
Extensive Form Games
with Uncertainty Averse Players1

Kin Chung Lo

Department of Economics, University of Toronto,

Toronto, Ontario, Canada M5S 1A1

July, 1995

Abstract

Existing equilibrium concepts for games make use of the subjective expected utility model
axiomatized by Savage (1954) to represent players' preferences. Accordingly, each player's beliefs
about the strategies played by opponents are represented by a probability measure. Motivated
by the Ellsberg Paradox and relevant experimental �ndings demonstrating that the beliefs of
a decision maker may not be representable by a probability measure, this paper generalizes
Nash Equilibrium in �nite extensive form games to allow for preferences conforming to the
multiple priors model developed in Gilboa and Schmeidler (1989). The implications of this
generalization for strategy choices and welfare are studied. Journal of Economic Literature

Classi�cation Numbers: C72, D81.
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1. INTRODUCTION

The subjective expected utility model axiomatized by Savage (1954) has been the most popular

model for studying decision making under uncertainty. In this model, the beliefs of a decision

maker are represented by a probability measure. However, the descriptive validity of the model has

been questioned since Ellsberg (1961) presented his famous example that people typically prefer to

bet on drawing a red ball from an urn containing 50 red and black balls each, than from an urn

containing 100 red and black balls in unknown proportions.2 In fact, the pattern of preferences

exhibited in Ellsberg's example is ruled out by any model of preferences in which underlying beliefs

are represented by a probability measure. (Machina and Schmeidler (1992) call this property

\probabilistic sophistication".)

Motivated by the Ellsberg Paradox, which demonstrates that there are situations where the

information possessed by a decision maker about the states of nature is too \vague" or \ambiguous"

to be representable by a probability measure, two important and closely related models have been

developed.3 Schmeidler (1989) develops the Choquet expected utility model, in which the beliefs

of a decision maker are represented by a capacity or non-additive probability measure. Gilboa and

Schmeidler (1989) develop the multiple priors model, in which the beliefs of a decision maker are

represented by a set of additive probability measures. In the multiple priors model, a decision

maker is said to be uncertainty averse if the set of probability measures representing his beliefs is

not a singleton.

Although the Ellsberg Paradox only involves a single decision maker facing an exogenously

speci�ed environment, it is natural to think that uncertainty aversion is also common in decision

making problems where more than one person is involved. Since existing equilibrium notions of

games are de�ned under the assumption that players are subjective expected utility maximizers,

deviations from the Savage model to accommodate aversion to uncertainty make it necessary to

rede�ne equilibrium concepts. This line of research has already started. For normal form games

of complete information, Dow and Werlang (1994), Klibano� (1993) and Lo (1995a,b) generalize

Nash Equilibrium; and Epstein (1995) generalizes rationalizibility and a posteriori equilibrium.

For normal form games of incomplete information, Epstein and Wang (1994) establish the general

theoretical justi�cation for the Harsanyi style formulation for non-Bayesian players. All the above

papers either adopt the multiple priors model or consider a class of preferences which includes both

2Variations of the Ellsberg Paradox have been con�rmed by many experimental studies. See Camerer and Weber

(1992) for a survey.
3See Camerer and Weber (1992) for a survey of other models.
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the Choquet expected utility and multiple priors models as special cases. However, serious study

on extensive form games with uncertainty averse players has not yet been carried out.

This paper proposes a new equilibrium concept, Multiple Priors Nash Equilibrium, that gen-

eralizes Nash Equilibrium in extensive form games to accommodate preferences conforming to the

multiple priors model. This research is important because many games of economic interest are

extensive form games. The generalization creates a framework that enables us to study the e�ects

of uncertainty aversion on strategic interaction in situations which are dynamic in nature.

It is well known that when players are expected utility maximizers, the de�nition of Nash

Equilibrium in normal form games can be directly applied to (the normal form representation of

the) extensive form games. Therefore, as far as Nash Equilibrium is concerned, a separate treatment

for extensive form games is not needed. However, a separate treatment is required in the present

setting of uncertainty averse players. The main reason is as follows. In an extensive form game, a

strategy of a player is a speci�cation of action taken by the player at every information set at which

he is supposed to move. For an expected utility maximizing player, a strategy which maximizes his

utility at the beginning of the game (that is, before anyone has made any move) will continue to be

optimal for him when he arrives at an information set that does not contradict his initial beliefs on

his opponents' strategy choices. This property does not hold when player's beliefs are represented

by a set of probability measures. Therefore, it is required to ensure that the strategy chosen in

equilibrium by an uncertainty averse player be optimal, not necessarily at the beginning of the

game, but rather at every information set that he thinks he will possibly reach when he carries

out the strategy. Unlike Nash Equilibrium, Multiple Priors Nash Equilibrium is an extensive form

solution concept. That is, two extensive form games with the same normal form can have di�erent

sets of Multiple Priors Nash Equilibria. In the concluding section, I point out that dependence

on the extensive form is natural when players are uncertainty averse. All other features of Nash

Equilibrium are essentially preserved by the generalization. Therefore, a comparison between the

two equilibrium concepts constitutes a ceteris paribus study of the e�ects of uncertainty aversion

on extensive form games.

The paper is organized as follows. Section 2 contains a brief review of the multiple priors

model, a discussion of how it is extended to the sequential choice setting and �nally, a review of

the de�nition of extensive form games. Section 3 de�nes Nash Equilibrium and its generalization.

Section 4 makes use of the generalized equilibrium concept to illustrate how uncertainty aversion

a�ects players' strategy choices and welfare. Some concluding remarks are o�ered in section 5.
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2. PRELIMINARIES

2.1 Static Choice

In this section, I provide a brief review of the multiple priors model and a discussion of some

of its properties that will be relevant in later sections.

For any topological space Y , adopt the Borel �-algebra �Y and denote by M(Y ) the set of all

probability measures over Y with �nite supports. Let (X;�X) be the space of outcomes and (
;�
)

the space of uncertainty. For the purpose of this paper, assume that 
 is a �nite set. Let F be the

set of all functions from 
 to M(X). That is, F is the set of two-stage, horse-race/roulette-wheel

acts, as in Anscombe and Aumann (1963). f is called a constant act if f(!) = p 8! 2 
; such an

act involves (probabilistic) risk but no uncertainty. For notational simplicity, I also use p 2M(X)

to denote the constant act that yields p in every state of the world, x 2 X the degenerate probability

distribution on x and ! 2 
 the event f!g 2 �
. For f; g 2 F and � 2 [0; 1], �f + (1� �)g � h

where h(!) = �f(!) + (1� �)g(!) 8! 2 
. The primitive � is a weak preference ordering over

acts. The relations of strict preference and indi�erence are denoted by � and � respectively.

