Details of Arguments in Appendix 1 of
"Equilibrium in Hotelling's Model of Spatial Competition",

(Econometrica 55 (1987) 911-922)

by

Martin J. Osborne and Carolyn Pitchik
September 1987

Appendix 1: Proofs

Here we prove Propositions 1, 2, and 3, and establish some additional conditions which equilibria of $\Gamma(x_1, x_2)$ must satisfy. First we restrict the values a_i and b_i of the endpoints of the supports of any equilibrium strategies, by using domination arguments. For example, $K_i(a_j-z, p_j) > K_i(p_i, p_j) \text{ for any price } p_i < a_j - z, \text{ for } \underline{all} \ p_j \geq a_j; \text{ hence } a_i \geq a_j - z \text{ (see (a) below)}. \text{ For those locations in P, these restrictions together imply that } a_i = b_i = 1 + (x_i-x_j)/3 \text{ for } i = 1, 2, \text{ proving Proposition l. They also imply that } b_i - a_i \leq 2z \text{ for every } (x_1, x_2) \text{ in S, so that the second sentence of Proposition 3 follows from the first.}$

To complete the proof of Proposition 3, we show that the prices at which the equilibrium strategies can have atoms lie in a restricted set. For example, if F_i has an atom at p, then F_j does not have an atom at p - z or at p + z (since j can do strictly better by charging slightly lower prices). In particular, we show that if b_i - $a_i \leq 2z$ then each equilibrium strategy can have an atom only at b_i (see (j) below); this leads fairly directly (see (k) through (o)) to the conclusion that every equilibrium is of type T. Finally, the straightforward proof of Proposition 2 (which uses domination arguments again) is given in (f).

In our proof, we repeatedly use the following properties of the payoff function K_i (see (1) and Figures 2 and 4):

for fixed p_j , K_i is linear in p_i (with slope 1) on $[0, p_j^{-z})$, jumps down at p_j^{-z} (if $x_j^{-z} > 0$), is strictly concave (with slope less than 1) on (p_j^{-z}, p_j^{+z}) , jumps down at p_j^{+z} (if $x_i^{-z} > 0$), and is zero above p_j^{+z} ;

for fixed p_j , the maximum of K_i , if attained in (p_j-z, p_j+z) , is attained at $p_i = (p_i + m_i)/2$;

for fixed p_i , K_i is zero on $[0, p_i-z)$, linear in p_j (with slope $p_i/2$) on (p_i-z, p_i+z) , and constant in p_j above p_i+z . (Most of our arguments are easy to follow when reference is made to a diagram like Figure 4; space constraints prohibit the inclusion of all the appropriate diagrams.)

For any set Q of prices of firm i, we say that p_i^{**} strongly dominates p_i^* on Q when $K_i(p_i^{**}, p_j) > K_i(p_i, p_j)$ for all $p_j \in Q$ and all p_i in an open neighborhood of p_i^* . We write $A_i = [a_i, b_i]$; if p_i^{**} strongly dominates p_i^* on A_j then p_i^* is not in the support of any equilibrium strategy of i.

If (F_1, F_2) is an equilibrium of $\Gamma(x_1, x_2)$ then $a_i \ge 0$ for i = 1, 2 since each firm can guarantee a profit of zero by setting a price of zero. We also have the following.

- (a) $a_j z \le a_i \le a_j + z$ and $b_j z \le b_i \le b_j + z$ for i = 1, 2:

 Since $p_i = a_j z$ strongly dominates any lower price on A_j we have $a_i \ge a_j z$ and hence $a_j z \le a_i \le a_j + z$. If z > 0, or z = 0 and $b_j > 0$, then $K_i(p, F_j) = 0$ if $p > b_j + z$, while $K_i(p, F_j) > 0$ for some $p \le b_j + z$ (for example for p = z/2 if z > 0), so that $b_i \le b_j + z$. If z = 0 and $b_j = 0$ then $K_j(F_j, F_i) = 0$, so that $b_i = 0$ (otherwise $K_j(p, F_i) > 0$ for some p > 0). Hence in both cases $b_j z \le b_i \le b_j + z$.
- (b) If p > 0 is an atom of F_i and $x_i > 0$ ($x_j > 0$) then p z (p + z) is not an atom of F_j : Under these conditions, the profit of j jumps down at p z (p + z), so this cannot be an atom of F_j .
- (c) If z = 0 and b_i exists for some i, or if every consumer has a finite reservation price, then $a_i = b_i = 0$ for i = 1, 2 (i.e. the only equilibrium is pure, each firm charging the price zero): If b_i exists then

