CARTELS, PROFITS, AND EXCESS CAPACITY
by
Martin J. Osborne and Carolyn Pitchik
Department of Economics Department of Economics
Columbia University New York University
New York 269 Mercer Street

NY 10027 New York
NY 10003

March 1983

Abstract

We study a model of a collusive duopoly in which each firm has limited
capacity. The negotiated output quotas depend on the bargaining power of the
firms, which derives from the damage they can do by cutting prices. If the
capacities are fixed, then the unit profit of the small firm is at least as
large as that of the large firm, and the relative position of the small firm
is better when demand is low. If the capacities can be chosen once-and-for-
all, then in equilibrium there 1is excess capacity so long as the cost of
capacity is not too high. This is because a larger capacity permits more
damaging threats, so that an extra unit of capacity may be valuable even if it

is not used in production.
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1. Introduction

Our purpose 1is td study a model of the behavior of a cartel. There are
a number of reasons why this is an interesting exercise. Whenever they have
not been outlawed, cartels have existed, and frequently flourished, in a wide
variety of industries. Their modes of operation have been diverse, and their
longevity far from wuniform, but they cannot be dismissed as transitory
phenomenal. From a theoretical point of view, the fact that the firms in an
industry can collectively benefit from colluding rather than competing means
that there is an incentive to form a cartel. There is always the problem that
an entrant may upset a collusive arrangement, but in any industry with a
barrier to entry it is in the interests of all firms to reach a binding
coliusive agreement. Even if such an agreement is outlawed, there may be a

collusive arrangement which is self-enforcing (as, for example, in the models

of Radner [1980], Stigler [1964], and Green and Porter [1981]). Finally, in
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order to evaluate the desirability of making cartels illegal, it is necessary
to understand their behavior, and how it depends on the nature of the demand
for output and the available technology.

We address two questions, What collusive agreement will a group of
firms of possibly different sizes reach? What implications does the nature of
the agreement have for fhe choice of size by each member? Our model is very
simple. There are two firms, with possibly different capacities. Up to its
capacity, each firm has the same, constant average cost of production.
Capacity can be changed only with difficulty, so that, in particular, entry is
not an issue (the market is "noncontestable').

First, we fix the capacities. The firms negotiate an agreement, which
involves an output quota for each firm, and a price at which output is sold.
The outcome of the negotiation is determined by the damage each firm can
inflict on the other by undercutting the monopoly price. (We have examined
elsewhere (Osborne and Pitchik [1983a]) the consequence, in this part of the
model, of assuming that the firms threaten to expand output, rather than cut
prices. The assumption of threatened price-wars seems more appropriate for
most industries.)

We find that the profit per unit of capacity of the small firm is
always at least equal to that of the large one, and if the joint capacity of
the firms exceeds the monopoly output, then the inequality is strict. The
reason is that each firm, regardless of size, can equally well disrupt the
collusive outcome--in this respect each firm has the same power. The large
firm can inflict more damage, but the net effect favors the small firm (per
unit of capacity). (Stigler’s [1964] model yields the same conclusion if
information is imperfect; our result derives solely from the threat-potential

of each firm.) We also find that the ratio of the unit profit of the small



firm relative to that of the large firm is higher, the lower is demand
relative to capacity. Thus the model predicts that, if capacities are fixed
while demand varies cyclically, this ratio will vary procyclically.

There is some evidence that small firms do fare better than large ones
in cartels, especially when demand is low. We have not examined the data
systematically, but the agreement reached in the Addyston Pipe Cartel (see
Stevens [1913], pp. 205-209 and Bittlingmayer [1982]), and the outcome of
OPEC’s negotiations (see, for example, Gately [1979], p. 311) seem to accord
well with our results.

If we want to compare the outcome in our model with one which is
"competitive", there are two alternatives. In the standard "perfectly
competitive'" outcome, both firms sell at the same price, so that their unit
profits are the same. The outcome of price competition (between firms with
limited capacities) predicted by the Bertrand model involves the same unit
profits for both firms whenever the capacity of the large firm is less than
the monopoly output (and even when it is larger, so long as the small firm is
not too small; for the details, see Osborne and Pitchik [1983b]). Thus,
whenever the monopoly output exceeds the capacity of the large firm, and is
less than the industry capacity, the unit profit is the same for each firm in
either of the "competitive" outcomes, while the small firm fares better in the
cartel., If the cartel outcome can be achieved by an implicit agreement, this
provides’ a cfiterion to distinguish between competitive and collusive
industries.

Even though it may be difficult to change capacities, they must
ultimately be chosen by the firms. We incorporate this by assuming that
capacities are chosen once-and-for-all, before negotiation over price and

output quotas2 (so that the structure is similar to that of the model of Kreps



and Scheinkman [n.d.]). The capacities are thus neither objects of
negotiation, nor strategic variables for the firms during negotiation. The
idea is that, given the inflexibility of capacity, it is to the advantage of a
firm to choose its capacity before entering negotiations. Of course, if the
cartel lasts for a long time, there is scope for subsequent adjustments -of
capacity. Even so, in the absence of perfect enforcement, agreement on a
capacity-reduction may be much less likely than agreement on a price-hike: if
a firm cheats on the former, its opponent is in a very weak position, while
any change in price is easily réversible.

We find that if the cost of capacity is relatively low then the sum of
the capacities chosen by the firms exceeds the sum of the negotiated output
quotas—-—i.e. the choices of the firms result in excess capacity in the
industry. The reason for this is straightforward. The more capacity a firm
"has, the more potent the threats it can make, and hence the larger its
payoff. 1If capacity is not too costly, it pays a firm to build more capacity,
even if it is not all used in production (it is "used" to threaten the other
firm and maintain the firm’s negotiated payoff). If the firms choose their
capacities in the expectation of competing (as 1in Kreps and Scheinkman
[n.d.]), rather than colluding, then there is really no use for excess
capacity, and the outcome always 1involves full utilization. The same is
obviously true if there is a single firm in the industry.