Gilboa and Schmeidler (1989) impose a set of axioms on � that are necessary and su�cient for

� to be represented by a numerical function having the following structure: there exists an a�ne

function u :M(X)! R and a unique, nonempty, closed and convex set 4 of probability measures

on 
 such that for all f; f 0 2 F ,

f � f 0 , min
p24

Z


u � fdp � min

p24

Z


u � f 0dp: (1)

It is convenient, but in no way essential, to interpret 4 as \representing the beliefs underlying

�"; I provide no formal justi�cation for such an interpretation. According to the multiple priors

model, preferences over constant acts, that can be identi�ed with objective lotteries over X , are

represented by u(�) and thus conform with the von Neumann Morgenstern model. The preference

ordering over the set of all horse race/roulette wheel acts is quasiconcave. That is, for any two acts

f; g 2 F with f � g, we have �f + (1� �)g � f for any � 2 (0; 1).

There are three issues regarding the multiple priors model that will be relevant when the model

is applied to games. The �rst concerns the notion of null event. Given any preference ordering �

over acts, de�ne an event T � 
 to be �-null as in Savage (1954): T is �-null if for any acts f; f 0; g,"
f(!) if ! 2 T

g(!) if ! 62 T

#
�

"
f 0(!) if ! 2 T
g(!) if ! 62 T

#
:
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In words, an event T is �-null if the decision maker does not care about payo�s in states belonging

to T . This can be interpreted as the decision maker knows (or believes) that T can never happen.

If � is expected utility preferences, then T is �-null if and only if the decision maker attaches zero

probability to T . If � is represented by the multiple priors model, then T is �-null if and only if

every probability measure in 4 attaches zero probability to T .

The second concerns the notion of strict monotonicity. Given any preference ordering � over

acts, say that � is strictly monotonic in an event T if for any two acts f and f 0,

f(!) � f 0(!) 8! 62 T and f(!) � f 0(!) 8! 2 T =) f � f 0:

If � is expected utility preferences, then it is strictly monotonic in T if and only if the decision maker

attaches positive probability to T . Therefore expected utility preferences are strictly monotonic in

all non-�-null events. If � is represented by the multiple priors model, then it is strictly monotonic

in T if and only if every probability measure in 4 attaches positive probability to T . In this paper,

I impose the requirement that preferences which are represented by the multiple priors model be

strictly monotonic in all non-�-null events. That is, every probability measure in 4 has the same

support.

Finally, the notion of stochastic independence will also be relevant. Suppose the set of states 


is a product space 
1�: : :�
n. In the case of a subjective expected utility maximizer, where beliefs

are represented by a probability measure p 2M(
), beliefs are said to be stochastically independent

if p is a product measure: p = �n
i=1marg
ip where marg
ip is the marginal probability measure of

p on 
i. In the case of uncertainty aversion, the decision maker's beliefs over 
 are represented by

a closed and convex set of probability measures 4. Let marg
i4 be the set of marginal probability

measures on 
i as one varies over all the probability measures in 4. That is,

marg
i4 � fpi 2M(
i) j 9p 2 4 such that pi = marg
ipg:

Following Gilboa and Schmeidler (1989, p.150-151), say that the decision maker's beliefs are stochas-

tically independent if

4 = closed convex hull of f�n
i=1p

i j pi 2 marg
i4 8ig: (2)

That is, 4 is the smallest closed convex set containing all the product measures in �n
i=1marg
i4.

2.2 Sequential Choice

The multiple priors model described in section 2.1 is a model of static or \one-shot" choice. It

has to be extended if we want to use it to deal with sequential choice problems.
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Think of two \times" t = 0 and t = 1 at which choices are made. There is complete resolution

of uncertainty at time t = 2. Suppose that at time t = 0, the preference ordering � over the set

of acts F mapping 
 to M(X) is represented by the multiple priors model de�ned in (1). At time

t = 1, suppose the decision maker learns that the true state is in a non-�-null event T � 
. The

relevant primitives now include: the set of states (T;�T), the set of outcomes X (unchanged) and

the set of acts FT on T . Assume that acts in FT are ranked by a preference ordering �T which is

represented by the following utility function: there exists a unique, nonempty, closed and convex

set 4T of probability measures on T such that for all f; f 0 2 FT ,

f �T f 0 , min
q24T

Z
T

u � fdq � min
q24T

Z
T

u � f 0dq: (3)

There remains the issue of the relationship between 4 and 4T . A natural procedure to revise

the beliefs of the decision maker is to rule out some of the priors in 4 and then update the rest

according to Bayes rule. Following Gilboa and Schmeidler (1993), an updating rule is characterized

by a function R of the form (4; T ) 7�! R(4; T ) for every nonempty, closed and convex 4 �M(
)

and for every non-�-null T 2 �
 such that R(4; T ) � 4 is a nonempty, closed and convex set of

measures with p(T ) > 0 for all p 2 R(4; T ). The beliefs of the decision maker over T are then

represented by the set of probability measures

4T � fq 2M(T ) j 9p 2 R(4; T )

such that q is updated from p using Bayes ruleg:

An updating rule of particular interest is the maximum likelihood updating rule:

R(4; T ) = fp 2 4 j p(T ) = max
~p24

~p(T )g:

Gilboa and Schmeidler (1993) provide an axiomatization of this updating rule. They show that if �

can be simultaneously represented by the Choquet expected utility and multiple priors models, the

maximum likelihood updating rule coincides with the Dempster-Shafer updating rule (see Shafer

(1976)). Moreover the updating rule is commutative in the sense that the results of this rule are

independent of the order in which information is gathered (see their Theorem 3.3). In this paper,

I assume that 4T is derived from 4 using the maximum likelihood updating rule. However, note

that only Proposition 2 depends on what updating rule is adopted.

Unfortunately, when �T is updated from � as above, preferences do not satisfy the following

dynamic consistency requirement unless 4 is a singleton: for all T 2 �
 and for all f; f 0 2 FT ,
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g 2 F
nT ,

f �T f 0 ,

"
f(!) if ! 2 T

g(!) if ! 62 T

#
�

"
f 0(!) if ! 2 T

g(!) if ! 62 T

#
: (4)

Suppose that at time t = 0, the act

"
f(!) if ! 2 T

g(!) if ! 62 T

#
is chosen out of some feasible set. If (4)

is not satis�ed, choice made at t = 0 may not be respected at t = 1. However, note the following

two remarks.

First, violation of dynamic consistency is not speci�c to this updating rule. Epstein and Le

Breton (1993) show that there does not exist �T which is represented by (3) such that � and �T

satisfy (4).

Second, note that the above dynamic consistency condition on preferences is strong in the sense

that (4) is required to hold for all events T and for all acts f; f 0 and g. When an uncertainty

averse decision maker is confronted with a particular sequential decision problem where there are

only some acts available for choice at t = 0 and t = 1 respectively and only some events will

possibly be realized at t = 1, it is possible that there may exist an act which is \dynamically

consistent" in the sense that it is optimal for him to implement at every decision point which he

thinks that he will possibly reach as he carries out the act. Consider the game in Figure 1. (For

all the game trees presented in this paper, the vector of numbers at each terminal history refers to

the utility payo�s to the players (player 1 �rst, player 2 second, etc.) and the notation Iij refers to

the jth information set of player i.)

