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I first show that if there are more than two potential candidates in the Hotel
ling-Downs model of the simultaneous choice of positions by politicians then an 
equilibrium fails to exist in a wide range of situations. Subsequently I study a 
temporal model in which candidates are free to act whenever they wish. For the 
case of three potential candidates I find that in every equilibrium exactly one 
candidate enters. There is always an equilibrium in which the position chosen by 
the entrant is the median; the only other possibility is that the position chosen is 
far from the median. Joumal of Economic Literature Classification Numbers: 
C72, D72. © 1993 Academic Press, Inc. 

1. INTRODUCTION 

Hotelling' s ( 1929) model of spatial competition, as interpreted by Downs 
(1957), allows us to see clearly why politicians in two-candidate competi
tions choose similar platforms. It is much less successful in yielding in
sights about the outcomes of competitions in which there are more than 
two candidates. I begin by studying its equilibria under plurality rule in 
this case. My results are negative. I show that if each potential candidate 
has the option of not entering the competition and prefers to stay out 
rather than to enter and lose then for almost any distribution of the voters' 
ideal points (most preferred positions) the game has no Nash equilibrium 
in pure strategies. If each potential candidate prefers to enter and lose 
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than to stay out of the competition and chooses a position to maximize 
her plurality then the game has no pure strategy Nash equilibrium for 
almost any single-peaked distribution of the voters' ideal points. In both 
cases Nash equilibria in mixed strategies appear to be intractable. 

In the simultaneous-move model a configuration of positions fails to be 
a Nash equilibrium if a player can choose a different position and obtain 
more votes than any other, given that no player responds. The assumption 
that players who have chosen positions cannot change them may (or may 
not) be attractive, but it seems unreasonable for a candidate to assume 
that a different action on her part will never encourage the entry of a new 
candidate: potential candidates are not usually restricted to acting at a 
predetermined time. Thus a Nash equilibrium of the simultaneous-choice 
model does not seem to capture the strategic reasoning of candidates in 
the world; a model that appears to do better in this regard is one in which 
each player can choose a position whenever she wishes. (Delayed entry 
may entail a cost, but not one that overwhelms all potential benefits.) In 
such a model a player who considers deviating has to worry about the 
reaction of any player who has not yet chosen a position; this makes it 
more likely that an equilibrium exists. 

In the second part of the paper I study such a model. Time is discrete 
and starts at period 1. In each period any player who has not yet chosen 
a position may do so. Once chosen, a position cannot be changed. When 
all the players who are ever going to enter the competition have done so 
an election is held. Each of a continuum of voters endorses the candidate 
whose position is closest to her ideal point. (That is, as in the standard 
Hotelling-Downs model, voting is "sincere.") The winner of the election 
is the candidate who receives the most votes. Potential candidates prefer 
to stay out of the competition rather than to enter and lose. When there 
are three potential candidates I show that the game has an equilibrium in 
which one candidate enters at the median ideal point in period 1 and the 
other two players stay out of the competition. If the distribution of the 
voters' ideal points is single-peaked and symmetric about its median then 
this is the only equilibrium. If not then the only other equilibria are ones 
in which exactly one candidate enters, and chooses a relatively extreme 
position. 

Related Work1 

Cox (1987) studies the simultaneous-choice model when the candidates 
are plurality-maximizers. He finds Nash equilibria when the distribution 
of ideal points is uniform on [0, 1], and shows that if for some distribution 

1 Shepsle and Cohen (1990) and Shepsle (1991) survey the literature. 
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a Nash equilibrium exists then at least one candidate chooses a position 
outside the interval from the first to the third quartile. In (1990, p. 183) 
he conjectures that equilibria generically fail to exist. My Proposition 5 
shows that among single-peaked densities this conjecture is correct, so 
that in this case Cox's second result is almost vacuous. Parts of my 
arguments are similar to those of Eaton and Lipsey (1975) for an economic 
location model. 

Feddersen et al. (1990) remove the restriction in the simultaneous-move 
model that individuals vote "sincerely." There are then equilibria in which 
several candidates enter at the median ideal point, each obtaining the 
same number of votes; these are the only equilibria in which the voters 
use undominated strategies. These equilibria are supported as follows. If 
a potential candidate deviates and enters at a point different from the 
median then all the voters who strictly prefer the deviant's position vote 
for her; the remainder vote for one of the candidates-say the one with 
the lowest index-located at the median. The key point is that though 
the remaining voters are indifferent between all the candidates at the 
median, they all vote for one of these candidates in the event of a deviation. 
Thus, as Feddersen et al. say, "a disturbing feature of the equilibrium set 
is that it depends on implicit coordination (or cooperation) among voters" 
(p. 1014). (Eddie Dekel has pointed out to me that polls may serve as a 
coordination device, though to model them formally requires an expansion 
of the model.) The equilibria in my model have the advantage that they 
do not depend on this sort of coordination: 2 a deviation is deterred by the 
entry of another candidate that it induces. 

Cox's results raise the issue of whether equilibria are always "centrist." 
On this, my model and that of Feddersen et at. give different answers: in 
my model there are, for some distributions of ideal points, noncentrist 
equilibria, while in FSW's there are not. 

