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Abstract

This paper de�nes an equilibrium concept for general preferences in two person normal form

games. It collapses to Nash Equilibrium when preferences are represented by the expected

utility model. An important characteristic of the equilibrium concept is that player i does not

necessarily know that player j is rational, but she views rationality as in�nitely more likely than

irrationality. For suitable models of preferences, the equilibrium concept predicts that a player

will take a \cautious" strategy that is not a best response in any Nash Equilibrium. Journal of

Economic Literature Classi�cation Numbers: C72, D81.

1I especially thank Professor Larry G. Epstein for pointing out this topic, and for providing supervision and

encouragement. Remaining errors are my responsibility.



1. INTRODUCTION

The expected utility model axiomatized by Savage (1954) has been the most popular model

for studying decision making under uncertainty. It is also almost universally used in game theory.

Under the assumption that players' preferences are represented by expected utility functions, a large

number of equilibrium concepts have been developed, the central one being Nash Equilibrium.

Adopting the view that choosing a strategy in a game is a decision problem under uncertainty,

Aumann and Brandenberger (1991) interpret a Nash Equilibrium as a collection of beliefs held by

the players about opponents' strategy choices. They demonstrate formally that in a two person

normal form game, if the structure of the game and players' beliefs and rationality are mutual

knowledge, then the beliefs pro�le constitutes a Nash Equilibrium.2

Game theorists have been questioning the assumption of knowledge of rationality:

\Common knowledge of rationality seems a very strong assumption. Even mutual

knowledge of rationality is quite strong. A player may be rational himself, but how

can he know for sure that another person is?" (Aumann (1992, p.219)).

Irrationality in game theory is an important topic for research. To relax the assumption of mutual

knowledge of rationality, one approach that has been taken is to assume that irrationality is very

unlikely but it is not a null event. When players are expected utility maximizers, this means that

a player attaches probability \very close" (but not equal) to 1 to the event that the other player is

rational. It is well recognized that this can make a very big di�erence in the outcome of a game.

In this paper, I adopt the above idea, but consider more general preferences. Let me make use

of Example 1 to provide the motivation. For all games presented in this paper, player i (male) is

the row player and player j (female) is the column player. Payo�s are in terms of utility.

Example 1

L R

l 10 million, 10 -10 million, 9

m 9 million, 10 8 million, 9

n 8 million, 10 9 million, 9

o -10 million, 10 400 million, 9

2Aumann and Brandenberger (1991) also point out that it is natural for the conditions to be su�cient but not

necessary because nothing can prevent the beliefs of the players from forming a Nash Equilibrium \accidentally".
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If player i knows that player j is rational, then i knows that j will play L and therefore i should

play l. In fact, the strategy pro�le fl; Lg constitutes the unique Nash Equilibrium.

However, it is intuitive that player i may play m. The informal justi�cation is as follows: player

i \expects" that player j is rational and therefore she will play L. If player i plays o, he will receive

-10 million. Therefore, even though o gives a very high payo� in case player j plays R, this does

not induce player i to play o. We only need player i to believe that it is more likely that player j

is rational to justify that m is strictly better than n. Player i also strictly prefers to play m rather

than l because although player i expects that player j is rational and therefore she will play L,

he does not \know for sure" that this is really the case. If player i plays l but player j plays R,

player i will receive -10 million. To avoid completely the possibility of receiving the misfortune of

-10 million, player i therefore decides to play m. By doing so, he knows that he can receive at least

8 million regardless of what player j is going to do.

This example also conveys the following important message: note that player i will not play

m even if we do not employ Nash Equilibrium as the solution concept but retain the assumption

that player i is an expected utility maximizer. If player i is an expected utility maximizer, l (o)

is strictly better than m if player i attaches probability at least (at most) 0.95 to the event that

player j will play L. Therefore, his best response is either l or o, but never m. This demonstrates

the necessity to de�ne a version of Nash Equilibrium that allows for more general preferences.

Motivated by Example 1, I do not start by restricting myself to a speci�c class of preferences.

An equilibrium concept which is expressed only in terms of given preferences for players is provided

�rst. Therefore a modeller who wants to make use of the equilibrium concept has complete freedom

to adopt any class of preferences (provided that it ensures the existence of an equilibrium). Fol-

lowing the traditional approach of relaxing the assumption of mutual knowledge of rationality, my

equilibrium concept allows irrationality to be a non-null event. Its distinctive feature is that given

any two strategies of player j which i thinks that j may use, i believes that it is in�nitely more

likely that j will pick the strategy which she strictly prefers. Then I proceed to look for models

of preferences that can be adopted to the equilibrium concept to deliver the desired prediction in

Example 1.

