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Abstract

We characterize what we show is the unique Nash equilibrium in a model
of price-setting duopoly in which each firm has limited capacity, and demand
may be nonlinear. We study the comparative statics of the equilibrium. In
particular, we: show that the equilibrium prices are lower, the smaller is
demand relative to capacity. The equilibrium varies continuously with the
capacities, so that when one firm is very small the solution approximates that

of a monopoly.
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1. Introduction

A model of a priée-setting duopoly is a natural starting point for a
theory of the behavior of oligopolists. However, such a model has been
completely solved only under a particularly unrealistic assumption--namely,
that eagh_firm can produce an unlimited quantity (or, at least as much as is
demandéd at the breakeven price) at constant unit cost, The unique
equilibrium in this case involves each firm setting the breakeven price, so
that (unless capacity can be bought and sold at will) at most half of the
capacity of the duopolists is used in equilibrium. Given that the firms nust
at some point choose their capacities, it 1is difficult to see hLow such a
situation could come about.

We study the case where the capacity of each firm is limited, and
cannot be instantly changed. We describe, for each pair of capacities, what
we show is the unigue (Nash) equilibrium. We assume that the unit cost is the
same for each firm, and is constant up to capacity, and we allow for nonlinear
demand;‘wA few special cases of the model have been considered before (for the

details see Section 5 below). However, the previous analyses are quite

limited. They are either concerned with existence of an equilibrium, or
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simply exhibit an equilibrium, without showing it is unique, for a small set
of capacity pairs (e.g. those in which the capacities are equal). From the
-point of view of economic applications, these analyses tell us very little.
Unless an equilibrium is unique, or it can be shown that all equilibria have
certain features, the model does not yield any prediction about the way the
firms will behave (theré may be many other equilibria, involving all sorts of
different behavior). Further, interesting economic implications are likely to
emerge only when the variation of the equilibrium with the parameters (e.g.
capacities) 1is studied. Here we briefly note two of these '"comparative
static" results which follow from our model (the details are in Section 4).

We find that the larger is capacity relative to demand, the lower are
the equilibrium prices. This is, of course, intuitively plausible. It is
noteworthy because it emerges, even though, up to capacity, the technology of
both firms 1s the same. One can obtain a similar prediction in a competitive
model only by assuming, for example, that there are more and less efficient
firms; when demand is low, the lattar are forced out of business and the price
falls. In our model the result emerges from the fact that there is, in a
precise sense, more competition when there is excess capacity. 1In contrast to
the competitive outcome, profit is at the monopoly level if capacities are
small, even though there is wmore than one firm.

We also find that as the capacity of one of the firms decreases to
zero, the outcome approaches the monopoly outcome. Thus the Nash equilibrium
does not display the sharp discontinuity found by Shitovitz [1973] in the
core. In fact, it has precisely the characteristic which Shitovitz suggests a
reasonable solution should possess (see pp. 497-498): when there is a large
firm and a very small one, the large firm charges close to the monopoly price

with high probability, while the small firm randomly chooses a slightly lower



price.

Finally, we note that our results mean that the two-stage model of
Kreps and Scheinkman [n.d.], in which firms first choose capacities and then
choose prices, can be extended to a demand function which satisfies our
assumptions, rather than being linear. It is easy to check that the
qualitative outcome is éreserved under the more general assumptions: Cournot
quantities are chosen as capacities.

On the technical side, the game we analyze is a nonzerosum ''zame of
timing" (i.e. a game in which the payoff-functions are continuous, except
possibly when both players use the same strategy). Previous work on such
games is limited, and uniqueness has not previously been examined. For a
class of zerosum games of timing, XKarlin [1959] (pp. 293-295) gzives a
uniqueness proof which relies heavily on the fact that the equilibrium payoffs
in such a game are unique. For the games we consider, a substantially uwore
involved argument appears to be necessary.

In the next two sections we describe the model, and our results. 1In
Sections 4 and 5 we discuss comparative static results, and the related

literature. Finally, in Section 6 we provide proofs.

2. The Model

There are two firms, i =1, 2. Firm 1 has capacity ki; we assuune
throughout that k; > ko > 0. Each firm can produce the same good at the
same, constant unit cost ¢ » 0 wup to its capacity. Given the prices of all
other goods, the aggregate demand for the output of the firms as a function of
price is D: R_ » R,. Let p denote the excess of price over unit cost and

let S = [~c, =). We shall refer, somewhat loosely, to an element of S as a

“price". Define d: 3 » R, by d(p) = D(p + ¢); d(p) 1is the aggregate



demand for the good when its price exceeds the unit cost by p. We make the

following assumption on the demand function.