My temporal model (in Section 4) is related to that of Palfrey (1984). 
In his model there are three candidates; the game has two stages. In the 
first stage two of the candidates simultaneously choose positions; in the 
second stage the remaining candidate does so. Each candidate acts to 
maximize the number of votes she receives; she does not have the option 
of staying out of the competition. Relative to my model, the timing of 
decisions is rigid: Palfrey's model captures a situation in which there are 
two established parties, each of which has little flexibility in the time at 
which it must choose a position. 

2 Another type of coordination is necessary in both my model and that of Feddersen eta/.: 
in any equilibrium in which not all the potential candidates enter there is some "coordination" 
required to select those who do. When there is an equilibrium with a single entrant, for 
example, there is one such equilibrium for every potential candidate. 
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2. THE FRAMEWORK 

A policy or position is a point on the real line X. Each of n :::::: 2 players 
can, according to rules described below, choose to offer some policy, or 
to stay out of the competition. A player who enters the competition be
comes a candidate. The.t;e is a continuum of voters, each of whom has a 
most preferred ("ideal") policy. The distribution function of the voters' 
ideal policies is F. I assume that F is nonatomic and that its support is 
an interval; I denote its density by f. I assume that voting is "sincere": 
each voter endorses a candidate whose position is closest to her ideal. If 
k candidates offer the same policy x then each receives the fraction 1 I k 
of the votes of those individuals whose ideal points are closer to x than 
to the policy of any other candidate. (Since F is nonatomic it does not 
matter which of two equidistant candidates at different positions a voter 
endorses.) 

Given a profile (y1, ••• , Yk) of occupied positions withY; < Yi+ 1 for all 
i = 1, ... , k - 1, the constituency of the position Y; is the fraction of 
the population that votes for one of the candidates at Y; (i.e. F((y;+ 1 + 
Y;)/2)- F((y; + Y;- 1)12) if2 :s i :s k- 1, with appropriate modifications 
fori= 1 and i = k). This constituency consists of two semiconstituencies: 
the left constituency-the fraction of the population that votes for a candi
date at Y; and has an ideal point less than Y; (i.e., F(y;) - F((y; + Y;- 1)12) 
ifi:::::: 2)-and the right constituency, defined symmetrically. (Throughout I 
think of the policy space as running from left to right, with negative 
numbers on the left, and use "x lies to the left of y" as a synonym for 
"x < y. ") 

Candidates' Preferences 

In order to describe the game that I study I need to specify the structure 
of the players' choices and the players' preferences over outcomes (pro
files of vote totals). In this section I discuss the latter. 

The assumptions that I make about preferences model a situation in 
which the winner of the election is the candidate who receives the most 
votes. For any profile x of positions for the candidates let v;(x) be the 
fraction of the votes received by candidate i and let M;(x) be i's plurality: 

M;(x) = v;(x) - max vj(x). 
i""i 

An essential feature of electoral competition is that the objective of each 
candidate is to win, so that it is natural to assume that each candidate 
prefers to win outright than to tie for first place with any number of other 
candidates: 
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x>; Y whenever M;(x) > 0 and M;(Y) = 0. (1) 

It is natural also to assume that each player prefers to tie for first place 
with any number of candidates rather than to lose, though this is an 
assumption that I do not always need:3 

x>; y whenever M;(x) = 0 andM;(Y) < 0. (2) 

As to additional restrictions on preferences, I consider two cases. In 
one case I assume that each Player i prefers to stay out of the competition 
rather than to enter and lose: 

x>; y whenever X; = OUT and M;(Y) < 0, (3) 

where OUT is the action of staying out of the competition. When the 
players' preferences satisfy this assumption I sometimes make two addi
tional assumptions. First, tying for first place with one other candidate is 
preferred to staying out of the competition: 

x>; y whenever M;(x) = 0, w(x) = 2, andy;= OUT, (4) 

where w(x) is the number of candidates who win (have a nonnegative 
plurality) in the profile x. Second, each Player i is indifferent between any 
two outcomes in which she wins outright: 

x~; Y whenever M;(x) > 0 and M;(Y) > 0. (5) 

The other case that I study is that in which each player prefers to enter 
the competition rather than to stay out, even if she loses. (As a loser she 
may influence the policy carried out by the winner, especially if the win
ner's margin of victory is small, and entering the competition, even if she 

3 Note that (1) and/or (2) are not satisfied by some of the objectives considered in the 
literature. An objective drawn from models of the location of firms is that candidates prefer 
to obtain more votes rather than fewer; this leads candidate 1 to prefer, for example, the 
profile of votes (4, 5, 0, 0), in which she loses, to the profile (3, 2, 2, 2), in which she wins. 
A case that Denzau eta/. (1985) study is that in which each candidate i minimizes a weighted 
average of the numbers of candidates who obtain more votes than i and who are tied with 
i. If the weight on the second number is zero then candidate I is indifferent between (2, I, 
1), in which she wins outright, and (2, 2, 0), in which she is tied for first place. If the weight 
on the second number is positive and there are sufficiently many candidates then there is 
a pair of profiles v and v' with the property that in v candidate i is tied for first place while 
in v' she loses, and she prefers v' to v. (Note also that Denzau et a/. assume throughout 
that the distrib.ution of the voters' ideal points is uniform.) 
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loses, may be necessary for her to attain the credibility she needs to have 
a chance of winning future elections. These benefits may outweigh the 
cost of entry.) Under this assumption, no player chooses OUT in any 
equilibrium; for this reason I simply do not give the players the option of 
choosing OUT. Further, in this case I assume specifically that each player 
is a plurality maximizer:4 

x>; y whenever M;(x) > M;(Y). (6) 

3. SIMULTANEous MovE GAMES 

I first consider the case in which the candidates take actions simultane
ously. Denote by G,(X U {OUT}) and G,(X) the game forms in which 
there are n players and the strategy set of each player is X U {OUT} 
and X respectively. Unless otherwise stated I restrict attention to Nash 
equilibria in pure strategies. 