Recently, a number of papers have formulated generalizations (or re�nements) of Nash Equi-

librium in normal form games by allowing players' preferences to deviate from the expected utility

model. They include Blume et al. (1991b), Crawford (1990), Dekel et al. (1991), Dow and Werlang

(1994), Klibano� (1993), Lo (1995) and Mukerji (1994). It is therefore important to di�erentiate
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this paper from the above. The �rst di�erence is motivation. The motivation of this paper directly

comes from modelling beliefs in irrationality in game theory. This is only shared by Blume et al.

(1991b) and Mukerji (1994). In fact, the spirit of the equilibrium concept in this paper is similar

to those in Blume et al. (1991b). I will explain in details the di�erence between my equilibrium

concept and theirs. The motivation of all the other papers comes from the Allais and Ellsberg

Paradoxes in single person decision theory. As a result, considerations of uncertainty about op-

ponents' rationality is absent (or at least not the main focus) in their equilibrium concepts. The

second di�erence is prediction, which can be highlighted using Example 1. My equilibrium concept

satis�es the following properties:

1. There exist models of preferences that can be adopted to the equilibrium concept to predict

that player i will play m.

2. There does not exist a model of preferences that can be adopted to the equilibrium concept

to predict that player i will play n or o.

Nash Equilibrium and the equilibrium concepts in Blume et al. (1991b), Crawford (1990), Dekel et

al. (1991) and Lo (1995) violate 1. On the other hand, those in Dow and Werlang (1994), Klibano�

(1993) and Mukerji (1994) violate 2. Moreover, my equilibrium concept can be regarded as a

re�nement of those in Dow and Werlang (1994) and Mukerji (1994), which is another contribution

of this paper.

The paper is organised as follows. Since I also adopt the view that choosing a strategy in

a game is a decision problem under uncertainty, I �rst consider single person decision theory in

section 2. The theory is adapted to the context of normal form games in Section 3, where the

equilibrium concept is presented. Section 4 demonstrates formally that my equilibrium concept,

when specialized to the multiple priors model of Gilboa and Schmeidler (1989), is a re�nement of

those in Dow and Werlang (1994) and Mukerji (1994). Section 5 concludes.

2. SINGLE PERSON DECISION THEORY

Before I present the equilibrium concept, some preliminaries on single person decision theory

are required. For any topological space Y , adopt the Borel �-algebra �Y and denote by M(Y )

the set of all Borel probability measures over Y with �nite supports. Let (X;�X) be the space

of outcomes and (
;�
) the space of uncertainty. For the purpose of this paper, I assume that

X = R and 
 is a �nite set. Let F be the set of all functions from 
 to M(X). That is, F is the
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set of two-stage, horse-race/roulette-wheel acts, as in Anscombe and Aumann (1963). f is called

a constant act if f(!) = p 8! 2 
; such an act involves (probabilistic) risk but no uncertainty.

For notational simplicity, I also use p 2 M(X) to denote the constant act that yields p in every

state of the world, x 2 X the degenerate probability measure on x and ! 2 
 the event f!g 2 �
.

The primitive � is a weak preference ordering over acts. The relations of strict preference and

indi�erence are denoted by � and � respectively.

There are several choice theoretic notions regarding � that will be relevant. Say that � is

monotonic if for all f; g 2 F ,

f(!) � g(!) 8! 2 
) f � g and f(!) � g(!) 8! 2 
) f � g:

Throughout this paper, assume that � is monotonic and for all x�; x 2 X , x� � x if and only if

x� > x.

The next two notions are from Savage (1954). Say that an event T is �-null if for all f; f 0; g 2 F ,"
f(!) if ! 2 T

g(!) if ! 62 T

#
�

"
f 0(!) if ! 2 T

g(!) if ! 62 T

#
:

In words, an event T is �-null if the decision maker does not care about payo�s in states belonging

to T . This can be interpreted as the decision maker knows (or believes) that T can never happen.

Given any two events A and B, say that A is �-more likely than B if for all x�; x 2 X with

x� � x, "
x� if ! 2 A

x if ! 62 A

#
�

"
x� if ! 2 B

x if ! 62 B

#
:

In words, A is �-more likely than B if the decision maker prefers to bet on A rather than on B.