 b_j exists and b_j = b_i (by (a)). Let b_i = b_j = b. If b > 0 then it is not an atom of both F_i and F_j (by (b), since z = 0 means that $x_i > 0$ for some i). Suppose b is not an atom of F_j . Then $K_i(b, F_j)$ is equal to i's equilibrium profit (see (d) of Fact (B) in Osborne and Pitchik [1984]). But $K_i(b, F_j)$ = 0, while $K_i(p, F_j) > 0$ for 0 . Hence we must have <math>b = 0. If every consumer has a finite reservation price then $K_i(p, q)$ = 0 for all q if p is large enough, say if $p \ge \bar{p}$. Hence $b_i \le \bar{p}$; the argument above establishes that $b_i = b_j = 0$.

This proves the second sentence of Proposition 1. From now on, we assume that z > 0.

- (d) $a_i > 0$ for i = 1, 2, and the equilibrium profit of each firm is positive: This follows from the fact that firm i can guarantee a positive profit by setting the price z/2.
- (e) If $x_j > 0$ and $b_i = b_j z$ then b_i is an atom of F_i and b_j is not an atom of F_i ; If b_i is not an atom of F_i then $K_j(b_j, F_i) = 0$ is the equilibrium profit of j (see (d) of Fact (B) in Osborne and Pitchik [1984]). This contradicts (d), so that b_i is an atom of F_i , and so b_j is not an atom of F_j (by (b)).

In the special cases in which $x_i = 0$ for some i, the proofs of some of the subsequent results require additional arguments (to avoid the use of (b) and (e), for example); since the length of these arguments is out of proportion to their significance, we omit them. Thus, in all the proofs below we assume that $x_i > 0$ for i = 1, 2.

The next result implies Proposition 2.

- (f) $b_i + 0$ for i = 1, 2 as z + 0: If $K_j(b_i z, b_i) < K_j(b_i 3z, b_i)$, then every $p_j > b_i z$ is strongly dominated (by $p_j 2z$) on A_i , so that $b_j = b_i z$. But then b_j is dominated (by $b_i 3z$) on A_i , so that b_j is not an atom of F_j , contradicting (e). Hence $K_j(b_i z, b_i) \ge K_j(b_i 3z, b_i)$, or $(b_i z)(b_i (b_i z) + m_j)/2 \ge b_i 3z$, or $b_i \le (2 + x_i)z/x_i$, from which the result follows (recall that we are assuming $x_i > 0$).
- (g) If p is an atom of F_i then $p \ge 2x_i$: If p is an atom of F_i then $K_j(., F_i)$ jumps down at p z (if p > z), and at p + z, so that supp F_j contains no point in $(p z, p z + \varepsilon)$ or in $(p + z, p + z + \varepsilon)$ for some $\varepsilon > 0$. But then $K_i(., F_j)$ is increasing on $(p, \min(p + \varepsilon, 2x_i))$ if $p < 2x_i$, contradicting the fact that p is an atom of F_i .
- (h) If $p \in \text{supp } F_i$ is not an atom of F_i then either $p-z \in \text{supp } F_j$ or $p+z \in \text{supp } F_j$: If neither p-z nor p+z is in supp F_j then supp F_j contains no point in $(p-z-\varepsilon, p-z+\varepsilon)$ or in $(p+z-\varepsilon, p+z+\varepsilon)$ for some $\varepsilon > 0$. Now, since $p \in \text{supp } F_i$, we have $p+z \geq a_i+z \geq a_j$ and $p-z \leq b_i-z \leq b_j$ (by (a)), so that $a_j \leq p+z-\varepsilon$ and $b_j \geq p-z+\varepsilon$. Hence supp F_j intersects $(p-z+\varepsilon, p+z-\varepsilon)$, so that, given the other restrictions on supp F_j , $K_i(\cdot, F_j)$ is strictly concave on $(p-\varepsilon, p+\varepsilon)$. Hence p is isolated, and therefore an atom of F_i .
- (i) $b_i \leq (b_j + m_i)/2$ for i = 1, 2, and hence $b_i \leq \gamma_i \equiv \min(1 + (x_i x_j)/3, 2(1 x_j), 3(1 x_i) x_j)$ for i = 1, 2: We first show that $(b_j + m_i)/2 \geq b_j z$. If not, then $p_i = b_j z$ strongly dominates any higher price on A_j , so that $b_i = b_j z$ (by (a)). Further, $b_i \varepsilon$ dominates b_i

