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AN ANALYSIS OF POWER IN EXCHANGE ECONOMIES 

Martin J. Osborne, Ph.D. 
Stanford University, 1979 

The aim of this study is to understand how the allocation of goods 

in an economy depends on the set of possible actions available to each ~ 

group of individuals. Onto a standard exchange economy we add the struc• 

ture of a strategic game,. and study the outcomes generated by the set of 

nontransferable utility Hars8nYi-Shapley values. We make several different 

sets of assumptions about the strategies available to each group of agents, 

and also analyze how the out·come varies as these assUmptions are varied 

within a certain class. 

We first study the consequences of three sets of assumptions which 

involve the political structure of majority rule. For exampl.e, under one 

set of assumptions any coalition containing a majority of the population. 

has the power to expropriate all the goods which the members of the com-

plementary minority attempt to trade in the market, while the best any 

member of the minority can do is to consume his initial endowment. The 

solution concept gives us a set of allocations of the available goods, 

which could be. achieved simply be redistributing the goods themselves. 

Since the allocations are efficient, however, we know from a result of 

welfare economics that they can also be realized as the outcome of the 

individuals in the economy trading at fixed prices, after their initial 

wealth has been modified by a system of taxation. Aumann and Kurz, using 

a model similar to ours, have shown that under their assumptions the tax 

an individual pays depends solely on his wealth; in this sense their 
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model provides an explanation for the existence of wealth taxes. Under 

the assumptions which we mentioned above we sho~ that the taxes which 

result are an ideali.zed form of income taxes. Under some other as sump-

tiona which draw a distinction between the classical categories of "labor" 

and nland" on the basis that labor.,.time can be destroyed (an individual 

can choose not to work, can go on strike) while land cannot be, we find 

that the tax rate on the wealth derived from the ownership of land is very 

high, while that derived from labor is much lower. 

We also study the question of how sensitive the results of Aumann 
. ' 

and Kurz are to the precise assumptions they make. We find that wealth 

taxation is the outcome under a wide range of assumptions which includes 

those of Aumann and Kurz. In particular the dichotomized power distribu-

tion entailed in the ~ssumption of majority rule is quite inessential; what 

are important, rather, are the factors upon which power depends. One con-

sequence of this result is that since the set of outcomes under majority 

rule coincides with that under a large variety of other "power distribu-

tions" (for example, the one where power is proportional to size), one can 

view the political structure of majority rule as a way of realizing the 

outcome implied by the power structure, rather than as an exogenous 

feature of the economy. 
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AN ANALYSIS OF POWER IN EXCHANGE ECONOMIES* 

by 

Martin J. Osborne 

CHAPTER 1: Introduction 

Classical economic theory attempts to explain the surface 

phenomena of market economies--relative prices, profits, and the 

distribution of output--without looking far below the surface for an 

explanation. In particular, the only actions available to agents in 

that theory are the purchase and sale of goods in the marketplace. As 

far as the explanation of the distribution of output is concerned, 

this abstraction seems to ignore many of the most important factors, 

especially those involving the relative "power" of groups of agents. 

Thus, though individuals certainly do acquire· income by selling some of 

the goods with which they are endowed, and use that income to buy other 

goods, the prices of those goods are not always outside their control 

{wages are certainly an object of bargaining), and neither are the taxes 

they pay and subsidies they receive {they can form and vote for political 

parties to effect taxation schemes to their liking). Here, in an attempt 

to take into account these factors in a study of the determinants of 

the distribution of output, we model the economy as a strategic game 

in which individual players are powerless, but the power which groups 

* This work was supported by National Science Foundation Grant SOC75-21820-A01 
at the Institute for Mathematical Studies in the Social Sciences, 
Stanford University. 
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possess is of central importance. Thus we simply assume that there 

is available to each group of individuals in the economy a set of 

strategies, and corresponding to each selection of strategies there 

is a payoff to each individual. One possible strategy of a group 

might be to go on strike, another might be to form a government and 

impose certain taxes. The outcome in this setting is determined by 

the strategies which the individuals choose to employ. These choices 

may depend on the whole sets of possible actions which are available 

to the other individuals, and not simply on those which they actually 

choose to carry out. (It is in this sense that in the approach here 

we look below the "surface".) For example, the wage a capitalist 

decides to pay may well depend on the fact that his workforce could 

go on strike. Game theory provides a number of models of the way 

individuals choose their strategies--i.e. it provides a number of 

"solution concepts" for strategic games. Here we use one which is 

associated with a specific model of a bargaining procedure. The 

question we study is how the distribution of output predicted by this 

solution concept depends on the strategies which are available to the 

groups in the economy. In particular, we ask what factors confer upon 

the groups the power to obtain a large share of the output for them

selves. We do so by investigating the nature of the set of outcomes 

predicted by the solution concept for a number of different sets of 

assumptions on what are the strategic possibilities of the groups. 

Before explaining our model in more detail (in Chapter 2) we 

shall discuss a general issue. In classical economic theory the actions 
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of agents which are significant to the solution concept--or "equilibrium 

notion"--used are all ones which the individuals might actually carry 

out; they are important insofar as they benefit the agents taking them. 

For this reason we can base our assumptions about them on the actions 

we observe that individuals take. Thus it is possible to make the 

Judgement that the actions which are possible for agents in classical 

economic theor,y constitute a reasonable abstraction of the opportunities 

actually available to individuals in an economy, insofar as these 

opportunities relate to aspects of the operation of an economy which 

the theory attempts to capture. In any solution concept which looks 

a little deeper, and gives a central role to the actions which individuals 

can threaten to make (but which, at least in equilibrium, would never 

actually be carried out) we cannot base our assumptions about the 

strategy sets of the groups of agents in the economy on the choices 

which we observe individuals actually making. To some extent we can 

glean information about what are possible strategies for groups of 

individuals in market economies by observing "non-equilibrium" actions 

(like strikes), but this still leaves us a good deal of lattitude when 

it comes to making specific assumptions. What we do here is study 

the outcome of a number of different assumptions on the strategies 

available to the groups of agents in the economy. In doing so we get 

some idea of the range of outcomes our model can generate, as well as 

obtaining characterizations of the outcomes under specific assumptions. 

In the next chapter we outline our model in more detail, describe 

some of the previous work within the framework we are using, and summarize 
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our results. In Chapter 3 we introduce the game theory we shall sub

sequently use; in Chapter 4 we describe the economic model, cite a 

number of results we shall use, and prove a slight generalization of 

a well-known result. The next four chapters contain our results. In 

Chapters 5, 6, and 7 we study in detail the outcomes predicted under 

three different groups of assumptions on the strategy sets. In Chapter 

8 we study how the outcome changes as we vary our assumptions within 

a certain class. 
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CHAPTER 2: Outline of the Model and Summary of the Results 

The setting for the games we shall analyze is an exchange 

economy with a continuum of agents (i.e. the economy is specified by 

a collection of utility functions and endowment densities, QPe for 

each agent). The games are defined by assigning to each set of agents 

(each "coalition") a strategy set, and by specifying a payoff function 

which associates with every collection of strategies a payoff density 

to each agent. To such a strategic game there are a number of solu-

tion concepts which we might apply. We should like to use one which is 

derived directly from a coherent model of bargaining in which the final 

outcome is a compromise that depends on the availability to all individuals 

of strategies which can be used as "threats". Harsa.nyi 's [1963] Bar

gaining Solution meets this criterion (though one might argue that it 

is not without flaws}, but is very difficult to work with. The solution 

concept we choose to employ is the set of Harsanyi-Shapley values, which 

bas some features in common with Harsanyi's Bargaining Solution, and 

may approximate it well under same circumstances. We shall provide 

precise definitions, and discuss same criticisms of the set of Harsanyi

Shapley values in the next chapter (see Sections 3.2 and 3.3). 

Aumann and Kurz [1977] initiated the use of the set of Harsanyi

Shapley values as a solution concept for the sort of games we study. 

They explored the consequences of one set of assumptions about the 

strategy sets of the groups of agents in the economy. A central element 

in the procedure for calculating the set of Harsanyi-Shapley values 
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is the bilateral bargaining between a group of players and its complement 

in the population, so when we specify the strategic possibilities for 

the groups of agents we need to do so with this game in mind. Aumann 

and Kurz assume that when a group contains a majority of the population 

(so that its complement is a minority) it can expropriate the endowment 

of its complement, while the best its complement can do in response is 

to destroy its own endowment. They show under these assumptions that 

(given their conditions on the utility functions and endowment density) 

in every economy there is at least one allocation which generates a 

Harsanyi-Shapley value, and they provide a characterization of such 

allocations. Under their assumptions each such allocation is effi

cient, and hence can certainly be "supported" as a competitive 

allocation after lump-sum wealth taxation--in the sense that there 

is a price, and a tax for each agent which depends on his utility func

tion and endowment, such that if each agent maximizes his utility given 

his after-tax income he will choose the quantities of goods assigned 

him by the Harsanyi-Shapley value allocation. One of the major conse

quences of the characterization which Aumann and Kurz establish is that 

the tax of each individual depends only on his utility function and 

the value of his initial endowment at the supporting prices, and not 

independently on the endowment itself, so that the tax which results 

is really a tax on "income"--or, more properly, "wealth". They also 

establish that the marginal tax rate is always at least 50%. 

One might argue that for a private ownership economy the assump

tion that a majority coalition can expropriate the entire endowment of 
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its complement is a little extreme. Rather one might claim that a 

majority has the power to tax away only that part of the endowment 

of the minority which is traded in the market. For example, if we 

think of agents as being endowed with leisure, it seems reasonable to 

assume that a majority can tax only that part of this endowment which 

is offered in the market as labor-time, and cannot directly expropriate 

the leisure-time of the agents. If, under these conditions, the minority 

can redistribute its endowment among itself in any way it pleases 

without entering into any trade, we are back to a situation where the 

minority and the majority have the same possibilities open to them. 

To give the majority some power we can assume that the only way the 

minority can redistribute its endowment is via trade, and that the 

majority can tax away any goods which minority members attempt to trade-

i.e. the majority can effectively prohibit the members of the minority 

from trading among themselves. We examine the consequences of these 

assumptions in Chapter 5 below. Our main result there (Theorem A) 

states that each economy possesses at least one Harsanyi-Shapley value 

allocation, and provides a characterization of such allocations. Naturally, 

when we interpret the outcome as the result of a tax, it is not a wealth 

tax as in Aumann and Kurz [1977]; it is a tax which is related to the 

extent to which agents benefit from trading, and under some circumstances 

can be interpreted as an idealized form of income tax (see Section 5.6). 

Within our basic model, restricting the power of the majority 

to the prohibition of trade among the members of the minority is &mong 

those assumptions which give the majority the least power, without 
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reverting to a situation where the majority and minority are symmetric 

(as in a market game). In Chapter 6 we consider a modification of 

the assumptions of Aumann and Kurz in the opposite direction: we allow 

a majority to expropriate the endowment of its complement, and assume 

that the latter can do nothing to prevent this expropriation. The 

consequences of this set of assumptions are interesting not only because 

a majority is given as much power as it can possibly expect to have, 

so that we have a "boundary" case, but also because our analysis allows 

us to investigate {in Chapter 7) the case where the members of a minority 

can destroy some goods, but not others. Furthermore, under these 

assumptions we might expect the outcome to be very "egalitarian" since 

the power of a group of agents depends solely on its size (in addition 

to the utility functions of its members), and not at all on its endowment. 

In one class of cases where it is possible to compute the set of Harsanyi

Shapley values, this is indeed the case (see Theorem B): an allocation 

is a Harsanyi-Shapley value allocation in this case if and only if it 

is a competitive allocation in an economy in which every individual 

has the same wealth. 

In Chapter 7 we study an economy in which some goods {like land) 

cannot be destroyed, while others (like labor-time) can be destroyed. 

Proposition 7,5 provides a characterization of the set of Harsanyi-Shapley 

value allocations under these assumptions for a class of economies. A 

consequence which is of interest concerns the way such allocations can 

be supported as competitive allocations after taxation of the wealth 

derived from possession of the different sorts of goods at different 
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rates. Inthe classical theory of public finance, where the question asked 

is how taxes should be set so as to minimize the amount of "distortion", 

the prescription is to tax goods in inelastic supply at high rates, 

and those in elastic supply at low rates. In our case, where the 

question is how the outcome of bargaining can be supported as a com

petitive equilibrium after taxation, we fipd that the taxes on those 

goods which cannot be destroyed are high relative to the taxes on the 

goods which can be destroyed. Given that the property of being in 

inelastic supply has features in common with the property of being not 

destroyable ("land" is a typical good in both cases), there is some 

connection between our result and that of the classical theory (though 

the underlying model is quite different}. 

