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Abstract: Two organizations compete for high quality agents from a fixed population

of heterogeneous qualities by designing how to distribute their resources among members

according to their quality ranking. The peer effect induces both organizations to spend the

bulk of their resources on higher ranks in an attempt to attract top talents that benefit

the rest of their membership. Equilibrium is asymmetric, with the organization with a

lower average quality offering steeper increases in resources per rank. High quality agents

are present in both organizations, while low quality agents receive no resources from either

organization and are segregated by quality into the two organizations. A stronger peer

effect increases the competition for high quality agents, resulting in both organizations

concentrating their resources on fewer ranks with steeper increases in resources per rank,

and yields a greater equilibrium difference in average quality between the two organizations.

Acknowledgments: We thank Dirk Bergemann, Simon Board, Jeff Ely, Mike Peters,

and seminar audience at University of British Columbia, Columbia University, Duke Uni-

versity, University of Michigan, University of Southern California, University of Toronto,

University of Western Ontario and Yale University for helpful comments and suggestions.



1. Introduction

Consider an academic department trying to improve its standing by hiring a new faculty

member. Several economic forces influence such a decision. First, if the potential ap-

pointee is of high quality, the presence of such a colleague in the department will make

the department more attractive to other faculty members due to the peer effect and may

therefore help the department’s other recruiting efforts. Second, the new recruit can up-

set the department’s existing hierarchical structure and bring about implications for the

internal distribution of departmental resources. “Salary inversion” is often seen as a po-

tential problem in academia (Lamb and Moates, 1999; Siegfried and Stock, 2004). More

generally, conventional wisdom in personnel management emphasizes the importance of

“internal relativity” in the reward structure of any organization. In other words, the deci-

sion to make a job offer cannot be viewed in isolation; instead the entire reward structure

of the organization has to be taken into account. Third, in a thin market with relatively

few employers, the recruitment efforts of one department will affect the availability of the

talent pool for another department. Hiring decisions in one department therefore have

implications for the sorting of talents across all departments that need to be considered in

an analysis of strategic competition for talents.

In this paper we develop a model of the competition for talents which incorporates all

these economic forces. While the concern for the quality of one’s peers, or the “peer effect,”

is widely acknowledged in the education literature (e.g., Coleman et al., 1966; Summers

and Wolfe, 1977; Lazear, 2001; Sacerdote, 2001), and modeled extensively in the literature

on locational choice (De Bartolome, 1990; Epple and Romano, 1998), the implications for

organization design and especially organization competition, have received little attention.1

We take the first step with a stylized model to study organizational strategies to attract

1 In De Bartolome (1990), two communities decide their public service output and tax rate by majority
voting, while in Epple and Roman (1998), private schools choose admission and tuition policies to max-
imize profits in a competition equilibrium with free entry. Neither paper addresses the issue of strategic
competition between organizations in a non-cooperative game. The existing economic literature on the
competition for talents typically focuses on either the informational spillovers resulting from offers and
counter-offers (Bernhardt and Scoones, 1993; Lazear, 1996), or the implications of raiding for firms’ incen-
tive to offer training (Moen and Rosen, 2004). Tranaes (2001) studies the impact of raiding opportunities
on unemployment in a search environment.
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talents in the presence of the peer effect, and analyze the resulting equilibrium pattern of

sorting of talents.

Section 2 introduces a game between two organizations, A and B. Talents have

one-dimensional types distributed uniformly, and a utility function linear in the average

type of the organization they join (the peer effect) and the resource they receive in the

organization. Each organization faces a fixed capacity constraint that allows it to accept

half of an exogenously given talent pool, and a fixed total budget of resources that can

be allocated among its ranks. There are three stages of the game. In the first stage of

resource distribution, the two organizations each simultaneously choose a budget-balanced

schedule that associates the rank of each agent by type with an amount of resource the

agent receives. In the second stage of talent sorting, after observing the pair of resource

distribution schedules, all agents simultaneously choose one organization to apply to. In

the third and final stage of admissions, each organization admits a subset of its applicants

no larger than the capacity. The payoff to each organization is zero if the capacity is not

filled, and is given by the average type otherwise. The payoff to any agent that is not

admitted by an organization is zero.

Finding a subgame perfect equilibrium in the above game of organizational competi-

tion is difficult, because the space of resource distribution schedules is large, and because

little can be said in general about the continuation equilibrium given an arbitrary pair of

resource distribution schedules. In section 3 we develop an indirect approach to charac-

terize a candidate for subgame perfect equilibrium resource distribution schedules. This

approach is based on the quantile-quantile plot of any given sorting of talents between the

two organizations, defined as follows.2 For each rank r, the quantile-quantile plot identifies

the type that has this rank in organization B, and gives the fraction of higher types in

organization A. Since the type distribution is uniform, the difference in the average types

between A and B, referred to as “quality difference,” has a one-to-one relation with the

integral of the quantile-quantile plot. Thus, to characterize a continuation equilibrium

for a given pair of resource distribution schedules, instead of using two type distribution

2 The quantile-quantile plot, also known as QQ-plot, is widely used in graphical data analysis for
comparing distributions (e.g., Wilk and Gnanadesikan, 1968; Chambers et al., 1983).
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functions for the two organizations, we use the associated quantile-quantile plot. Further,

given any resource distribution schedule of organization B and any quantile-quantile plot,

we can construct a resource distribution schedule for A that yields the quantile-quantile

plot as a continuation equilibrium. Since the payoff to an agent is a linear function of

the amount of the resource it receives from the organization it joins and the mean type

of the organization, the budget associated with such resource distribution schedule is a

weighted integral of the quantile-quantile plot. This observation implies that minimizing

the resource budget that A needs in order to achieve any given quality difference in a

continuation equilibrium against a given resource distribution schedule of organization B,

is a linear programming problem in the quantile-quantile plot, because both the objective

function and the constraint are linear.

Our first key result, which we call the “Raiding Lemma,” characterizes the mini-

mum resource budget for A to achieve any quality difference in a continuation equilibrium,

depending on B’s resource distribution schedule. This minimum budget is achieved by

targeting the ranks in B which have the lowest resource-to-rank ratio (suitably adjusted

to incorporate the equilibrium quality difference). A critical implication of the Raiding

Lemma is that the minimum resource budget for A to achieve any quality difference in

a continuation equilibrium depends on B’s resource schedule only through the amount of

resource received by the ranks with the lowest resource-to-rank ratio. Thus, if B wants to

maximize the resource budget needed for A to achieve any quality difference in a continua-

tion equilibrium, it should offer a resource distribution schedule that is linear in rank. An

immediate implication is that for any quality difference, there is a unique budget-balanced

resource distribution schedule for B that maximizes the minimum budget required for A’s

resource distribution schedule to be consistent with the quality difference in a continuation

equilibrium. We refer to the resulting budget requirement for A as the “resource budget

function,” which is a function of quality difference.

Despite the characterization in the Raiding Lemma, finding all subgame perfect equi-

libria is difficult because for an arbitrary pair of resource distribution schedules, there are

typically multiple continuation equilibria. In section 4 we focus on subgame perfect equi-

libria with the largest quality difference between the two organizations by adopting the
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“A-dominant” criterion that selects the continuation equilibrium with the largest differ-

ence in average types in favor of A for any pair of schedules. Under this selection criterion,

the unique candidate for equilibrium quality difference is the largest value of the difference

in average types for which the budget function is below the exogenous resource budget

available to A, and the associated resource distribution schedule for B is the unique can-

didate for equilibrium schedule. As suggested in the Raiding Lemma, there are many best

responses of organization A to the candidate schedule for B. We construct a subgame

perfect equilibrium by identifying a unique schedule for A to which the candidate schedule

for B is a best response. This equilibrium schedule for A is also linear for ranks above

some critical point, thus giving B no incentive to deviate and target the ranks in A with

the lowest resource-to-rank ratio.

Our analysis has sharp predictions for both equilibrium resource distribution schedules

and equilibrium sorting of talents. In our equilibrium, which we show is unique under the

selection criterion, the targets of competition are the top talents; only these types receive

positive shares of resources from either organization. Furthermore, equilibrium resource

distribution schedules are systematically different between the high quality organization A

and the low quality organization B. This is true even if the two organizations have the same

resource budget, so long as the peer effect is sufficiently strong. The organization that in

equilibrium attracts a higher average quality of talents has a more egalitarian distribution

of resources than the low quality organization, which is disadvantaged by the peer effect

and must concentrate its resources on a smaller set of top talents. The equilibrium sorting

of talents exhibits mixing of top talents, with a greater share of them going to the high

quality organization, while segregation occurs for all types that receive no resources in

equilibrium, with the better types going to the high quality organization.

The results in our paper offer potentially testable implications for organization re-

source distributions and the sorting of talents. Comparative statics analysis reveals that if

the resource advantage of the dominant organization becomes greater, or if the peer effect

becomes more important in the talents’ utility function, the equilibrium quality difference

between the two organizations is greater. The weaker organization finds it more difficult

to compete against the dominant organization, and as a result must focus its resources
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on fewer ranks at the top. This leads to steeper resource distribution schedules for both

organizations.

We complete the introduction by stressing that our contributions in this paper are both

a descriptive analysis of the implications of the peer effect for organization competition and

the equilibrium sorting pattern, and a methodological one based on the quantile-quantile

plot approach. Since the quantile-quantile approach is quite involved, after presenting the

model in section 2 but before introducing the quantile-quantile plot approach in section

3, we present a description of the subgame perfect equilibrium and some of its key prop-

erties, and a heuristic explanation of why there are no profitable deviations. We hope to

use section 2.2 to inform the reader who is primarily interested in the equilibrium orga-

nization strategies and talent sorting pattern, and to illustrate why the quantile-quantile

plot approach is necessary to establish the equilibrium.

2. The Model

There are two organizations, A and B. Each organization i = A,B is endowed with a

measure 1 of positions and a fixed resource budget Yi to be allocated among its members.

We assume that YA ≥ YB . There is a continuum of agents, of measure 2. Agents differ

with respect to a one-dimensional characteristic, called “type” and denoted by θ, which

may be interpreted as ability or productivity. The distribution of θ is uniform on the

interval [0, 1].

We consider an extensive game with perfect information of three stages. In the first

stage (resource distribution stage), each organization i, i = A,B, chooses a “resource dis-

tribution schedule,” which is a function Si : [0, 1] → IR+ stipulating how Yi is allocated

among i’s members according to their rank by type: For each r ∈ [0, 1], Si(r) denotes the

amount of resources received by an agent of type θ when a fraction r of the organization’s

members are of type smaller than θ.3 We assume that each Si is weakly increasing, that

is, organizations can only adopt “meritocratic” resource distribution schedules in which

3 We implicitly assume that the resource distribution schedules cannot directly depend on the type of
agents. This and other assumptions are briefly discussed in section 5.
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members of higher ranks receive at least as much resources as lower ranks. The mono-

tonicity of Si ensures that it is differentiable almost everywhere; we use S′i(r) to denote

the derivative at rank r when it exists, and we make the additional technical assumption

that S′i has a countable number of discontinuities. The monotonicity assumption ensures

integrability, and we require that it satisfies the resource constraint, i.e.,
∫ r=1

r=0
Si(r)dr ≤ Yi.