(2.1) There exists p, > O such that d(p) =0 if p > p, and

d(p) > 0 if p < py, and d 1is smooth on (-c, pgy), with

d”(p) < 0 there.

For each p € S, let w(p) = pd(p). Given (2.1), w attains a waximum on
S. To save on notation we choose the units in which price is measured so that
the maximizer is 1, and the units for quantity so that the maximal value is

also 1. We also assume that
(2.2) = 1is strictly concave on ([0, 1] and decreasing on (1, p,].

We now wish to define the payoffs of the firms at each pair of prices
(py» pPp)e We assume that if p; < Pj then consumers first try to buy from
firm 1; when its supply (ki) is exhausted, they turn to firm j. (Whenever
i and j appear in the same expression, we mean that 1 1is not equal to
je) There is a large number of identical consumers, each with preferences
which have no "income effect" (for details, see Section 2 of Osborne and

Pitchik [1983]). The aggregate demand at the high price p then depends on

|
the way the limited supply k; 1s allocated among the consumers. It is
natural to assume that the rationing scheme is chosen by firm 1i. However,
since the payoff to firm i is independent of the scheme used (only the
payoff of firm j 1is affected), this assumption does not define the one which
is chosen. UWe solve this problem by assuming that firm 1 chooses the scheme
which minimizes the payoff of firm Je In this scheme, each of the

(identical) consumers is allowed to purchase the same fraction of Ky (I.e.

a rule like "limit two per customer" is imposed, rather than allowing those at



the head of a queue to buy as much as they want).
Under this rationing rule (which is the one implicitly adopted in
Levitan and Shubik [1972] and Kreps and Scheinkman [n.d.]), the payoff to

firm i when it sets the price p; € S and firm j sets P; € 5 is

Li(py) = pymin(ky, d(p;)) if p; < Pj
(2.3) hy(py, p3) =4 ¢1(p) = p min(ky, kyd(p)/k) if py =p5=0p

Mj(py) = pymin(k;, max(0, d(pj)-kj)) 1if p; > Pj»

where k = kl + ko, and we éssume that if p; = Pj then demand is allocated
ian proportion to capacities. (For simplicity our notation does not
incorporate the dependence of hy on 3] and ko) Examples of the
functions 1L, ¢;, and M; are shown in Figure l. Let S be the set of
mixed strategies (i.e. cunmulative probability distribution functions on §).
We extend the domain of hy to S xS in the natural way. For each pair

(kl, kz), we study the game H(kj, ko) in which the strategy set of each firm

is 8§ and the payoff function of firm 1 (= 1, 2) is hi‘

3. The Nash Equilibrium of H(ky, k;)

The qualitative characteristics of the Nash equilibrium of H(kj, kz)
depend on the value of (kl, ky). To define the relevant 'regions", suppose

that, for each value of x € [0, d(0)],
(3.1) b(x) maximizes p(d(p) - x) over pE€ §,

and let B(x) = b(x)(d(b(x)) - x). If Eirm 1 sets the price P and
b(k;) > P(k), then the best price for firm j to charge out of all those in
excess of p; is b(k;), independently of p; (i.e. b(ky) wmaximizes Mj

in this case). Let P: {0, ®) + 5 be the inverse demand function defined
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by P(q) = d"(q) if 0 < q <d(-e), P(0) = p, (see (2.1)), and P(q) =
-c otherwise. The regions are illustrated! in Figure 2. 1In regions I_and II
the unique equilibrium strategies are pure, while in the remaining regions
they are nixed. In the latter case the equilibrium strategies (Fl’ Fy)

always have the form

0 if =-c < x < a
(3.2) Fi(x) = Gi(x) if a <x < b(kz)

1 if b(kz) < X,

where a and G; may depend on both k; and ky, Gy: [a, b(ky)] =+ [0, 1]
is continuous, Gi(a) =0 for i=1, 2, and Gz(b(kz)) = 1 (so that F, is
continuous). (In particular, the support of Fy is the same as that of

Fy.) Our main result (which is proved in Section 6) is the following.