When considering a particular Nash equilibrium I adopt the convention 
that k is the number of candidates who enter, the position of candidate i 
is X;, with x1 :::; x2 :::; • • • :::; xk, and the number of occupied positions is 
r. If r = 1 the occupied position is y1, and if r ~ 2 the occupied positions 
are y1 < · · · < Yr; k1 is the number of candidates at y1. 

Players Who Prefer to Stay Out Rather than to Enter and Lose 

LEMMA 1. If each player's preferences satisfy (1) and (3) then any 
Nash equilibrium of G11(X U {OUT}) in which at least two players enter 
satisfies the following. 

(a) k; :::; 2 for all i. 
(b) k1 = kr = 2. 
(c) If k; = 2 then the left and right constituencies ofy; are equal. 
(d) The share of the vote of each of the k players who enters is llk. 

Proof. If not all candidates obtain the share 11 k then one of them loses, 
and so by (3) prefers not to enter, establishing (d). To demonstrate the 
remaining properties of an equilibrium I show the following. 

CLAIM. Every semiconstituency is at most llk. 

Proof. Suppose that a semiconstituency-without loss of generality 
the left constituency-of Y; exceeds 1/k. If follows from (d) that k; ~ 2. 
If one of the candidates currently at Y; moves to a point just to the left of 

4 Note that the preferences of a candidate who is a complete plurality maximizer (Cox 
(1987)) satisfy (6). 
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Y; then she obtains more than llk of the vote. Her move slightly reduces 
the share of each candidate at Y;- 1 (if i 2::: 2) and reduces the share of the 
other candidates aty; (using (d) again); it affects no other candidate. Hence 
she wins outright, an outcome she prefers (by (1)) to tying with the other 
candidates at Y;· 

If follows that the constituency of any point is at most 2/k, so that (a) 
follows from (d). If k; = 1 fori = 1 or i = r then the candidate at Y; can, 
by moving closer to her neighbor, increase her share without increasing 
any other candidate's share, and hence win outright, so that (b) follows 
from (1). Finally, if k; = 2 then the constituency of Y; is 2/k by (d), so 
that (c) follows from the claim. 1111 

It follows that if there are two players (n = 2) whose preferences satisfy 
(1) and (3) then the only possible equilibrium in which both players enter 
is that in which they both do so at the median of F. If their preferences 
satisfy also (4) then this is fact an equilibrium, and is the only one. If they 
both prefer to stay out of the competition rather than to tie for first place 
with one other candidate and their preferences satisfy (5) then there is an 
equilibrium, in every equilibrium just one of them enters, and the position 
chosen by the entrant is the median of F. I now consider the case n 2::: 3. 

LEMMA 2. For no distribution F is there a profile of positions that 
satisfies the four conditions of Lemma 1for k = 3. For almost no distribu
tion F is there a profile of positions that satisfies the four conditions of 
Lemma 1 for k 2::: 4. 

Proof. The case k = 3 follows immediately from (a) and (b) of Lemma 
1. If k 2::: 4 then by (a) of Lemma 1 we have r 2::: 2. From (b), (c), and (d) 
we know that y 1 = F - 1 (1/ k) and the boundary between the constituencies 
ofy1 and y2 is F- 1(2/k), so that y2 - F- 1(2/k) = F- 1(2/k) - y 1, or Y2 = 
2F- 1(2/k) - F- 1(1/k). Hence by (a) and (c) there can be two candidates 
at y2 only if F- 1(3/k) = 2F- 1(2/k) - F- 1(1/k) ( = J2), which is true for 
almost no distribution F. Thus for almost all distributions any profile of 
positions that satisfies the conditions has exactly one candidate at Y2· 

I now argue that for almost any distribution there is exactly one candi
date at Yj for all j 2::: 2. From the argument above we know that y2 = 
2F- 1(2/k) - F- 1(1/k) and that there is one candidate at h Hence by 
(d) of the lemma the boundary between the constituencies of y2 and y3 is 
F- 1(3/k). This determines the position of y3 ; for almost no distribution 
is the left constituency of y3 equal to 1/k, so that by (a) and (c) of Lemma 
1 we conclude that there is one candidate at y3• Continuing in the same 
way we conclude that there is one candidate at every occupied position 
to the right of YJ. For j = r this contradicts (b) of the lemma, completing 
the proof. 1111 



140 MARTIN J. OSBORNE 

I can now establish my result on the generic nonexistence of a Nash 
equilibrium in G,lX U {OUT}). 

PROPOSITION 3. Suppose that each player's preferences satisfy (1), 
(3), and (4). Then for any distribution F the game G3(X U {OUT}) has no 
Nash equilibrium; if n 2: 4 then for almost any distribution F the game 
G11 (X U {OUT}) has no Nash equilibrium. 

