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1. INTRODUCTION 

A model of a price-setting duopoly is a natural starting point for a 
theory of the behavior of oligopolists. However, such a model has been 
completely solved only under a particularly unrealistic assumption­
namely, that each firm can produce an unlimited quantity (or, at least as 

_much as is demanded at the breakeven price) at constant unit cost. The 
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unique equilibrium in this case involves each firm setting the breakeven 
price, so that (unless capacity can be bought and sold at will) at most half 
of the available capacity is used in equilibrium. Given that the firms must 
at some point choose their capacities, it is difficult to see how such a 
situation could come about. 

We study the case where the capacity of each firm is limited, and cannot 
be instantly changed. We describe, for each pair of capacities, the set of 
Nash equilibria, which is in general a singleton. We assume that the unit 
cost is the same for each firm, and is constant up to capacity, and demand 
is continuous and decreasing. Previous analyses of the model are of two 
types. Either strong assumptions (e.g., linearity) are imposed on demand, 
or relatively weak results are proved about the character of equilibria. (For 
a discussion see Sect. 6.) In particular, little attention has been devoted to 
the uniqueness of equilibrium (except when demand is linear). This causes 
problems for economic applications, since without a uniqueness result we 
do not know if the characteristics of a particular equilibrium are shared by 
others, and we cannot legitimately perform comparative static exercises. 
Some consequences of our characterization are as follows (more details and 
discussion are contained in Sect. 4 ). 

The larger is capacity relative to demand, the lower are the equilibrium 
prices. This is, of course, intuitively plausible. It is noteworthy because it 
emerges, even though, up to capacity, the technologies of both firms are the 
same. One can obtain a similar prediction in a competitive model only by 
assuming, for example, that there are more and less efficient firms; when 
demand is low, the latter are forced out of business and the price falls. In 
our model the result emerges from the fact that there is, in a precise sense, 
more competition when there is excess capacity. In contrast to the com­
petitive outcome, profit is at the monopoly level if capacities are small, 
even though there is more than one firm. 

When industry capacity is in an intermediate range, the equilibrium 
strategies involve randomization. The nature of the equilibrium dis­
tributions depends on the shape of the market demand function. Under 
some conditions, the large firm is most likely to charge either a high or a 
relatively low price, while the small firm is most likely to charge a low 
price. (For details, see Sect. 4.) Thus in this case, the large firm randomly 
holds "sales," as in Varian [ 18]. 

As the size of the large firm increases, its equilibrium profit increases; as 
the size of the small firm increases, the greater competition induced may 
offset the direct effect on its profit from larger sales, and the net effect is 
uncertain. The force at work here is closely related to that studied by 
Gelman and Salop [9]; even if capacity is free, a small firm may not find it 
advantageous to expand indefinitely. As the size of the small firm converges 
to zero, the equilibrium approaches the monopoly outcome. 
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In the game in which capacities are chosen simultaneously before prices, 
the set of pure capacity pairs chosen in Nash equilibria coincides with the 
set of (pure) Cournot equilibria (i.e., a slightly weaker version of the main 
result of Kreps and Scheinkman [ 11] holds under ·our more general 
assumptions on demand). However, there may be (depending on the shape 
of the demand function) Cournot equilibria which are not associated with 
subgame perfect equilibria of the two stage game. If demand varies 
cyclically, and the firms choose constant capacities appropriate for some 
intermediate level of demand, then in booms prices will be high, and con­
stant, while in slumps the firms will hold random "sales." 

In the next two sections we describe the model, and our results. In Sec­
tion 4 we discuss economic implications of our characterization, in Sec­
tion 5 we consider possible extensions, and in Section 6 we discuss the 
related literature. Finally, in the Appendix we provide proofs. 

2. THE MoDEL 

There are two firms. Firm i has capacity ki; we assume throughout that 
k 1 ;?: k 2 > 0. Each firm can produce the same good at the same, constant 
unit cost c;?: 0 up to its capacity. Given the prices of all other goods, the 
aggregate demand for the output of the firms as a function of price is 
D: IR + ---+ IR +. Let p denote the excess of price over unit cost and let 
S = [- c, oo ). We refer, somewhat loosely, to an element of S as a "price." 
Define d: S---+ IR + by d(p) = D(p +c); d(p) is the aggregate demand for the 
good when its price exceeds the unit cost by p. We make the following 
assumption on the demand function (which implies that profit p d(p) 
attains a maximum on S). (Possible relaxations are discussed in Sect. 5.) 

There exists p0 > 0 such that d(p) = 0 if p;?: p 0 and d(p) > 0 if 
p < p 0 , and dis continuous and decreasing on (- c, p 0 ). (2.1) 

We now wish to define the profits of the firms at each pair of prices 
(p1 , P2). We assume that if Pi< pj then consumers first try to buy from 
firm i; when its supply (ki) is exhausted, they turn to firm}. (Whenever i 
and j appear in the same expression, we mean that i is not equal to }. ) 
There is a large number of identical consumers, each with preferences 
which have no "income effect" (for details, see Sect. 3 of Osborne and 
Pitchik [14]). The aggregate demand at the high price pj then depends on 
the way the limited supply ki is allocated among the consumers. It is 
natural to assume that the rationing scheme is chosen by firm i. However, 
this is not enough to determine which scheme is chosen, since i's profit is 
independent of the scheme used (only j's profit is affected). Given that this 
is so, we make an assumption which appears to be consonant with the 
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competitive nature of the model: firm i chooses the scheme which 
minimizes the profit of firm j. In this scheme, each of the (identical) con­
sumers is allowed to purchase the same fraction of ki. (I.e., a rule like "limit 
two per customer" is imposed, rather than allowing some fraction of the 
customers to buy as much as they want.) 

Under these assumptions, the demand faced by firm j when Pi< pj and 
d(p;) > ki is just max(O, d(pj)- k;). (Note that this means that the shape of 
the residual demand function does not depend on the value of Pi·) Levitan 
and Shubik [12] and Kreps and Scheinkman [11] assume that the 
residual demand has this form; it is one of two possibilities studied by 
Gelman and Salop [9]. (There is another assumption on the 
microeconomic structure of demand which generates the same result: there 
is a large number of consumers, each with a reservation price; those with 
the highest reservation prices are served first by the low price firm.) Under 
these assumptions, the profit of firm i when it sets the price PiES and firm} 
sets pj E Sis 

l 
L;(pi) = Pi min(ki, d(pi)) if Pi< pj, 

hi(pi, pj) = rPi(p) = _ p mi~(ki, ki d(p)jk) ~f Pi= pj = p, (2.2) 

Mi(p;)=Pi mm(ki, max(O, d(p;)-kj)) 1f Pi> pj, 

pd(pj_ / 

/ 

FIG. 1. The functions L 1, ¢1, and M 1 for i = 1, 2. L 1(p 1) is the profit of firm i when it sets 
the price p 1 < pj; t/J1(p1) and M 1(p1) are its profits when p 1 = pj and p 1 > pj, respectively. 
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where k = k 1 + k 2 , and we assume that if Pi= pj then demand is allocated 
in proportion to capacities. Examples of the functions Li, ,Pi, and Mi are 
shown in Fig. 1. Let !I' be the set of mixed strategies (i.e., cumulative 
probability distribution functions on S). The domain of hi can be extended 
to !I' x !I' in the natural way. In particular, if Fj E !I' we have 

hi(p, Fj) = Mlp)(Fip) -aip)) + rPi(p) aip) 

+Li(p)(l-Fip)), (2.3) 

where aAp) is the size of the atom (if any) in Fj at p. 
For each pair (k 1 , k 2 ), we study the price-setting game H(k 1 , k 2 ) in 

which the strategy set of each firm is !I' and the payoff function of firm i is 
hi(i=l,2). 