Theorem: For each pair (kl, k,) the game H(kl, ko)) has a unique

Nash equilibrium. In regions I and II the equilibrium strategy pair is pure,

equal to (P(k), P(k)) and (0, 0) respectively; the equilibrium payoff to

i(=1, 2) is kiP(k) and 0 respectively. In region III each equilibrium

strategy is mixed, of type (3.2), with

Lj(p) - Lj(a)’
.Lj(p) - Mj(p)

(3.3) Gi(P) = i=1, 2,

where a < b(kz) is such that Ll(a) = Ml(b(kz)). The equilibrium payoff

of 1 (=1, 2) in this case is L;(a).

lStraightforward calculations show that region I contains all those points
with k) + k9 <1 (and k; > k), and that for each value of k,, there is at
most one value of k; such that b(kz) = P(k). Also, the boundary between
regions IIIa and IIIb is upward-sloping, and for every point (kl’ ko) in
region IIIb we have kl < d(0).
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By substituting in (3.3) the particular forms of Lj and Mj in the

various regions we can obtain a more explicit description of the equilibrium

strategies. Define functions U: (P(k), =) + R and V: (0, = + R by

klx - B(kz) xd(x) - B(kz)

(3-3) U(x) =m ‘and V(X) = k.2x .

Then the equilibrium in each region is as given in Table 1.

The equilibrium strategies can be given natural interpretations. In
region II each firm has more than enough capacity to meet the demand even at
the breakeven price (p = 0 under our normalization), so the capacity limits
are irrelevant, and we are back to the standard Bertrand model, where prices
are driven down to unit costs. At the other extreme, in region I there is
undercapacity in the industry: if k < 1 then the joint capacity of the firms
is less than the output a wuwonopolist without a capacity constraint would
produce. In this case there is no incentive for 'competition": each firm is
producing at capacity, and so cannot benefit from undercutting its rival.

In the remaining regions, where there 1is neither uader- nor over-
capacity, the unique equilibrium strategies are mixed. In each case the large
firm (1 = 1) chooses the price b(kz) (the huighest price in the support of
the strategies) with positive probability, while the strategy of the small
firm is continuous at b(kz). In regions IIla and IIIc the continuous parts
G; of the equilibrium strategies are concave, so that prices close to a are
chosen more frequently than ones near b(kz). In region IIIb, each "part" of
each strategy is concave, but the slope of Gy (i = 1, 2) to the left of
P(kl) is less than that to the right (the strategies are 1illustrated in

Figure 3).



Region Equilibrium Strategies

I Pure:

(P(k), P(k))

II Pure:

(0, O

Il1la Mixed, of type (3.2), with a = B(kz)/k1 and

Gz(X) = U(x)

[IIb Mixed, of type (3.2), with a = and

B(ky)/k,

sz(x)/k1 if a < x < P(kl)

GI(X)

1 - a/x if

(0(x)
iv(x)

IlIe Mixed, of type (3.2), with O < a <1 such that

< x < blk,)

P(kl) 2

if a < x < P(kl)

Gz(x)

£ P(k;) € x < blk,)

"(a) = B(kz) and

Cl(x) =1 - a/x

Gz(x) = V(x)

Equilibrium Payoffs

(k1 P(K), kyP(K))

(Q’ 0)

(B(kz), sz(kz)/kl)

(B(ky), kzﬁ(kz)/kl)

(B(kz), kza)

i
i
|

Table 1
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4. Properties of the Nash Equilibrium

In region III the unique Nash equilibrium involves mixed strategies.
This means that if the duopoly lasts for more than one period, the model
predicts variation in prices between periods (as the firms’ random devices
generate different realizations). The large firm chooses the high price
b(kz) with positive ‘probability, while the small one puts most of the
probability weight on low prices, close to a (and, in region IIIb, on prices
close to P(kl)). Varian {1980] has interpreted a random choice of prices by
firms as a policy of holding "sales". 1In our model, these sales emerge from
the process of competition itself; they do not. depend on the presence of
imperfect information of any sort, as in Varian’s model.

If both firms 1increase in size, while the ratio of their sizes 1is
constant (or, equivalently, if demand decreases) thea in region I (where the
capacities are small), the equilibrium price falls, since it is just P(k).
In region II there is no change--price has already been driven down to unit
cost, In regions IIla and IIIb the support of the equilibrium strategies is
(B(kz)/k1' b(kz)). If kl/kZ = u, then this is (B(kz)/ukz, b(kz)); since
b(kz) and B(kz) both decrease with kz, a proportionate iacrease in kl
and ko decreases the minimal and maximal elements in the support. In region
ITIIc the fact that B is decreasing 1ia k2 also means that the support
shifts in the same way. Thus in each case the support of the equilibrium
strategies decreases with proportionate increases in k1 and kjp. This means
that the model predicts constant, high prices when demand is high, constant
low ones when demand is low, and in between price variation at levels which
decrease with demand.