Insert Figure 1 here

At I11, player 1 is uncertain about which strategy player 2 is going to use. The space of uncertainty


 for player 1 can therefore be regarded as fL;M;Rg. Suppose player 1 is uncertainty averse with

beliefs represented by the set of probability measures

B1 = fp 2M(fL;M;Rg) j p(L) � 0:05; p(M)� 0:8; p(R)� 0:05g:

Given the beliefs of player 1, the utility of any strategy which involves playing k at I11 is equal

to 30 while the utility of any strategy which involves playing r at I11 is less than 30. Therefore

at I11, it is optimal for him to use a strategy which involves playing k at I11. Although the set

of probability measures B1 is not a singleton, such a strategy is \dynamically consistent". After

player 1 plays k at I11, it will exclude the possibility of reaching the other two information sets I12
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and I13. He simply does not have a chance to deviate from his original plan. See later sections for

less extreme examples in which players actually move more than once.

2.3 Extensive Form Games

In this section, I de�ne �nite extensive form games of perfect recall. Formally, I need the

following notation which is adapted from Osborne and Rubinstein (1994, p.200). An extensive

form game has the following components:

� N = f1; : : : ; Ng is the set of players.

� H is the set of histories with typical element h. h is a sequence of actions taken by the

players. The empty sequence is an element of H . If h = (ak)k=1;:::;K 2 H and K0 < K, then

(ak)k=1;:::;K0 2 H . The latter is called a subhistory of the former. (ak)k=1;:::;K is terminal if

there is no aK+1 such that (ak)k=1;:::;K+1 2 H . The set of all terminal histories is denoted Z.

The set of actions available after a non-terminal history h is denoted A(h) = fa : (h; a) 2 Hg.

� P is a function which assigns to each non-terminal history a member of N . That is, P(h) is

the player who is going to move after the history h.

� Ii is a partition of fh 2 HnZ j P(h) = ig with typical element Ii. That is, Ii is the collection

of information sets for player i. It is required that for every Ii 2 Ii, A(h) = A(h0) for all

h; h0 2 Ii. Therefore we can de�ne A(Ii) � A(h) for any h 2 Ii. That is, A(Ii) is the set of

actions available to player i at his information set Ii.

� ui : Z ! R is the payo� function of player i.

An extensive form game G is a tuple fN ; H;P ; fIigi2N ; fuigi2Ng.
4 It is assumed that G is common

knowledge among the players.

Player i's strategy space is Si � �Ii2IiA(Ii) with typical element si. That is, si is a function that

assigns the action si(Ii) to each information set Ii 2 Ii. De�ne si(h) � si(Ii) 8h 2 Ii 8Ii 2 Ii.

4To simplify notation, I assume throughout that the extensive form game does not involve any move by nature.

For extensive form games involving moves by nature, P is rede�ned to be a function which assigns to each non-

terminal history a member of N [fcg. If P(h) = c, nature determines the action after the history h. fc is a function
which associates with every history h for which P(h) = c a probability measure fc(� j h) on A(h), where each such

probability measure is independent of every other measure. We can treat nature as a player with constant payo� at

every terminal history and assume that the beliefs of each player about nature's move coincide with fc. All de�nitions
and results below continue to be valid. Finally, see Osborne and Rubinstein (1994, p.203) for the de�nition of perfect

recall.

7



Given any history h = (a1; : : : ; al; al+1; : : : ; aK), si is consistent with h if for every subhistory

(a1; : : : ; al) of h for which P(a1; : : : ; al) = i, we have si(a
1; : : : ; al) = al+1. si is consistent with an

information set if there exists a history h in the information set such that si is consistent with h.

Throughout the paper, any statement concerning players i, j and k is intended for i = 1; : : : ; N

and i 6= j 6= k.

3. EQUILIBRIUM CONCEPTS

3.1 Nash Equilibrium

The de�nition of Nash Equilibrium is well known; one version is stated in De�nition 1 below.

The main body of this section is to present Nash Equilibrium in a form that can be readily extended

for our purposes. This is intended to convince the reader that the generalization undertaken in

section 3.2 is appropriate.

Before anyone has made a move, player i is uncertain about the strategy choices of other players.

Therefore S�i � �j 6=iSj can be regarded as the state space for player i. Each strategy si 2 Si of

player i can be regarded as an act over this state space. If player i plays si and the other players play

s�i 2 S�i, i receives the utility outcome ui(si; s�i) � ui(z) where z is the unique terminal history

such that every element in (si; s�i) is consistent with z. According to the subjective expected utility

model, player i's beliefs over S�i are represented by a probability measure bi. Nash Equilibrium

can be stated as follows:

De�nition 1. fbigNi=1 is a Nash Equilibrium if the following conditions are satis�ed.

1. Agreement and Stochastic Independence. There exists a probability measure �(Ii) 2M(A(Ii))

8Ii 2 Ii 8i = 1; : : :N such that

bi = �j 6=i �Ij2Ij �(Ij):

2. Rationality. Every si 2 �i (the support of margSibj) satis�es

X
s�i2S�i

ui(si; s�i)bi(s�i) �
X

s�i2S�i

ui(ŝi; s�i)bi(s�i) 8ŝi 2 Si:

The interpretation of De�nition 1 is as follows. Condition 1 is a restriction on players' initial

beliefs. It can be broken into three parts:
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(i) margSkbi = margSkbj ,

(ii) bi = �j 6=imargSjbi and

(iii) margSjbi = �Ij2Ij�(Ij).

(i) says that the marginal beliefs of players i and j on the strategy choice of player k agree. (ii)

says that the beliefs of player i about the strategy choices of all the other players are stochastically

independent. (iii) says that the beliefs of player i about the moves of player j at all of j's information

sets are stochastically independent. The expression
P

s�i2S�i
ui(si; s�i)bi(s�i) in condition 2 is

player i's ex ante utility of the strategy si given his beliefs bi. That is, it is player i's utility of

choosing the strategy si before any one has made any move. Therefore in a Nash Equilibrium

fbig
N
i=1, every strategy si in �i (which is the support of margSibj) maximizes the ex ante utility

of player i. That is, player j knows (in the sense de�ned in section 2.1) that player i will pick a

strategy to maximize ex ante utility.

However, the most important property for fbig
N
i=1 to be an equilibrium, which is not explicit

in De�nition 1, is that every strategy si 2 �i is optimal for player i to implement at every history

that he thinks (according to his initial beliefs bi) he will possibly reach when he carries out si. If

this property were not satis�ed, a strategy that is optimal and chosen by player i before anyone

has made any move, may not be implemented by player i as the players proceed to play the game.

The above suggests a reformulation of Nash Equilibrium in terms of the interim utility of players;

that is, the utility of each player at points where he has to take an action.