In the second stage (application stage) of the game, after observing the pair of distribution

schedules chosen by the two organizations, all agents simultaneously apply to join either A

or B. In the third and final stage (admissions stage), after observing the pool of applicants,

each organization chooses the lowest type that will be admitted subject to the capacity

constraint.

The payoff to each organization is zero if the capacity is not filled, and is given by the

average type otherwise. The payoff to any agent that is not admitted by an organization

is 0. If admitted by organization i, i = A,B, the payoff to an agent of type θ is given by

Vi(θ) = αSi(ri(θ)) + mi, (1)

where mi is the average type of agents in organization i, ri(θ) is the quantile rank of the

agent in i, and α is a positive constant that represents the weight on the concern for the

resource he receives relative to the concern for the average type (the peer effect). The

payoff is zero if an agent does not join either organization.

We have made two simplifying assumptions in setting up the game of organization

competition. First, the type distribution is uniform; second, resources and peer average

type are perfect substitutes in the payoff function of the agents. Neither assumption is

conceptually necessary for a model of organization competition. However they are critical

to make our approach in the analysis successful; this will become clear in section 3 when

we introduce the quantile-quantile plot.

2.1. Continuation equilibrium

We begin the analysis with a characterization of the continuation equilibrium for a given

pair of resource distribution schedules. In the continuation game following (SA, SB), if the

outcome is a pair of type distribution functions (HA,HB) for A and B, then for any type
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θ the rank in organization i, i = A,B, is given by ri(θ) = Hi(θ), and the average type

in organization i is mi =
∫

θ dHi(θ). The payoffs VA and VB to type θ from joining A

and B are defined as in (1), with Hi(θ) replacing ri(θ). Thus, a continuation equilibrium

is characterized by (HA,HB) that satisfy two conditions: (i) HA(θ) + HB(θ) = 2θ for all

θ ∈ [0, 1]; and (ii) if Hi is strictly increasing at θ and Hj(θ) > 0, then Vi(θ) ≥ Vj(θ), for

i, j = A,B and i 6= j. Condition (i) is necessary because each agent’s outside option is

zero and each organization must fill all positions in any continuation equilibrium in which

all agents join one organization. If condition (ii) does not hold, then because Hi is strictly

increasing at θ some type just above θ is applying to organization i in the continuation

equilibrium, and such type could instead profitably deviate by successfully applying to j.

It is immediate that for any (HA,HB) that satisfies the above two conditions, there is a

continuation equilibrium in terms of application and admission strategies.

In a continuation equilibrium an agent will join organization i whenever he prefers

organization i and his type is higher than the lowest type in that organization. The types

lower than the maximum of the lowest types in the two organizations do not have a choice

as they are only acceptable to one organization. The other types are free to choose which

organization to join, and are the targets of the organization competition. Because of the

linearity in the payoff functions (1), which organization these types choose depends on the

comparison of the resources they get from A and B, adjusted by the same factor determined

by the quality difference mA −mB . Thus, existence of a continuation equilibrium for any

(SA, SB) can be established by a fixed point argument, as follows. For any difference

mA − mB , there is a unique pair of type distribution functions (HA,HB) that satisfies

condition (i) and (ii) above. To see this, note that regardless of choices of other types, the

highest type θ = 1 chooses A if SA(1) > SB(1)−(mA−mB)/α, B if the opposite inequality

holds strictly, and mixes if it is an equality. For any type θ < 1, the choice between A

and B depends on how the type is ranked in the two organizations, and thus only on the

choices made by higher types. Assigning types from the top of the distribution yields a

unique pair of distributions functions (HA,HB), which implies a new quality difference. A

continuation equilibrium is a fixed point in this mapping.

Typically multiple continuation equilibria exist for a given pair of resource distribu-

tion schedules. For example, if the two distribution schedules are identical, there is a
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continuation equilibrium with zero quality difference. For a sufficiently large peer effect

(sufficiently small α), there is another continuation equilibrium with perfect segregation,

generating the maximum possible quality difference. Moreover the equilibrium with maxi-

mal quality difference is “stable” to small perturbations in distribution functions (HA,HB)

while the equilibrium with zero quality difference is “unstable.” In this paper we construct

a subgame perfect equilibrium by adopting the criterion that selects the continuation equi-

librium with the largest quality difference in favor of A for any pair of resource distribution

schedules. We refer to this criterion as “A-dominant.”

2.2. A heuristic description of equilibrium schedules

The unique subgame perfect equilibrium in our model is generally asymmetric, with a

positive quality difference m∗
A−m∗

B . To make an agent indifferent between organization A

and organization B, the resource that the agent receives from organization B must exceed

what he receives from A by a “peer premium” P ∗, given by (m∗
A −m∗

B)/α. We find that

the equilibrium resource schedules S∗A and S∗B have the following properties:

(i) There is a threshold rank r∗i , i = A,B, such that agents below that rank in organization

i receives no resource from the organization.

(ii) Adjusted for the peer premium, the top rank agent in each organization receives the

same resources; i.e., S∗A(1) + P ∗ = S∗B(1).

(iii) The resource-to-rank ratio in A adjusted by the peer premium, (S∗A(r) + P ∗)/r, is

constant for all ranks above r∗A.

(iv) S∗B(r) is linear above the threshold rank r∗B .

Figure 1 illustrates the equilibrium schedules S∗A and S∗B , with S∗A shifted up by the

premium P ∗. Note that r∗A < r∗B , so that organization A has more ranks receiving resources

than B, but S∗A is flatter than S∗B above the corresponding threshold ranks.

The equilibrium sorting of types, represented by a pair of distribution functions

(H∗
A,H∗

B), is as follows: all types θ < 1
2r∗B are forced to join organization B, even though

they receive no resources from either organization and strictly prefer A to B; all types

θ ∈ [
1
2r∗B , 1

2 (r∗B + r∗A)
)

choose A exclusively; types θ ≥ 1
2 (r∗B + r∗A) mix between A and B

in such a way that each θ is indifferent between rank H∗
A(θ) and rank H∗

B(θ), with

S∗A(H∗
A(θ)) + P ∗ = S∗B(H∗

B(θ)),
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Figure 1

which, by linearity of the two schedules, implies that a constant fraction (1−r∗A)/(2−r∗B−
r∗A) > 1

2 of each type joining A. These equilibrium distribution functions (H∗
A,H∗

B) allow

us to calculate the mean type in each organization, with the equilibrium quality difference:

m∗
A −m∗

B =
1
2
− 1

2
(1 + r∗A)(1− r∗B). (2)

Under properties (i)-(iv) above and given the peer premium P ∗, the equilibrium sched-

ules are uniquely identified by three variables, r∗A, r∗B and S∗B(1), and determined by the

two budget constraints
1
2
(1− r∗A)(S∗B(1)− P ∗) = YA,

1
2
(1− r∗B)(S∗B(1) + P ∗) = YB ;

(3)

and by property (iii), which is equivalent to

S∗B(1)r∗A = P ∗. (4)

Finally, the peer premium P ∗ has to be consistent with the equilibrium quality difference

(2) derived from sorting.

In this subsection, we focus on providing a heuristic explanation for the properties of

the equilibrium resource distribution schedules, leaving the formal construction of such an

equilibrium to sections 3 and 4. Property (i) is an intuitive consequence of organization
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competition for talents with a fixed amount of resources. Because of the benefits that

high quality agents confer to the rest of the members of an organization, organizations

put the bulk of their resources to attract higher types who naturally occupy higher ranks

in the organizations. The zero reservation value of agents implies that low types are

captives to organization B and receive no resources in equilibrium. The low rank agents

in organization A strictly prefers A to B due to the peer premium, and therefore there is

no need to compensate them with organization resources. Property (ii) of the equilibrium

schedules is also intuitive. If S∗A(1) + P ∗ is not equal to S∗B(1), then then one of the two

organizations is wasting its resources on the top quality agent in the talent pool.

Property (iii) is key to our characterization of equilibrium schedules. It requires S∗A

to be linear in r for r ≥ r∗A, and the premium adjusted resource-to-rank ratio at r = r∗A to

be equal to the same ratio at r = 1, which implies S∗B(1)r∗A = P ∗. We claim that given S∗A,

for any deviation schedule SB with the property that no ranks receiving any resources get

less than P ∗ or more than S∗A(1) + P ∗, there is a continuation equilibrium with a quality

difference equal to the equilibrium difference m∗
A−m∗

B . Under our selection criterion, this

claim then establishes that B cannot benefit from any deviation from S∗B . Further, if S∗A

is linear but does not satisfy property (iii), then there is a deviation schedule for B such

that the sorting may produce a smaller quality difference. The formal argument is difficult

because the space of possible deviation schedules is large. It will be presented in the proof

of Proposition 3 after introducing the quantile-quantile plot approach. Here, we illustrate

the logic of the argument through an example.

Given S∗A, let S̃B(r) be a step function that “targets” r̃A (where r̃A ≥ r∗A) by giving

the same amount that rank r̃A receives from A, adjusted by the peer premium P ∗, to ranks

above some r̃B and no resources to all lower ranks. That is,

S̃B(r) =
{

S∗A(r̃A) + P ∗ if r ≥ r̃B = 1− YB/(S∗A(r̃A) + P ∗);

0 otherwise

where the expression for r̃B follows from the budget constraint. This is a simple and

special deviation strategy, but the Lemma 4 in the subsequent section establishes that

such targeted raiding of talents is optimal. With such a raiding strategy by B, types

above some cutoff θ1 all join A and occupy ranks above r̃A, and so 2(1 − θ1) = 1 − r̃A;
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types below θ1 but above a lower cutoff θ2 all join B to occupy ranks above r̃B , and so

2(θ1 − θ2) = 1− r̃B ; types below θ2 and above a third cutoff θ3 all join A to occupy ranks

below r̃A, and so 2(θ2 − θ3) = r̃A; and finally, types below θ3 all join B. The implied

quality difference is

m̃A − m̃B = 2m̃A − 1 = (θ1 + 1)(1− r̃A) + (θ2 + θ3)r̃A − 1 =
1
2
− r̃A(1− r̃B).

Using the expression for r̃B , we have

m̃A − m̃B =
1
2
− YBr∗Ar̃A(1− r∗A)

P ∗r̃A(1− r∗A) + (S∗B(1)r∗A − P ∗)(r̃A − r∗A)
.

For comparison, we rewrite the equilibrium quality difference (2) using the budget con-

straint for B in (3) as

m∗
A −m∗

B =
1
2
− YBr∗A(1 + r∗A)

P ∗(1 + r∗A) + (S∗B(1)r∗A − P ∗)
.