(though not strongly) on A_j , for some $\epsilon > 0$, so that b_i is not an atom of F_i , contradicting (e). Two cases remain. If $(b_j + m_i)/2 \ge b_j + z$ then the result follows from (a). If $b_j - z \le (b_j + m_i)/2 \le b_j + z$, then $(b_j + m_i)/2$ dominates any higher price on A_j , so that $b_i \le (b_j + m_i)/2$ for i = 1, 2. Combining these two inequalities yields $b_i \le 1 + (x_i - x_j)/3$; combining $b_i \le (b_j + m_i)/2$ and $b_j \le b_i + z$ (see (a)) yields $b_i \le 2(1 - x_j)$ and $b_j \le 3(1 - x_j) - x_i$.

Now, for each a_j , let $U_i(a_j)$ be the lowest price of firm i which is not strongly dominated on $[a_j, \gamma_j] \supset A_j$ (the inclusion from (i)). Obviously then we must have $a_i \geq U_i(a_j)$ for i=1, 2; these restrictions are helpful below. The form of U_i can be found by using the fact that if p_i is less than $\min(2(a_j-x_i), 2(a_j+x_i/3))$ then the best potential dominator is $(p_i+z+m_i)/2$ (i.e. if any price dominates p_i , then this one does), while if p_i is between $2(a_j-x_i)$ and $2x_i$ then the best potential dominator is a_j+z , and if p_i exceeds $\max(2x_i, 2(a_j+x_i)/3)$ then the best potential dominator is a_j+z , and if p_i or p_i are the details are very messy, and we do not give them here. Obviously, u_i is nondecreasing; an example is shown in Figure 6.

By combining the conditions $a_i \geq U_i(a_j)$ and $b_i \leq \gamma_i$ for i=1, 2, we can obtain two useful restrictions on the nature of equilibria of $\Gamma(x_1, x_2)$. Let a_i^* be the minimal value of a_i such that $a_i \geq U_i(a_j)$ and $a_j \geq U_i(a_i)$ for some a_j . Then $a_i \geq a_i^*$ in any equilibrium of $\Gamma(x_1, x_2)$. Thus if $a_i^* = \gamma_i$ for i=1, 2 (as is the case in Figure 6) then the pure equilibrium $(p_1, p_2) = (\gamma_1, \gamma_2)$ is the only possible equilibrium of $\Gamma(x_1, x_2)$. A very tedious analysis of the functions U_i (i=1, 2) (the details of which we omit) shows that this is so for every (x_1, x_2) in P_i this completes the proof of Proposition 1. Also, if $\gamma_i - a_i^* \leq 2z$ then we know that $b_i - a_i \leq 2z$. This is

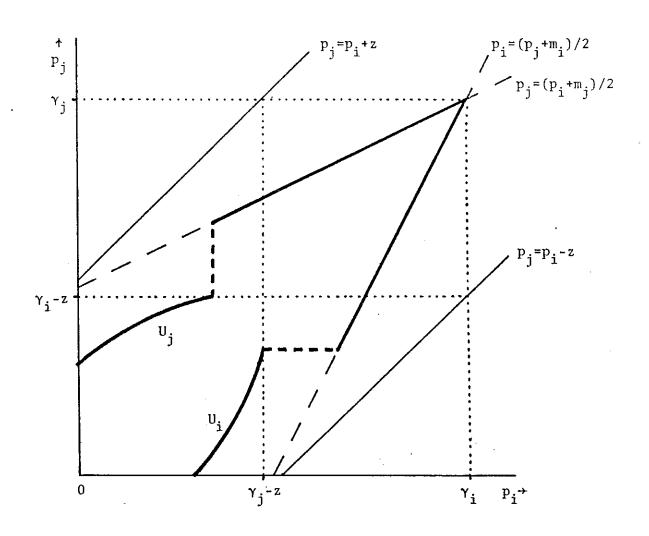


Figure 6: The functions U_1 and U_2 .

