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Abstract 

This paper studies the Nash equilibria of Hotelling's pure 

location model (in which the space of location is a line segment and there 

is no price variable). It is shown that there is always a symmetric 

equilibrium in mixed strategies with certain properties, and that as the 

number of firms increases, the limiting equilibrium mixed strategy of each 

firm is equal to the distribution function of consumers on the line 

segment. For the case in which there are three firms and the distribution 

of consumers is uniform, a detailed analysis of the asymmetric equilibria 

is given. 
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1. Introduction 

Models of location are appropriate in a number of contexts in economics 

and political science. For example, firms choose where to position stores and 

which of a spectrum of goods to produce, and politicians select the nature of 

their platforms. In such models it is natural to look for a collection of 

locations with the property that the location of each individual is optimal, 

given the positions of all other individuals. However, the pure strategy Nash 

equilibrium provides a solution which is both incomplete and unsatisfactory. 

Incomplete, because in many cases no such equilibrium exists. Unsatisfactory, 

because even when it does exist it may not be robust to the specification of 

the model. 

Consider, for example, a simple case (the "pure" location model of 

Hotelling [1929]). Consumers are distributed on the interval [ O, 1]. Each 

of a fixed number of firms chooses a location in [ 0' 1] and receives a 

payoff equal to the fraction of consumers for which it is the nearest firm. 

Then if there are three firms, there is no pure strategy equilibrium unless 

the distribution of consumers is degenerate. There ~ such an equilibrium if 

there are four or more firms and the distribution of consumers is uniform; but 

there is none if there are five or more firms and the density of this 

distribution is either convex or concave, however close it is to being 

uniform. 

One way to avoid these problems is to modify the model. For example, if 

the firms locate on a circle rather than a line segment, or move sequentially 

rather then simultaneously, the difficulties may be mitigated. However, in 

many cases of interest a line segment is the relevant space, and the 

assumption of simultaneous moves is appropriate (or, at least, any particular 

sequence of moves is arbitrary). 
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For these reasons, our approach is to study a modification of the 

solution. The standard game theoretic route in the absence of pure strategy 

equilibria is to allow the players to randomize. Given that many location 

decisions are more or less irreversible, this solution makes sense (if there 

is ex post mobility then the appropriate model is a repeated game). However, 

the idea of individuals consciously randomizing may be unappealing. If so, 

the results on the "purification" of equilibria provide an attractive 

alternative interpretation. The basic idea is that a mixed strategy 

equilibrium can, under appropriate conditions, be viewed as a pure strategy 

equilibrium in a game of incomplete information. Firms may not know precisely 

what the payoffs are--for example, they may obtain information about the 

distribution of consumers from noisy market surveys. If the private signals 

they receive are independent and atomless, then an equilibrium in which firms 

randomize may be equivalent to one in which, contingent on the signal 

received, each firm uses a pure strategy. The randomness of the signals means 

that the action taken by each firm varies randomly, but no firm consciously 

randomizes. 

A variety of results on purification has been established, notably by 

Aumann et al. [1983] and Milgrom and Weber [1981). Our games do not satisfy 

the assumptions in either of these papers, since each firm has a continuum of 

pure strategies (rather than finitely many, as in Aumann et al.), and its 

payoff function has discontinuities (rather than being continuous, as (for the 

most part) in Milgrom and Weber). Thus we cannot directly apply their 

results; it is possible that the results could be extended to cover our 

games. The type of purification result of perhaps the most relevance to our 
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games is the convergence result of Harsanyi [1973] (although once again our 

games do not satisfy his assumptions). He considers approximating a game of 

complete information with a sequence of games of incomplete information. Each 

of the latter has a pure strategy equilibrium, as described above, in which 

the action of each player depends on his type, and is thus random from the 

point of view of the other players. Harsanyi shows that pure strategy 

equilibria in a sequence of approximating games can almost always be found 

with the property that the distributions over pure strategies which these 

equilibria generate converge to the distribution associated with any given 

mixed strategy equilibrium in the original game. In our context, games in 

which the firms are slightly uncertain about their payoffs may have equilibria 

which generate distributions over actions which are very similar to those 

generated by the mixed strategy equilibria we find. (Section 5 of Milgram and 

Weber [1981], and Harsanyi [1977] contain further discussion of issues in the 

interpretation of mixed strategy equilibria.) 

Our results concern mixed strategy equilibrium in the simple location 

model described above. They are of three types. First, we study the 

symmetric mixed strategy equilibria (F, ••• ,F) for an arbitrary distribution of 

consumers and arbitrary number of firms (see Proposition 3). An explicit 

characterization of an equilibrium strategy F appears to be impossible; we 

show that any such F possesses some natural properties. Second, we show that 

the symmetric equilibrium strategy approaches the distribution function of 

consumers as the number of firms increases (see Proposition 4). That is, when 

the number of firms is large, the firms distribute themselves in the same way 

as the consumers. This makes sense: when there are many firms, it is likely 

that each firm will have neighbors to the left and right, so that the 



4 

··~. endpoints of the line segment exert little influence on the solution, and .... 

firms spread out according to the distribution of consumers, as they would on 

a circle. Finally, we study the case of three firms and a uniform 

distribution of consumers. It is known that in the symmetric mixed strategy 

equilibrium of this game, each firm randomizes uniformly over (1/4, 3/4] (see 

Shaked [1982]). We show that the game has other, asymmetric equilibria. In 

fact, there is a unique (up to symmetry) equilibrium in which at least one 

firm uses a pure strategy (see Proposition 5). In this equilibrium, two firms 

randomize, putting most weight near 1/4 and 3/4 (see Figure 1), while the 

third locates with probability one at 1/2. 