The results of Chapters 5, 6, and 7 give us some idea of the range 

of outcomes which is possible within our frwnework, but we should like 

to be more precise. In particular, we should like to be able to answer 

questions like "what is it about the assumptions on the strategic game 

which leads to an outcome which can be supported by a wealth tax, or 

by a tax on trade?", and "what characteristics of the assumptions make 

the outcome more or less 'egalitarian'?". In Chapter 8 we establish 

some results which provide some answers to these questions. We show 

that the Harsanyi-Shapley value allocations can be supported as competitive 

allocations after wealth taxation (as is the case under the assumptions 

of Aumann and Kurz [1977]) under a wide range of conditions (see Proposi

tion 8.10). What are important are the factors upon which the strategic 

possibilities of the groups of individuals depend, rather than the 
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specific form of that dependence. For example, the dichotomized power 

distribution involved in the assumption of majority rule made by 

Aumann and Kurz (which we also maintain in Chapters 5, 6, and 7) is 

quite inessential: quite general power distributions lead to the same 

result. This result allows us to view the political system of majority 

rule as a method of implementing the outcome implied by thP. actual 

distribution of power (in which, perhaps, power is proportional to 

size), rather than simply as a given institution. 
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CHAPTER 3: The Solution Concept 

In this chapter we define a strategic game, and the solution we 

shall subsequently apply to such games (the set of Harsanyi-Shapley 

values); we then relate this solution to Harsanyi's [1963] Bargaining 

Solution. It turns out that the procedure for calculating the set of 

Harsanyi-Shapley values of a strategic game can be decamposed into two 

stages. First, a class of coalitional form games is derived from the 

strategic game, and then the (Shapley) value of each of these coalitional 

forms is calculated. Thus in order to describe the set of Harsanyi-Shapley 

values of a strategic game we need to define the value of a game in 

coalitional form. In the following chapters we shall need a number 

of results concerning this value for games with a continuum of pl~ers; 

in order not to interrupt the argument at a later stage, we collect 

together all the results concerning values of coalitional games in 

Section 3.1 below. 

3.1 The ShapleY Value of a Game in Coalitional Form 

A game in coalitional form (or simply a same) consists of a 

measurable space (T,C) which is isomorphic to {[0,1],8), where 8 

is the a-field of Borel subsets of [0,1}, and a function v: C + E 

such that v(~) = 0. T is the set of players, C the collection of 

coalitions, and v{S) for SEC is the worth of s. We denote such 

a game by ((T,C),v), or stmply by v. If T is finite and C = 2T 

then the game is finite. 
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A non-decreasing sequence of sets of the form 

is a chain. If v is a game the variation norm UvU of v is defined 

by 

where the supremum is taken over all chains. The space of all games v 

for which DvO is finite (i.e. which are of bounded variation) is denoted 

BV. BV is in fact a Banach space with the norm O•U (Proposition 4.3 

of Aumann and Shapley [1974]). The subspace of BV consisting of all 

bounded finitely-additive games is denoted FA; a member of FA is called 

a payoff. If v is finite. we can think of this p~off as a vector. 

A (Shapley) value on finite games is a function ~ which assigns 

to every finite game v a payoff vector ~v such that 

(3.1) (~v)(T) = v(T) (efficiency) 

(3.2) (4lv)'({i}) = (4lv)'({j}) whenever v(S U {i}) = v(S U {j}) 

for all S E C with S. ~ i and S tJ. j (symmetry) 

( 3. 3) ( ~ v H { i} ) = 0 whenever v( S U { i} ) = v( S ) for all S E C 

with S ~ i (ineffective pl~ers get nothing) , 

and 

( 3. 4) ~(v + w} = ~v + ~w for every pair of finite games v and 

w {additivity) 
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Shapley [1953] proved the following. 

Proposition 3.5 (Shapley): There is one and only one value ~ 

on finite games; it is defined by 

( 3.6) (q.v)'({i}) = E[v(Si U {1}) - v(Si)] for each i E T 
' 

where Si is the set of players preceding 1 in a random order on T, 

and E is the expectation operator when all I Tl ! such orders are 

assigned equal probability. 

( 3. 6) allows us to calculate the value of every finite game; 

Aumann and Shapley [1974] studied a number of ways of extending the 

value concept to games with a continuum of players. One way is to view 

such a game as the limit of a sequence of finite games. This leads to 

the asymptotic value, which has been studied extensively (see for example 

Aumann and Shapley [1974], Chapter III, and Neyman [1978]), and which 

we shall use in this study. We shall frequently cite the results of 

Aumann and Shapley [1974]; in order to avoid excessive repetition we 

shall refer to this source simply as "Aumann and Shapley" throughout. 

We can now define the asymptotic value of a game. 

A partition rr of (T,C) is a collection of disjoint members 

of C the union of which is T. The partition n
2 

is a refinement 

of the partition n1 if each member of ~ 

{ n }CII 

of n2 • A sequence of partitions 
m m=l 

is the union of members 

is admissible if nm+l 

is a refinement of rr for all m and for each s, t E T there exists 
m 

m such that s and t are in different members of n • Let ((T,C),v) 
m 
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be a game, and n a partition of (T,C). Then we can define a finite 

game v with player set {a: a En} by 

vn(A) = v( U a) for each A c {a: a e n} 
aEA 

A payoff 41v is then the asymptotic value of v if' for every S E C 

and every admissible sequence of partitions ·{IT }m in which 
m m=l 

is a refinement of (S, T\S), lim (41vn )(Sk) exists and equals 
k-+m k 

where Sk = {a: a E rrk and a C S}. The set of all games in BV which 

possess an asymptotic value is denoted ASYMP. From Theorem F of Aumann 

and Shapley, ASYMP is a closed linear subspace of BV. 

The conditions under which a game v belongs to ASYMP have been 

a major object of study. We shall now state a result in this area 

which we shall use in the sequel to establish that the games which arise 

do in fact have asymptotic values. 

The subspace of BV consisting of all nonatomic measures (i.e. 

countab~ additive set functions) is denoted NA; the subset of NA 

consisting of nonnegative measures is denoted NA+, and that consisting 

of probability measures is denoted NA1 • bv'NA is the subspace of BV 

spanned by games of the form f o ll where f: [0,1] + E is of bounded 

variation, f(O) = 0, f is continuous at 1 
0 and 1, and l.l E NA • 

pHA is the closed subspace of bv'NA spanned by powers of members of 

NA1 • If Q1 and Q2 are subsets of BV, we write Q1.Q2 to denote 

the closed linear symmetric subspace spanned by all games of the form 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-15-

where (and for 

all SEC). We can now state the following, which is a special case 

of Theorem 4.1 of Neyman [1978]. 

Theorem 3.7 (Neyman): pNA•bv'NA C ASYMP. 

Now, let DIAG be the set of all v E BV such that there is a 

1 positive integer k, a k-dimensional. vector T'l of measures in NA , and a 

neighborhood M in :mk of the diagonal D = {(x,x, ••• ,x) E JRk: x E (0,1]} 

such that if n(S) E M then v(S} = 0. Thus DIAG consists of those games 

which vanish "close" to the diagonal D. Define pNAD to be the varia-

tion closure of pNA + DIAG (so that pNAD consists of games which 

behave like those of pNA in a neighborhood of the diagonal). Then we 

have the following corollary of Theorem 3.7. 

Corollary 3. 8: pNAD •bv 'NA C ASYMP. 

Proof: By the definition of DIAG we have DIAG•bv'NA C DIAG, 

and by Proposition 43.11 of Aumann and Shapley, DIAG C ASYMP. So from 

Theorem 3.7 and the fact that ASYMP is a linear space, 

(pNA + DIAG)•bv'NA C ASYMP. But ASYMP is closed, and pNAD•bv'NA is 

contained in the closure of (pNA + DIAG)•bv'NA, so pNAD•bv'NA C ASYMP. 

Now, define the supremwn norm Rvl' of a bounded game v: C -+ lR 

by 

OvU' =sup {jv(S)J: SEC} • 
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Let BS be the Banach space o~ bounded games with the supremum norm, 

and let pNA' be the subspace of BS spanned by powers of members o~ 

NA1 • If v E pNAD n pNA' then not only does v have an asymptotic 

value, but there is an elegant formula f'or it (due to Aumann and Shapley) 

which is analogous to (3.6). We shall now explain this formula (see 

also Chapter IV of' Aumann and Shapley). First we need to generalize 

the notion of a coalition. An ideal subset of (T,C) (or simply an 

ideal coalition) is a measurable ~ction from (T,C) to ([0,1],8). 

The family of all ideal subsets of' (T,C) is denoted z. The coalition 

S E C is not itself an ideal coalition; however, we can associate it 

with the ideal coalition x5 , and under this identif'ication regard C 

as a subset of' z. Members t E T either belong or fail to belong to 

any coalition S E C; we can think o~ them as belonging to an ideal 

coalition with some "density" between zero and one. 

De~ine the supremum norm Uv*ll' o~ a bounded ideal game v*: I -+ lR 

by 

II v* II ' = sup { I v* ( f ) I : f E 1} • 

Aumann and Shapley establish (see Proposition 22.16 and Remark 22.20) 

that there is a unique mapping that associates each game v: C ~ E 

which is a member of pNA' with an ideal game v*: 1 -+ lR in such a 

way that 

( 3. 9) (av + Bw)* = av* + Bw* 

( 3.10) if f is a continuous real-valued function then ( ~ o v) * = f o v* 

(3.11) ~·(~) = J:d~ 
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and 

(3.12) the mapping v~ v* is continuous in the supremum norm 

whenever v, wE pNA', a, BE JR, J.l E NA, and f E I. Moreover, 

v*(x8 ) = v(S) for each S E C, so we can regard v* as an extension 

of v to the collection of ideal coalitions. 

For any game v, coalition SEC, and a E [0,1], let 

( 3.13) av*(e ,S) 

(which may or may not exist). The following is a consequence of Proposi-

tiona 44.22 and 43.13 of Aumann and Shapley. 

Theorem 3.14 (Aumann and Shapley): For each v E pNAD n pNA' 

and each sEC, av•(e,s) exists for almost all e E [0,1] and is 

integrable over [0,1] as a function of a; moreover, the asymptotic 

value ~v of v is defined by 

(3.15) 
1 

(~v)(s) = fav*(e,s)de 
0 

for each S E C 

The similarity between (3.15) and (3.6) is apparent when we take 

into account the fact that the characteristics of the members of a 

subset drawn "randomly" from T = [0,1] will allnost certainly be the 

same as those of T: if we choose an ideal coalition "at random" from 

I then it will almost certainly be of the form exT with a E [0,1]. 
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In the sequel we shall need to calculate the asymptotic values 

of truncations of games in pNAD npNA'; we shall use the following 

result. 

Proposition 3.16: Let 1 
lJ E NA , let v E pNAD n pNA', and let 

a E (0,1). Define the game q: C-+ JR by 

{

v(S} 
q(S) = 0 

if JJ(S) ~ a 

if lJ(S) < a 

Then q E ASYMP and the asymptotic value of q is defined by 

1 
($q)(S) = v*(axT)lJ(S) + fav*(e,s)de for all sEC 

0 

Proof: Define f: [0,1] -+ [0,1] by 

1 
f(x) = {

0 

if x ~ a 

if x < a 

Then f o lJ E bv'NA, so q = (f o lJ) *V E bv'NA*pNAD. So by Corollary 3.8, 

q E ASYMP. But then the formula follows from Proposition 13.1 and 

Remark 12.1 of Aumann and Kurz [1977]. 

Now, Theorem 3.14 and Proposition 3.16 provide us with formulas 

for the asymptotic value ~v of games which we shall subsequently study. 

These formulas involve the derivative av*(e,s), and in general we should 

expect to have to know the form of the extension v* before we could 

calculate ~v*(e,S). However, for a certain class of games it is possible 
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to give a formula for this derivative which does not directly involve 

the extension v* (see Lemmas 3.17 and 3.18); for another class we 

can establish that the derivative behaves in a very regular manner 

(see Lemma 3.19). 

Lemma 3.17: Let v E pNA be of the form v = go v, where v 

is an n-vector of members of NA. Then for each S E C, av*(6,S) exists 

for almost all 6 E [O,l], and when it exists we have 

av•(e,s) = gv(s)(ev(T)) 

where is the derivative of g in the direction v(s). 

Proof: The first claim follows immediately from Theorem 3.14. To 

establish the second claim, note that since v E pNA, certainly g is con-

tinuous on the range of v, so by ( 3.10) we have ( g o v) * = g o v*. Now 

suppose av*(e,s) exists for e = 6
0

• Then 

ov*(6 ,s) 
0 

· ' v*( e x + 't'X ) - v*( e x ) 
= lim o T S o T 

'[ 

'[+Q 
'T 

g{e v(T) + Tv(S)) - g(e v(T)) 
= lim 0 0 

t+O 
'[ 

(using (3.11}). Thus gv{S)(e
0
v(T)) exists (since av*(e

0
,S) exists 

by assumption), and we have ov*(e
0

,S) = gv(S)(e
0
v(T)), completing the 

proof. 
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If, under the assumptions made in the lemma, the components of v 

are linearly independent, then note that gv(s)(8
0
v(T)) = ?vi(S)gi(9

0
v(T)) 

J. 

(where gi is the partial derivative of g with respect to the i-th 

component ) . 

If the game v is a function of a vector of games, rather than 

measures, then we have the following (which we shall use in Chapter 8). 

Lemma 3.18: Let v E pNAD n pNA' be of the form v = go w, where 

w = ( w
1

, ••• , wn} is an n-vector of' members of pNAD n pNA' , and g: JRn -+ 1R 

is differentiable. Then for each SEC, av*(e,s) and Clwi!( a ,s) 
J. 

f'or 

i = l, ••• ,n exist for almost all e E [0,1], and when they exist we have 

where gi 

component. 

n 
av*(e ,s) = L g.(w*(exT))aw?(e,s) 

i=l J. J. ' 

is the partial derivative of' g with respect to the i-th 

Proof: Once again the first claim follows immediately from 

Theorem 3.14. To establish the second claim, note that by (3.10) we 

have ( g o w) * = g o w*. Now fix S E C and suppose that each 

for i = l, .•. ,n exists for e = a . 
0 

Then 

v*(eoxT + TXS} - v*(e x ) 
av*(e ,s) lim o T = 

0 
T-+0 

T 

= lim 
g(w*( e oxT + -rx8 )) - g(w*( e 

0
xT)) 

T-+0 
T ' . 
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or 

Now, by assumption 

exists ror each i = l, ••• ,n and equals awr<eo,s), and g is dirrer

entiable, so by the chain rule .we know that (dg(w*(B
0

XT + TX8 ))/dT)T=O 

exists, and we have 

n 
L g. ( w*( e xT) )awtt( 9 ,S) .