For each value of $\alpha_{\bf j}$, $U_{\bf i}(\alpha_{\bf j})$ is the smallest price of i which is not strongly dominated.

useful because our subsequent results use the assumption that $b_i - a_i \le 2z$; we show that the only equilibria satisfying this assumption are of type T. A computation shows that $\gamma_i - a_i^* \le 2z$ for i=1, 2 whenever (x_1, x_2) is in S (see Figure 3). Thus the second sentence of Proposition 3 follows from the first (given the existence result of Dasgupta and Maskin [1982]), which remains to be proved. From now on, we assume that $b_i - a_i \le 2z$ for i=1, 2.

(j) If p is an atom of F_i then $p=b_i$: Suppose \bar{p} is an atom of F_i . Then $K_i(\bar{p},\,F_j)$ is equal to the equilibrium profit of i. We argue first that $K_i(.,\,F_j)$ is decreasing on $(\bar{p},\,\bar{p}+\epsilon)$ for some $\epsilon>0$. Since $K_j(.,\,F_i)$ jumps down at $\bar{p}-z$ and $\bar{p}+z$, F_j has no support in $(\bar{p}-z,\,\bar{p}-z+\epsilon)$ or in $(\bar{p}+z,\,\bar{p}+z+\epsilon)$ for some $\epsilon>0$. Since $a_i\leq\bar{p}\leq b_i$, this means that $a_j\leq\bar{p}+z$ and $b_j\geq\bar{p}-z+\epsilon$ (using (a)). Hence F_j has some support in $[\bar{p}-z+\epsilon,\,\bar{p}+z]$. But then $K_i(.,\,F_j)$ is strictly concave on $(\bar{p},\,\bar{p}+\epsilon)$; it is continuous at \bar{p} (since neither $\bar{p}-z$ nor $\bar{p}+z$ are atoms of F_j (by (b))), so it is decreasing on $(\bar{p},\,\bar{p}+\epsilon)$ (since $K_i(\bar{p},\,F_j)$ is equal to i's equilibrium profit).

Now, since $K_i(\cdot, F_j)$ is decreasing on $(\bar{p}, \bar{p} + \varepsilon)$, F_i cannot have any support in this interval. Assume that $\bar{p} < b_i$, and let \bar{p} be the smallest price above \bar{p} which is in supp F_i . Since $\bar{p} \geq 2x_i$ (by (g)) and $b_i \leq 2(1-x_j)$ (by (i)), we have $b_i \leq \bar{p} + 2z$; since $b_i \geq \bar{p}$ and $b_i - a_i \leq 2z$, we have $a_i \geq \bar{p} - 2z$. Therefore $K_j(\cdot, F_i)$ is strictly concave on $(\bar{p} - z, \hat{p} - z)$ and on $(\bar{p} + z, \hat{p} + z)$ (since $b_i \geq \bar{p}$), so that the support of F_j in these intervals can consist of at most a single isolated point in each interval, at which F_j has an atom. Let these points be q_1 and q_2 , let the size of the atom in F_j at q_k be $J(q_k)$, and let

$$f(p) = [p(q_1 - p + m_i)/2]J(q_i) + \int_{\hat{p}-z}^{\bar{p}+z} (p(q - p + m_i)/2)dF_j(q) + pJ(q_2) + \int_{\hat{p}+z}^{b_j} pdF_j(q).$$

It is easy to check that f is concave. Also, it is immediate that $K_{i}(p, F_{j}) = f(p)$ if $p , so that, by the argument above, f is decreasing in this range. The concavity of f implies, therefore, that it is decreasing for all <math>p > \overline{p}$.

We now argue that $K_1(p, F_j) \leq f(p)$ for all $p \leq p \leq p$. This implies that p is not in the support of F_i , contrary to our assumption, so that we have $p = b_i$, completing the proof. First, note tht $K_1(\cdot, F_j)$ jumps down at $q_1 + z$ and at $q_2 - z$. Second, observe that the expression for $K_1(p, F_j)$ is similar to that for f(p), except that if $q_1 + z then the term in square brackets is zero, while if <math>q_2 - z then the multiplier of <math>J(q_2)$ is $p(q_2 - p + m_1)/2$ (rather than p). Now, F_j can have an atom at q_1 only if $q_1 \geq 2x_j$ (see (g)), in which case $q_1 - p + m_1 \geq 2x_j - (1 + (x_1 - x_j)/3) + m_1 = 2x_1/3 + 4x_j/3$ if $p \leq p \leq 1 + (x_1 - x_j)/3$ (see (i)). Hence $p(q_1 - p + m_1) \geq 0$ for all $p \leq p$. Finally, if $q_2 - z < p$ then $p(q_2 - p + m_1)/2 < p(1 - x_j) < p$. So $K_1(p, F_j) \leq f(p)$ for all $p \leq p \leq p$.