3. DESCRIPTION OF THE NASH EQUILIBRIA OF H(k 1 , k 2 ) 

The qualitative characteristics of the Nash equilibria of H(k 1 , k 2 ) depend 
on the value of (k 1 , k 2 ). For each (k ~> k 2 ) let 

M[ (k i, kj) =max Mi(P ). 
pES 

(3.1) 

We frequently write Mf rather than M[(ki, kj) when this does not cause 
confusion. M[ is the maximal profit of firm i from charging a price in 
excess of that charged by firm j. Note that if p ~ P(k) then Mlp) = pki (see 
Fig. 1 ), so that the maximizer of Mi is at least equal to P(k ), and hence 
M[?:::-kiP(k). 

It is easy to put some restrictions on the range within which equilibrium 
prices must lie. No firm will charge a price below P(k) (since it could then 
raise its price and still sell all its output), nor below 0 (since 0 guarantees a 
zero profit, while a negative price (i.e., a price below unit cost) yields at 
least one of the firms a negative profit). Further, we can show that no firm 
ever charges a price above P(k2 ). (The details of these, and of all sub­
sequent arguments are given in the Appendix.) 

It is also easy to check that if k 2 ';:::. d(O) (region I of Fig. 2) then (0, 0) is 
a pure strategy equilibrium, and that if M 1 is maximized at P(k) (in which 
case the same is true for M 2 ) then (P(k), P(k)) is a pure strategy 
equilibrium (region III). These equilibria can be given clear interpretations. 
In region I each firm has more than enough capacity to meet the demand 
even at the breakeven price (p = 0 under our normalization), so the 
capacity limits are irrelevant, and we are back to the standard Bertrand 
model, where prices are driven down to unit costs. At the other extreme, in 
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II 

d(O) k1 ~ 

FIG 2. Type of equilibrium of H(k 1, k 2 ) as a function of (k 1 , k 2 ). The equilibria of the 
game H(k 1 , k 2 ) are of three types, as follows: 

Region 

II 

III 

k 2 ;;, d(O) 
k 2 <d(O) and 

Mf>M1(P(k)) 
Mf=M1(P(k)) 

Type of Equilibrium 

Pure strategy equilibrium: (0, 0) 
Mixed strategy equilibrium (or, in 
degenerate cases, equilibria) 
Pure strategy equilibrium: (P(k), P(k)) 
(and, in degenerate cases, possibly also 
mixed strategy equilibria) 

region III there is undercapacity in the industry. In this case there is no 
incentive for "competition": each firm is producing at capacity, and so can­
not benefit from undercutting its rival. 

In the remaining case, where k 2 < d(O) and Mf > M 1(P(k)) ( = k 1 P(k)) 
(region II), no pure strategy equilibrium exists. We show that in this case 
there is, in general, a unique mixed strategy equilibrium. The basic idea 
behind the construction of an equilibrium is very simple. Let (F1 , F 2 ) E 

!7 x !7 be an equilibrium and let Ei = hi(Fi, Fj), the equilibrium profit of i. 
Then hi(p,~.)~Ei for all prices p. Using (2.3), this implies that if 
Li(P) > Mi(P) then F/p)):. QAp; EJ, where 

L,(p)-Ei 
Q/p; EJ = Llp)- M,(p) (3.2) 

As argued above, we can show that the support of every equilibrium 
strategy is a subset of S = [X(k), X(k2 )], where X(z) = max(O, P(z)); since 
Li(P) > Mi(P) if X(k) < p ~ X(k 2 ), the only price not covered by this 
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argument is X(k). Now, in order for (F1 , F 2 ) to be an equilibrium we also 
need h;(p, Fj) = E; for all p E (supp F;)\Z;, where supp F; is the support of 
F; and Z; is a set of F;-measure zero. That is, almost all prices in the sup­
port must yield the equilibrium profit. (If some set of prices with positive 
F,.-measure yields less, it can profitably be eliminated from the support.) 
Using (2.3) again, this means that if p E (supp F,.)\Z; is not an atom of Fj 
and L;(p) > M,.(p) then Fip) = Qip; E,.). Now let Gip) = 
max(O, Qip; E,.)) for i= 1, 2. If each Gj is a strategy, E,. = h;(F,., Fj) for 
i= 1, 2, and supp G1 =supp G2 , then (G 1 , G2 ) is an equilibrium: each Gj is 
nonatomic, since each Qj is continuous in p, and hence each firm's profit is 
constant on the support of its strategy, and less outside. In general, under 
our assumptions, Gj is not a strategy; in particular it is not nondecreasing. 
However, the function Qj remains the basis for the construction of 
equilibria. Let .J'Qj be the nonnegative, nondecreasing cover of Qj. That is, 

Then, since we need Fip) ~ Qip; E,.) for all p, and Fj must be nonnegative 
and nondecreasing, we certainly need Fip) ~ .J' Qip; E;) for all p. 

So far, our argument has taken the equilibrium profits as given. Suppose 
firm i charges a price which maximizes M,.. If firm j charges a lower price, 
the profit offirm i isM,.*, while if it charges the same or higher the profit of 
firm i exceeds M,.*. Thus whatever firm j does, the profit of firm i is at least 
M,.*. Hence i's equilibrium profit is at least M,.*. Now let b,. be the highest 
price in the support of the equilibrium strategy of firm i. Then if b,. ~ bj and 
b,. ¢ J(F) (the set of atoms of F), firm i must get its equilibrium profit 
when it charges b;. But this profit is just M,.(b,.) (firm j charges a lower 
price with probability one, since b,. ¢ J(Fj)), so that the equilibrium profit of 
firm i isM,.*. Now, in this case F,. and Fj cannot both have an atom at the 
same price (since one firm could then always do better by charging a 
slightly lower price), so the argument establishes that the equilibrium profit 
of one of the firms is equal to M,.*. It turns out that this must be firm 1; 
that is, h1(Fu F 2 ) = Mt, Given this, we can considerably restrict the nature 
of the equilibrium strategy of firm 2 (by arguments like those in the 
paragraphs above), and thus determine the equilibrium profit of firm 2, and 
hence restrict the nature of the equilibrium strategies of firm 1. 