1
1 0 l.O 

1= 

so that 

n 
av*{a ,S) = 

0 
L g . ( w* ( e X T ) ) a wt! ( e , S ) 

i=l 1 0 1 0 

This completes the proof. 

Finally, we say that a game v: c -+- JR is homoseneous of desree 

a ir v*(kx
8

) = kav(s) for all k E (0,1] and all S E C. The proof 

of the followi_ng result is modelled closely on that of Lemma 27.2 of 

Aumann and Shapley. 
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Lemma 3.19: Let v E pNAD n pNA' be homogeneous of degree 

a E [0,1]. Then av*(e,s) exists for all e E (0,1) and is homogeneous 

of degree a - 1 in a for each SEC. 

Proof: By Theorem 3.14, for each SEC, av*(e,s) exists for 

almost all e E (0,1). Suppose it exists for e = e e (O,l}. 
0 

e 1 = ke 
0

, for some k E ( 0,1) • Then for each S E C 

Let 

v*(BlXT + TXs) - v*(BlxT) 

T 

kav*(e x + (T /k)xs> - kav*(e x ) o T o T = ----~~~------~--------~~-

where t' = t/k. So since t' ~ 0 as t ~ 0, 

as T + 0, so that av*(e 1 ,s) exists and 

= av*(ka ,s) 
0 

T 

Since we can take e
0 

arbitrarily close to 1, this establishes that 

av*(e,s) exists for all e E (0,1) and is homogeneous of degree a - 1 

for each fixed SEC. 

3.2 The Harsanyi-Shapley Values of a Strategic Game 

The primitive notion in the sequel is a strategic game, which 

we now define. A strategic game r consists of 
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(a) a measure space (T,C,p), where T is the set ot players, 

C is the collection ot coalitions, and p is the population measure; 

(b) a set x
8 

tor each SEC, called the strategy set ot S; and 

(c) tor each S E C, a E ~, and 1' E X'l\S a function h8 
: T 4 JR, 

-a-r 

with hs = hi'\ 8
; hs (t) 1& the pa,yoff density of t when s 

-OT -TO .. a't' 

the strategy a and '1\ S the strategy ,. • 

We assume that 

( 3. 20) p (T) = 1 , 

( 3. 21) xrj is a singleton 
' 

and 

uses 

(3.22) is measurable in t 
~~ T\S 

for all SEc, a Ex-, and 1' EX 

Throughout, we shall write functions on T in boldface; if f 

and g are such functions we shall sometimes write /f instead of - s-
Jf(th.t(dt), Jf instead of ff, and ~~ for the function on T whose - - T 
value at t is f(t)~(t). If f(t) is the payoff density of t, we 

sa:y that f(t)p(dt) is his pa,yoff. 

view of (3.21) we write h¢ = hT hT for every T 
In as T E X • 

.. 'T -aT -TO 

We sometimes use h8(t) to denote the real-valued function on xs X XT\S 

the value of which at (a,T) is h8 (t). A strategic game r is finite 
-aT 

if T is finite~ C = 2T, and p({t}) = 1/ITI for each t E T; if 

ITI = 2 then r is a two-person strategic game. If r is a finite 

strategic game, we allow h8 (t) to be defined as an extended real .. a,. 
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number, the set of which we denote JR*. If r is a two-person strategic 

game with T = {1,2} then we call ~{~}(i): x{l} x x{ 2l ...- JR* the 

payoff function of i, for i = 1,2; if h{l}(l) + h{ 2}(2) = 0 for 
-OT -OT 

every {o,T) e x{l} X X{ 21 , then r is a two-,eerson zero-sum strategic 

game. 

We can now explain the procedure for calculating the set of 

Harsanyi-Shapley values of a strategic game r; we shall discuss its 

motivation in the next subsection. We call a real-valued measurable func-

tion on (T,C) which is a.e. (with respect to ~) positive a comparison 

function. The following is a brief outline of the procedure. Fix a 

comparison function A· First we shall look at the two-person strategic 

game between S and T\S, for each S E C, in which the payoff function 

of S is /r!}8 : x8 
x XT\ 8 -+ JR*. The Nash variable threat bargaining 

s 
solution gives at least one pair of optimal threats in this game. Let 

the payoffs to S and T\S when they carry out these optimal threats 

be qA(S) and qA(T\S). This process defines a game in coalitional 

form qA: C-+ JR of which we can calculate the value. It may be that 

the payoffs assigned by this value cannot be attained in the game without 

transfers; if ~ is such that they can, then the resulting payoff is a 

Harsanyi-Shapley value of r. 

Formally, the procedure is as follows. Let A be a comparison 

function. Let 
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for each 8 E C, a E x8 , and 'r E xT\ 8 • If, for a given SEC, 

H~(a,-r) is defined (as an extended real number) for all a E x8 and 

..... e x'l\ s , s s '1\ s • we can regard H>.. : X x X + E* as the payoff function 

of a two-person zero-sum game with player set {S, T\S}; in this case 

we shall say that H? is defined. Suppose that (a ,-r ) E x8 
x XT\ 8 

1\ 0 0 

is such that 

( 3. 23) s < H, {a ,T ) 
1\ 0 0 

for all a E x8 and all T E x'l\ 8 

and H~(a0 ,T0 ) is finite, for every 8 E C. (If H~ is defined, 
s -

H,(o ,T ) is then the (unique) minmax value of the two-person zero-sum 
1\ 0 0 

game.) Define the game q>..: C + E by 

( 3. 24) q, (s) = f>..hs 
1\ .... a -r s 0 0 

for each SEC 

- T 
possesses an asymptotic value, and there exists a E X such that 

(3.25) ~~~! = (~q>..)(S) for each SEC 
s .. 

then hT: T + JR is a Harsanyi-Shapley value, or simply a value, of r. -a 

If there exists (a ,T ) E x8 
x XT\S satisfying (3.23) with 

0 0 

s H,(a ,T ) finite, we shall say that 
1\ 0 0 
- s 

of H>... For each SEC such a pair 

is a finite saddle point 

is a pair of optimal 

threats in the two-person strategic game between S and T\S in which 

the payoff function of S is f>..h8 (see the discussion above). Each 
s--

such game may possess a number of pairs of optimal threats. However, 
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the following result shows that if there are two collections of optimal 

threats satisfying our conditions then the Harsanyi-Shapley values they 

generate (if indeed they do so) must be the same. 

Lemma 3.26: 1 1 Suppose there are pairs (a ,T ) 
0 0 

and which 

satisfy (3.23) for each S E C, and that s 1 1 H, (a ,T } 
I\ 0 0 

is finite for each 

SEC. i Define the game qA: C -.. JR by 

jAhs .. = q;(s) for each SEC -- ~ ~ S a T 
0 0 

for i = 1,2. Then if i 
qA. E ASYMP for i = 1,2, we have 

Proof: First, the minmax value of a two-person zero-sum game is 

unique, so H~(a2 ,T 2 ) = H~(a1 ,T 1 ), and in particular is finite. Now, 
I\ 0 0 I\ 0 0 

i let the games v A. : C _., JR for i = 1,2 be defined by 

for each S E C 

where the dual v#: C -.. JR of a game v: C _., JR is defined by 

v#(s) = v(T) - v(T\S) for each SEC (v#(¢) = 0, so v# is a game). 

For any game v, if ~v exists then ~v# exists, and ~v = ~v#, so v~ 

possesses an asymptotic value for i = 1,2, and 

= (~q~ + ~q~#)/2 = ~q~ for i = 1,2 
- -
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1 2 
v>. (S) = v>. (S) 

Hence 

~ ~ 

1 
cjlq~ 

for 

for all S E C 

This completes the proof. 

Thus corresponding to any given comparison function the game r 

has at most one Harsanyi-Shapley value, and in order to determine if 

in fact it does possessone it suffices to locate one collection of pairs 

of optimal threats for which the game qA defined in (3.24) has an 

asymptotic value. Note however that in general r possesses a number 

of Harsanyi-Shapley values, corresponding to different comparison 

functions. 

3.3 Harsagyi's Bargaining Solution and its Relation to the Set of 
Harsanyi-Shapley Values 

As we saw in the previous section, the procedure for calculating• 

the set of Harsanyi-Shapley values consists of two parts: first a coali-

tional form is derived from the strategic game for each choice of weights 

for the players (see (3.24)), and then the weights are chosen so that 

the value of the coalitional game is feasible (see {3.25)). If we are 

given a game which is in coalitional form to begin with, then we can 

apply the second part of the procedure directly; if we do so, the result 

is the set of "non-transferable utility (NTU) values" of the game in 

coalitional form. It has been argued by Shapley [1969], Aumann [1975) 

{Section 6), and others that this solution concept for a game in 
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coalitional form has merits of it~ own, On the other hand, Roth [1978] 

produces a class of examples where the unique NTU value gives quite 

unsatisfactory results: players who are completely powerless, and 

whom we should expect to get zero payoffs if they were bargaining over 

the outcome, are assigned positive payoffs. Of course, the existence 

of one such class of examples does not mean that the solution concept 

is worthless (indeed, no solution concept can be expected to give good 

results for all games); but we believe that the examples do highlight 

the fact that the argument which has been made to support the solution 

is unsatisfactory. Equally clearly, this is no reason to abandon 

the solution altogether: there might be another interpretation which 

makes it very attractive. Moreover, in a number of applications (e.g. 

Aumann [1975], Aumann and Kurz [1977]) it has given intuitively appealing 

results which contribute to our understanding of the way an economy 

operates, 

Aumann and Kurz, who use the full Harsanyi-Shapley procedure, 

argue that this also has merits of its own (see, for example, Aumann and 

Kurz [1978], pp. 144-145). They view the two steps of the procedure 

(see the previous paragraph) a.s having separate justifications: the 

solution applied to the transferable game for each set of weights is 

"reasonable", as is the method of finding "equilibrium" weights. We 

do not believe that such an argument provides a justification for the 

whole procedure, and prefer to think merely of applying a single solution 

concept to the original strategic game. 
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Harsanyi [1963] constructs a model of bargaining which applies 

to every finite strategic game. He generates a solution in two stages: 

first the basic bargaining process leads to a number of possible outcomes; 

these provide the basis for a further round of bargaining in which a 

unique outcome is selected. We regard the second stage as rather ad hoc, 

and shall be concerned only with the possible outcomes of the first 

stage; we shall call this set Harsanyi's Bargaining Solution, and define 

it precisely below. For g~es with transferable utility it coincides 

with the set of Harsanyi-Shapley values, which is in fact a singleton. 

For games without transferable utility this is not in general so, though 

Shapley was attempting to approximate Harsanyi's Bargaining Solution 

when he constructed his set of non-transferable utility values (see 

Shapley [1969], p. 260), on which the set of Harsanyi-Shapley values 

is based; it is not clear how good an approximation it is (we shall 

comment further on this matter below). 

Given that Harsanyi's Bargaining Solution is based on a well

motivated model of bargaining, we regard it as a suitable solution 

concept for our purposes. The reason we do not use it is that it is 

very difficult to calculate. Instead, we use the set of Harsanyi-Shapley 

values, viewing it as an approximation to Harsanyi's Bargaining Solution. 

For this reason, we wish to understand the relation between the two. 

As we remarked earlier, when utility is transferable they coincide and. 

generate a unique outcome; not only that, but Selten [1964] has plJiided 

an axiomatization of the solution in this case. We shall now define 

Harsanyi's Bargaining Solution in the genero.l case, and remark on the 
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circumstances under which the set of Harsanyi-Shapley values might 

approximate it well. 

Let r be a finite strategic game, with ITI = n. For clarity, 

s 'l\s s h_t(o ,t ) instead of h (t) .. aT we shall write in the remainder of 

this section. We shall also make a distinction between the symbols 

C and C: if A C B then A ~ B. We shall assume that for every 

{ t t } C T d h t t ... T\ 8 of ..A S , S = 
1

, ..• , k an eac s ra egy • T\ 

{ ( ( S T\ S) ( S T\ S)) 0 8 E XS} ht a , T , ••• ,ht a ;r : 
- 1 . - k 

is convex. Let ). be a comparison function (i.e. a real-valued function 

on T with ).(t) > 0 for all t E T). As in the previous section, 

for each o8 
E x8 and T T\ 8 E XT\ 8 let 

For each S E C suppose there exists 

where 

).(t)(x8 (t) -y8 (t)) =).(i)(x8 (i) -y8 (i)) if t E s and i E s, and 

).(t)(xT\S(t) -yT\ 8 (t)) =).(i)(xT\ 8 (i) -YT\S(i)) if t E T\S and i E T\Sj 

for each t E T\S, and 
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(3.28) ys(t) = I (-l)s-r+lxR(t) (where s =lsi and r = IRI) 
- R~ ... 

RCS 

Then a payoff vector ! is a member of Harsanyi's Bargaining Solution 

if there exists oT E XT such that 

where ~ 0 is the single member of X~. (This is equivalent to the defini

tion on pp. 214-215 of Harsanyi [1963]: (3.27) above. implies that 

Harsanyi's equations (10.1), (10.2), and (10.5) are satisfied, and 

conversely.) 