We also find that a proportionate increase in demand at each price
causes a proportionate rise in the capacities chosen. On the other hand, if

the size and elasticity of demand at the monopoly price is fixed, while at

ZRather than assuming that the industry is starting from scratch, we could
suppose that it is currently competitive, and that adjustments in capacity are
being made, in anticipation of subsequent collusion. Or, the industry may
currently be a monepoly, which is changing its capacity in response to an
entrant with which it will collude.



every other price demand becomes more elastic, then excess capacity
increases. This makes sense: if demand is more elastic, a price-cut is more
potent (it is less damaging to its perpetrator, and more damaging to the other
firm), so that the marginal benefit of an extra unit of capacity is greater.
Hence, given the unit cost of capacity, the equilibrium sizes chosen are
larger.

In a slightly different context the idea th;t a firm will build excess
capacity as a threat has been modeled before. Spence [1977] argues that the
large capacity of an existing firm deters entry into an industry. However,
the equilibrium of his model is not "perfect": if a firm actually enters, then
it is not in the interest of the existing firm to carry out its threat. Dixit
[1980] imposes credibility on the threat by assuming that after entry a Nash
equilibrium (in quantities) is attained. Naturally, he finds that no excess
capacity is chosen (the forces in his model are the same at those in Kreps and
Scheinkman {n.d.}). In our model of a collusive industry, the threats are
chosen according to the rules of Nash’s [1953] '"variable-threat" bargaining
model. These rules incorporate a notion of credibility--the effect of a
threat on a player’s negotiated payoff depends on its cost to that player, as
well as the damage it inflicts on his opponent. In the context of our model,
in which payoff is transferable, Nash’s solution has particularly strong
support: it is the equilibrium of an explicit model of negotiation (see
Binmore [1981]), and is the unique outcome of a system of attractive axioms
(see Selten [1960] and [1964], particularly result E7 on p. 583 of the lat-
ter). Even though the concept of perfect equilibrium in a repeated game may
be more "basic", it suffers from the disadvantage that the range of outcomes
it predicts 1is typically very wide, unless more or less ad hoc restrictions
are placed on the threats or agreements which are allowed (as, for example, in

Green and Porter [1981]); Nash’s model yields a single outcome.



24 The Economic Structure

There are two firms, i = 1, 2. The capacity of i 1is denoted K;s
when analyzing the outcome for fixed capacities, we assume that k] > ky >
0. Each firm can produce the same good at the same, constant unit cost c¢ >0
up to its capacity. Let P be the excess of price over unit cost; we
frequently refer to p‘ simply as a ''price'". The set of possible prices is
§ = [-¢, »). For each price p, let d(p) be the aggregate demand for the

output of the firms (given the prices of all other goods). We assume that

(2.1) there exists Py 0 such that d(p) = 0 if p > Po and
d(p) > 0 if p < py,, and d 1is smooth on (-c, p,), with

d’(p) < 0 there.

For each p € S, let w(p) = pd(p). Given (2.1), m attains a maximum on
S. To save on notation we choose the units in which price is measured so that
the maximizer is 1, and the units for quantity so that the maximum is also

l. We assume that
(2.2) w 1is strictly concave on [0, 1], and decreasing on (1, po].

We now define the profits of the firms if they noncooperatively choose
prices P1 and Ppe Suppose they set different prices, say p; < Py
Depending on the capacity of firm i, there may be some demand left over for
firm je Precisely how much remains depends on the preferences of the
consumers and the way the available quantity 1is rationed, not just on the
aggregate demand function d. We assume that there is a large number of

identical consumers with preferences which do not have any '"income effect"3.

3Precisely, for each quantity of the good which the firms produce, the
marginal rate of substitution between that good and any other good is

independent of the quantities of the other goods. We also need to assume
[cont. on next page]



It is natural to assume that the rationing scheme is chosen by firm i. If
firm 1 is concerned solely with its own payoff, this assumption does not
generate a determinate outcome, since i’s payoff is independent of the
scheme chosen. However, in the bargaining model we wuse, it 1is to the
advantage of a firm to choose a threat which reduces the payoff of firm j as
much as possible. A rétioning scheme which does this, independently of the
action of firm j, is the following: each consumer is allowed to buy the same
fraction of ky (rather, for example, than some consumers being allowed to
buy as much as they want, while others are allowed to buy nothing). Given
that this is a dominant strategy, a firm will always adopt it when issuing a
threat, and we can focus on the choice of prices. Under these assumptions,
the demand facing firm j when pg < Pj is d(pj) - kj. If pj = Pj = P, we
assume that demand is allocated in proportion to capacities4 (if these are

large enough to serve that demand). Thus the profit of firm i at any price

pair (pj, pj) 1is

‘

{ Li(py) = pymin(ky, d(py)) if py < pj
(2.3) hy(py, Pj) =9 ¢;(p) = p min(k;, kjd(p)/k) if py =py=0p

M;(py) = pymin(k;, max(0, d(py) - ky)) if py > Pj»

where k = k;, + k,. Examples of the functions L ¢;» and M; are shown in

i» i

Figure 1.
By colluding, the firms can obtain the monopoly profit. It is easy to

check that under our assumptions this is achieved by both firms selling at the

that, given the income of a consumer, and the prices of all other goods, his
demand for all other goods is positive for every price of the good produced by
the firms.

If one adopts a rule in this case which is more favorable to the small
firm (for example, the demand is split equally), then the negotiated payoff of
the small firm is higher, and that of the large firm is lower.



Figure 1

P(k) P(ky) P(Koy) p>



N
.

Ky =Ky

f.
Iz
ky = d(blky)) j
|

lf P(ky) = alky,ky)

/

|
I11g

/ |

blky) < P(ky)
P(K) < blky) / |
/  Ub |
/Pl <blky ,
/ o

-

: [Ilc
: P(kl) <c1(kl,k2)
k2 < d(0)

ky = d(blky)) - k)

Ib
P(K) 2 blky)

.
.
.
.
.
.
.
.
.
.
.
.
.
.

