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Abstract

Corporation tax systems around the world treat gains and losses asymmetrically.  This paper examines
the impact of changing the refundability of tax losses in a cash flow tax system.  A dynamic game of
complete information is used to analyse refund policies in an imperfectly competitive setting.  In this
supergame, firms produce a homogeneous good and sustain tacit collusion by using credible and
severe punishments of deviations.  The analysis of the most collusive equilibrium with losses indicates
that a tax policy which increases refundability has the following impacts:  it reduces collusive industry
output, increases market price, and therefore enhances tacit collusion.  This policy also reduces social
welfare even though refunds are never given in equilibrium.
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1.0 INTRODUCTION

The accumulation of corporate tax losses in many countries in recent history has raised a number of

important issues concerning the economic impact of corporate tax policies.  The study of tax losses

entails important dynamic aspects that are emphasized in theoretical studies such as Edwards and

Keen (1985) and Auerbach (1986), and in empirical work such as that of Auerbach and Poterba

(1987), Mintz (1988) and Altshuler and Auerbach (1990).  This empirical work also underscores the

economic significance of tax losses.  The appropriate modelling strategy to study the impact of tax

losses and their non-refundability must be dynamic in nature.

A common feature of tax systems around the world is the non-refundability of tax losses.

Those systems, however, generally allow tax losses to be carried back against taxes paid in the past

or carried forward to reduce future tax liabilities.  For example, corporate tax systems in Canada, the

U.K. and the U.S. allow firms to carry back losses for a limited number of years, thereby claiming a

refund of past taxes paid.  They also allow firms to carry such losses forward at no interest but for

longer periods.  The corporate tax system in Canada includes limited instances of refundability such

as carrybacks, the refundable scientific research and development tax credit, and the refundable small

business tax credit.

Those measures constitute an attempt to move towards a neutral tax system.  Mintz (1991)

points out that tax losses and their lack of refundability raise important issues with respect to market

structure.  In spite of that, he notes that the topic has received virtually no attention.  The entire body

of literature he surveys does indeed embody the assumption of perfect competition in product

markets.
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The present paper explores a different justification for the non- refundability of tax losses. The

framework is one in which oligopolistic firms interact repeatedly and collusive behaviour may be

supported by non-cooperative equilibria.  In contrast to the traditional supergame literature, this

model allows for punishments that are more severe than the Cournot-Nash reversion in order to

support tacit collusion.  The Cournot-Nash reversion is a punishment mechanism which specifies that

all industry members revert to Cournot competition once any individual firm deviates from its

collusive output share.  The most collusive equilibrium can generate short-run losses during the

punishment phase.  Such losses can be partially recouped in the future; hence, the availability of tax

loss refunds can affect the most collusive outcome.1

In this paper, tax loss refund provisions diminish the impact of any loss incurred during the

punishment phase.  It is shown that a policy that increases tax loss refundability reduces the most

collusive output and raises prices.  More generally, in the symmetric information environment studied

here, refunding losses in any way can have this collusion-enhancing effect.

The work of Abreu (1986) is now the standard view on tacit collusion.  This emerged from

his wish "to study the maximal degree of collusion sustainable by credible threats for arbitrary values

of the discount factor" (192, italics in original).  His 1986 and 1988 papers focus on strategy profiles

that yield the most severe punishments or outcome paths.  Those punishments constitute subgame-

perfect equilibrium strategies which can be severe enough under certain conditions so as to make

negative profits possible during the punishment phase.

Although Abreu is interested in characterizing the most collusive equilibrium, the idea I wish

to convey can be made in a very simple way by restricting attention to symmetric punishments.  Such

punishments require all firms to produce identical output streams, whether the oligopoly is in a
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collusive or punishment phase.  It is important to note that such punishments are a generalization of

punishments based on Cournot reversions as in Friedman (1971).  In particular,  symmetric

punishments can support lower outputs and higher prices than a simple Cournot reversion by invoking

the punishment phase in which firms can make short-run losses.  It is precisely those short-run losses

that constitute the focal point of the paper.