Now, for each comparison fUnction ~ and each S ~ T define the 

s coalitional fo~ game v~ on S by 

(3.29) v~(R) = L ).(t)xR(t) for all R C s 
1\ tEE( ... ' 

where the collection of payoff vectors {~R} for R C T is defined by 

the simultaneous solution of the optimization problems in (3.27). We 

demonstrate in Appendix 1 that we can deduce from the constraints in 

(3.27) that for each S C T 

( 3. 30) ~(t)~8 (t) = (~v~)({t}) for each t E S 
-

The fact that this is true for S = T reveals the similarity between the 

set of Harsanyi-Shapley values and Harsanyi's Bargaining Solution. The 

only difference between the two lies in the way the "optimal threat" 
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for each S £ T is defined. Thus, (3.23) and (3.27) 

differ onlY in that the latter optimization problem is subject to same 

constraints, (3.24) and (3.29} for S = T are the ssme, and (3.25) and 

(3.30} for S = T are the same. So if it turns out when we calculate 

the threat pairs without restrictions that they in fact satisf.y the 

constraints in (3.27), the set of Harsanyi-Shapley values coincides with 

Harsanyi's Bargaining Solution. This is the case, for example, when 

utility is transferable. For then by (3.27) for S = T we have 

A(t) = 1 for all t E T, and from (3.29) and (3.30) for each S ~ T 

only l x8(t), and not x5(t) for each t E s, is of relevance; but 
tES~ 

then having solved (3.27) ignoring the constraints, we can always choose 

values x8 (t} so that the constraints are satisfied and L x5(t) is 
tES-

preserved. When utility is not transferable, it is possible to make 

the following. argument. In a large game, there is a sense in which 

"most" of the coalitions have almost the·same composition as T, and the 

value depends onlY on the worths of these coalitions. So in such a case 

we need to verity that the constraints in (3.27) are satisfied only for 

coalitions whose composition is almost the same as that of T. But then 

if the structure of the game h.as a certain homogeneity, and the constraints 

are satisfied for same such coalitions, they will be satisfied for all; 

on the other hand, for feasibility, they must be satisfied for the coali-

tion T. This argument suggests that in a game with a continuum of 

players which is homogeneous in some sense the set of Harsanyi-Shapley 

values coincides with Harsanyi's Bargaining Solution. To make it precise 

we sqould first have to generalize the definition of Harsanyi's Bargaining 
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Solution so that it can be applied to games with a continuum of players. 

Within a limited framework this can in fact be done, using the fact 

that not only do the constraints in (3.27} imply that (3.30) is satisfied, 

but also the converse of this statement is true. A limited result on 

equivalence in the pres~nse of homogeneity can also certainly be 

establishedlf; the limited nature of the result does not justify the 

lengthy explanation which it requires, so we shall not go into the details 

here. It is an open question whether a stronger result, which covers 

some of the games which we shall subsequently study, can be established. 

We have yet to explain how the constraints in (3.27} arise and 

why they take the form they do. To do so in detail would necessitate 

a lengthy argument, so we shall merely outline Harsanyi's [1963] model. 

The final pEcyoff xT(t) of each pla;yer is made up of "dividends" !!8(t) 

which he receives from each coalition S of which he is a member--i.e. 

T ~ S x(t)= £W(t). The dividends which any coalition pays must be backed 
- S3t~ 

by threats, in the sense that each coalition must possess a strategy 

which, given that its complement chooses its strategy in an optimal fashion, 

yields payoffs which allow it to pay the dividends it proposes. 

s the payoff ~ (t) which the threat strategy of S gives t E S 

Thus 

must 

be such that ~8 (t) = Now, the threat strategy of a coalition 

has to be agreed upon by all its members, and is thus constrained by any 

agreements which might be reached between its members as to the distribu-

tion of dividends. Harsanyi in fact assumes that each pair of players 

bargain over the distribution of the dividends which are available to 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-34-

themt given the dividends to all other players, in all coalitions to 

which they both belong. In this bargaining, the dividends received in 

small coalitions will serve as the threat points for the bargaining in 

the larger coalitions, and knowing this each player will only accept 

dividends in small coalitions which "protect" his position in the larger 

coalitions. The agreements thus reached between each pair of players 

generate the constraints in (3.27). (Using the fact that x8(t) = L wR(t) 
R3t-
RCB 

s s for each S C T, and (3.28), it can be seen that ~ (t) - ~ (t) is just 

s ! (t), the dividend which S pays t.} Note that the presence of the 

constraints in (3.27) makes the process of calculating the optimal threats 

much more complicated: what are allowed as threats in the game between 

S and T\S depend on the optimal threats in the games between all other 

pairs R and T\R --the whole collection of optimal threats has to be 

determined simultaneously, 

We close this section by remarking that the fact that in a large 

game the value depends only on the worths,of those coalitions whose com-

position is close to that of T derives from the implicit assumption that 

every player is equally willing to cooperate with any coalition. In some 

situations this may be a bad assumption: for example in a game in which 

there are two types of players whose characteristics are very different, 

it is quite conceivable that it would be to the advantage of each group 

for its members to refuse to cooperate with the members of the other group. 

Recently some attempts have been made to build game theoretic solution 

concepts which predict which coalitions will form "cartels" in this way; 
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it seems that the application of such solution concepts could well enrich 

our understanding of the phenomena which we study in the subsequent 

chapters. For the present, we have restricted ourselves to the use 

of the set of Harsanyi-Shapley values; the fact that it is based on 

assumptions which may not be applicable must be borne in mind. 
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CHAPI'ER 4: The Economic Framework 

In this chapter we describe the economic model which will be 

used in the sequel, discuss same properties of efficient allocations, 

study a class of games derived from the economic model, and finally 

describe the soluti m concept we shall subsequently apply to economies. 

Throughout, when 
. n 

x, y E JR we write X= ( 1 n X , ... ,X), X~ y if and 

only if xi ~ yi for all i, x > y if and only if x ~ y and x ::j y, 

and x >> y if and only if xi > yi for all i; we also write 

JR~ = {x E lRn : x > 0} , and JR~+ = {x E JRn : x > > 0} • 

4.1 Markets and Efficient Allocations 

A market ~ consists of 

(a) a measure space (T,C,p) where T is the set of agents, 

. + C the collection of coal1tions, and p E NA is the population measure; 

(b) a positive integer ~, the number of goods; 

(c) a function u: T X n-+ m+' where n = JR!; u(t,• ): n-+ m+ 

is the utility function of t, and we often write ut(x) instead of 

u(t,x) when x En; and 

(d) an integrable function ~: T-+ n, the initial endowment density. 

i i We shall denote the partial derivative aut/ax by ut for i = 1, .•• ,~, 

1 9,. 
and write ut = (ut, ••• ,ut). We assume that (T,C) is isomorphic to 

([0,1],8), where (as before) B is the a-field of Borel subsets of 

[0,1]. If we make no further assumptions Ebout e and u we shall 

refer to the market as a general market; whenever we refer to M simply 
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as a market we mean that ~(T) = 1 and e and u satisfY the following 

five assumptions (such markets will be the main object of our studies}. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

I: >> o 

For each t E T, ut is increasing (i.e. x > y •ut(x) > ut(y)), 

concave, and continuous on n 

ut(O) = 0 for all t E T 

u is measurable in the product field B
1 

x C, where B1 is 

the a-field of Borel subsets of n 

For each t ET and i i = 1, ••• ,1, the partial derivative ut 

of ut exists and is continuous at each x E n with xi > 0 

In the following chapters we shall have to further restrict the 

characteristics of the utility functions ut. We shall say that a market 

M is bounded if 

(4.6) u is uniformly bounded (i.e. sup {u(t,x): t ET, x E nl < ®) 

and 

(4.7} ut(l,l, •.• ,l) is uniformly positive 

(i.e. inf {ut(l,l, ••. ,l): t ET} > 0) 

We shall say that M is homogeneous of degree a E (0,1) if 

(4.8) every utility function ut is homogeneous of degree a 
(i.e. ut(kx) = kaut(x} for every k > 0 and x E 0) 
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and we shall say that M is homogeneous if it is homogeneous of degree B 

for same BE {0,1). Note that if ut is homogeneous of degree 8 E (0,1) 

and x En is such that x1 
> 0 for all i = 1, •.. ,1 then by Euler's 

Theorem we have 

In the general case in which same xi = 0, the restriction of u 
t 

to 

those components which are positive is homogeneous of degree a in these 

components (fixing the others at zero), so that we have 

(4.9) 

If is a real-valued function on for each t E T and 

x: T-+ :nrQ, then we write g(~) for the real-valued function on T 

the value of which at t E T is gt (.~( t)). If f': T -+ lR 

we often write f(S) rather than Jf in the sequel. If 
s .. 

is measurable, 

Jl. 
a e: lR+, an 

S-allocation of a is a measurable function x: S-+ n with Jx = a; s .. 
we call an S-allocation of e(S) simply an S-allocation, and a T-allocation 

simply an allocation. When we say that a function f on T is the 

unique such function satisfying a certain property, we mean that a 

function ~ on T satisfies the property if and only if f = g .. - a.e •• 

(Here and subsequently "a. e." refers to the measure l.l·) A price vector, 

or simply a price, is an element p of Jl. 
]R++' Recall that we call a 

real-valued measurable function on (T,C) which is a.e. positive a 
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comparison fUnction. If ~ is a comparison function, the market obtained 

from M by multiplying ut by ~(t) for each t E T is denoted ~M. 

Now, we say an allocation ~ is efficient if there is no alloca

tion ~ with ut(~(t)) > ut(~(t)) a.e .. We shall now state some 

properties of efficient allocations which are used in the sequel (see 

Section 9 o.f Aumann and Kurz [1977]). With each efficient allocation x 

in M we can associate a price vector p, unique up to multiplication 

by a positive constant, such that 

(4.10) the maximum of ut {x) 

achieved at x = ~(t} 

over {x En: px ~ px(t}} is a.e. - .. 

Such a price is called an efficiencY price for x. (We are assured that 

p >> 0 since we have assumed ut to be increasing for each t E T.) 

From (4.10) we can deduce the existence of a function A: T + JR 
+ 

such 

that 

(4.11) 

... 

the maximum of ~(t)ut(x) - px over x En is a.e. achi~ved 

at x = x(t) .. 

Given p, ~ is unique if ~(t) >> 0 a.e •• We call (A,p) an efficiency 

pair for x; if A is a comparison function, we BEcy" that ~ is an .. 
efficiency comparison function for x. From (4.11) it follows that 

(4.12) the maximum of J~u(y) over all allocations ~ is achieved 

at x = y 
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(Note that this maximum may be infinite, however.) Conversely, any one 

of the statements (4.10), {4.11), or (4.12) implies that x is efficient. 

Also, from {4.11) we have a.e. 

(4.13) 

Note that from (4.13) we have a.e. ;>,(t) > 0 if x(t} :1- 0, so if 

~(t) ; 0 a.e. and (A,p) is an efficiency pair for ~~ A is in fact 

a comparison function. 

A transferable utility competitive equilibrium (t.u.c.e.) in M 

is a pair (x,p) where x is an allocation and p is a price vector 

such that a. e. 

( 4.14) the maximum of ut(x) - p(x- !{t)) over x en is attained 

at x = x(t) 

Though M may possess many t.u.c.e.'s, the competitive pgroff density 

ut(~(t)) - p(~(t) - ;<t)) is unique {see Proposition 32.3 of Aumann 

and Shapley). From (4.11) we have that (~,p) is a·t.u.c.e. in AM 

if and only if (;>,,p) is an efficiency pair for x • .. 
Finally, a Walrasian equilibrium in M is a pair (!,p) where 

x is an allocation and p is a price vector such that p is an effi-

ciency price for x and p~(t) = p~{t) a.e •• If (~,p) is a Walrasian 

equilibrium in M then ~ is a Walrasian allocation in M. 
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4.2 Market Games 

(4.15) 

Let M be a market. Define a game r: C -+ E: by 

r(S) =sup {[u(x): fx = e(S)} for all SEC 
s .. s .. 

The game r is the market same derived from M. Under the assumptions 

we are making ((4.1) through (4.5)) it may be that r(S) is not attained, 

or is infinite~ or both. In order to apply the results of Aumann and 

Shapley (and, in some cases, to make economic sense) we need to make an 

assumption which ensures that this does not happen. One such assumption 

was provided by Aumann and Perles [1965]; we shall now state their result. 

The market M is integrab1y sublinear if for .each E > 0 there exists 

an integrable function !)= T-+ lR such that if llxll ~ ~(t) then 

ut ( x) ~ & U x II , where we can take U • U to be the norm on lRR. defined by 

R, i R, 
II xU = I I x I for each x E lR • We also say that the function 

i=l 
u: T x n -+ E + is integrably sublinear in this case. For each S E C 

define the function us: lR! + JR+ by 

=sup {ju(x): /x =a} s .. s .. for each 

is attained if it is finite and there is an S-allocation x of .. 

Proposition 4.16 (Aumann and Perles): If M is integrably sub

R. linear then for each S E C, u8(a) is attained for each a E lR+. 
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Since r(S) = u8(e(S)), this gives us a condition under which 

r(S} is attained for each S E C. Now, in the sequel we shall be 

concerned with the market game derived from the market ~M for any com

parison function ~;we shall denote this game by rA. Unfortunately, 

if M is integrably sublinear it may not be the case that AM is 

integrably sublinear for all comparison functions A• In order to ensure 

that this is so, we need to make additional assumptions about M. In 

Chapter 5 we shall assume that M is bounded. The following result 

(Proposition 14.9 of Aumann and Kurz [1977]} is sufficient for our needs. 