Our results on the qualitative properties of equilibrium have direct 

empirical implications. For example, across independent three-person 

political races, the prediction is that either all the platforms chosen will 

be uniformly distributed over the middle two quartiles of the spectrum, or one 

will always be in the center, while the other two are close to the quartiles. 

2. The Model and Results 

Consumers are distributed on the line segment [0, 1]. Let C(x) be the 

fraction of consumers to the left of x plus half of the fraction at x (so that 

if there are no atoms in the distribution of consumers, Cis just the 

cumulative distribution function). Let fl(c) be the game in which n firms 

choose locations in (0, 1]. Precisely, the pure strategy set of each firm is S 

= [0, 1], and each payoff funcion K.: Sn + R is defined as follows. Lets 
1 ~ 

(s
1

, ••• ,sn) E Sn, let L.(s) and R.(s) be the sets of firms to the left and right 
1 ~ 1 ~ 

of i in~, let ~.(s) and r.(s) be the positions of the firms in L.(s) and R.(s) 
v· 1 ~ 1 ~ 1 ~ 1 ~ 

closest to i, let >-.(s) = (s. + ~.(s))/2 and p.(s) = (s. + r.(s))/2 (the 
1~ 1 1~ 1~ 1 1~ 
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locations of the consumers equidistant from i and its nearest neighbors), and 

let qi (~ be the number of firms located at s. in s. Then 
1 of' 

[C(p.(~)- C(;\.(s))]/q.(s) if L.(s) :f 0, R. ( s) f 0 
1 1 of' 1 of' }_ of' 1 of' 

C(p.(s))/q.(s) if L. (s) 0, R. (s) f 0 
K. (s) 

1 of' 1 of' }_ of' 1 of' 
(1) 

1 of' 
[1- C(A.(~)]/q.(s) if L. (s) :f 0, R. ( s) 0 1 1 of' }_ of' 1 of' 

1/qi (~) if Li (~) 0, Ri (~) 0. 

As usual, the set of mixed strategies of each firm is the set of 

cumulative distribution functions on S, and we extend Ki to mixed strategy 

n-tuples. We always use upper case letters (e.g. F, G) to denote mixed 

strategies, reserving lower case letters for pure strategies. Thus when, for 

example, we write K.(s, F, t), it is to be understood that firms 1 and 3 are 
}_ 

using pure strategies, and firm 2 is using a mixed strategy. 

The two-firm game ?(c) can easily be completely solved. Call m a 

median of C if C(m-) ~ 1/2 ~ C(m+) (where C(m-) and C(m+) are the left and 

right limits of Cat m); the set M(C) of medians of Cis a nonempty closed 

interval. It is clear that strategy pair (F
1

, F
2

) is an equilibrium of ?(c) 

if the support of each F. (denoted supp F.) is a subset of M(C). It is also 
1 1 

easy to show that there are no other equilibria, as follows. 

Proposition 1: The strategy pair (F1 , F2) is an equilibrium of r2(C) 

if and only if supp F. c M(C) fori= 1, 2. In particular, if C has a unique 
1 --

median m then ?(c) has a unique equilibrium, in which each firm locates at m 

with probability one. 

Proof: It is clear that (s 1 , s 2) is a pure strategy equilibrium if si ~ 

M(C) fori= 1, 2. Suppose (F1 , F2) is also an equilibrium. Then since ?(c) 

is constant sum, (F1 , s
2

) is an equilibrium. But this is so only if supp F
1 

c 

M(C). II 
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Lerner and Singer [1937] and Eaton and Lipsey [1975] have studied the 

pure equilibria of rn(C) for n ) 3. Eaton and Lipsey show, in particular, 

the following 1 • 

Proposition 2 (Eaton and Lipsey): (a) If c is increasing and 

(s 1 , ••• ,sn) is a pure strategy equilibrium of ril(C) with s 1 ..; ••• ( sn then 

s 1 s 2 and sn-l = sn• 

(b) If C is increasing then r 3(C) has no pure strategy equilibrium. 

(c) .!!_ C is differentiable then rn( C) has a pure strategy equi-

librium only if n is at most twice the number of local maximizers of C'. 

(d) .!!. c is uniform then rn(c) possesses a unique pure strategy 

equilibrium if n = 4 or 5, and a continuum of such equilibria if n ) 6. 