In the regions of mixed strategy equilibrium, the degree of variation

depends on the relative sizes of the firms. If the size Ko of the small



firm is fixed, while that of the large one increases, then in regions IIla and
IIIb the length of the support of the equilibrium strategies increases (the
highest price is fixed at b(kz), while the lowest price is B(kz)/kl). Thus
for capacities in these regions, the model predicts that the larger is the
large firm relative to the small one, the more variable the price.

The unit profits' of the firms are the same in all regions except
IIIc. There, since w(P(kl)) = klp(kl) < B(kz) we have a > P(kl) or ky >
d(a), so that kja > w(a) = B(kp) and hence Vt(kl’ ko) /ky < v;(ki, ko)/ky ==
i.e. the unit profit of the large firm- is less than that of the small firm.
If the capacities increase, while their ratio is fixed, then the profit of
each firm increases until k = 1, and then decreases (since B is
decreasing).

Finally, when one firm is very small, the solution possesses the
characteristic suggested by Shitovitz [1973]. Thus, if k) is very small
then (kl’ kZ) is either in region I, in which case the equilibhrium price is
the monopoly price, or it is in region IIlec, or k; is close to 1. If
(kl, kz) is in region IIIc then since b(kz) and B(kz) are close to 1
(the monopoly price in this case), the value of a 1is also close to 1, so
that the support of both strategies lies just below the monopoly price.
Further, the size of the jump in F; at b(ky) is a/b(ky), which is close
to 1. Thus the solution is close to that of a monopoly. In the remaining

case, where X; is close to 1, it is easy to check that the same is true.

5. Relation to the Literature

Levitan and Shubik [1972] describe the Nash equilibrium of H(kl, ki)
in the case where d 1is linear and either k) = Koy (the diagonal in Figure

2) or k; = d(0). They do not study uniqueness. Kreps and Scheinkman [n.d.]
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also consider the case where d 1is linear; they establish a result concerning
the equilibrium payoffs, though they do not give a complete characterization
(it is not needed in their model). Beckmann [1965] studies the Nash
equilibrium under a different rationing scheme. He also assumes that d is
linear and k; = ky. He considers uniqueness, but his argument is flawed?.
The results of Dasgupté and Maskin ([1982a] guarantee that an equilibrium of
H(kl, kz) exists. Under the rationing scheme adopted by Beckmann, Dasgupta
and iaskin say something about the supports of the equilibrium strategies
when k; = kj, though they do not characterize the strategies (see [1982b]).
Finally, Shapley reports (in an abstract ([1957]) of a paper which was never
written) a characterization of the equilibrium of a price-setting duopoly
game, the qualitative features of which are similar to the ones we have found;

it is not clear precisely what his model or assumptions were.

6. Proofs
Here we prove the Theorem of Section 3. First we check that the
strategies described there do indeed constitute an equilibrium (Lemma 6.3);
then, in a series of results, we establish that there is no other equilibrium.
1f F: € § (i.e. F. is a mixed strategy of j) then

J J
hy (p, Fj) = éhi(p’ q)dFj(q), so that (using the notation of (2.3))

(6.1) hi(P’ FJ) = Hi(P)(Fj(P) = Q-J(P)) + "Pi(P)aj(P) + Li(P)(l - EJ(P))’

where aj(p) is the size of the jump (if any) in Fj at p. (Recall that

the appearauce of 1 and j as indices means that j is not equal to 1i.)

A (Nash) equilibrium of H(kl, ky,) is a pair (F1, Fp) € 8§ xS such that

2por example, the inequality in his (15) should be reversed, and in any case
the claimed inequality shows only that the equilibrium payoffs of the players
are the same, not that they are unique.



11

(6.2) 0y(F, F;) < hy(F;, Fy) for all F € S.

]

If F € S, let supp F denote the support of F. It follows from (6.2) that

(A) (Fl’ Fy) is an' equilibrium if and only if for 1 =1, 2 we
have hi(p, Fj) = hi(Fi’ Fj) for all p € (supp Fi)\Zi, and
b, (p, Fj) < hy(Fy, Fj) for all other p, where Z; 1is a set

of Fi-measure ZeY0.

For any F € S, let J(F) be the set of points of discontinuity (jumps) of
F. It follows from fact (A) that if, for i = 1, 2, we have supp F, =
[a, o] and h; (p, Fj) = ¢y for all p € (a, b) U J(Fy), with

n; (p, Fj) < c; otherwise, then (F;, F;) 1is an equilibrium, with payoffs

(Cl’ cy). The equilibrium we find is of this type.