A precise description of all possible equilibria is complex, since there is a 
number of possible degeneracies which must be taken into account. In the 
nondegenerate case there is a unique equilibrium and its structure is quite 
simple. Let S0 = S\ { X(k)} = (X(k), X(k 2 )]. Then the support of each 
equilibrium strategy is the same subset of S0 • The equilibrium strategy F 2 

of firm 2 is nonatomic, with F2(p) = .Y'Q2(p; Mt) for all p E S0 . To describe 
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the equilibrium strategy F 1 of firm 1, let p be the highest price in the sup­
port of F2 which is at most equal to P(kd (with p = P(k 1 ) if no such price 
exists). If p < p then F 1(p) = .f"Q 1(p; E2 ); if p ~ p then F 1 has an atom at 
the end of each interval in the support of F 2 , while on the rest of each 
interval F 1(p)=Q 1(p;E2 )=1-E2 /k 2 p (refer to Fig.3). (If the lowest 
price in the common support of F 1 and F 2 is less than P(k 1 ) then E 2 = 
k 2 Edk 1 , so that (using (2.2) and (3.2)) we have F 1(p)=k 2 F2(p)/k 1 if 
pE [P(k), p].) 

(If the profit function p d(p) is concave, then Q1 and Q2 are increasing, 
so that the support of each equilibrium strategy is the same interval, and 
the only atom in F 1 occurs at the highest price in the common support.) 

Degeneracies occur if Q2 (p; Mt) is constant and equal to .f"Q2(p; Mn 
over some range, or if the set of prices such that Q2 (p; Mt) = F2(p) = 0 is 
not a singleton. Figure 4 illustrates these possibilities, which account for the 
nature of the conditions on F 1 in part (b )(ii) of Theorem 1 below. 

Theorem 1 also allows for a degeneracy which may occur when M 1 is 
maximized at P(k) (so that M[=k 1P(k)). In this case there is always a 
pure equilibrium (P(k), P(k)) (as discussed above), which is included in 
part (b )(i) of Theorem 1 (r = 1, a0 = P(k2 )). But if there exists p > P(k) 
such that M[=M1(p) (i.e., M 1 is not uniquely maximized at P(k)) then 

!···· .................................. .. 

I 
tl I 

I I I I 
.. ''I' •j-·''"11' 

O P(k)t 
I 

I 
I 

. ............... _1--Fl 

i .--/Ql 

~ 
I I 
I 
I 

FIG. 3. An example of a nondegenerate mixed strategy equilibrium of H(k~> k 2 ). F; 
(i= 1, 2) is the equilibrium strategy of firm i; Q; (i = 1, 2) is the function defined in (3.2). 
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1··-·······-·····-········-···-· ... ·············-·-····-·· ... ·-·····~FI 

/;-QI 
~--::1 
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i / II I I I 
/)/ I I I 

I I I 
I --··t-· ·r--··-·t·-t···-····-~ .. -··t· 

I I I 
I I 

I 

FIG. 4. An example of a mixed strategy equilibrium of H(kl> k 2 ) exhibiting some 
degeneracies. F; (i = 1, 2) is the equilibrium strategy of firm i; Q; (i = 1, 2) is the function 
defined in (3.2). The example is degenerate since (1) there are many prices p for which 
Q2(p)=0 and Q2(x)~O for x~p, and (2) over the intervals [p 3 ,p4 ] and [p 5 ,p6 ], Q2 is 
constant. The smallest member of A (see (b) of the theorem) is p 1, while the smallest member 
of the support of F2 is P2, so that there are many choices for a (see (b )(ii) of the theorem). 

there may be other, mixed equilibria. This accounts for the complexity in 
part (b )(i) of Theorem 1. 

THEOREM 1. (a) If k 2 ~ d(O) (region I) the unique equilibrium of 
H(k1 , k2 ) is pure, equal to (0, 0). The equilibrium profits are (0, 0). 

(b) Ifk2 <d(O) then (F1 , F 2)Ef/ x !/is an equilibrium of H(k 1 , k2) if 
and only if it satisfies the following conditions, where A= {p E S0 : F2(p) = 

Qz(p; Mt)}. 

(i) If M[ = k 1 P(k) (region III) then supp F; c S for i = 1, 2 and for 
some 0 ~ r ~ 1 and P(k) ~ a0 ~ P(k2 ) we have 

if X(k) ~ p ~ a0 , 

if ao < p ~ P(kz), 

suppF1 nS0 cA, 

(3.3) 

(3.4) 
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andfor a=P(k) we have 

F1(p)?;;5Q 1(p;k2 a) if pES0 , and F1(p)=Q 1(p;k2 a) if F2 is 
right-increasing at p. (3.5) 

(ii) If M{ > k 1 P(k) (region II) then supp Fi c S0 for i = 1, 2, F2 (p) = 
5Q2(p; M{) for all p E S0 , and F 1 satisfies (3.4) and (3.5) for some a E 

[min A, min supp F 2 ]. 

In both cases (i) and (ii) the equilibrium profits are (Mt(k 1 , k2 ), k2 a). 

4. APPLICATIONS 

Characteristics of Equilibrium 

In region II all Nash equilibria involve mixed strategies. This means that 
if the duopoly lasts for more than one period, the model predicts variations 
in prices between periods (as the firms' random devices generate different 
realizations). Varian [18], in a model in which some consumers are imper­
fectly informed, also finds that firms randomize in equilibrium. In his 
model, the equilibrium density of prices is U-shaped; his interpretation is 
that the firms sometimes hold "sales." In our model, the randomization by 
firms emerges from the process of competition itself; it does not depend on 
imperfect information. The nature of the distributions of prices charged by 
the firms depends on the shape of the demand function. If demand is such 
that the profit function p d(p) is concave then the support of the 
equilibrium strategy of each firm is an interval [a, b]. If P(k d is outside 
this interval, then the equilibrium strategy of the small firm is atomless and 
concave on [a, b ], while that of the large firm is atomless and concave on 
[a, b), and has an atom at b. Thus in this case the large firm either charges 
a high price or is likely to offer a substantial discount (as in Varian's 
model), while the small firm tends to charge low prices most of the time. In 
the case that P(k 1 ) is between a and b, the equilibrium strategies are con­
cave separately on[a, P(kt)) and (P(k1), b), but are not concave on [a, b). 
Thus the pattern of prices charged is similar to the one in the previous 
case, except that prices just above P(k1) are now relatively likely to be 
offered by both firms. If the profit function is not concave then the 
equilibrium strategies can be quite irregular, as shown in Figs. 3 and 4; 
there are "holes" in the supports of the strategies over those intervals of 
prices where demand decreases most rapidly. 