Thus, if S∗A satisfies property (iii), m̃A − m̃B is equal to m∗
A −m∗

B for all r̃A. If instead

S∗B(1)r∗A < P ∗, then the difference m̃A − m̃B evaluated at r̃A = 1 is strictly smaller

than m∗
A−m∗

B , implying that organization B should target rank 1 which has the smallest

resource-to-rank ratio in A. In the opposite case of S∗B(1)r∗A > P ∗, the difference m̃A−m̃B

evaluated at r̃A = r∗A is strictly smaller than m∗
A−m∗

B , which means that B can potentially

benefit by targeting rank r∗A because it has the smallest resource-to-rank ratio.

Property (iv) is similar to property (iii). Since organization B has to pay at least P ∗

to be competitive against A, the linearity of S∗B above r∗B in property (iv) implies that the

resource-to-rank ratio in B from A’s perspective, given by (S∗B(r)−P ∗)/(r−r∗B), is constant

for all ranks above r∗B . Using a similar argument as the above for property (iii), we can

illustrate the claim that if S∗B satisfies property (iv), there is a continuation equilibrium

with a quality difference equal to the equilibrium difference m∗
A −m∗

B for any deviation

schedule of A with the property that ranks receiving resources get no more than S∗B(1)−P ∗.

However, this claim does not imply that there is no deviation schedule SA that, against

S∗B , produces a quality difference higher than m∗
A −m∗

B as a fixed point of the mapping

from quality difference to quality difference. Thus, under our selection criterion, we cannot
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conclude directly from the claim that S∗A is a best response against S∗B . To illustrate this

point, suppose that YA = YB = 1
2 , and consider m̃A − m̃B = 0 and S̃A(r) = S̃B(r) = r.

The schedule S̃B(r) satisfies property (iv) for m̃A − m̃B = 0 because the premium is zero,

which implies that for any schedule SA there is a continuation equilibrium with zero quality

difference against S̃B . However, for any α between 1
2 and 1, if A chooses a flat schedule

that gives 1
2 to each rank including the lowest, there is a continuation equilibrium resulting

in perfect segregation: if mA = 3
4 and mB = 1

4 , the median type prefers rank 0 in A with

a payoff of 1
2α + 3

4 , to rank 1 in B with a payoff of α + 1
4 . In contrast, for the same

values of α, there is no continuation equilibrium with quality difference equal to 1
2 under

the pair of schedules S̃A(r) = S̃B(r) = r, because even with mA = 3
4 and mB = 1

4 , the

median type strictly prefers rank 1 in B with a payoff of α+ 1
4 to rank 0 in A with a payoff

of 3
4 . This example illustrates the additional complication involved in characterizing A’s

best response to a fixed SB due to the problem of multiple continuation equilibria in the

presence of the peer effect. The conclusion that S∗A(r) is a best response against S∗B(r)

when the latter satisfies property (iv) for the equilibrium quality difference m∗
A −m∗

B is

obtained by first using the quantile-quantile approach to characterize in Proposition 1 the

minimum budget of resources needed to achieve any fixed quality difference, and then

showing in Proposition 2 that against S∗B , any greater quality difference than m∗
A −m∗

B

requires more resources than YA.

3. The Quantile-Quantile Plot Approach

Definition 1. Given a pair of type distribution functions (HA,HB), the associated

quantile-quantile plot t : [0, 1] → [0, 1], is given by

t(r) ≡ 1−HA (inf{θ : HB(θ) = r}) . (5)

The above definition associates to each pair of type distribution a unique non-increasing

function on the unit interval. The variable t(r) is the fraction of agents in organization A of

type higher than the type with rank r in organization B.4 For example, if the distribution

4 The quantile-quantile plot is usually defined as 1 − t(r). We use the non-standard definition for
convenience of notation.
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Figure 2

of talents is perfectly segregated with the higher types exclusively in organization A, then

t(r) = 1 for all r; and if there is even mixing so that the distribution of types is identical

across the two organizations, then t(r) = 1 − r for every r. The infimum operator in the

definition (5) is a convention to handle the case where HB is flat over some interval, that

is, when there is local segregation with all types in the interval going to organization A.

See Figure 2 for a graphical illustration of the quantile-quantile plot.

Conversely, each non-increasing function t : [0, 1] → [0, 1] identifies a unique pair of

type distribution functions (HA,HB), with HA(θ) = 2θ − HB(θ) for all θ, where HB is

given by

HB(θ) =





0 if 2θ ≤ 1− t(0),

sup{r : 2θ ≥ r + 1− t(r)} if 1− t(0) < 2θ < 2− t(1),

1 if 2θ ≥ 2− t(1).

(6)

For any type θ around which HB is increasing, which means that types around θ are not

joining organization A exclusively, HB(θ) is uniquely defined by r such that r+1−t(r) = 2θ;

if there is no solution to the equation, then HB(θ) is either 0 or 1. For any type θ such

that HB is flat just above θ, then HB(θ) is given by 1 minus the rank of the highest type

that does not exclusively join A.

Thus, there is a one-to-one mapping from a pair of type distribution functions to a

non-increasing function on the unit interval. The convenience of working with quantile-

quantile plot is made explicit by the following lemma, where we show that, for any pair of

13



type distribution functions, the difference in average type between the two organizations

only depends on the integral of the associated quantile-quantile plot.5

Lemma 1. Let (HA,HB) be a pair of type distribution functions such that HA(θ) +

HB(θ) = 2θ, and t the associated quantile-quantile plot. Then

mA −mB = −1
2

+
∫ 1

0

t(r) dr.

Proof. Using the definition of t(r) and a change of variable θ = inf{θ′ : HB(θ′) = r},
we can write

−1
2

+
∫ 1

0

t(r) dr =
1
2
−

∫ θB

θB

HA(θ) dHB(θ),

where θB = sup{θ : HB(θ) = 0} and θB = inf{θ : HB(θ) = 1}. Since HA(θ) = 2θ−HB(θ),

the right-hand-side of the above equation is equal to

1
2
− 2mB +

∫ θB

θB

HB(θ) dHB(θ).

The claim then follows immediately from the fact that mA + mB = 1. Q.E.D.

By Lemma 1, since the difference in average types is the integral of the quantile-

quantile plot minus 1
2 , we will also refer to the integral

T =
∫ 1

0

t(r) dr

as the “quality difference.” Since the agents’ payoff function is linear, the function

P (T ) =
1
α

(
T − 1

2

)

can be interpreted as the peer premium of A over B, in that any agent would be just

indifferent between the two if the agent receives from B a resource greater than what he

receives from A by that premium.

5 The definition of quantile-quantile plot does not rely on the assumption that θ is distributed uniformly
on [0, 1]. However, the representation of a pair of type distribution functions through its associated quantile-
quantile plot is not generally useful because the difference in average type cannot be written as an integral
of the quantile-quantile plot.
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r1− tT (r)1− t
T
(r)

SA + P (T ) SB

Figure 3

Now we provide a characterization of a continuation equilibrium for given SA and SB

in terms of a fixed point in the quality difference T . For any quality difference T ∈ [0, 1],

let tT and t
T be the quantile-quantile plots defined as

tT (r) =

{
1 if SA(0) + P (T ) > SB(r),

1− sup{r̃ ∈ [0, 1] : SA(r̃) + P (T ) ≤ SB(r)} otherwise;

and

t
T (r) =

{
0 if SA(1) + P (T ) < SB(r),

1− inf{r̃ ∈ [0, 1] : SA(r̃) + P (T ) ≥ SB(r)} otherwise.

The functions tT (r) and t
T (r), are the lower bound and the upper bound on the quantile-

quantile plot consistent with a continuation equilibrium with quality difference T . The

agent who has rank r in B must have rank at most 1 − tT (r) in A or he would prefer to

switch; he must also have rank at least 1 − t
T (r) in A or otherwise some agent from A

would want to switch. See Figure 3. It is immediate that given (SA, SB), a pair of type

distribution functions (HA,HB) with HA(θ) + HB(θ) = 2θ, is a continuation equilibrium

if and only if the associated quantile-quantile plot t satisfies tT (r) ≤ tT (r) ≤ t
T (r) for all

r ∈ [0, 1], for T =
∫ 1

0
t(r) dr. Thus, a continuation equilibrium for any (SA, SB) is given

by a quality difference T ∈ [0, 1] that is a fixed point of the correspondence

D(T ) =
[∫ 1

0

tT (r) dr,

∫ 1

0

t
T (r) dr

]
. (7)

Existence of a fixed point follows from an application of Tarski’s fixed point theorem.
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3.1. The Raiding Lemma

In this subsection, we solve the problem of minimizing the amount of resources organization

A needs to have a continuation equilibrium with a fixed quality difference T ≥ 1
2 against

any fixed resource distribution schedule SB for organization B. The solution provides

a characterization of the cheapest way for A to raid organization B for its talents, a

result we refer to as the “Raiding Lemma.” The resulting minimum resource budget for

A is denoted as C(T ;SB). The approach we take is to work with quantile-quantile plot

to construct a continuation equilibrium consistent with quality difference T against SB ,

which transforms the problem of finding the cheapest SA into the problem of finding the

corresponding quantile-quantile plot.

First, suppose that SB(T ) ≤ P (T ). By the definition of tT , we have tT (r) = 1

for all r such that SB(r) < P (T ), and thus there is no continuation equilibrium with

quality difference T regardless of the resource distribution schedule SA. Moreover, even

if A gives no resources to all of its ranks, there is a continuation equilibrium with quality

difference strictly larger than T . In this case, we write C(T ; SB) = 0. Second, suppose

SB(T ) ≥ P (T ). Then, for any quantile-quantile plot t, with
∫ 1

0
t(r) dr = T and t(r) = 1

for any r such that SB(r) < P (T ), let St
A be the pointwise smallest resource distribution

schedule that satisfies

St
A(1− t(r)) ≥ max {SB(r)− P (T ), 0} for all r ∈ [0, 1]. (8)

By construction, given (St
A, SB) we have tT (r) ≤ t(r) ≤ t

T (r) for all r ∈ [0, 1]. It follows

that T is a fixed point of the mapping (7) and hence there exists a continuation equilibrium

with quality difference T for the pair of schedules (St
A, SB).

By construction, St
A is the resource distribution schedule with the minimum integral

for which there is a continuation equilibrium with quantile-quantile plot t. It follows that

C(T ; SB) = min
t

∫ 1

0

St
A(r) dr

subject to
∫ 1

0

t(r)dr = T ; and t(r) = 1 if SB(r) < P (T ).
(9)
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After a change of variable r̃ = t−1(1− r) and integration by parts, we have

∫ 1

0

St
A(r) dr = −

∫ t−1(0)

t−1(1)

∆(r̃)t′(r̃) dr̃ =
∫ t−1(0)

t−1(1)

t(r̃)∆′(r̃) dr̃ −∆(t−1(1)),

where for notational convenience we have defined

∆(r̃) = max {SB(r̃)− P (T ), 0}

as the premium-adjusted resource distribution schedule of B. We can then rewrite the

minimization problem (9) as

min
t

∫ t−1(0)

t−1(1)

t(r)∆′(r) dr −∆(t−1(1))

s.t.
∫ 1

0

t(r)dr = T,

(10)

where we have dropped the second constraint of (9) since it will be satisfied by any solution

to (10).