We also need the following less standard notion:

De�nition 1. A is �-in�nitely more likely than B if for all x�; x; y 2 X with x� � x,"
x� if ! 2 A

x if ! 62 A

#
�

"
y if ! 2 B

x if ! 62 B

#
: (1)

The interpretation of the �-in�nitely more likely than relation is as follows: A is �-in�nitely

more likely than B if the decision maker strictly prefers to bet on A rather than on B and moreover,

increasing the payo� by any extent for the act

"
y if ! 2 B

x if ! 62 B

#
in all states belonging to B does

not induce his strict preference to change. The �-in�nitely more likely than relation possesses some

natural properties. It is irreexive, asymmetric and transitive. Moreover, � is monotonic implies
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that if A is �-in�nitely more likely than B, then A is �-in�nitely more likely than any subset of

B.

I should point out that the idea of introducing an �-in�nitely more likely than relation is not

new. Blume et al. (1991a, De�nition 5.1) also de�ne an �-in�nitely more likely than relation in the

context of single person decision theory. According to their de�nition, for any two disjoint events

A and B, A is �-in�nitely more likely than B if for all f; g; h 2 F ,"
f(!) if ! 2 A

h(!) if ! 62 A

#
�

"
g(!) if ! 2 A

h(!) if ! 62 A

#

)

2
64 f(!) if ! 2 A

ĥ(!) if ! 2 B

h(!) if ! 62 A [B

3
75 �

2
64 g(!) if ! 2 A
�h(!) if ! 2 B

h(!) if ! 62 A [ B

3
75 for all ĥ; �h 2 F . (2)

The main di�erence between (1) and (2) is that to test whether A is �-in�nitely more likely than

B, (1) only compares binary (two outcome) acts, but (2) considers more general acts.

Given the �-in�nitely more likely than relation de�ned by Blume et al. (1991a), it is important

to explain the value added of De�nition 1. Note that when A[B = 
, A is �-in�nitely more likely

than B according to (2) only if for all x�; x; y 2 X with x� � x,"
x� if ! 2 A

x if ! 2 B

#
�

"
x if ! 2 B

x if ! 2 A

#
)

"
x� if ! 2 A

y if ! 2 B

#
�

"
x� if ! 2 B

x if ! 2 A

#
: (3)

That is, the decision maker strictly prefers to bet on A rather than on B and moreover, decreasing

the payo� by any extent for the act

"
x� if ! 2 A

y if ! 2 B

#
does not induce his strict preference to

change. There is intuition for � to obey (1) but violate (3). When a decision maker expects that

A will happen, giving him an act that delivers a big prize if A does not happen does not make

him excited. On the other hand, giving him an act that delivers a big misfortune in case A does

not happen may make him feel uncomfortable. That is, violation of (3) may be justi�ed by the

psychological desire of the decision maker to rule out completely the possibility of a misfortune.

In fact, if we require player i to believe that it is in�nitely more likely that player j will pick the

strategy that she strictly prefers in Example 1, then it is necessary for the preference ordering �

of player i to violate (3) in order to predict that he will play m. To see this, let 
 = fL;Rg be the

state space for player i, A = L and B = R. Player i believes that it is �-in�nitely more likely that

player j will pick the strategy which she strictly prefers if and only if L is �-in�nitely more likely

than R. If (3) were satis�ed, we would have l � m. Therefore, using the �-in�nitely more likely

than relation in Blume et al. (1991a) cannot predict that player i plays m.

The next task is to identify models of preferences where introducing De�nition 1 will make

a di�erence. When preferences are represented by the expected utility model, A is �-in�nitely
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more likely than B if and only if A is not �-null and B is �-null. Therefore given the notion of

�-null event, there is no need to introduce the �-in�nitely more likely than relation. In fact, this

continues to hold for all preferences that are strictly monotonic in all non-�-null events and satisfy

an \intermediate value property". Say that � is strictly monotonic in all non-�-null events if for

all x�; x; y 2 X with x� � x and for all non-�-null events T ,3"
x� if ! 2 T

y if ! 62 T

#
�

"
x if ! 2 T

y if ! 62 T

#
: (4)

Say that � satis�es the intermediate value property if for all non-�-null events T and for all

x�; x 2 X with x� � x, there exists y � x such that"
x� if ! 2 T

x if ! 62 T

#
� y: (5)

Proposition 1. Suppose that � is strictly monotonic in all non-�-null events and satis�es the

intermediate value property. Then given any two events A and B, A is �-in�nitely more likely

than B if and only if A is not �-null and B is �-null.

