡! R1 be eventwise di®erentiable at e and ' :
©(§X ) ¡! R1 be strictly increasing and continuously di®erentiable. Then ' ±©
is eventwise di®erentiable at e and

±(' ± ©) (¢; e) = '0 (©(e)) ±©(¢; e)

Proof. Consider the sum whose convergence de¯nes the eventwise derivative of
' ± ©. By the Mean Value Theorem,

' ± ©
³
e+ f j;¸ ¡ gj;¸

´
¡ ' ± ©(e) = '0(zj;¸) [©

³
e+ f j;¸ ¡ gj;¸

´
¡ ©(e)]

for suitable real numbers zj;¸. Therefore, it su±ces to prove that

§n¸j=1 j ©
³
e+ f j;¸ ¡ gj;¸

´
¡ © (e) j j '0(zj;¸)¡ '0(©(e))) j ¡!¸ 0.

By the continuity of '0, the second term converges to zero uniformly in j. Even-
twise di®erentiability of © implies that given ², there exists ¸0 such that ¸ > ¸0
=)

§n¸j=1 j ©
³
e+ f j;¸ ¡ gj;¸

´
¡ © (e) j· ² +§n¸j=1 j ±©

³
f j;¸; e

´
¡ ±©

³
gj;¸; e

´
j

· ² +§n¸j=1[j ±©
³
f j;¸; e

´
j + j ±©

³
gj;¸; e

´
j] · K,

for someK <1 that is independent of ¸, f and g, as provided by the boundedness
of the measure ±©(¢; e).

C. APPENDIX: ¹-Di®erentiability

For the reasons given in the text, a strengthening of eventwise di®erentiability is
described here. Machina [13] introduces a very similar notion. But because it is
new and still unfamiliar and because our formulation is somewhat di®erent and
arguably more transparent, a detailed description seems in order.28

28As mentioned earlier, after a version of this paper was completed, I learned of a revision
of [13], dated 1997, in which Machina provides a formulation very similar to that provided in
this subsection. The connection with the more general `partitions-based' notion of eventwise
di®erentiability, inspired by [16], is not observed by Machina.
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To proceed, adopt as another primitive a non-negative, bounded and convex-
ranged measure ¹ on §X . Assume that it is bounded and convex-ranged. This
measure serves the `technical role' of determining the distance between acts. To
be precise, if we identify e and e0 whenever ¹(e¢e0) = 0, then

d(e; e0) = ¹(e¢ e0) (C.1)

de¯nes a metric on §X ; the assumption of convex range renders the metric space
path-connected (by [24], see also [11, Lemma 4]).
One way in which such a measure can arise is from a convex-ranged probability

measure ¹0 on §. Given ¹0, de¯ne ¹ by

¹(e) = §x ¹0 (e(x)) . (C.2)

Once again let © : §X ¡! R1. Because acts e and e0 are identi¯ed when
¹(e¢e0) = 0 , © is assumed to satisfy the condition

¹(e¢ e0) = 0 =) ©(e [ f ) = ©(e0 [ f), for all f . (C.3)

In particular, acts of ¹-measure 0 are assumed to be `null' with respect to every
function ©.

De¯nition C.1. © is ¹-differentiable at e 2 §X if there exists a bounded and
convex-ranged measure ±©(¢; e) on §X , such that for all f ½ ec and g ½ e,

j © (e+ f ¡ g)¡ ©(e)¡ ±©(f ; e) + ±©(g; e) j =¹(f + g) ¡! 0 (C.4)

as ¹(f + g) ¡! 0.