In the minimization problem (10), both the objective function and the constraint are

linear in the choice variable t. This feature is used extensively to characterize the solution

of (10). The next lemma, proved in the appendix, establishes two properties of the solution.

First, there is always a solution to (10) which takes the form in t of a step function. In

particular, if the quality-adjusted schedule ∆ of B is locally concave in the neighborhood

of some rank r, then a quantile-quantile plot that is flat around r does better than any

decreasing plot; and if ∆ is locally convex around r, then a t that is a step function

with two values in the neighborhood of r does better. Second, due to the linear nature

of (10), there exists a step function t that solves (10) with at most one value strictly

between 0 and 1. This simple characterization is why we have chosen to deal with the

quantile-quantile plot instead of a pair of type distribution functions directly. The linear

programming nature of the minimization problem is a result of the two key assumptions:

the type distribution is uniform, and the agents’ payoff function is linear. Without either

assumption our quantile-quantile plot approach would not be analytically advantageous.

Lemma 2. There exists a solution t to (10) which assumes at most one value strictly

between 0 and 1.
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Now we use the above lemma to provide an explicit characterization of the solution

to (10) and a value for C(T ; SB). The lemma implies that we can restrict the search for

a solution to (10) to two cases. In the first case, consider a quantile-quantile plot t that

has just one positive value. In this case t is entirely characterized by its only discontinuity

point, say r̂, because the constraint
∫ 1

0
t(r) dr = T and the assumption of t(r) = 0 for r > r̂,

imply that t(r) = T/r̂ for all r ≤ r̂. Also note that r̂ ≥ T must hold in this case. In the

second case, consider a quantile-quantile plot t that has one value strictly between 0 and 1,

with two discontinuity points defined as r1 = sup{r : t(r) = 1} and r0 = sup{r : t(r) > 0}.
Using the constraint

∫ 1

0
t(r) dr = T , we have t(r) = (T − r1)/(r0 − r1) for r ∈ (r1, r0).

Note that r1 ≤ T ≤ r0 in this case. Thus,

C(T ; SB) = min
{

min
r̂≥T

T

r̂
∆(r̂), min

T≥r1≥0; 1≥r0≥T
∆(r1) +

T − r1

r0 − r1

(
∆(r0)−∆(r1)

)}
. (11)

Using the above characterization for C(T ; SB) it is possible to obtain a solution to

problem (10) depending on ∆. To do so, let ∆ be the largest convex function with ∆(0) = 0

which is pointwise smaller than ∆. In other words, ∆ is obtained as the lower contour of

the convex hull of the function ∆ and the origin:

∆(r) = min{y : (r, y) ∈ co({(r̃, ỹ) : 0 ≤ r̃ ≤ 1; ỹ ≥ ∆(x̃)} ∪ (0, 0))}.

The next lemma provides a simple characterization of the discontinuity points of a solution

to (10) which depends only on the functions ∆ and ∆. In particular, it states that if

∆(T ) = ∆(T ), then there is a solution to (10) with only one discontinuity point at exactly

T . The solution is a step function equal to 1 for r ≤ T and equal to 0 for r > T . When

∆(T ) > ∆(T ) instead, there is a solution t to (10) such that t has two discontinuity points

r1 < T and r0 > T . The two discontinuity points are the largest r < T and the smallest

r > T at which the function ∆ coincides with the function ∆. The solution t equals 1 up

to r1 and becomes 0 at r0.

Lemma 3. (The Raiding Lemma) Let Q = {r : ∆(r) = ∆(r)} ∪ {0, 1}, and denote

as Q the closure of Q. (i) If T ∈ Q, then the following quantile-quantile plot with one

discontinuity point at r̂ = T solves (10):

t(r) =
{ 1 if r ≤ T ;

0 otherwise.
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(ii) If T 6∈ Q, the following quantile-quantile plot with two discontinuity points at r1 =

sup{r ∈ Q : r < T} and r0 = inf{r ∈ Q : r > T} solves (10):

t(r) =





1 if r < r1;

(T − r1)/(r0 − r1) if r1 ≤ r ≤ r0;

0 if r > r0.

In both cases, the value of the objective function is C(T ;SB) = ∆(T ).

Proof. First we show that the objective function assumes the value ∆(T ) at the claimed

solution in both cases. In the first case, at the claimed solution, the value of the objective

function is ∆(T ) which is equal to ∆(T ) because T ∈ Q. In the second case, when T 6∈ Q,

at the claimed solution the value of the objective function is given by

r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0) =

r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0) = ∆(T ),

where the second equality holds because ∆ is linear between r1 and r0.

Next we show that (11) is never smaller than ∆(T ). First, for all r ≥ T ,

∆(T ) ≤ r − T

r
∆(0) +

T

r
∆(r) ≤ T

r
∆(r),

where the first inequality follows from the fact that ∆ is convex and the second from

∆(r) ≤ ∆(r) for all r. Similarly, for all r1 ≤ T and r0 ≥ T , we have

∆(T ) ≤ r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0) ≤ r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0).

Thus the claimed solution minimizes (11). Q.E.D.

Figure 4 illustrates the second case of the above lemma. The quality difference to be

achieved for organization A is T . The discontinuity points of the quantile-quantile plot

in the statement of the lemma, r0 and r1, are identified in the diagram. For any other

quantile-quantile plot with discontinuity points r̃0 and r̃1, the resource requirement for the

plot to be a continuation equilibrium is greater. This is because from (11) the resource

requirement is equal to a weighted average of the quality-adjusted resource schedule of B

at r̃1 and r̃0, with the weights such that the average of r̃1 and r̃0 equals T . Similarly, for
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any quantile-quantile plot with a single discontinuity point, say r̂, the resource requirement

for the plot to be a continuation equilibrium is also greater, because it is an average of zero

and the quality-adjusted resource schedule of B at r̂, with the weights such that average

of zero and r̂ equals T .

Given the solution t(r) to (10) characterized by the Raiding Lemma, we can recover

the resource distribution schedule St
A(r) through (8). In the first case of the lemma, (8)

implies that St
A(r) = ∆(T ) for all r. Thus St

A is flat and is such that the lowest rank

in A is just indifferent between staying in A at rank 0 and switching to B for rank T .

The resulting continuation equilibrium exhibits segregation with types between 1
2T and

1
2 (1 + T ) joining A and every other type joining B. The interpretation is that A achieves

the quality difference T by targeting a single rank r̂ = T in organization B, and giving to

all ranks in A the minimum amount of resources needed to make them indifferent between

joining A and joining B at rank T . This solves the resource minimization problem for

A because rank T in B has the lowest resource-to-rank ratio. In the second case of the
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Raiding Lemma, we have

St
A(r) =

{
∆(r1) if r ≤ 1− (T − r1)/(r0 − r1);

∆(r0) if r > 1− (T − r1)/(r0 − r1).
(12)

That is, St
A is a step function with two levels, such that the lowest rank in A is indifferent

between staying and joining B at rank r1, and the lowest rank receiving the higher level

of resources in A is indifferent between staying and joining B at rank r0. In the resulting

continuation equilibrium, types between 1
2r1 and 1

2 (r1 + (r0 − T )/(r0 − r1)), and types

between 1
2 (r0 + (r0 − T )/(r0 − r1)) and 1

2 (1 + r0) join organization A, and all other types

join B. Organization A achieves quality difference T by targeting two ranks in B, r1 and

r0, and giving the minimum resources to its own ranks between 0 and (r0 − T )/(r0 − r1)

so that they are indifferent between staying and joining B at rank r1, and to all higher

ranks the minimum resources so that they are indifferent between staying and joining B

at rank r0. This solves the resource minimization problem for A because ranks r1 and r0

in B have the lowest resource-to-rank ratios.

3.2. The resource budget function

First, we characterize the resource distribution schedule SB that maximizes the minimum

amount of resources needed by organization A to have a continuation equilibrium with

quality difference T . Formally, for each T ≥ 1
2 , we study the maximization problem

E(T ) ≡ max
SB

C(T ; SB)

subject to
∫ 1

0

SB(r) dr ≤ YB .
(13)

The Raiding Lemma suggests that organization B would be wasting its resources if it

chooses a schedule SB such that ∆(r) > ∆(r) for some r. Our next result shows that, as

a result, there is a solution SB to (13) such that SB(r) is 0 for all r below some critical

rank r̃, equals P (T ) at r̃, and has a constant slope between r̃ and 1.

Lemma 4. Given any resource distribution schedule SB that satisfies the budget con-

straint, there exists another resource distribution schedule S̃B given by

S̃B(r) =

{
0 if r < r̃,

P (T ) + β(r − r̃) if r ≥ r̃;
(14)

for some r̃ ∈ [0, 1] and β ≥ 0, such that
∫ 1

0
S̃B(r) dr = YB and C(T ; S̃B) ≥ C(T ; SB).
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Proof. Let ∆SB
(r) = max{SB(r) − P (T ), 0}. First, since C(T ; SB) only depends on

∆SB
(r), we have C(T ; SB) ≥ C(T ; S̃B) for any S̃B such that S̃B(r) = 0 whenever S̃B(r) <

P (T ). Second, by the Raiding Lemma, C(T ; SB) = ∆SB
(T ) for any resource distribution

schedule SB , implying that C(T ;SB) = C(T ; S̃B) for any S̃B such that ∆S̃B
= ∆SB

. Thus

for any SB , there is a resource distribution schedule S̃B which is convex whenever positive

and ∆S̃B
(0) = 0 such that C(T ; S̃B) ≥ C(T ; SB). Finally, for any SB that is convex

whenever positive and ∆SB
(0) = 0, there is an S̃B which is linear when positive such that

C(T ; S̃B) ≥ C(T ; SB). The lemma then immediately follows from the resource constraint

because binding the constraint increases the resource requirement for A. Q.E.D.

By Lemma 4, we can restrict to resource distribution schedules of the form (14) when

characterizing a solution to (13). In other words, solving (13) boils down to finding the

point of discontinuity r̃ of the SB schedule. When SB has a discontinuity at r̃, the resource

constraint for B requires the slope of SB(r) to be

β =
2

(1− r̃)2
[YB − P (T )(1− r̃)].

Given any such schedule, the quality-adjusted resource distribution schedule of B is 0 for

all r < r̃ and equal to β(r− r̃) for all r ≥ r̃. It then follows from the Raiding Lemma that

C(T ;SB) = β(T − r̃) for all r̃ ≤ T , and C(T ;SB) = 0 otherwise. Thus, the value of any

solution to (13), E(T ), is given by

E(T ) = max
r̃∈[0,T ]

2(T − r̃)
(1− r̃)2

[YB − P (T )(1− r̃)] . (15)

It is straightforward to show that the solution to the maximization problem (15) is

given by a discontinuity point r̃ = r(T ), defined as

r(T ) =

{
T if YB ≤ P (T )(1− T );

1− 2YB(1− T )/[YB + P (T )(1− T )] otherwise.
(16)

Thus, if organization B’s resource budget is not enough to cover the peer premium P (T )

for all ranks above T , then B is not competitive at all against A at quality difference T .6

6 In this case, there is a continuation equilibrium with a quality difference at least as large as T even
if A pays nothing to all its ranks. The solution to (15) is irrelevant.