Proof:

=)

Suppose that A is �-in�nitely more likely than B. Then for all x�; x 2 X with x� � x,"
x� if ! 2 A

x if ! 62 A

#
�

"
x if ! 2 B

x if ! 62 B

#
�

"
x if ! 2 A

x if ! 62 A

#
:

This implies that A is not �-null.

Next I show that B is �-null. Suppose that B were not �-null. Then for each x� � x, there

exists y � x such that"
x� if ! 2 B

x if ! 62 B

#
�

"
y if ! 2 A

y if ! 62 A

#
�

"
y if ! 2 A

x if ! 62 A

#
:

The �rst weak preference relation is due to the intermediate value property. The last weak prefer-

ence relation is due to the assumption that � is monotonic. The above establishes a contradiction

to the hypothesis that A is �-in�nitely more likely than B.

(=

3Savage's axiom P3 is stronger than (4) in the sense that the constant act y is replaced by any (not necessarily
constant) act.
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Suppose A is not �-null and B is �-null, then for all x�; x; y 2 X with x� � x,"
x� if ! 2 A

x if ! 62 A

#
�

"
x if ! 2 A

x if ! 62 A

#
�

"
x if ! 2 B

x if ! 62 B

#
�

"
y if ! 2 B

x if ! 62 B

#
:

The �rst strict preference relation is due to the fact that � is strictly monotonic in all non-�-null

events. The last indi�erence relation is due to the fact that B is �-null. This completes the proof

that A is �-in�nitely more likely than B.

It is intuitive that � may violate (4) or (5) if T is an event which is \in�nitely unlikely" to

happen. (That is, there exists an event A such that A is �-in�nitely more likely than T .) In fact,

such models of preferences are readily available and have received considerable attention in the

decision theory literature. A brief review of some of these models are now provided.

Gilboa and Schmeidler (1989) propose the multiple priors model: there exists an a�ne function

u : M(X) ! R and a unique, nonempty, closed and convex set 4 of probability measures on 


such that for all f; g 2 F ,

f � g , min
p24

Z
u � fdp � min

p24

Z
u � gdp: (6)

It is convenient to interpret 4 as representing the beliefs of the decision maker over 
. This model

violates (4) but satis�es (5). An event T is �-null if and only if p(T ) = 0 8p 2 4. � is strictly

monotonic in T if and only if p(T ) > 0 8p 2 4. Given any two events A and B, A is �-in�nitely

more likely than B if and only if p(A) > 0 8p 2 4 and 9p 2 4 such that p(B) = 0. Therefore

A is �-in�nitely more likely than B implies that � is not strictly monotonic in B, but B is not

necessarily a �-null event. The characterization of �-null event and the �-in�nitely more likely

than relation in terms of 4 motivates the following de�nition.4

De�nition 2. The extended support of 4 is f! 2 
 j 9p 2 4 such that p(!) > 0g. The support

of 4 is f! 2 
 j p(!) > 0 8p 2 4g.

The extended support of 4 is nonempty. A state ! 2 
 is not �-null if and only if it is in the

extended support of 4. The support of 4 is may be empty. Every state in the support of 4 is

�-in�nitely more likely than every state in the complement of the support of 4.

Blume et al. (1991a) propose the lexicographic expected utility model: there exists an a�ne

function u : M(X) ! R and a collection fpkgKk=1 of probability measures on 
 such that for all

4The de�nition of extended support in this paper is the same as that in Dow and Werlang (1994). The de�nition

of support in this paper is di�erent from theirs.
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f; g 2 F ,

f � g , [

Z
u � fdpk]Kk=1 �L [

Z
u � gdpk]Kk=1 (7)

where �L is the lexicographic ordering in Euclidean space. Again, fpkgKk=1 can be interpreted as

representing the beliefs of the decision maker over 
. Unlike the multiple priors model, this model

satis�es (4) but violates (5). Unfortunately, the two �-in�nitely more likely than relations de�ned

in (1) and (2) coincide when they are applied to this model. This is the reason that the equilibrium

notion de�ned in the next section, when specialized to this model of preferences, cannot deliver the

prediction that player i will play m in Example 1.