Proposition 4.17 (Aumann and Kurz): Let A be a comparison func

tion. Then if M is bounded and rA (T) is finite, XM is integrably 

sublinear. 

In Chapter 6 we shall assume that M is homogeneous. In this 

case we have the following. 

Proposition 4.18: If M is homogeneous and r(T) is finite 

then M is integrably sublinear. 

Proof: From Corollary 3.7 of Hart [1979] we know that if r(T) 

is finite then there exist A > 0 and an integrable function B: T + E 

such that for each t E T 

for all yen 

(A is positive here, rather than simply nonnegative, because ut is 

increasing for all t E T.) From this we have 
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( 4.19) ut(y) - AllyU ~ ~(t) for all yEn 

Since ut is homogeneous of degree a for same a E (0,1), we know 

that max {ut{y)- AUyU: yEn} is finite and attained; let it be 

attained at y*{t). From the first-order conditions for a maximum we 

can deduce that 

Now let ~*(t) = y*{t)/lly*{t)ll. Then ll_:*(t)U = 1 and ut(~*(t)) 

= ll~*(t)Uaut(_:*(t)), so 

y*(t) = (au (z*(t))/A) 1 /(l-a) 
t .. 

(since A> 0). Hence 

ut{~*(t)) - All~*(t)ll 

= (au ( z*( t)) /A)a/( l-S )u ( z*( t)) -A( Bu ( z*( t)) /A)J../(l-S) 
t t - t .. 

= (B/A)a/(l-B){l- B)(u {z*(t))l/(l-B) 
t .. 

So from (4.19) 

(4.20) (u (z*(t))l/(l-B) is integrable • 
t 

Now, let z e 0 be such that Ozll = 1, and let y = Uy*(t)Oz. 

Then lyl = Uy*( t) B, and 
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so ut(y) ~ ut(!*(t)). Hence D!*(t)l 13ut(z) ~ lr*(t)l 13ut(!*(t)}, so 

that ut(z) ~ ut(!*(t)). Thus for all t E T, 

(4.21) ut (z) ~ ut (~*(t)) for all z E 0 with hi = 1 • 

Now fix E > 0 and let !J : T + lR be defined by 

n(t) = (u (z*(t))/c)1/(l-l3) 
t .. for each t E T 

~ is integrable by (4.20). Suppose x En is such that Bxl ~ n(t). 

Then using (4.21), 

llxll > (u (z*(t))/13)1/( 1-!3) ~ (ut(x/lxH)/e)1/(l-S) 
t -

so that llx0 1/(l-S) ;;;; (ut(x)/&)1/(1-S), or lxU ;;;; ut(x)/e. Hence 

ut (x) ~ cDxU. Thus we have shown that 

o~ in other words M is integrably sublinear. This completes the proof. 

Corollary 4.22: Let ~ be a comparison function. Then if M 

is homogeneous and rA(T) is finite, ~M is integrably sub1inear. 
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Proof: If M is homogeneous then AM is homogeneous; the 

result then follows from Proposition 4.18. 

Now, in the sequel we shall need results which give conditions 

under which the game r possesses an asymptotic value. Aumann and 

Shapley studied this question extensively; we shall now state some of 

their results which we shall subsequently use. The market M is of 

finite tYpe if there is a finite set of fUnctions {f1 , ••• ,fn} with 

f i: 0 + lR + for all i = 1, •.• ,n, such that for every t E T, ut = f i 

for same i = l, ••• ,n. Recall that unless we explicitly say otherwise, 

a market M is assumed to satisfy (4.1} through {4.5). The following 

is a consequence of Proposition 31.5 of Aumann and Shapley. 

Proposition 4.23 (Aumann and Shapley): If M is integrably 

sublinear and of finite type then r E pNA. 

From Theorem 3.7 we can conclude that r possesses an asymptotic 

value. If M is not necessarily of finite type then under some cir

cumstances we can approximate r by a market game derived from a finite 

type market, as in the following result, which is a consequence of 

Propositions 40.24, 35.6, and 36.3 of Aumann and Shapley {Proposition 

36.3 is needed since we are assuming that ut is concave for all t E T). 

Proposition 4.24 (Aumann and Shapley): If M is integrably 

sublinear and 

(4.25) for all t e T either e(t) >> 0 or e(t) = 0 
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then for each £ > 0 there is an integrablY sublinear finite type market 

M which differs from M only in the utility functions of the agents, 

such that 

llr - rU < e 

"' where r is the market game derived from M. 

From these last two results we have the following (which is 

Proposition 40.26 of Aumann and Shapley). 

Corollary 4. 26 (Aumann and Shapley) : If M is integrably sublinear 

and (4.25) is satisfied, then r EpNA. 

If we drop assumption (4.25) then we have the following (which is 

a consequence of Corollary 45.8 and Proposition 45.10 of Aumann and Shapley). 

Proposition 4.27 (Aumann and Shapley): If M is integrably sub-

linear then r E pNAD n pNA' . 

Given Corollary 3.8 these results establish that r possesses an 

asymptotic value if M is integrably sublinear. Not only does it possess 

a value in this case, but we can give an expression for that value in 

terms of the components of M. The following is a consequence of Propos!-

tiona 45.10, 31.7, and 32.3 of Aumann and Shapley, and Lemma 3.18. 

Proposition 4.28 (Aumann and Shapley): If M is integrably 

sublinear then r is homogeneous of degree one, so that for all SEC, 

ar*(e,s) is a constant independent of e and for any e E [0,1] we have 
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(~r }(s) = ar*(e ,s) 

In fact, ~r coincides with the (unique) competitive payoff distribution, 

so that we have 

(~r)(S} = J(u(x) - p(x- e)) s ~ 

for all S E C, where (~,p) is a t.u.c.e. in M. 

In Chapter 6 we shall have occasion to consider (in the proof of 

Proposition 6.14) a general market in which ut is merely non-decreasing, 

rather than increasing, for same t E T. Theorem D of Hart [1977} 

establishes that any such integrably sublinear general market possesses 

anasymptoticvalue, but this result is not strong enough for our purposes--

we shall need a result which generalizes Proposition 4.24. We shall lead 

up to this result--Proposition 4.50--via a series of lemmas. 

(4.29) 

and 

(4.30) 

We shall use the following two assumptions: 

for each t E T either ut is increasing, concave, and con

tinuous on n, or ut(x) = 0 for all x En , 

Z E C where Z = {t e T! ut(x) = 0 for all x E 0} 

we shall call a general market which s.atisfies {4.1), ( 4. 3), ( 4.4), ( 4. 29), 

and (4.30) a quasi-market with zero-utility agents. The main object of 

our attention is now an integrably sublinear quasi-market with zero-utility 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-48-

agents which we shall denote M • We shall use the symbols (T,C,p), 1, 
0 

:' and u to denote the components of M • 
0 

From now through the end 

of this section these symbols will be reserved for the general market 

M, rather than for a market satisfying (4.1) through (4.5). We shall 
0 

also write R = T\z. Note that we do not assume that p(T) = 1. If 

p(Z) = 0 and (4.25) is satisfied then we are back to the case covered 

by Proposition 4.24, since the behavior of · M on R conforms with (4.1) 
0 

through (4.5). However, if p(Z) > 0 then since the utility fUnctions 

of the agents in Z are not increasing, we need to generalize Proposition 

4.24. To do so, we shall first approximate the market M by a related 
0 

market Ma i~ whic~ the utility functions of all agents are increasing. 

Then we shall use Proposition 4.24 to conclude that there is a finite 

type approximation to Ma in which all the agents in Z have utility 

functions which are identically zero. This will give us a finite type 

approximation to M in which all the agents in Z have utility func
o 

tiona which are identically zero. 

Thus, for any a > 0 let M a be the market with player space 

(T,C,p), 1 goods, and endowment density : (i.e. Ma is the same as 

M in these respects), in which the utility function of each agent 
0 

a 
t E T is ut , where 

(4.31) a 
if t E R then ut = ut 

and 
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if t E Z then a [l 
where 

[l 
is increasing, concave, ut = u u o' 0 

and for each i = l, ••• ,R., ai exists and is continuous at u 

each 

0 

xen for which i 
> 0 and X 

ua(x) < a for all x e n, and 
0 

uai{x) <a for all x En, and all i = 1, ••• ,R. 
0 ' 

satisfies ( 4. 4) • Under these assumptions a 
u satisfies all 

the conditions of Proposition 4.24. In M , each agent t E Z has a 
0 

utility function which is identically zero on n; in M 
a 

he has a func-

tion which is bounded by a and the derivatives of which are also 

bounded by a. 

For each S E C define 

~(a) = sup {fua(x): Jx = a} 
s ~ s~ 

for each 

The partial derivative of u8 with respect to i 
a is denoted 

the vector of partials is written uS; similarly for u
8

• The eoalitional 

form of the market M
0 

is then w: C -+ JR+ defined by w(S) = u
8

(e(S)) 

for each S E C, and that of Ma is wa: C -.. JR+ defined by 

wa(S) = u~(e(S)) for each SEC. 

We need to introduce one more concept (from Aumann and Shapley) 

before beginning our formal arguments. If f: n -+ :m, le1; 

R. 
llfll =sup [[f(x)[/(1 + L xi)] 

xsn i=l 
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T x n .... m+ be integrablY sub1inear and satisf'y 

"' Then for 6 > 0 we s~ that u: T x n .... lR+ is 

if 
,. 

satisfies (4.2) through (4.5) T x n .... JR+ u 

EEC such that ll(E) ~ 6 and 

ut(x) = 1[:1 for all t E E' • 
~i~lA 

{4.2) through 

a 6-aPJi!roximation 

and there 

If K E C and K c T, and u: T x n + JR+ is integrably sublinear and 

satisfies (4.2} through (4.5) then we say that u: T x n + lR is a 
+ ,. 

6-approximation on K to u if the restriction of u to K x n is a 

6-approximation to the restriction of u to K x n and u(t,x) = ~(t,x) 
,. 

for all t E T\K and all X En. If u is a 6-approximation on K 
.,. 

to u then we shall write w: C + lR + for the game defined by 

;(s) = ~8(e(S)) for each SeC 

""a If u is a 6-approximation on R to u then we define u 

6-approximation on R to ua given by ~~ = ut if t E R 

to be the 

(and ~a = ua 
t t 

if t E Z) (see Diagram 1}. We write w 
a 

for the market game associated 

with "a u • 

We shall now show that given some positive number a, if' a and 6 

are sufficiently small ; (S) is small whenever ll{S n R) is sufficiently 
a 

" small and u is a 6-approx~mation on R to u {see Corollary 4.35), 
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line with 
slope a 

x+ 

Utility Functions of TYPical 
tER 

Diagram 1: The One Commodity Case 

and ; (S) = ;(S) whenever p(S n R) > a and u is a 6-approximation 
a 

on R to u {see Corollary 4.39). These results will allow us to 

show that for sufficiently small a and 6 the games · w and w are 
a 

close in variation whenever u is a 6-approximation on R to u 

(see Lemma 4.43). Through the proof of Lemma 4.43 we shall assume 

that p ( Z) > 0 • 

Lemma 4.33: For each £ > 0 there exists y > 0 such that if 

p(S) < y then us(e(T)) < E· 

Proof: From Proposition 4.16, u6(e(T)) is attained, so we have 

= Ju(~) 
s 
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where x: T + n is integrable and J ~ = e(T). From Lemma 37.9 of 

Aumann and Shapley we know that if p > 0 then there exists an integrable 

function t : T + lR such that for all t E T and x E n , 
.. p + 

Now, fix & > 0. Then for any p > 0 we have 

Us(e(T)) = Ju(x) ~ fp(t (t) + Ux(t)U) ~ fpt (t) + pHe(T)O 
8 ~ - S ~P .. - 8 .. p 

Set p = e/2Ue(T}0. We know (see for example Proposition 13 on p. 85 

of Royden [1968]) that 

there exists y > 0 such that if p(S) < y then fpt < e/2 
s .. P. 

(since p:p is a fixed nonnegative integrable function on T). Using 

this y we conclude that if p(8) < y then 

ug(e(T)) < e/2 + e/2 = e , 

completing the proof of the lemma. 

Corollary 4.34: For each & > 0 there exist y > 0 and 6 > 0 
... 

such that if ~{8) < y and u is a 6-approximation on R to u then 

~(e(T)) < & • 

Proof: Fix £ > o, and take the y given in Lemma 4.33 corre-

spending to e/2. Then we have 
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p(S) < y • u
8

(e(T)) < e/2 

Now take the 6 given in Proposition 37.11 of Aumann and Shapley corre

sponding to e/2(1 + Lei(T)). Then if u is a o-approximation on R 

to u (and hence certainly a o-approximation to u), 

l~(e(T)) - u8 (e{T))I < e/2 for all SEC 

Combining these two conditions we conclude that if u is a o-approximation 

on R to u, then 

A 

p(S) < y ~ u
8

(e(T)) < E 

as was to be shown. 

Corollary 4.35: For each e > 0 there exist y > 0, 6 > 0, 
~ 

and a > 0 such that if p(S n R) < y and u is a o-approximation on 
~ 

R to u then w (S) < e. 
a 

A 

Proof: From Proposition 4.16, w (S) is attained for each a > 0, 
a 

each o-approximation ~ on R to u, and each S E C, so we have 

~ Aa 
w (S) = Ju (x) 

a S ~ 

where x: T ~ n is integrable and /x = e(S). So 
s-

~ 

w (S) 
a = J ~a(x) + f ~a(x} = J ua(x) + f ~(x) 

s~ s~ s~ s~ -
~ 

~ ap(S n Z) + u8nR(e(S)) 
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A A 

and hence wa(S} ~ a~(Z} + u6nR(e(T)). (We have used the fact that 

u:(x) <a if t E z and x En.) 