22



Provided that this is not the case, r(T ) is increasing in T , with r
(

1
2

)
= 0 and r(1) = 1.

Thus, the optimal way for B to deter A from achieving a greater quality difference in A’s

favor is to concentrate more of its resources to reward its higher-rank members.

Substituting r(T ) from equation (16) into (15), we obtain an explicit form for the

resource budget function:

E(T ) =

{
0 if YB ≤ P (T )(1− T );

[YB − P (T )(1− T )]2/[2YB(1− T )] otherwise.
(17)

The following proposition characterizes the properties of this resource budget function.

Proposition 1. The resource budget function E(T ) satisfies limT→1 E(1) = ∞ and

E
(

1
2

)
= YB . Moreover, (i) if αYB > 1

2 , then E′(T ) > 0 for all T ≥ 1
2 ; (ii) if αYB ∈ [

1
16 , 1

2

]
,

then there exists a T̂ such that E′(T ) < 0 for T ∈
(

1
2 , T̂

)
and E′(T ) > 0 for T ∈ (T̂ , 1);

and (iii) if αYB < 1
16 , then there exist T− and T+ such that E′(T ) < 0 for T ∈ (

1
2 , T−

)
,

E(T ) = 0 for T ∈ [T−, T+] and E′(T ) > 0 for T ∈ (T+, 1).

Proof. Substituting T = 1
2 and T = 1 into the resource budget function (17), we

immediately have E
(

1
2

)
= YB , and limT→1 E(T ) = ∞.

Next, when E(T ) > 0, its derivative is positive if and only if

αYB + (1− T )
(

3T − 5
2

)
> 0.

The above holds for all T ≥ 1
2 if αYB > 1

2 , thus establishing (i).

When αYB ≤ 1
2 , there exists a unique T̂ ∈ [

1
2 , 1

]
such that E′(T ) > 0 for T > T̂

while the opposite holds for T < T̂ . Finally, from (17) we have that E(T ) = 0 when

YB ≤ P (T )(1 − T ). The quadratic equation YB = P (T )(1 − T ) has two real roots T−

and T+ in
[
1
2 , 1

]
when αYB ≤ 1

16 , and no real root otherwise. Claims (ii) and (iii) follow

immediately. Q.E.D.

See Figure 5 for the three different cases of E(T ). An increase in the target quality

difference T has two opposite effects on the resource budget E(T ) required for organization

A to achieve the target in a continuation equilibrium. On one hand, to achieve a greater

quality difference T organization A must be competitive with more ranks in B and this
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requires a larger budget. On the other hand, a greater T also increases the peer premium

that A enjoys over B and this reduces the resource requirement. The first effect dominates

when the peer effect is relatively small, which happens when either α or YB is large. This

explains why E(T ) is monotonically increasing in T when αYB is greater than 1
2 . In

contrast, the peer effect is strong and E(T ) may decrease when αYB is small. Indeed,

the resource requirement to achieve some intermediate values of T can be zero because

organization B’s resource budget YB is not even sufficient to cover the peer premium P (T )

for all its ranks above T . Note that for T = 1
2 , the quality difference is zero, and by

adopting a linear resource distribution schedule for all its ranks, B can make sure that A

needs at least the same amount of resources. Finally, for sufficiently large T , the resource

budget function must be increasing. This is because by concentrating its resources on a

few top ranks organization B can make it increasingly costly for A to achieve large quality

differences. Indeed, it is impossible for A to induce the perfect segregation of types in

the sorting stage regardless of the resource advantage it has, because B could give all its

limited resource to an arbitrarily small number of its top ranks.

4. The A-Dominant Equilibrium

To study the game in which the two organizations compete by choosing resource distribu-

tion schedules we must specify which continuation equilibrium is played in the sorting stage
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given a pair of schedules. For the remainder of the paper we assume that organization A

is dominant in that the continuation equilibrium with the largest quality difference T is

played in the sorting stage. This is a natural selection criterion since we have assumed that

YA ≥ YB . Given any pair of resource distribution schedules, the largest quality difference

T corresponds to the largest fixed point of the mapping

D(T ) =
∫ 1

0

t
T (r) dr, (18)

and the equilibrium quantile-quantile plot is given by t
T .7 We will refer to the continuation

equilibrium with the largest T as the A-dominant continuation equilibrium, the selection

criterion as the A-dominant criterion, and the resulting subgame perfect equilibrium as

the A-dominant equilibrium.

An important implication of the A-dominant criterion is that the resource budget

function E(T ), characterized in Proposition 1, can be used directly to establish a lower

bound on the equilibrium quality difference in the game of organization competition. Note

that since YA ≥ YB , the A-dominant criterion implies that the lower bound is at least
1
2 . This is because, for any resource distribution schedule SB , when SA = SB , there

is a continuation equilibrium where the type distributions in the two organizations are

identical. Given the budget function E(T ), define

T ∗ = max
{

T ∈
[
1
2
, 1

]
: E(T ) = YA

}
. (19)

For any YA ≥ YB , the quality difference T ∗ is well defined. Moreover, by the characteri-

zation in Proposition 1, we have T ∗ = 1
2 if and only if YA = YB ≥ 1/(2α). For all other

values of YA and YB such that YA ≥ YB , we have T ∗ > 1
2 . Finally, given T ∗ we can

define the associated resource distribution schedule S∗B that achieves E(T ∗), as follows.

Let r∗B = r(T ∗) in equation (16) and define

S∗B(r) =

{
0 if r < r∗B ;

P (T ∗) + 2[YB − P (T ∗)(1− r∗B)](r − r∗B)/(1− r∗B)2 if r ≥ r∗B .
(20)

7 Fixed points of D which are non-extremal may be unstable in the sense that small perturbations in
the quality difference T can cause agents to switch organizations in such a way that moves T further away
from the initial fixed point. On the other hand, the A-dominant equilibrium is always stable.
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The following proposition verifies that T ∗ is both the lower and the upper bound of the

equilibrium quality difference.8 It follows that T ∗ is the unique candidate for the equilib-

rium quality difference. Since S∗B is the only schedule that achieves E(T ∗) by Lemma 4,

it is also the only candidate for equilibrium resource distribution schedule for B.

Proposition 2. In any A-dominant equilibrium of the organization competition game,

the quality difference is T ∗ given by (19). Further, B’s resource distribution schedule is

S∗B given by (20).

Proof. First, T ∗ is a lower bound on the equilibrium quality difference. This is be-

cause C(T ∗;SB) ≤ E(T ∗) = YA for any SB , and hence there is a resource distribution

schedule SA that satisfies A’s resource constraint and such that under (SA, SB) there is a

continuation equilibrium with quality difference T ≥ T ∗.

Second, T ∗ is also an upper bound on the equilibrium quality difference. From the

Raiding Lemma, we have C(T ;S∗B) = S∗B(T )− P (T ). Since S∗B is linear, C(T ; S∗B) is also

linear in T . By the definition of T ∗, we have C(T ∗; S∗B) = YA, so that C(T ; S∗B) > YA for all

T > T ∗ if and only if C(T ;S∗B) has a positive slope in T . Since S∗B solves the maximization

problem (13), by the envelope theorem, the derivative of C(T ;S∗B) with respect to T at

T ∗ is equal to E′(T ) at T = T ∗, which is positive by (19). Q.E.D.

That T ∗ is a lower bound on the equilibrium quality difference follows directly from

the definition of T ∗ and the A-dominant criterion. Further, when organization B chooses

resource distribution schedule S∗B , in order to achieve the quality difference T ∗ organization

A must expend all its available resources. However, this may fail to guarantee that a larger

quality difference is out of reach for A, because a larger T increases the peer premium and

frees some resources for A. The above proposition establishes that given S∗B , this peer

effect is dominated by the additional resource requirement for obtaining a greater quality

difference than T ∗. This is because, by the Raiding Lemma, the minimum resource budget

8 Alternatively we can define a zero-sum “resource distribution game” in which the two organizations
simultaneously choose their resource distribution schedules. For any (SA, SB), the payoff to organization

A is the quality difference T (SA, SB) in the A-dominant continuation equilibrium. Then T ∗ corresponds

to the minmax value, or minSB
maxSA

T (SA, SB), and S∗B corresponds to the solution.
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C(T ;S∗B) required for A to achieve any quality difference T is linear in T , with a slope equal

to E′(T ) at T = T ∗ by the envelope theorem. Even though the resource budget function

E(T ) may be decreasing, from Figure 5, it is necessarily increasing at T = T ∗. Since

C(T ∗;S∗B) = E(T ∗) = YA, the result that C(T ; S∗B) is a positively-sloped linear function in

T implies that by choosing S∗B , organization B ensures that the minimum resource budget

required to achieve any quality difference greater than T ∗ is strictly greater than YA, and

hence T ∗ is an upper bound on the quality difference in any A-dominant equilibrium.

4.1. Equilibrium construction

Given the result in Proposition 2 that S∗B specified in (20) is the unique candidate equi-

librium resource distribution schedule for organization B, a necessary condition for an

A-dominant equilibrium is a resource distribution schedule SA that is a best response to

S∗B . The Raiding Lemma suggests that there are many such schedules. To see this, note

that in equation (11), since S∗B as given in (20) is linear with a discontinuous jump at r∗B ,

we have ∆(r) = 0 for all r ≤ r∗B , and increases linearly with r for r ≥ r∗B . It follows that

for any r1 and r0 satisfying r∗B ≤ r1 ≤ T ∗ ≤ r0, the quantile-quantile plot

t(r) =





1 if r < r1;

(T ∗ − r1)/(r0 − r1) if r1 ≤ r ≤ r0;

0 if r > r0;

has an integral equal to T ∗, and thus solves (10) for T = T ∗.9 The associated resource

distribution schedule St
A for A is a step function given by equation (12), with T = T ∗.

Since ∆(r) is linear above r∗B , by the Raiding Lemma the integral of St
A is

C(T ∗; S∗B) = S∗B(T ∗)− P (T ∗) = YA, (21)

where the last equality follows from the definition of T ∗. Thus, the schedule St
A satisfies

the budget constraint of A, and is therefore a best response to S∗B .

