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Abstract

Using a partly analytical, partly computational approach we
find and study a mixed strategy equilibrium in Hotelling”s model of
spatial competition (in which each of two firms chooses a location in a
line segment, and a price). 1In the equilibrium we find, the firms
randomize only over prices. They choose locations close to the
quartiles of the market. The support of the equilibrium price strategy
of each firm is the union of two short intervals, and has an atom of
approximate size 0.73 at the highest price. The equilibrium can be
interpreted as one in which the firms charge a relatively high price

most of the time, and occasionally hold a "sale".




1. Introduction

Hotelling [1929] formulated a natural model of the choice of

location and price by firms. He assumed that consumers are distributed

uniformly over a line segment, and travel, at a constant cost per unit, to a
firm to buy one unit of a good. FEach of two firms chooses a location and a
price, and each consumer chooses to buy from the firm for which price plus
travel cost is lowest. Hotelling”s work has given rise to a large literature,
partly because the "location" variable may be given a number of
interpretations-—-for example, as the quantity of some "characteristic"
possessed by a good. However, under Hotelling”s original assumptions his
model has not been completely solved.

Hotelling assumed that the firms know the outcome of price
competition at each pair of locations; given the location of its opponent,
each firm chooses its position to maximize its profit, taking into account the
dependence of the equilibrium prices on locations. (That is, Hotelling sought
a pure strategy subgame perfect equilibrium of the extensive game in which the
firms first simultaneously choose locations, then simultaneously choose
prices,) Intuition suggests that in equilibrium, some distance will separate
the firms: if they locate at the same point then by the standard argument of
Bertrand, price will be driven down to unit cost, while if they separate, the
forces of competition should be weaker, and they should be able to earn
positive profits. Hotelling made this argument (see his p. 54), but
nevertheless claimed that there is an incentive, under his assumptions, for
each firm to locate very close to the other.

However, Hotelling”s analysis is flawed, as is pointed out by

d”Aspremont, Gabszewicz, and Thisse [1979]. (Lerner and Singer [1937] and




2
Smithies [1941], in early analyses, questioned Hotelling”s conclusion, and
studied variations in the model and solution, but apparently did not perceive
Hotelling”s error.) The problem is that the pair of prices proposed by
Hotelling is an equilibrium only if the firms are sufficiently far apart. In
fact, when the firms are close, d"Aspremont et al. show that there is no
price equilibrium in pure strategies,

There are a number of ways of avoiding this problem. For example,
the model may be modified by making the space of location an infinite line,
or a circle, rather than a line segment. Alternatively, the solution may be
changed so that the firms choose their actions sequentially rather than
simultaneously. There are contexts in which these modifications are
reasonable, but there are also cases where Hotelling”s assumptions seem to be
appropriate. (The attribute of a product can frequently be associated with
points in a line segment, and there is usually no natural sequence in which
the firms should move.)

Our approach is to follow a standard game—theoretic route and allow
the firms to randomize,l rather than restricting them to pure strategies.

We retain all Hotelling”s other assumptions, including the two-stage structure
of the solution. In the equilibrium we find, the location choices are pure,
while the firms randomize over prices. The equilibrium locations are
consistent with the intuitive argument given above. On the line segment

{0, 1], the firms locate approximately 0.27 from each endpoint, so that they
are separated by nearly half the market. (Throughout, we measure the

location of firm 1 by its distance from 0O, and that of firm 2 by its

distance from 1. Note that the equilibrium location pair (0.27, 0.27) is

quite close to (0.25, 0.25), at which total transport cost is minimized.) If
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this is the only equilibrium, and the game is played a finite number of times,
then the only subgame perfect equilibrium of the repeated game consists of
independent repetitions of this equilibrium. Thus, in this case the model
predicts that the firms will choose constant locations (or product
charcteristics), while varying the price they charge from day to day.

The nature of this price variation is particularly interesting.

Note that because of the assumption of constant unit travel cost, for each
price P, charged by firm i there is a critical price of firm j below which all
consumers buy from j. We say that this critical price just "undercuts" Py
The equilibrium price variation at a range of locations around the equilibrium
location pair takes the following form. The firms randomize over two disjoint
intervals of prices. Each firm chooses its price either from an interval
immediately below a relatively high price (which it charges with positive
probability), or from an interval immediately below the price which just
undercuts its rival”s highest price, Each of the prices in this lower
interval is a best response to one of the prices in the rival”s upper
interval. Thus each firm either charges a relatively high price, or posts a
"sale"2 price which is a best response to one of its rival”s high prices. At
the location equilibrium the probability of holding such a sale is small
(around 0.3%, or one day per year!); the equilibrium price strategy is given
by the dashed line (labelled z=0.46) in Figure 1.

At location pairs far from the equilibrium, at least one firm
randomizes over a single interval of prices, but high prices and low prices
are still more likely than ones in between if the location pair is not too
asymmetric. The equilibrium price strategies at a number of symmetric

location pairs are shown in Figure 1. The equilibria vary smoothly with the
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The value of z is the distance between the firms.
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strategy for each firm is to set a price of O with probability one;

z = 0.5, it is to set a price of 1 with probability one.

equilibrium (0.27, 0.27), the value of z is 0.46.