Finally, I provide an example of � where (4) is satis�ed, (5) is violated and the equivalence

of (1) and (2) breaks down. Consider the following lexicographic multiple priors utility function:

there exists an a�ne function u : M(X) ! R and a collection f4kgKk=1 of nonempty, closed and

convex sets of probability measures on 
 such that for all f; g 2 F ,

f � g , [ min
pk24k

Z
u � fdpk]Kk=1 �L [ min

pk24k

Z
u � gdpk]Kk=1: (8)

Furthermore, let f4kgKk=1 have the property that for each ! 2 
, there exists 1 � k � K such

that ! 2 extended support of 4k if and only if there exists 1 � k0 � K such that ! 2 support of

4k0 . This property ensures that � satis�es (4). The fact that (1) and (2) are not equivalent and

� violates (5) are easily veri�ed.

3. EQUILIBRIUM CONCEPT

Let me �rst describe how choosing a strategy in a game can be viewed as a decision problem

under uncertainty. Player i's �nite strategy space is Si with typical element si. The game speci�es

an outcome function gi : Si � Sj ! X for player i which is assumed to be common knowledge.

Since player i is uncertain about the strategy choice of player j, the relevant state space for player

i is Sj . Consistent with the above single person decision theory, player i has a preference ordering

�i over the set of acts de�ned on Sj . Each strategy si of player i can be identi�ed as an act over

Sj as follows: if player i chooses si and the true state is sj , player i receives the outcome gi(si; sj).

His objective is to choose si 2 Si such that si �i ŝi 8ŝi 2 Si.

Now I am in a position to state my equilibrium concept that can possibly deliver the desired

prediction in Example 1.

De�nition 3. f�i;�jg is a Cautious Nash Equilibrium if si �i ŝi for all si 2 Si that are not

�j -null and for all ŝi 2 Si not �j �in�nitely more likely than si; and similarly for j.
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When �i and �j are expected utility preferences, De�nition 3 reduces to the usual de�nition

of Nash Equilibrium.

Cautious Nash Equilibrium can never predict that player i will play n or o in Example 1,

regardless of the model of preferences adopted. The reason is that L strictly dominates R. Therefore

we must have L �j R for any �j . This implies that if f�i;�jg is a Cautious Nash Equilibrium, L

must be �i-in�nitely more likely than R. This in turn implies that m �i n and l �i o.

It is possible that in a Cautious Nash Equilibrium, player i will play m in Example 1. The

reason is that the equilibrium concept only requires the strategy L to be �i-in�nitely more likely

than the strategy R; it does not require R to be �i-null. That is, it does not require player i to

rule out completely the possibility that player j is irrational and therefore that she will play R.

Proposition 1 also makes clear that Cautious Nash Equilibrium predicts the prudent behavior of

player i only if �i violates (4) and/or (5). Otherwise, L is �i-in�nitely more likely than R implies

that R is �i-null. If player i rules out completely the possibility that player j will play R, then his

unique best response is l.

To provide a concrete illustration of Cautious Nash Equilibrium and demonstrate that there

exist models of preferences that can be adopted to the equilibrium concept to predict that player

i will play m in Example 1, let me restate De�nition 3 in terms of the multiple priors model. First

adapt the multiple priors model from the context of single person decision making to the context

of normal form games. Player i's induced preference ordering �i over Si is represented by the

following utility function: there exists an a�ne function ûi : M(X)! R and a nonempty, closed

and convex set of probability measures Bi over Sj such that for all si; ŝi 2 Si,

si �i ŝi , min
bi2Bi

ui(si; bi) � min
bi2Bi

ui(ŝi; bi)

where ui(si; bi) �
P

sj2Sj
ûi(gi(si; sj))bi(sj).

Cautious Nash Equilibrium, when restated in terms of the multiple priors model, is the following:

De�nition 4. fBi; Bjg is a Cautious Nash Equilibrium if the following conditions are satis�ed:5

1. Every si 2 support of Bj satis�es

min
bi2Bi

ui(si; bi) � min
bi2Bi

ui(ŝi; bi) 8ŝi 2 Si:

5Strictly speaking, I should state the equilibrium as f(Bi; ui); (Bj; uj)g in order to be consistent with the notation

f�i;�jg in De�nition 3. Here, I conform to the usual way of de�ning Nash Equilibrium, which is in terms of a pair

of probability measures.
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2. Every si 2 extended support of Bj satis�es

min
bi2Bi

ui(si; bi) � min
bi2Bi

ui(ŝi; bi) 8ŝi 62 support of Bj ;

and similarly for j.