Proof. If n 2: 3 then under (1) and (4) there is no equilibrium in which 
no player enters; under (4) there is no equilibrium in which one player 
enters. By Lemma 1 in any equilibrium in which two players enter they 
both do so at the median of F. But under (1) and (4) this is not an equilib
rium, since a third player can enter and win outright. The result follows 
from Lemmas 1 and 2. 1111 

Suppose that the players' preferences satisfy (1) and (3), but violate 
(4). If each player prefers to win outright rather than to stay out of the 
competition and (5) is satisfied then it is an equilibrium for one player to 
enter at the median, and it follows from part (d) of Lemma 1 that if the 
violation of (4) is strict then there is no other equilibrium. 

If the density f ofF is single-peaked (i.e., increasing up to its maximum 
and decreasing thereafter) then we can draw a conclusion stronger than 
that of Proposition 3: if n 2: 5 there is no Nash equilibrium for any 
distribution F. If n = 4 then there is a Nash equilibrium in this case only 
iff is symmetric and its maximum is not too large. A case that has received 
some attention in the literature is that in which F is uniform on [0, 1]. In 
this case G11 (X U {OUT}) has a Nash equilibrium whenever n is even; in 
any equilibrium all the candidates enter, k; = 2 for all i, and Y; = 
(2i - 1)/n for all i. (Cox (1987, Theorem 2) shows that these are the only 
equilibria when the players' preferences satisfy conditions more restrictive 
than (1) and (2).) Proposition 3 shows that this result depends critically 
on the uniformity of F. 

Plurality Maximizers 

I now turn to the case in which the players' preferences satisfy (6) (i.e., 
the players are plurality maximizers). 

LEMMA 4. If n 2: 3 and each player's preferences satisfy (6) then 
for almost any distribution F at least one candidate loses in any Nash 
equilibrium of Gn(X). 

Proof. Cox (1987, Lemma 1) shows that if each player is a plurality 
maximizer then any Nash equilibrium of G11 (X) satisfies (a), (b), and (c) 
of Lemma 1. Thus by Lemma 2 for almost any F any Nash equilibrium 
violates (d), and hence at least one candidate loses. 1111 
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PROPOSITION 5. If n ;:::: 3 and each player's preferences satisfy (6) then 
for almost evety single-peaked density f the game G11 (X) has no Nash 
equilibrium. 

Proof. First note that by Cox (1987, Lemma 1), (a), (b), and (c) of 
Lemma 1 hold. Fix a Nash equilibrium and denote the set of candidates 
for whom M;(x) is largest-the winners-by W. Suppose without loss of 
generality that there is a candidate in W who is located at or to the right 
of the maximizer of f. Let Y; be the position that is furthest to the right 
among those positions at which there is a candidate in W. I consider two 
cases separately. 

i < r: Suppose that a candidate at Y;+ 1 moves to the left by a distance 
small enough that W either remains the same or shrinks. If k;+ 1 = 1 then 
this move increases the share of the candidate who moves (since Y; lies 
to the right of the maximizer of f) and either reduces the share of the 
winning candidate (if only the candidate(s) at Y; are winners) or leaves 
this share the same. Hence the candidate who moves is better off. If 
k;+ 1 = 2 (the only other possibility) the same is true since the two semi
constituencies of Yi+ 1 are equal. 

i = r: We have k; = 2 and the left and right constituencies of Y; are 
equal. Hencef(y;_ 1) <f(i(y;_ 1 + Y;)) (otherwise the candidate(s) aty;_ 1 

obtain more than the candidates at Y;, contradicting the fact that the latter 
are winners). Thus Y;- 1 lies to the left of the median. If there is a candidate 
not in w then let Yj be the firs-t position to the left -of y; aT which-there IS 
such a candidate. If a candidate at yj moves slightly to the right then, as 
for the case of a move to the left by a candidate at Yi+I in the case i < r, 
she can increase her share and either leave W unchanged (if only those 
at Y; are winners) or shrink this set. Hence she is better off. The remaining 
possibility is that all candidates are in W. The result follows from Lemma 
4. IIIII 

The games that I have studied may possess Nash equilibria in mixed 
strategies when n ;:::: 3. However, the problem of finding any such equilibria 
seems to be intractable. Further, voters may have an aversion to candi
dates who choose their positions randomly (because, for example, they 
doubt the "sincerity" of such candidates); if so, a richer model is required 
to study equilibria in which candidates randomize. 

4. A TEMPORAL GAME IN WHICH EACH PLAYER 

MAY AcT WHEN SHE WISHES 

I now study a game in which each of the n players may enter the 
competition whenever she wishes. In each of the infinite sequence of 
periods 1, 2, ... every player who has not yet chosen a position either 
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does so or chooses to wait until the next period. As in the previous section, 
I restrict attention, unless otherwise stated, to pure strategies. Denoting 
the option to wait by w, each candidate who has chosen win every previous 
period chooses, in period t, a member of the set of actions XU {w}. The 
choices of the players in any given period are simultaneous. Once a player 
has chosen a position she can take no further action. One option of a 
player is to choose win eve1y period-i.e., to stay out of the race entirely. 
Given a strategy profile for the players, there is some date after which no 
further players enter. At this date an election is held, and, as before, the 
winner is the candidate who receives the most votes. Throughout I assume 
that the players' preferences satisfy (1) through (5). This defines an exten
sive game, which I denote f(n). 