Now, fix e > 0, take the y and 6 given in Corollary 4.34 

which correspond to e/3, and set a= e/3~(Z). Then if ~(S n R} < y 
" 

and u is a 6-approximation on R to u, Ugne(e(T)) < e/3, and hence 

,. 
wa(S) ~ e/3 + e/3 < £ 

as was to be shown. 

Lemma 4.36: For each B > 0 there exists a > 0 such that if 

~(s n R) ~ B and eJ(s) > o then u~(e(S)) > a. 

Proof: If e1(S) = 0 for some i, we can just ignore the i-th 

good in our analysis of ~6(e(S)); thus we can assume without loss of 

generality that e(S) >> 0 in this proof. Now, fix B > 0 and some 

J E {1, ••. ,1}. Let ~ be an S-allocation at which Ug{e(S)) is attained, 

and let ~: T ~ Q be defined by 

for each t E T {see Diagram 2). Since u is measurable over s1 x C 

(see (4.4)), u~C:{t)) is measurable in t, so we can define the function 

g: :R+ ~ JR+ by 

g{b) = ~{t E R: utC:(t)) ~ b} for each be m+ 

g is continuous from the right, and g(O} = 0 (because ut is increasing 

for every t E R), so 
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0 

Dia.sram 2: Cross-Section of Typical. ut with 

xi = yi(t) for all i ; J 

for all E > 0 there exists aJ > 0 such that 

~{t E R: ut(~(t)) ~ aJ} < t 

Let aJ correspond to e = a/3. Then 

(4.37) 

Let S E C be such that ~(S n R) ~ a, and define the set D C S n R 

by 
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Then from (4.37) we have p(D) > 26/3. We shall now show (by contradic

tion) that u~(e(S)) > aj. From Proposition 38.5 of Aumann and Shapley, 

setting x = ~(t) and using concavity, we have 

j ut(z(t)) - ut(y(t)) J 
u {e(S)) ~ ~ - ~ ut(~(t)) 

SnR - 2ej(T)/B - ~J(t) 

for almost all t E S n R for which yj(t) < 2ej(T)/B 

But for all tED, ut(~(t)) > aj and p(D) > 0, so if we are to have 

u~(e(S)) ~ aJ then for almost all tED it must be the case that 

~j(t) ~ 2ej(T)/B > 0. But then (from Proposition 38.5 of Aumann and 

Shapley again) 

~nR(e(S)) = ut(~(t)) for almost all teD . 

So if u~nR(e(S)) ~ aJ then u~(~(t)) ~ aj for almost all tED; but 

ut(~(t)) > aJ for all tED, so using concavity we must have 

yj(t) > 2eJ(T)/B for almost all t ED. But then 

But ~j(t) = 0 if t E Z, so J yj = Jyj = ej(S) and we have a con
S("'R~ s-

tradiction. Hence we must have u~("'R(e(S)) > aJ. But since ~j(t) = 0 

9. if t E Z, uSf"'lR(a) = u8(a) for all a E ::R+ and all s E C, so 

u~nR(e(S)) = u~(e(S)). Hence we have shown that u~(e(S)) > aJ if 

p(s n R) ~ a. 
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Now set a= min aj. Then a> 0, and if ~(S n R) ~ B then 
j 

ug(e(S)) > (a,a, ••• ,a). This completes the proof. 

Corollary 4.38: For each a > 0 there exist a > 0 and 6 > 0 

such that if ~(S n R) ~ B and u is a 6-approximation on R to u 

then ~~(e(S)) > a if ej(S) > 0. 

Proof: Once again we can restrict attention to the subset of 

goods for which ei(S) > 0, and so can without loss of generality assume. 

that e(S) >> 0 in this proof. Fix B > 0, and let 

of a given in Lemma 4.36. Choose a> 0 such.that 

a <min {a /2, B, min ei(S)}. Then from Lemma 4.36 
0 i 

a be the value 
0 

~(S n R) > B ~u8•(e(S)) > (a ,a , ••• ,a ) > (2a,2a, .•• ,2a) 
0 0 0 

Now choose the d > 0 given in Proposition 38.14 of Aumann and Shapley 
... 