9 In the proof of the Raiding Lemma, under the schedule S∗B , we have T ∗ ∈ Q and thus the solution
t is given by case (i) of the lemma, with a single discontinuity point of t at T ∗. However, because S∗B is
linear above r∗B , the same value of the objective function in (10) is also achieved by case (ii) of the lemma,

with any r1 6= r0 satisfying r∗B ≤ r1 ≤ T ∗ ≤ r0.
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In fact, since S∗B has the property that the resource-to-rank ratio, adjusted for the

peer premium, is constant for all ranks above r∗B , any resource distribution schedule that

exhausts the resource constraint and satisfies SA(1) ≤ S∗B(1)− P (T ∗) so that the highest

rank in A is not overpaid, is a best response to S∗B . To construct an A-dominant equi-

librium, in the next proposition we identify a particular resource distribution schedule S∗A

against which the unique candidate schedule S∗B is a best response. As hinted by the logic

of the Raiding Lemma, this S∗A resembles S∗B in that it is zero up to some rank r∗A and

then linear for ranks higher than r∗A, with S∗A(1) = S∗B(1) − P (T ∗), but unlike S∗B , it is

continuous at r∗A.

Proposition 3. Let r∗A = P (T ∗)/S∗B(1) and S∗A be defined by

S∗A(r) =

{
0 if r < r∗A;

(r − r∗A)S∗B(1) if r ≥ r∗A.

The strategy profile (S∗A, S∗B) forms an A-dominant equilibrium.

Proof. By definition we have
∫ 1

0

S∗A(r) dr =
(S∗B(1)− P (T ∗))2

2S∗B(1)
.

Using the linearity of S∗B , we can rewrite equation (21) as

YA = (S∗B(1)− P (T ∗))
T ∗ − r∗B
1− r∗B

. (22)

Using the above relation and the equation (16) for r∗B = r(T ∗), we can directly verify that
∫ 1

0

S∗A(r) dr = YA.

To show that S∗A is a best response to S∗B , it suffices to establish that the integral of

t
T∗ is equal to T ∗. We have

t
T∗ =

{
1 for r ≤ r∗B ;

1− S∗−1
A (S∗B(r)− P (T ∗)) for r ∈ (r∗B , 1].

With a change of variable r̃ = S∗−1
A (S∗B(r)− P (T ∗)) and integration by parts, we obtain

∫ 1

0

t
T∗ dr = 1− 1

S∗′B

(
S∗A(1)−

∫ 1

r∗
A

S∗A(r̃) dr̃

)
= 1− 1

S∗′B

(S∗A(1)− YA) ,
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which is equal to T ∗, because S∗A(1) = S∗B(1)− P (T ∗) and YA = S∗B(T ∗)− P (T ∗).

Under the A-dominant criterion, to prove that S∗B is a best response to S∗A, it suffices to

verify that, given S∗A, for any SB there is a continuation equilibrium with quality difference

T ≥ T ∗. From the definition of t
T∗ , we have

∫ 1

0

t
T∗(r) dr = 1−

∫ r1

r0
S∗−1

A (SB(r)− P (T ∗)) dr,

where r0 is the lowest rank in B that receives more resources than P (T ∗), and r1 is the

highest rank that receives less resources than S∗A(1) + P (T ∗). By the construction of S∗A,

S∗−1
A (SB(r)− P (T ∗)) =

SB(r)
S∗B(1)

.

Using the above expression and the resource constraint for B, we have

∫ 1

0

t
T∗(r) dr ≥ 1− YB

S∗B(1)
.

Using equation (20) for the schedule S∗B and eliminating (1− r∗B) through equation (16),

we can verify that

S∗B(1) =
2YB

1− r∗B
− P (T ∗) =

YB

1− T ∗
. (23)

Therefore, the mapping (18) has one fixed point greater than or equal to T ∗. Q.E.D.

The construction of S∗A is already illustrated in Figure 1, where we have used P ∗ for

P (T ∗). Since r∗A = P (T ∗)/S∗B(1), the critical rank r∗A is the intersection between the line

connecting the origin and the end point of S∗B and the horizontal line representing the

peer premium P (T ∗) in Figure 1. As a result, from organization B’s point of view, A’s

premium-adjusted schedule, S∗A(r) + P (T ∗), has the same resource-to-rank ratio at every

rank greater than or equal to r∗A. As in the Raiding Lemma, each rank that receives a

positive amount of resource from S∗A is equally costly for B to raid, making it impossible

for B to reduce the quality difference by changing S∗B . It is remarkable that the critical

rank r∗A, given by P (T ∗)/S∗B(1), which uniquely makes A’s quality-adjusted schedule have

the same resource-to-rank ratio for all ranks receiving resources, coincides with the rank

uniquely determined by the budget constraint
∫ 1

0
S∗A(r) dr = YA. This coincidence is a

29



consequence of the linearity of S∗B , as made clear by the proof of the proposition. In a

non-linear model it may still be possible to identify a candidate equilibrium strategy for

organization B, however, if such candidate is non-linear, there is no reason to expect that

the resource schedule for A as constructed in the proposition with a constant resource-to-

rank ratio would meet its budget constraint.

4.2. Comparative statics

Since the equilibrium resource distribution schedules constructed in Proposition 3 are

piece-wise linear, they can be described through the following intercepts and slopes. For

organization A, the critical type r∗A such that the ranks below receive no resources satisfies

r∗A =
P (T ∗)
S∗B(1)

=
P (T ∗)(1− T ∗)

YB
(24)

where the second equality follows from equation (23). For organization B, from equation

(16) with T = T ∗, the critical type r∗B such that the ranks below receive no resources

satisfies

1− r∗B =
2YB(1− T ∗)

YB + P (T ∗)(1− T ∗)
. (25)

Using equation (23), we can write the slope of S∗A for ranks above r∗A as

S∗
′

A = S∗B(1) =
YB

1− T ∗
. (26)

For organization B, the slope of S∗B for ranks above r∗B satisfies

S∗
′

B =
S∗B(1)− P (T ∗)

1− r∗B
=

YA

T ∗ − r∗B
=

1− r∗A
1− r∗B

YB

1− T ∗
, (27)

where the second equality follows from the linearity of S∗B (equation 22), and the third

equality follows from (23).

When YA = YB ≥ 1/(2α), the unique candidate quality difference T ∗ given in Propo-

sition 2 is equal to 1
2 , and the unique candidate schedule S∗B for B has r∗B = 0. Since

the peer premium P (T ∗) is 0, the equilibrium schedule S∗A for A has r∗A = 0, and the two

equilibrium schedules coincide. Thus the equilibrium given in Proposition 3 is symmetric,

even though by adopting the selection criterion that picks out the continuation equilibrium
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with the largest quality difference for any competing resource distribution schedules, we

have given the dominant organization A the greatest advantage allowed by the peer effect,

because the peer effect is too weak.

As long as the peer effect is sufficiently strong, regardless of whether the two or-

ganizations have the same or different resource budgets, the equilibrium constructed in

Proposition 3 is asymmetric. As already mentioned in section 2.2, there are two features

of asymmetry between S∗A and S∗B constructed in Proposition 3 that are immediate from

Figure 1. First, r∗A < r∗B , so that more ranks receive positive resources in organization A

than in B. Second, S∗
′

A < S∗
′

B , so that S∗A is flatter than S∗B for ranks that receive positive

resources in respective organizations. Our model therefore suggests that the organization

resources are less concentrated at the top ranks in the dominant organization than in the

weaker organization. This is perhaps not surprising, as the weaker organization must com-

pensate for the peer premium P (T ∗) that results from the weaker peer effect compared to

the dominant organization. The asymmetry in the resource distribution schedules between

the two organizations in equilibrium is not due to the disparity in the resource budget.

Even if YB = YA and thus organization B faces no resource disadvantage, if the peer effect

is strong relative to the resource budget, that is, if αYB < 1
2 , under our selection crite-

rion there is an asymmetric equilibrium in which the dominant organization enjoys a peer

premium and employs a resource distribution schedule that is less concentrated in the top

ranks.

The mixing pattern between the two organizations in the type space can be determined

as follows. Given the equilibrium schedules (S∗A, S∗B), we can first derive the implied

quantile-quantile plot tT
∗
.10 Using the definition of t

T∗ , we have

t
T∗ =

{
1 if r ≤ r∗B ;

(1− r)(1− r∗A)/(1− r∗B) if r > r∗B .

10 Since S∗A and S∗B are strictly increasing above the corresponding critical ranks of r∗A and r∗B , the

upper bound and the lower bound, t
T∗

and tT
∗

coincide, except at a common discontinuity point r∗B .
They have the same integral equal to T ∗. However, this does not imply that there is no other fixed point

T ∈
[

1
2
, T ∗

)
of the mapping (7). That is, there may be a continuation equilibrium with a quality difference

smaller than T ∗.
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Using equation (6), we can then recover the underlying distribution of types across the

two organizations, as already mentioned in section 2.2. Our model thus predicts both

segregation and mixing in the A-dominant equilibrium. Low and intermediate types receive

no resources in either organization, and thus they segregate completely, with the low types

left to join B and the intermediate types going to A and receiving the peer premium. In

contrast, high types receive the same resources from A and B, adjusted for the quality

difference, and they are mixed between A and B in a constant proportion determined by the

slopes of the two equilibrium resource distribution schedules. The dominant organization

A gets a greater share of the high types than B because S∗A is flatter than S∗B : starting

from type 1
2 (r∗B + r∗A) that is indifferent between joining A at rank r∗A and joining B at

rank r∗B , a flatter schedule S∗A in A means that the increase in the amount of resource

received by each higher rank is smaller in A than in B, and thus the rank must grow faster

with type in A than in B to maintain the indifference of each higher type between the two

organizations. As a result, the dominant organization gets a greater share of the types

that in equilibrium it competes for against the weaker organization.

For comparative statics analysis of the equilibrium constructed in Proposition 3, first

consider a decrease in the concern for the peer effect, as represented by an increase in α.11

(i) Examining the resource budget function (17) shows that a rise in α reduces the peer

premium P (T ) and hence shifts up E(T ). Since equilibrium T ∗ is defined by E(T ∗) = YA,

this means that equilibrium quality difference between the two organizations falls as agents

put less weight on the peer effect. (ii) Since r(T ) is increasing in T and decreasing in α in

equation (16), a rise in α lowers r∗B . For organization A, using the budget function (17) to

express the condition E(T ∗) = YA and substituting the result in (24), we get

(1− r∗A)2 = 2(1− T ∗)
YA

YB
.

Hence a fall in T ∗ also implies a fall in r∗A. Thus, a fall in the concern for the peer

effect causes both the dominant organization and the weaker organization to give positive

resources to more ranks. (iii) As α increases, since r∗A decreases, the resource budget

11 We assume that the equilibrium is asymmetric, i.e., it is not the case that YA = YB = Y and
αY ≥ 1

2
. Otherwise, an increase in α has no effects on the equilibrium.
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constraint for A implies that S∗A(1) decreases and S∗A becomes flatter. Moreover, S∗B

becomes flatter as well, because S∗B(1)−P (T ∗) is equal to S∗A(1) and thus decreases, while

r∗B also decreases. Thus, the disparity in resources between the higher and lower ranks in

both organizations becomes smaller as α increases. (iv) Finally, since a smaller peer effect

reduces both r∗B and r∗A, and since the advantage of the dominant organization derives

from the higher quality of its members, a reduction in the importance of the peer effect

increases the set of types that are present in both organizations. Moreover, using (24) and

(25), and noting that YA equals E(T ∗), which is given by (17), we have

1− r∗A
1− r∗B

=
1 + r∗A
1− r∗A

YA

YB
. (28)

The right-hand-side of the above relation is decreasing in α because r∗A decreases with

α. Thus, when the peer effect becomes less important, the dominant organization gets a

smaller share of these top talents.