(k) If $a_i < b_j - z$ then $[a_i, b_j - z] \subset \operatorname{supp} F_i$: Suppose $a_i with <math>p \not \in \operatorname{supp} F_i$. By (a) we know that $p < b_i$, so there exist smallest numbers $\varepsilon > 0$ and $\delta > 0$ such that $p - \varepsilon \in \operatorname{supp} F_i$ and $p + \delta \in \operatorname{supp} F_i$. Now, since $p - z - \varepsilon < b_j - 2z$ we have $p - z - \varepsilon < a_j$ (given that $b_j - a_j \le 2z$); since $p - \varepsilon$ is not an atom of F_i (by (j)) we have $p + z - \varepsilon \in \operatorname{supp} F_j$ (by (h)). Also, if $p + \delta < b_j - z$ then $p + \delta < b_i$ by (a) and hence (again using $b_j - a_j \le 2z$) we have $p + z + \delta \in \operatorname{supp} F_j$ by (h). Since $b_j \in \operatorname{supp} F_j$ by definition, we have r_j

 $\equiv \min(b_j, p+z+\delta) \in \text{supp } F_j$. Now, since $b_i \leq a_i + 2z$ and $b_i \geq b_j - z$ (by (a)) we know that $K_j(\cdot, F_i)$ is strictly concave on $(p+z-\varepsilon, r_j)$. But then j's profit on some subset of $(p+z-\varepsilon, p+z+\delta)$ exceeds its profit at one of the endpoints of this interval. Since the latter must equal its equilibrium profit, the gap in supp F_i is not compatible with equilibrium.

(1) If $a_j + z < b_i$ then $[a_j + z, b_i] \subset \text{supp } F_i$: This follows from an argument similar to that in (k).

(m) If $b_j - z < a_j + z$ (i.e. if $b_j - a_j < 2z$) then supp $F_i \cap (b_j - z, a_j + z) = \emptyset$ or $\{b_i\}$: If $p \in \text{supp } F_i$ and $b_j - z then <math>p$ is an atom of F_i by (h), so that $p = b_i$ by (j).

(n) If $a_i > a_j - z$ for i = 1, 2 then $b_j > a_i + z$: Since a_i is not an atom of F_i (by (j)) we have $a_i + z \in \text{supp } F_j$ (by (h)). Hence $b_j \ge a_i + z$. If $b_j = a_i + z$ then $b_j - a_j < 2z$ (since $a_j > a_i - z$), so that a_i is an isolated member of supp F_i (by (m), using $b_j - z = a_i$), contradicting (j).