Comparative Statics 

The comparative statics of some features of the equilibria can be studied 
with the aid of Fig. 5 ( cf. Fig. 2 of Kreps and Scheinkman [ 11] ). This 
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p2 P(k) a1 p-+ 

FIG. 5. An example of the construction of an equilibrium. The limits of the supports of the 
equilibrium strategies are a1 and p 1 ; the equilibrium profits are m1 and k2 a1 . 

diagram shows a nondegenerate case for region II, in which there is a single 
price (ad at which Q2( ·; Mt) is zero, and a single maximizer (pd of M 1 • 

Thus a 1 and p 1 are respectively the lowest and highest prices in the sup­
ports of the equilibrium strategies; the equilibrium profits are E 1 = 

Mt(k 1 , k 2 ) =m 1 and E2 =k2 a 1 , as shown. 
Consider first the effect of an increase in the size k 1 of the large firm, 

holding fixed the size k 2 of the small firm. The only functions in Fig. 5 
affected by this increase are L 1 and M 1 , the linear parts of which rotate 
counterclockwise about the origin. If the new value of P(k) is between P2 
and p3 then the equilibrium is pure (region III); if it is below p 3 then it is 
mixed again (region II). The equilibrium profit (Mt) of the large firm is 
nondecreasing in k 1, while that of the small firm is nonincreasing; the 
endpoints of the supports of the equilibrium strategies are also non­
increasing. The paths these variables take for the example of Fig. 5 are 
shown in Fig. 6 (i = 1, j = 2, k; > kj). 

FIG. 6. An example of the dependence of the equilibrium strategies and profits on (kl> k 2 ). 

For the profit function p d(p) shown in Fig. 5, the equilibrium profits (E; and E1) of the firms, 
and the limits of the supports of the equilibrium strategies (a and b) are shown as functions of 
k;, for a fixed value of k1• The capacity x 11 is such that P(x 11 + k1) = p 11 for h = 1, ... , 4 (where p 11 
is given in Fig. 5 ). 
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If the size k 2 of the small firm decreases, given the size k 1 of the large 
firm, the curvilinear part of M 1 increases, and the function k2 p rotates 
clockwise about the origin. The impact on the equilibrium strategies and 
profits for the example of Fig. 5 is again shown in Fig. 6 (i = 2, j = 1, 
k; < kj). The equilibrium profit of the large firm and the endpoints of the 
supports of the equilibrium strategies increases as k2 decreases. The 
equilibrium profit of the small firm may rise or fall as k2 decreases: the fact 
that the firm is smaller reduces the competition with the large firm and 
raises equilibrium prices, possibly offsetting the direct effect on firm 2's 
profits of its smaller size. (The arguments of Gelman and Salop [9] are 
closely related to this point. They argue that even if capacity is free, a firm 
may not want to expand indefinitely, because of the lower equilibrium 
prices associated with larger industry capacity.) As k 2 converges to zero, 
the equilibrium approaches the monopoly outcome; when k 2 is very small, 
the large firm almost always charges a price close to the monopoly price, 
while the small firm charges slightly variable, slightly lower prices. (The 
solution thus possesses a characteristic that Shitovitz [ 17, pp. 497-8] 
suggests is reasonable.) 

If there is more than one price p for which L 1 (p) = M[ and L 1 ( x) ::;; Mt 
if x::;; p, then there are many equilibria, yielding different payoffs to the 
small firm. The limits of this range of payoffs are nonincreasing in the size 
of the large firm. 

The comparative statics of a shift in demand are more difficult to deter­
mine. Any increase in demand raises (or leaves constant) M 1(p) at each 
price p, so that the equilibrium profit M[ of the large firm does not 
decrease. However, the effects on the equilibrium profit of the small firm 
and on the range of prices charged in equilibrium depend on the precise 
nature of the increase in demand. When demand is very small (relative to 
industry capacity), prices are equal to unit costs (region I). As demand 
increases, the firms begin to use mixed strategies and, roughly, prices 
increase, until region III is reached, where the equilibrium strategy is again 
pure, and prices are high. 

Capacity Choice 

Kreps and Scheinkman [ 11] study the game G in which the firms first 
simultaneously choose capacities, then simultaneously choose prices. They 
show, under the assumptions that the inverse demand function is concave 
and the cost of capacity is increasing and convex, that in the unique Nash 

· equilibrium the capacities chosen are the (unique) Cournot quantities. 
Under our weaker assumptions on demand, there may be many Cournot 
equilibria\ we can show that the set of capacity pairs chosen in Nash 

1 There is at least one Cournot equilibrium, by a result of McManus [13]. 
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equilibria of G for which the capacity choices are pure coincides with the 
set of (pure) Cournot quantity pairs. (We have not investigated mixed­
strategy Cournot equilibria.) That is, the result of Kreps and Scheinkman 
generalizes naturally. However, under our assumptions the set of subgame 
perfect equilibria of G can be a proper subset of the set of Nash equilibria, 
so that there can be Cournot equilibrium quantities which are not 
associated with subgame perfect equilibria of G. 

Proofs of these results can be outlined as follows. First, let (kf, k:j) be a 
(pure) Cournot equilibrium. Suppose that in G each firm i first chooses kt, 
and then sets the price P(kt + k:j) if j chose kf in the first stage, and the 
price 0 if j chose kj =F kf. These strategies clearly constitute a Nash 
equilibrium of G, as argued in [11, p. 327]. Now let (kt, k:j) be the 
capacity pair chosen in the first stage of a Nash equilibrium of G. The price 
strategies used in the second stage of this equilibrium must be an 
equilibrium of H(kt, k:j), so the profit of firm i at this equilibrium is 
Elkt, kf)- u(kn, where E;(k;*, kf) is an equilibrium profit of i given in 
Theorem 1 and u is the cost function of capacity. Since i can guarantee a 
profit of k;P(k; + kf)- u(k;) in G by choosing k; and setting the price 
P(k; + kf), we know that E;(k}, kf)- u(kt)';:::. k;P(k; + kf)- u(k;) for all 
k;. We can complete the argument that (kt, k:j) is a Cournot equilibrium 
by showing that E;(kt, kf) = kf P(kt + kf). Without loss of generality, 
assume that kt?;; k~; then by Theorem 1, E 1(kt, k:j) = Mt(kt, k:j). Now, 
Mf(k 1 , k:j) is the nondecreasing cover of k 1 P(k 1 +kt) (as a function of 
kd; Mt(k 1 ,k:j) is constant ink" at least equal to k 1 P(k 1 +kn in 
regions I and II, and increasing, equal to k 1 P(k 1 + k:j), in region III. Thus 
those values of kt for which Mf(kt, k:j)- u(kt)?;; k 1 P(k1 + k:j)- u(kd 
for all k 1 are such that (kf, k:j) is in region III, and hence E;(k;*, kf) = 
k7 P(kt + kf) for i = 1, 2 (see (b )(i) of Theorem 1 ). . 

An example (the details of which we omit) shows that a Cournot 
equilibrium may not be associated with a subgame perfect equilibrium of 
G. The example works as follows. There is a symmetric Cournot 
equilibrium (x, x) in region III. If k; > x then firm i's equilibrium profit in 
the subgame following (k;, x) exceeds its Cournot profit only when the for­
mer is decreasing (this follows from the properties of Mt mentioned in the 
previous paragraph), so that i cannot benefit from increasing capacity. 
However, for some values of k; with k; < x and (k;, x) in region II, i's 
equilibrium profit in the subgame following (k;, x) exceeds its Cournot 
profit even when the former is increasing. Thus it pays firm i to decrease its 
capacity from the Cournot level x. (Under the assumptions of Kreps and 
Scheinkman [11], this cannot happen, since if (x, x) is in region III then 
any pair (k;, x) with k; < x is also in region III, where the equilibrium 
profits are equal to the Cournot levels.) Thus (x, x) is not associated with a 
subgame perfect equilibrium. (In our example there is another Cournot 



--- -- ----·------

PRICE COMPETITION IN A DUOPOLY 251 

equilibrium which is associated with a subgame perfect equilibrium of G; 
we do not know if there always exists such an equilibrium.) 