In the location
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location pair, and converge to the pure equilibria when the latter exist. As
the firms get closer they first charge more variable prices, putting positive
but decreasing weight on the highest price; then they charge less variable
and lower prices, putting positive weight on no single price, until the
highest price they charge approaches zero.

In order to analyze the equilibrium locations, it is necessary first
to study the equilibrium price strategies at each location pair. It is known
that for a range of location pairs there is a pure price equilibrium (the one
found by Hotelling). We prove that for these location pairs there is no mixed
equilibrium (with a minor qualification--see Proposition 1 in Section 3). The
structure of the mixed equilibria at the remaining location pairs is quite
complex, and a purely analytic approach appears to be impossible. For a
subset of these location pairs (region S of Figure 3) we show that any
equilibrium has a very specific form (see Proposition 3). We reduce the
problem of calculating such an equilibrium to that of finding a solution to
three (or, in some cases, two or one) highly nonlinear simultaneous equations
in as many unknowns, and checking that the solution satisfies a number of
inequalities.

We have computed an approximate solution to these equations (and
have checked that it satisfies the inequalities), at a large number of location
pairs, by using a grid search procedure. Although this procedure (the details
of which are given in Appendix 2) is very (CPU-)time-consuming, it has the
advantage that no solution is unreachable, in the sense that for each solution
there is an initial grid such that the procedure converges fo that solution.
Since we used a variety of initial grids, we can thus be reasonably certain

that the approximate solution we found is the only one. Further, there are




two reasons why the approximate solutions, which constitute e-equilibria for ¢
< 10_7, are close to exact equilibria of the same type. First, in those cases
in which the solution is a root of a single continuous function of one
variable (region T2 of Figure 3), this follows (given the Intermediate Value
Theorem) from checking that on each side of the approximate solution the
function has different signs. When the simultaneous solution of more than one
equation is involved, a complete analysis of this sort is more difficult
(although an approximate solution which is not close to an exact solution is
still, of course, a very "unlikely" occurence). Second, if, as seems likely,
the approximate solution we found is the only one, then, given that an exact
solution exists (which follows from the results of Dasgupta and Maskin
[1982]), our approximate solution must be close to an exact one. In summary,
at each location pair in S (which includes the locational equilibrium (0.27,
0.27)), there exists an equilibrium in prices of an specific form, and the
evidence strongly suggests that this equilibrium is unique, and close to the
e—-equilibrium we have found.

At location pairs which are outside S and at which there is no pure
price equilibrium, our analysis is less complete. We show that any
equilibrium satisfying a certain condition must have the same form as those in
S (Proposition 3). We have found approximate equilibria of this type, using
the techniques above. The first argument above again shows that (in region
T2) the approximate equilibria are close to exact ones. Finally, although the
evidence for a unique equilibrium is not as strong in this region as it is in
S, we show that as the distance between the firms goes to zero, all equilibria
approach the pure one in which each firm charges a price of zero (Proposition

2).
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Having computed price equilibria at a large number of location
pairs, we can construct the profit function of the location game. This game
has a unique pure equilibrium (0.27, 0.27), as described above.

Many of our analytical results on the price
equilibria (see Appendix 1) apply to a much more general model in which the
distribution of consumers is nonuniform, the travel cost function is
nonlinear, and the amount demanded by each consumer depends on price. Under
assumptions close to those of Hotelling, presumably the equilibrium in
locations is also similar; however, its precise form requires a separate

computation.

2. The Model
Consumers are uniformly distributed on the line segment [0, 1]. We
normalize the cost of travel to 1 per unit distance. Each of two firms

chooses a location in [0, 1]. Let 3] be the distance of firm 1 from 0, and

let X, be the distance of firm 2 from 1. Since the problem is symmetric, we

can assume that firm 1 locates to the left of firm 2 (i.e. x, + x2 S_l). Let

1

Py be the price charged by firm i, and let z = 1 - x. -~ Xos the distance

1

between the firms. If Py < pj - z, all consumers buy from firm i, while if

p. - 2z < 1 < pj + z, the fraction Xy

J

does so. (Whenever the indices i and j appear in the same expression, i # j.)

+ (pj - Py + z)/2 = (pj - Py + 1 + X, - xj)/2

The division of consumers when Py = pj - z is unimportant so long as firm i
gets fewer customers than it does when Py is slightly smaller than pj - z (and
similarly when p; = pj + z); for convenience we assume that, given pj, the
profit of i is continuous in Py from above. The cost of production is zero.

For each pair of locations (xl, XZ)’ let F(xl, x2) be the game in which the
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strategies of the firms are prices. The payoff of firm i in P(xl, xz) is

1 if Py < pj -z
= — { - +
K, (p;» pj) pi(pj p; + mi)/z if Py =2 <p; < Py t+ z (1)
0 if pj + z S_pi,
where m, = 1+ X, - Xj' (An example is shown in Figure 2.) Given the symmetry

of the problem, we can use the equilibrium payoffs in F(xl, XZ) when Xy + XZ_S
1 to define the equilibrium payoffs in P(xl, x2) for any location pair

(Xl’ X2)' Let Ei(xi, xj) be an equilibrium payoff of firm i thus defined.
Then in the location game T, each firm i chooses X, and receives the payoff
Ei(xi’ xj). We seek a Nash equilibrium of TI'. That is, a pair of locations
with the property that each firm, knowing how the equilibrium prices (and
hence its profit) depend on locations, chooses a position which maximizes its
profit given the position of its opponent. In order to find a Nash
equilibrium of T, we first study the Nash equilibria of P(xl, XZ) for each
pair (Xl’ XZ) with x, + x, < 1.

