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1. Explanation for part (a)

The payoff to player i if player i chooses a price p that is less than aj−z equals
p (see payoff function on page 915). This payoff increases in p. If ai < aj − z,
then Ki(p, Fj) = p for all p in (ai, aj − z) but this increases in p which violates
ai being the minimum price in the support of Fi. Thus, for each player, ai

must be greater than or equal to aj − z for {i, j} = 1, 2. This implies that
a1 ≥ a2 − z and a2 ≥ a1 − z which implies that a1 ≤ a2 + z and a2 ≤ a1 + z,
which implies (a). A similar argument holds for the inequality about the end
points of the supports.

2. Explanation for the first part of part (i)

If player i chooses a price p that is greater than pj −z and less than pj +z then
the the payoff to player i (see middle portion of payoff function on page 915)
increases in p so long as p is less than (pj +mi)/2 and decreases thereafter. We
note that from (d) equilibrium profit is positive so that bi ≤ bj + z. Thus, in
the case that (i) is false, i.e. if bi is greater than (bj + mi)/2 then there exists
p that lies between the two that results in a higher payoff (from the middle
portion of the payoff function on page 915) for player i than when player i
plays bi, contradicting the fact that bi is used in equilibrium. Thus, (i) must
be true.

3. Arguments about V in paragraphs below (i)

To give an idea of the arguments about V used in the two paragraphs that
begin below (i), consider the case in which x1 = 1

3
, x2 = 1

3
, aj = 1

3
. In this

case, z = 1
3

and mi = 1. The best dominator of p depends on p.

• If p < min(2(aj − xi), 2(aj + xi)/3) = 0, then the best dominator is
(p + z + mi)/2 = p/2 + 2

3
.

• If 2(aj − xi) = 0 < p < 2
3

= 2xi, then the best dominator is aj + z = 2
3
.

• If max(2xi,
2
3
(aj +xi)) = 2

3
< p, then the best dominator is aj +mi−p =

4
3
− p.
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We can use these results to find the smallest undominated p, which also
depends on aj , xi and xj .

Since 2(1 + xj) − 4
√

xj = 8
3
− 4/(

√
3) > 0 = min(2(aj − xi), 2(aj + xi)/3),

(aj + z)(mi − aj)/(2 − z − aj) = 2
3

= 2xi, and aj = 1
3

< 2
3

= 2xi, the smallest
undominated p is (aj + z)(mi − aj)/(2− z− aj) = 2

3
. That is, Vi(aj) = 2

3
when

xi = 1
3
, xj = 1

2
, aj = 1

3
.

Now consider the case in which xi = 1
3
, xj = 1

2
, aj = 2

3
. In this case, z = 1

3
,

mi = 1, as above, and the best dominator of p depends on p.

• If p < min(2(aj − xi), 2(aj + xi)/3) = 2
3
, then the best dominator is

1
2
(p + z + mi) = 1

2
p + 2

3
.

• If 2(aj − xi) = 2
3

< p < 2
3

= 2xi, then the best dominator is aj + z = 1.

• If max(2xi, 2(aj+xi)/3) = 2
3

< p, then the best dominator is aj+mi−p =
5
3
− p.

We can use these results to find the smallest undominated p, which also
depends on aj , xi and xj .

Since 2(1 + xj) − 4
√

xj = 8
3
− 4/(

√
3) < 2

3
= min(2(aj − xi), 2(aj + xi)/3),

the smallest undominated p is 2(1 + xj) − 4
√

xj = 8
3
− 4/(

√
3). That is,

Vi(aj) = 8
3
− 4/(

√
3) when xi = 1

3
, xj = 1

2
, aj = 2

3
.

Thus,

Vi(aj) =

{
2
3

if xi = 1
3
, xj = 1

2
, and aj = 1

3
8
3
− 4/

√
3 if aj = 2

3
.

Thus, if ai = 2
3

and aj = 1
3
, then 2

3
= ai ≥ Vi(aj) = 2

3
but 1

3
= aj ≤

Vj(ai) = 8
3
− 4/(

√
3). We need to find all aj for which ai = 2

3
≥ Vi(aj) and

aj ≥ Vj(ai) for some aj . So far, we have shown the if ai = 2
3
, then aj = 1

3

doesn’t work. We need to do this for all aj for a given ai. Then, we need
to find the smallest ai for which ai ≥ Vi(aj) and aj ≥ Vj(ai). We note that
γi = min{(1 + 1

3
(xi − xj), 2(1 − xj), 3(1 − xi) − xj)} = min(1, 4

3
, 5

3
) = 1.
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