The paper is organized as follows.  Section 2.0 presents the basic model.  Section 3.0 presents

a description of the tax treatment of losses and characterizes the outcome paths and equilibria with

a cash flow tax.  Section 4.0 analyses the effects of changes in refundability on profits, output and

welfare.  Finally, Section 5.0 concludes the paper by a summary and a discussion of interesting

extensions to the present work.
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2.0 THE MODEL

Suppose an oligopolistic industry consists of n firms which play an infinitely repeated Cournot game

with discounting.  In each period, all firms simultaneously choose output quantities and maximize

profits.  Firms wish to maximize the present value of their profits.  For the moment, let any taxes be

subsumed in the profit functions.  Uncertainty is ignored throughout.2

Each firm makes its quantity decision in period t knowing what every other firm has produced

in all previous periods.  Firms are identical, quantity-setting and produce a homogeneous output.  Let

C(x) denote the total cost of producing x units of output.  Let P(X) denote the industry's inverse

demand function, where X = nx is total industry output.

The profit per firm, when each produces output x, is then given by B(x) = P(nx)x - C(x).  Let

B (x) = max  P(y + (n-1)x)y - C(y) be the maximal profit that firm i, i = 1,...,n, can earn in a singled
y

period while deviating, given that all other firms are each producing x.  The value of y that maximizes

the above expression is the firm's best-response or deviation output, which depends on the output

produced by the remaining (n-1) firms.  What follows summarizes the assumptions needed to

proceed.

Assumption 1.  The functions B(x) and B (x) satisfy:d

(a) B(x) is strictly concave;

(b) B (x) is nonnegative, continuous, convex, nonincreasing, and satisfies B (0) > 0;d d

(c) there exists a unique x  such that B(x ) = B (x ). n n d n
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Denote the action set of firm i by S  = [0,x (*)], where * 0 (0,1) is the discount factori
s

common to all firms.  Let * / 1/(1+r) where r is the firms' fixed one-period discount rate.  Output

x (*) satisfies -B(x (*),0,...,0) > */(1-*)supB(x,0,...,0).  The above inequality says that it is never ins s
x

a firm's interest to produce output beyond x (*).  If a firm did, even with all other firms producings

nothing, then it would not be able to recoup the ensuing one-period loss even by producing monopoly

output forever after.  Attention is thus restricted to bounded strategy sets S .  Since B(x) is strictlyi

concave, argmax{B(x)*x 0 S } is a singleton whose unique element is x .i
m

Let G = (S,B;i=1,...,n) denote the one-shot Cournot game.  Assumption 1 implies that G hasi

a unique symmetric pure-strategy Nash equilibrium.  Let x  0 S be the output per firm such that B(x )L L
i

= 0.  The supergame with discounting is obtained by repeating G infinitely often and evaluating profits

using the discount factor *.  The definitions that follow provide the notation necessary to study the

outcome paths from this game.  It is important to note that the collusive industry does not simply

behave like a monopolist here:  the industry enforces tacit collusion using a scheme that punishes

deviations from collusive behaviour.  In the general case where firms are not extremely patient or do

not necessarily expect collusive interaction to last forever, the presence of incentive constraints rules

out the monopoly outcome as a constrained joint profit maximum.
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The following Proposition summarizes the model's structure thus far.

Proposition 1.  Under Assumption 1:

(a) x  > x  > x  > x ;s L n m

(b) B(x ) > B(x ) > 0 > B(x );m n s

(c) B(x ) = B (x ) > 0;n d n

(d) if x  > x  $ 0, then B (x ) $ B (x ).2 1 1 2
d d

Proof.  See Abreu (1986).

The contents of Proposition 1 are illustrated in Figure 1.  For instance, Part (c) implies that

the best-response profit function B (C) is just tangent to the profit function B(C) at output x  sinced n

static Cournot-Nash profit-maximization by each firm is itself a best-response.  Part (d) underscores

the key feature of the model with respect to best-response profit functions:  the more all other firms

attempt to restrict joint output, the higher is the one-period gain from deviating for a single firm.

I further characterize the supergame environment as follows.  A tacitly collusive agreement

is one in which individual firms jointly maximize profits by restricting industry output.   Each3

individual firm within the cartel can, however, increase its one-period profits by producing a higher

output than the share specified by the joint profit-maximization program.  A deviator who plays his

best-response obtains strictly higher one-period profits than any other firm, given that all other firms

abide by their collusive output shares.  This can be shown using Figure 1 and noting that B (C) > B(C)d

away from x .  For example, a best-response in a collusive phase (x is to the left of x ) is to producen n



B
d(x) % *B(x p) # (1%*)B(x).