1 d(0) kl »>

Figure 2



same priceS. Let P:[{0, @) » S be the inverse demand function defined by

P(q) = d"}(q) if 0 < q <d(-e), B(0) = p, (see (2.1)), and P(q) = —c
otherwise. Then, if the capacity of the industry is k, the monopoly profit

is Z(k) = max{qP(q): q < k}. Given our normalization, and our assumptions
q

on demand, we have

kP(k) if 0 <k <1

(2.4) Z(k) =
1 if 1 < k.
3. Negotiation between the Firms

The division of the monopoly profit between the firms is determined by
negotiation. We use the bargaining model due to Nash [1953]. It has the
following structure. First, the firms simultaneously announce threats; then a
compromise is agreed upon. For each pair of threats, the firms know precisely
which compromise will be reached. Each firm chooses its threat so as to
maximize its compromise payoff, given the threat of the other firm. This
model is supported both by the axiomatization of Selten [1960] and by the
explicit concession model of Nash [1953] (see also Binmore [198l]). We assume
that payoff is transferable--i.e. any division of the monopoly profit between
the firms is possible. However, we show that the negotiated profits can be
achieved without any transfers. Thus, we can think of the firms agreeing on
output quotas.'

Our assumption of the transferability of payoffs means that the
relationship between the negotiated payoffs and the payoffs which would be
received if the threats were carried out is quite simple. Suppose (pl, p2)

is a pair of threats. Then the negotiated payoff of firm i (= 1, 2) is

5Note that if consumers’ preferences differ, this may not be the case.



vi(py, Pj) = hi (py» py) + [Z(k) = hi(py, XD hj(pj, p;)1/2. Thus the excess
of the monopoly profit over the sum of the threat payoffs 1is split equally
between the firms; a large firm is powerful only because it can issue more

damaging threats. Using (2.3) we have

[2(k) + Li(py) - M5(py)1/2  if py < pj

(3.1) vilpys py) = ([2Ck) + ¢;(p) - ¢5(p)]/2 if py

1}
ae]
[
[}
o

[2(k) + M;(py) - LJ(PJ)]/2 if py > Py

Let V(k;, kp) be the (constant-sum) game in which the (pure) strategy
set of each firm is S, and the payoff to firm i if it chooses P; and
firm j chooses Pj is vi(pi, pj). A pair of equilibrium strategies in

(the mixed extension of) V(kl, kz) is a pair of optimal threats, and the

equilibrium payoffs are the negotiated payoffs in our model. We denote the

negotiated payoff of firm i by v;(kl, ky). (Note that since V(ky, ko) 1is

constant-sum, the optimal threats guarantee the negotiated payoffs.)

4. The Outcome of Negotiation for Fixed Capacities

Here we characterize the optimal threats and negotiated payoffs for
each fixed pair of capacities, and study their properties. For each x¢€

[0, d(0)], suppose that
(4.1) b(x) maximizes p(d(p) - x) over p € S,

and let B(x) = b(x)(d(b(x)) - x). If firm 1 sets the price Py and
b(ky) > P(k), then the best price for firm j to charge out of all those in
excess of p; is b(ki), independently of pj (i.e. b(ki) maximizes Mj
in this case). The price b(kz) figures prominently in the description of

the optimal threats and negotiated payoffs; in particular, no firm threatens
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to charge a price higher than  b(k,). It is easy to show that b is
decreasing, with b(0) = 1, b(d(0)) = 0, and b(x) < P(x) for each x¢€
[0, d(0)].

The qualitative features of the optimal threats depend on the relation
between b(kz), P(k), and 0. The relevant "regions" are shown in Figure 2.
(For each (k;, ky), the value of a(ky, kg) 1is defined in Proposition 4.6.
The boundaries between regions IIIa and IIIb, and between IIIb and IIIc, are
upward~sloping, and if (k;, ko) is in region IIIb then k; <d(0).) If
b(kz) < P(k) (region I) or b(kz) <0 (region II), then the optimal threats
are pure strategies; otherwise (in region III) they are mixed. The appearance
of mixed strategies for some values of (ki, k2) is neither unreasonable nor
unnatural. The negotiated outcome is still a pure outcome-—-only the optimal
threats involve randomization. As a threat, there is no reason why a firm
should not choose its price according to some probability distribution. It is
also possible to interpret a mixed strategy in this context as a strategy of
threatening to hold "sales" at various 'reduced" prices over a period of time
(e.g. Varian [1980] has given this interpretation). If the game is repeated,
each firm can base its actions at any point on all the previous actions of its
opponent, so that the strategy set of each player contains much more than
simply repetitions of one-period actions. However, the new strategies do not
affect the maximum joint payoff available to the firms. Moreover, independent
repetitions of the one-period equilibrium strategies constitute an equilibrium
of the repeated game. Thus, if one firm threatens to carry out such a
repetition, a best response of its rival is to do the same. Since the game
V(ky, k2) is constant-sum, the fact that there may exist other optimal
threats in the repeated game (involving strategies which depend on the

previous actions of the other player) does not concern us: the payoffs to them
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all must be the same. Thus, we can consistently interpret our model in a
setting where actions are repeated over time.
The regions of pure strategy equilibrium are covered in the following

result.

Proposition 4.2: If (kl, kz) is in region I, then (P(k), P(k)) is

a pair of optimal threats; if it is in region II, then (0, O) 1is a pair of

optimal threats. The negotiated payoff of firm i (= 1, 2) is as follows.

kiP(k) in region Ia
(4.3) vi(k}, ky) =¢ (1 + (k; = k)P(K)]/2  in region Ib

1/2 in region II.

Proof: From (2.3), note that 1L; 1is increasing up to P(ki), which

exceeds P(k), and My is decreasing after b(kj), i=1, 2. Since
b(k;) < b(ky), b(ky) < P(k) 1in region I, and Ly(P(k)) = ¢(P(k)) = M;(P(k))
(i =1, 2), this means that (P(k), P(k)) 1is an equilibrium in this case; the

payoffs follow from substitution. A similar argument can be made for region

II. This completes the proof.

For each pair (kl, kz) in region III the unique optimal threats are
mixed. Fix (k;, k,), and let S ©be the set of mixed strategies (i.e.
cumulative probability distribution functions on 8) in V(kl, ky). Let
(Fl, FZ) € 8 x 8 be a pair of optimal threats. We show that the support of
F;, which we denote supp F;, is equal to [a, b(k,)] for each i =1, 2, for

some max(0, P(k)) < a < b(ky). The strategy F; has the form

0 if x < a
(4.4) Fi(x) = Gi(x) if a € x < b(kz)

1 if b(kz) < X,
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where G;: [a, b(ky)] » [0, 1] is continuous, Gy(a) = 0 (i =1, 2),
Gy(b(ky)) <1, and Gy(b(ky)) =1 (so that Fy isrin fact continuous).
First we show that if a pair of strategies (Fl, Fy) of type (4.4) is
such that vi(p, Fj) (1 = 1, 2) is constant for a < p < b(kz), then
Vi(p, Fj) < vi(Fi, Fj) for all p € S, and vl(b(kz), FZ) = vl(Fl, Fz), so

that (Fl, Fp) 1is a paif of optimal threats.