Equilibrium 

As in many games in which play may proceed over many periods, a 
strategy in f(n) is complex. Moreover, the notion of subgame perfect 
equilibrium, which requires that the players' strategies define a Nash 
equilibrium in every subgame, requires that each player's strategy be 
specified fully. However, in f(n), as in other sequential games in which 
some choices are made simultaneously, the spirit of subgame perfect 
equilibrium is captured by a notion that requires only a partial specification 
of the players' strategies. The idea is that no player should be able to 
increase her payoff by changing her action in any period, given that the 
behavior of the players in the subgame to which the deviation leads is 
optimal, in the sense that it satisfies the same condition. To check that a 
strategy profile u meets this condition, no information is needed about 
the behavior that u prescribes in subgames that are reached when more 
than one player deviates from u in some period. This leads to the following 
definition of equilibrium. 

A substrategy u; of Player i is a function that assigns an action of Player 
i to every member of a subset of the set of histories at which Player i has 
not already chosen a position. Denote the set of histories after which u; 

specifies an action by H(u;). A profile u of substrategies is an equilibrium 
if (1) for every Player i, H(u;) includes all histories that result when at 
most one player deviates from u in any given period and (2) after any 
such history, no player can increase her payoff by a unilateral change of 
strategy, given that the other players continue to adhere to u. 

The advantage of working with this notion of equilibrium rather than 
subgame perfect equilibrium in the game f(n) is that it is not necessary 
to specify the players' behavior, or, indeed, worry about the existence 
of an equilibrium, in "irrelevant" subgames-subgames that cannot be 
reached by a sequence of deviations from u in which at most one player 
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deviates in each period. This advantage is considerable: relative to the 
equilibria that I consider, there is a huge number of irrelevant subgames. 
To illustrate briefly, suppose that there are three players and consider a 
strategy profile in which Players 1 and 2 enter in period 1 at xT and x~ 
respectively and Player 3 chooses w in every period. A strategy for Player 
1 must specify an action in period 2 for every first-period profile of actions 
(w, s2 , s3), where s2 and s3 are members of XU {w}. However, there is 
just one relevant subgame in which Player 1 has to take an action: the 
one that follows the first-period action profile (w, x~, w). 

The relation between an equilibrium in this sense and a sub game perfect 
equilibrium is close: a subgame perfect equilibrium is an equilibrium, and 
if every subgame has a subgame perfect equilibrium then an equilibrium 
is associated with at least one subgame perfect equilibrium. 

Results: Three Players 

I first study the game f(3). Subsequently I normalize the median ofF 
to be 0. The following result says that in every equilibrium of f(3) exactly 
one player enters; the position at which she does so is either the median 
or far from the median. Let a* be the length of the shortest interval 
containing the median that contains i of the ideal points (i.e., a* is the 
smallest value of a for which a + a ;:::: 0 and F(a + a) - F(a) = i for 
some a :50). 

PROPOSITION 6. The game f(3) has an equilibrium in which one player 
enters at the median ofF in period 1 and the other two players stay out 
of the competition. In any other equilibrium one player enters at a position 
to the left of -a* or to the right of a* in period 1 and the other two 
players stay out of the competition. 

To prove this I first establish the following. 

LEMMA 7. Any sub game of f(3) that follows a history in which one 
player has chosen a position and the other two players have not yet 
entered has an equilibrium. 

Proof. Let the position that has been chosen be x1• Suppose that there 
is one candidate at x1 and one at some point x2• I claim that there then 
exists an optimal action for the third player. If there is a point at which 
the third player can win then any such point is optimal (using (5)); if there 
is no such point but there is a point at which the third player ties with at 
least one other player for first place then there is a finite number of such 
points, and one of them is optimal; if the third player loses at any point 
at which she enters then OUT is optimal. Let g(x1, x2) be an optimal action 
for the third player, given x1 and x2• The form of an equilibrium of the 
subgame depends on which of the following two conditions is satisfied. 
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~For all values of x2 the action g(x1, x2) is such that the player at x2 

loses. 
~There is a value of x2 such that given g(xll x2) the player at x2 either 

wins outright or is tied for first place. 

In the first case there is an equilibrium of the subgame in which neither 
of the remaining players enters. In the second case there is an equilibrium 
in which one of the remaining players enters and the other player chooses 
a best response (which may involve entering or not). 1111 

Proof of Proposition 6. I separate the argument into steps. 

STEP 1. f(3) has an equilibrium in which one player enters at the 
median ofF in period 1 and the other two players stay out of the compe
tition. 

Proof. The following is an equilibrium of f(3). After any history in 
which no player has entered, Player 1 enters at the median ofF in the 
next period and the other two players stay out of the competition. If 
Player 1 enters at some point other than the median then the other players 
act as in one of the equilibria shown to exist by Lemma 7. If, after a 
history in which Player 1 has entered at the median, either Player 2 or 
Player 3-say Player 2-enters at a point x2 for which x2/2 is in the support 
ofF then Player 3 enters in the following period at a point close enough 
to the median that she wins outright (such a point exists because F is 
continuous). If Player 2 enters at some other point then Player 3 enters 
at the median. In each case Player 2 loses. 