Let me proceed to present Nash Equilibrium in terms of interim utilities. De�ne ��i � S�i to

be the support of bi. Fix si 2 Si and de�ne

Ii(si;��i) � fIi 2 Ii j

9h 2 Ii and 9s�i 2 ��i such that every strategy in (si; s�i) is consistent with hg:

That is, Ii 2 Ii(si;�i) if and only if there exists s�i 2 ��i such that player i will �nd himself at

Ii when he implements si and his opponents implement s�i. If player i has been carrying out the

strategy si and �nds himself at an information set Ii 2 Ii(si;��i), then at this point, he excludes

all strategy pro�les in ��i that do not reach Ii. To be precise, player i retains only the strategy

pro�les of his opponents in

��i(Ii) � fs�i 2 ��i j 9h 2 Ii such that every strategy in s�i is consistent with hg:
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At Ii, we can regard ��i(Ii) as the state space for player i. The beliefs of player i over ��i(Ii)

are represented by the probability measure bIi which is updated from bi using Bayes rule. The

objective of player i at this point is to choose a strategy ŝi (which may be di�erent from si) that

is consistent with Ii to maximize his interim utility

X
s�i2��i(Ii)

ui(ŝi; s�i)bIi(s�i):

I am now in a position to state the second de�nition of Nash Equilibrium.

De�nition 2. fbig
N
i=1 is a Nash Equilibrium if the following conditions are satis�ed.

1. Agreement and Stochastic Independence. There exists a probability measure �(Ii) 2M(A(Ii))

8Ii 2 Ii 8i = 1; : : :N such that

bi = �j 6=i �Ij2Ij �(Ij):

2. Dynamic Consistency. Every si 2 �i (the support of margSibj) satis�es

X
s�i2��i(Ii)

ui(si; s�i)bIi(s�i) �
X

s�i2��i(Ii)

ui(ŝi; s�i)bIi(s�i)

8ŝi consistent with Ii 8Ii 2 Ii(si;��i).

Condition 1 in De�nition 2 is the same as that in De�nition 1. The interpretation of condition

2 is as follows. As the players proceed to play the game, every strategy si 2 �i of player i must

be a best response for player i (according to his interim utility) at every information set Ii that

can be reached by a strategy pro�le in si � ��i. Call a strategy having this property dynamically

consistent. Since �i is the support of margSibj which in turn represents the marginal beliefs of

player j on i's strategy choice, player j knows that player i will choose a dynamically consistent

strategy.

It is well known that De�nitions 1 and 2 are equivalent due to the fact that expected utility

preferences are dynamically consistent. Since De�nition 1 is much easier to state, it is the more

common formulation of Nash Equilibrium. As pointed out in section 2.2, preferences which are

representable by the multiple priors model are not dynamically consistent. Therefore, the distinc-

tion between ex ante and interim utility maximization is important for the generalization pursued

here.
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3.2 Generalization of Nash Equilibrium

At the beginning of the game, player i is uncertain about the strategy choices of opponents.

Since player i is uncertainty averse, beliefs over S�i are represented by a closed and convex set

of probability measures Bi. Assume that the probability measures in Bi have the same support

��i � S�i. This ensures that the preference ordering of player i is strictly monotonic in every

non-null event. Ii(si;��i) and ��i(Ii) are de�ned as in section 3.1. The beliefs of player i at

Ii 2 Ii(si;��i) are represented by the set of probability measures BIi which is derived from Bi

using the maximum likelihood updating rule. That is,

BIi � fqi 2M(��i(Ii)) j 9bi 2 Bi such that

bi(��i(Ii)) = max
~bi2Bi

~bi(��i(Ii)) and qi is updated from bi using Bayes ruleg: (5)

The following is a generalization of Nash Equilibrium:

De�nition 3. fBig
N
i=1 is aMultiple Priors Nash Equilibrium if the following conditions are satis�ed.

1. Agreement and Stochastic Independence. There exists a closed and convex set of probability

measures B(Ii) �M(A(Ii)) 8Ii 2 Ii 8i = 1; : : :N such that

Bi = closed convex hull of f�j 6=i �Ij2Ij �(Ij) j �(Ij) 2 B(Ij) 8Ij 2 Ij 8j 6= ig:

2. Dynamic Consistency. Every si 2 �i (the support of every probability measure in margSiBj)

satis�es

min
bIi2BIi

X
s�i2��i(Ii)

ui(si; s�i)bIi(s�i) � min
bIi2BIi

X
s�i2��i(Ii)

ui(ŝi; s�i)bIi(s�i)

8ŝi consistent with Ii 8Ii 2 Ii(si;��i).

The interpretation of De�nition 3 parallels that of De�nition 2. Condition 1 can again be broken

into three parts:

(i) margSkBi = margSkBj ,

(ii) Bi = �j 6=imargSjBi and

(iii) margSjBi = closed convex hull of f�Ij2Ij�(Ij) j �(Ij) 2 B(Ij) 8Ij 2 Ijg.
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(i) says that the marginal beliefs of the players agree. (ii) and (iii) require the beliefs of the players to

be stochastically independent (in the sense de�ned in the last paragraph of section 2.1). Condition

2 in De�nition 3 only di�ers from that in De�nition 2 by allowing players' utility functions to be

represented by the multiple priors model. Any Nash Equilibrium is also a Multiple Priors Nash

Equilibrium. Therefore existence of the latter is ensured.

4. DOES UNCERTAINTY AVERSION MATTER?

4.1 Questions

In section 3, I have developed an equilibrium concept to study the e�ects of uncertainty aversion

in the context of extensive form games. My objective here is to address the following two speci�c

questions:

1. As an outside observer, one only observes the actions actually taken by the players, but not

their beliefs. Is it possible for an outside observer to distinguish uncertainty averse players

from Bayesian players?5

2. Does uncertainty aversion make the players worse o� (better o�)?

Let me clarify the nature of welfare comparison underlying question 2. Consider the following

single person decision problem: let G � F be a set of acts de�ned on a state space 
. A decision

maker is allowed to choose an act from G. Suppose that initially, beliefs of the decision maker over 


are represented by a probability measure p̂ and next that beliefs change from p̂ to the set of priors4.

Given f 2 G, let CE4(f) be the certainty equivalent of f , that is, u(CE4(f)) = minp24
R
u � fdp.

Similar meaning is given to CEp̂(f). Then uncertainty aversion makes the decision maker worse

o� (better o�) if

max
f2G

CE4(f) � (�)max
f2G

CEp̂(f):

That is, �x a particular decision problem, p̂ and 4. Uncertainty aversion makes the decision maker

worse o� (better o�) if the certainty equivalent of participating in the decision problem is lower

(higher) when beliefs are represented by 4 rather than p̂. Roughly speaking, the same criterion

applies to the context of extensive form games. Fix a Nash Equilibrium and a Multiple Priors Nash

Equilibrium of a game. Uncertainty aversion makes player i worse o� (better o�) if the certainty

equivalent of player i in the Multiple Priors Nash Equilibrium is (lower) higher than that in the

5In this paper, Bayesian means subjective expected utility maximizer.
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Nash Equilibrium. More precise nature of the welfare comparison for di�erent classes of games will

be spelled out explicitly in sections 4.2 and 4.3.

