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Abstract The basic theory of strategic and extensive games is de-
scribed. Strategic games, Bayesian games, extensive games with per-
fect information, and extensive games with imperfect information
are defined and explained. Among the solution concepts discussed
are Nash equilibrium, correlated equilibrium, rationalizability, sub-
game perfect equilibrium, and weak sequential equilibrium.

1. Introduction

Game theory is a collection of models designed to understand situations in
which decision-makers interact. This chapter discusses models that focus on
the behavior of individual decision-makers. These models are sometimes called
“noncooperative’.

2. Strategic games

2.1 Definition

The basic model of decision-making by a single agent consists of a set of possible
actions and a preference relation over this set. The simplest theory of the agent’s
behavior is that she chooses a member of the set that is best according to the
preference relation.

The model of a strategic game extends this model to many agents, who are
referred to as players. Each player has a set of possible actions and a preference
relation over action profiles (lists of actions, one for each player).

Definition 1 A strategic game with deterministic preferences consists of

e aset N (the set of players)
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and for each playeri € N
e aset A; (the set of player i’s possible actions)
e a preference relation 7; over the set X jenA; of action profiles.

A strategic game (N,(A;),(:Z;)) is finite if the set N of players and the set A; of
actions of each player i are finite.

The fact that each player’s preferences are defined over the set of action pro-
files allows for the possibility that each player cares not only about her own ac-
tion but also about the other players’ actions, distinguishing the model from a
collection of independent single-agent decision problems.

Notice that the model does not have a temporal dimension. An assumption
implicit in the solution notions applied to a game is that each player indepen-
dently commits to an action before knowing the action chosen by any other
player. Notice also that no structure is imposed on the players’ sets of actions. In
the simplest cases, a player’s set of actions may consist of two elements; in more
complex cases, it may consist, for example, of an interval of real numbers, a set of
points in a higher dimensional space, a set of functions from one set to another,
or a combination of such sets. In particular, an action may be a contingent plan,
specifying a player’s behavior in a variety of possible circumstances, so that the
model is not limited to “static” problems (see Section 3.1.1). Thus although the
model has no temporal dimension, it may be used to study “dynamic” situations
under the assumption that each player chooses her plan of action once and for
all.

A few examples give an idea of the range of situations that the model encom-
passes. The most well-known strategic game is the Prisoner’s Dilemma. In this
game, there are two players (N = {1,2}, say), each player has two actions, Quiet
and Fink, and each player’s preference relation ranks the action pair in which
she chooses Fink and the other player chooses Quiet highest, then (Quiet, Quiet),
then (Fink, Fink), and finally the action profile in which she chooses Quiet and
the other player chooses Fink. In this example, as in most examples, working
with payoff representations of the players’ preference relations is simpler than
working with the preference relations themselves. Taking a payoff function for
each player that assigns the payoffs 3, 2, 1, and 0 to the four outcomes, we may
conveniently represent the game in the table in Figure 1. (Any two-player strate-
gic game in which each player has finitely many actions may be represented in a
similar table.)

This game takes its name from the following scenario. The two players are
suspected of joint involvement in a major crime. Sufficient evidence exists to



Player 2
Quiet Fink
Quiet 2,2 0,3

Player 1
AL Fink 3.0 1,1

Figure 1. The Prisoner’s Dilemma.

convict each one of a minor offense, but conviction of the major crime requires
at least one of them to confess, thereby implicating the other (i.e. one player
“finks”). Each suspect may stay quiet or may fink. If a single player finks she
is rewarded by being set free, whereas the other player is convicted of the major
offense. If both players fink then each is convicted but serves only a moderate
sentence.

The game derives its interest not from this specific interpretation, but be-
cause the structure of the players’ preferences fits many other social and eco-
nomic situations. The combination of the desirability of the players’ coordinat-
ing on an outcome and the incentive on the part of each player individually to
deviate from this outcome is present in situations as diverse as duopolists set-
ting prices and countries involved in an arms race.

Another example of a strategic game models oligopoly as suggested by
Cournot (1838). The players are the n firms, each player’s set of actions is the
set of possible outputs (the set of nonnegative real numbers), and the preference
relation of player i is represented by its profit, given by the payoff function u;

defined by
ui(q,...,qn)=q:P (Z %‘) —Ci(qg:),
j=1

where g; is player i’s output, C; is its cost function, and P is the inverse de-
mand function, giving the market price for any total output. Another strategic
game that models oligopoly, associated with the name of Bertrand, differs from
Cournot’s model in taking the set of actions of each player to be the set of possi-
ble prices (which requires profit to be defined as a function of prices).

A strategic game that models competition between candidates for political
office was suggested by Hotelling (1929). The set of players is a finite set of can-
didates; each player’s set of actions is the same subset X of the line, representing
the set of possible policies. Each member of a continuum of citizens (who are not
players in the game) has single-peaked preferences over X. Each citizen votes for
the candidate whose position is closest to her favorite position. A density func-
tion on X represents the distribution of the citizens’ favorite policies. The total
number of votes obtained by any player is the integral with respect to this den-



sity over the subset of X consisting of points closer to the player’s action (chosen
policy) than to the action of any other player. A player’s preferences are repre-
sented by the payoff function that assigns 1 to any action profile in which she
obtains more votes than every other player, 1/k to any action profile in which
she obtains at least as many votes as any other player and k > 2 players tie for
the highest number of votes, and 0 to any action profile in which she obtains
fewer votes than some other player.

2.2 Nash equilibrium

Which action profile will result when a strategic game is played? Game the-
ory provides two main approaches to answering this question. One isolates ac-
tion profiles that correspond to stable “steady states”. This approach leads to
the notion of Nash equilibrium, discussed in this section. The other approach,
discussed in Section 2.5, isolates action profiles that are consistent with each
player’s reasoning regarding the likely actions of the other players, taking into
account the other players’ reasoning about each other and the player in ques-
tion.

Fix an n-player strategic game and suppose that for each player in the game
there exists a population of K individuals, where K is large. Imagine that in each
of along sequence of periods, K sets of n individuals are randomly selected, each
set consisting of one individual from each population. In each period, each set
of n individuals plays the game, the individual from population i playing the role
of player i, for each value of i. The selected sets change from period to period;
because K is large, the chance that an individual will play the game with the
same opponent twice is low enough not to enter her strategic calculations. If
play settles down to a steady state in which each individual in each population i
chooses the same action, say a;, whenever she plays the game, what property
must the profile a* satisfy?