Next, consider an increase in YB , the resource budget of the weaker organization.12

Using equation (17) and the definition of T ∗, we have

YA =
[YB − P (T ∗)(1− T ∗)]2

2YB(1− T ∗)
=

[
1− P (T ∗)(1− T ∗)

YB

]2
YB

2(1− T ∗)
. (29)

(i) The first part of the above equation implies that T ∗ decreases as YB increases. Thus,

an increase in YB reduces the equilibrium quality difference T ∗. (ii) From the second part

of equation (29), since T ∗ decreases, both YB/(1−T ∗) and P (T ∗)(1−T ∗)/YB decrease as

YB increases. It then follows from equation (16) that the critical rank r∗B in B decreases,

and from equation (24) that the critical rank r∗A in A also decreases. Thus, as the resource

budget of the weaker organization increases, it is able to compete for more ranks, and in

equilibrium both organizations end up providing positive resources to more types. (iii)

From (26), S∗A becomes flatter because YB/(1− T ∗) decreases as YB increases. Moreover,

for organization B, from equation (25) we have

T ∗ − r∗B = (1− T ∗)
1− r∗A
1 + r∗A

, (30)

12 We assume YB < YA to be consistent with the selection criterion.
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which increases because r∗A decreases and T ∗ decreases. From (27), S∗
′

B decreases. Thus, as

the resource disadvantage of B decreases, both organizations in equilibrium adopt resource

distribution schedules that are less concentrated at the top. (iv) From (28) the fraction

(1 − r∗A)/(1 − r∗B) decreases because r∗A decreases as YB increases. This means that as

organization B reduces the resource disadvantage, it attracts a larger fraction of high

types in equilibrium. Thus, effects of an increase in YB are qualitatively similar to an

increase in α. In both cases, the peer effect becomes weaker, and the equilibrium becomes

more symmetric between the two organizations.

Finally, consider the effects of an increase in the resource budget of the dominant

organization. (i) An increase in YA raises T ∗ because the budget function is upward sloping

at T ∗. (ii) Since r(T ) is increasing in T from equation (16), organization B responds by

raising the critical rank r∗B below which it devotes no resources. Thus, the effects of an

increase in YA on T ∗ and r∗B are opposite of the effects of an increase in YB . However,

the effect on r∗A is generally non-monotone. By equation (24), an increase in YA raises the

critical rank r∗A if and only if T ∗ < 3
4 . This is due to two opposing effects: the increase

in r∗B induces A to devote more resources to the top ranks to stay competitive with B,

but with a greater resource budget, this may not lead to a reduction in the range of ranks

that receive positive resources. The first effect dominates when the competition is tougher

because T ∗ is relatively small. (iii) By equation (26), an increase in YA always makes

the schedule S∗A steeper for ranks above r∗A because T ∗ increases. To study the effect

of an increase in YA on the slope of S∗B , we distinguish two cases. If T ∗ ≥ 3
4 , then S∗

′
B

increases by equation (27), because both r∗A and 1 − r∗B decrease with T ∗. In the second

case, with T ∗ < 3
4 , from equation (30) T ∗ − r∗B decreases because r∗A increases, and thus

by (27), S∗
′

B again increases with YA. Thus, in both cases, under competition from an

organization with a greater resource budget, B adopts a resource distribution schedule

that is more skewed toward top ranks. (iv) Finally, to study the effect of an increase in YA

on the mixing of high types between A and B, we again distinguish two cases. In the first

case, with T ∗ ≥ 3
4 , the fraction (1 − r∗A)/(1 − r∗B) increases, because r∗A decreases while

r∗B increases as YA increases. In the second case, with T ∗ < 3
4 , from equation (28), the

fraction (1− r∗A)/(1− r∗B) again increases, because r∗A increases with YA. Thus, in either
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case, as organization A gains a greater advantage in resource budget, it also attracts a

larger fraction of high types in equilibrium.

4.3. Equilibrium uniqueness

By Proposition 2, S∗B is the unique candidate equilibrium schedule for organization B. As

demonstrated in section 4.1, there are many best responses of A to S∗B , including S∗A. In

particular, any resource distribution schedule that satisfies SA(1) ≤ S∗B(1) − P (T ∗) is a

best response. Our first step is to establish that the condition for A not to overpay its top

rank is also necessary for SA to be an equilibrium resource distribution schedule.

Lemma 5. If SA is an A-dominant equilibrium resource distribution schedule for A, then

SA(r) ≤ S∗B(1)− P (T ∗) for all r < 1.

Proof. Suppose that there is a rank r < 1 such that SA(r) > S∗B(1) + P (T ∗) for

all r ∈ (r, 1]. Consider a modified resource distribution schedule S̃A that coincides with

SA(r) except S̃A(r) = SA(r) for all r ∈ (r, 1]. Then, for any r, r̃ ∈ [0, 1], we have S̃A(r) ≥
S∗B(r̃)−P (T ∗) whenever SA(r) ≥ S∗B(r̃)−P (T ∗). By the definition of t

T∗ , T ∗ is still a fixed

point of the mapping D(T ) under (S̃A, S∗B). Since by construction
∫ 1

0
S̃A(r) dr <

∫ 1

0
SA(r),

there exists some other resource distribution schedule of A which satisfies the budget

constraint and, against S∗B , yields a fixed point T̃ of D(T ) that is strictly greater than T ∗.

Thus SA is not a best response to S∗B . Q.E.D.

The next step in establishing the uniqueness of (S∗A, S∗B) is to show that any equi-

librium schedule SA must be linear when positive. Otherwise, if SA(r) is locally convex

around some rank r̂ with SA(r̂) > 0, then organization B can modify S∗B by identifying

a rank r̃ that competes with r̂, i.e., r̃ satisfying S∗B(r̃) = SA(r̂) + P (T ∗), and flattening

S∗B around r̃ in a way that still satisfies the resource budget. Analogous to the argument

used in establishing Lemma 2, this modification lowers the mapping D(T ) at T ∗, and thus

T ∗ is no longer a continuation equilibrium quality difference.13 However, in contrast to

13 While Lemma 2 looks at the solution in quantile-quantile plot to (10) that minimizes the budget
required for A to achieve a given quality difference T , the next lemma modifies the resource distribution
schedule to reduce the integral of the quantile-quantile plot while satisfying the budget constraint for B.
A step function solution in t in Lemma 2 corresponds to a step function in schedule SB .
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Lemma 2, under the A-dominant criterion, we also need to show that the modification does

not create a larger fixed point than T ∗. This additional step is accomplished by making

the modification around r̃ sufficiently small. Similarly, if SA(r) is locally concave at r̂, B

can identify a rank r̃ that competes with r̂ and replace S∗B with a step function of two

values in a sufficiently small neighborhood of r̃. The proof of the following lemma is in the

appendix.

Lemma 6. If SA is an A-dominant equilibrium resource distribution schedule for A, then

SA is a linear function in the range of r where SA(r) is positive.

The equilibrium resource distribution schedule S∗A constructed in Proposition 3 is

linear above rank r∗A, which is uniquely identified by connecting the starting point and the

end point of S∗B . As shown in the proof of the proposition, it satisfies the resource budget

constraint of A. By the above two lemmas, any candidate equilibrium schedule for A must

not overpay its top rank, and is linear whenever it is positively valued. Since a candidate

equilibrium schedule for A must satisfy the budget constraint, the uniqueness of S∗A as an

equilibrium schedule for A follows immediately once we show that if SA is an A-dominant

equilibrium resource distribution schedule for A, then (i) S∗B(1) ≤ SA(1) + P (T ∗) so that

B is not overpaying its top rank, and (ii) SA is continuous at the critical rank r̂ defined

as inf{r ∈ [0, 1] : SA(r) > 0} so that there is no jump at the lowest rank that receives a

positive amount of resources. For the first property, if SA(1) < S∗B(1)−P (T ∗), then B can

modify S∗B by reducing the amount of resources for ranks around the very top rank 1, and

redistributing the resources to ranks just below r such that S∗B(r)−P (T ∗) = SA(1). With

a similar argument as in the proof of Lemma 6, we can show that for a sufficiently small

modification B can decrease the largest fixed point of the mapping D(T ). For the second

property, if SA is discontinuous at r̂, then B can modify S∗B by reducing the amount of

resources for ranks just above r∗B , and redistributing the resources to ranks around the

very top rank 1. This modification reduces the the mapping D(T ) for all T ≥ T ∗. Thus, if

either of the two properties is not satisfied, S∗B is not a best response for B. The following

proposition immediately follows.

Proposition 4. In the unique A-dominant equilibrium, the resource distribution sched-

ules for A and B are S∗A and S∗B .
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As remarked after Proposition 3, the equilibrium resource distribution schedule S∗A, as

well as S∗B , has the property that the premium-adjusted resource-to-rank ratio is constant

for ranks that receive positive resources. As demonstrated in the proof of Lemma 6, the

linear feature of our model, embodied in the uniform type distribution and in the linear

payoff function for the agents, plays a critical role in the uniqueness result. Proposition 4

strengthens the result from Proposition 2 that the equilibrium quality difference is unique.

Thus, the resource distributions in the two organizations and the sorting of types described

in section 4.2 are necessary implications of the A-dominant equilibrium.

5. Discussion

For a fixed pair of increasing resource distribution schedules, the payoff specification in

(1) captures the trade-off facing the agent between relative rank and average type when

choosing between the two organizations. In Damiano, Li and Suen (forthcoming), we

study a more general model of this trade-off with exogenously fixed concern for relative

ranking, with different focuses on competitive equilibrium implementation and welfare

implications. In terms of the model presented here, the benchmark model of Damiano, Li

and Suen assumes that the resource distribution schedules are fixed at SA(r) = SB(r) = r

with YA = YB = 1
2 . The concern of an agent for relative ranking in the organization he

joins, referred to as “pecking order effect,” may be motivated by self-esteem (Frank, 1985)

or competition for mates or resources (Cole, Mailath and Postlewaite, 1992; Postlewaite,

1998). The equilibrium pattern of mixing and segregation characterized in Damiano, Li

and Suen is of an “overlapping interval” structure, where the very talented are captives in

the high quality organization and the least talented are left to the low quality organization,

while the intermediate talents are present in both. In the present model instead, agents do

not directly care about their relative ranking in the organization. The concern for relative

ranking is generated endogenously because the organizations choose how to distribute

resources according to ranks. The equilibrium sorting pattern, given in Proposition 3,

is qualitatively different from an overlapping interval structure, with top talents mixing

between the two organizations and lower types perfectly segregation. Thus, mixing occurs

for the intermediate types and high types are captives when the trade-off between the
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peer effect and the pecking order effect does not respond to organizational choices as in

Damiano, Li and Suen (forthcoming), while under competition between organization, the

high types are the only ones receiving resources and mix between organizations.