Note that in the above welfare comparison, I am �xing the utility function of lotteries u. This

assumption can be clari�ed by the following restatement: assume that the decision maker has a

�xed preference ordering �� overM(X) which satis�es the independence axiom and is represented

numerically by u. Denote by � and �0 the orderings over acts corresponding to the priors p̂ and

4 respectively. Then the above welfare comparison presumes that both � and �0 agree with ��

on the set of constant acts, that is, for any f; g 2 F with f(!) = p and g(!) = q for all ! 2 
,

f � g , f �0 g , p �� q.

In section 4.2, I �rst examine the above questions in the context of normal form games (or

extensive form games where players do not learn anything about the strategy choices of opponents

when the game is played.) In section 4.3, I address the questions in the context of \proper" extensive

form games. Various examples are constructed to demonstrate that uncertainty aversion leads to

new predictions and enhances players' welfare. On the other hand, I identify two speci�c classes of

games for which the answers are opposite.

4.2 Normal Form Games

Say that G is a normal form game if for every terminal history z and every information set

Ii in G, there exists a subhistory h of z such that h 2 Ii. That is, when player i arrives at the

information set Ii, he does not learn anything about the strategy choices of his opponents. When

G is a normal form game, there is no updating of beliefs. Condition 2 in the de�nition of Multiple

Priors Nash Equilibrium collapses to the following normal form restriction which parallels that in

De�nition 1:

� Rationality. Every si 2 �i satis�es

min
bi2Bi

X
s�i2��i

ui(si; s�i)bi(s�i) � min
bi2Bi

X
s�i2��i

ui(ŝi; s�i)bi(s�i) 8ŝi 2 Si:

This normal form solution concept di�ers from those in Klibano� (1993) and Lo (1995a). In

particular, it is a strengthening of those in Dow and Werlang (1994) and Lo (1995b) by imposing

the condition that the probability measures in Bi have the same support. Therefore I pause to

examine its properties.6

6See Lo (1995a) for a detailed comparison of the solution concepts in Dow and Werlang (1994), Klibano� (1993)

and Lo (1995a).
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Consider the following question in the context of single person decision making. As an outside

observer, can we distinguish an uncertainty averse decision maker from a Bayesian decision maker?

Under the following circumstance, the answer is \no". Suppose that we observe an uncertainty

averse decision maker who chooses an act f from a constraint set G = ff; gg that contains only

two elements. Then his choice can always be rationalized (as long as monotonicity is not violated)

by a subjective expected utility function. For example, take the simple case where the state

space 
 = f!1; !2g. The feasible set of utility payo�s f(u(f(!1)); u(f(!2))); (u(g(!1)); u(g(!2)))g

generated by the constraint set ff; gg are simply two points in R2. To rationalize his choice

by an expected utility function, we can draw a linear indi�erence curve which passes through

(u(f(!1)); u(f(!2))) and (lies above) (u(g(!1)); u(g(!2))), with slope describing the probabilistically

sophisticated beliefs of the decision maker. This argument immediately leads us to

Proposition 1. Given a 2�2 normal form game, if fBi; Bjg is a Multiple Priors Nash Equilibrium,

then there exist bi 2 Bi and bj 2 Bj such that fbi; bjg is a Nash Equilibrium.

Proposition 1 delivers two messages. The �rst regards the prediction of how the game will be

played. Suppose fBi; Bjg is a Multiple Priors Nash Equilibrium of a 2 � 2 game. Recall that

every probability measure in Bj has the same support �i. The prediction associated with the

equilibrium regarding strategies played is that i chooses some si 2 �i. According to Proposition

1, it is always possible to �nd at least one Nash Equilibrium fbi; bjg such that the support of bj

is also �i. Therefore the observed behavior of the uncertainty averse players (the actual strategies

they choose) is also consistent with utility maximization given beliefs represented by fbi; bjg. This

implies that an outsider who can only observe the actual strategy choice in the single game under

study will not be able to distinguish uncertainty averse players from Bayesian players.

The second message regards the welfare of the players. The fact that the Nash Equilibrium is

contained in the Multiple Priors Nash Equilibrium (bi 2 Bi) implies that

max
si2Si

X
s�i2��i

ui(si; s�i)bi(s�i) � max
si2Si

min
b̂i2Bi

X
s�i2��i

ui(si; s�i)b̂i(s�i):

The left hand side of the above inequality is the utility of player i in the Nash Equilibrium and the

right hand side is that in the Multiple Priors Nash Equilibrium. In terms of certainty equivalent, the

Nash Equilibrium Pareto dominates the Multiple Priors Nash Equilibrium. The game of matching

pennies shows that the above inequality can be strict.

L R

U 10,0 0,10

D 0,10 10,0
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Player i is the row player and player j is the column player. The unique Nash Equilibrium of

this game is fbi = (L; 0:5;R; 0:5); bj = (U; 0:5;D; 0:5)g.7 The following is a Multiple Priors Nash

Equilibrium:

Bi = fp 2M(fL;Rg) j 0:1 � p(L) � 0:9g and Bj = fp 2M(fU;Dg) j 0:1 � p(U) � 0:9g:

The utility of the players in the Multiple Priors Nash Equilibrium is 1 and that in the Nash

Equilibrium is 5.

The game below shows that Proposition 1 does not extend to two person normal form games

where players have more that two strategies.8 It also shows that uncertainty aversion can make

both players strictly better o�.

L C R

A 10,0 0,1 4,0

B 0,1 10,0 4,0

C 4,10 4,0 1 billion,4

D 4,0 4,10 1 billion,4

The unique Nash Equilibrium of this game is fbi = (L; 0:5;C; 0:5); bj = (A; 0:5;B; 0:5)g. In this

Nash Equilibrium, the utility of player i is 5 and the utility of player j is 0.5. Ex post, player

i receives at most 10 and player j at most 1. The following constitutes a Multiple Priors Nash

Equilibrium:

Bi = R and Bj = fp 2M(Si) j p(A) = 0; p(B) = 0; 0:3� p(C) � 0:7g:

In this Multiple Priors Nash Equilibrium, player i believes that player j will play R and therefore

both C and D are i's best responses. Player j does not know whether player i will play C or D.

Since player j is uncertainty averse, he prefers to play R which ensures him the payo� of 4. As

a result, player i receives 1 billion and player j receives 4 with certainty. Therefore the Multiple

Priors Nash Equilibrium strongly Pareto dominates (both ex ante and ex post) the unique Nash

Equilibrium of this game.

4.3 Extensive Form Games

The game in Figure 2 shows that uncertainty aversion in extensive form games can also lead to

Pareto improvement.

7The notation (L; 0:5;R; 0:5) refers to the probability measure which yields L with probability 0.5 and R with
probability 0.5.