Lemma 6.3: In region I, (P(k), P(k)) 1is a pure strategy equilibrium;

in region II, (0, 0) 1is a pure strategy equilibrium. In region III there is

a mixed strategy equilibrium (Fl, F2) where F; is of type (3.2), a «

b(ky) 1is such that L (a) = Mj(b(ky)), and G;(p) = (L;(p) - L;(a))/(Ly(p) -

Mi(p)), for i=1, 2.

Proof: 1t is easy to check the cases of pure strategy equilibrium. It
is also easy to verify that Gy is nondecreasing, with Gi(a) =0 and

Gi(b(ky)) <1, so that F; € 8, i =1, 2. Finally, hy(p, Fj) is coastant

on (a, b) U J(F;), and less elsewhere; hence (F;, F;) 1is an equilibrium.

This establishes the existence part of the Theorem. The uniqueness
part is much wmore difficult to prove, since S is such a rich set. For an

arbitrary game it is not true that if (Fp, FZ) is an equilibrium, then
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hy (p, Fj) is equal to hi(Fi’ Fj) for all p € supp F;. However, if p¢g
supp F; then either p € J(Fy) (so that h;(p, Fj) = hy(Fy, Fj) by fact
(A)), or there is a sequence {p,} with p, € supp F; and p, < p for all
n, p, *p, and hi(pn’ Fj) = hi(Fi’ F:) for all n, or there is a decreasing

]
sequence with similar propertiesB. By taking limits, we have the following.

(B) If (Fl’ Fz) is an equilibrium and p € supp Fy then
(a) if p € J(F;) then
hi‘Fi, Fj) = h,(p, Fj)
= Mi(p)(Fj(p) - 05(p)) + ¢i(p)cj(p) + Li(p)(l - Fj(p));

(b) if there exists {p,} with p, € supp F{ and p, <

p for all n, and p, + p, then

hi(F" Fj)

i Mi(p)(Fj(p) - aj(p)) + Li(p)(aj(p) + 1 - Fj(p))

h, (p, Fj) + (L (p) - ¢i(p))aj(p);

(c) if there exists {p,} with p, € supp F; and p, >

p for all =n, and p, ¥+ P, then

hi(Fi, Fj) Mi(p)Fj(p) + Li(p)(l - Fj(p))

hi(p, Fj) + (Mi(p) - ¢i(p))aj(p).

Moreover, at least one of (a), (b), and (c) holds.

In particular:

(d) hi(Fi, Fj) = hi(p, Fj) if p € (supp Fi)\J(Fj);

33ee p. 211 of Pitchik [1982].
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(F F.) is a linear

(e) if p € supp Fy then  h;(F;, i

1

combination of Mi(p), ¢;(p), and Ly(p).

Using the first part of fact (A) for sequences which increase and

decrease to p, and using the same limiting arguments, we have
(C) if (Fl, FZ) is an equilibrium and p € J(Fi) then
(o3(p) = Li(p))as(p) >0 and (¢;(p) = M;(p))ey(p) > 0.

(We can draw analagous conclusions 1if, rather than p € J(Fy), we have
sequences as in (b) or (¢) of fact (B).)

We now turn to the specific features of the games H(kl, kz). The
following properties of the payoffs are easy to establish for i = 1, 2.

(Examples of the functions Ly, ¢;, and M; are shown in Figure l.)

(6.4) Li(p) < ¢;(p) < Mi(p) <0 if p <0, and ¢, (p) <O 1if p < 0.

(6.5) 0 < Mi(p) < ¢i(p) < Li(p) if p »0, and 0 < ¢i(p) if 0 < p < d(0).
From (6.1) this gives, for i1 =1, 2 and any F € S,

Li(P) Mi(P) if p <£0
Mi(p)) L;(p) if p » 0.

Also, using (e).of fact (B) we have

(6.7) if (¥, Fy) is an equilibrium and p € supp F; with p >0

then Mi(p) < hi(Fi’ Fj) < Li(P).

From now on, F; always denotes an equilibrium strategy of i. In

narrowing down the possible equilibrium strategies, we first establish bounds

on their supports. For i =1, 2, let a; = min supp Fj; and let by =
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max supp Fj (i.e. a; and b; Aare the smallest and largest points in the

support of F;; since S 1is bounded below, a; exists, but we have yet to

show that bi exists).

Lemmma 6.8: For i =1, 2 we have a; > 0.