Lemma 4.5: Fix (k;, k) in region III. If (F;, Fp) 1is of type

(4.4) and v;(p, Fj) = vi(F;, F;) for all a < p < b(ky) then (F}, Fp) is

a pair of optimal threats.

Proof: To save on notation, we use b to denote b(kz) in this
proof. First suppose that P < a. Then for i=1, 2 we have
b
vi(p, F:) = S[Z2(k) + Li(p) - Mi(r)]dF;(r)/2 (using (3.1)). But L; 1is
1 ] a ] J
increasing up to max(l, P(ky)) > b, so v;(p, Fj) is increasing up to p =

a. A similar argument, using the fact that M

i 1s decreasing after b(kj) <

b, establishes that v;(p, Fj) is decreasing after p = b. Now, since F,
is continuous, v,(p, F2) is continuous in p, so that the above implies
that v;(p, Fy) = v;(F;, Fy) if a <p <b and v (p, Fp) < v (F}, Fy) for
all p € S. The strategy F; may not be continuous at b, so we need to
check that wv,(p, F}) < vo(F;, Fp) if p > b. But this follows from the fact
that, since b > 0 in region III, we have My(b) < ¢(b) < Ly(b), and hence

VZ(Fl’ p) < vz(Fl, b) < vZ(Fl, FZ) if b < p, completing the proof.

We can now characterize the optimal threats and negotiated payoffs in
region III. For each p € S, let XKy(p) = Ly(p) - M3(p) for 1 =1, 2. It
follows from (2.3) that Ki(p) >0 1if p » 0, and Kl(p) = Kz(p) for all

P € S. In view of the latter, we write K(p) rather than Ki(p).



13

Proposition 4.6: For each (k;, ky) in region IIT there is a pair of

optimal threats of type (4.4), with

1 P La(x)
(4.7) G,(p) = j’ dx, for i =1, 2,
U aen? S want?

where a 1is such that- Gz(b(kz)) = 1 (so that both G; and a may depend

on both k; and kz). The negotiated payoff of firm 1 is

[1 + (k; = ky)B(ky)/ky]/2 in region Illa
(4.8) vi(ky, ky) =¢ [1 + P(ky)(¥(ky, ky))2/k;1/2  in region IIIb

[1 + n(a)]/2 in region Illc

where Y(k;, ko) = ky = kyGo(P(k;)), and the negotiated payoff of firm 2 is
AL LS 1 2 1 2¥2 1 ==

* *
Vz(kl’ kz) =1 - Vl(kl, kz)u

Proof: Fix (kl’ kz) in region III. Note that 2Z(k) = 1, and b >
max(0, P(k)). (We again use b to denote b(kz).) Suppose Fj € 8 1is of
type (4.4) and is differentiable on (P(k), b)\P(kl); assign G&(P(kl)) an

arbitrary value. If P(k) < p < b we have

% b
(4.9) 2vi(p, Fj) =1+ i[Mi(p)-Lj(r)]Ga(r)dr + f[Li(p)—Mj(r)]Ga(r)dr
: P

+ . - Py - s .
[L;(p)-M5(b)](1 = G4(b))
If we set the derivative of this equal to zero we obtain

(4.10) 2k(p)G3(p) + K'(p)G;(p) - Li(p) = 0.

It is easy to check that for each t > P(k), the function Gg defined by

P

L (x)

t 1 i

G.(p) = dx
] NMp»”2[<mx»“2
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solves (4.10) on (t, b). (If P(kl) € (t, b), we mean that Gg solves
(4.10) on (t, P(k;))U(B(k;), b) and is continuous at P(k;).) Now, GH(b) =
0 and as t decreases, Gg(b) increases. In fact, since K(x) < kx for
all x € S, and K(x) = 0 if x < max(0, P(k)), we have Gg(b) 4 o as t ¢
max(0, P(k)). Hence there exists a > max(0, P(k)) such that Gg(b) = 1.
Let G, = G4, and let G, = G2, so that Gy (i = 1, 2) is the function defined
in (4.7).

We now argue that Gl and G, are cumulative probability distribution
functions. First, since M{(p) > 0 if p <b we have, from (4.10), G5(p) >
0 whenever Gy(p) < 1. Now Go(b) = 1, G3(b) =0 (from (4.10)) and
Gg(b) < 0 from the derivative of (4.10) and the fact that MJ'(b) < 0, since

7 is strictly concave), so G3(p) > 0 for all a <p < b. As for G, if

a< p < P(ky) then Li(p) = ky

i» SO G1(P) = k9G9(p)/ky, and hence

0 <G(p) €1 and Gi(p) > 0. If P(ky) < p < b then G(p) = G (P(ky)) +
Gf(p) for t = P(ky), and since K(p) = kyp, GE(P) can be solved
explicitly; it lies between O and 1 and is increasing. Hence Gy is a
cumulative probability distribution function. By Lemma 4.5, (Fl’ Fy) 1is
thus a pair of optimal threats.

To find the negotiated payoffs, let i =1 and p » b in (4.9).
Since wv;(p, Fy) 1is constant on (a, b), equal to Vt(kl’ ky), and Fy is

continuous on [a, b], we obtain

b b
(4.11) 2v)(k;, ky) = 1+ [[M)(b)-Ly(r)]G5(rddr = 1 + b(d(b)-k,) - k, [rG5(r)dr.
a a

Now, let y = min(b(k,), max(a, P(ky))). Then

b y b
(4.12) [rGy(r)dr = [rGy(r)dr + [rG5(r)dr.
a a y

By using the explicit form of G,(p) for a < p < P(k;) we can integrate the
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first term on the right-hand side by parts; by using (4.10) and the explicit
forms of K(p) _and Ll(p) for p > P(kl), we can calculate the second
integral. Substituting the results into (4.11), we obtain (4.8). (For the
details, see Appendix l1.) Since 2Z(k) =1, we have vt(kl, ky) + v;(kl, ky) =

1, completing the proof.