The following constitutes a Cautious Nash Equilibrium for the game in Example 1:

Bi = fbi 2M(fL;Rg) j 0:9 � bi(L) � 1g and Bj = fmg:

Given the beliefs Bi of player i, L is �i-in�nitely more likely than R. However, R is not a �i-null

event. This is the reason that player i wants to be \cautious". Given the beliefs Bi of player i, the

unique best response is m. Finally, note that although R is not a �i-null event, �i is not strictly

monotonic in R. This con�rms the discussion in section 2 that in order to predict that player i

will play m in equilibrium, if �i satis�es the intermediate value property, it has to violate strict

monotonicity in all �-non-null events.

When preferences are represented by lexicographic multiple priors utility functions de�ned in

(8), Cautious Nash Equilibrium can also be readily constructed to deliver the prediction that player

i plays m. When preferences are represented by the lexicographic expected utility model de�ned

in (7), Cautious Nash Equilibrium collapses to Lexicographic Nash Equilibrium in which the belief

system respects preferences (Blume et al. (1991b, De�nitions 3 and 4)). As explained in section 2,

this equilibrium concept can only predict that player i plays l.
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4. REFINEMENT OF DOW AND WERLANG (1994)

Motivated by the Ellsberg Paradox, Dow and Werlang (1994) generalize Nash Equilibrium in

two-person normal form games. They assume that players' preferences are represented by the

Choquet expected utility model where the associated capacity is convex (Schmeidler (1989)). Any

such preference ordering is a member of the multiple priors model. In order to see clearly the choice

theoretic meaning behind their equilibrium concept, let me �rst state it in terms of preferences.6

De�nition 5. f�i;�jg is a Nash Equilibrium under Uncertainty if there exists Ei � Si such that

the following conditions are satis�ed:

1. Si is �j -in�nitely more likely than the complement of Ei.

2. si �i ŝi 8si 2 Ei 8ŝi 2 Si;

and similarly for j.

Say that player i is rational (irrational) if he chooses (does not choose) a strategy that maximizes

utility given his beliefs Bi. Nash Equilibrium under Uncertainty requires the whole strategy space

Si to be �j -in�nitely more likely than the event \player i is irrational" (which is a subset of the

complement of Ei).

Dow and Werlang (1994, p.313) explicitly adopt the view that the degree of uncertainty aversion

is subjective, as in the single agent setting, rather than reasonably tied to the structure of the game.

As a result, their equilibrium concept delivers a continuum of equilibria for every normal form game

(see their theorem on p.313). In fact, this point is readily demonstrated by noting that given any

two-person normal form game, regardless of its payo� structure, the beliefs pro�le fM(Sj);M(Si)g

constitutes a Nash Equilibrium under Uncertainty. Note that in Example 1, if the beliefs of player

i are represented by M(fL;Rg), n will be a best response for player i. Therefore it seems desirable

6The equilibrium concept proposed by Dow and Werlang, when stated in terms of the multiple priors model, is as

follows: fBi;Bjg is a Nash Equilibrium under Uncertainty if there exists Ei � Si such that the following conditions

are satis�ed:

1. bj(Ei) = 1 for at least one bj 2 Bj .

2. minbi2Bi
ui(si; bi) � minbi2Bi

ui(ŝi; bi) 8si 2 Ei 8ŝi 2 Si;

and similarly for j.

To see that this is equivalent to De�nition 5, note that Si is �j-in�nitely more likely than the complement of Ei

if and only if there exists bj 2 Bj such that bj(complement of Ei) = 0 if and only if there exists bj 2 Bj such that

bj(Ei) = 1.

11



to provide a re�nement of their equilibrium concept. The following two examples provide further

speci�c motivation.

Example 2

s1j s2j s3j
s1i 3,3 3,2 0,3

s2i 2,3 2,2 2,3

s3i 3,0 3,2 3,3

The following constitutes a Nash Equilibrium under Uncertainty:

Bi = fbi 2M(Sj) j 0:8 � bi(s
1

j) � 1; 0 � bi(s
2

j ) � 0:2; bi(s
3

j ) = 0g;

Bj = fbj 2M(Si) j 0:8 � bj(s
1

i ) � 1; 0 � bj(s
2

i ) � 0:2; bj(s
3

i ) = 0g:

To see this, note that according to the beliefs Bj of player j, Si is �j -in�nitely more likely than

fs2i ; s
3

i g and s1i maximizes the utility of player i given i's beliefs Bi. In this equilibrium, s2i is not

�j -null and s3i is �j -null. However, s3i strictly dominates s2i . If player j is not even sure whether

player i will play s2i , how can she be so sure that i will never play s3i ? Note that in a Nash

Equilibrium, given a strategy si that is not �j -null and another strategy ŝi that is �j-null, si is at

least as good as ŝi for player i.