B
d(x p) % *B(x p) # B(x p)%*B(x).
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(1)

(2)

more than x, given that all other firms play an output x such that x 0 (x ,x ).m n

Given the incentive to cheat at the individual firm level, the industry must choose a

punishment output that makes it optimal for firms to tacitly collude rather than defect if higher profits

than the Cournot-Nash level are to be reaped.  Similarly, subgame-perfection requires that firms

prefer to cooperate in their own punishment in anticipation of future profits that such behaviour

would provide.

To simplify matters, I will assume that the punishment is symmetric in the sense of Abreu

(1986).   A symmetric carrot-stick strategy profile (x,x ) is defined as follows:  if all firms produce4 p

x or x  in the previous period, each firm produces x this period; for any other profile of output, eachp

firm produces x  this period.  The key result from Abreu (1986) is summarized in the Proposition thatp

follows.

Proposition 2.  Under Assumption 1, a symmetric carrot-stick strategy profile (x,x ) is a subgame-p

perfect equilibrium if and only if :

Proof.  See Abreu (1986).
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The profit-maximization program available to the industry is characterized by the two firm-

specific incentive constraints (1) and (2).  The first constraint is a no-defection condition.  It requires

that an individual firm weakly prefer collusion forever to a sequence of deviation, punishment, and

collusion forever after.  In other words, the firm must weakly prefer collusion to deviation in a

collusive phase.  The second constraint is a punishment-acceptance condition.  It requires that a

deviator weakly prefer to participate to the punishment, and collude forever after to a sequence of

best-response to the punishment (which is itself a deviation), punishment, and collusion forever after.

This constraint says that the firm prefers to cooperate in its own punishment rather than deviate.  In

summary, the two constraints ensure that the discounted profits from deviation do not exceed the

discounted profits from collusion.5

The key issue at this point is whether the punishment can be severe enough so as to generate

a loss for each firm in the punishment phase.  (Taxes are ignored until the next Section since their

presence does not affect the qualitative conclusions to be drawn below.)  Abreu (1986) shows that

there exist games in which the most severe punishment involves losses during the punishment phase.

Proposition 3.  Under Assumption 1, there exists a * and a subgame-perfect equilibrium path (x,x )p

such that B(x ) < 0.p

Proof.  See Abreu (1986).



B
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B
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9

(3)

(4)

Proposition 4.  Under Assumption 1, joint profits are maximized for the smallest value of x such that

(x,x ) is a symmetric carrot-stick strategy profile and both (1) and (2) hold with equality.p

Proof.  Let the no-defection locus (NDL) be the set of output pairs such that (1) holds with equality,

and let the punishment-acceptance locus (PAL) be the set of output pairs such that (2) holds with

equality.  Let x  be the most profitable collusive output that can be supported by a Cournot reversion.r

Without loss of generality, one can restrict attention to discount factors such that x  < x  < x .  Thinkm r n

of NDL as being drawn as in Figure 2, with punishment output on the vertical axis.  Then:

Result 1.  NDL is downward-sloping when the collusive output is between x  and x , and ism r

upward-sloping when collusive output is near x .n

Proof.  Let x 0 [x ,x ].  I shall show that there exists an x  such that x  > x  and (x,x ) is onm r p p n p

NDL.  Point (x ,x ) is on NDL by definition, and so is point (x ,x ).  Thus, the following twor n n n

equations hold:



&m
x n

x r
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B
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x
B
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(5)

(6)

(7)

Following the definitions of x  and x , subtracting (4) from (3) yields:r n

Now, take any x < x .  The change in the left-hand side of NDL that takes place when output isr

reduced from x  to x is given by:n

The corresponding change in the right-hand side of NDL is given by:

By Assumption 1, the function [B (x)-B(x)] is convex while B(x) is concave.  It follows that thed

second integral in (6) is positive and strictly larger than the second integral in (7).  In turn, this means

that the left-hand side of NDL rises by more than its right-hand side when output falls from x  to x,n

if the punishment output is held constant at x .  To restore the equality in NDL, x  must be increased.n p