Player 1 can do no better than enter at the median since this leads her 
to win outright; the other players' actions are optimal by construction. 

STEP 2. There is no equilibrium off(3) in which two players enter in 
period 1 and the third stays out of the competition. 

Proof. In an equilibrium of this type the entrants must locate either 
at the same point s or at different points - t and t symmetrically about 
the median (so that they receive the same number of votes). In the first 
case the third player can enter either at s - e or at s + e and win outright, 
so there is no equilibrium of this type. In the second case either the third 
player can enter (between the other two) and win outright, or there is no 
position at which the third player can win outright, in which case one of 
the first two entrants could have entered slightly closer to the median, at 
a position at which the third player could not even tie for first place, and 
could thereby have won outright rather than tying with another player. 
Thus there is no such equilibrium. 

STEP 3. There is no equilibrium off(3) in which two players enter in 
period 1 and the third enters in a later period. 
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Proof In this case all three candidates must obtain the same number 
of votes (otherwise one of them loses). There are three possibilities. In 
each case I describe a deviation that leads to an outcome that the deviant 
prefers. 

First, the candidates are all at the same point. In this case the last 
entrant can deviate and enter slightly to one side and win outright. 

Second, they are at three different points. If the last player to enter is 
at one of the extreme positions then she can move slightly closer to the 
middle player and win outright. If the last player to enter takes the middle 
of the three positions then the player who obtains more than t of the votes 
in the absence of the last player can move slightly closer to the middle, 
thereby inducing the last player not to enter, and winning outright. 

Third, two players (say Players 1 and 2) are at the same position s, 
while the third (Player 3) is at a different position t. Without loss of 
generality assume that t > s (so that sand tare equidistant from p-'(i)). 
If Player 3 is the last to enter then she can move slightly closer to the 
others and win outright. If one of the other players is the last to enter 
then there are three cases. First, s > p-'Ck), in which case the last player 
can enter slightly to the left of sand win outright. Second, s < p-'(!), in 
which case the last player can enter slightly to the right of s and win 
outright. Third, s = F _, (!), in which case the player at t can enter instead 
just to the left of - s, induce the last player not to enter, and win outright. 

STEP 4. There is no equilibrium in which all three players enter in the 
same period. 

Proof. The argument is the same as for the nonexistence of an equilib
rium in the game in which the players are restricted to act simultaneously. 

STEP 5. The sub game following the entry of one player at the median 
in period 1 has a unique equilibrium, in which no more players enter. 

Proof. As argued in the proof of Step 1, for any position chosen by 
one of the remaining players there is a position of the other remaining 
player that wins outright. Hence the only equilibrium of the subgame is 
that in which no further players enter. 

STEP 6. In every equilibrium one player enters; she does so in period 
1 either at the median or at a position to the left of -a* or to the right 
of a*. 

Proof By Steps 2, 3, and 4 either one player enters in period 1 or 
none do so. By Steps 1 and 5 there is no equilibrium in which no player 
enters in period 1, since in any equilibrium at least one player does not 
win outright, and by entering at the median in period 1 a player can 
guarantee that she wins outright. Thus in every equilibrium one player 
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FIG. 1. An example of a distribution of ideal points for which there is an equilibrium in 
which there is a single entrant at an extreme position. Each square is of the same size. If 
one candidate enters at x1 then no further candidate enters. 

enters in period 1; again by Steps 1 and 5 no more players enter. Finally 
suppose that a player enters in period 1 at a position s E [-a*, 0). Then 
one of the remaining players can enter slightly to the left of - s, induce 
the last player not to enter, and win outright. 1111 

Proposition 6 does not give conditions for the existence of an equilibrium 
in which the single entrant chooses an "extreme" position. However, it 
is not hard to give examples of such equilibria that do not depend sensi
tively on the nature of F. The single entrant may even occupy a position 
that is outside the support ofF-i.e., that is more extreme that the ideal 
point of any voter. An example is the following. The distribution of ideal 
points is that given in Fig. 1. Suppose that a single entrant takes the 
position x1• If an additional player enters at or to the left of b then a third 
player who enters slightly to the right of the entrant wins outright (and 
hence causes the second entrant to lose); if an additional player enters at 
or to the right of b then a third player who enters at a wins outright. Thus 
if one player locates at x1 then in every equilibrium of the subsequent 
subgame there is no further entry. 

Equilibria in which the single entrant chooses a position different from 
~the median ofF appear to depend sensitively on the restriction that there 
are just three potential candidates, so whether they can shed any light on 
political systems in which there is one extreme party is unclear. 

For some distributions F we can rule out equilibria with extremist 
candidates, as follows. 

PROPOSITION 8. If the density f of the distribution F of ideal points is 
single-peaked and symmetric about its median then in eve1y equilibrium 
of f(3) one player enters at the median ofF and the other two players 
stay out of the competition. 

Proof. To prove this I need to show only that in no equilibrium of the 
subgame that starts in period 2 after Player 1 (say) has located at x1 ¥= 0 
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in period 1 does Player 1 win outright. Throughout I consider only the 
case x1 > 0; the case x 1 < 0 is symmetric. 