which corresponds to a. Then if u is a a-approximation on R to 

u and ~(S) ~ a, we have 

~~~(e(S))- u~(e(S))j <a for all j e {l, ••• ,t} • 

(We can apply this result of Aumann and Shapley since we chose a so 

that a< min ei(S).) But we chose a so that B >a, and ~(S) ~ B 
i 

if ~(S nR) ~ B, so we have 

~(S n R) > B •~s(e(S)) > (a,a, •.• ,a) 

which is what we needed to establish. 
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Corollary 4.39: For each B > 0 there exist a > 0 and 6 > 0 

" such that if p(S n R) ~ B and u is a 6-approxtmation on R to u 
A A 

then wa(S) = w(S) for all a ~ a. 

Proof: i 
It e (S) = 0 for same i, this good can certainly not 

A A 

contribute to any difference between wa(S) and w(S), so we can restrict 

attention to the set of i for which e1{s) > 0, and can thus assume 

without loss of generality that e(S) >> O. Fix B > 0 and let a > 0 

and 6 > 0 be the values of a and 6 given in Corollary 4.38. 

Then if u is a 6-approximation on R to u, 

.. 
p(s n R) ~ e •us(e(s)) > (a,a, ••• ,a) 

" .. 
Let w(S) = u

8
(e(S)) be attained at the 8-allocation x. Then 

from Proposition 38.5 of Aumann and Shapley we have 

(4.40) ~t(~(t)) > a for almost all t E S for which xj(t) > 0, 

for all j e" { 1 , ••• 'R.} • 

Let a ~ a. 
"a 

Now, ut differs from ut only if t E Z, in which case 

(4.41) 

and 

( 4.42) ~~j(x) <a~ a for all j E {1, ••• ,1} and all x E 0 
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... "a 
Let wa(S) = u8{e(S)) be attained at the S-allocation ~· 

... ... 
From (4.41) we have wa(S) ~ w(S), but from (4.40) and (4.42) we have 

... 
w (S) 
a 

,. R. i ... R. • 
= u~(e(S)) < a I y (S n Z) + J u(x) -a I y~(s n Z) 

i=l SnR ~ i=l 

1 R. • 
if I yi(s n z) > 

i=l 
o, and f ~(x) = ~8 (e(S)) = ;(S). Hence I y~( s n z) = o, 

i=l Sf"'R -
and w (S) = ~(s). a This completes the proof. 

Lemma 4.43: For every e > 0 there exist a > 0 and 6 > 0 
"' ,. 

such that if u is a IS-approximation on R to u then Ow - vii < e. 
a 

Proof: Fix e > 0. We need to. show that there exist a > 0 and 
... 

o > 0 such that if u is a 6-approximation on R to u then 

for all chains ¢ = S
0 

C s1 C ... C Sm C Sm+l = T. Let y, 6', and 

a' be the values of y, o, and a corresponding to e/2 which are 

given in Corollary 4. 35, and let a" and 6" be the values of a 
and 6 corresponding to a = y/2 which are given in Corollary 4.39. 

Let a = min (a ' ,a" ) and let 6 = min ( 6 1 
, 6 " ) • Then from Corollaries 

4.35 and 4.39, if u is a 6-approximation on R to u we have 

(4.44) ~(S n R) < y .; (S) < e/2 
a 

(since wa(S) ~ wa*(S) for all SEC if a ~a*) and 
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... ... 
(4.45) ~(s n R) ~ y/2 ~wa(S) = w(S) 

Let fJ = s
0 

C s1 C ••• C sm C sm+l = T be a chain. We can insert 

finitely many additional sets in this chain so that the difference 

in size between any two adjacent sets is at most y/2; this cannot 

reduce the sum in which we are interested. Relable the chain 

Ql = U C u
1 

C ••• C U C U +l = T. Let q be such that l!(U n R) < y 
0 p p q 

and p(Uq+l n R) ~ y, Then l!(Uq n R} ~ y/2, so by (4.45), 

But 

(4.47) 

so since l!(U nR) < y and w(S) < ~ (S) 
q = a 

for all S E C and all 

a > 0, we can conclude tram (4.44) that 

(4.48) ~ (U ) + ;(U ) < E/2 + E/2 = E 
a q q 

From (4.46), (4.47), and (4.48) we have 

completing the proof of the lemma. 

, 
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The following result generalizes Corollary 4.26 and 

Proposition 4.27. 

Corollary 4.49: If M is an integrably sublinear quasi-market 
0 

with zero-utility agents then w E pNAD n pNA' , where w is the market 

game derived from M ; if in addition M satisfies (4.25) then 
0 0 

wE pNA. 

Proof: If p(Z) = 0 the result follows from Proposition 4.24. 

If ~(Z) > O, then from Lemma 4.43 for each E > 0 there exists a > 0 

such that ftw - wU < &, where w is the market game derived from M a a a 

(since u is certainly a &-approximation on R to itself for all 

& > 0). But M is an integrably sublinear market (not just a general 
a 

market), so by Proposition 4.27 we have w E pNAD n pNA', and if (4.25) 
a 

is satisfied then by Corollary 4.27 we in fact have w E pNA. Since 
a 

pNAD, pNA', and pNA are all closed in the variation norm, the result 

follows. 

This result allows us to establish in Chapters 6 and 7 that the 

games we study there are members of pNA and pNAD n pNA' respectively, 

but in order to calculate the values of these games we need the following 

stronger result, which generalizes Proposition 4.24. 

Proposition 4.50: Let M be an integrably sublinear quasi-market 
0 

with zero-utility agents which satisfies (4.25) and let w be the market 

game derived from M • 
0 

Then for every & > 0 there is an integrably 

sublinear finite type quasi-market with zero-utility agents 
... 
M which 

0 

differs from M only in the utility functions of the agents such that 
0 
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Uw - ;,a < e 

where w is the market game derived from M. 
0 

The strat~gy of the proof is to first use Lemma 4.43 to approximate 

the original market M by a market M which satisfies all of the 
o a 

assumptions of Aumann and Shapley, then to use their results to find 

a finite type approximation M to M , and finally to use Lemma 4.43 
a a 

" again to show that there is a market M which is of finite type and 
0 

in which the utility function of every t E Z is identically zero which 

approximates " M • a 
We shall then have approximated M by 

0 

A 2/ 
M .o 

Proof of Proposition 4.50: If p(Z) = 0 then the result foll6ws 

immediately from Proposition 4.24, so assume that p(Z) > 0. Fix e > 0 

and let a a.nd ~ ' be the values of a and ~ given in Lemma 4. 43 

which correspond to r./3. Then if u is a ~-approximation on R to 

u, we have 

(4.51) llw - wU < e/3 a 

where w is the coalitional form of the market where the utility function 

of t " if t E Z), and w 
a 

form of the market where the utility function of t 

is the coalitional 

is ~a 
t (and 

"a " "'a a ut = ut if t E R and ut = ut if t E Z). (See Diagram 1, p. 51). 

In particular we have 

(4.52) llw - w H < r. /3 a 
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since u is certainly a o•-approximation on R to itself. But the 

market Ma associated with wa satisfies all the assumptions of Aumann 

and Shapley (including (4.25)}--i.e. all the utility functions are 

increasing--so from their Proposition 40.24 (on which Proposition 4.24 

is based) we can deduce that there exists o" > o such that if 

is a 611-approximation to 
a 

u , then 
A 

llw - w II < £./3. a a Now set 

"'a 
u 

6 = min ( 6 ',6"), and note that it can be assumed throughout Section 35 

of Aumann and Shapley that every utility function is concave. So among 

the 6-approximations 
"'a 

to 
a 

there is one which is and of u u concave 

finite type, and for which 
"'a a if t E Z (since 

a z is ut = ut ut on 

already of finite, type) • Choose such a 
"'a 

Then since 6 6" u • ..; 
' 

certainly 

A 

(4.53) llw - w II < e/3 ' a a 

Now let u be defined by 

=ft 
if t E Z 

ut "'a if t E R ut 

Then since 6 < 6' and since "'a is a 6-approximation R to a 
= , u on u 

and 
"'a ... 
ut = ut if t E R, u is a &'-approximation on R to u. So 

from (4.51) we have 

(4.54) 
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Combining (4.52), (4.53), and (4.54) we have 

Ow - ;u < Uw - w 0 + Uw - ; U + n; -.;u c £ = a a a a 

But the general market underlying w is an integrably sublinear finite 

type quasi-market with zero-utility agents which differs from M only 
0 

in the utility functions of the agents, so the proof is complete. 

4.3 Economies 

An economy is a pair E = (M, r(M)), where M is a market and 

r(M) is a strategic game the players of which are the agents in M. 

In the following chapters we shall consider a number of such economies, 

making different assumptions on.the nature of the strategic game. An 

allocation ~ in M is a value allocation of E = {M, r(M)) if u(~) 

is a Harsanyi-Shapley value of r(M) (see Section 3.2 above). The set 

of value allocations of E is the solution concept we shall use in 

what follows. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-65-

CHAPTER 5: Economies in which any Majority 
Can Control the Pattern of Trade 

5.1 Introduction 

In this chapter we shall characterize the value allocations of 

economies in which the strategic opportunities of each coalition depend 

solelY on whether it contains a majority of the population or not; our 

intention is to model an economy in which there is "majority rule". 

If a coalition contains a majority of the population we shall assume 

that it can expropriate all the goods which the members of the comple

mentary minority attempt to trade (with each other, or with members of 

the majority), and redistribute them, in addition to its own endowment, 

in any way it pleases. If a coalition contains a minority of the popula-

tion we shall assume that each of its members can assure himself of the 

utility derived from consuming his initial endowment (simply by not 

attempting to trade anything), and that the coalition has no strategy 

which allows its members to receive higher payoffs (the only way it 

can redistribute its endowment is by trading). These assumptions give 

a majority coalition the minimal amount of power it might expect to 

possess in a majority rule private ownership economy. They can be con-

trasted with the assumptions of Aumann and Kurz [1977], where a majority 

can expropriate the entire endowment of the complementary minority; as 

we argued in Chapter 1, this seems to give a majority more power than 

it could expect to have in a private ownership economy. Roughly speaking 

we can think of a majority in Aumann and Kurz [1977] exercising its 

power by imposing a 100% wealth tax--where the "wealth" of an agent 
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includes the total value of his leisure time--while here it does so 

by imposing a 100% sales tax. Of course the final outcome will not 

in general involve such a high tax rate in either case; what is being 

assumed is merely that it is possible for any majority to impose such 

a tax. (In Chapter 8 we shall investigate the case where the size of 

·the tax a majority coalition can impose depends on the size of the 

coalition--a coalition containing a bare majority of the population 

being less powerful than one containing almost all of the population.) 

We now formally state the assumptions we shall make about the economy 

E = (M, f(T)) in this chapter. Let M be a market. Then r(M) is 

a·strategic game (with player space (T,C,~)) in which the payoff 

functions and strategy sets satisfy the following three conditions: 

(5.1) if S E C is such that ~(S) > 1/2, then for each 8-allocation 

x there is a strategy a of S (i.e. there exists a E x8
) 

such that for every strategy T of T\ S (i.e. for all T E XT\ 8 ) 

if t E S 

if t E T\S 

(5.2) if SEC is such that ~(S) ~ 1/2, then there is a strategy 

T of T\S such that for each strategy a of S, there is an 

S-allocation x such that 

if t E S 

if t E T\S ; 
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and 

(5.3) if SEC is such that ~(S) = 1/2, then for each S-allo~ation 

x there is a strategy a of S such that for each strategy 

T of i\ S there is a '1\ S-allocation y such that 

if t E S 

if t E '1\S 

We do not need to specify the strategy sets or payoff fUnctions in any 

more detail: every strategic game satisfying (5.1) through (5.3) is 

equivalent for our purposes. The following is the main result of this 

chapter. 

Theorem A: Let M be a bounded market and assume that r(M) 

satisfies (5.1) through (5.3). Then an allocation ~ in M is a 

value allocation of the econ~ E = (M, r(M)) if and only if it is 

efficient and a.e. 

where (A,p) is an efficiency pair for x. Moreover, such an allocation 

exists. 

Throughout this chapter we shall use r(M) to denote a strategic 

game associated with the market M which satisfies (5.1) through (5.3). 
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5.2 Qptimal Threats 

The first step in establishing the characterization (5.4) is 

to deter.mine the nature of a collection of optimal threats in the 

two-person games between S and '1\ S for each S E C. We first 

study the case where ~ ( t) = 1 for all t E T. Let r: C -+ JR be 

the market game derived from M (see (4.15)); recall that when we say 

that r(S) is "attained" we mean that it is finite and there exists 

an S-allocation x such that r(S) = fu(x). s .. If r(T) is attained, 

then since fu(;) < r(T) we can define a totally finite measure n 

on (T,C) by 

(5.5) n(S) = fu(e}d!J s .. for each· SEC 

(u(;) is a measurable function of t by (4.4)). Since 1J E NA, we 

have n E NA. The following result establishes the nature of a collec-

tion of pairs of optimal threats in the two-person games between S 

and T\S for each SEC. 

Lemma 5.6: Assume that r(S) is attained for every S E C. 

Then for each S E C there exists a pair (a ,T ) E x8 x XT\S such 
0 0 

that 

(5.7) 

s H (~ ,T ) is finite, and 
0 0 

s H (a ,T) 
0 

__ s T\ s 
for all a E x- , T E X 
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i:f p(S) > 1/2 

if ll (S) < 1/2 

Remark: The strategies (a ,T ) of course depend on S; we 
0 0 

refrain from explicitly incorporating this fact into the notation :for 

the sake of clarity. 

Proof o:f Lemma 5.6: First consider the case where p(S) > 1/2. 

Let x be an S-allocation which attains r(S); let a be the strategy 
.. 0 

o:f S corresponding to ~ given in (5.1), and let T
0 

be the strategy 

o:f '1\ S given in ( 5 • 2) • Then :from ( 5 .1) , 

and :from (5.2), setting a =a , there exists an S-allocation z such 
0 

that 

But 

(5.8) 

fu( z) 
s .. 

< Ju(x} s .. 
:for all S-allocations z by definition, so 

T\S for all T E X 

Similarly from (5.1) we have 

'1\S :for all T E X 
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and, setting a = a in ( 5. 2) we obtain 
0 

so that 

(5.9) 

Hence 

J h~ T ~ I u(e) 
'1\ S"' o o - '1\ S ... 

for all T E XT\ S 

'1\s f'or all T E X 

In a similar we:y we can set T = T 
0 

in (5.1) and use (5.2) to conclude 

that 

and 

so that 

s for all a EX, 

s ) 1 s f s Is Is s (5.13) H (a,-r = h - h < h - h = H (a ,T ) 
0 8 .. aT 0 T\S"'aT

0 
= 8 ... a 0

T
0 

T\S"'a 0T 0 0 0 

for all a e x8 
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But (5.10) and (5.13) imply that (5.7) is satisfied by the pair 

we have chosen. Moreover~ from (5.8} and {5.11) 

and /u(x) = r(S) by the way we chose a
0

; from (5.9) and (5.12) s ~ 

(a ;r ) 
0 0 

So for any S with p(S) > 1/2, and, by reversing the roles of S and 

T\S, for any S with p(S) < 1/2, we have proved what we need. 

Now consider the case where p(S) = 1/2. Let x attain r(S) 

and,let ~ attain r(T\S); let a be the strategy of S corresponding 
0 

to the S-allocation ~ given by (5.3), and let T be the strategy of 
0 

T\S corresponding to the T\S-allocation ~ when the roles of S and 

T\S are reversed in (5.3). Then we have 

(5.14) 

and all T E XT\S 

and 

( 5.15) 

s for all a E X and all T E XT\S 

for all a E x8 

J hs 
-a T T\S o 

for all 
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H
6 (a ,T ) < H

6 (a ,T ) 
0 = 0 0 

and all T e x'J\ 6 

-72-

Moreover, from (5.14} and (5.15), 

and 

This completes the proof of the lemma. 

for all a E x6 

= J u(y) = 
T\S .. 

and all 

r(T\ S) 

What this result shows is that the strategy pair where the membe~s 

of the minority simply consume their endowment while the majority 

threatens to expropriate any goods which minority members attempt to 

trade and redistributes its endowment smong its members in an optimal 

fashion constitutes a pair of optimal threats. Define the game 

(5.16} q(S} = lr(S) 

n(s) 

if 

if 

p(S) ~ 1/2 

ll (S) < 1/2 

We have not established that (a ,T ) is the only pair of optimal threats 
0 0 

in the game between S and T\S. However, since it will turn out that 

the game q alwafs possesses an asymptotic value we shall, by virtue 

of Lemma 3.26, locate all the Harsanyi-Shapley values of the economy 

E under consideration by restricting attention to the family of pairs 

(a ,T ) given in Lemma 5.6. Before proceeding to the calculation of 
0 0 
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the value of the game q, we shall establish two results which will 

be needed later. The following is used in the proof of Proposition 5.25. 

Lemma 5.17: Suppose that T H possesses a finite saddle point. 

Then r(T) is attained. 

Proof: T From the fact that H possesses a finite saddle point 

we know there exists a EXT such that 
0 

for all a E XT 

(where T is the single strategy of ~). Now, from (5.2)·we know 
0 

there exists an allocation ~ such that ~~ (t) ~ ut(~(t)) for all 
0 

t E T; applying (5.1) to the allocation ~ we obtain a strategy a
1 

of T such that hs (t) ~ ut(~(t)) for all t E T. Combining these 