In such a (deterministic) steady state, each individual in population i knows
from her experience that every individual in every other population j chooses
a;. Thus we can think of each such individual as being involved in a single-
person decision problem in which the set of actions is A; and the preferences
are induced by player i’s preference relation in the game when the action of ev-
ery other player j is fixed at a;. That s, a; maximizes i’s payoff in the game given
the actions of all other players. Or, looked at differently, a* has the property that
no player i can increase her payoff by changing her action a; given the other
players’ actions. An action profile with this property is a Nash equilibrium. (The
notion is due to Nash 1950; the underlying idea goes back at least to Cournot
1838.). For any action profile b, denote by (a;, b-;) the action profile in which



player i’s action is a; and the action of every other player j is b;.

Definition 2 A Nash equilibrium of the strategic game (N, (A;),(Z;)) is an action
profile a* for which
a*Zi(a;,a*;) foralla; € A,

for every playeri € N.

By inspection of the four action pairs in the Prisoner’s Dilemma (Figure 1)
we see that the action pair (Fink, Fink) is the only Nash equilibrium. For each of
the three other action pairs, a player choosing Quiet can increase her payoff by
switching to Fink, given the other player’s action.

The games in Figure 2 immediately answer three questions: Does every
strategic game necessarily have a Nash equilibrium? Can a strategic game have
more than one Nash equilibrium? Is it possible that every player is better off in
one Nash equilibrium than she is in another Nash equilibrium? The left-hand
game, which models the game “Matching pennies”, has no Nash equilibrium.
The right-hand game has two Nash equilibria, (B, B) and (C, C), and both play-
ers are better off in (C, C) than they are in (B, B).

B C B C
B 1,-1 -1,1 B 1,1 0,0
C -1,1 1,-1 C 0,0 2,2

Figure 2. Two strategic games.

In some games, especially ones in which each player has a continuum of ac-
tions, Nash equilibria may most easily be found by first computing each player’s
best action for every configuration of the other players’ actions. For each player 7,
let u; be a payoff function that represents player i’s preferences. Fix a player i
and define, for each list a_; of the other players’ actions, the set of actions that
maximize i’s payoff:

Bi(a_;)=1{a; €A, :a;, maximizes u;(a;, a_;) over a; € A;}.

Each member of B;(a_;) is a best response of player i to a_;; the function B; is
called player i’s best response function. (Note that it is set-valued.) An action
profile a* is a Nash equilibrium if and only if

a; € Bi(a*,) for every player i.

In some games, the set B;(a_;) is a singleton for every player i and every list a_;.
For such a game, denote the single element by b;(a_;). Then the condition for



the action profile a* to be a Nash equilibrium may be written as
a;=Db;(a*,) for every player i,

a collection of n equations in n unknowns.

Consider, for example, a two-player game in which each player’s set of ac-
tions is the set of nonnegative real numbers and the preference relation of each
player i is represented by the payoff function u; defined by

ai(ctaj—a;)

where ¢ > 0 is a constant. In this game each player i has a unique best response
to every action a; of the other player (j), given by b;(a;) = %(c +a;). The two
equations a, = %(c+a2) anda, = %(c+a1) immediately yield the unique solution
(a,a;)=(c, c), which is thus the only Nash equilibrium of the game.

2.3 Mixed strategy Nash equilibrium

In a steady state modeled by the notion of Nash equilibrium, all individuals who
play the role of a given player choose the same action whenever they play the
game. We may generalize this notion. In a stochastic steady state, the rule used to
select an action by individuals in the role of a given player is probabilistic rather
than deterministic. In a polymorphic steady state, each individual chooses the
same action whenever she plays the game, but different individuals in the role of
a given player choose different deterministic actions.

In both of these generalized steady states an individual faces uncertainty: in
a stochastic steady state because the individuals with whom she plays the game
choose their actions probabilistically, and in a polymorphic steady state because
her potential opponents, who are chosen probabilistically from their respective
populations, choose different actions. Thus to analyze the players’ behavior in
such steady states, we need to specify their preferences regarding lotteries over
the set of action profiles. The following extension of Definition 1 assumes that
these preferences are represented by the expected value of a payoff function.
(The term “vNM preferences” refers to von Neumann and Morgenstern (1944,
pp- 15-31; 1947, pp. 204-221), who give conditions on preferences under which
such a representation exists.)

Definition 3 A strategic game (with vNM preferences) consists of
e aset N (the set of players)

and for each playeri € N



e aset A; (the set of player i’s possible actions)

e afunctionu;: xjeyA; — R (player i’s payoff function, the expected value of
which represents i's preferences over the set of lotteries over action profiles).

A probability distribution over A;, the set of actions of player i, is called a
mixed strategy of player i. The notion of a mixed strategy Nash equilibrium cor-
responds to a stochastic steady state in which each player chooses her mixed
strategy to maximize her expected payoff, given the other players’ mixed strate-
gies.

Definition 4 A mixed strategy Nash equilibrium of the strategic game (N,(A;),
(u;)) is a profile a* in which each component o is a probability distribution over
A; that satisfies

Ui(a®) > Ui(a;, a* ;) for every probability distribution a; on A;
for every player i € N, where U;() is the expected value of u;(a) under a.

Suppose that each player’s set of actions is finite and fix the mixed strategy of
every player j # i to be a;. Then player i’s expected payoff when she uses the
mixed strategy a; is a weighted average of her expected payoffs to each of the ac-
tions to which «; assigns positive probability. Thus if a; maximizes player i’s
expected payoff given a_;, then so too do all the actions to which «; assigns
positive probability. This observation has two significant consequences. First,
a mixed strategy Nash equilibrium corresponds not only to a stochastic steady
state but also to a polymorphic steady state. (The equilibrium probability a}(a;)
is the fraction of individuals in population i that choose a;.) Second, the fact
that in a mixed strategy Nash equilibrium each player is indifferent between all
the actions to which her mixed strategy assigns positive probability is sometimes
useful when computing mixed strategy Nash equilibria.