1 2 -

3. Equilibrium in the Price-Setting Games

For those location pairs (Xl’ xz) at which P(xl, x2) has a pure

equilibrium, the following result provides a complete analysis.

Proposition 1i: EE_(I + (Xi - xj)/3)2 2-4(Xi + 2Xj)/3 for i =1, 2

(region P of Figure 3) then P(xl, X2) has a unique equilibrium, which is pure,

with p; = 1+ (xi - Xj)/3 and a profit for i of glmeggiwf gj2/3223 for i =1,

.

2. Ef_xl + X, = 1 and every consumer has a finite reservation price then

F(Xl, x2) has a unique equilibrium, which is pure, with P =Py = 0 and

profits of zero. For no other location pair is there a pure equilibrium.
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Figure 2:

The payoff function in a price-setting game

The payoff Ki of firm i as a function of (pi, pJ) at the location pair

(0.27, 0.27).
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Figure 3: Types of equilibrium in the price-setting games P(xl, x2)

The solid lines separate the regions Tl, T2, and P; the dotted lines
subdivide Tl and T2. Region S is the area below the dashed line. 1If (Xl’ x2)
is in P, or on the line x, + X, = 1, the unique equilibrium of I'(x,, x,) is
pure. In region S an equilibrTum must be of type T. In regions Tl and T2 we
find equilibria of type T satisfying the following conditions.

et

Tla: b, — a

2z for i=1, 2

i i
lei: bi - ay < 2z and bj - aj = 2z
Tlc: bi - ay < 2z for i=1, 2
TZai: bl = bj -z

T2bi: b, > b. -z




The equilibrium in region P is the one found by Hotelling. The
extent of P is established by d“Aspremont et al. [1979], who also show that
both equilibria are unique within the class of pure equilibria. We prove in
Appendix 1 (see (c), and the discussion after (i)) that there are no mixed
equilibria in these cases. The restriction of finite reservation prices is
very weak. Without it, there are mixed equilibria when Xy + Xy = 1 in which
each firm charges arbitrarily high prices with positive probability;3 an
equilibrium of this type does not exist for any other location pair (see (i)

of Appendix 1). The next result (a consequence of (f) in Appendix 1) gives

additional support to the equilibrium (0, 0).

Proposition 2: Every equilibrium of r(xl, XZ) converges to the pure

equilibrium (p,, p,) = (0, 0) as x, + %, »~ 1.
—_— 1 2 — 1 2

If (Xl’ XZ) does not satisfy the conditions in Proposition 1, then
P(xl, x2) has a mixed strategy equilibrium (by the results of Dasgupta and

Maskin [1982]). Let (F FZ) be an equilibrium (each Fi being a cumulative

1’

probability distribution function over prices), and let a; and bi be
respectively the smallest and largest prices in the support of Fi’ for 1 = 1,
2. We show that for a range of location pairs, (Fl’ FZ) must take a specific

form. Define an equilibrium to be of type T if bi - ay £ 2z, each Fi is

atomless except possibly at bi’ and either (i) the support of each Fi is

[ai, bj—z] U [aj+z, bi]’ and each Fi has an atom at bi if and only if bi - a, <
2z (type Tl), or (ii) the support of Fj is [aj, bj], that of P is [aj—z,
bj—z] U {bi} with bi Z_bj -z (i=1 or 2), Fi has an atom at bi’ and Fj has

an atom at bj if and only if bi > bj - z (type T2). The nature of the
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supports of Fl and F2 in a type Tl equilibrium with bi - ay < 2z for 1 =1, 2
is shown in Figure 4. Note that each price in the lower interval [ai, bj—z]
charged by i just undercuts (in the sense used in the Introduction) a price in
j“s upper interval [ai+z, bj]. Our result (proved in Appendix 1) is as

follows.

Proposition 3: Every equilibrium of r(xl, XZ) in which bi - ay < 2z

for i = 1, 2 is of type T. lﬁ_(xl, XZ) is in region S (see Figure 3) then

bi - ay < 2z for i = 1, 2 in every equilibrium of r(xl, xz), so that every

equilibrium of P(xl, xz) is of type T, and there is at least one such

equilibrium,

(The arguments in Appendix 1 impose a number of additional
restrictions on any equilibrium. See, in particular, (a) and (i).) Now, if
(Fl’ FZ) is an equilibrium of type T, then a standard argument4 shows that
each Fi is differentiable on the interior of its support. This means that Fj
is such that the profit Ki(p, Fj) of i is constant (say equal to Ei) on the
interior of the support of Fi’ and on the union of this with bi if Fi has an
atom at bi' (Roughly, each firm must be indifferent between actions taken
with positive probability.) Conversely, if Fj satisfies these conditions, and
Ki(p, Fj) S-Ei for all p outside the support of Fi’ then (Fl, F2) is an
equilibrium.