We have not shown that the optimal threats defined iﬁ.Profositions 4.2
and 4.6 are unique, since the main line of our argument requires only the
uniqueness of the negotiated payoffs. However, a straightforward adaptation
of the argument of Karlin [1959] (solutions to Problems 16-18, pp. 293-295)
shows that this is indeed the case. The threats can be given clear intuitive
interpretations. We have chosen the units in which quantity is measured so
that the output of a monopolist without any capacity coanstraint (the
"unconstrained monopoly output") is 1. In region Ia the total capacity of
the firms is less than this output, and the price at which output is sold in
the agreement-—-the monopoly price--is P(k). Thus, under these conditions of
undercapacity in the in&ustry, the optimal threats are not really 'threats" at
all: a firm does not improve 1its bargaining position by threatening to
undercut the price charged by its rival. 1In region Ib the total capacity of
the firms exceeds 1, so that the monopoly pricé is 1, which is larger than
P(k). Thus in this case, the optimal threats do involve some undercutting.
In region III,'the optimal threats of the firms differ. Substituting the
explicit forms of K and Lj into (4.7) it is easy to show that in region
I1Tla, the mean price threatened by firm 1 exceeds that threatened by firm 2,
and that the probability that the threatened price of firm 1 exceeds that of
firm 2 is greater than one~half., Also, if the capacities increase relative to
demand, while the relative size of the firms is constant, the mean threatenend

prices decrease. In regions IIIb and IlIc the optimal threats are more



16

complex, and such precise conclusions cannot be drawn. However, we can show
that in region IIIc the optimal threats are independent of the value of kl.
In region II, where each firm has more than enough capacity to serve the total
demand when price is equal to unit cost (p = 0 under our normalization), the
best threat of each firm is to set precisely this breakeven price. Thus in
this case each firm’s thréat is one of dramatic price-cutting.

In a negotiated outcome, no threat is ever carried out. However, Nash
[1953] argued that his solution is the limit of equilibrium outcomes in games
with some incomplete information, as this incompleteness goes to zero. In
each of the games in the sequence, there is some probability that the threats
will be carried out®. Thus, in a situation with a small imperfection of

information, the model predicts threats «close to those described in

Propositions 4.2 and 4.6.

5. Properties of the Negotiated Payoffs for Fixed Capacities

We first show that the negotiated profit of each firm is a
nondecreasing function of its capacity. This must, of course, be true in any
reasonable model; it almost7 follows directly from the fact that the Nash
variable-threat solution satisfies Selten’s condition of "payoff monotonicity"
(see p. 263 of Selten [1960], or result E5 on p. 583 of Selten [1964]). We
also show that the negotiated payoffs satisfy a concavity property which we

shall use later.

Proposition 5.1: vI(kl, k2) is continuous in k; and k,, for i =

6Binmore [198]1] examines this argument formally under a number of
assugptions.

"Almost", because in region Ia a change in capacities affects the maximal
joint payoff (monopoly profit), so that the assumption in Selten’s condition
(that the latter is constant) is violated.
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1, 2. Vt(kl’ kz) is increasing in k; on regions I, IIla, and IIIb, and is

constant in k; otherwise. v;(kl, ko) 1is increasing in ky in regions I

and III, and comstant in ky otherwise. Vt(kl’ kz) is differentiable in

kl, and concave in 3} on the wunion of regions Ib, II, and IIIL.
v;(kl, kZ) is differentiable in ko on region I, and concave and

differentiable in k2 on the union of regions II and III.

325521: Continuity follows from substituting the equations for the
boundaries between regions into (4.3) and (4.8). Also, it is immediate that
v:(kl, k2) is differentiable in k; on the interior of each region. The
remainder of the result follows from a tedious explicit differentiation of
v: in each region; the details are given in Appendix 2. This completes the

proof.

Next we show that the profit per unit of capacity of the small firm is
at least as high as that of the large one, and if the industry capacity

exceeds the unconstrained monopoly output, the inequality is strict.

Proposition 5.2: If k > 1 and kl > ko then

*
vk, k) /vh(ky, ky) < kK /ky; otherwise v)(ky, ky)/vi(ky, ky) = k;/ky.

Proof: If k <1 or ky = kp the result follows immediately from
(4.3) and (4.8). If k > 1 then 2(k) (the monopoly profit) is 1 (see
(2.4)) so that v?(kl, ky) + vz(kl, k) = 1. Hence it is enough to show
that vt(kl, ky) < k;/k. First consider region Ib. Since k > 1 we have

kP(k) < 1, so that, using (4.3),
ViCky, kp) = [1+ (kg = k)P(R)1/2 < [1 + (kg = kp)/k]/2 = ky/k.

In region II the result is immediate from (4.3).
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Now consider region 1III. Define f(kl, kz) = [1 + (kl - kz)x
B(ky)/k;]/2. We shall first argue that vj(k;, ko) < £(k;, ko) for all
(g;, ko) in this region. 1In region IIla, we have equality (see (4.8)). If
(ks ko) is 1in region IIIb, we mneed to show that g(ky, kp) =
(kl - kZ)B(kZ) - P(kl)(Y(kl, kz))2 >0 (using (4.8)). Differentiating, using
(A.3) of Appendix 2, we find that gk, ky)/ k) = B(ky) - P(k{)¥(k;, ko).
On the boundary between regions IIla and IIIb we have P(kl) = b(kz), so
that B(kz) = (kl - kZ)P(kl) and Y(kl, kz) = k; - k,, and hence
3g(ky, ky)/3ky = 0. Differentiating again, using the fact that G, satisfies
(4.10) for i =1, we find that 82g(k;, ky)/ 3k} = —k,P(k;)P’(k)G3(P(k})) > O,
where G) here denotes the right-hand derivative. Thus 3g(k;, kp)/%; > 0
in region IIIb, and hence g(k;, ky) > 0 (since g(k;, ky9) = O on the
boundary). Finally, note that in region IIIc, a is independent of k; (see
the discussion of region IIIc in Appendix 2). Hence vt(kl, k2) is constant
in k; 1in region IIIc and so, since vt is continuous in k;, we have
vilky, ky) < £Ckp, kp).