To illustrate the notion of a mixed strategy Nash equilibrium, consider the
games in Figure 2. In the game on the left, a player’s expected payoff is the
same (equal to 0) for her two actions when the other player chooses each ac-
tion with probability %, so that the game has a mixed strategy Nash equilibrium
in which each player chooses each action with probability % The game has no
other mixed strategy Nash equilibrium because each player’s best response to
any mixed strategy other than the one that assigns probability % to each action is
either the action B or the action C, and we know that the game has no equilib-
rium in which neither player randomizes.

The game on the right of Figure 2 has three mixed strategy Nash equilibria.
Two correspond to the Nash equilibria of the game in which randomization is not
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allowed: each player assigns probability 1 to B, and each player assigns proba-
bility 1 to C. In the third equilibrium, each player assigns probability % to B and
probability % to C. This strategy pair is a mixed strategy Nash equilibrium be-
cause each player’s expected payoff to each of her actions is the same (equal to §
for both players).

The notion of mixed strategy Nash equilibrium generalizes the notion of Nash
equilibrium in the following sense.

e If a* is a Nash equilibrium of the strategic game (N, (A;),(Z;)), then the
mixed strategy profile in which each player i assigns probability 1 to a; is
a mixed strategy Nash equilibrium of any strategic game with vNM prefer-
ences (N, (A;),(u;)) in which, for each player i, u; represents 27;.

o If o* is a mixed strategy Nash equilibrium of the strategic game with vNM
preferences (N, (A;),(u;)) in which for each player i there is an action a;
such that aj(a}) = 1, then a* is a Nash equilibrium of the strategic game
(N,(A;),(z:)) in which, for each player i, ZZ; is the preference relation rep-
resented by u;.

The following result gives a sufficient condition for a strategic game to have a
mixed strategy Nash equilibrium.

Proposition 5 A strategic game with vINM preferences (N,(A;),(u;)) in which the
set N of players is finite has a mixed strategy Nash equilibrium if either (a) the set
A; of actions of each player i is finite or (b) the set A; of actions of each player i is
a compact convex subset of a Euclidean space and the payoff function u; of each
player i is continuous.

Part (a) of this result is due to Nash (1950, 1951) and part (b) is due to Glicksberg
(1952).

In many games of economic interest the players’ payoff functions are not
continuous. Several results giving conditions for the existence of a mixed strat-
egy Nash equilibrium in such games are available; see, for example, Section 5 of
Reny (1999).

AsThave noted, in any mixed strategy Nash equilibrium in which some player
chooses an action with positive probability less than 1, that player is indifferent
between all the actions to which her strategy assigns positive probability. Thus
she has no positive reason to choose her equilibrium strategy: any other strategy
that assigns positive probability to the same actions is equally good. This fact
shows that the notion of a mixed strategy equilibrium lacks robustness. A re-
sult of Harsanyi (1973) addresses this issue. For any strategic game G, Harsanyi



considers a game in which the players’ payoffs are randomly perturbed by small
amounts from their values in G. In any play of the perturbed game, each player
knows her own payoffs, but not (exactly) those of the other players. (Formally the
perturbed game is a Bayesian game, a model described in Section 2.6.) Typically,
a player has a unique optimal action in the perturbed game, and this game has
an equilibrium in which no player randomizes. (Each player’s equilibrium action
depends on the value of her own payoffs.) Harsanyi shows that the limit of these
equilibria as the perturbations go to zero defines a mixed strategy Nash equilib-
rium of G, and almost any mixed strategy Nash equilibrium of G is associated
with the limit of such a sequence. Thus we can think of the players’ strategies
in a mixed strategy Nash equilibrium as approximations to collections of strictly
optimal actions.

2.4 Correlated equilibrium

One interpretation of a mixed strategy Nash equilibrium is that each player con-
ditions her action on the realization of a random variable, where the random
variable observed by each player is independent of the random variable observed
by every other player. This interpretation leads naturally to the question of how
the theory changes if the players may observe random variables that are not in-
dependent.

To take a simple example, consider the game at the right of Figure 2. Suppose
that the players observe random variables that are perfectly correlated, each vari-
able taking one value, say x, with some probability p, and another value, say y,
with probability 1 — p. Consider the strategy that chooses the action B if the re-
alization of the player’s random variable is x and the action C if the realization is
y. If one player uses this strategy, the other player optimally does so too: if the
realization is x, for example, she knows the other player will choose B, so that
her best action is B. Thus the strategy pair is an equilibrium.

More generally, the players may observe random variables that are partially
correlated. Equilibria in which they do so exist for the game at the right of Fig-
ure 2, but the game in Figure 3 is more interesting.

B C
B 6,6 2,7
C 7,2 0,0

Figure 3. A strategic game.

Consider the random variable that takes the values x, y, and z, each with
probability % Player 1 observes only whether the realization is in {x,y} oris z
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(but not, in the first case, whether itis x or y), and player 2 observes only whether
itisin {x,z} oris y. Suppose that player 1 chooses B if she observes {x,y} and
C if she observes z, and player 2 chooses B if she observes {x,z} and C if she
observes y. Then neither player has an incentive to change her action, whatever
she observes. If, for example, player 1 observes {x, y}, then she infers that x and
y have each occurred with probability %, so that player 2 will choose each of her
actions with probability % Thus her expected payoff is 4 if she chooses B and %
if she chooses C, so that B is optimal. Similarly, if player 1 observes z, she infers
that player 2 will choose B, so that C is optimal for her. The outcome is (B, B)
with probability %, (B, C) with probability %, and (C, B) with probability %, so that
each player’s expected payoff is 5.

An interesting feature of this equilibrium is that both players’ payoffs ex-
ceed their payoffs in the unique mixed strategy Nash equilibrium (in which each
player chooses B with probability % and obtains the expected payoff 13—4 .

In general, a correlated equilibrium of a strategic game with vNM preferences
consists of a probability space and, for each player, a partition of the set of states
and a function associating an action with each set in the partition (the player’s
strategy) such that for each player and each set in the player’s partition, the ac-
tion assigned by her strategy to that set maximizes her expected payoff given the
probability distribution over the other players’ actions implied by her informa-
tion. (The notion of correlated equilibrium is due to Aumann 1974.)