Now, the condition that Ki(p, Fj) be constant on the inferior of the
support of Fi is equivalent, upon differentiation, to the condition that Fj
satisfy an integral-differential equation. This equation is hard to work
with, but may be differentiated again and, in the case of a type Tl

equilibrium, solved, subject to the condition Fj(aj) = 0, to give
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Figure 4: The supports of the equilibrium strategies in a type Tlc

equilibrium of T(xl, XZ)

In region Tlc, the supports of the equilibrium strategies in I'(x,, x,) take
the form shown. In the other regions, the forms of the supports are indicated
in Figure 3. (For each value of p., p. = (p; + m,)/2 maximizes the payoff
of firm i in (pj-z,pj+z).)3 - J -
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-a.
P prz, )
1 - exp( 2xi) + Ajexp(igz) {ph(s,xi,z)ds if aj‘s p < bi—z
F.(p) = (2)
J b
bj—p p-z J
(l—sj)exp( 2Xj) - Bjexp(— 3;30 g h(s,xj,z)ds if ai+z <pX« bj’

for some Aj and Bj’ where Gj is the size of the atom in Fj at bj’ and
h(s,x,z) = (s—z)—zexp((s—z)/ZX). (The integrals can be expressed as infinite
series by making the substitution t = (s-z)/2x, integrating by parts, and
using the fact that f(et/t)dt = In|t| + ; tn/nn!.) The case of a type T2
equilibrium can be dealt with in a similZ;lfaShion.

Thus if Fj is defined by (2), the derivative of Ki(p, Fj) is
constant on the interior of the support of Fi. By substituting Fj into the
expression for Ki(p, Fj) for i = 1, 2, we obtain conditions on (ai, bi, Si,
Ai’ Bi) for i = 1, 2 which ensure that this derivative is zero. A number of
other conditions have to be satisfied for (Fl’ FZ) to be an equilibrium: 1if
Ki(p, Fj) = Ei for a; <pX bj - z then we must have Ki(p, Fj) = Ei for aj + z
<pK« bi; we need Fg(p) > 0 for all p in the support of Fi’ and Fj(bi—z) =
Fj(ai+z), so that Fj is a distribution function; and we need Ki(p, Fj) S_Ei
for all p outside the support of Fi' We obtain from these conditions ten
equations and eight inequalities which the ten variables (ai, b,, §,, A,, B,)
(i = 1, 2) must satisfy. Simple algebraic manipulations reduce this system to
at most three equations in three variables (depending on the type of
equilibrium), together with some inequalities.

These arguments establish that a solution of this system defines an

equilibrium; Proposition 3 guarantees that if (Xl’ xz) is in S then every
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equilibrium of P(xl, x2) is associated with a solution of the system.

As discussed in the Introduction and in Appendix 2, we computed
approximate solutions to the equations, and checked that they satisfied the
inequalities, at a large number of location pairs (Xl’ XZ)' The equilibrum
profit El(xl’ xz) of firm 1 associated with this collection of price
equilibria is shown in Figure 5. An analysis of this profit function forms

the basis for our study of the location game T.

4, Equilibrium in Locations

The information in Figure 5 allows us to find, for each value

of Xy, an approximate best response x, for firm 1, For example, when x

1 2

= 0 this best response is between 0.3 and 0.4. An examination of the

change in the best response with x, indicates that there is a unique

2
pure equilibrium (x, x) with 0.266 < x < 0.274 (the difference between
the payoffs at adjacent points differs by enough to exceed possible

computational errors). The equilibrium price strategy when x = 0.27

(and also when x takes several other values) is shown in Figure 1.
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Appendix 1: Proofs

Here we prove Propositions 1, 2, and 3, and establish some
additional conditions which equilibria of P(xl, XZ) must satisfy. First we
restrict the values a; and bi of the endpoints of the supports of any
equilibrium strategies, by using domination arguments. For example,

Ki(aj—z, pj) > Ki(pi, pj) for any price Py < aj - z, for g&i_pj Z_aj; hence
a, > aj - z (see (a) below). For those locations in P, these restrictions
together imply that a; = bi =1 + (xi—xj)/B for 1 = 1, 2, proving Proposition
1. They also imply that bi - ey £ 2z for every (xl, XZ) in S, so that the
second sentence of Proposition 3 follows from the first.

To complete the proof of Proposition 3, we show that the prices at
which the equilibrium strategies can have atoms lie in a restricted set. For
example, if Fi has an atom at p, then F, does not have an atom at p — z or at
p + z (since j can do strictly better by charging slightly lower prices). In
particular, we show that if bi -ay £ 2z then each equilibrium strategy can
have an atom only at bi (see (j) below); this leads fairly directly (see (k)
through (o)) to the conclusion that every equilibrium is of type T. Finally,
the straightforward proof of Proposition 2 (which uses domination arguments
again) is given in (£f).

In our proof, we repeatedly use the following properties of the
payoff function Ki (see (1) and Figures 2 and 4):

for fixed pj, K.i is linear in Py (with slope 1) on [O, pj—z), jumps
down at pj—z (if Xj > 0), is strictly concave (with slope less than 1) on
(pj—z, pj+z), jumps down at pj+z (if X, > 0), and is zero above pj+z;

for fixed pj, the maximum of Ki’ if attained in (pj—z, pj+z), is

attained at p; = (pj + mi)/z;




13

for fixed P, Ki is zero on [0, pi—z), linear in pj (with slope
pi/2) on (pi—z, pi+z), and constant in pj above Py + z.
(Most of our arguments are easy to follow when reference is made to a diagram |
like Figure 4; space constraints prohibit the inclusion of all the
appropriate diagrams.)