8Under the assumption that players have a strict incentive to randomize, Lo (1995a) proves that Proposition 1

holds for any two person normal form game in which players have any �nite number of pure strategies.
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Insert Figure 2 here

If player 2 is a Bayesian, his beliefs about what player 1 is going to do at the information set I12

are represented by a probability measure. The utility of the strategy k (m) is strictly higher than

that of r if player 2 attaches probability of at least 0.5 that player 1 will take the action L (R) at

the information set I12. Therefore player 2 will never play r. This implies that if player 1 plays D,

his payo� is equal to 0 with certainty. Therefore any solution concept which assumes that player

1 knows that player 2 is a Bayesian will predict that player 1 plays U and the payo� to each player

is equal to 1 with certainty. The following constitutes a Multiple Priors Nash Equilibrium of the

game:9

B(I11) = D; B(I12) = f� 2M(fL;Rg) j 0:1 � �(L) � 0:9g; B(I21) = r:

In this equilibrium, player 2's beliefs about what player 1 is going to do at the information set I12

are represented by a set of probability measures B(I12). It predicts that player 1 plays D at I11 and

player 2 plays r at I21. Player 1 gets 1 billion with certainty and player 2 gets 1000 with certainty.

Therefore, the Multiple Priors Nash Equilibrium strongly Pareto dominates (both ex ante and

ex post) any Nash Equilibrium of this game. To see why uncertainty aversion leads to a better

equilibrium, note that the probability measures in B(I12) that minimize player 2's utility of playing

k and m are di�erent. The probability measure that minimizes the utility of k is (L; 0:1;R; 0:9) and

the one that minimizes the utility of m is (L; 0:9;R; 0:1). This makes playing k and m undesirable

for player 2. On the other hand, if player 2 is a Bayesian, the two probability measures have to

coincide. As a result, either k or m is strictly better than r.

Next consider the slightly modi�ed game in Figure 3.

Insert Figure 3 here

The game tree is the same as that in Figure 2 except that each information set is a singleton.

That is, it is a game of perfect information. The following constitutes a Multiple Priors Nash

Equilibrium:

B(I11) = D; B(I12) = f� 2M(fL;Rg) j 0:1 � �(L) � 0:9g;

B(I13) = f� 2M(fL;Rg) j 0:1 � �(L) � 0:9g; B(I21) = r:

9Whenever it is more convenient, I will state Multiple Priors Nash Equilibrium in terms of fB(Ii)gIi2Ii;i=1;::: ;N .
It is understood that fBig

N
i=1 is constructed according to condition 1 of De�nition 3.
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In this Multiple Priors Nash Equilibrium, player 2 is uncertainty averse about what player 1 is

going to do at both the information sets I12 and I13. This discourages player 2 to play either k or

m. The equilibrium predicts that player 1 plays D at I11 and player 2 plays r at I21. However, we

can also construct a Nash Equilibrium to support the above prediction. For example,

�(I11) = D; �(I12) = (L; 0:1;R; 0:9); �(I13) = (L; 0:9;R; 0:1); �(I21) = r

is such a Nash Equilibrium. Moreover, the two equilibria yield the same utility and therefore

certainty equivalent to player 1 at I11 and player 2 at I21.

In the Multiple Priors Nash Equilibrium constructed for the game in Figure 3, each player

only moves once. The equilibrium constructed for the game in Figure 4 suggests that the above

phenomenon of observational and welfare equivalence holds more generally.

Insert Figure 4 here

The following constitutes a Multiple Priors Nash Equilibrium of the game in Figure 4:

B(I11) = e; B(I12) = q;

B(I21) = f� 2M(fg; hg) j 0:1 � �(g) � 0:9g; B(I22) = f� 2M(ft; ug) j 0:1 � �(t) � 0:9g:

In this equilibrium, player 1 will take the action e at I11, player 2 may take either g or h at I21. If

player 2 takes g, player 1 will take the action q at I12. Therefore player 1 has the chance to move

twice. Nevertheless, we can also construct a Nash Equilibrium that supports the above predictions

and yields the same welfare to the players at every information set that is possibly reached. For

example,

�(I11) = e; �(I12) = q; �(I21) = (g; 0:1;h; 0:9); �(I22) = (t; 0:1; u; 0:9)

is such a Nash Equilibrium.

The messages conveyed by the games in Figures 3 and 4 can be clearly illustrated in the context

of single person decision theory. First consider the following static choice scenario: suppose a

decision maker is facing a state space 
 = 
1 � : : : � 
n. His preference ordering � over acts

de�ned on 
 is represented by the multiple priors model de�ned in (1). Suppose that he is allowed

to choose an act from ff1; : : : ; fng where the payo� of f i only depends on 
i for all i = 1; : : : ; n.

In what follows, f i will also be identi�ed in the obvious way as an act de�ned on 
i. In this case, �

17



restricted to ff1; : : : ; fng can be represented by the expected utility function
R

 u�fd(p̂

1� : : :� p̂n)

where

p̂i 2 argmin
pi2marg
i4

Z

i

u � f idpi 8i = 1; : : : ; n: (6)

Moreover,
R

 u � f

id(p̂1 � : : :� p̂n) = minp24
R

 u � f

idp for all i = 1; : : : ; n.

The above argument immediately translates to the game in Figure 3 if we set the decision maker

to be player 2 at I21, 
 = 
1�
2�
3, 
1 = A(I12), 

2 = A(I13), 


3 a singleton, f1 = k, f2 = m,

f3 = r, p̂1 = (L; 0:1;R; 0:9) and p̂2 = (L; 0:9;R; 0:1).

Next, consider the following sequential choice scenario: think of two \times" at which choices

are made. Suppose at time t = 0, the decision maker is facing the state space 
 = 
0�
1�: : :�
n.

Again, � over acts de�ned on 
 is represented by the multiple priors model de�ned in (1) where

the associated set of probability measures 4 takes the form of (2). Let T = !0�
1� : : :�
n with

!0 2 
0 be a non-�-null event. Recall that �T is represented by the multiple priors model de�ned

in (3), where the associated set of probability measures 4T is derived from 4 using the maximum

likelihood updating rule. Given an act f de�ned on 
, fT � [f(!) if ! 2 T ] denotes the induced

act de�ned on T , and similarly for f
nT . Let ff
1; : : : ; fn; cg be a set of acts de�ned on 
 with the

following properties:

1. The payo� of f iT only depends on 
i and that of f i
nT only depends on 
0n!0 for all i =

1; : : : ; n.

2. f i

nT = f

j


nT for all i; j = 1; : : : ; n.

3. c is a constant act.

1 implies that f iT can be identi�ed as an act de�ned on 
i and f i

nT an act de�ned on 
0n!0. 2

implies that for all p0 2 M(
0) and for all i; j = 1; : : : ; n,
R

0n!0 u � f

i

nTdp

0 =
R

0n!0 u � f

j


nTdp
0.

