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We restrict attention to Region Tle (the others are similar).

For a; <p <b;— 2z we have

ptz by
2K, (p, Fy) = fpla — p + m)dF(q) + [ pdF,(q).
a ptz

3

We need the first derivative of this with respect to p to be zero, so,
assuming F, to be differentiable, we need

p‘l'Z

—2pxFi(p+z) ~ (2 — my + 2p)F (p+z) + 2 + [ qdF,(q) = O,
a
3

For this to hold, it is necessary that its derivative be everywhere zero,

which is equivalent to
—2px Fi(p+z) — (p + 4x )F(ptz) — 2F,(ptz) = 0.
A solution of this takes the form

g
Fd(q) = Bjexp[-(q—z)/Zxd] {'h(s, Xy, z)ds for aj+z < q < bd'
3

where Aj and B»‘j are constants,

A similar argument for a; + z < p < b; shows that




Fy(q) = 1 - Cjexp[(q+z)/2xi]mz h(s, x,, z)ds for a, < q < b,z
it
where G, and D, are constants.
Given that F; takes these forms, we find that K (p, FH) = Bjxj if
a; <p <b;y -z and K/(p, F;) = C;x, 1if a, + 2 <p <b;. Thus for equality

of the payoffs of the two intervals (a necessary condition for equilibrium) we

need
(1) Byx, = Cjx,.

Now, the condition that the second derivative of the payoff on each intexval
in the support of the equilibrium strategy be zero means that the first
derivative is constant. Using the form of F; found above, the condition

that the derivative of the payoff on (a,, bdmz) be zero is

(2) 2iji(1/(aj+z) - 1/b, — l/ai] + 2+ a;~ by +z+ (b—a-2)F(a;+z) = 0,

and the condition that the derivative of the payoff on (ajtz, b;) be zero is
(3) 263x, (1/(bjz) — 1/b, — 1/a,} + 2 + by — b, — z — 28,%, + (b-a,~2)F,(a 42) = 0,

where 5, is the gize of the atom in F, at bj. Further, in order for Fy

to be a distribution function we need

(4) F‘i(aj) = 0,
(5) Fj(bj) =1 - 6;]:
(6) F}(bi—z) = E}(a1+z).

Finally, in order that the payoff to 1 be nonincreasing to the right of b,




we need GS(bi—z) =< 0. Hence we must have
D] Gé(b{—z) = 0.

We can carry out an entirely analagous argument for F,, vielding seven
more conditions analagous to (1) through (7). Thus we have 14 equations in
the 14 variables (a,, b, A, B, G, D, 6 (k =1, j). TUsing (1) we can
eliminate B, for k =1, 2, and using (4) and (5) we can eliminate A, and

i, j. We now have the following 8 equations in the 8 unknowns

N

D, for k

(akv bk) Ckl Sk) (k = is J): (2): (3):

(8) 26,%, = b¥{exp((bz-a;) /2%,) — Cpexp [bi/zxi](bi}j t;(s, x,, z)ds}
bz

(condition (7) after substitution),

—a
J
1 — exp((b—z-a,)/2%,] + Gexp(b,/2%,) [ b(s, %, z)as
9 2(b,-z)

3
= (1 — Sj)exp[(b5~a£—z)/2xj) - (iji/xj)exp[—ai/Zx%] f h(s,xj, z)ds
a,+z

(condition (6) after substitution), and the analogs with 1 and j reversed,

Now (8) can be solved for Cy in terms of the other variables:

—a.

(10) ¢, = [bfexp[(bi—z—aj)/in]] lox, + bfexp[bi/Qxi] f l;(s, x,, z)ds|.
Moz

Let
—a,
(11) G; = F}(ai+z) =1 ~ exp[(bi—z—ad)/Zx;} + Cjexp[bi/in] f h(s, x;, z)ds,
—(b;—z)

and similarly let 6, = Fi(a5+z). Now we can solve (3) for 6j in terms of

the other wvariables:

65 ~ [1/2x;| [20,%,(1/ (b2 = 1/by — 1/8,) + 2 + b, = b, — z + (b-a-2)G,].




This reduces the system to the four equations (2), (9), and their analogs with
i and j reversed in the four variables (a,, b,) (k =1, j). Finally, if
we multiply (2) by a; we have a quadratic in a&;, which can be solved to

vield

a, - [x & (x* - 86,6,%,)"%] 20,

i JTiti

where
X = 26%,(1/(agtz) = /b)) + 2 + & — b, + 2 + (b-2)G,,

and C; and G; are defined in terms of ay, by, and b& by (10) and (11).
Thus we are left with equation (9) and its analog with i and j reversed,
and the analog of equation (2) with i and j reversed--a total of three
equations in the three wvariables ay, b,;, and bj. This is the system to
which we computed an approximate solution.

In the other regions, similar arguments can be made; in each case the

system can be reduced to at most two equations in two unknowns.