Part (a) of this result is easy to see: if a peripheral firm is not 

paired then since C is increasing, the firm can gain customers by moving 

towards its neighbor. Part (b) follows from (a), given that s 1 = s 2 = s 3 is 

obviously not an equilibrium. The equilibria in (d) are easy to find. For 

example, if n = 4 then s 1 s2 

librium, and if n = 5 we have s 1 

1/4, 

s2 

s3 = s4 = 3/4 defines the equi-

1/6, s 3 = 1/2, and s4 = s 5 = 5/6. l 

Part (b) shows that pure strategy equilibrium is an inadequate solution 

concept for the location problems we are considering. The implications of 

part (c) emphasize this: if C is differentiable and C' is either strictly 

concave (one local maximizer) or strictly convex (two local maximizers) then, 

however close C is to being uniform, rn(C) possesses no pure strategy 

equilibrium if n ~ 5. More generally, if C' has finitely many local 

maximizers then rn(C) possesses no pure strategy equilibrium when the number 

of firms is large enough. 

Thus the pure strategy equilibria are nonrobust to variations in the 

specification of the model; our approach is to turn to the mixed strategy 
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equilibria. We prove three results about these equilibria. It is known from 

the work of Dasgupta and Maskin [1982a and b] that rn(C) possesses a symmetric 

mixed strategy equilibrium (F~, ••• ,F~). (See also Simon [1984] for a very 

general existence theorem for equilibria in location games.) We first study 

the general characteristics of F~, and then prove a result on its asymptotic 

behavior as n + oo. Finally, when n = 3 and C is uniform we find all 

(asymmetric) equilibria in which at least one firm uses a pure strategy. All 

proofs are in the Appendix. 

Our first result is the following. 

Proposition 3: If n ~ 3 and C is nona tomic then the game 

has a symmetric mixed strategy equilibrium (F~, ••• , F~), and .in every such 

equilibrium Fg is atomless. If C is symmetric about 1/2 (i.e. C(s) = 

1 - C(1-s)) then rn(c) has an atomless symmetric mixed strategy equilibrium 

in which is symmetric about 1/2. If c is uniform then in 

addition the support of Fg is an interval [ag, l-ag]. 

Even though Proposition 3 puts some restrictions on the characteristics 
1 

I 
of a symmetric equilibrium, it would be nice to have some explicit examples. · 

However, except in the case n = 3 and C uniform, it seems not to be 

possible to make the necessary calculations. To appreciate the problem, 

consider the payoff of firm 1 when it locates at z and every other firm uses 

the atomless strategy F. This payoff is 

/ 
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z 
(n-1)j[1 - C((u+z)/2)](F(u))n-2dF(u) 

0 

n-3 z 1 
+I (n-1)(n-2)(nk3)J j[C((z+v)/2) - C((z+u)/2)](F(u))k(1-F(v))n-k-3dF(v)dF(u) 

k=O 0 z 

1 
+ (n-1)jC((u+z)/2)(1-F(u))n-ZdF(u). 

z 

Using the binomial theorem on the middle term, and integrating by parts, this 

reduces, in the case where C is differentiable, to 

K1(z,F, ••• ,F) = [1 - C((1+z)/2)](F(z))n-1 + C(z/2)(1-F(z))n-1 

z 1 (2) 

+ l;2fc' (( u+z) /2) (1-F(z )+F( u) )n-1du + 1!zJc' ( ( u+z) /2) (1 +F(z )-F( u) )n-1du. 
0 z 

The problem of finding a symmetric equilibrium is thus the problem of finding 

a nondecreasing F such that K1(z,F, ••• ,F) is constant on supp F. Even 

if C is uniform this is a difficult problem--(2) is a nonlinear integral 

equation, about which little in general is known. 

We can however use (2) to prove a result on the behavior of F as n 

increases without bound. The idea is simple. If there is a large number of 

firms, all using F, then wherever firm i locates it is very likely to have 

neighbors close to the left and right, and we can ignore the possibility that 

all the other firms are on one side of firm i. If C is uniform but F is 

not, then at those points where the density of F exceeds 1, the left and 

right neighbors are likely to be closer than when this density is less than 

1, so that the payoff at the former is lower than at the latter. Thus such 

an F cannot be an equilibrium--a firm is not indifferent between all points 

in the support of F. Similarly, for arbitrary (but differentiable) c, 

when n is large the payoff is not constant if F' (x) is different from 

C'(x). Formally, the result is as follows. (The strong assumptions, which make 

the proof relatively straightforward, can probably be relaxed somewhat.) 
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Proposition 4: Let C be twice continuously differentiable and suppose 

(Fn, ••• ,Fn) is an equilibrium of rn(C) for each n = 1, 2, ••• , where Fn is twice 

continuously differentiable and there exists a strategy F which is twice 

continuously differentiable such that Fn + F, Fn ... + F', and Fn" + F" 

uniformly. Then F = C. 

When n = 3 and C is uniform, it is known that there is a symmetric 

equilibrium (F, F, F) in which F is uniform on [1/4, 3/4] (see Shaked [1982]). 

Our final result exhibits all the asymmetric equilibria, within a certain 

class, of this game. Let U be the uniform distribution. 

Proposition 5: There is a unique (up to symmetry) equilibrium of r 3(u) 

in which at least one firm uses a pure strategy. It is (1/2, F, F), where the 

support of F ~ [5/24, 19/24] and 

F(t) 
if 

if 

5/24 ~ t ~ 1/2 

1/2 < t ~ 19/24. 