For any set Q of prices of firm i, we say that p?* strongly
dominates pg on Q when Ki(pg*, pj) > Ki(pi, pj) for all pj € Q and all Py in an
open neighborhood of pi. We write Ai = [ai, bi]; if pi* strongly dominates
pi on Aj then p? is not in the support of any equilibrium strategy of 1i.

1f (Fl’ F2) is an equilibrium of P(xl, XZ) then a; 20 fori=1, 2
since each firm can guarantee a profit of zero by setting a price of zero.

We also have the following.

(a) a, —z< a, < aj + z and bj -z < bi_i bj + z for i =1, 2:
Since p; = aj - 2z strongly dominates any lower price on Aj we have a; pd
aj - z and hence aj -z S_ai S_aj +z. If z >0, or z =0 and bj > 0, then

Ki(p, Fj) =0 if p > bj + z, while Ki(p, Fj) > 0 for some p S_bj + z (for

example for p = z/2 if z > 0), so that bi S.bj + z. If z =0 and bj = 0 then

Kj(Fj’ Fi) = (0, so that bi

Hence in both cases bj -2z < bi S_bj + Z.

0 (otherwise Kj(p,'Fi) > 0 for some p > 0).

(b) If p> 0 is an atom of Fi and X, >0 (xj > 0) thenp - z (p + z)

is not an atom of Fj: Under these conditions, the profit of j jumps down at

p-2z (p+ 2z), so this cannot be an atom of Fj'

(¢) If 2z = 0 and bi exists for some i, or if every consumer has a

finite reservation price, then a; = bi =0 for i =1, 2 (i.e. the only

equilibrium is pure, each firm charging the price zero): If bi exists then
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bj exists and bj = bi (by (a)). Let bi bj =b, If b >0 then it is not an

0

atom of both Fi and Fj (by (b), since z 0 means that X, > 0 for some 1i).
Suppose b is not an atom of Fj' Then Ki(b, Fj) is equal to i“s equilibrium
profit (see (d) of Fact (B) in Osborne and Pitchik [1984]). But Ki(b, Fj) = 0,
while Ki(p, Fj) > 0 for 0 < p < b. Hence we must have b = 0. If every
consumer has a finite reservation price then Ki(p, q) = 0 for all q if p is
large enough, say if p Z_E. Hence bi < 5; the argument above establishes

that b, = b, = 0.
1 J

This proves the second sentence of Proposition 1. From now on, we

assume that z > O.

(d) a; > 0 for i = 1, 2, and the equilibrium profit of each firm is

positive: This follows from the fact that firm i can guarantee a positive

profit by setting the price z/2.

(e) If x, >0 and b, = b, — z then b, is an atom of F, and b, is
- ] - 1 J 1 1 J —

not an atom of Fj: I1f bi is not an atom of Fi then Kj(bj’ Fi) = (0 is the

equilibrium profit of j (see (d) of Fact (B) in Osborne and Pitchik [1984]).
This contradicts (d), so that bi is an atom of Fi’ and so bj is not an atom

of Fj (by (b)).

In the special cases in which X5 = 0 for some 1, the proofs of some
of the subsequent results require additional arguments (to avoid the use of
(b) and (e), for example); since the length of these arguments is out of
proportion to their significance, we omit them. Thus, in all the proofs below

we assume that X, >0 for i=1, 2.
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The next result implies Proposition 2.

(£) bi +0 for i =1, 2 as z » 0: 1If K.j(bi -z, bi) < Kj(bi - 3z,
bi)’ then every pj > bi - z is strongly dominated (by pj - 2z) on Ai’ so that
b, = b, - z., But then b, is dominated (by b, - 3z) on A,, so that b, is not

j i i i i 3
an atom of Fj, contradicting (e). Hence Kj(bi -z, bi) _>__Kj(bi - 3z, bi), or

(bi - z)(bi - (bi - z) + mj)/Z Z_bi - 3z, or bi < (2 + xi)z/xi, from which the

result follows (recall that we are assuming xi > 0).

(g) If p is an atom of Fi then p Z_in: If p is an atom of Fi then

Kj(., Fi) jumps down at p - z (if p > z), and at p + z, so that supp Fj
contains no point in (p -~ z, p - z + €) or in (p + 2z, p + z + €) for some € >
0. But then Ki(., Fj) is increasing on (p, min(p + €, 2xi)) if p < in,

contradicting the fact that p is an atom of Fi'

(h) 1f p € supp Fi is not an atom of Fi then either p — z € supp Fj or
p + z € supp Fj: If neither p - z nor p + z is in supp Fj then supp Fj contains
no point in (p -2z — e, p~2z +¢)orin (p+ 2z -~ €, p+ 2z + ¢) for some ¢ >
0. Now, since p € supp Fi’ we have p + z Z_ai + z Z_aj and p - z S_bi - Z S_bj
(by (a)), so that aj <p+z-¢ and bj > p-2z+ e, Hence supp Fj intersects
(p-2z+¢e, p+ 2z - c¢), so that, given the other restrictions on supp Fj’

Ki(., Fj) is strictly concave on (p - e, p + ¢). Hence p is isolated, and

therefore an atom of Fi'