Given the symmetry and single-peakedness off, we have a* = 2F- 1(i); 
let {3* = !a*. Note that if the three candidates locate at -a*, 0, and a*, 
or if one locates at {3* and the other two locate atF- 1(i), then each receives 
a third of the votes. 

First suppose that 0 < x 1 < {3*. Then there is a point at which one of 
the remaining players-say Player 2-can enter and be sure to win out
right. The point is g(x1) + s(x1), where g: (0, b)~ IRis given by 

g(x) = { -x 2 * 
x- a 

ifO < x::; a* 

if a* < x < {3*, 

and s: (0, {3*) ___,. IR is any function that satisfies 0 < s(x) < 2x/3 if 0 < 
x ::; a*, and 0 < s(x) < {3* - x if a* < x < {3*. 

If Player 2 enters at g(x1) + s(x1) I claim that Player 3 loses wherever 
she enters. If x3 :=::: x 1 then Player 2 obtains more than half of the votes, 
so that Player 3 loss. If x2 ::; x3 < x 1 then Player 3 obtains less than a 
third of the votes and hence loses. If x3 < x2 and 0 < x 1 ::; a* then Player 
3 obtains fewer votes than Player 1, and hence loses. Finally, if x3 < x2 

and a* < x1 < {3* then Player 3 obtains less than a third of the votes and 
hence loses. 

Given that by locating at g(x1) + s(x1) Player 2 is sure of winning 
outright there is no equilibrium of the sub game in which no player enters 
after Player 1. In any equilibrium that exists, therefore, Player 1 does not 
win outright. 

Now suppose that x 1 :=::: {3*. In this case there is a point at which an 
additional entrant ensures that at worst she ties for first place, and there 
is no point at which she can do better. The point is h(x1) defined as follows. 
Fix x :=::: {3* and consider the function ' defined by '(z) = 2F(z) -
F((x + z)/2) for z E [F- 1(i), 0]. We have '(0) = 1 - F(x/2) ::::: 0 and 
,(F- 1(i)) = i - F(a) where a:=::: F- 1(i), so that ,(F- 1(i))::; 0. Further, 
'is increasing on [F- 1(i), 0]. Hence' has a unique zero on this interval. 
That is, for each x :=::: {3* there is a unique point h(x) in [F- 1(i), 0] for 
which 

F(h(x)) = F ( x + 
2
h(x)) - F(h(x)). 

We have h(f3*) = F- 1(i), so that if x 1 = {3* and Player 2 enters at h(x1) 

then the only point at which Player 3 does not lose is h(x1); at this point 
she ties for first place with the other two players. If Player 2 enters at 



148 MARTIN J. OSBORNE 

any other point then there is a point at which Player 3 can win outright. 
Hence if both Player 2 and Player 3 prefer to tie with two others for first 
place than to stay out of the competition then in every equilibrium of the 
subgame these players enter at h(x1), with the result that all three players 
tie for first place. If either Player 2 or Player 3 (or both) prefer to stay 
out of the competition than to tie with two others for first place then in 
every equilibrium of the subgame one of them enters at h(x1) and the other 
stays out of the competition; the one who enters wins outright. In each 
case there is no equilibrium in which Player 1 wins outright. 

If x1 > {3* then h(x1) > p-'m, so if Player 2 enters at h(x1) then it is 
optimal for Player 3 to enter at the same point, in which case Players 2 
and 3 tie for first place and Player 1loses. Further, if Player 2 enters at 
any other point then Player 3 can enter and win outright. Hence in every 
equilibrium of the subgame Players 2 and 3 enter and tie for first place 
and Player 1 loses. 1111 

It seems that the conditions on f stated in Proposition 8 are stronger 
than necessary to prove the result. They are used to ensure that if Player 
1 locates at x 1 > {3* then there is a position for Player 2 such that, given 
the optimal response of Player 3, Player 2 at worst ties for first place and 
Player 1 loses. The problem is that if Player 2 locates at h(x1) then for an 
arbitrary distribution F there may be a point in (h(x1), {3*) at which Player 
3 can beat Player 2. 

Results: Many Players 

For the case in which there are more than three players my results are 
limited. For convenience, I strengthen (4) to the assumption that each 
Player i prefers to tie for first place with any number of candidates than 
to stay out of the competition: 

x>; y whenever M;(x) = 0 andY; = OUT. (7) 

In addition I assume that each Player i prefers to tie for first place with 
as few candidates as possible and is indifferent between all outcomes in 
which she ties with the same number of candidates: 

ifM;(x) = M;(y) = Othenx>; yifandonlyifw(x)<w(y), (8) 

where w(x) is the number of candidates who win in the profile x. Then if 
n is sufficiently small there is an equilibrium in which n - 2 players 
enter at the median of F and the remaining two players stay out of the 
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competition. How small n has to be depends on the distribution F; for 
any distribution n :::; 5 is enough, as the following results shows. 

PROPOSITION 9. For n = 4 or n = 5 the game f(n) has an equilibrium 
in which n - 2 players enter at the median ofF in period 1 and the 
remaining two players stay out of the competition. 

To prove this I use the following lemma. 

LEMMA 10. Suppose that n = 4 or n = 5, Players 1, ... , n - 3 are 
located at the median ofF, and Player n - 2 is located at s > 2F- 1(!). 
Then the two-player subgame that follows has an equilibrium, and in 
every equilibrium Player n - 2 either loses or ties with two other players. 