The corresponding equilibrum payoffs are (38/96, 29/96, 29/96). 

The density of the strategy F given in this result is illustrated in 

Figure 1. Note that the result does not rule out the possibility of 

asymmetric mixed strategy equilibria in which all three firms randomize. 
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0~--~----~--~----~----L----L----~--~--L-~--~ 

5/24 1/2 19/24 1 

Figure 1: The density of the strategy F defined in Proposition 6. 
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Appendix: Proofs 

We use the following notation. For any strategy F, a(F) and S(F) are 

respectively the smallest and largest members of supp F, J(F) is the set of 

atoms of F, and JF(x) is the size of the atom x of F. For any n-tuple ~ = 

(F1 , ••• ,Fn) of strategies and any strategy G of firm i, Pi(G, ~) = Ki(F1 , ••• , 

Fi_1 ,G,Fi+1 , ••• ,Fn). For any function f, f(x-) and f(x+) are respectively the 

left and right limits of f at x. 

The following result (a generalization of Proposition 2(b)) is used in 

the proofs of Propositions 3 and 5. 

Lemma 1: Let C be atomless. Then in any equilibrium of rn(C), each 

point in [0,1] is an atom of the strategies of at most two firms. 

Proof: Let F = (F
1

, ••• ,F) be an equilibrium of rn(C). If xis an atom 
V' n 

in particular, we need 

[P 1(x, F) - P1(x-, F)] + [P 1(x, F) - P1(x+, F)] > 0, 
V' V' V' V' = 

or, using the Dominated Coinvergence Theorem and letting ~ = (x, s 2 , 

1 1 

... , s ) ' n 

/ ••• J([P 1(x, s)-P 1(x-, s)] + [P 1(x, s)-P 1(x+, s)])dF2(s 2) ••• dF (s) ~ 0. 
0 0 V' V' V' V' nn 

(3) 

Now, using (1) and the nonatomicity of C, we find that 

0 

(4) 

(2/q 1 (~)- 1)(C(p 1 (~))- C(~1 (~))) 

if q1 (~) ~ 2' 
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where p 1 (~) = p 1 (~) if R1 (~) f 0, p 1 (~) = 

L 1 (~) f 0, t 1 (~) 0 if L 1 (~) = 0. Since p
1
(s) > t

1
(s) for all (s

2
, ••• ,s ), 

.P = .P n 

we have C(p 1 (~)) ~ C(t 1 (~)) for all (s 2 , ••• ,sn). Thus, using (4), the 

intergrand in the left-hand side of (3) is nonpositive for all (s2 , ••• ,sn); 

because of the inequality in (3) it must therefore be zero except possibly on 

a set of F2 ••• Fn-measure zero. Hence if the strategies of two firms--say 

firms 2 and 3--in addition to firm 1 have atoms at x, then, since 

2/q 1(x,x,x,s 4 , ••• ,sn)- 1 < 0 for all s 4 , ••• ,sn, we need 

C(p1(x,x,x,s 4 , ••• ,sn)) = C(t1(x,x,x,s 4 , ••• ,sn)) for all (s 4 , ••• ,sn) except 

possibly a set of F4 ••• Fn~measure zero. Since C(p1(x,x,x,s 4 , ••• ,sn)) ~ 

C(p1(x,s 2 , ••• ,sn) and C(t1(x,x,x,s 4 , ••• ,sn)) ~ C(t1(x,s 2 , ••• ,sn)) for all 

(s2 , ••• ,sn), this implies that C(p 1(x,s 2 , ••• ,sn)) = C(t1(x,s 2 , ••• ,sn)) for all 

(s 2 , ••• ,sn) except possibly a set of F2 ••• Fn-measure zero. (If, when firms 2 

and 3 locate at x, firm 1 attracts no customers with probability one, then 

this is also true wherever firms 2 and 3 locate.) But then P1(x, ~) = 0, 

contradicting the fact that the equilibrium payoff of firm 1 is positive 

(since it can obtain a positive payoff by locating at any point in the support 

of C). Thus the strategy of at most one firm in addition to firm 1 has an 

atom at x. B 

Proof of Proposition 3: If n > 3 and C is nonatomic then the game 

rn(C) possesses a symmetric mixed strategy equilibrium by Theorem 6 of 

Dasgupta and Maskin [1982b]. Let (F, ••• ,F) be such an equilibrium. By Lemma 

1, F is nonatomic. 

We now show that if C is symmetric about 1/2 then rn(c) possesses 

an equl.ll'brl'um (F F) 1'n whl'ch F 1's symmetr1'c about 1/2. Consider the , ... , 
-

game rn(c) in which the pure strategy set S of each firm is [0, 1/2], and 

the payoff function of i is defined by 
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-
Ki(s1, ••• ,8n) = Ki(1h<s1)*V2<1-s1), ••• ,V2<sn)*V2<1-sn)) for i 1, ••• ,n, 

where 1jz(x)*1f2(1-x) denotes the mixed strategy in rn(c) which has atoms of 

-
size 1/2 at X and 1-x. That is, using a pure strategy s in rn(c) is 

the same as using -s with probability 1/2 and 1-s with probability 1/2 

in rn(c). Note that given the definition of Ki, whenever Fi is a mixed 

defined by Fi (x) = Fi (x)/2 if 0 ~ x < 1/2 and Fi (x) = 1 - Fi (1-x)/2 if 

1/2 ~ X ,.; 1. 

