Details of Derivation of Equation (1) and of Computation of Endpoints of

Intervals in Support of Equilibrium Strategy for

"Equilibrium in Hotelling's Model of Spatial Competition",

(Econometrica 55 (1987) 911-922)

by

Martin J. Osborne and Carolyn Pitchik
September 1987

We restrict attention to Region Tlc (the others are similar).

For $a_i we have$

$$2K_{i}(p, F_{j}) = \int_{a_{i}}^{p+z} p(q - p + m_{i}) dF_{j}(q) + \int_{p+z}^{b_{j}} pdF_{j}(q).$$

We need the first derivative of this with respect to $\,p\,$ to be zero, so, assuming $\,F_{j}\,$ to be differentiable, we need

$$-2px_{j}F'_{j}(p+z) - (2 - m_{i} + 2p)F_{j}(p+z) + 2 + \int_{a_{j}}^{p+z} qdF_{j}(q) = 0.$$

For this to hold, it is necessary that its derivative be everywhere zero, which is equivalent to

$$-2px_{j}F_{j}^{"}(p+z) - (p + 4x_{j})F_{j}'(p+z) - 2F_{j}(p+z) = 0.$$

A solution of this takes the form

$$F_{j}(q) = B_{j} \exp(-(q-z)/2x_{j}) \int_{A_{j}}^{q} h(s, x_{j}, z) ds$$
 for $a_{i}+z < q < b_{j}$,

where $A_{\mathbf{j}}$ and $B_{\mathbf{j}}$ are constants.

A similar argument for $\ a_{j} \, + \, z \, < \, p \, < \, b_{i} \ \ \, \text{shows that}$

$$F_{j}(q) = 1 - C_{j} \exp((q+z)/2x_{i}) \int_{-D_{j}}^{-q} h(s, x_{i}, z) ds$$
 for $a_{j} < q < b_{i}-z$,

where C_{j} and D_{j} are constants.

Given that F_j takes these forms, we find that $K_i(p, F_j) = B_j x_j$ if $a_i and <math>K_i(p, F_j) = C_j x_i$ if $a_j + z . Thus for equality of the payoffs of the two intervals (a necessary condition for equilibrium) we need$

$$B_{j}x_{j} = C_{j}x_{i}.$$

Now, the condition that the second derivative of the payoff on each interval in the support of the equilibrium strategy be zero means that the first derivative is constant. Using the form of F_j found above, the condition that the derivative of the payoff on (a_i, b_j-z) be zero is

(2)
$$2C_jx_i\left(\frac{1}{(a_j+z)} - \frac{1}{b_i} - \frac{1}{a_i}\right) + 2 + a_j - b_i + z + (b_i-a_i-2)F_j(a_i+z) = 0$$
,

and the condition that the derivative of the payoff on (a_i+z, b_i) be zero is

(3)
$$2C_jx_i\left(1/(b_j-z) - 1/b_i - 1/a_i\right) + 2 + b_j - b_i - z - 2\delta_jx_j + (b_i-a_i-2)F_j(a_i+z) = 0$$
,

where δ_j is the size of the atom in F_j at b_j . Further, in order for F_j to be a distribution function we need

$$F_{j}(a_{j}) = 0,$$

$$(5) F_{\mathbf{j}}(b_{\mathbf{j}}) = 1 - \delta_{\mathbf{j}},$$

(6)
$$F_{j}(b_{i}-z) = F_{j}(a_{i}+z).$$

Finally, in order that the payoff to $\,i\,$ be nonincreasing to the right of $\,b_{i}\,$

we need $G'_{j}(b_{i}-z) \leq 0$. Hence we must have

$$G_i'(b_i-z) = 0.$$

We can carry out an entirely analagous argument for F_i , yielding seven more conditions analagous to (1) through (7). Thus we have 14 equations in the 14 variables $(a_k, b_k, A_k, B_k, C_k, D_k, \delta_k)$ (k = i, j). Using (1) we can eliminate B_k for k = 1, 2, and using (4) and (5) we can eliminate A_k and D_k for k = i, j. We now have the following 8 equations in the 8 unknowns $(a_k, b_k, C_k, \delta_k)$ (k = i, j): (2), (3),

(8)
$$2C_{j}x_{i} = b_{i}^{2} \left\{ \exp\left((b_{i}-z-a_{j})/2x_{i}\right) - C_{j}\exp\left(b_{i}/2x_{i}\right) \int_{-(b_{i}-z)}^{-a_{j}} h(s, x_{i}, z) ds \right\}$$

(condition (7) after substitution),

$$1 - \exp\left((b_{i}-z-a_{j})/2x_{i}\right) + C_{j}\exp\left(b_{i}/2x_{i}\right) \int_{-(b_{i}-z)}^{-a_{j}} h(s, x_{i}, z)ds$$

$$= (1 - \delta_{j})\exp\left((b_{j}-a_{i}-z)/2x_{j}\right) - (C_{j}x_{i}/x_{j})\exp\left(-a_{i}/2x_{j}\right) \int_{a_{i}+z}^{b_{j}} h(s, x_{j}, z)ds$$
(9)

(condition (6) after substitution), and the analogs with i and j reversed. Now (8) can be solved for $C_{\rm j}$ in terms of the other variables:

(10)
$$C_{j} = \left[b_{i}^{2} \exp\left((b_{i}-z-a_{j})/2x_{i}\right)\right] / \left[2x_{i} + b_{i}^{2} \exp\left(b_{i}/2x_{i}\right) \int_{-(b_{i}-z)}^{-a_{j}} h(s, x_{i}, z) ds\right].$$

Let

(11)
$$G_j = F_j(a_i+z) = 1 - \exp((b_i-z-a_j)/2x_i) + C_j \exp(b_i/2x_i) \int_{-(b_i-z)}^{-a_j} h(s, x_i, z) ds$$

and similarly let $G_i = F_i(a_j+z)$. Now we can solve (3) for δ_j in terms of the other variables:

$$\delta_{j} = \left[1/2x_{j}\right] \left[2C_{j}x_{j}\left(1/(b_{j}-z) - 1/b_{i} - 1/a_{i}\right) + 2 + b_{j} - b_{i} - z + (b_{i}-a_{i}-2)C_{j}\right].$$

This reduces the system to the four equations (2), (9), and their analogs with i and j reversed in the four variables (a_k, b_k) (k = i, j). Finally, if we multiply (2) by a_i we have a quadratic in a_i , which can be solved to yield

$$a_{i} = \left[X \pm (X^{2} - 8C_{j}G_{j}X_{i})^{1/2}\right]/2G_{j},$$

where

$$X = 2C_{j}x_{i}\left(1/(a_{j}+z) - 1/b_{i}\right) + 2 + a_{j} - b_{i} + z + (b_{i}-2)C_{j},$$

and C_j and G_j are defined in terms of a_j , b_i , and b_j by (10) and (11). Thus we are left with equation (9) and its analog with i and j reversed, and the analog of equation (2) with i and j reversed—a total of three equations in the three variables a_j , b_i , and b_j . This is the system to which we computed an approximate solution.

In the other regions, similar arguments can be made; in each case the system can be reduced to at most two equations in two unknowns.