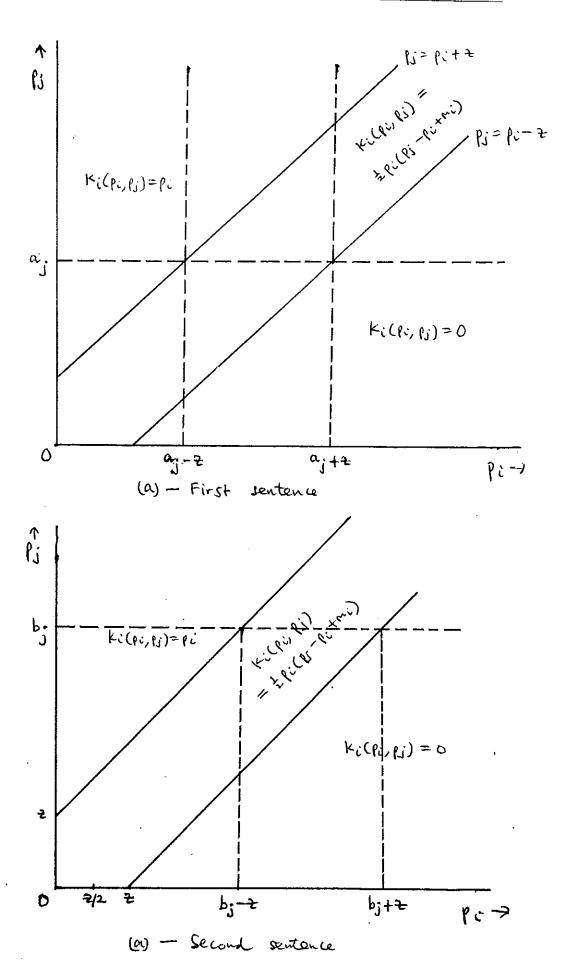
(o) If $a_i > a_j - z$ for i = 1, 2 then b_j is an atom of F_j if and only if $b_j - a_j < 2z$: If $b_j - a_j < 2z$ and b_j is not an atom of F_j then $b_j - z \in \text{supp } F_i$ by (h) (since $b_j + z > a_i + 2z \ge b_i$). Since a_j is not an atom of F_j , we also have $a_j + z \in \text{supp } F_i$. But then $K_i(\cdot, F_j)$ is continuous and strictly concave on $[b_j - z, a_j + z]$, which means that i's profit cannot be maximized at both endpoints, where it must attain its equilibrium profit. Hence b_j is an atom of F_j . Now assume that $b_j - a_j = 2z$. Then $a_i < a_j + z$ (= $b_j - z$) $< b_i$ (the second inequality by (n)), so that by (k) and (1) we have supp $F_i = [a_i, b_i]$. If F_j has an atom at b_j then $K_i(\cdot, F_j)$ jumps down at

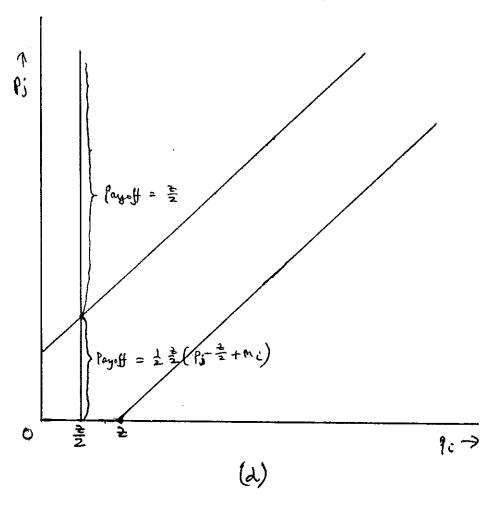
 a_j + z, contradicting the (a.e.) constancy of $K_i(., F_j)$ on supp F_i . So b_j is not an atom of F_j .

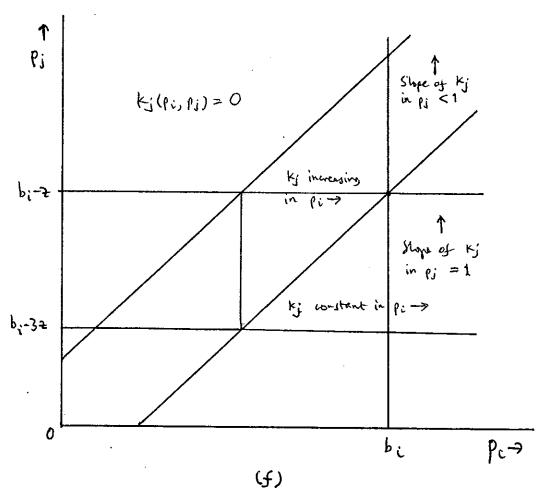
We can now show that every equilibrium of $\Gamma(x_1^{},\,x_2^{})$ in which $b_i^{}$ - $a_i^{} \leq 2z$ is of type T.