I conclude that NDL must be downward-sloping when x is between x and x .m   r 
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Result 2.  PAL is has a downward-sloping segment between x  and x .  Furthermore, PALm n

reaches its peak at x .m

Proof.  Point (x ,x ) is on PAL by definition.  Take any output x such that x  < x < x  andn n m n

write PAL as B (x ) - (1-*)B(x ) = *B(x).  When x  = x , the left-hand side of the expression is strictlyd p p p n

smaller than the right-hand side.  On the other hand, if x  is very large, the left-hand side becomesp

very large because of the concavity of B(x) and the non-negativity of B (x ).  Thus, by the mean-valued p

theorem, there exists an x  such that the expression holds with equality.  This shows that there is ap

downward-sloping segment in PAL between x  and x .  To show that the segment peaks at x , takem n m

a point (x,x ) on PAL such that x is close to x .  Reducing x will cause the right-hand side of PALp m

to rise initially, and then fall back to its original level as x falls below the joint profit-maximizing

output x .m

Now, to finish the proof of Proposition 4, note that Results 1 and 2 guarantee that NDL is

steeper than PAL (as in Figure 2) at its leftmost intersection.  Take any point (x,x ) that lies on thep

downward-sloping segment of NDL between x  and x .  If x  increases slightly while x is heldm r p

constant, then (1) must hold with strict inequality because the punishment is more severe.  Thus,

perfect equilibrium points must lie to the right of NDL.  On the other hand, if (x,x ) is a point on thep

downward-sloping segment of PAL between x  and x , then cutting x slightly while holding xm n p

constant will ensure that (2) holds with strict inequality since the reward for adhering to the

punishment is increased.  Thus, perfect equilibrium points must lie to the left of PAL.

If (x,x ) is a symmetric carrot-stick strategy profile that does not lie on NDL, then it must liep

to the right of NDL by the argument of the previous paragraph.  Since that point cannot lie to the

right of PAL, there will be a smaller output y such that (y,x ) is a symmetric carrot-stick strategyp
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profile.  Since collusive output is smaller, profits will be higher.

If (x,x ) is a symmetric carrot-stick strategy profile that lies on NDL but not on PAL, then itp

must lie to the left of PAL by the argument of the previous paragraph.  Then, there is a symmetric

carrot-stick strategy profile (y,y ) such that y < x and y  > x  because of the fact that NDL isp p p

downward-sloping.  Again, collusive profits will be higher in this new equilibrium.�

The contents of Proposition 4 are shown in Figure 2.  The most collusive equilibrium is the

pair (x ,x ).* p*
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3.0 PATHS AND EQUILIBRIA WITH CASH FLOW TAXATION

The first part of this Section presents a characterization of the tax treatment of losses.  In order to

keep the corporation tax system simple, I ignore the issues of investment and financial policy.  Losses

arise in the model due to severe punishments of deviations.  I therefore ignore losses caused by tax

incentives such as generous investment tax credits and capital cost allowances.    Taxation is initially6

asymmetric since gains are not treated in the same way as losses.  Positive profits are taxed at a

constant rate J but strictly negative profits (losses) do not entitle the firm to an immediate  refund of

-JB(C).  Instead, losses are carried forward at a zero rate of interest.

In practice, tax losses can be claimed against future profits in ways that depend on the

particular tax code.  To simplify matters, I assume that the firm making a loss of B   in period t simplyt

receives a lump-sum refund of DJB   in period t + 1.  Let factor D be included to account for thet

possibility that the firm face restrictions or enhancements to its ability to utilize the refund in t + 1.

For instance, the government may wish to pay interest on loss carryforwards, which can be captured

by setting D > 1.

Recall that the firms' discount rate is r and that * / 1/(1+r).  Now assume that the government

pays interest on carryforwards.  Then, D is equal to one plus the interest rate paid on such

carryforwards.  It is straightforward to show the following using (1) and (2).  First,  allowing

carryforwards to earn interest at rate r (so that D = 1 + r) is equivalent to a full immediate refund in

present value.  The tax system is symmetric (i.e. neutral) in that case.  On the other hand, if

carryforwards earn no interest (so that D = 1) then the tax system is characterized by the asymmetry

described earlier.   I assume in what follows that D is included in the interval [1,1+r].7



•B(C) '
(1&J)B(C) if B(C) $ 0,

(1&*DJ)B(C) if B(C) < 0.
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(8)

Apart from my treatment of investment, the present exposition closely follows Auerbach

(1986).  He finds that asymmetries in the cash flow tax have complicated impacts on firm behaviour.