It remains to show that f(kl, kz) < kl/k if (kl, kz) is in region
III. Rearranging this inequality, we need to show that k;(1 = B(kp)) -
kyB(k,) > 0. Since B(ky) < 1 and k; > d(b(ky)) - kp = B(kp)/b(ky) in
region III, we have ki(1 = B(ky)) = KkyB(ky) > B(ky)[l - B(ky) -
kob(ky)]/b(ky) = B(ky)[1l = b(ky)d(b(ky))]1/b(ky) > O (the last inequality

since pd(p) < 1 if p <1, and b(ky) < 1). This completes the proof.

The following result allows us to interpret our model as one of
negotiation over output quotas. We show that there is a feasible output
level =x; <ky for firm 1 (= 1, 2) such that the negotiated payoff of i is

precisely the profit earned when the output Xy is sold at the monopoly

price. For each value of k, let m(k) be the monopoly price (so that
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m(k) = P(k) if k <1, and m(k) = 1 otherwise).

Proposition 5.3: v;(kl, ky) < kym(k) for i =1, 2, for all

(ky, kopde

Proof: 1In region Ia we have v{(kl, ky) = kyP(k) (see (4.3)) and
m(k) = P(k), so the result follows. In the remaining regions we have k > 1,
so that m(k) = 1. Given this, and Proposition 5.2, it is enough to show
that v;(kl, ky)) < ky. Now, since vt(kl, k,) is increasing in k; (by
Proposition 5.1) and vt(kl, ko) + v;(kl, ko) =1 in regions Ib, II, and III,
v;(kl, ky) is decreasing in ky there. Hence if ky < 1/2 then
valky, ky) < va(l-ky, k,) = kp, while if ko, > 1/2  then  vi(ky, ky) <

v;(kz, k2) =1/2 < k,, completing the proof.

Finally, we show that the larger 1is the joint capacity of the firms
relative to demand, the higher the unit profit of the small firm relative to

that of the large one.

Proposition 5.4: Fix 2z € [1/2, 1]. Then

v;(zk, (l-z)k)/v;(zk, (1-z)k) 1is constant in k (equal to z/(1-z)) if k<

1, decreasing in k if 1 < k < d(0)/(l-z), and constant (equal to 1) if

d(0)/(1-2) < k.

Proof: For regions Ia and II the result is immediate from (4.3). 1In
the remaining cases, let J(ky, kp) be such that vt(kl, ko) = (1 +
J(ky, ky))/2, so that v;(kl, ky) = (1 = J(ky, k9))/2. Then it is enough to
show that J(zk, (l=-2z)k) is decreasing in k. In region Ib we have
J(zk, (1-z)k) = (2z - 1)kP(k), which is decreasing in k by (2.2). 1In region
IIIa, we have J(zk, (l-z)k) = (2z-1)B((1-z)k)/z, which is decreasing in k,

since B is decreasing. In region IIIb, J(zk, (1=-2z)k) = P(zk)x
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(Y(zk, (l—z)k))z/zk; a calculation using (A.4) and (A.5) shows that the
derivative of this with respect to k is (l-z)(P(zk))l/zx
Y(zk, (1-2)k)[P(zk)1/2G,(R(2k)) - 2(b((1-2)k)1/2]/zk, which is negative
sinée Go(P(zk)) < 1 and P(zk) < b((l-z)k) in region IIIb. Finally, in
region IIIc we have J(zk, (l-z)k) = m(a((l=-z)k)) (a 1is independent of k)
in this region, as remarked in the proof of Proposition 5.2). Since a is
decreasing (see the discussion of region IIIc in Appendix 2), J(zk, (1-z)k)

is decreasing. This completes the proof.

6. The Capacity Choices of the Firms

We now allow each firm to choose 1its capacity before entering
negotiations. The choices are made simultaneously, and £for each pair
(kl, k2) the (negotiated) payoffs are those described above. We assume that
the cost of a unit of capacity is the same for both firms, equal to u. We
are interested in the Nash equilibrium of the game W(u) in which the

strategic variable of each firm is its capacity, and the payoff w;(k

i ki)

i» 7j
of firm i when (ki, kj) is chosen is the negotiated payoff corresponding

to (ki, ki) minus the cost of Kie Since we have only defined the

i i
negotiated payoff V;(kl’ ko) when Kk; > ko, the appropriate definition of

Wi is
a(ks, k if k, <k
valky, k) —uky  1f kg <y
Wi(ki, kj) = x
In this section we strengthen the concavity assumption (2.2) as
follows.

(6.1) 7 is strictly concave on [0, po].
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We show that for each value of u > 0 the game W(u) has a unique pure-
strategy equilibrium; at this equilibrium there is excess capacity if and only
if u > 1/2 (i.e. half of the monopoly price); and the more costly is
capacity, the smaller is the excess capacity. First we show that (6.1) allows

us to strengthen Proposition 5.1 as follows.

Proposition 6.2: Under (6.1), v?(kl, kz) is concave in kg

throughout, and v;(kl, kz) is concave in k, on_the union of regions Ia,

IT, and III.

Proof: Given Proposition 5.1 we need to show only that vz is concave
in k; on region Ia, 1 =1, 2. Using (4.3) we have Bzv;(kl, kz)/ak% =
2P(k) + k;P"(k) = (P(k)) (P (k)2 + (n'(P(k)) - kj)P"(k). But if P"(k) <
0 this is negative by the first expression, and if P'"(k) > 0 it is negative

by the second one (using (6.1) and the fact that if k > 1 then =°(P(k)) <

0). This completes the proof.

We can now characterize the equilibrium capacity choices of the
firms. It is immediate from Proposition 5.1 that if u = 0 then (kl, kz)

is an equilibrium pure-strategy pair of W(u) if and only if k,

i >4

for 1 =1, 2. The following deals with the case u > 0.