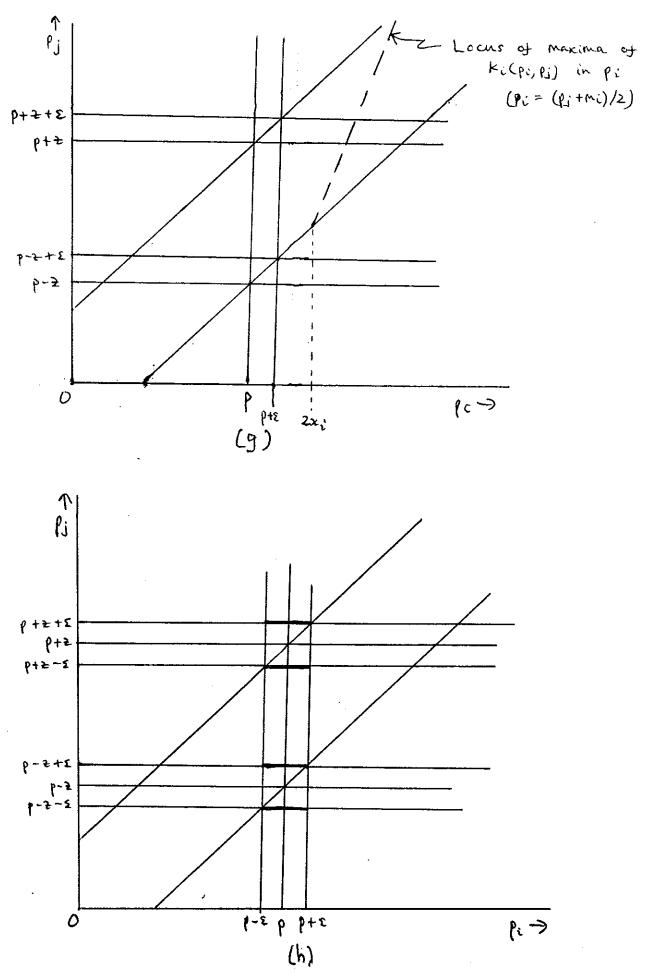
Type T2: If $a_i = a_j - z$ then (k), (1), and (m) imply that supp $F_j = [a_j, b_j]$, and supp $F_i = [a_j - z, b_j - z]$ or $[a_j - z, b_j - z] \cup \{b_i\}$. In the first case $b_j - z$ is an atom of F_i and b_j is not an atom of F_j by (e); in the second case b_j is an atom of F_j (otherwise i's payoff in $(b_j - z, b_i)$ exceeds that at $b_j - z$ and at b_j , as in the proof of (o)), and b_j is an atom of F_j .

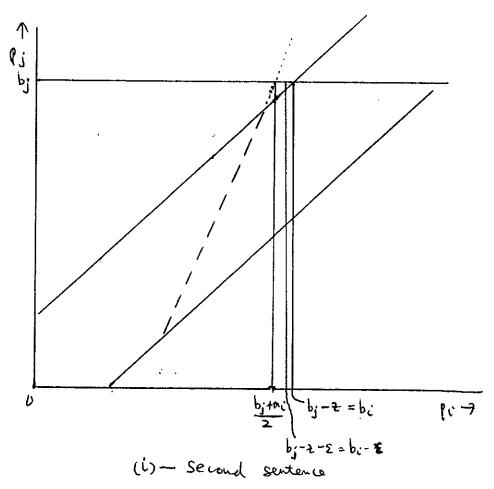
(We can further refine these results by using the constraints on a_i and b_i to rule out some sorts of equilibria for particular ranges of (x_1, x_2) . For example, if (x_1, x_2) is in some range around (0.27, 0.27) then any equilibrium is either of type T1 with $b_i - a_i < 2z$ for i = 1, 2 or of type T2 with $b_i > b_j - z$.

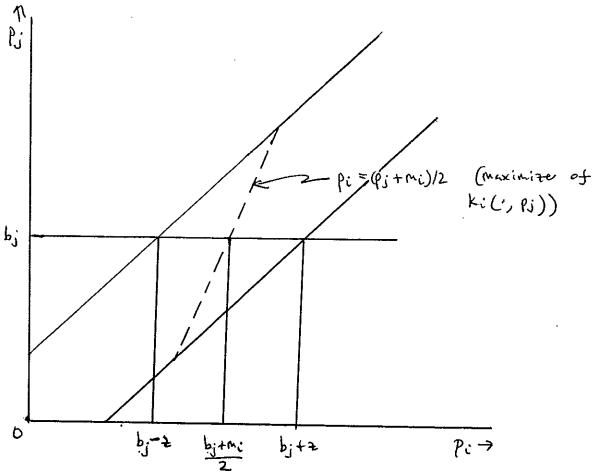












(i) - Sixth sentence