Organizations in our model have a fixed capacity of half of the talent pool and must

fill all positions. In particular, an organization cannot try to improve its average talent by

rejecting low types even though the capacity is not filled. We have made this assumption in

order to circumvent the issue of size effect, and focus on implications of sorting of talents.

We may justify the assumption of fixed capacity if the peer effect enters the preferences of

talents in the form of total output (measured by the sum of individual types) as opposed

to the average type, and the objective of the organization is to maximize the total output.

Since all agents contribute positively to the total output, in this alternative model all

positions will be filled.

We have restricted organization strategies to meritocratic resource distribution sched-

ules. This is a natural assumption given how we model the sorting of talents after orga-

nizations choose their schedules. Non-meritocratic resource distribution schedules would

create incentives for talented agents to “dispose of” their talent. Another assumption we

have made about organization strategies is that resource distributions do not depend on

type directly. This is a reasonable assumption in the presence of the resource constraint;

a resource distribution schedule that depends directly on type might exceed the resources

available or leave some resources unused depending on the distribution of types that join

the organization. Moreover, at the equilibrium quality difference and against the equi-

librium resource distribution schedule of the rival organization, each organization cannot

improve its quality by deviating to a resource distribution schedule that depends on type

as well as on rank. This is because any continuation equilibrium after such a deviation can

be replicated by a deviating schedule that depends on type only. Our equilibrium is thus

robust to deviations allowed by a richer strategy space.

Our main results of linear resource distribution schedules rely on the assumption

of uniform type distribution. This assumption implies that the impact on the quality

difference of an exchange of one interval of types for another interval between the two

organizations depends only on the difference in the average types of the two intervals.
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Together with the assumption that the payoff functions of agents is linear, this property

allows us to transform the problem of finding the optimal response in resource distribution

schedules to a linear programming problem in quantile-quantile plots, and characterize the

solution in the Raiding Lemma. We leave the question of whether the method we develop

in this paper is applicable to more general type distributions to future research.

Appendix

Proof of Lemma 2. We prove the lemma by establishing that, for any quantile-quantile

plot t with
∫ 1

0
t(r) dr = T , there exists another quantile-quantile plot t̃ with

∫ 1

0
t̃(r) dr = T

which assumes at most one value strictly between 0 and 1 and satisfies

∫ t̃−1(0)

t̃−1(1)

t̃(r)∆′(r) dr −∆(t̃−1(1)) ≤
∫ t−1(0)

t−1(1)

t(r)∆′(r) dr −∆(t−1(1)). (A.1)

We first prove that t̃ assumes a countable number of values, and then show that it assumes

at most one value strictly between 0 and 1.

Suppose t is strictly decreasing and ∆′ is monotone on some open interval (r−, r+).

Let r0 ∈ (r−, r+) solve

(r+ − r−)t(r0) =
∫ r+

r−
t(r) dr,

and let r̂ ∈ (r−, r+) solve

(r̂ − r−)t(r−) + (r+ − r̂)t(r+) =
∫ r+

r−
t(r) dr.

We construct a new quantile-quantile plot t̃ that is identical to t outside the interval

(r−, r+), and such that t̃(r) = t(r0) for all r ∈ (r−, r+) if ∆′ is decreasing, and t̃(r) = t(r−)

for all r ∈ (r−, r̂] and t̃(r) = t(r+) for all r ∈ (r̂, r+) if ∆′ is increasing. By construction t̃

is a decreasing function and
∫ 1

0
t̃(r) dr =

∫ 1

0
t(r) dr, and further

∫ 1

0

S t̃
A(r) dr −

∫ 1

0

St
A(r) dr =

∫ r+

r−

(
t̃(r)− t(r)

)
∆′(r) dr.
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If ∆′ is decreasing on (r−, r+), then

∫ r+

r−

(
t̃(r)− t(r)

)
∆′(r) dr =

∫ r0

r−

(
t(r0)− t(r)

)
∆′(r) dr +

∫ r+

r0

(
t(r0)− t(r)

)
∆′(r) dr

≤ ∆′(r0)
∫ r0

r−

(
t̃(r0)− t(r)

)
dr + ∆′(r0)

∫ r+

r0

(
t̃(r0)− t(r)

)
dr,

which is equal to 0. If otherwise ∆′ is increasing, then

∫ r+

r−

(
t̃(r)− t(r)

)
∆′(r) dr =

∫ r̂

r−
(t(r−)− t(r))∆′(r) dr +

∫ r+

r̂

(t(r+)− t(r))∆′(r) dr

≤ ∆′(r̂)
∫ r̂

r−
(t(r+)− t(r)) dr + ∆′(r̂)

∫ r+

r̂

(t(r−)− t(r)) dr,

which is equal to 0. The above argument implies that, for any t, there is a t̃ which assumes

at most two values on any interval on where ∆′ is monotone and t is strictly decreasing,

it is identical to t oustide any such intervals, and (A.1) holds. The assumptions that t is

monotone and ∆′ has a countable number of discontinuities imply that there are countably

many intervals I ⊂ [0, 1] such that: (i) t is continuous and strictly decreasing on I; (ii)

∆′ is monotone on I; and (iii) there is no open interval I ′ ⊃ I that satisfies (i) and (ii).

Further, t assumes a countable number of different values outside the union of all such

intervals. This concludes the proof of the claim.

We can now restrict attention to quantile-quantile plots t which assume a countable

number of values. Suppose there are two consecutive intervals Ij and Ij+1, such that t

assumes value tj on Ij and value tj+1 on Ij+1, for some 1 > tj > tj+1 > 0. Consider a

new quantile-quantile plot t̃ε defined as follows:

t̃ε(r) =





tj + ε/(rj
+ − rj

−) if r ∈ Ij ;

tj+1 − ε/(rj+1
+ − rj+1

− ) if r ∈ Ij+1;

t(r) otherwise.

For ε small, t̃ε is a decreasing function. Moreover,
∫ 1

0
t̃ε(r) dr =

∫ 1

0
t(r) dr and

∫ 1

0

S t̃ε

A (r) dr −
∫ 1

0

St
A(r) dr =

ε

rj
+ − rj

−

∫ rj
+

rj
−

∆′(r) dr − ε

rj+1
+ − rj+1

−

∫ rj+1
+

rj+1
−

∆′(r) dr.
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Since
∫ 1

0
S t̃ε

A (r) dr − ∫ 1

0
St

A(r) dr is linear in ε, there is some ε for which t̃ assumes one

fewer value than t and does at least as well as t for (10).

Proof of Lemma 6. First, suppose that SA(r̂) > 0 at some r̂, and is locally strictly

increasing, and convex. Define a linear function SA such that SA(r̂) = SA(r̂) and SA(r) <

SA(r) for all r 6= r̂ in a neighborhood of r̂. By Lemma 5, we can define a rank r̃ in

B such that S∗B(r̃) = SA(r̂) + P (T ∗). For each ε, we construct the following resource

distribution schedule Sε
B for B that coincides with S∗B except when r ∈ (r̃ − ε, r̃ + ε), in

which case Sε
B(r) is equal to S∗B(r̃). By construction, for all ε, the schedule Sε

B respects the

resource constraint. For any T , the quantile-quantile plot t
T under SA and Sε

B is identical

to that under SA and S∗B for all r outside the interval (r̃ − ε, r̃ + ε), and is otherwise a

constant equal to the value of the quantile-quantile plot under SA and S∗B at r̃, which is

1− S−1
A (S∗B(r̃)−P (T )). It follows that the change in the value of D(T ), when B switches

from S∗B to Sε
B , is given by

∫ r̃+ε

r̃−ε

S−1
A (S∗B(r)− P (T )) dr −

∫ r̃+ε

r̃−ε

S−1
A (S∗B(r̃)− P (T )) dr.

At T = T ∗, the second term of the above expression equals 2εr̂. For the first term, by

definition of SA we have

S−1
A (S∗B(r)− P (T ∗)) ≤ S−1

A (S∗B(r)− P (T ∗)),

for all r ∈ (r̃− ε, r̃ + ε), with strict inequality for all r different from r̃. Since both SA and

S∗B are linear in the corresponding intervals,

S−1
A (S∗B(r)− P (T ∗)) = r̂ + (r − r̃)

S∗
′

B

S′A

for all r ∈ (r̃−ε, r̃+ ε). Thus, the first term in the expression for the change in the value of

D(T ) is strictly smaller than 2εr̂. This implies that at T = T ∗, for all small and positive

ε, the value of D(T ) decreases when B switches from S∗B to Sε
B . It follows that T ∗ is no

longer a fixed point of D(T ).

The mapping D(T ) as a function of T under SA and Sε
B has the following properties

when ε goes to 0: (i) D(T ) converges uniformly to the mapping D(T ) under SA and S∗B ;
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and (ii) the derivative of D(T ) with respect to T converges uniformly to the derivative of

D(T ) under SA and S∗B . Using property (ii), the fact that the derivative of D(T ) under

SA and S∗B is strictly smaller than 1 at T ∗ and continuous, we can establish that there

exists a small and positive γ, such that the derivative of D(T ) under SA and Sε
B is less

than 1 for any T ∈ (T ∗, T ∗+ γ) and for all sufficiently small ε. It follows that D(T ) under

SA and Sε
B is strictly less than T for T ∈ (T ∗, T ∗ + γ) for sufficiently small ε. Since by

property (i) for all sufficiently small ε, the mapping D(T ) under SA and Sε
B has no fixed

point greater than T ∗ + γ, the largest fixed point is strictly below T ∗. Thus, S∗B is not a

best response to SA.

Next, suppose that for some r̂ such that SA(r̂) > 0, the schedule SA(r) is locally

convex but SA(r) is constant just below r̂. Then, for any small and positive η, construct

the modification of S∗B as above, but set Sε
B(r̃) = SA(r̂) + P (T ∗) + η. Following the same

argument as above, we can establish that this modification does strictly better for B than

S∗B for all η. As η goes to 0, the modified Sε
B also satisfies B’s resource constraint. Thus,

S∗B is not a best response to SA.

Finally, suppose that for some r̂ such that SA(r̂) > 0, the schedule SA(r) is locally

concave. Define r̃ as in the first case of local convexity. Consider a modified schedule Sε
B

which is identical to S∗B outside the interval (r̃− ε, r̃ + ε), and is equal to S∗B(r̃− ε) for all

r ∈ (r̃− ε, r̃] and to S∗B(r̃ + ε) for all r ∈ (r̃, r̃ + ε). Following a similar argument as in the

case of local convexity, we can show that for sufficiently small ε, the largest fixed point of

the mapping D(T ) under SA and Sε
B is strictly smaller than T ∗. Thus, S∗B is also not a

best response to SA in this case.
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