Proposition 6.3: For each u > 0 the game W(u) has a unique pure-

strategy equilibrium. Let the equilibrium strategy pair be (k?(u), k;(u)).

For each 0 < x < 2d(0) 1let

2P(x) + xP’(x) if 0<x <1
(6.4) f(x) =< P(x) if 1 < x < d(b(x/2))

2B(x/2)/x if  d(b(x/2)) < x < 2d4(0).
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Then for each 0 < u < P(0Q) there is a unique point k*(u) < 2d4(0) such

that f£(k*(u)) = 2u. We have k;(u) = kK¥(u)/2 for 1 =1, 2, k¥ is

decreasing in u, and k*(u) > 1 if and only if u < 1/2. If u> P(0)

then k;(u) =0 for i=1, 2.

Proof: First we claim that at any pure-strategy equilibrium we have
k’lt(u) = k;(u). To show this, note that if k;(u) >0 for i=1, 2, and
Wy is differentiable at (k:f_(u), kg(u)), then we need
awi(k;i(u), kg(u))/aki =0 for 1 =1, 2. By Proposition 5.1, wi is

k;) is on the boundary between

differentiable unless ki < kj and (kj, i

regions Ib and IITla. But it is easy to show that in the exceptional case the
right-hand derivative of w; exceeds the left-hand derivative. Hence an
equilibrium cannot 1lie in this exceptional case, and so we can restrict
attention to the remaining values of (kg kj). By calculating the
derivatives in each region (see Appendix 2) it 1is easy to show that
aw; (k] (u), k’Jf(u))/aki =0 for i=1,2 only if ki(u) = kg(u) < d(0). It
is also easy to check that if k;(u) > 0 then we must have kg(u) > 0, so
that the only possible equilibrium in which k;(u) = 0 for some i is
(ki (u), Kj(w) = (0, 0).

We now argue that for each wu > 0 there is a unique pure-strategy
equilibrium. To show this, we first prove that there is a unique number k <
2d4(0) such that the first~order condition awi(k/Z, k/2)/3ki= 0 is
satisfied for i = 1, 2. If we calculate the derivatives (see Appendix 2) we
find that dw;(k/2, k/2)/3k; = 0 for i =1, 2 if and only if f£(k) = 2u.
To show that for each 0 < u < P(0) this equation has a unique solution, note
that f 1is continuous, £(0) = 2P(0), and £(2d(0)) = 0. Thus it is enough
to show that f is decreasing. On (1, 2d(0)) this follows from the fact

that P and B are decreasing. On (0, 1) we have £(k) = P(k) + II'(k),
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where Ii(k) = kP(k). But it is easy to show that (6.1) implies that 1 is
concave. Hence f’(k) < 0. Thus K* s decreasing in u for 0 < u <
P(0). If wu » P(O0) there is no k > 0O such that £(k) = 2u. In this case
it is easy to check that (kl, kz) = (0, 0) 1is an equilibrium.

For notational simplicity, we now fix u and write k instead of
k*(u). It remains to show that for i =1, 2 we have wi(x, k/2) <
wi(k/Z, k/2) for all x »0 (i.e second-order conditions must be
satisfied). If x » k/2 this follows from the concavity of vt in k; (see
Proposition 6.2). If x < k/2 then since v; is concave in kz except
possibly on region Ib, we need to consider only what happens if (k/2, x) is
in this region.

First suppose that (k/2, k/2) is in region IIIla, so that 2u =
2B(k/2)/k (see (6.4)) and k > d(b(k/2)). If x < k/2 and (k/2, x) is in
region Ib, then x < d(b(x)) - k/2, and, using (4.3) and the fact that
wi(k/Z, k/2) = 1/2 - uk/2, we find that the condition wi(x, k/2) <
wi(k/2, k/2) for x < k/2 1is equivalent to the condition 2u < P(x+k/2)
for x < k/2. But 2u = 2B(k/2)/k = 2b(k/2)(d(b(k/2)) = k/2)/k < b(k/2)
(since d(b(k/2)) < k), and P(x+k/2) > P(d(b(x)) = b(x) > b(k/2) (the first
inequality since x < d(b(x)) - k/2, the second since b is decreasing).
Hence (k/2, k/2) is an equilibrium in this case.

Now suppose that (k/2, k/2) 1is in region Ib, so that 2u = P(k) (see
(6.4)). If =x < k/2 and (k/2, x) 1is in region Ib then from (4.3) we have
wi(x, k/2) = [1 - (k/2-x)P(x+k/2)]/2 - ux. Using the fact that P(x+k/2) >
P(k) we deduce that wi(x, k/2) < [1 - kB(k)/2]/2 = [1 - wuk]/2 =
wi(k/Z, k/2), so that (k/2, k/2) is an equilibrium in this case also.

So far we have established that (kl’ ko) is a pure-strategy Nash

equilibrium of W(u) if and only if k| = ky = k™(u)/2. Since £(1) = 1, it
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follows that k*(u) > 1 if and only if u < 1/2, completing the proof.

Finally, we analyze the effect of changes in demand on the equilibrium
cagacity choices of the firms. First suppose that before normalizing the
price and quantity units (see Section 2), the demand d(p) increases by the
same proportion at each price--say dz(x) = tdl(x) for each price x > 0, for
some t > l. Then at each price x » 0, the price elasticity of demand is the
same for d! and d2. Thus the price which maximizes the monopoly profit
pdi(p) is the same in both cases (i = 1, 2), so that price is normalized in
the same way for both demands. Since a2 = tdl, the quantity units are
proportionately larger for a2. Thus, after normalization, al and a2
coincide, so that the normalized capacity choices are the same in both cases,
and hence in the original wunits, the capacity choices under 42 are

precisely t times as large as those under dl. Thus we have the following.

Proposition 6.5: If, for each price, demand increases by the same

proportion, then the equilibrium capacity choices of the firms increase by the

same proportion.