5. GENERALIZATIONS AND EXTENSIONS 

Our assumptions can be relaxed in a number of ways. Since the functions 
of central importance in the construction of the equilibria are .fQ1 for 
i = 1, 2, variations in the assumptions which preserve their character can be 
made. For example, demand may have discontinuities, so long as it is left­
continuous (since Q1 can then jump only down, preserving the continuity of 
.fQ;). Almost all our arguments apply also when the unit costs of the firms 
differ and when demand may increase over some range, though the descrip­
tion of the equilibria is then somewhat more complex. 

There are two generalizations which appear to require more significant 
changes in our arguments: the existence of more than two firms, and costs 
which are not linear up to capacity. (In the latter case each firm should 
announce both a price and the maximum amount it is willing to sell at that 
price. Dixon [7] shows, using the results of Dasgupta and Maskin [ 4 ], 
that an equilibrium exists in the case that both firms have the same, convex 
cost function.) 

Perhaps the most significant way in which our arguments are limited 
concerns the form of the residual demand. An important feature is that the 
demand faced by a high-price firm depends only on its price, not on the 
price of the other firm. That is, M 1 is a function of p1 alone. Many of our 
arguments can probably be extended to the case where M 1 depends on both 
p1 and pj, though the outcome may then be sensitive to the form of the 
dependence. As argued previously, it is natural to assume that the low-price 
firm chooses the method of rationing, but if it is chosen at the same time as 
price, the outcome is indeterminate (since the payoff of the low-price firm is 
independent of the rule used). It is possible that the rationing rule could be 
chosen first, though this would require an analysis of the price-setting game 
for each choice of rationing rules. Even given the rationing rule we assume, 
the nature of the residual demand depends on consumers' preferences, and 
our assumption of the absence of an income effect is quite restrictive. 

6. RELATION TO THE LITERATURE 

The game we analyze is a nonzerosum "noisy" game of timing (i.e., a 
game in which the payoff functions are continuous, except possibly when 
both players use the same strategy, and within each region of continuity 
each player's payoff depends only on his own action). Previous work on 
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such games is limited, and uniqueness has not previously been examined. 
For a class of zerosum games of timing, Karlin [10, pp. 293-295] gives a 
uniqueness proof which relies heavily on the fact that the equilibrium 
payoffs in such a game are unique. For the games we consider, a substan­
tially more involved argument appears to be necessary. 

In the economics literature, Levitan and Shubik [12] describe the Nash 
equilibrium of H(k 1 , k 2 ) in the case where dis linear and either k 1 = k 2 or 
k 1 = d(O); they do not study uniqueness. Kreps and Scheinkman [11] 
assume that inverse demand is decreasing and concave; they establish a 
result concerning the equilibrium payoffs, though they do not give a com­
plete characterization and do not study the uniqueness of the equilibrium 
strategies. 

Several authors have worked with the rationing scheme in which the 
low-price firm allows some fraction of the customers to buy all they wish 
(rather than allowing all customers to buy some fraction of their demand f. 
Edgeworth [8] argues that, for a range of capacity pairs, there is no 
equilibrium in pure strategies. Beckmann [3] assumes that d is linear and 
k 1 = k 2 • He considers uniqueness, but his argument is flawed 3

. Dasgupta 
and Maskin [5] show that if d satisfies (2.1) then an equilibrium exists, 
and if k 1 = k 2 then the supports of the equilibrium strategies satisfy a cer­
tain property. Allen and Hellwig prove more detailed results on the nature 
of these supports when the demand function is not necessarily decreasing 
and there are two (see [2]) or more (see [ 1]) firms. 

It is easy to argue that if this second rationing scheme is used, then the 
result of Kreps and Scheinkman [ 11] on the coincidence of the Nash 
equilibrium capacity pair in the two-stage game and the Cournot quantity 
pair no longer holds in general. Davidson and Deneckere [6] verify this in 
an example with linear demand. 

Finally, Shapley [16] reports (in an abstract of a paper which seems to 
be unobtainable) a characterization of the equilibrium of a price-setting 
duopoly game; it is not clear precisely what his model or assumptions were. 

APPENDIX: PROOFS 

Here we prove Theorem 1 of Section 3. First we check that any pair of 
strategies satisfying the stated conditions is an equilibrium (Proposition 1 ). 
Then, in a series of results, we establish that there are no other equilibria. 

2 Equivalently, there is a large number of customers, each with a reservation price, and the 
low-price firm serves a random sample of them. 

3 For example, the inequality in his (15) should be reversed. As a result, the argument 
which follows (15) does not establish uniqueness of the equilibrium payoffs. 
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We begin by stating some basic properties of equilibrium strategies which 
we shall use repeatedly. A (Nash) equilibrium of H(kl> k2 ) is a pair 
(F1 , F2 ) E Y x Y such that for i = 1, 2, 

for all FEY. (A.l) 

(Recall that whenever we use the indices i and j in an expresssion, we mean 
that j is not equal to i.) For FEY, let supp F be the support of F. It follows 
from (A.l) that 

(A) (Fl> F2 ) is an equilibrium if and only if for i = 1, 2 we have 
hi(p, Fj) ~ hlFi, Fj) for all pES, and hi(p, F)= hi(Fi, Fj) for all 
p E (supp Fi)\Zi, where Zi is a set of Pi-measure zero. 

For FEY, let J(F) be the set of points of discontinuity (i.e., jumps or 
atoms) of F. If p E supp Fi then either p E J(FJ, or Fi is left-increasing at p 
(i.e., there is a sequence {p,} with p, E supp Fi, p, < p for all n, and 
p, j p ), or Fi is right-increasing at p (i.e., there is a decreasing sequence 
with similar properties). If (F1 , F 2 ) is an equilibrium then in the first case 
fact (A) implies that hlp, Fj) = hi(Fi, Fj); in the second case, there exists a 
sequence {q,} with q, EsuppFi and q, <p for all n, q11 j p, and 
hlq,, Fj) = hi(Fi, Fj) for all n; in the third case there is a decreasing 
sequence with similar properties. (see p. 211 of [15]). By taking limits in 
the second and third cases we have the following: 

or 

or 

(B) If (F1 , F2 ) is an equilibrium and p E supp Fi then either 

(a) pEJ(Fi), in which case 

hi(Fi, Fj) = hi(p, Fj) = Mi(P )(Fip)- aj(p)) 

+ r/Ji(p) rxip) + Llp)(l- Fip)) 

(b) Fi is left-increasing at p, in which case 

hlFi, Fj) = Mi(p)(Fip)- rxip)) + Li(p)(aip) + 1- Fip)) 

=hlp, Fj) + (Li(P)- r/Ji(p )) aj(p ); 

(c) Fi is right-increasing at p, in which case 

hlFi, F)= Mi(P) Fip) + Llp)(l-Fj(p)) 

=hlp, Fj) + (Mi(p)- r/Jlp)) rxip). 
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In particular: 

(d) h;(F;,F1)=h;(p,F1)=M;(p)F/p)+L;(p)(1-F/p)) if pE 
(supp F;)\l(F1); 

(e) if pEsuppF; then h;(F;,F1) is a weighted average of M;(p), 
r/J;(P ), and L;(p ). 