The appeal of a correlated equilibrium differs little from the appeal of a mixed
strategy equilibrium. In one respect, in fact, most correlated equilibria are more
appealing: the action specified by each player’s strategy for each member of her
partition of the set of states is strictly optimal (she is not indifferent between
that action and any others). Nevertheless, the notion of correlated equilibria has
found few applications.

2.5 Rationalizability

The outcome (Fink, Fink) of the Prisoner’s Dilemmais attractive not only because
it is a Nash equilibrium (and hence consistent with a steady state). In addition,
for each player, Fink is optimal and Quiet is suboptimal regardless of the other
player’s action. That is, we may argue solely on the basis of a player’s rationality
that she will select Fink; no reference to her belief about the other player’s action
is necessary.

We say that the mixed strategy «; of player i is rational if there exists a prob-
ability distribution over the other players’ actions to which it is a best response.
(The probability distribution may entail correlation between the other players’
actions; we do not require it to be derived from independent mixed strategies.)
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Using this terminology, the only rational action for each player in the Prisoner’s
Dilemmais Fink.

This definition of rationality puts no restriction on the probability distribu-
tion over the other players’ actions that justifies a player’s mixed strategy. In par-
ticular, an action is rational even if it is a best response only to a belief that assigns
positive probability to the other players’ not being rational. For example, in the
game on the left of Figure 4, Q is rational for player 1, but all the mixed strate-
gies of player 2 to which Q is a best response for player 1 assign probability of
at least % to Q, which is not rational for player 2. Such beliefs are ruled out if we
assume that each player is not only rational, but also believes that the other play-
ers are rational. In the game on the left of Figure 4 this assumption means that
player 1’s beliefs must assign positive probability only to player 2’s action F, so
that player 1’s only optimal action is F. That is, in this game the assumptions that
each player is rational and that each player believes the other player is rational
isolate the action pair (F, F).

Q F
F

Q 42 03
X 1.L,1 1,0
F 30 22

Q
Q 32 03
F 20 1,1

Figure 4. Two variants of the Prisoner’s Dilemma.

We may take this argument further. Consider the game on the right of Fig-
ure 4. Player 1’s action Q is consistent with player 1’s rationality and also with
a belief that player 2 is rational (because both actions of player 2 are rational).
It is not, however, consistent with player 1’s believing that player 2 believes that
player 1 is rational. If player 2 believes that player 1 is rational, her belief must
assign probability 0 to player 1’s action X (which is not a best response to any
strategy of player 2), so that her only optimal action is F. But if player 2 assigns
positive probability only to F, then player 1’s action Q is not optimal.

In all of these games—the Prisoner’s Dilemma and the two in Figure 4—
player 1’s action F survives any number of iterations of the argument: it is consis-
tent with player 1’s rationality, player 1’s belief that player 2 is rational, player 1’s
belief that player 2 believes that player 1 is rational, and so on. An action with this
property is called rationalizable, a notion! developed independently by Bern-
heim (1984) and Pearce (1984).

1Both Bernheim and Pearce discuss a slightly different notion, in which players are restricted
to beliefs that are derived from independent probability distributions over each of the other
player’s actions. Their notion does not have the same properties as the notion described here.
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The set of action profiles in which every player’s action is rationalizable may
be given a simple characterization. First define a strictly dominated action.

Definition 6 Player i’s action a; in the strategic game with vNM preferences
(N,(A;),(u;)) is strictly dominated if for some mixed strategy a; of player i we
have

Ui(ai,a_;)>u(a;,a_;) forevery a_; € X jen\ii3A;,

where U;(a;,a_;) is player i’s expected payoff when she uses the mixed strategy a;
and the other players’ actions are given by a_;.

Note that the fact that a; in this definition is a mixed strategy is essential:
some strictly dominated actions are not strictly dominated by any action. For
example, in the variant of the game at the left of Figure 4 in which player 1 has
an additional action, say Z, with u;(Z,Q)=0 and u,(Z, F) =5, the action F is not
strictly dominated by any action, but is strictly dominated by the mixed strategy
that assigns probability % to Q and probability ;11 toZ.

We may show that an action in a finite strategic game is not rational if and
only if it is strictly dominated. Given this result, it is not surprising that actions
are rationalizable if they survive the iterated elimination of strictly dominated
actions, defined precisely as follows.

Definition 7 Let G = (N,(A;),(u;)) be a strategic game. For each j € N, let
X} = Aj, and for each j € N and each t > 1, let X;™' be a subset of X] with
the property that every member of X ]t \ X ]?“ is strictly dominated in the game
(N,(X}),(u})), where u} denotes the restriction of the function u; to xjeNX]?. Ifno
member of X ].T forany j € N is strictly dominated, then the set x jeNX].T survives
iterated elimination of strictly dominated actions.

The procedure specified in this definition does not pin down exactly which
actions are eliminated at each step. Only strictly dominated actions are elimi-
nated, but not all such actions are necessarily eliminated. Thus the definition
leaves open the question of the uniqueness of the set of surviving action pro-
files. In fact, however, this set is unique; it coincides with the set of profiles of
rationalizable actions.

Proposition 8 In a finite strategic game the set of action profiles that survives it-
erated elimination of strictly dominated actions is unique and is equal to the set
of profiles of rationalizable actions.

Every action of any player used with positive probability in a correlated equi-
librium is rationalizable. Thus the set of profiles of rationalizable actions is the
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largest “solution” for a strategic game that we have considered. In many games,
in fact, it is very large. (If no player has a strictly dominated action, all actions
of every player are rationalizable, for example.) However, in several of the games
mentioned in the previous sections, each player has a single rationalizable ac-
tion, equal to her unique Nash equilibrium action. This property holds, with
some additional assumptions, for Cournot’s and Bertrand’s oligopoly games with
two firms and Hotelling’s model of electoral competition with two candidates.
The fact that in other games the set of rationalizable actions is large has limited
applications of the notion, but it remains an important theoretical construct, de-
lineating exactly the conclusion we may reach by assuming that the players take
into account each others’ rationality.