In this particular setting, it is easy to verify that for all i = 1; : : : ; n,

min
p24

Z


u � f idp = min

p02marg
04
[p0(!0) min

pi2marg
i4

Z

i
u � f iTdp

i +

Z

0n!0

u � f i
nTdp
0]

= min
p02marg
04

[p0(!0) min
q24T

Z
T

u � f iTdq +
Z

0n!0

u � f i
nTdp
0]:

The decision problem is speci�ed as follows: at time t = 0, the decision maker has the option of

choosing an act from ff1; : : : ; fn; cg. If the decision maker chooses c, then the decision problem is
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over. On the other hand, if the decision maker chooses any f i, then at time t = 1, he will be told

whether the true state is in T . If T does not happen, the decision problem is over. If T happens,

he can switch to any act in ff1; : : : ; fng. The question is: suppose we observe that the decision

maker chooses, for instance, f2 at t = 0 and t = 1. Can this choice be rationalized as expected

utility maximizing behavior? To see that the answer is \yes", �rst go to t = 1. Observe that if T

happens, the discussion of the static choice scenario in the previous paragraph is applicable. As in

(6), pick p̂i 2 argminpi2marg

i
4

R

i u � f iTdp

i for all i = 1; : : : ; n. Then go to t = 0 and pick

p̂0 2 argmin
p02marg
04

[p0(!0) max
i=1;:::;n

Z

i
u � f iTdp̂

i +

Z

0n!0

u � f i
nTdp
0]: (7)

The expected utility functions
R

 u � fd(p̂

0 � p̂1 � : : : � p̂n) and
R
T u � fTd(p̂

1 � : : : � p̂n) will

support f2 as an optimal choice at t = 0 and t = 1 respectively. Moreover, p̂0 � : : :� p̂n 2 4,R

 u�f

2d(p̂0�p̂1�: : :�p̂n) = minp24
R

 u�f

2dp and
R
T u�f

2
Td(p̂

1�: : :�p̂n) = minq24T

R
T u�f

2
Tdq.

The relevance of this observation to the game in Figure 4 is as follows. Set the decision maker

to be player 1, 
 = 
0 � 
1 � 
2, 
0 = A(I21), 

1 = A(I22), 


2 a singleton, !0 = g, f1 to be the

strategy fs(I11) = e; s(I12) = rg, f2 the strategy fs(I11) = e; s(I12) = qg and c any strategy which

involves taking the action d at I11. At t = 0, player 1 is at I11 and facing the state space 
. If

he picks the strategy c, the game is over. On the other hand, if he picks f1 or f2, then at t = 1,

if the true state is in T , he will �nd himself at I12. Given the Multiple Priors Nash Equilibrium,

construct the Nash Equilibrium in the following manner: �rst go to t = 1. According to (6),

(t; 0:1; u; 0:9) is the probability measure in B(I22) which minimizes player 1's utility of playing f1

and rationalizes that f2 is strictly better than f1. Then go to t = 0. According to (7), (g; 0:1; h; 0:9)

is the probability measure in B(I21) which minimizes player 1's utility of playing f2.

The above intuition leads to

Proposition 2. Given a two person game of perfect information, if fBi; Bjg is a Multiple Priors

Nash Equilibrium, then there exist bi 2 Bi and bj 2 Bj such that fbi; bjg is a Nash Equilibrium.

Proof: See the appendix.

Same as Proposition 1, Proposition 2 delivers the message that in two person games of per-

fect information, uncertainty averse players are not observationally distinguishable from Bayesian

players.

With regard to player's welfare, the Nash Equilibrium constructed in the proof of Proposition

2 has the following property: the value function of player i (at every history h such that P(h) = i
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and there exists a strategy in �j which is consistent with h) in the Nash Equilibrium is the same

as that in the Multiple Priors Nash Equilibrium. This implies that for any Multiple Priors Nash

Equilibrium, we can �nd a Nash Equilibrium that not only delivers the same predictions, but also

yields the same interim utility and therefore certainty equivalent to each player.

Finally, the game in Figure 5 demonstrates that Proposition 2 does not extend to games of

perfect information where more than two players are involved. This is due to the extra requirement

imposed by the equilibrium concept that in a game with more than two players, the marginal beliefs

of the players have to agree.

Insert Figure 5 here

The following constitutes a Multiple Priors Nash Equilibrium of the game:

B(I11) = U; B(I12) = f� 2M(fa; bg) j 0:5 � �(b) � 0:8g;

B(I21) = (L; 0:5;R; 0:5); B(I31) = (k; 0:5; r; 0:5):

Note that in this Multiple Priors Nash Equilibrium, although the marginal beliefs of players 2 and

3 about what player 1 is going to do at the information set I12 are represented by the same set

of probability measures B(I12), the probability measure in B(I12) that minimizes the utility of the

strategy L for player 2 is (a; 0:2; b; 0:8); the one that minimizes the utility of the strategy k for

player 3 is (a; 0:5; b; 0:5). In this Multiple Priors Nash Equilibrium, player 1 plays U at I11 and

player 2 may play either R or L at I21. However, the observation that player 1 plays U at I11 and

player 2 plays R at I21 is incompatible with any Nash Equilibrium. To demonstrate this, note that

player 1 will play U at I11 only if L is a best response for player 2 and r is a best response for

player 3. R is a best response for player 2 only if k is a best response for player 3. Therefore we

need to construct a Nash Equilibrium in which both k and r are best responses for player 3. This

is true only if the probability that player 1 will play a at I12 is equal to 0.5. However it implies

that R is not a best response for player 2.

5. CONCLUDING REMARKS

5.1 Re�nements

This paper provides a generalization of Nash Equilibrium in extensive form games that allows

preferences of players to be represented by the multiple priors model. One area of future research is
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to provide re�nements of the equilibrium concept. One re�nement that can be readily formulated

is subgame perfection: require (in the same way as for a Nash Equilibrium) the restriction of

a Multiple Priors Nash Equilibrium fB(Ii)gIi2Ii;i=1;:::;N of a game to any of its subgame to be

a Multiple Priors Nash Equilibrium of that subgame. Note that all the Multiple Priors Nash

Equilibria constructed in the examples of this paper are subgame perfect.

5.2 Normal vs. Extensive Form Solution Concepts

Unlike Nash Equilibrium, Multiple Priors Nash Equilibrium is an extensive form solution con-

cept. Kohlberg and Mertens (1986) popularize the view that a solution concept should only depend

on the reduced normal form of a game. An implicit assumption underlying their arguments is that

players' preferences are represented by the expected utility model. Another area of research is to

re-examine the validity of this view if we allow players' preferences to deviate from the expected

utility model. For instance, consider the two games in Figures 6 and 7 which are \extensive form"

versions of the Ellsberg Paradox.