Example 3

L R

U 10,10 2,2

D 2,2 1,1

fM(Sj);M(Si)g is a Nash Equilibrium under Uncertainty. According to the beliefs M(Si) of player

j, U and D are not �j -null. In fact, they are \equally likely" (U is �j -more likely than D and

vice versa). However, U strictly dominates D. Even though player j does not want to completely

rule out the possibility that player i will play D, it seems more reasonable that player j believes it

is (in�nitely) more likely for player i to play U rather than D. Note that in a Nash Equilibrium,

given any two strategies si and ŝi that are not �j -null (and one strategy is not �j-in�nitely more

likely than the other), si and ŝi are equally good for player i.

Starting from this point, I assume that � obeys the following axiom:

Axiom. Given any state ! 2 
 and any two events A and B, if ! is �-in�nitely more likely than

A and ! is �-in�nitely more likely than B, then ! is �-in�nitely more likely than A [ B.

12



The intuition of this axiom is that, for instance, if the decision maker believes that it is �-

in�nitely more likely for a die to land on the face labelled \1" rather than on any of its edge, and

it is �-in�nitely more likely for the die to land on the face labelled \1" rather than on any of its

corner, then the decision maker believes that it is in�nitely more likely that the die will land on the

face labelled \1" rather than on any of its edge or corner. When � is represented by the multiple

priors model where 4 is the underlying set of probability measures, � satis�es the axiom if and

only if either (i) the support of 4 is empty or (ii) the support of 4 is non-empty and there exists

p 2 4 such that p(support of 4) = 1. Therefore if the support of 4 is nonempty, it is the smallest

event Ei which satis�es condition 1 in the de�nition of Nash Equilibrium under Uncertainty.

Under this axiom, Dow and Werlang's equilibrium concept can be restated in terms of the

multiple priors model as follows:7

De�nition 6. fBi; Bjg is a Nash Equilibrium under Uncertainty if the following conditions are

satis�ed:

1. If the support of Bj is nonempty, then every si 2 support of Bj satis�es

min
bi2Bi

ui(si; bi) � min
bi2Bi

ui(ŝi; bi) 8ŝi 2 Si:

2. If the support of Bj is empty, then there exists Ei � extended support of Bj with bj(Ei) = 1

for at least one bj 2 Bj such that every si 2 Ei satis�es

min
bi2Bi

ui(si; bi) � min
bi2Bi

ui(ŝi; bi) 8ŝi 2 Si;

and similarly for j.

De�nition 6 conveys clearly the two messages delivered by Examples 2 and 3. First, in a Nash

Equilibrium under Uncertainty, as long as the support of Bj is nonempty, then any comparison

among the strategies that are not in the support of Bj is irrelevant. In the Nash Equilibrium under

Uncertainty of the game in Example 2, the support of Bj is s
1

i which is nonempty. s3i is �j-null

and s2i is not �j -null, but s
2

i is allowed to strictly dominate s3i . Second, even though the support

of Bj is empty and therefore condition 2 in De�nition 6 becomes e�ective, it is not required that

every strategy in the extended support of Bj be equally desirable. In the Nash Equilibrium under

7Note that the beliefs of the players in all the Nash Equilibria under Uncertainty constructed in the proof of the
theorem in Dow and Werlang (1994, p.313) satisfy this axiom.
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Uncertainty of the game in Example 3, the support of Bj is empty. U and D are equally likely and

not �j-null, but U is allowed to strictly dominate D.

A direct comparison between Cautious Nash Equilibrium (De�nition 4) and Nash Equilibrium

under Uncertainty (De�nition 6) con�rms that, under the above axiom, the former is a re�nement

of latter. Cautious Nash Equilibrium always requires comparison among some strategies not in

the support of Bj . It also requires every strategy, not in the support of Bj , but in its extended

support, to be equally desirable. Both Nash Equilibria under Uncertainty constructed for the games

in Examples 2 and 3 violate condition 2 in the de�nition of Cautious Nash Equilibrium. They are

therefore re�ned away.