Now fix the point on the demand function where the elasticity is one,
and make the function more elastic at every other price. Then the
normalization is the same in both cases, and demand increases at every price
below the monopoly price. Hence P(x) increases for each x > 1 and B(x)
increases for each x > 0. Thus if u < 1/2 then, from Proposition 6.3, the
chosen capacities increase (since k*(u) then exceeds 1). In fact, it is
clear that it is enough to assume that the demand increases at every price
below 1, while at 1 ©both demand and the slope of the demand function are
fixed; what happens at prices in excess of 1 1is irrelevant. Thus we have

the following.
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Proposition 6.6: Suppose the point on the demand function where the

price elasticity of demand is unity is fixed, while demand increases at all

lower prices. Then if there 1is originally excess capacity, its size

increases.
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Appendix 1: The Equilibrium Payoffs in Region III:

The Details of the Proof of (4.8)

First, we have
y oy
erz(r)dr = [er(r)]a - sz(r)dr,
a. a
and from (4.7) and (2.3) we have Gz(r) = klf'(r)f(r)/Z, where f(r) =

?[x(k - d(x))]_l/zdx, so that
a

Yy
sz(r)dr

2 y 2
J kl[(f(r)) /4]a = kl(f(y)) /4

K (26,(0) ke £y 274 = (G, (y) Py (e = d(y)) /K.

Hence

y
(A.1) eré(r)dr

2
: yGZ(y) - y(Gz(y)) (k - d(y))/k1

= sz(y)(k1 - Gz(y)(k - d(y)))/kl.

Next, 1f we integrate (4.10) for 1 =1 we obtain

b b b
2[K(p)G5(p)dp + [K'(P)G,(P)dp = [L{(p)dp = O.
y y y

But if y < p < b then K(p) = kyp, since y > P(kl) if y < b, so we have
b b

2k, [pG5(p)dp + k,JG,(p)dp = (L,(b) - L,;(y)) = 0, or, performing the second
2y 2 2y 2 1 1

integration by parts and replacing L; by = (since b >y > P(ky)),

b b

2k, [p03(P)p + k, ([pG, (@)1 = [p63(2dp) = (o) = (1)) = 0,
or
b
kzgpcg<p)dp = m(b) = 1(y) = ky(b = ¥G,(y)).

Hence
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b
(4.2) kzé(rGé(r)dr = kY6, () (k; =G, () (k=d(¥)) )/k; + m(b) = m(y) = k,(b=yG,(y)).

Now using (4.12), (A.l), (A.2), and (4.11) we find that
29 (ky, ky) = 1+ y(ky(Gp(y))2(k=d(¥)) = 2kyk(Gy(y) + K d(y) )k,

which gives (4.8).
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Appendix 2: The Derivatives of vz(kl, ko):

The Details of the Proof of Proposition 5.1

Region Ta: For 1 =1, 2, we have avi/3k; = P(k) + k;P’(k) » B(k) +

kP (k) = 7' (P(k))P'(k) > 0 (since P(k) > 1 in this region).

Region Ib: For 1 = 1, 2, we have &vi/dk; = [P(k) + (k; - k) x
P’(k)]/2. Since ky < k; this means that 3v3/3kp » P(k)/2 > 0. Also, in
this region we have b(kz) < P(k), so that = (P(k)) < n'(b(kz)) = ky. Hence
av]/ak; = [P(k) + kP’(k) - 2kyP’(k)]/2 = P’ (k)[ ™ (P(k)) - 2k,1/2 > O.

Further,  3%v)/3k} = [2P"(k) + (k; - k,)P"(k)1/2.  But from the
concavity of w7 on [0, 1] we have P"(k) < 2(P'(k))2/P(k), so BZVT/BK% <

Y (k) [PCK) + (k= kp)B'(K)1/B(K) = B (k)(av}/ 3k )/B(K) < O.

Reglon Illa: dv)/3k; = k,B(ky)/2k} > 03 9%v]/ &% = -k,B(ky)/k} < 03
* ,

2b(ky)1/2k; < 0 (since b’(ky) < 0).

Region IIIb: First, from the definition of a we have

PED 1 ey 1/2 b(jz) L] (x)
dx = 2(K(b(k ) - dx.
a ke 2 PGk (KGN

But K(x) = kox and Lj(x) = m(x) if P(k;) < x < b(ky), so

1/2 b(k.)
Gy(B(ky)) = <z§t2;> - - 172 fz “'§§; dx,
] 2k (2 (k) i) *

so, given that Y(ky, ko) = k; = kyG9(P(k{)), we have
1 2 1 2V2 1

) b(kz)

1/2 m(x)

kz(b(kz)) = f ﬁ-?? dx}.
P(k;) ¥

- - -1/2
k), k) =k = (P(k))) {
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Differentiating, we find that

oY 1, . Bk
(a.3) gy, k) = 5(1 = pryly,s k) )
1 1

Now we find that

*
v, kZP(kl)GZ(P(kl))Y(kl’ kZ)
1 Zk1

and, using the fact that G, satisfies (4.10) for i =1 omn (P(kl), b(kz)),

2 * 2 ’ ’
37v) IR (226, (Bl DYy, ky) + KB (k)IGH(R(K))) ) <o
k> 2%

where Gé here denotes the right-hand derivative. Also,
1/2

*
v (P(k,)b(k,)) " “Y(k,, k,)
2 1 2 1* 72
(A.5) == = > 0
3k2 kl
and
2wy b7 (k) (R0 )Y PrCe s 1)) /200000 2 = b(k,)
= <0.
k> k)

Region IIIc: Here a > P(kl), so that K(p) = kyp and Li(p) = m(p)
if a <p < b(kz). Hence Gz(b(kz)) = 1 implies that

) b(kZ)
/2 _ m’ (%)

a

(see (4.7)). = Thus, a depends only on k,, so that &vf/akl = Q.
Differentiating, we find that 7’(a(ky))a’(k,) = -2(a(k2)b(k2))1/2, so that
a’(kp) < 0 and  3(n"(aCky))a’(ky))/ 3k, = =(alky)bCky)) ™1/ 2(a’ (ky)b(ky) +

a(ky)b’(ky)) > 0. Hemce avy/3ky = -7 (a(ky))a’(ky)/2 > 0 and 3%vy/ 33 <o.
Reglon II: dv)/dk, = dvy/dk, = O.

Finally, given the above calculations it is easy to check that v
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(1 =1, 2) is differentiable in k; on all the boundaries with the exception

of the one between regions Ib and IIIa for 1 = 2,
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