We now turn to the specific features of our game. Recall that we write 
X(z) = max(O, P(z)). The following properties of the functions L;, r/J;, and 
M; (see (2.2) and Fig. 1) are easy to establish. 

!k;p if -c~p~P(k) 
M;(p) = r/J;(P) =L;(p) = O 

if p=Oor p';?:; Po 
(A.2) 

L;(P) < r/J;(p) < M;(p) ~ 0 if P(k)<p<O (A.3) 

0 ~ M;(p) < r/J;(P) < L;(P) if X(k)<p<p 0 (A.4) 

We can now prove Theorem 1. Our first few arguments lead to 
Lemma 4, which shows that we can work with the restricted game 
H(k 1 , k 2 ) in which the (pure) strategy set of each firm is S = [X(k ), X(k 2 )]. 

IfF; E [I' we write a;= min supp F; and b; =max supp F;. 

LEMMA 1. If(F1 , F2 ) is an equilibrium then (a) a; ?::-X(k)for i= 1, 2 and 
(b) either b; = 0 and h;(F;, F)= 0 fori= 1, 2 orb;> 0 and h;(F;, F1) > 0 for 
i= 1, 2. 

Proof (i) a;?::-P(k). If p~P(k) then h;(p,F)=k;p for i=1,2 by 
( A.2 ); since this is increasing in p, we have a;';?:; P(k) by fact (A). 

(ii) a;-;:::. 0. By (A.2) we have h;(O, F1) = 0, so h;(F;, F1)-;:::. 0 fori= 1, 2 
by fact (A). Let a;~a1 . If a;El(F1) then, using (a) of fact (B), we need 
0 ~ h/F1, F;) = h/a;, F;) = ,P1(a;) rx;(a;) + L/a;)(1- rx;(a;)) and hence, using 
(A.3), a;?::-0. If a;¢:J(F1) then F/a;)=O, and either (a) or (c) of fact (B) 
holds, so that we need 0 ~ h;(F;, F1) = L;(a;), and hence, again using (A.3), 
a; ?::-0. 

(iii) Suppose b1 > 0. Then h;(p, F1) > 0 if 0 < p < min(b1, p0 ) by (A.4 ), 
so that h;(F;,F1)>0. Also since a;=b;=O if b;=O (by (ii)), and 
h;(O, F1) = 0, we have b; > 0 and hence h/F1, F;) > 0. I 

This allows us to restrict the prices at which both equilibrium strategies 
can have atoms. 

LEMMA 2. If (F1 , F2 ) is an equilibrium and p E J(Fd n J(F2 ) then 
L;(P) = r/J;(P) = M;(P) for i = 1, 2. 
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Proof Consider a sequence {p11 } with Pn j p. By fact (A) we need 
h,.(p,, F)< h,.(F,., F)= hlp, Fj) for all n. Taking the limit of the left-hand 
side gives (L,.(p) -1/J ,.(p)) r:t)p) < 0. So since p E J(Fj) and Llp) ~ 1/J lP) (by 
Lemma 1, (A.2), and (A.4)) we have Llp)=I/J,.(p)=M,.(p). I 

We can now establish the following useful result, which pins down the 
equilibrium payoff of one of the firms. 

LEMMA 3. Let (F1 , F2 ) be an equilibrium. Then h,.(F,., Fj) ~ Mt for 
i=1,2. Ifb,.>bj then hlF,.,Fj)=M,.(b,.)=Mt. Ifb 1 =b2 =b then there 
exists i such that either bE J(F,.) or b ¢ J(Fj), and in both cases h,.(F,., Fj) = 
M,.(b)=Mt. 

Proof We have 0 < M,.(p) <hlp, Fj) < h,.(F,., Fj) if p ~ 0 (the first two 
inequalities by (A.2) and (A.4)), and M,.(p)<O if p<O. Hence 
hlF,., Fj) ~ Mt for i = 1, 2. 

Now, if b,. > bj, orb,.= bj and b,. ¢ J(Fj), then by (a) or (b) of fact (B) we 
have h,.(F,., Fj) = M,.(b,.), and hence M,.(b,.) = Mt. If b,. = bj = b and 
bE J(F1 ) n J(F2 ) then by Lemma 2 we have L,.(b) = ljJ,.(b) = M,.(b) for 
i=1,2, and so h,.(F,.,Fj)=h,.(b,Fj)=M,.(b), and hence M,.(b)=Mt. I 

LEMMA 4. (F1 , F2 ) E !/' x !/' is an equilibrium of H(k 1 , k 2 ) if and only if 
it is an equilibrium of H(k 1 , k 2 ). 

Proof First suppose that (F1 , F 2 ) is an equilibrium of H(k 1 , k 2 ). We 
need to show that h,.(p,Fj)<h,.(F,.,Fj) whenever p<X(k) or p>X(kz). 
Now, by (A.2) and (e) of fact (B) we have h,.(X(k), F)= k,.X(k) for any 
FE!/', so by fact (A) we have h,.(F,., Fj) ~ k,.X(k) ~ 0. But by (A.2) and 
(A.3) we have h,.(p,Fj)<k,.X(k) if p<X(k) and h,.(p,Fj)=M,.(p)=O if 
p > X(k 2 ), so (F1 , F 2 ) is an equilibrium of H(k 1 , k 2 ). 

Now suppose that (F1,F2 ) is an equilibrium of H(k 1 ,k2 ). We need to 
show that F,. E §>fori= 1, 2. By Lemma 1 we have a,.~ X(k), so we need to 
show that b,. < X(k 2 ). If b1 = b2 = 0 this is certainly true, so by Lemma 1(b) 
assume b,. > 0 for i = 1, 2, so that h,.(F,., Fj) > 0 for i = 1, 2. Since M,.(p) = 0 
for i = 1, 2 if p ~ P(k2 ), it follows from Lemma 3 that b,. < P(k2 ). I 

From now on we use Lemma 4 to restrict attention to the game H(k 1 , k2 ) 

(that is, we restrict the strategy space of each player to 1>). We can 
immediately prove part (a) of Theorem 1. 

PRoPOSITION 1. If k 2 ~ d(O) then the unique equilibrium strategy pair is 
pure, equal to (0, 0). 

Proof It is easy to check that (0, 0) is an equilibrium; by Lemma 4 
there can be no other, since S = { 0} in this case. I 



256 OSBORNE AND PITCHIK 

We now address part (b) of Theorem 1. The following preliminary result 
allows us to prove, in Proposition 2, that any pair of strategies satisfying 
the conditions of Theorem 1 is an equilibrium. Recall that S0 = 
S0 \ { X(k)} = (X(k ), X(k 2 )]. 