2.6 Bayesian games

In the models discussed in the previous sections, every player is fully informed
about all the players’ characteristics—their actions, payoffs, and information. In
the model of a Bayesian game, players are allowed to be uncertain about these
characteristics. We call each configuration of characteristics a state. The fact that
each player’s information about the state may be imperfect is modeled by as-
suming that each player does not observe the state, but rather receives a signal
that may depend on the state. At one extreme, a player may receive a different
signal in every state; such a player has perfect information. At another extreme,
a player may receive the same signal in every state; such a player has no informa-
tion about the state. In between these extremes are situations in which a player
is partially informed; she may receive the same signal in states w; and w,, for
example, and a different signal in state ws.

To make a decision, given her information, a player needs to form a belief
about the probabilities of the states between which she cannot distinguish. We
assume that she starts with a prior belief over the set of states, and acts upon the
posterior belief derived from this prior, given her signal, using Bayes’ Law. If, for
example, there are three states, w;, w,, and w3, to which her prior belief assigns
probabilities %, i, and }l, and she receives the same signal, say X, in states w;
and w;, and a different signal, say Y, in state w3, then her posterior belief assigns
probability % to w; and probability % to w, when she receives the signal X and
probability 1 to w; when she receives the signal Y.

In summary, a Bayesian game is defined as follows. (The notion is due to
Harsanyi 1967/68.)

Definition 9 A Bayesian game consists of

e aset N (the set of players)
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e aset () (the set of states)
and for each playeri € N
e aset A; (the set of player i’s possible actions)

o aset T; (the set of signals that player i may receive) and a function 7; : Q) —
T; associating a signal with each state (player i's signal function)

e a probability distribution p; over Q0 (player i’s prior belief), with
pi(t7(¢;))>0 forallt; € T,

e a function u; : (XjenAj) X 2 — R (player i’s payoff function, the expected
value of which represents i’s preferences over the set of lotteries on the set
(XjENAj) x Q).

This definition allows the players to hold different prior beliefs. In many ap-
plications every player is assumed to hold the same prior belief.

A widely-studied class of Bayesian games models auctions. An example is a
single-object auction in which each player knows her own valuation of the object
but not that of any other player and believes that every player’s valuation is in-
dependently drawn from the same distribution. In a Bayesian game that models
such a situation, the set of states is the set of profiles of valuations and the signal
received by each player depends only on her own valuation, not on the valuation
of any other player. Each player holds the same prior belief, which is derived
from the assumption that each player’s valuation is drawn independently from
the same distribution.

The desirability for a player of each of her actions depends in general on the
signal she receives. Thus a candidate for an equilibrium in a Bayesian game is a
profile of functions, one for each player; the function for player i associates an
action (member of A;) with each signal she may receive (member of T;). We refer
to player i after receiving the signal ¢; as type t; of player i. A Nash equilibrium
of a Bayesian game embodies the same principle as does a Nash equilibrium of
a strategic game: each player’s action is optimal given the other players’ actions.
Thus in an equilibrium, the action of each type of each player maximizes the
payoff of that type given the action of every other type of every other player. That
is, a Nash equilibrium of a Bayesian game is a Nash equilibrium of the strategic
game in which the set of players is the set of pairs (i, t;), where i is a player in the
Bayesian game and ¢; is a signal that she may receive.

Definition 10 A Nash equilibrium of a Bayesian game (N,,(a;),(T;),(7:),(p:),
(u;)) is a Nash equilibrium of the following strategic game.
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o The set of players is the set of all pairs (i, t;) such that i € N and t; € T;.
o The set of actions of player (i, t;) is A;.

o The payoff of player (i, t;) when each player (j, t;) chooses the action a(j, t;)
is

ZPr(a) | tiui((a;, d-i(w)), w),

wes

where dj(w)=a(j,7;j(w)) foreach j € N.

To illustrate this notion, consider the two-player Bayesian game in which
there are two states, each player has two actions (B and C), player 1 receives the
same signal in both states, player 2 receives a different signal in each state, each
player’s prior belief assigns probability % to state 1 and probability % to state 2,
and the payoffs are those shown in Figure 5. A Nash equilibrium of this Bayesian
game is a Nash equilibrium of the three player game in which the players are
player 1 and the two types of player 2 (one for each state). I claim that the strat-
egy profile in which player 1 chooses B, type 1 of player 2 (i.e. player 2 after re-
ceiving the signal that the state is 1) chooses C, and type 2 of player 2 chooses B
is a Nash equilibrium. The actions of the two types of player 2 are best responses
to the action B of player 1. Given these actions, player 1’s expected payoff to B
is % (because with probability % the state is 1 and player 2 chooses C and with
probability § the state is 2 and player 2 chooses B) and her expected payoff to C
is % Thus player 1’s action B is a best response to the actions of the two types of
player 2.

State 1 (probability %) State 2 (probability %)
B C B C
B 1,0 0,1 B 1,1 0,0
C 1,1 1,0 C 1,0 0,1

Figure 5. A Bayesian game.

3. Extensive games

Although situations in which players choose their actions sequentially may
be modeled as strategic games, they are more naturally modeled as extensive
games. In Section 3.1 I discuss a model in which each player, when choosing an
action, knows the actions taken previously. In Section 3.2 I discuss a more com-
plex model that allows players to be imperfectly informed. (The notion of an
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extensive game is due to von Neumann and Morgenstern 1944 and Kuhn 1950,
1953. The formulation in terms of histories is due to Ariel Rubinstein.)

3.1 Extensive games with perfect information

An extensive game with perfect information describes the sequential structure
of the players’ actions. It does so by specifying the set of sequences of actions
that may occur and the player who chooses an action after each subsequence. A
sequence that starts with an action of the player who makes the first move and
ends when no move remains is called a terminal history.

Definition 11 An extensive game with perfect information consists of
e aset N (the set of players)

e aset H of sequences (the set of terminal histories) with the property that no
sequence is a proper subhistory of any other sequence

e afunction P (the player function) that assigns a player to every proper sub-
sequence of every terminal history

and for each playeri € N
e a preference relation ; over the set H of terminal histories.

The restriction on the set H is necessary for its members to be interpreted as
terminal histories: if (x, y, z) is a terminal history then (x, y) is not a terminal his-
tory, because z may be chosen after (x, y). We refer to subsequences of terminal
histories as histories.