While there are economic arguments in favour of cash flow taxes, their main advantage for the

present purposes is that they can be fit into Abreu’s (1986) framework.8

I now introduce some definitions and present a heuristic discussion on how losses are

generated.  Let L represent the accumulated loss carried forward from period t - 1 to period t wheret

L $ 0 for all t.  For a firm which is not taxable at the margin, current after-tax profits are B   and thet t

accumulated loss carried forward to the next period is given by L  = L  - B .  For a firm that ist+1 t t 

taxable at the margin, B  > L  and the corresponding after-tax profits are equal to (1-J)B  + JL  .t t t t

In particular, if B(C) is the pre-tax profit function satisfying Assumption 1, then the after-tax

profit function is:

Let after-tax best-response profit function simply be B• (C) = (1-J)B (C) since B (C) $ 0 for outputsd d d

in S .i

Two comments are in order.  Firstly, it is straightforward to show that the after-tax profit

functions B•(C) and B• (C) satisfy Assumption 1 by using the fact that retention rates in (8) are constant.d

Secondly, (8) is constructed under the assumption that losses must be written off in the period that

immediately follows the loss.  Underlying this assumption is the requirement that collusive profits

following the punishment be sufficient to absorb the tax loss.  Thus, the present value of the refund



•Bd(x) % * •B(x p) # (1%*) •B(x).

•Bd(x p) % * •B(x p) # •B(x p)%* •B(x).
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(9)

(10)

taking place in the next period must be equal to a lump-sum equivalent given in the period in which

the loss occurs.  This equivalence ensures that the one-period (static) game remains the same over

time and hence that the supergame approach is an appropriate one.

The after-tax incentive constraints that embody two-phase punishments are characterized in

the following Proposition, which immediately follows from Proposition 2 and the fact that both B• (C)

and B• (C) satisfy Assumption 1.d

Proposition 5.  A symmetric carrot-stick strategy profile (x,x ) is a subgame-perfect equilibrium forp

the game with taxes if and only if:
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4.0 EFFECTS OF CHANGING REFUNDABILITY

In this Section, I examine the impact of changes to the extent of refundability on the most collusive

equilibrium.  Following Proposition 5 and the fact that the equivalent of Proposition 4 holds for the

game with taxes as well, the most collusive equilibrium is the pair (x,x ) such that (9) and (10) bothp

hold with equality.  Recall that parameter D is an increasing index of refundability.

The direct approach, which consists in solving for comparative static impacts of changing D

on x and x , is not informative.   The difficulty is that the change in D shifts both NDL and PAL inp 9

the same direction in output space.  This makes it impossible to determine what happens to collusive

output.

One approach to resolve this ambiguity is to move the analysis from output space to after-tax

profit space.  Naturally, this requires a slight notational change.  Let B̂  and B̂  denote realized after-c p

tax profits per firm in collusive and punishment phases, respectively.  Define the function b(B̂) =

{B• (C):B• (C) = B̂}.  The value b(B̂) describes after-tax profits obtained by deviating from a situationd

where all firms’ after-tax profits are B̂.



b( •Bc) % * •Bp # (1%*) •Bc.

b( •Bp,D) % * •Bp # •Bp
% * •Bc.
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(11)

(12)

Applying the equivalent of Proposition 4 to the after-tax case implies that the most collusive

equilibrium will involve a pair of after-tax profit levels (B̂ ,B̂ ) satisfying:c p

In order to find deviation profits b(B̂), simply determine the level of output for each firm that

generates a level of after-tax profit of B̂, and then calculate the profit that a firm could earn by

unilaterally deviating.  There are two ways in which D might affect this calculation.  Firstly, the

deviation profit might be negative so that changing D will change after-tax profits directly.  To keep

the analysis simple, I assume that fixed costs are zero.  In that case, deviation profits cannot be

negative since the firm can always produce nothing during that period.  Hence, D cannot have any

direct effect on deviation profits.  Secondly, there is a more complicated possibility that D might affect

deviation profits indirectly by changing the level of output that supports profits per firm of B̂.  In that

case, changing D will affect the profit that the firm can obtain from deviating away from that output.