LEMMA 5. If Ei?;:;kiX(k) and F/p)?;:;Q/p;Ei) for all pES0 then 
hi(p, Fj) ~EJor all pES. 

Proof If F/p)?;:; Q/p; lfJ for all p E S0 then in fact F/p)?;:; 
Q/p;EJ+(j)p) for allpES0 (consider a sequence {p11 } withp11 j p). But 
then from (2.3) and (3.2) we have hi(p,Fj)~Ei for all pES0 . Finally, 
hi(X(k), Fj) = kiX(k) ~ Ei (see (A.2)). I 

PROPOSITION 2. Any pair of strategies satisfying the conditions in part 
(b) of Theorem 1 is an equilibrium of H(k 1 , k 2 ). 

Proof Let (F1 , F2 ) be a pair of strategies satisfying the conditions of 
part (b) of Theorem 1. We need to check that the conditions offact (A) are 
satisfied. First consider the payoff of firm 1. Since M[?;:; k 1 P(k) and 
F2 (p)?;:; §Q 2 (p; Mj) for all p E S0 , we have h 1(p, F 2 ) ~ Mt for all pES by 
Lemma 5. Also h 1 (P(k ), F2 ) = k 1 P(k ), and if p E supp F 1 n S0 then F2(p) = 
Q 2(p; Mj) (see (3.4)), so that, since F2 is nonatomic on S0 , we have 
h 1(p,F2 )=Mt. Hence h 1(p,F2 )=Mt for all pEsuppF1 , and the con­
ditions of fact (A) are satisfied for i = 1. 

Now consider the payoff of firm2. Since k 2 a?;:;k2 P(k) we have 
h2 (p, Fd ~ k 2 a for all pES by (3.5) and Lemma 5. Also h2(P(k ), Fd = 
k 2 P(k). Now, since F 2 is nonatomic on S0 , the set Z 2 = {pES0 : F 2 is not 
right-increasing at p} has F 2 -measure zero. If F2 is right-increasing at p 
then F 1(p)=Q 1(p;k2 a) by (3.5), so p¢J(F1 ) (by (3.5) and the continuity 
of Qd. Hence hAp, Fd = k 2 a for all p E (supp F 2 )\Z2 . So the conditions of 
fact (A) are satisfied for i = 2. I 

It remains to show that there is no other equilibrium. From now on we 
assume that k 2 < d(O), and (F1 , F2 ) always denotes an equilibrium. Note that 
if k 2 <d(O) then P(k2 )>0, so that M 1(p)>0 if 0<p<P(k2 ) (see (2.2)), 
and hence Mt > 0. First we pin down the equilibrium payoff of firm 1. This 
is done in Lemma 7, after a preliminary result (Lemma 6) which gives a 
relation between the equilibrium payoffs and the smallest prices in the sup­
ports of any equilibrium strategies. 

LEMMA6. a 1 ~a2 and h 1(FuF2 )=L1(a 1 ); if a 1 =a2 =a then 
hi(Fi,Fj)=Lla) for i=1,2; if a2 ~P(k1 ) then a 1 =a2 =a and 
hi(Fi, F)= kia for i = 1, 2. 

- -~--------, 
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Proof If p < aj ~ P(kJ then hJp, Fj) = L 1(p) = k 1 p by (2.2), which is 
increasing in p, so aj ~ a1 by fact (A). Since a 1 ~ P(k2 ) by Lemma 4, this 
means that a 1 ~ a2 , and thus if a2 ~ P(kr) then a 1 = a2 • If a 1 < a2 then 
h1(Fr. F2 ) = L 1(ar) by (d) of fact (B). 

Ifa1 =a2 =a=X(k) then h,.(F,.,~·)=L,.(a) for i=1,2 by (A.2) and (e) 
of fact (B). Now we show that if a 1 =a2 =a>X(k) then a¢J(F1). so that 
h1(F1,Fj)=L1(a) for i=1,2 (by (d) of fact (B)). By Lemma2 we have 
a¢J(F1) for some i. This means that there exists a sequence as in (c) offact 
(B), so that h1(F1, Fj) = Mla) FAa)+ Lla)(l- FAa)). But if p <a we have 
h 1(p, FJ = L 1(p) so from fact (A) and the fact that Ml a)< L 1( a) (see ( A.4)) 
we have FAa)= 0, or a¢ J(Fj). I 

LEMMA 7. h1(F1 , F2 ) = Mf. 

Proof By Lemma 3 we have hlF1, Fj) = M 1(b,.) = M[ for some i. Sup­
pose h2(F2 ,F1 )=M2(b 2 )=Mt. If p:;:;P(k 1 ) then M 2(p)=0, so since 
h2(F2 , F 1 ) > 0 (by Lemma l(b) and the fact that Mf > 0), we have b2 < 
P(kr). Then by Lemma 6 we have a 1 = a2 =a and k 2 a = h2(F2 , F 1 ) = 
M 2(b 2 )=b2(d(b 2 )-kr), so that a=b2(d(b 2 )-kr)/k2 and hence 
h1(F1 ,F2 )=k1a=k1 b2(d(b 2 )-k1 )/k2 • Now, if k 1 =k2 or d(b 2 )=k (so 
that b2 =P(k)) this implies that h1(F1 , F2 ) =M1(b 2 ) and hence (by the first 
part of Lemma3), h 1(F1,F2 )=Mf. We now need to deal with the case 
k1 > k 2 and d(b 2 ) < k. We know that 

k 2 M{:;::; k 2 M 1(b 2 ) = k 2 b2(d(b 2 )- k 2 ) 

= k 1 b2(d(b 2 )- kr)- (k 1 - k 2 ) b2(d(b 2 )- k). 

So if k 1 > k 2 and d(b 2 ) < k we have Mf > k 1 b2(d(b 2 )- kr)/k2 = h1(F1 , F2 ), 

contradicting the first part of Lemma 3. Hence we must have h1(F1 , F 2 )= 
M 1(b 1 )=Mf. I 

The following general result (parts (a), (b)(ii) and (iii) do not depend on 
our previous results) gives some relations between the equilibrium 
strategies and equilibrium payoffs. 

LEMMA 8. Let E 1 = hJF1, Fj) and p E S0 . Then 

(a) F 1(p):;::; JQ 1(p; Ej); 

(b) if (i) p E J(Fj), or (ii) Fj is right-increasing at p, or (iii) p E supp Fj 
and p ¢ J(F1), then F1(p) = Q1(p; Ej); 

(c) if F1(p) > § Q 1(p; EJ and there exists x E supp F1 with 
X(k)<x~p then FAp)=fQAp;E;). 