Proof. The argument for existence is the same as in the proof of Lemma 
7. If there is an equilibrium in which no more players enter then Player 
n - 2loses (since she obtains fewer votes than each of the players at the 
median). If there is an equilibrium in which exactly one more player, say 
n - 1, enters then this player cannot lose, and hence must enter to the 
left of the median (otherwise Player n could subsequently enter to the left 
of the median and win outright); if Player n - 2 does not lose then n -
1 and n - 2 must tie. Thus Player n - 1 must enter at a point to the left 
of 2F -l (!). But then Player n can win outright by entering at - 8 for 8 

small enough (in which case she wins more than i of the votes). Thus in 
every equilibrium in which exactly one additional player enters Player 
n - 2 loses. Finally consider an equilibrium in which both Player n - 1 
and Player n enter. By the same argument as for the previous case if 
Player n - 2 does not lose then Players n - 2, n - 1, and n must all tie, 
so that Player 11 - 2 ties with two other players. 1111 

Proof of Proposition 9. Consider the following substrategy profile. In 
period 1 players 1 through n - 2 enter at the median ofF and the remaining 
two players stay out of the competition. Mter a history in which n - 2 
players have entered at the median and one player has entered at some 
other point the remaining player enters at a point on the other side of the 
median, sufficiently close to it that she wins outright. Mter a history in 
which n - 3 of the players in {1, ... , 11 - 2} have entered at the median 
the remaining player in this set enters at the median in the next period 
and the other two players stay out of the competition. Mter a history in 
which n - 3 of the players in {1, ... , 11 - 2} have entered at the median 
and the remaining player in this set has entered at some other point s the 
actions of Players n - 1 and n depend on s. If 0 < s :::; 2F- 1(i) then 
Player n - 1 enters slightly to the right of 2F- 1 [1 - F(s/2)] and Player 
n stays out; if Player 11 - 1 enters at some other point then Player n 
chooses a best response. If s > 2F- 1(!) then the players behave as in an 
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arbitrary equilibrium of the subgame. (The subgame has an equilibrium 
by Lemma 10.) 

To see that this substrategy profile is an equilibrium, note that if a player 
in {1, ... , n - 2} deviates and enters at a point different from the median 
then she either loses or ties with two other players for first place (if the 
point at which she enters is to the right of 2F- 1(!), refer to Lemma 10). 
By (2) and (8) these two outcomes are no better than the outcome if she 
enters at the median (and ties with either one or two other players); by 
(7) such a player prefers to tie with n - 3 other players than to stay out 
of the competition. If, after 11 - 2 players have entered at the median, 
either n - 1 or n deviates and enters then the other enters and the original 
deviant loses. Mter a history in which n - 3 of the players in {1, ... , 
n - 2} have entered at the median, the remaining player in this set has 
entered at the points with 0 < s s 2F- 1(!), and Player 11 - 1 has entered 
slightly to the right of 2F- 1[1 - F(s/2)], there is no point at which Player 
n can win or tie for first place, and Player 11 - 1 wins outright. The 
remaining actions of the players are optimal by construction. 1111 

Mixed Strategy Equilibria 

In addition to the pure strategy equilibria that I have described the game 
f(n) has mixed strategy equilibria. For n = 3, for example, there is a 
symmetric equilibrium of the following form (as pointed out to me by 
Dan Bernhardt). All three players enter at the median ofF with positive 
probability in period 1. If the realization is that no player enters in period 
1 then all three enter with the same probabilities in period 2; if one player 
enters in period 1 then no more players enter; if two players enter in 
period 1 then the remaining player enters to one side of the median and 
wins outright. 

I argue that the existence of such mixed strategy equilibria is an artifact 
of the presence of simultaneous moves in the game f(11). Consider the 
alternate game f 1 (11) in which, within each period, any players who have 
not yet chosen a position move sequentially, the order of their moves 
being determined at the beginning of the period by chance. This game is 
no less appealing than f(11) as a model of candidate entry: the simultaneous 
moves in f(11) do not appear to capture any essential feature of political 
competition. The set of pure strategy equilibria of the game r 1 (3) corre
spond exactly to those of f(3); in any equilibrium the first player to move 
is the one who enters. Further, r 1 (n) is a game of perfect information 
with chance moves, and thus has no mixed strategy equilibria that differ 
substantively from its pure strategy equilibria, in the sense that every 
terminal history that occurs with positive probability in any mixed strategy 
equilibrium is the terminal history of a pure strategy equilibrium. 
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Concluding Remarks 

It appears that the model has equilibria in circumstances more general 
than those I have considered-for example, in some cases, at least, when 
the policy space is two-dimensional. 

My results depend on the assumption that the value of n-the number 
of potential candidates-is known. The nature of the equilibria when n 
is not known with certainty is unclear. 

There are many features of real-world political competitions that are 
absent from the model. To the extent that these features are inessential 
the model is virtuous in excluding them. One aspect that may not be 
inessential is uncertainty. (In a world of certainty there is no need to hold 
an election!) It is not clear how the equilibria change when the candidates 
are unsure of the voters' preferences or the voters are unsure of the 
candidates' positions. 
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