(i) bi _<__(bj + mi)/2 for i = 1, 2, and hence bi S.yi = min(1l +
(xi - xj)/3, 2(1 - xj), 3(1 - Xi) - xj) for i = 1, 2: We first show that (bj
+ mi)/2 Z_bj - 2z, 1f not, then P; = bj - z strongly dominates any higher

- ¢ dominates bi

price on Aj’ so that bi = bj - z (by (a)). Further, bi
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(though not strongly) on Aj’ for some € > 0, so that bi is not an atom of Fi’
contradicting (e). Two cases remain. If (bj + mi)/2 Z_bj + z then the result
follows from (a). 1If bj -z S_(bj + mi)/2 S_bj + z, then (bj + mi)/Z
dominates any higher price on Aj’ so that bi i(bj + mi)/2 for i =1, 2.
Combining these two inequalities yields bi <1+ (xi - xj)/3; combining bi <

(bj + mi)/z and bj S-bi + z (see (a)) yields bi < 2(1 - xj) and bj <

3 - x.) - x..
j i

Now, for each aj, let Ui(aj) be the lowest price of firm i which is
not strongly dominated on [aj, yj]ID Aj (the inclusion from (i)). Obviously
then we must have a; Z_Ui(aj) for i = 1, 2; these restrictions are helpful
below. The form of Ui can be found by using the fact that if 1] is less than
min(z(aj - xi), 2(aj + xi/3)) then the best potential dominator is (pi + z +
mi)/2 (i.e. 1if any price dominates P> then this one does), while if Py is
between 2(aj - Xi) and in then the best potential dominator is aj + z, and if
Py exceeds max(ZXi, 2(aj + Xi)/3) then the best potential dominator is aj +
m; ~ Pe The details are very messy, and we do not give them here. Obviously,
Ui is nondecreasing; an example is shown in Figure 6.

By combining the conditions a; Z_Ui(aj) and bi S-Yi for i =1, 2, we
can obtain two useful restrictions on the nature of equilibria of F(xl, XZ).

Let a? be the minimal value of a, such that a, > Ui(aj) and a, Z_Ui(ai) for

i i~

% 1 s , % =
some aj. Then a, > aj in any equilibrium of F(xl, XZ)- Thus if a¥ \f} for
i =1, 2 (as is the case in Figure 6) then the pure equilibrium (pl, pz) =
(Yl, YZ) is the only possible equilibrium of P(xl, xz). A very tedious
analysis of the functions Ui (i = 1, 2) (the details of which we omit) shows

that this is so for every (xl, XZ) in P; this completes the proof of

< 2z, This is

Proposition 1. Also, if Yy a? < 2z then we know that bi —a; £
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+ P.=p,*z pi=(pj+mi)/2

/

~p.=(p.+m.) /2
P; (pl mj)/

........................

pj=pi_z

s me e me s as Ve cre e

.......................

doewe pa 20 anssssensemsne e e

Figure 6: The functions U1 and U2.

For each value of a,, Ui(a.) is the smallest price of i which is not strongly
dominated. 1 J
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useful because our subsequent results use the assumption that bi - ai.S 2z;
we show that the only equilibria satisfying this assumption are of type T. A
computation shows that Yy T ai < 2z for i = 1, 2 whenever (xl, xz) is in S
(see Figure 3). Thus the second sentence of Proposition 3 follows from the
first (given the existence result of Dasgupta and Maskin [1982]), which

remains to be proved. From now on, we assume that bi - ay < 2z for i =1, 2.

(3) If p is an atom of Fi then p = bi: Suppose 5 is an atom of Fi'
Then Ki(B’ Fj) is equal to the equilibrium profit of i. We argue first that
Ki(" Fj) is decreasing on (5, 5 + ¢) for some ¢ > 0. Since Kj(., Fi) jumps
down at p -~ z and p + z, Fj has no support in (p - z, p - z + ¢) or in (p + z,
5 + z + ¢) for some ¢ > 0. Since ay 5_5 S_bi, this means that aj S_E + z and
bj 2_5 - 2z + ¢ (using (a)). Hence Fj has some support in [5 -z + €, 5 + z].
But then Ki(., Fj) is strictly concave on (p, p + €); it is continuous at 5
(since neither 5 - 2z nor 5 + z are atoms of Fj (by (b))), so it is decreasing
on (p, p + €) (since Ki(g, Fj) is equal to i“s equilibrium profit).

Now, since Ki(., Fj) is decreasing on (5, 5 + €), Fi cannot have any
support in this interval. Assume that 5 < bi’ and let ; be the smallest price
above p which is in supp Fi' Since p Z_in (by (g)) and bi S_Z(l—xj) (by
(i)), we have bi 5_5 + 2z; since bi Z_; and bi - ay £ 2z, we have ai'z S -
2z. Therefore Kj(" Fi) is strictly concave on (5 -z, ; - z) and on (5 + z,
; + z) (since bi Z_ﬁ), so that the support of Fj in these intervals can
consist of at most a single isolated point in each interval, at which Fj has

an atom. Let these points be 9 and 495 let the size of the atom in Fj at A

be J(qk), and let
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ptz
£(p) = [p(q) - p + m)/2]3(q)) + ﬁiz (p(q - p + m;)/2)dF,(q)
b,
+pJ(ay) + £ pdF (q).
Ptz J

It is easy to check that f is concave. Also, it is immediate that

Ki(p, Fj) = f(p) if p < p < min(q + z, q - z), so that, by the argument above,
f is decreasing in this range. The concavity of f implies, therefore, that it
is decreasing for all p > 5.