The presence of a `di®erence quotient' makes the appearance of this de¯nition
more standard and permits a standard interpretation. Think in particular of the
case (j X j= 1) where the domain of © is § (see the comments following (4.5)).
It is easy to see that ±©(¢; e) is absolutely continuous with respect to ¹ for

each e. (Use additivity of the derivative and (C.3).)
Fix an outcome x and suppose that ¹0 and ±x©(¢; e) (the partial derivative

or marginal in the sense of (4.3)) are both countably additive and that § is a
¾-algebra. Then there exists a Radon-Nikodym derivative hx(¢; e) in L1(¹), such
that

±x©(B; e) =
Z

B
hx(¢; e) d¹(¢), for each B ½ S. (C.5)
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There is a natural sense in which hx(¢; e) can be interpreted as the gradient of ©
at e in the x-component.
We have not distinguished notationally between eventwise and ¹-derivatives

because they coincide whenever they both exist.

Lemma C.2. If © is ¹-di®erentiable at some e in §X , then © is also eventwise
di®erentiable at e and the two derivatives coincide.

Proof. Let ±©(¢; e) be the ¹-derivative at e, f ½ ec and g ½ e. Given ² > 0,
there exists (by ¹-di®erentiability) ²0 > 0 such that

j ©(e+ f 0 ¡ g0) ¡ ©(e) ¡ ±©(f 0; e) + ±©(g0; e) j< ² ¹(f 0 + g0), (C.6)

if ¹(f 0 + g0) < ²0. By Lemma B.1 applied to the convex-ranged ¹, there exists ¸0
such that

¹(f j:¸ + gj;¸) < ²0, for all ¸ > ¸0.

Therefore, one can apply (C.6) to the acts (f 0; g0) = (f j;¸; gj;¸). Deduce that

§n¸j=1 j ©
³
e+ f j;¸ ¡ gj;¸

´
¡ ©(e)¡ ±©(f j;¸; e) + ±©(gj;¸; e) j<

² §n¸j=1 ¹(f
j;¸ + gj;¸) = ² ¹(f + g) < ² sup ¹(¢).

A consequence is that the ¹-derivative of © is independent of ¹; that is, if ¹1
and ¹2 are two measures satisfying the conditions in the lemma, then they imply
the identical derivatives for ©. This follows from the uniqueness of the eventwise
derivative noted earlier. Such invariance is important in light of the exogenous
and ad hoc nature of ¹. This result is evident because of the deeper perspective
a®orded by the notion of eventwise di®erentiability and re°ects its superiority
over the notion of ¹-di®erentiability.
Finally, under a slight strengthening of ¹-di®erentiability, one can `integrate'

back to © from its derivatives. That is, a form of the Fundamental Theorem of
Calculus is valid. (It remains to determine if there exists a counterpart result for
eventwise di®erentiability.)

Lemma C.3. Let © be ¹-di®erentiable and suppose that the convergence in (C.4)
is uniform in e. For every ² > 0, f ½ ec and g ½ e, there exist ¯nite partitions
f = §f j and g = §gj such that ² >

j ©(e+f¡g)¡©(e)¡§i±©(f i; e+F i¡1¡Gi¡1)+§i±©(gi; e+F i¡1¡Gi¡1) j (C.7)

where F i = §ij=1f
j and Gi = §ij=1gj.
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Proof. ¹-di®erentiability and the indicated uniform convergence imply that

j ©(e+ F i¡1 ¡ Gi¡1 + f i ¡ gi)¡ ©(e+ F i¡1 ¡ Gi¡1)
¡±©(f i; e+ F i¡1 ¡ Gi¡1) + ±©(gi; e+ F i¡1 ¡ Gi¡1) j < ² ¹(f i + gi),

for any partitions ff jg and fgjg such that ¹(f j + gj) is su±ciently small for all
j. But the latter can be ensured by taking the partitions ff j;¸g and fgj;¸g for
¸ su±ciently large. The convex range assumption for ¹ enters here; use Lemma
B.1. Therefore, the triangle inequality delivers j ©(e+ f ¡ g)¡©(e)¡§±©(f i; e+
F i¡1 ¡ Gi¡1) + §±©(gi; e+ F i¡1 ¡ Gi¡1) j · ²§i¹(f i + gi) = ²¹(f + g) .

48