Proof: Since M;(0) = ¢;(0) = L;(0) = O, we have h;(0, F;) = 0 (by

J
(6.1))., Hence by (6.2), hi(Fi’ Fj) >0 for i =1, 2. Let a; < aje 1f
a; € J(Fj) (which is only of course possible if a; = aj) then we need, using
“(a) of fact (B), 0 < hj(Fj» Fy) = hj(ai’ Fg) = ¢j(ai)ai(ai) +
Lj(ai)(l - a;(a;)) and hence, using (6.4), a; > 0. If a; ¢ J(Fj) then

Fj(ai) = 0, and either (a) or (c) of fact (B) holds, so that we need 0 <

h; (F

i F.) = Li(ai)’ and hence, again using (6.4), a; » 0.

i» *j i

Lemma 6.9: For 1 =1, 2 we have a; » P(k).

i

Proof: 1If p < P(k) then M;(p) = ¢i(p) = Li(p) = k;p, so that (by

(6.1)) we have h;(p, Fj) = kip, which is increasing in p. Thus by fact (a)

we have a; > P(k).

Lemma 6.10: If there exists p € supp F; with p > O then bj

exists, 0 < b:; < P(0), and hj(F

j’
Proof: First note that since M;(p) = ¢;(p) = Ly(p) = 0 if p =0

i Fj) = 0 whenever

or p » P(0), it follows from (e) of fact (B) that hi(F
0 € supp F; or p€ supp F; with p > P(0). Now, if p € supp F; with p >
0 then there exists 0 < s < p such that Fi(s) <1 and Lj(s) > 0 (see

(6.5)), so that hj(s, Fi) > 0 (see (6.1)). Hence h:(F

(6.2)), so that bj exists and 0 < bj < P(O).

Corollary 6.11: b; exists for 1 =1, 2.
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Proof: If by = by = 0, we are done, so suppose there exists p > O
with p € supp F;, for some i. Then by the lemma, bj exists, aand P(Q) >

bj > D; applying the lemma now with the indices reversed, we conclude that

bi exists (and P(Q) > by > 0).

We now need the following, which limits the points at which both F

and ¥, can have junps.
Lemma 6.12: If 1L;(p) > ¢;(p) then p € J(F;) N J(Fy).
Proof: Follows immediately from fact (C).

This allows us to establish the following useful result, which pins

down the equilibrium payoff of one of the firms.

Lemma 6.13: If b; > bj then b; maximizes 1l and hi(Fi, F

) =

J
Mi(bi). If b = b2 then there exists 1 such that either by € J(Fi) or

by fJ(Fj), and in both cases b; maximizes ¥; and h;(Fy, Fj) = M;(b;).

Proof: 1If by > bj or by = bj and by € J(F.) then by (a) or (b)

h|
of fact (B) we have h;(Fy, Fy) = Hi(bg)e If by = b; and by € J(EDN

J(Fy) then by Lemma 6.12 we have Li(bi) = ¢;(by), 1 =1, 2. But then
since b; » 0 by Lemma 6.3, we have M;(b;) = L;(b;) = ¢(by), 1 =1, 2,

and so hi(Fi’ Fj) = hi(bi, Fj) = Mi(bi)'

Now, in each case, if p > bi then hi(p, Fj) = i;(p), while for all

p »0 we have hi(p, Fj) > Hi(p) (by (6.6)), and M; is nondecreasing 1if

p < 0. So hy(Fy, Fj) > 4;(p) for all p, by (6.2). Hence b; maximizes

Mi .

We can now immediately dispense with regions I and II.
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Lemma 6.l14: In region 1 the unique equilibrium strategy pair is pure,

equal to (P(k), P(k)).

Proof: In region I, P(k) maximizes Mi for i=1, 2. Since

b; » P(k) by Lemma 6.9, the result follows immediately from Lemmas 6.13 and

6.3.

Lemma 6.15: In region II the unique equilibrium strategy pair is pure,

equal to (0, 0).

Proof: In region II we have M;(p) = 0 for all p 30, i =1, 2. By

Lemma 6.3 we have b; » a

i j

by Lenma 6.13. Hence by Lemma 6.10 we have b; = bj = 0.

We now turn to region III, where b(kz) > P(k) and P(kz) > 0, so

that b(kz) maximizes M, and Hl(b(kz)) > 0. 1In all the subsequent lemmas,

we assume that (ks ko) is in region III, so that b(k,) > P(k) and

P(kz) > 0. First we restrict the support of F; and the equilibrium payoffs

as follows.

Lemma b6.16: For i = 1, 2, we have a; > nax(0, P(k)) and

-k (Fg, F3) > Lj(max(0, P(k))).