The solution concept Equilibrium in �-ambiguous Beliefs in Mukerji (1994), when restricted

to two person games, is essentially the same as Nash Equilibrium under Uncertainty.8 Therefore

Cautious Nash Equilibrium re�nes Equilibrium in �-ambiguous Beliefs in exactly the same manner.

Finally, Klibano� (1993) adopts the lexicographic multiple priors model to represent players' pref-

erences in normal form games and de�nes Equilibrium with Uncertainty Aversion. In his paper, the

strategy space of each player is the set of mixed strategies.9 Therefore a direct comparison with

the equilibrium concept here is not possible. However, it is easy to construct an Equilibrium with

Uncertainty Aversion in which n is a best response for player i in Example 1.

5. CONCLUSION

In the case where a decision maker is an expected utility maximizer, an event B is �-null if and

only if there exists another event A such that A is �-in�nitely more likely than B. This relationship

may not hold for more general preferences. This paper examines systematically this exibility in

the context of normal form games. It leads to the following contribution: I provide a generalization

of Nash Equilibrium in terms of preferences which possesses a sound choice theoretic basis. It can

predict prudent behavior as in Example 1. Relative to the equilibrium notions of Dow and Werlang

(1994) and Mukerji (1994), my equilibrium concept enjoys higher predictive power.

In this paper, I con�ne myself to two person normal form games. Nash Equilibrium in n person

normal form games requires the beliefs bi of each player i be stochastically independent: bi is a prod-

uct measure on �j 6=iSj . When specialized to the multiple priors model, Cautious Nash Equilibrium

can be readily extended to n person normal form games by adopting, for instance, the notion of

8Mukerji (1994) requires the capacities to satisfy some additional properties.
9See Lo (1995) for arguments for and against the adoption of mixed rather than pure strategy space for normal

form games in which the preferences of the players are represented by the multiple priors model.
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stochastically independent beliefs in Gilboa and Schmeidler (1989, p.150-151). Generalization of

De�nition 3 to n person normal form games would require a notion of stochastically independent

preferences. One such notion, which is only applicable to preferences satisfying Savage's sure thing

principle, can be found in Blume et al. (1991a, p.74). Development of a more general notion is a

subject for future research.

15



REFERENCES

Anscombe, F. J. and R. Aumann (1963): \A De�nition of Subjective Probability," Annals of
Mathematical Statistics, 34, 199-205.

Aumann, R. (1992): \Irrationality in Game Theory," Economic Analysis of Markets and Games,
edited by P. Dasgupta, D. Gale, O. Hart and E. Maskin. Cambridge: M.I.T. Press.

Aumann, R. and A. Brandenberger (1991): \Epistemic Conditions for Nash Equilibrium," Econo-
metrica, forthcoming.

Blume, L., A. Brandenberger and E. Dekel (1991a): \Lexicographic Probabilities and Choice Under
Uncertainty," Econometrica, 59, 61-79.

Blume, L., A. Brandenberger and E. Dekel (1991b): \Lexicographic Probabilities and Equilibrium
Re�nements," Econometrica, 59, 81-98.

Crawford, V. (1990): \Equilibrium without Independence," Journal of Economic Theory, 50, 127-
154.

Dekel, E., Z. Safra and U. Segal (1991): \Existence and Dynamic Consistency of Nash Equilibrium
with Non-Expected Utility Preferences," Journal of Economic Theory, 55, 229-246.

Dow, J. and S. Werlang (1994): \Nash Equilibrium under Knightian Uncertainty: Breaking Down
Backward Induction," Journal of Economic Theory, 64, 305-324.

Gilboa, I. and D. Schmeidler (1989): \Maxmin Expected Utility with Non-unique Prior," Journal
of Mathematical Economics, 18, 141-153.

Klibano�, P. (1993): \Uncertainty, Decision, and Normal Form Games," Journal of Economic
Theory, forthcoming.

Lo, K. C. (1995): \Equilibrium in Beliefs under Uncertainty," Manuscript, University of Toronto
(�rst version: 1994).

Mukerji, S. (1994): \A Theory of Play for Games in Strategic Form When Rationality is not
Common Knowledge," Manuscript, Yale University.

Savage, L. (1954): The Foundations of Statistics. New York: John Wiley.

Schmeidler, D. (1989): \Subjective Probability and Expected Utility without Additivity," Econo-
metrica, 57, 571-581.

16