Now, by Theorem 6 of Dasgupta and Maskin [1982a] the game 

possesses a symmetric mixed strategy equilibrium (F, ••• ,F). Let F be the 

mixed strategy corresponding to F, as above. Then 

for all -s E: s. 

+ Pi(1-s, F, ••• , F)/2 = Pi(s, F, ••• , F), using the symmetry of C and F to 

obtain the last equality. Hence (F, ••• , F) is an equilibrium of 

with F symmetric about 1/2; F is a tomless by the first part of the 

result. 

Finally, we show that if Cis uniform and (F, ••• ,F) is an equilibrium in 

which F is symmetric about 1/2 then the support ofF is an interval [a, 1-a]. 

Suppose, to the contrary, that x t supp F, a < x < 1-a. Let b = max{s ~ x: 

s ~ supp F} and c = min{s f x: s E supp F}; band c exist since supp F is closed, 

and F(b) = F(c), since F is nonatomic. Let F = (F, ••• ,F). Then (dropping the 
"' 

superfluous subscript from P.(x, F)) we have 
~ 

P(c, F)- P(b, F)= [(1- F(b))n-1 - (F(b))n-1](c-b)/2. 
"' "' 

(P(c, s) - P(b, s) is zero unless either s~ < b for all i (in which case it is 
"' "' _.. 
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-(c-b)/2), si > c for all i (in which case it is (c-b)/2), or si = b or c for 

some i. The probabilities of these three events are (F(b))n-1 , (1-F(b))n-1 

and zero respectively.) Since F is atomless, we need P(c, F) = P(b, F) = 1/n 
~ ~ 

(the equilibrium payoff of each firm). Hence F(b) = 1/2. 

Since F is nondecreasing and atomless, and bE supp F, F is left-

incre~sing at b. Therefore the support of F contains at most a single gap. 

Since F is symmetric, this means that supp F [a, b] U [1-b, 1-a]. 

We now argue that b = 1/2. In order for F to be an equilibrium we need 
~ 

P(z, ~) = 1/n almost everywhere with respect to F. Now, for 0 ~ z ~ 1 we have 

2P(z, F) 
~ 

(a + 1 - z)(F(z))n-1 + (a + z)(1-F(z))n-1 

(see (2)). 

z 1-a 
+ JC1-F(z)+F(u))n-1du + J (1+F(z)-F(u))n-1du 

a z 

Thus, since F is atomless, P(•, F) is continuous, and hence we 
~ 

need P(z, F)= 1/n for all z E supp F. Thus P(•, F) is differentiable, with 
~ ~ 

derivative zero, on [a, b] U [1-b, 1-a]. Now, ifF is differentiable at z then 

so is P(•, F), and we have 
~ 

2P'(z, F) = (n-1)F'(z){(a+1-z)(F(z))n-2 - (a+z)(1-F(z))n-2 } 
~ 

1-z z 
+ (n-1)F'(z){j(F(u)+F(z))n-2du- j(F(u)+1-F(z))n-2du} 

a a 

+ {(1-F(z))n-1- (F(z))n-1}, 

where the first term in braces is obtained by using the symmetry of F. Suppose 

that b < 1/2. Then for z = b the first two terms in braces are positive and 

the third is zero (given F(b) 1/2). Hence given the continuity ofF, the 

first two terms are positive on (b-e, b) for some e > 0; the third term is 

also positive on this interval. Further, since F is almost everywhere 

differentiable (being a cumulative distribution function), it is 

, I 

! I 
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differentiable somewhere in (b-E, b) so that this argument shows that the 

derivative of P(•, F) is positive at some point in (b-E, b), contradicting the 
"' 

fact that it must be zero on [a, b]. Thus we must have b = 1/2. B 

To prove Proposition 4, we need the following preliminary result. 

Lemma 2: Let c > 0. For each n = 1, 2, ••• 
n 

let f : [0, c] + [0, 1], 

f: [0, c] + [0, 1], and g: [0, c] + IR be twice continuously differentiable 

and nondecreasing, with fn(O) = 0, and fn + f, fn_. + f", and fn" + f" 

uniformly. Then as n + oo, 

c 
nfg 1 (x)(1 - fn(x))n- 1dx 

0 {

00 if f 1 (0) 

+ g 1 (0)/f 1 (0) if 

= 0 

Proof: We first claim that 

and g 1 (0) > 0 

f 1 (0) > 0. 

for all o > 0 there exist N and E ) 0 such that if n > N (5) 

and x < E then jfn 1 (x) - f 1 (0)j < o. 

This follows by noting that jfn 1 (x)- f 1 (0)j ~ jfn 1 (x)- f 1 (x)j + jf 1 (x)-

f 1 (0)j, and using the uniform convergence of fn 1 to f 1 to bound the first 

term (uniformly in x), and the continuity of f 1 to bound the second term. 