Proof: Let max(0, P(k)) = x. Then “1(b(k2)» Fz) > Al(b(kz)) >
max(0, M{(P(k))) = Ml(x) = Ll(x) (the first inequality from (6.6)), so
hl(Fl’ Fz) > Ll(x) by fact (A). Sioce Ml(x) = ¢1(x) = Ll(x) this means
x € supp F; by (e) of fact (B). But L, 1is increasing on (x, a;) and
ho(p, Fp) = Lyo(p) there. Hence, again by fact (a), x € supp F, and

hz(Fz, F].) > Lz(X).

Corollary 6.17: For i =1, 2, we have supp F; C
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(max(0, P(k)), b(ky)].

Proof: Since both equilibrium payoffs are positive by the lemma, we
must have Mi(bi) > 0 for the i such that b; maximizes M (see Lemma
6.13). But if by is positive, the maximizer of M, is less than that of

Mps namely b(kz). The Fesult follows from Lemma 6.13.

Corollary 6.18: J(Fy) N J(Fy) = P

Proof: Follows from Corollary 6.l17, Lemma 6.12, and the fact that

Li(P) > ¢5(p) if max(0, B(k)) < p < b(ky).

We can now restrict the smallest points in the supports of F; and

Fo, and further characterize the equilibrium payoffs.
Lemma 6.19: a) = ag = a, say, and hi(Fi’ Fj) = Li(a) for i =1, 2.

Proof: For i =1, 2, L; 1is increasing on (max(0, P(k)), b(kz)), so

i
by Corollary 6.17 it is increasing on supp F;. Suppose a; < aje Then by
(6.7) we have hi(Fi’ Fj) < Li(ai)' But we need hi(Fi’ Fj) > hi(p, Fj) =
Li(p) if p < aje Hence a; ? aj, so that a; = aj = a, say, and
hi(Fi’ Fj) = Li(a).

We shall now refine Lemma 6.13. From now on, F; denotes the

equilibrium strategy of i defined in Lemma 6.3 for region III, and a”

denotes the value of a specified there

Lemma 6.20: b; maximizes 1 (so that by = b(kz)) and h)(Fp, Fz)

Proof: Let m maximize Mz and let w < m be such that Lz(w)

Hz(m). We first show that w < a*. If a* < m then m € supp Fz, i=1, 2,
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so that hz(F;, FT) = Lz(a*) = hz(m, FT) = Mz(m)FT(m) + Lz(m)(l - Ft(m)) >
My(m). Hence w < a*, because L, 1is increasiag to a”®. If, on the other
hand, m € a® then certainly w < a®. Hence Li(w) < Ll(a*) = ;(b(ky)) .
Now, hl(b(kz), F) » Ml(b(kz)) for all F € S by (6.6), so any equilibrium
payoff of firm 1l exceeds Ly (w) (by (6.2)). Hence by Lemma 6.19, a > w.
But then any equilibriuﬁ payoff of firm 2 exceeds Lz(w) = Mz(m). Thus by

Lemma 6.13 we must have by =Ab(k2) and hl(Fl' FZ) = Hl(bl).

We now show that, except possibly for a single point, the supports of

the equilibrium strategies coincide.
Lemma 6.2l: supp F; = supp F, U {b(kz)}.

Proof: Suppose a < p < b(ky) and p & supp Fyp. Since Ly, ¢,
and ; are all increasing at p, so is hl(p, FZ)' Hence p € supp Fre

Now suppose a < p < b(ky) and p € supp Fj. Let x = max([a, p)I
supp F;) and y = min((p, byl N supp Fp); for i =1, 2, let Q;(s) =
Mi(s)Fj(x) + Li(s)(l - Fj(x)). If s € (x, y) then hz(s{ F) = Qz(s).
Since p < by, we have Fl(x) < l. Also, since L, 1is increasing and My is
strictly concave on (max(0, P(k)), P(kl)), while L, is increasing, and
M, 1is constant on (P(kl), b(kz)), Qp is increasing and/or strictly concave
on (max(Q, P(k)), P(kl)), and increasing on (P(kl), b(kz)) (siace Fl(x) <
1). So if p E'supp Fy then (x, y) ) supp Fy = {p}, so that p € J(Fz) and
p maximizes Qp on (x, y). If x ¢ J(Fl) then hz(x, Fl) = Qz(x) < Qz(p),
so x €& J(Fp) by (a) of fact (B); if x € J(F|) then x € J(Fy) by
Corollary 6.18. ience, either way x € J(F;), so that, by (d) of fact (B) we
nust have hl(Fl' FZ) = hl(x, Fz) = Ql(x). But hl(s, FZ) = Ql(s) for x <
s < p; since Ml and Ll are increasing this means that there exists r €

(x, p) such that h(r, Fy) > nj{x, Fp) = hy{F;, Fy), contradicting the fact
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that (F;, Fp) 1is an equilibrium. Hence ‘p € supp Fyp.