The sets of actions available to the players when making their moves, while
not explicit in the definition, may be deduced from the set of terminal histories.
For any history h, the set of actions available to P(h), the player who moves after
h, is the set of actions a for which (h, a) is a history. We denote this set A(h).

Two simple examples of extensive games with perfect information are shown
in Figure 6. In the game on the left, the set of terminal histories is {(X, w), (X, x),
(Y,y),(Y,z)} and the player function assigns player 1 to the empty history (a
subsequence of every terminal history) and player 2 to the histories X and Y.
The game begins with player 1’s choosing either X or Y. If she chooses X, then
player 2 chooses either w or x; if she chooses Y, then player 2 chooses either y
or z. In the game on the right, the set of terminal histories is {(W, x, Y),(W, x, Z),
(W,y), X} and the player function assigns player 1 to the empty history and the
history (W, x), and player 2 to the history W.
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2,1 0,0 1,2 0,0
1,2 0,0

Figure 6. Two extensive games with perfect information. Player 1’s payoff is the first number in
each pair.

Another example of an extensive game with perfect information is a sequen-
tial variant of Cournot’s model of oligopoly in which firm 1 chooses an output,
then firm 2 chooses an output, and so on. In this game, the set of terminal histo-
ries is the set of all sequences (¢, ..., g, ) of outputs for the firms; the player func-
tion assigns player 1 to the empty history and, for k = 1,...,n — 1, player k +1
to every sequence (¢, ..., qx). (Because a continuum of actions is available after
each nonterminal history, this game cannot easily be represented by a diagram
like those in Figure 6.)

A further example is the bargaining game of alternating offers. This game has
terminal histories of infinite length (those in which every offer is rejected).

3.1.1 Strategies Akey concept in the analysis of an extensive game is that of a
strategy. The definition is very simple: a strategy of any player j is a function that
associates with every history h after which player j moves a member of A(h), the
set of actions available after h.

Definition 12 A strategy of player j in an extensive game with perfect informa-
tion (N, H, B(:Z;)) is a function that assigns to every history h (subsequence of H)
for which P(h)= j an action in A(h).

In the game at the left of Figure 6, player 1 has two strategies, X and Y. Player
2 has four strategies, which we may represent by wy, wz, xy, and xz, where the
first componentin each pair is the action taken after the history X and the second
component is the action taken after the history Y. This example illustrates that
a strategy is a complete plan of action, specifying the player’s action in every
eventuality. Before the game begins, player 2 does not know whether player 1
will choose X or Y; her strategy prepares her for both eventualities.
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The game at the right of Figure 6 illustrates another aspect of the definition.
Player 1 in this game has four strategies, WY, WZ, XY, and XZ. In particular,
XY and XZ are distinct strategies. (Remember that a player’s strategy assigns
an action to every history after which she moves.) I discuss the interpretation of
strategies like these in Section 3.1.3.

3.1.2 Nash equilibrium A Nash equilibrium of an extensive game with perfect
information is defined in the same way as a Nash equilibrium of a strategic game:
it is a strategy profile with the property that no player can increase her payoff by
changing her strategy, given the other players’ strategies. Precisely, first define
the outcome O(s) of a strategy profile s to be the terminal history that results
when the players use s. (The outcome O(X, wy) of the strategy pair (X, wy) in
the game on the left of Figure 6, for example, is the terminal history (X, w).)

Definition 13 A Nash equilibrium of the extensive game with perfect informa-
tion (N, H, B.(Z;)) is a strategy profile s* for which

O(s*)Z: O(s;, s*;) forall s; € S;
forevery player i € N, where S; is player i’s set of strategies.

As an example, the game on the left of Figure 6 has three Nash equilibria,
(X,wy), (X,wz), and (Y,xy). (One way to find these equilibria is to construct a
table like the one in Figure 1 in which each row is a strategy of player 1 and each
column is a strategy of player 2.)

For each of the last two equilibria, there exists a history & such that the action
specified by player 2’s strategy after & is not optimal for her in the rest of the
game. For example, in the last equilibrium, player 2’s strategy specifies that she
will choose x after the history X, whereas only w is optimal for her after this
history. Why is such a strategy optimal? Because player 1’s strategy calls for her
to choose Y, so that the action player 2 plans to take after the history X has no
effect on the outcome: the terminal history is (Y, y) regardless of player 2’s action
after the history X.

I argue that this feature of the strategy pair (Y, xy) detracts from its status as
an equilibrium. Its equilibrium status depends on player 1’s believing that if she
deviates to X then player 2 will choose x. Given that only w is optimal for player 2
after the history X, such a belief seems unreasonable.

Suppose that player 1 forms her belief on the basis of her experience. If she
always chooses Y, then no amount of experience will enlighten her regarding
player 2’s choice after the history X. However, in a slightly perturbed steady state
in which she very occasionally erroneously chooses X at the start of the game
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and player 2 chooses her optimal action whenever called upon to move, player 1
knows that player 2 chooses w, not x, after the history X.

If player 1 bases her belief on her reasoning about player 2’s rational behavior
(in the spirit of rationalizability), she reaches the same conclusion. (Note, how-
ever, that this reasoning process is straightforward in this game only because the
game has a finite horizon and one player is indifferent between two terminal his-
tories if and only if the other player is also indifferent.)

In either case, we conclude that player 1 should believe that player 2 will
choose w, not x, after the history X. Similarly, the Nash equilibrium (X, wz)
entails player 1’s unreasonable belief that player 2 will choose z, rather than y,
after the history Y. We now extend this idea to all extensive games with perfect
information.

3.1.3 Subgame perfect equilibrium A subgame perfect equilibrium is a strategy
profile in which each player’s strategy is optimal not only at the start of the game,
but also after every history. (The notion is due to Selten 1965.)

Definition 14 A subgame perfect equilibrium of the extensive game with perfect
information (N, H, P(%Z;)) is a strategy profile s* for which

On(s*) Zi On(si, s*;) forall s; € S;

for every player i € N and every history h after which it is player i’s turn to move
(i.e. P(h)=1), whereS; is playeri’s set of strategies and O (s) is the terminal history
consisting of h followed by the sequence of actions generated by s after h.