Now assume that f 1 (0) = 0 and g 1 (0) > 0. By the mean value theorem 

for derivatives we have fn(x)/x = fn 1 (y) for some 0 < y < x, so by (5) we 

know that for any M > 0 there exist N and e > 0 such that if n > N 

and then fn(x)/x < g 1 (0)/4M, or 1 - fn(x) > 1 - xg 1 (0)/4M; 

since I 
g is continuous, we can choose E such that we also have g 1 (x) > 

g 1 (0)/2 if x < e. Hence 

C E 

nfg 1 (x)(1-fn(x))n-1dx > nfg 1 (x)(l-fn(x))n-1dx 
0 0 

E 

> nj(g 1 (0)/2)(1-xg 1 (0)/4M)n-1dx = 2M(l - (1 - eg 1 (0)/4M)n). 
0 
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So, letting N be such that it also satisfies (1 - c::g' ( 0) I 4 M) n < 1 I 2 if 

n > N, we have 

c 
nJg'(x)(1-fn(x))n-1dx > M if n > N, 

0 

thus establishing the first half of the limit in the Proposition. 

Now suppose f'(O) > 0. Then by (5) there exist N and E > 0 such that 

fn'(x) > f'(O)I2 > 0 if 0 < x < e and n > N, and hence 

c c:: c 
nfg'(x)(1-fn(x))n-1dx = J(g'(x)lfn'(x))nfn'(x)(1-fn(x))n-1dx + nfg'(x)(1-fn(x))n-1dx 

0 0 c:: 

c:: c 
+ Jhn'(x)(1-fn(x))n-1dx + nfg'(x)(1-fn(x))n-1dx, 

0 c:: 

where hn(x) = g'(x)lfn'(x). Now, since each fn is nondecreasing, and fn'(x) > 

f'(O)I2 if 0 ~ x ~ E and n > N, we have fn(x) > Ef'(O)I2, or 1-fn(x) < 

1-Ef'(O)I2, if E ~ x ~ c and n > N. Hence the limits of the second and fourth 

terms are zero. Now consider the third term, in which hn'(x) = g"(x)lfn'(x) -

fn"(x)g'(x)l(fn'(x)) 2 • Since g', g", and fn" are continuous, they are bounded 

on [ 0, c] ; since in addition fn" + f" uniformly, {fn"} is uniformly bounded 

on [0, c]. Thus the fact that fn'(x) > f'(O)I2 if 0 < x < E implies that {hn'} = = 

is uniformly bounded on [0, c]. Further, we have fn(x) ~ xf'(O)I2, or 1-fn(x) 

~ 1-xf'(O)I2, if 0 ~ x ~ E, so that the limit of the third term is zero. 

Finally, the limit of the first term is g'(O)If'(O), completing the proof. • 

Proof of Proposition 4: Since each Fn . 18 atomless, we can conclude, as 

in the proof of Proposition 3, that n Fn) 1ln (the equilibrium payoff of P (z, = 
oJ' 

each firm), n Fn) for all Fn. (We . Fn n n or nP (z, 1' z E supp wr1te "' = (F , ••• ,F ), 
"' 

and now explicitly record the dependence of the payoff functions on n.) Also, 

since the equilibrium payoff 1ln goes to zero as n + oo, 



for any z € supp C and any £ > 0 there exists N such that (6) 

(z-e, z+£) n supp Fn * (/J if n > N 

(otherwise a firm can guarantee a positive payoff by locating at z). Hence, 

given the continuity of nPn(z, ~n) in z, 

1 for all z € supp C. (7) 

Now, for each n we have 

z 1 
(8) 

+ Jnc'((u+z)/2)(1-(Fn(z)-Fn(u)))n-1du/2 + JnC'((u+z)/2)(1-(Fn(u)-Fn(z)))n-1du/2 
0 z 

(see (2)). Let a =min supp C, b =max supp c. Obviously supp Fn c [a, b] 

for all n, and if z € supp C n (a, b) then for large 

enough n (see ( 6)), so that the first two terms in ( 8) go to zero. Since 

C(a/2) 0 and C((l+b)/2) = 1, the first two terms of nPn(z, ~n) are also 

zero for z = a or b. 

We can use Lemma 2 to determine the limits of the last two terms as n ~ 

oo by defining the variables appropriately (i.e. in the first case c = z, x = 

z- u, g(x) = -2C(z-x/2) and fn(x) = Fn(z) - Fn(z-x), while in the second case 

c = 1 - z, x = u- z, g(x) = 2C(x/2+z), and fn(x) = Fn(x+z)- Fn(z)). If 

( I n n F' z) > 0 the limits are both C'(z) 2F'(z), so that lim nP (z, F ) 
V' 