Next, it is easy to show that under certain conditions, the value of

F;(p) for any equilibrium strategy F; has to be F;(p).
Lenma 6.22: If p € (supp Fj)\J(F;) then Fi(p) = Fy(p), i =1, 2.

Proof: Since p € supp Fi\J(Fj) we need hi(p, Fj) = hi(Fi’ F:) by

j

(d) of fact (B). But by Lemma 6.19 we have hi(Fi, F.) = Li(a), and by

]
definition we have h;(p, Fj) = Mi(p)Fj(p) +'Li(p)(l - Fj(P))-
The next result, which states that the support of FZ is an interval,

allows us, with the aid of the following two straightforward results, to

complete the proof of uniqueness.
Lemma 6.23: supp Fp = [a, byl

Proof: Suppose a < p < by, with p € supp Fy, so that p € supp F;
(by Lemma 6.22). Let x = max([a, p) N supp Fp) and y = min((p, byl N
supp FZ)‘ Since L;, ¢;, and i} are increasing on (a, bz), hl(., FZ) is
increasing on (x, y), and so hl(Fl’ FZ) > hl(x, FZ)' Hence by (b) of fact
(B) we have x ¢ J(Fl), so by Lemma 6.22 we have Fl(x) = Fi(x). Since FT
is increasing on (x, y) this means (using Lemma 6.22 again) that y¢&
J(Fy). But then hz(s, Fi) = Mz(s)Fl(x) + Lz(s)(l - Fl(x)) if x<s <y, so
that we need hZ(FZ’ F1) > Mz(y)Fl(x) + Lo(y)(l = Fj(x)). But by (¢) of fact
(B) we have iy (F,, Fj) = My(y)F(y) + Lz(y)(l = Fi(y)) = My(y)F(x) +
Ly(y) (1 = Fi(x)) = ap(y)(Ly(y) = Mp(y)) < My(y)F(x) + Lo(y)(1 - Fi(x)), a

contradiction. Hence p € supp F, for all a < p < by

Lemma 6.24: If p € [a, by) then p ¢ J(F;) for i=1, 2,
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Proof: By Lemmas 6.2l and 6.23 we have [a, by] C supp Fy, 1 =1, 2.
Hence by (c) of fact (B) we have hy (Fy, Fj) = Mi(a)Fj(a) + Li(a)(l -

'Fj(a)). But by Lemma 6.19 we have h;(Fy, Fj) = Lj(a), so since 1L;(a) >
;(a) (because a > max(0, P(k))) we have Fj(a) = (0 ~-~i.e. a ¥ J(Fj). Now
let a < p < by Then by Lemma 6.23 and (b) and (c¢) of fact (B) we need
(Li(p) = ¢3(p))a;(p) = (?‘li(p) = 63(P))ay(p), or (L;(p) = H3(p))ay(p) = 0, or

aj(P) = (0, since Li(p) > Mi(p),
It remains to show that b2 = b(kz),

Lemma 6.25: by = b(kz), so that supp Fy = supp F, = [a*, b(kz)]

and Fi = FI, i= 1, 2.

Proof: First, from Lemmas 6.24, 6.23, and 6.22 we have a = a* and

Fi(p) = Fj(p) 1f a* <p < by, Now, if b(ky) > by then by € J(F,)
(otherwise, by (b) of fact (8) and Lemma 6.20, we have hi(Fy, Fp) = My(by) =
Ml(b(kz)), which contradicts the fact that My is increasing on
(b2’ b(k,))), and so mby Corollary 6.18, by 4 J(Fl), and hence, by Lemma
6.22, Fy(by) = F](by). But if by < s < b(ky) then hy(F,, F) = Ly(a) =
Ly(a") = hy(s, F]) = d,(s)F1(s) + Ly(s)(1 = F1(s)) < My(s)F](by) + Ly(s)(l -
Ff(bz)) = hz(s, Fl) (the first equality by Lemma 6.19, the fourth by Lemma
6.3, and the inequality because FT is increasing and Hz(s) < LZ(S))' This

contradicts the fact that (Fl’ FZ) is an equilibrium. Hence by = b(ksp)e
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