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These notes relate to the February 1985 version of the paper.

(i) The first argument uses xj > 0 (via (e)). Addition: Suppose xj = 0. Then
mj = 1 − xi = z, so that (βi + mj)/2 < βi + z [Figure (i3)]. Hence by
the arguments above with the indices reversed we have βj ≤ (βi +mj)/2
(if βi − z ≤ (βi + mj)/2) or βj ≤ βi − z (if (βi + mj)/2 < βi − z), both of
which contradict βi ≤ βj − z (given that βj ≥ αj > 0 (or alternatively
βj > 0 because the equilibrium is not pure)).

(f) If xi = 0 then βi ≤ (βj + mi)/2 (see (g)) and βj ≤ βi + z (see (a)) imply
that βi ≤ mi + z = 2z, so the result follows.

(g) Begin: “If xi = 0 there is nothing to prove. If xi > 0 and . . . ”. Conclude
Fj has no support in (p− z, p− z + ε). Then: “If xj = 0 then Ki(∙, Fj) is
increasing on (p, min(p+ ε, 2xi)) if p < 2xi, contradicting the fact that p
is an atom of Fi (which implies that Ki(p, Fj) is equal to the equilibrium
profit of i).”

Then: if xj > 0, Fj has no support in (p + x, p + z + δ) either . . . so Ki

is increasing on (p, min(p + ε, p + δ, 2xi)) if p < 2xi.

(j) After third sentence: “First consider the case xi > 0 for i = 1, 2. Then
. . . ”.

After first paragraph, insert:

Second, consider the case in which xi = 0 and xj > 0. Then, as above,
Fj has no support in (p+z, p+z+ε) for some ε > 0, though it may have
support in (p−z, p−z+ε). However, an explicit calculation (see below),
using the fact that xi = 0, shows that if Fj has support in (p − z, p + z)
then Ki(∙, Fj) is still strictly concave on (p, p + δ) for some δ > 0, and
the argument follows the lines of the previous paragraph.

Last, if xi = 0 and xj = 0, or if xi = 0 for i = 1, 2, then the required
strict concavity also follows from an explicit calculation.

(o) Discussion of xj = 0 case omitted.
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Explicit calculation to show strict concavity of Ki(∙, Fj)

If p < p < p + ε,

Ki(p, Fj) = 1
2

∫ p+z

p−z

p(q − p + mi) dFj(q) +

∫ βj

p+z+ε

p dFj(q)

d

dp
Ki(p, Fj) = −1

2
p(−z + mi)F

′
j(p − z) + 1

2

∫ p+z

p−z

(q − 2p + mi) dFj(q) +

∫ βj

p+z+ε

dFj(q)

= 1
2

∫ p+z

p−z

(q − 2p + mi) dFj(q) +

∫ βj

p+z+ε

dFj(q) (using xi = 0)

d2

dp2
Ki(p, Fj) = 1

2
(p − z − 2p + mi)F

′
j(p − z) + 1

2

∫ p+z

p−z

(−2) dFj(q)

= −1
2
pF ′

j(p − z) −
∫ p+z

p−z

dFj(q).
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