A collusive phase is profitable by definition so refunds are never made in such a phase.  Thus,

changing D has no effect on b(B̂ ).  In a punishment phase with losses, however, changing D willc

reduce losses associated with any level of output.  Hence, to support any given after-tax profit level

in the punishment phase, firms will have to produce a higher output, which will reduce profits that

can be obtained by deviating.  In short, b(B̂ ,D) is a nonincreasing function of D.  The foregoingp

analysis is illustrated in Figure 3.  The equilibrium output pair prior to the change in D is (x ,x ).1 1
p



b( •Bc) % * •Bp
' (1%*) •Bc.
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' •Bp

% * •Bc.
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(13)

(14)

When D is increased from D  to D , after-tax profits in the punishment phase rise for any level of1 2

output.  The punishment output necessary to support B̂  must then increase from x  to x .  Deviationp p p
1 2

profits are such that b(B̂ ,D ) < b(B̂ ,D ).p p
2 1

The main result of this Section is summarized in what follows.

Proposition 6.  If the most collusive equilibrium involves losses in the punishment phase, then an

increase in refundability will enhance collusion and reduce the most collusive output.

Remark.  Increasing D makes it less profitable for firms to deviate in the punishment phase.  This

makes it possible to enforce a more severe punishment.  It is that fact that enhances the firms’ ability

to collude.

Proof.  By Proposition 4, the most collusive equilibrium must satisfy the following equations:

The first term on the left-hand side of (14) is the only one that is affected by a change in D.  For any

given punishment output, increasing D reduces the loss in a punishment phase.  The severity of the

initial punishment, which is measured by B̂ , can only be maintained by increasing the punishmentp

output.  This means that the associated best-response profits b(B̂ ,D) must fall. Then, holding B̂p p
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constant, collusive profits must fall in order to maintain the equality in (14).  The overall effect just

described can be seen by redrawing NDL and PAL in after-tax profit space.  With after-tax profit in

a punishment phase on the vertical axis, these loci resemble the ones drawn in Figure 4.

I shall show that NDL cuts PAL from above in after-tax profit space.  Pick a point (B̂ ,B̂ ) onc p

NDL near the most collusive equilibrium (B̂ ,B̂ ) satisfying B̂  < B̂  as well as B̂  > B̂ . The1 1 1 1
c p c c p p

existence of such a point can be established by picking a symmetric carrot-stick strategy profile (x,x )p

that lies on the downward-sloping segment of NDL in output space.   By Results 1 and 2 in the Proof

of Proposition 4, PAL must lie to the right of this point in output space.  Holding punishment output

constant at x , PAL can satisfied by raising collusive output.p

In after-tax profit space, holding x  constant amounts to holding B̂  constant.  Increasingp p

collusive output amounts to reducing B̂ .  Thus, PAL lies to the left of the above point (B̂ ,B̂ ) inc c p

after-tax profit space.  The result in Proposition 6 is then shown in Figure 4.�

The initial most collusive equilibrium in Figure 4 consists of the pair of profits (B̂ ,B̂ ).  At1 1
c p

that point, NDL and PAL intersect.  Increasing refundability rotates the segment of PAL in the loss

region; the rotation takes place on the horizontal axis and in a southwesterly direction.  The new

segment is labelled  PALN.  Since NDL does not move, the new most collusive equilibrium is

determined by the position of PALN and is thus given by the pair (B̂ ,B̂ ).  This point is characterized2 2
c p

by lower (more negative) punishment profits and higher collusive profits.  For ease of comparison

with Figure 2, B̂  denote after-tax Cournot profits.n

Proposition 6 goes against the intuition according to which increasing refundability makes the

punishment easier to bear.  In conclusion, the policy serves to enhance collusion in the industry.  As
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pointed out earlier, there exists a literature based upon static models which usually favours increasing

the symmetry of tax systems.   The model presented above shows that such a conclusion is reversed10

once imperfect competition in a dynamic context is taken into account.