C'(z)/F'(z); if F'(z) = 0 and C'(z) > 0 the limits are infinite. Thus from 

(7) we conclude that if z ~ supp C and C'(z) > 0 then F'(z) > 0, and hence in 

fact C'(z)/F'(z) = 1; if C'(z) = 0 then F'(z) 0. Thus F'(z) = C'(z) for 

all z E supp C; since F'(z) = C'(z) = 0 if z ¢ supp C, we have F = C, 

completing the proof. II 

Proof of Proposition 5: 3 Let (c, F, G) be an equilibrium of r (U). By 

Proposition 2(b) we can assume without loss of generality that F is not pure 

\I 
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and a(F) < c. Clearly we must then have a(G) = a(F) = a, say (since 2's payoff 

is increasing on [0, a(G))). We can further assume without loss of generality 

that ~(F)~ ~(G). Clearly we must have ~(F) ~ c, and either (i) ~(G) = ~(F) ~ 

c or (ii) ~(G) < ~(F) = c. We proceed in a number of steps, showing in (h) 

that (ii) is not possible. 

(a) If X E J(F) 0 J(G) and x ~ c then x c/3: Since x E J(F), we need 

K2(c, x, G) ~ K2(c, y, G) for all y. Since x < c by Lemma 1, the cases y = x- and 

y x+ imply that JG(x)((x+c)/4 - x) ~ 0 and JG(x)((x+c)/4 (c-x)/2) ~ 0, or 

x = c/3, given that x E J(G). 

(b) (supp H) n [a, min(~(G), c)] = [a, min(~(G), c)] for H = F, G: Let 

[a, min(~(G), c)] = L. Suppose x, y £ supp F, but (x, y) n (supp F) n L = 0 for 

a< x < y < min(~(G), c). Then K3(c, t, s+E) - K
3
(c, t, s) is zero if x < s < y 

and t ~ x and positive if t ~ y, so that K3(c, F, s) is increasing in s. 

Hence (x, y) n (supp G)= 0, and either xi supp G or x E J(F). Reversing the 

roles of F and G establishes that x ~ J(F) n J(G) and, since (x, y) is an 

arbitrary gap, we have (supp F) 0 L = (supp G) 0 L. Now, if x < s < y then 

K
2
(c, s, G) - K2(c, x, G) = JG(x)((c-x)/2 - (c+x)/4) + (1-G(x))(s-x)/2; by (a) 

the first term is zero, so the expression is positive, contradicting the fact 

that x E J(F). 

(c) If x E J(H) then x ~ c/3 if x < min(~(G), c), and x ~ c/3 if x >a, 

for H = F, G: If x E J(F) and x < min(~(G), c), then since [X' x+E] C supp G for 

some E ) 0 by (b), we need K3 ( c, F, x) ~ K3(c, F, x+) (which is equal to the 

equilibrium payoff of firm 3). This implies that X ~ c/3. Similarly if x > a 

we need K3 (c, F, x) ~ K3(c, F, x-), which implies X ~ c/3. In both cases the 

argument applies also to G. 

(d) a ~ c/3: Suppose a < c/3, and let a ~ s < c/3. Then , 
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J (s)(c-s _ c+s) + 
F 2 4 

Now, using the fact that 

J tdF(t) ~ (c/3)[F(c/3) - JF(c/3) - F(s)], 
(s,c/3) 

we obtain 

J (c-t _ s+t)dF(t) 
2 2 

(s,c/3) 

K3(c, F, c/3) - K3(c, F, s) ~ (c-3s)[3JF(s) + 2(1-F(s))]/12. 

But now since F is not pure we have F(s) < 1 for all a ~ s < a + £ for some 

£ > 0, and hence K3(c, F, c/3) > K3(c, F, s) for a ~ s < a+ £. But this 

contradicts the fact that a E supp G. Hence a ~ c/3. 

(e) a> c/3: Suppose a~ c/3. By (d) we then have a= c/3. Let a~ s 

< t < min(~(G), c). Then making a calculation as in (d) (using (c), which 

implies that JF(t) 0 unless s =a= c/3), we find 

K3(c, F, t) - K3(c, F, s) ~ [(t-s) - 3(t-a)F(t) + (s+2t-3a)F(s)]/2. (9) 

Now let F(a) = 1 - o. Since F is not pure we have o > 0, and since F is 

continuous on (a, min(~(G), c)), there exists t* in this interval such that 

F(t*) ~ 1 - So/6. Let £ = (t*- a)o/4. Then if a~ s < a+£ the right-hand 

side of (9) when t = t* is at least 

[t*- a- (t*-a)o/4- 3(t*-a)(1-5o/6) + 2(t*-a)(1-o)]/2 ~ (t*-a)o/4 > o. 

Hence K3(c, F, t*) > K3(c, F, s) for all a ~ s < a+ £, contradicting the fact 

that a E supp G. Hence a > c/3. 

(f) ~(G) > a: If ~(G) = a then K2(c, a, G) = (c+a)/4 <a= K2(c, a-, G) 

(using (e)), while K2(c, s, G)= (c-a)/2 <a for a< s < c, contradicting the 

fact that a(F) = a. 



(g) If x E [a, min(~(G), c)) then x ¢ J(F) and x ¢ J(G): this follows 

directly from (e) and (c). 