Insert Figures 6 and 7 here

Suppose player 2 knows that player 1 draws a ball randomly from an urn which contains one red ball

and two black and yellow balls in unknown proportions. Note that the two games have the same

(reduced) normal form. Will player 2 play the two games in exactly the same way? In Figure 6,

player 2 does not receive any information about the random draw. The Ellsberg Paradox suggests

that if player 2 is uncertainty averse, he will strictly prefer to play L. In Figure 7, when player 2 is

given the chance to move, he knows that the ball drawn out is not yellow. This piece of information

may make him strictly prefer to play R. For instance, suppose that the initial beliefs of player 2

are represented by the set of probability measures fp 2 M(fR;B; Y g) j p(R) = 1
3
; 1
6
� p(B) � 3

6
g.

This predicts that player 2 will strictly prefer to play L in the game in Figure 6. Applying the

maximum likelihood updating rule, his beliefs after receiving the information that the ball drawn

out is not yellow are represented by the probability measure (R; 2
5
;B; 3

5
). This predicts that player

2 will strictly prefer to play R in the game in Figure 7. Therefore uncertainty aversion suggests

the non-equivalence between the two extensive form games.

5.3 Choice of Strategy Space

Recall from section 2.1 that preferences represented by the multiple priors model are quasi-

concave. This implies that the decision maker may have a strict incentive to randomize among
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acts. However, the possibility of randomization was not considered in extensive form games with

uncertainty averse players in section 3.2. It is therefore necessary to provide a clari�cation.

In the context of normal form games, Lo (1995a) clari�es the argument for and against the

assumption that uncertainty averse players have a strict incentive to randomize. The argument

goes as follows: The use of pure vs. mixed strategy spaces depends on the perception of the players

about the order of strategy choices. The adoption of a mixed strategy space can be justi�ed by the

assumption that each player is dynamically consistent in the sense of Machina (1989) and perceives

himself as moving last. On the other hand, we can understand the adoption of a pure strategy

space as assuming that each player perceives himself as moving �rst.

In extensive form games, it is reasonable to assume that the perception of the players on the

order of strategy choices agree with the order of moves which are explicitly speci�ed by the game

tree. For instance, if the game tree explicitly speci�es that player 1 moves �rst and player 2 moves

second. When player 1 decides what strategy to play, it is natural that player 1 perceives himself

as the �rst person to make the strategy choice and therefore he will not have a strict incentive to

randomize. This explains the choice of pure strategy space in this paper.

5.4 Behavioral Consistency

Finally, note that there is an alternative approach, termed behavioral consistency, that has been

used to study extensive form games where players' preferences are not dynamically consistent (see,

for example, Karni and Safra (1989)). This approach treats the same player i at each information

set Ii as a distinct agent. The pure strategy space of agent Ii is therefore A(Ii). Each agent Ii of the

same player i has the same payo� at the terminal histories but he is only interested in choosing a

strategy in A(Ii) to maximize his own utility. Therefore the original game of N players is analyzed

as a game of
PN

i=1#Ii agents. This approach also prevents a player from choosing a strategy

that he knows will not be implemented. However it has the disadvantage that the equilibrium

notion does not collapse to Nash Equilibrium when players are expected utility maximizers; see, for

example, Myerson (1991, p.161). Since the purpose of my paper is to generalize Nash Equilibrium

to accommodate uncertainty aversion, the behavioral consistency approach is not adopted here.

APPENDIX

Proof of Proposition 2. In a game of perfect information, every information set is a singleton.

Therefore h will be used to denote both the history h and the information set that contains h.
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Suppose fBi; Bjg is a Multiple Priors Nash Equilibrium. Recall that �j denotes the support of

every probability measure in Bi. For every history h such that P(h) = i and there exists a strategy

in �j which is consistent with h, de�ne

Vi(h) � max
si2Ci(h)

min
bh2Bh

X
sj2�j(h)

ui(si; sj)bh(sj) (8)

where Ci(h) � Si is the set of strategies of player i that is consistent with h. That is, Vi(h) is the

value function of player i at h. Suppose player i �nds himself at h. The objective of player i is to

pick a strategy si 2 Ci(h) such that the interim utility of si is equal to Vi(h).

Since coalescing of moves does not a�ect the set of Multiple Priors Nash Equilibrium, there is

no loss of generality by assuming that the extensive form game satis�es the following property: if

P(h) = i, then there does not exist an action a such that (h; a) is non-terminal and P((h; a)) = i.

For every terminal history z, de�ne Vi(z) � ui(z). Suppose player i at h plays si 2 Ci(h) with

si(h) = â. There are three possibilities: (i) If (h; â) is terminal, then player i receives Vi(h; â). (ii)

If P((h; â)) = j and player j plays sj 2 �j such that it is consistent with (h; â), sj((h; â)) = a

and (h; â; a) is terminal, then player i receives Vi((h; â; a)). (iii) If P((h; â)) = j and player j plays

sj 2 �j such that it is consistent with (h; â), sj((h; â)) = a and P((h; â; a)) = i, then player i

will �nd himself at (h; â; a) and he will have to pick a strategy in Ci((h; â; a)) to maximize interim

utility. According to condition 1 of De�nition 3, the initial beliefs Bi of player i takes the form

Bi = closed convex hull of f�h02Ij�(h
0) j �(h0) 2 B(h0) 8h0 2 Ijg:

According to the maximum likelihood updating rule de�ned in (5),

Bh = closed convex hull of f�h02Ij�(h
0) j

�(h0) = a 8h0 2 Ij such that (h0; a) is a subhistory of h

�(h0) 2 B(h0) 8h0 2 Ij such that h0 is not a subhistory of h

)
;

and similarly for B(h;â;a). This implies that minbh2Bh

P
sj2�j(h) ui(si; sj)bh(sj) can be rewritten as

min
�2B((h;â))

X
a2A((h;â))

(
�(a)minb(h;â;a)2B(h;â;a)

P
sj2�j((h;â;a)) ui(si; sj)b(h;â;a)(sj) if P((h; â; a)) = i

�(a)Vi((h; â; a)) if (h; â; a) is terminal.

(i), (ii) and (iii) imply that (8) can be rewritten as

Vi(h) = max
â2A(h)

(
min�2B((h;â))

P
a2A((h;â)) Vi((h; â; a))�(a) if P((h; â)) = j

Vi((h; â)) if (h; â) is terminal

)
: (9)

It says that the objective of player i at h is to take an action â in A(h) such that the value of the

expression inside the bracket in (9) is maximized. Take

�min((h; â)) 2 argmin
�2B((h;â))

X
a2A((h;â))

Vi((h; â; a))�(a) if P((h; â)) = j:
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Then we have

Vi(h) = max
â2A(h)

( P
a2A((h;â)) Vi((h; â; a))�

min((h; â))(a) if P((h; â)) = j

Vi((h; â)) if (h; â) is terminal

)
: (10)

Set bi = �h02Ij�(h
0) where

�(h0) =

(
�min(h0) if there exists a strategy in �j which is consistent with h0

any element in B(h0) otherwise.

The equivalence of (9) and (10) implies that every si 2 �i is optimal for player i to implement when

player i's initial beliefs are represented by the probability measure bi. Since bj 2 Bj , the support

of bj is �i. Therefore fbi; bjg constitutes a Nash Equilibrium.
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