Proof (a) follows immediately from fact (A), (A.4), and the fact that F1 
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must be nonnegative and nondecreasing. (b) follows from (a), (b), and (c) 
offact (B) and Lemma2. To prove (c), suppose thatF;(p)>..Y'Q;(p;Ej), so 
that p >a; (since ..Y'Q;(p; E);?: 0), and let xk = max{x E supp Fk: x < p} for 
k=l,2, so that X;>X(k) (since a;?X(k)). If X;<xj then xj¢J(F;), so 
F;(xj)=Q;(xj;Ej) by (b)(iii) and hence F;(p)=F;(xj)=Q;(xj;Ej)< 
..Y'Q;(p;Ej), contradicting F;(p)>..Y'Q;(p;E). Hence X;?xj. But then 
X; ¢ J(Fj) (if X; = xj this follows from (b )(i), since F;(x;) = 
F;(p)>..Y'Q;(p;Ej)?Q;(x;;Ej)), so by (b)(iii) we have FAx;)=QAx;;E;) 
and hence Fj(p)=F/x;)=Q/x;;E;)=JQAx;;E;)<..Y'Q/p;E;) so that 
FAp)=.J'Qip;E;) (using (a)). I 

The next two results allow us (in Proposition 3) to deal with the case 
where M 1 is maximized at P(k ). 

LEMMA 9. If .J'Q2 ( ·; Mt) is right-increasing at p then so is ..1Q 1( ·; E2 ). 

Proof First note that 

. E _J (k2 p-E2 )/p(k-d(p)) 
Q1(p, z)-(l-E

2
/k

2
p 

so that if E2 /k2 ;?: P(k d then 

.J'Ql(p;Ez)=JOl ;~ 
( -Ez KzP 

if X(k) < p < E 2 /k 2 , 

if E2 /k 2 < p < P(k2 ). 

(A.6) 

Now suppose that a2 > P(kd. Since either a2 E J(F2 ) or F2 is right­
increasing at a2 , Lemma8(b) implies that O<F1(a 2 )=Q1(a 2 ;E2 )= 
l-E2 /k2 a2 • Hence a2 ?E2 /k2 , so that F2(p)=0 if p<E2 /k2 , and hence 
..1Q2(p; Mt) = 0 if p < E2 /k2 (using Lemma 8(a)). Hence .J'Q2( ·; Mn is 
right-increasing on a subset of [E2 /k 2 , P(k2 )]; since ..1Q 1( ·; E2 ) is right­
increasing on this set (see (A.6)), the result follows in this case. 

If a2 <P(kd then a1 =a2 =a and E 2 =k2 E1/k 1 (see Lemma 6), so that 
Q1(p;E2 )=k2 Q2(p;Ed/k 1 if X(k)<p<P(k 1) (see (2.2) and (3.2)), and 
hence in this interval .J'Q 1( ·; E2 ) is right-increasing whenever ..1Q2 ( ·;Ed 
is. Finally consider the case P(kd<p<P(k2 ). Let P;= 
min{p?P(kd:Q;(p;Ej)=..1Q;(P(k1);E)} for i=l,2, so that ..IQ;(p;Ej) 
is constant on [P(k1), p;]. Since ..Y'Q2 (P(k 1); E 1) =k1..Y'Q 1(P(kd; E2 )/k2 

by the argument above, and Q2(p;E1)=(pd(p)-EJ)/pk2 < 
kl(p-E2 /k2 )/pk2 =k1Q 1(p; E2 )/k2 if P(k1)<p<P(k2 ), we have p 1 <Pz. 
If P?P1 then ..Y'Q 1(p;E2 )=Q1(p;E2 )=1-E2 /k2 p (see (A.5)), so that 
..1Q 1( ·; E2 ) is right-increasing on [p, P(k2 )]. Since ..1Q2(p; Ed is constant 
on [P(k d, p 2 ], the result follows. I 
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LEMMA 10. Ifp E S0 and F2(p) > .fQAp; Mt) then supp F2 c {X(k)} u 
(p, P(k2 )). 

Proof If F2(p) > .f Q2(p; Mt) then there exists y ~ p such that F2 (z) > 
.fQ2(z; Mt) for all z E [p, y] and .fQ2 ( ·; Mt) is right-increasing at y, so 
that .fQ 1( ·; E 2 ) is also right-increasing at y (by Lemma 9). So if there 
exists xEsuppF2 with X(k)<x:(,p then F1(z)=.fQ 1(z;E2 ) for all 
z E [p, y] by Lemma 8( c). But then F 1 is right-increasing at y, con­
tradicting Lemma 8(b )(ii) (since F2(y) > .fQ2 (y; Mt)). I 

PROPOSITION3. lfk2 <d(0) and Mf=k 1 P(k) then (F1 ,F2 ) is an 
equilibrium only if it satisfies the conditions in (b )(i) of Theorem 1. 

Proof First note that since Mf > 0 we have P(k) > 0 and hence 
X(k) = P(k). Since M 1(P(k)) = Mf we have Q2(p; Mt) > 0 if p E S0 , so 
that a2 = P(k) by Lemma 8(a), and hence a 1 = P(k) and h2(F2 , FJ) = 
k 2 P(k) by Lemma 6. Now, Lemma 10 implies that F 2 satisfies (3.3) and 
hence is nonatomic on S0 • Thus (3.4) follows from Lemma 8(b)(iii) and 
(3.5) from Lemma 8(a) and (b)(ii). I 

To complete the proof of Theorem 1, we need the following: 

LEMMA 11. If Mf>k 1P(k) then (a) suppF1 cS0 for i=l,2, (b) 
F2(p)=.fQ 2(p;Mt) if pES0 , and (c) h2(F2 ,FJ)=k2 a for some 
a E [min A, a2 ]. 

Proof (a) We have X(k) ¢ supp F 1 by (e) of fact (B) and (A.2), so that 
a1 > X(k) and hence a2 > X(k) by Lemma 6. 

(b) This is immediate from (a) and Lemma 10. 

(c) If a 1 =a2 =a then h2(F2 , FJ)=L 2(a 2 )=k2 a2 by Lemma 6. Sup­
pose that a 1 < a2 • Then since F2 is right-increasing at a2 (by (b) and the 
continuity of .fQz(-; Mt)) we have F 1(a2 ) = Q1(a2 ; E 2 ) by Lem­
ma8(b)(ii), so since F1 (a2)~0 we have L2(a2)=k2 a2 ~E2 • Since either 
a1 El(Fd or F 1 is right-increasing at a 1 we have F2(aJ)=Q 2(a 1;Mt) by 
Lemma 8(b ), so a1 EA. But now L 2(a 1 ) = k 2 a1 :(, E 2 (if Pn j a1 we need 
L 2(p 11 ) = h2(p,, FJ) :(, E 2 ), so h2(F2 , F 1 ) ~ k 2 min A. I 

PROPOSITION4. Ifk 2 <d(0) and Mf>k 1 P(k) then (F1 ,F2 ) is an 
equilibrium only if it satisfies the conditions in (b )(ii) of Theorem 1. 

Proof The conditions on F2 follow from (a) and (b) of Lemma 11. The 
condition (3.4) follows from Lemmas ll(a) and 8(b)(iii), and (3.5) follows 
from Lemmas ll(c) and 8(b)(ii). I 
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