An important feature of the foregoing analysis is that losses do not occur in equilibrium.  This

results from the fact that (13) and (14) intersect at the most collusive equilibrium, and therefore that

both incentive constraints (11) and (12) hold with equality at that point.  In that case, firms do not

deviate and hence punishments never have to be used in equilibrium.  The impacts of changing

refundability are thus deduced from behaviour off the equilibrium path.

For the purposes of welfare analysis, it follows immediately that collusive output is the only

measure of production that matters.  By reducing that output, the refundability policy increases

industry price.  If the firms’ marginal costs are nondecreasing, the policy has the unambiguous effect

of widening the gap between price and marginal cost.   The partial equilibrium welfare impact of the11

policy is obvious in this case: its output repression effect reduces welfare.
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5.0 SUMMARY AND CONCLUSIONS

This paper applies a supergame oligopoly model of an industry to study corporate cash flow taxes

with different tax loss regimes.  The after-tax incentive constraints facing the firms embody all the

important timing features of punishments, reversions to collusion, taxes and refunds.  Unlike most

of the literature in which loss offsets are analysed in the context of risk-taking, tax losses result from

collusive enforcement  in the present model.

The analysis of changes in refundability on the most collusive equilibrium with losses finds that

enhancing tax loss refundability reduces collusive output along the equilibrium path.  The policy

produces such an effect by weakening the incentive to deviate in a punishment phase.  Refundability

thus helps to sustain tacit collusion and hence hinders competition in the industry.  From a partial

equilibrium standpoint, the policy also reduces welfare.

This new framework to analyse taxes could be made more realistic by allowing for

uncertainty.  Subject to some conditions, uncertainty will do away with the counterfactual result that

losses are not observed in equilibrium.  The welfare conclusions in the uncertainty case appear to be

much less clear-cut since the behaviour of output in actual punishment phases must be taken into

account in that case.  The appropriate framework for this analysis would be inspired by the work of

Abreu et al. (1986 and 1990).
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Figure 1

Pre-Tax and Best-Response Profit Functions
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Figure 2

Most Collusive Equilibrium in Output Space
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Figure 3

Effects of Increasing Refundability I: Outputs and After-Tax Profits
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Figure 4

Effects of Increasing Refundability II: After-Tax Profits
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1. See Abreu (1986).

2. In that respect, this paper must be contrasted with the literature on loss offsets which typically
focuses on the impact of refundability on risk and risk-taking.  Key papers in that vein include
Domar and Musgrave (1944), Mossin (1968), Stiglitz (1969), and Mintz (1981).  See also the
brief summary in Myles (1995).  As will be shown below, refundability matters, even without
uncertainty.  To anticipate Section 3.0 below, the fact that refundability matters under perfect
certainty may also be used to justify a cash flow tax.

3. Recent examples of industries that have been studied using the supergame approach include
retail-gasoline in Canada (Slade [1992]) and salt in the U.K. (Rees [1993]).  Furthermore,
antitrust action in the form of conspiracy charges has been undertaken against sellers of
compressed gas to hospitals (Canada), Southern road contractors (U.S.), and ready-mix cement
(world-wide).  In her survey, Slade (1995) reports empirical results which suggest that outcomes
are generally more collusive than the Nash equilibria of their associated one-shot games.

4. As shown by Abreu (1986), asymmetric punishments generally yield more collusive outcomes.
Such punishments, however, are not as neatly characterized as symmetric ones.

5. Constraints (1) and (2) could also be written with an extra term on each side, * B(x)/(1-*),2

which represents an infinite series of collusive profits.  The constraints in the text have been
simplified by subtracting that term from each side.

6. See Glenday and Mintz (1991) for a discussion of losses that arise from tax incentives.  One
cannot strictly talk about economic profit losses in the present model unless there is a full loss
offset (full refundability).

7. Of course, intermediate situations characterized by D < 1 + r also reflect a tax asymmetry.

8. For a thorough discussion of cash flow taxation, see Boadway et al. (1987 and 1989); for a
real-world application, see Stangeland (1995).

9. Those derivations are available from the author upon request.

10. See Myles (1995) for a brief summary, and Boadway et al. (1989) for specific proposals.

11. This result may still be obtained in the decreasing cost case if marginal cost does not decline
too rapidly as output expands.

NOTES
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