(h) ~(F) = ~(G) ~ c: Assume this is not so. Then ~(G) < ~(F) = c (see 

the discussion preceding (a)). Because of (g), K2 (c, s, G) and K
3
(c, F, s) 

are continuous ins on [a, ~(G)), and hence for equilibrium must be constant 

there. Using a standard argument (see, for example, the solution to Problem 

17 on p. 294 of Karlin [1959]) we can establish that F and G are 

differentiable on this interval. The conditions that K
2
(c, •, G) and 

K3(c, F, •) be constant then imply that F and G satisfy the same first order 

differential equation on [a, ~(G)), with the same initial condition (F(a) = 

G(a) 0). Hence F(s) = G(s) if a~ s < ~(G). Thus, since we are assuming 

~(G) < ~(F) (=c), we must have ~(G) E J(G). But then K2 (c, ~(G), G)- K
2

(c, s, G) 

= JG(~(G))(3~(G) - c)/4 if ~(G) < s < c. Since ~(G) ~ a> c/3, this is 

positive and hence supp F n (~(G), c) = 0. But then K3 (c, F, s) is increasing 

on (~(G), c) (as in (b)), so we must have ~(G) E J(F) (so that K3(c, F, •) jumps 

down at ~(G)). But then ~(G) E J(F) n J(G), and c/3 <~(G) < c, contrary to (a). 

Hence ~(G) = ~(F) ~ c. 

Now let ~(G) = ~(F) = b. Then by (b) we have supp F n [a,c] = supp G n 
[a,c] [a,c]; symmetric arguments yield supp F n [c,b] supp G n [c,b] = [c,b]. 

By (c), F and G are atomless, except possibly at c. As in the proof of (h), 

they are also differentiable; the conditions that K2 (c, •, G) and K3(c, F, •) 

be constant on (a, c) imply that G'(t)(c - 3t) - G(t) + 1 0 and similarly 

for F. Given F(a) = G(a) = 0 (because of (e) and (c)) we have 

F(t) G(t) 1/3 -1/3 . 1 - (3a-c) (3t-c) 1f a ~ t < c. (10) 

We can make similar arguments for c < t < b; we obtain 

F(t) G(t) (2 - 3b + c) 1/ 3 (2 - 3t + c)-1/ 3 if c < t ~ b. (11) 
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Thus F and G have an atom of the same size at c; since firm 3 has an atom 

there, the size of the atoms is zero by Lemma 1, and F = G is differentiable 

except possibly at c. 

We now determine the position of c. First note that for equilibrium we 

need K2(c, c-, F) = K2(c, c+, F) (both of which must equal the equilibrium 

payoff of firm 2). A calculation shows that this imples that 

b 
JsF'(s)ds 
a 

3c- 2F(c). (12) 

Now, in order for firm 1 to use the pure strategy c, K1(s, F, F) must be 

maximized at s = c. This requires Ki(c-, F, F) ~ 0 and Ki(c+, F, F) ..; 0 

(where the derivative is with respect to the first 

argument). But if s * c we have 

Ki(t, F, F) 

so letting t t c and 

b 
F'(t)[2F(t) - 3t + jsF'(s)ds] + 1/2 - F(t), 

a 

t + c, and using (12)' we need F(c) = 1/2. 
b 

(13) 

Now we 

can let t + c in (10) and (11)' and use these to calculate JsF' (s)ds in 
a 

(12). The only solution of the resulting three equations is a = 5/24, 

c = 1/2, and b = 19/24. Hence the only candidate for equilibrium is the one 

specified in the Proposition. 

To complete the proof we need to show that this is in fact an 

equilibrium. It is clear that K2(1/2, s, F) increases to K2(1/2, a, F) = 

K2 ( 1/2, F, F) 

K2 (1 1 2 , b , F ) 

as s increases to a; similarly it increases to 

K2(1/2, F, F) as s decreases to b. Hence F is a best 

reply of firm 2 to (1/2, F); identical arguments apply to firm 3. It is also 

clear that K1(s, F, F) ..; K1 (a, F, F) if s <; a and K1(s, F, F) <; 

K1 (b, F, F) if s ~ b. Thus it remains to show that K1 (s, F, F) ..; 

K1 (1/2, F, F) if a <; s ..; b. Substituting (from (10) and (11)) into (13) we 

can find Ki(s, F, F). Analyzing its derivative we find that K' 1 is negative 
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from s = a until some point, and then is positive until s = 1/2. Thus, the 

only possibilities for maxima of K1(s, F, F) on [a, 1/2] are s =a or 

s = 1/2. But we find that K1(a, F, F) = 14/48, while K1 (1/2, F, F) = 19/48. 

Hence K1(s, F, F) ~ K1(1/2, F, F) for all a ~ s ~ 1/2. Since F(s) 1-

F(1-s), it is immediate that K1(s, F, F) ~ K1 (1/2, F, F) for all 1/2 ~ s ~ 

b also. Hence s = 1/2 is a best response of firm 1 to (F, F). It is easy 

to check that the payoffs at the equilibrium are (19/48, 29/48, 29/48), 

completing the proof. B 
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Footnote 

1 Note that "n ;;:; 2M" about two thirds of the way down their 

p. 35 is a typographical error for "n:;; 2M". 
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