We now argue that Ki(p, Fj) < f£(p) for all 5 <p s.;. This implies
that ; is not in the support of Fi’ contrary to our assumption, so that we
have 5 = bi’ completing the proof. First, note tht Ki(., Fj) jumps down at
q; + z and at 4y = 2. Second, observe that the expression for Ki(p, Fj) is
similar to that for £(p), except that if q, *+ z <p 5‘3 then the term in
square brackets is zero, while if 4y — Z <pX< ; then the multiplier of J(qz)-
is p(q2 - p + mi)/2 (rather than p). Now, Fj can have an atom at q; only if
4, Z_ij (see (g)), in which case 4, = P + m, Z_ij - (1 + (Xi - xj)/3) + m,
= in/3 + 4xj/3 if p < ;‘S 1+ (xi - xj)/3 (see (i)). Hence p(ql -p+ mi) >
0 for all p 5_5. Finally, if a4, -z < p then p(q2 - p+ mi)/2 < p(l - xj) <

P. So Ki(p, F,) < £(p) for all p<p< P

5~ z] C supp Fi: Suppose ay < pX<

bj - z with p ¢ supp Fi' By (a) we know that p < bi’ so there exist smallest

(k) If a, < b, - z then [a,, b
—— i i !

numbers ¢ > 0 and § > O such that p - ¢ € supp Fi and p + 8§ € supp Fi' Now, since
p-2z—-¢X bj - 2z we have p — 2z - ¢ < aj (given that bj - aj < 2z); since p

- ¢ is not an atom of Fi (by (j)) we have p + z — ¢ € supp Fj (by (h)). Also,

if p+ 6< bj - 2z then p + 8 < bi by (a) and hence (again using bj - aj < 2z)

we have p + z + & € supp Fj by (h). Since bj € supp Fj by definition, we have rj
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= mln(bj, p+ 2z + §) € supp Fj. Now, since bi < a, + 2z and bi Z_bj - z (by
(a)) we know that Kj(" Fi) is strictly concave on (p + z - ¢, rj). But then
j”s profit on some subset of (p+ 2z - e, p + z + 8) exceeds its profit at
one of the endpoints of this interval. Since the latter must equal its

equilibrium profit, the gap in supp Fi is not compatible with equilibrium.

(1) If aj + z < bi then [aj + z, bi] C supp Fi: This follows from an

argument similar to that in (k).

m) If b, —z < a, + z (i.e. 1if b, - a, < 2z) then su F, N (b, -
()__J 3 ( if b, ! ) ppl(J

Z, aj +2) =@ or {bi}: If p € supp F, and bj -z << pX< aj + z then p is an

i
atom of Fi by (h), so that p = bi by (j).

(n) If a, > a, — z for i =1, 2 then b, > a. + z: Since a, is not
= i 3 — — ] i i
an atom of Fi (by (j)) we have a; + z € supp Fj (by (h)). Hence bj Z-ai + z.

If b, = a, + z then b, - a, < 2z (since a, > a, — z), so that a, is an
J i J J ] 1 1

isolated member of supp Fi (by (m), using bj -z = ai), contradicting (j).

(o) 1f a; > aj -z for 1 = 1, 2 then bj is an atom of Fj if and
only if b, - a, < 2z: 1If b, - a, < 2z and b, is not an atom of F, then
] J J J J J
bj - z € supp Fi by (h) (since bj + z > a; + 2z Z_bi). Since aj is not an atom

of Fj, we also have aj + z € supp F But then Ki(" Fj) is continuous and

i.
strictly concave on [bj -z, aj + z], which means that i“s profit cannot be

maximized at both endpoints, where it must attain its equilibrium profit.

Hence bj is an atom of Fj. Now assume that bj - aj = 2z. Then ai < aj + z

(= bj -z) < bi (the second inequality by (n)), so that by (k) and (1) we have

supp Fi = [ai, b 1f Fj has an atom at bj then Ki(., Fj) jumps down at

i]°
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aj + z, contradicting the (a.e.) constancy of Ki(°’ Fj) on supp Fi. So bj is

not an atom of Fj'

We can now show that every equilibrium of F(xl, XZ) in which

bi -y < 2z is of type T.

Type Tl: 1If a; > aj -z for i = 1, 2 then (n), (k), (1), and (m)
imply that supp Fi = lai, bj -zl U [aj + z, bi] for 1 = 1, 2. By (o), bi is

an atom of Fi if and only if bi - ey < 2z,

Type T2: If a, = aj - z then (k), (1), and (m) imply that supp Fj

il

= [aj, bj]’ and supp Fi [aj - 2z, bj - z] or [aj -z, b, - 2z] U {bi}' In the

]
first case bj ~ z is an atom of Fi and bj is not an atom of Fj by (e); in
the second case bj is an atom of Fj (otherwise i”s payoff in (bj -z, bi)

exceeds that at bj - z and at b,, as in the proof of (o)), and bi is an atom

i
of F,.
i

(We can further refine these results by using the constraints on a
and bi to rule out some sorts of equilibria for particular ranges of
(Xl’ XZ)' For example, if (xl, XZ) is in some range around (0.27, 0.27) then any
equilibrium is either of type Tl with pi - ay < 2z for i =1, 2 or of type T2