For any nonterminal history h, define the subgame following h to be the part
of the game that remains after /& has occurred. With this terminology, we have
a simple result: a strategy profile is a subgame perfect equilibrium if and only if
it induces a Nash equilibrium in every subgame. Note, in particular, that a sub-
game perfect equilibrium is a Nash equilibrium of the whole game. (The func-
tion O in Definition 13 is the same as the function O in Definition 14, where &
denotes the empty history.) The converse is not true, as we have seen: in the
game at the left of Figure 6, player 2’s only optimal action after the history X is w
and her only optimal action after the history Y is y, so that the game has a single
subgame perfect equilibrium, (X, wy), whereas it has three Nash equilibria.

Now consider the game at the right of Figure 6. Player 1’s only optimal action
after the history (W, x) is Y; given that player 1 chooses Y after (W, x), player 2’s
only optimal action after the history W is x; and given that player 2 chooses x
after the history W, player 1’s only optimal action at the start of the game is X.
Thus the game has a unique subgame perfect equilibrium, (XY, x).
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Note, in particular, that player 1’s strategy XZ, which generates the same out-
come as does her strategy XY regardless of player 2’s strategy, is not part of a
subgame perfect equilibrium. That is, the notion of subgame perfect equilib-
rium differentiates between these two strategies even though they correspond to
the same “plan of action”. This observation brings us back to a question raised in
Section 3.1.1: how should the strategies XZ and XY be interpreted?

If we view a subgame perfect equilibrium as a model of a perturbed steady
state in which every player occasionally makes mistakes, the interpretation of
player 1’s strategy XY is that she chooses X at the start of the game, but if she
erroneously chooses W and player 2 subsequently chooses x, she chooses Y.
More generally, a component of a player’s strategy that specifies an action after a
history & precluded by the other components of the strategy is interpreted to be
the action the player takes if, after a series of mistakes, the history h occurs. Note
that this interpretation is strained in a game in which some histories occur only
after a long series of mistakes, and thus are extremely unlikely.

In some finite horizon games, we may alternatively interpret a subgame per-
fect equilibrium to be the outcome of the players’ calculations about each other’s
optimal actions. If no player is indifferent between any two terminal histories,
then every player can deduce the actions chosen in every subgame oflength 1 (at
the end of the game); she can use this information to deduce the actions chosen
in every subgame of length 2; and she can similarly work back to the start of ev-
ery subgame at which she has to choose an action. Under this interpretation, the
component Y of the strategy XY in the game at the right of Figure 6 is player 2’s
belief about player 1’s action after the history (W, x) and also player 1’s belief
about the action player 2 believes player 1 will choose after the history (W, x).
(This interpretation makes sense also under the weaker condition that whenever
one player is indifferent between the outcomes of two actions, every other player
is also indifferent (a sufficient condition for each player to be able to deduce her
payoff when the other players act optimally, even if she cannot deduce the other
players’ strategies).)

This interpretation, like the previous one, is strained in some games. Con-
sider the game that differs from the one at the right of Figure 6 only in that
player 1’s payoff of 3 after the history (W, y) is replaced by 1. The unique sub-
game perfect equilibrium of this game is (XY, x) (as for the original game). The
equilibrium entails player 2’s belief that player 1 will choose Y if player 2 chooses
x after player 1 chooses W. But choosing W is inconsistent with player 1’s acting
rationally: she guarantees herself a payoff of 2 if she chooses X, but can get at
most 1 if she chooses W. Thus it seems that player 2 should either take player 1’s
action W as an indication that player 1 believes the game to differ from the game
that player 2 perceives, or view the action as a mistake. In the first case the way
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in which player 2 should form a belief about player 1’s action after the history
(W, x) is unclear. The second case faces difficulties in games with histories that
occur only after a long series of mistakes, as for the interpretation of a subgame
perfect equilibrium as a perturbed steady state.

The subgame perfect equilibria of the games in Figure 6 may be found by
working back from the end of the game, isolating the optimal action after any his-
tory given the optimal actions in the following subgame. This procedure, known
as backward induction, may be used in any finite horizon game in which no
player is indifferent between any two terminal histories. A modified version that
deals appropriately with indifference may be used in any finite horizon game.

3.2 Extensive games with imperfect information

In an extensive game with perfect information, each player, when taking an ac-
tion, knows all actions chosen previously. To capture situations in which some
or all players are not perfectly informed of past actions we need to extend the
model. A general extensive game allows arbitrary gaps in players’ knowledge of
past actions by specifying, for each player, a partition of the set of histories after
which the player moves. The interpretation of this partition is that the player,
when choosing an action, knows only the member of the partition in which the
history lies, not the history itself. Members of the partition are called informa-
tion sets. When choosing an action, a player has to know the choices available
to her; if the choices available after different histories in a given information set
were different, the player would know the history that had occurred. Thus for an
information partition to be consistent with a player’s not knowing which history
in a given information set has occurred, for every history / in any given informa-
tion set, the set A(h) of available actions must be the same. We denote the set of
actions available after the information set I; by A(I;).

Definition 15 An extensive game consists of
e aset N (the set of players)

e aset H of sequences (the set of terminal histories) with the property that no
sequence is a proper subhistory of any other sequence

e a function P (the player function) that assigns a player to every proper sub-
sequence of every terminal history

and for each playeri € N
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e a partition .9; of the set of histories assigned to i by the player function
(player i’s information partition) such that for every history h in any given
member of the partition (information set), the set A(h) of actions available
is the same

e a preference relation 7; over the set H of terminal histories.

(A further generalization of the notion of an extensive game allows for events
to occur randomly during the course of play. This generalization involves no
significant conceptual issue, and I do not discuss it.)

An example is shown in Figure 7. The dotted line indicates that the histories
X and Y are in the same information set: player 2, when choosing between x and
¥, does not know whether the history is X or Y. (Formally, player 2’s information
partition is {{X, Y},{Z}}. Notice that A(X) = A(Y) (= {x,y}), as required by the
definition.)

3,3 11 4,3 0,2

Figure 7. An extensive game with imperfect information. The dotted line indicates that the his-
tories X and Y are in the same information set.

A strategy for any player j in an extensive game associates with each of her
information sets /; a member of A(/;).