With b. > b. = Z.
1 J




21

Appendix 2: Notes on Computational Techniques and Accuracy

Techniques

As discussed in section 3 above, the problem of finding an
equilibrium can be reduced to that of simultaneously solving one, two, or
three equations (depending on the value of (Xl’ XZ)) in as many unknowns, and
checking that the solution satisfies a number of inequalities. To find an
approximate solution of the equations for a particular pair (Xl’ xz) of
locations, we evaluated their left-hand sides at each point in a grid, found
the point in the grid which generates the lowest sum of absolute values of
these left-hand sides, and then repeated the procedure on a smaller grid. We
stopped this iterative procedure when we obtained an absolute value for the
sum of the left-hand sides less than 10_7. We then used the resulting
parameter values to calculate equilibrium payoffs and equilibrium strategies,
and to check that the inequalities are satisfied. We carried out this
procedure for about 350 pairs (xl, x2) (which involved computations at 175
points, given the symmetry of the problem). All calculations were performed
by a DEC 20 computer, programmed in APL, with an internal precision of about

18 decimal digits.

Accuracy

1. The integrals in (2) can be expressed only as infinite series.
© b
Let I(t) = —et/t + 1n |t] + = tn/nn!. Then S h(s,x,z) = (I((b-z)/2x) -
n=1 a
I((a-2z)/2x))/2x (integrating as discussed in the text). We used the first 25

terms to approximate the infinite series in I. This approximation is better,
the smaller is the absolute value of the argument of I. For X, = %, = 0.27

(the approximate locational equilibrium) we have a = -p and b = -a, for the

integral in Fi(p) on [ai, bj -z], and a = p and b = bi for the integral in
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Fi(p) on [aj + z, bi] (see (2)). Given that a; % 0.5 and bi 1 for i=1, 2
in this case, (b - 2)/2x = -1.78 and (a - z)/2x ranges between -1.78 and
-1.85 in the first integral, and (b - z)/2x = 1 and (a - z)/2x ranges
between 0.93 and 1 in the second integral. This means that the omitted terms
in the infinite series are of the form tn/nn!, with -1.85 < t < 1 and n > 26;
the absolute value of the sum of all such terms is at most (l/26)[r26/26! +
r27/27! + oe.], where r = |t|, which is at most err26/26x26! (using an
upper bound for the Lagrange form of the remainder term in the expansion for
er). Given that -1.85 < £ < 1, this is less than 10—20, and hence the
approximation error is less than the computational error. As X, and X, vary,
this error changes. However, an analysis of the various cases shows that the
error does not exceed 10—14 at any of the points (xl, XZ) we studied.

2. The solution we find is also only approximate because we find
parameter values which solve the nonlinear equations only to within 10—7.
Since the length of the support of every equilibrium strategy is at most 1,
this means that the payoff of each firm varies by at most 10_7 on the support
(our solution guarantees that the derivative of the payoff is at most 10 ).
For prices outside the support, our computations (and in some cases
analytical arguments) show that the payoff is less than the equilibrium

payoff. Hence the equilibria we find are e—equilibria for e < 10—7.
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Footnotes

lIf the idea of firms randomly choosing a price is unappealing,

reference can be made to one of the other interpretations of mixed
strategies. The work on '"purification" (see Aumann et al. [1983] and
Milgrom and Weber [1981]) shows that, under certain conditions, a mixed
strategy equilibrium can be interpreted as a pure strategy equilibrium of a
game of imperfect information. Firms may not know precisely where the
consumers are. If they receive independent signals on this variable then
there may be an equilibrium in which they each choose an optimal pure
strategy for every signal they receive, in such a way that the prices induced
by the variation in the signal have the distribution given by the mixed
strategy. (Because of discontinuities in the payoff functions, the game we
analyze is not covered by the results of Milgrom and Weber. However, if we
approximate our game by one in which each player has finitely many pure
strategies, then the results of Aumann et al. apply.)

Gal-Or [1982] and Shilony and Zamir (unpublished work reported to
us in private correspondence) have previously obtained some preliminary
results on the outcome of allowing firms to randomize in Hotelling”s model.

2Varian [1980] interprets a mixed strategy as a policy of holding
"sales'"; this designation seems particularly appropriate here.

3Shmuel Zamir pointed this out to us in private correspondence.

4See, for example, Solution to Problem 17 on p. 294 of Karlin
[1959].
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Pp = Pp 7 2

Figure 4: The supports of the equilibrium strategies in a type Tlc
equilibrium of I‘(xl, xz)

In region Tlc, the supports of the equilibrium strategies in I'(x,, x,) take
the form shown. In the other regions, the forms of the supports are indicated

in Figure 3. (For each value of p;, P = (Pi+m)/2  maximizes Hha
Pogetf ef fim L in (h—a, bt %))







4 pj:pi+z /Iﬁé(pj+mi)/2

< p.=(p.+m.) /2
py=(pymy)/

e s e s

pj:pi_z

s emee st e e s vy .

P T R I I AR

Figure 6: The functions Ul and U2.

For each value of a,, Ui(a.) is the smallest price of i which is not strongly
dominated. ] J
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