Definition 16 A strategy of player j in an extensive game (N, H, B(.%),(Z;)) is a
function that assigns to every information set I; € .%; of player j an action in A(I;).

Given this definition, a Nash equilibrium is defined exactly as for an extensive
game with perfect information (Definition 13)—and, as before, is not a satisfac-
tory solution. Before discussing alternatives, we need to consider the possibility
of players’ randomizing.

In an extensive game with perfect information, allowing players to randomize
does not significantly change the set of equilibrium outcomes. In an extensive
game with imperfect information, the same is not true. A straightforward way of
incorporating the possibility of randomization is to follow the theory of strategic
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games and allow each player to choose her strategy randomly. That is, we may
define a mixed strategy to be a probability distribution over (pure) strategies. An
approach more directly suited to the analysis of an extensive game is to allow
each player to randomize independently at each information set. This second
approach involves the notion of a behavioral strategy, defined as follows.

Definition 17 A behavioral strategy of player j in an extensive game (N,H, P,
(#),(Z:)) is a function that assigns to each information set I; € .%; a probabil-
ity distribution over the actions in A(1;), with the property that each probability
distribution is independent of every other distribution.

For a large class of games, mixed strategies and behavioral strategies are
equivalent: for every mixed strategy there exists a behavioral strategy that yields
the same outcome regardless of the other players’ strategies, and vice versa. (This
result is due to Kuhn 1950, 1953.) In the discussion that follows, I work with be-
havioral strategies.

The notion of subgame perfect equilibrium for an extensive game with per-
fect information embodies two conditions: whenever a player takes an action,
(a) this action is optimal given her belief about the other players’ strategies and
(b) her belief about the other players’ strategies is correct. In such a game, each
player needs to form a belief only about the other players’ future actions. In an
extensive game with imperfect information, players need also to form beliefs
about the other player’s past actions. Thus in order to impose condition b on
a strategy profile in an extensive game with imperfect information, we need to
consider how a player choosing an action at an information set containing more
than one history forms a belief about which history has occurred and what it
means for such a belief to be correct.

Consider the game in Figure 7. If player 1’s strategy is X or Y, then the re-
quirement that player 2’s belief about the history be correct is easy to imple-
ment: if player 1’s strategy specifies X then she believes X has occurred, whereas
if player 1’s strategy specifies Y then she believes Y has occurred. If player 1’s
strategy is Z, however, this strategy gives player 2 no basis on which to form
a belief—we cannot derive from player 1’s strategy a belief of player 2 about
player 1’s action. The main approach to defining equilibrium avoids this diffi-
culty by specifying player 1’s belief as a component of an equilibrium. Precisely,
we define a belief system and an assessment as follows.

Definition 18 A belief system is a function that assigns to every information set a
probability distribution over the set of histories in the set. An assessment is a pair
consisting of a profile of behavioral strategies and a belief system.
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We may now define an equilibrium to be an assessment satisfying conditions
aand b. To do so, we need to decide exactly how to implement b. One option is
to require consistency of beliefs with strategies only at information sets reached
if the players follow their strategies, and to impose no conditions on beliefs at
information sets not reached if the players follow their strategies. The result-
ing notion of equilibrium is called a weak sequential equilibrium. (The name
“perfect Bayesian equilibrium” is sometimes used, although the notion with this
name defined by Fudenberg and Tirole (1991) covers a smaller class of games
and imposes an additional condition on assessments.)

Definition 19 An assessment (8, u), where 3 is a behavioral strategy profile and
u is a belief system, is a weak sequential equilibrium if it satisfies the following
two conditions.

Sequential rationality Each player’s strategy is optimal in the part of the game
that follows each of her information sets, given the other players’ strategies
and her belief about the history in the information set that has occurred.
Precisely, for each player i and each information set I; of player i, playeri’s
expected payoff to the probability distribution over terminal histories gener-
ated by her belief u; at I; and the behavior prescribed subsequently by the
strategy profile 3 is at least as large as her expected payoff to the probability
distribution over terminal histories generated by her belief u; at I; and the
behavior prescribed subsequently by the strategy profile (v, B-:), for each of
her behavioral strategiesy ;.

Weak consistency of beliefs with strategies For every information set I; reached
with positive probability given the strategy profile B, the probability as-
signed by the belief system to each history h in I; is the probability of h
occurring conditional on I; being reached, as given by Bayes’ law.

Consider the game in Figure 7. Notice that player 2’s action x yields her a
higher payoff than does y regardless of her belief. Thus in any weak sequential
equilibrium she chooses x with probability 1. Given this strategy, player 1’s only
optimal strategy assigns probability 1 to Y. Thus the game has a unique weak
sequential equilibrium, in which player 1’s strategy is Y, player 2’s strategy is x,
and player 2’s belief assigns probability 1 to the history Y.

Now consider the game in Figure 8. I claim that the assessment in which
player 1’s strategy is (3, 3,0), player 2’s strategy is (3, 3), and player 2’s belief as-
signs probability % to X and probability % to Y is a weak sequential equilibrium.
Given her beliefs, player 2’s expected payoffs to x and y are both 2, and given
player 2’s strategy, player 1’s expected payoffs to X and Y are both g and her pay-
off to Z is 2. Thus each player’s strategy is sequentially rational. Further, player 2’s
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belief is consistent with player 1’s strategy. This game has an additional weak se-
quential equilibrium in which player 1’s strategy is Z, player 2’s strategy is y, and
player 2’s belief assigns probability 1 to the history Y. Note that the consistency
condition does not restrict player 2’s belief in this equilibrium, because player 1
chooses neither X nor Y with positive probability.

4,2 1,1 5,2 0,3
Figure 8. An extensive game with imperfect information.

In some games the notion of weak sequential equilibrium yields sharp pre-
dictions, but in others it is insufficiently restrictive. Some games, for example,
have weak sequential equilibria that do not satisfy a natural generalization of the
notion of subgame perfect equilibrium. In response to these problems, several
“refinements” of the notion of a weak sequential equilibrium have been stud-
ied, including sequential equilibrium (due to Kreps and Wilson 1982) and perfect
Bayesian equilibrium (due to Fudenberg and Tirole 1991).
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