.. al 

facts we have 

(5.18) for all 
' 

so that, taking the case a = a
1

, we can conclude that 

(5.19) 

By hypothesis HT(a ,T ) is finite. Suppose r(T) is not attained at 
0 0 

x. Then there exists an allocation y such that /u(y) > {u(x). .. ~ .. Let 

a2 be the strategy of T corresponding to y given by (5.1). Then 
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(using {5.18) for a = a 2, and (5.19)), which is not possible. Hence 

r(T) = ju(~) < ~, where x is an allocation, establishing the lemma. 

The definition of a value allocation of E involves the p~off 

function hT of r(M) (see Section 4.3). The following lemma allows 
-a 

us to work exclusively with the elements of the market M. Aumann and 

Kurz [1977] proved the same result under their assumptions (see their 

Proposition 11.12). The proof under our assumptions is very similar; 

it is included for completeness. Recall that given a comparison func

tion ~~ qA. is the game defined by qA(S) = JAh6 for each SEC, 
- - SN-aoto 

where (a ,T ) is a pair of optimal threats in the two-person strategic 
0 0 

game between S and T\S in which the payoff function of S is 

jAh8 (see Section 3.2, and in particular (3.24)). 
s--

Lemma 5.20: An allocation x .is a value allocation of 

E = (M, r(M)) if and only if there exists a comparison function A 

such that H8 has a finite saddle point for every S E C and 
A' 

for each S E C 

where qA is the game defined by (3.24). 

Proof: If x is a value allocation of E then by definition 

u(x) = hT for some a EXT and jAhT = JAu(x) = (~q,)(S) for each - -a s--a s- - ~ 

S E C for same comparison function A. 
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On the other hand, suppose ~ is an allocation such that 

f~u{~) = {~qA)(S) and ~ has a ~inite saddle point for each SEC. 
s ~ ~ 

By (5.1) there exists a EXT such that 

(5.21) 

So 

(5.22) 

{by (3.1)). But by the de~inition of qA(T), 

T 
~or all a' EX 

~or some T a E X , where T 
0 0 

is the single strategy o~ ¢. So 

~or all a ' E XT , 

and in particular qA(T) ~ J~~!· Hence we have equality in (5.22), 

and so from (5.21) 

(5.23) 

So (~q,)(S) = JAhT for each SEC. Hence hT is a value of r(M); 
~ s .... a .. a 

so by (5.23), u(x) is a value of r(M). Thus x is a value allocation 

of E, as was to be proved. 
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5.3 The Calculation of the Value of the Game q 

From Lemma 5.6 we ltnow that in order to characterize the Harsanyi-

Shapley values of E (see the definition in Section 3.2~ in particular 

( 3.24) and ( 3. 25)) we have to calculate the value of the game q defined 

in (5.16); this we shall now do. Our argument depends heavily on the 

results of Aumann and Shapley~ and of Aumann and Kurz [ 1977] . 

Proposition 5.24: If M is integrably sublinear then q E ASYMP, 

and ljlq is given by 

(!j>q)(S) = (r(T) - n(T))p(S)/2 + /[u(x) - p(x- e)]/2 + fu(e)/2 s ~ ~ ~ s ~ 

for each S E C where (~,p) is a t.u.q.e. in M. 

Proof: Define the function g: [0,1] ~ [0,1] by 

g(x) = 1: 

Define the games 

if X E [1/2,1] 

if X E [0~1/2) 

and by 

1 q (S) = g{p(S))r(S) and 2 q (S) = g(p(S))n(S} for each S E C 

We have gop E bv'NA, r E pNAD by Proposition 4.27, and n E NA, so 

1 2 1 ,q E bv'NA*pNAD and q E bv 1NA. Hence by Corollary 3.8, q E ASYMP 

2 and q E ASYMP. But 

q(S) = q1(s) + (n(S) - q2(s)) for each SEC 
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so that q E ASYMP, and by the linearity of the value operator ' (see 

{3.4)) we have 

Now, in fact r E pNAD n pNA' by Proposition 4.27; hence by 

Propositions 3.16 and 4.28, 

(~q1 )(S) = r(T)~(S)/2 + j[u(x) - p(x- e)]/2 for each SEC , 
s ~ - -

where (~,p) is a t.u.c.e. in M. Also, by Theorem 3.14 and (3~11), 

we have {'n)(S) = n(S) for each S E C. Finally, from Propositions 

3.16 and 4.28 once again we have 

(~q2 )(S) = [n(T)~(S) + n(S)]/2 for each SEC • 

Hence we have 

(~q){S) = r{T)~(S)/2 + j[u(x) - p(x - e)]/2 + n(S) s - ~ -

- [n(T)~(S) + n(S)]/2 

= {r(T) - n(T))~(S)/2 + f[u(x) - p(x- e)]/2 + Ju(e)/2 
s - ~ - s -

for each S E C, where (x,p) is a t.u.c.e. in M, completing the proof 

of the proposition. 
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5.4 The Characterization of the Value Allocations of the Econ 
(M, r M) when M Is Bo\Ulded 

First we have the following, which is analogous to Proposition 

14.10 of Aumann and Kurz [1977]. 

Proposition 5.25: Let M be a bounded market, ~ an allocation 

in M, and ~ a comparison function. Then we can choose a finite 

saddle point (a ,T ) 
0 0 

defined in (3.24) has a value 

for each S E C so that the game qA 

~qA which satisfies (~q~)(S) = ~~u(~) 
for each S E C if and only if ~ is efficient with efficiency pair 

(~,p} and a.e. (5.4) is satisfied. 

Proof: First suppose that we can choose a finite saddle point 

for H
8 

for each SEC in such a way that (~qA)(S) = /~u(~) 
A .. S 

SEC. Then by Lemma 5.17, rA(T} is finite, so that by 

Proposition 4.17, AM is integrably sublinear. Also we have 

(using the fact that qA(T) is independent of the collection of optimal 

threats we choose, and Lemma 5.6). But then x is efficient and so 

there exists a price p such that (A,p} is an efficiency pair for 

x, so that (x,p) is a t.u.c.e. in AM (see Section 4.1). So by 

Proposition 5.24 we have 

= (rA(T)- nA (T))p(S)/2 + f[~u(~}- p(~ 
- - s 

~} ]/2 

+ JAu(e)/2 
s.. -
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for each SEC, where nA(T) = J~u(~). But then from our hypothesis 

that ($qA)(S) = J~u(~) for each SEC we have 
... s 

JAu(x) = ~(s)JA(u(x) - u(e)) - pf(x- e) + JAu(e) 
s- - - - - s - - s"' -

or 

JA(u(x) - u(e)) - ~(s)JA(u(x) - u(e)) = pf(e- x) 
s- - - - - - s - -

for each SEC, so a.e. (5.4) is satisfied. This completes the proof 

of necessity. 

Now suppose that x is efficient with efficiency pair (~,p) 

and a.e. (5.4) is satisfied. Then J~u(~) is finite and /~u(~) = rA(T) 

(see (4.12)). Hence AM is integrably sub1inear, so that by Proposition 

4.16, r~(S) is attained for each SEC. Thus from Lemma 5.6 we can 

choose a finite saddle point (a ,T ) for H~ for each S E C such 
0 0 . 1\ 

that the game qA defined in (3.24) is given by 

if ~(S) > 1/2 

if ~(S) < 1/2 

Then from Proposition 5.24 we have qA E ASYMP and 

(5.26) ($qA)(S) = (rA(T)- nA(T))~(S)/2 + j[~u(~)- p{~- ~)}/2 
- - - s 

+ JAu(e)/2 
g"' -
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for each SEC. But integrating (5.4) over SEC gives 

for each S E C 

Combining this with (5.26) gives (~qA)(S) = J~u(~) for each SEC, 
~ s 

as was to be shown. This completes the proof. 

This gives us the characterization part of Theorem A. 

Theorem 5.27: Let M be a bounded market. Then x is a value 

allocation of the economy E = (M, r(M)) if and only if it is efficient 

with efficiency pair (~,p) and a.e. (5.4} is satisfied. 

Proof: The result follows immediately from Lemma 5.20 and 

Proposition 5.25. 

5.5 The Existence of a Value Allocation of the Economy (M, r(M)) 
when M Is Bounded 

Our argument will follow that of Aumann and Kurz [1977] quite 

closely. Let p be a price vector; for each t E T define the 

indirect utility function u~: JR+ -+ JR+ of t at the price vector p by 

(5.28) u~(y) =max {ut(y): x En and px ~ y} for each y E JR+ 

for each 

t E T and y E JR+. The following, a consequence of Lemmas 16.1, 17.4, 
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and 17.5 of Aumann and Kurz [1977], states some of the properties of 

the function uP. 

Lemma 5.29: For each price vector p, up satisfies (4.2) 

through (4.5). Also, for each t E T the inverse function (u~)-1 (y) 

is continuous in (p,y) for y > 6. 

By virtue of this result, for each price vector p we can define 

a market Mp with agent space (T,C,~) and 1 = l, in which the utility 

function of t E T is and the initial endowment density 

is P~· The following is a consequence of Lemmas 16.1 and 9.10 of 

Aumann and Kurz [1977]. 

Lemma 5.30: If M is bounded then so is Mp for each price 

vector p. Also, if x is an efficient allocation in M with effi

ciency pair (~,p) then p~ is an efficient allocation in Mp with 

~fficiency pair = up(px_), and A(t) = 1/up'(px(t)} 
.. t -

if 

x(t) :F 0. 

We can now state the following alternative characterization of 

the value allocations of M, which we shall use to prove existence. 

Proposition 5.31: Let M be a bounded market. Then an alloca

tion x is a value allocation of the economy E = (M, r(M)) if and 

only if there is a price vector p and an efficient allocation ~ 

in MP such that a.e. 
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(5.32) u(e)] = p~(t) - ~(t) 

where (~ ,1) is an efficiency pair for ~ p in M , and a.e. 

(5.33) ~(t) maximizes ut(x) over {x en: px ~ yP{t)} - ~ 

Proof: First assume x is a value allocation of E. Then by 

Theorem 5.27, x is efficient with efficiency pair (~,p) and a.e. (5.4} 

is satisfied. Set yP = P~· Then by Lemma 5.30, ~ is an efficient 

allocation in MP, with efficiency pair {~,1). Since p is an effi

ciency price for ~~we know that a.e. (5.33} is satisfied (see (4.10)), 

so that ui(~(t)) = ut(~(t)). But then (5.32) is a.e. satisfied, com

pleting the proof of necessity. 

Now assume that x is an allocation, p is a price vector, and 

~ is an efficient allocation in MP such that a.e. {5.32) and (5.33) 

are satisfied. From (5.33) we have p~(t) = ~(t) a.e., so x is 

efficient and there is a comparison function A such that (A,p) is 

an efficiency pair for ~ = px - .. (using Lemma 5.30 again), so 

from (5.32) we have that a.e. (5.4) is satisfied, completing the proof 

of sufficiency. 

Given this result, we shall locate a value allocation of E 

in the following way. First, for each price vector p we shall find 

an efficient allocation yp of Mp which a.e. satisfies (5.32). 

Then we shall argue that for some price vector p the function x 

defined by (5.33) is an allocation; by Proposition 5.31 this allocation 

x is a value allocation of E • .. 
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Lemma 5.34: Let M be a bounded market and assume e is not 

an efficient allocation in M. Then for each price vector p there 

exists a unique efficient allocation yp in Mp such that {5.32) is .. 
a.e. satisfied; moreover, ~(t) is a.e. continuous as a function of p. 

Proof: Fix a price vector p, and suppose that the efficient 

allocation ~p a.e. satisfies (5.32). Since ~ is not an efficient 

allocation in M there exists an allocation ~ with ut(~(t)) > ut(~(t)) 

a.e .. Let ~ = P~· Then ~ is an allocation of pf: in MP and 

u~(~(t)) ~ ut(~(t)). So applying (4.12) to Mp we obtain 

so J~[up(~) - u(:)J > o. But then from (5.32) it cannot be the case 

that ~(t) = 0. Hence ~(t) > 0 a.e •. 

Given this fact,from Lemma 5.30 we know that ~(t) = 1/u~'(~(t)) 

a.e., so an efficient allocation yP in Mp a.e. satisfies (5.32) if 

and only if it a.e. satisfies 

(5.35) 

Define ~: T + :n:t by .. o + 

( 5. 36) 
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Then yp is measurable, and since ~(t) ~ pe(t) for all t E T it 
.. o ~o - .. 

is integrable. Also, from Lemma 5.29, ~(t) is continuous as a func
.. o 

tion of p for eac~. t E T. Now, as we argued above we have 

J[(uP(yp) - u(e))/up•(yP)] > 0, so from (5.35) and the fact that .. - -
~(t} ~ pe(t} for all t E T we must have a.e. 
-0 - -

(5.37) ?<t) > ~(t) 
- -0 

Consider a general market Mp with agent space (T,C,~) and one 

good in which the utility function of t E T is vt: lR+ -+ lR+ defined by 

and the initial endowment density is pe - ~- Since e is not efficient 
- .. o 

we have J(p~ - ~) > 0; vt(O) = 0, and (4.2) and (4.4) through (4.7) 

are satisfied, so QP is in fact a bounded market. Hence by Theorem C 

of Aumann and Kurz [1977] there is a unique efficient allocation zP 

in Mp satisfying zp(t) > 0 a.e. and 

(5.38) 

and by Lemma 17.6 of Aumann and Kurz [1977], :p(t) is a.e. continuous 

in p. Now, rewriting (5.38) we can conclude that there is a unique 

efficient allocation zP in Mp satisfying zp(t) > 0 a.e. and 
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But from (5.37) any efficient allocation ~P ~.e. satisfying (5.35) 

must be of the form ii + ~ where riCt) > 0 a.e. and J(~ + ~) 

= fp;. Since we have J(~p + l~) = fp:, this establishes that 

~ = ~P + ~~ is the unique efficient allocation a.e. satisfying (5.35), 

completing the proof of the first part of the result. 

Finally, as stated above both ~(t) and zp(t) are a.e. con--o .. 

tinuous in p, so ~(t) = zp(t) + ~(t) is also, and the proof is 
- -0 

complete. 

In the remainder of this section we ~hall let lp be the unique 

efficie~t allocation in MP which a.e. satisfies (5.32) which is 

provided by Lemma 5.34 when e is not an efficient allocation in M. 

For each t E T and each price vector p let 

~P(t) = {x En: px ~ ~(t)} 

let 
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(5.39) Z(p) = I~p- ~~ 

If we can find a price vector p such that 0 E Z(p), then there is 

an allocation x which a.e. satisfies (5.33), and s9 by Proposition 

5.31 the economy E possesses a value allocation. To show that there 

is a price vector p such that 0 E Z(p), we shall use the following 

version of Debreu's lemma (see Lemma 1 on p. 150 of Hildenbrand [1974] 31). 
1 i 

Let 6 ={pEn: I p = 1}, let int 6 be the relative interior of 
i=l 

~~ and let a6 = 6\int 6. 

Lemma 5.40 (Debreu): Let Z be a compact- and nonempty-valued 

correspondence from int 8 to E
1 that is bounded from below and 

has a graph which is closed in int 6 x E
1 for which pz = 0 for 

all z E Z(p) and for which the following is satisfied: 

if {pn} is a sequence with pn E int 8 for all n, and 
£ 

p ~ p E a6 then inf { I z1 : z E Z(p)}, > 0 for large 
n o i=l 

enough n 

Then there exists p E int A such that 0 is a member of the convex 

hull of Z(p). 

In order to establish that the correspondence Z defined in 

(5.39) satisfies the hypotheses of this lemma, we shall need the following 

two results. 
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LeD'IJila 5.42: If M is a bounded market and e is not an .. 
efficient allocation in M then for each compact subset C of 

int 6 there is a constant c such that ~(t) < c + p~(t) for all 

t E T and all p E C. 

Proof: From the proof of Lemma 5.34 we have yP(t) = ~(t) + zP(t) .. ..o 

for all t E Ts where zp is an allocation in the market MP. By 

applying Corollary 17.10 of Aumann and Kurz [1977] to the market Mp 

we know that for each compact subset C of int 6 there is a constant 

c such that zp(t) ~ c + pe(t) - ~(t). But then zp(t) + ~(t) 
.. - - .. o - -o 

= ~(t) < c + p:(t)s completing the proof. 

Lemma 5.43: If M is a bounded market and e is not an efficient 

allocation in M then there exists o > 0 such that a.e. 

Proof: Let o = inf <J(pe_ - yp): p E 6}, where yp is defined .. o .. o 

in (5.36). ~ is continuous by Lemma 5.29, and 6 is compact, so 

the infimum is attained. But if j(pe - ~) = 0 
- .. o 

for some p E 6 then 

e is efficient, contrary to our assumption. So o > 0. But by the 

concavity of p 
ut' we have 

for all t E T 
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so 

But then from (5.35) we have a.e. 

as was to be shown. 

We now have the following. 

Proposition 5.44: If M is a bounded market and e is not an 

efficient allocation in M then there exists a price vector p such 

that 0 E Z(p). 

Proof: The proof of Lemma 17.22 of Aumann and Kurz [1977] uses only 

those properties of yP (and hence of the correspondence Z defined in 

(5.39)) which we have established in Lemmas 5.34, 5.42, and 5.43, so their 

proof demonstrates that Z satisfies all the hypotheses of Lemma 5.40, 

and is convex. Hence there is a price vector p such that OE Z(p). 

This allows us to establish the existence part of Theorem A. 

Theorem 5.45: If M is a bounded market then there exists a 

value allocation of the economy E = (M, r(M)). 
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Proof: First we shall deal with the case in which e is an 

efficient allocation in M. Then x = e satisfies (5.4), so that 

tram Theorem 5.27, : is a value allocation of E. 

If e is not an efficient allocation in M then by Proposition 

5.44 there exists a price vector p such that J~P = J; where xp(t) 

a.e. maximizes ut over {x En: px ~ ~(t)}, and ~ is the unique 

efficient allocation in Mp which a.e. satisfies (5.32) (the existence 

of which is assured by Lemma 5.34). But then by Proposition 5.31, xp 

is a value allocation of E. This completes the proof. 

Proof of Theorem A: Theorems 5.27 and 5.45 immediately yield 

Theorem A. 

5.6 Discussion and Examples 

We shall now investigate the properties of the value allocations 

characterized in Theorem A. First, we have the following: 

Lemma 5.46: If M is a bounded market and x is a value alloca-

Proof: If x is a value allocation of E then by Theorem A 

we know that (5.4) is a.e. satisfied; and by (4.12) we have 

J~(u(~) - u(~)) ~ 0. Now suppose that ut(~(t)) < ut{~(t)) for all 

t E S where S E C and ~(S) > 0. Then since p is an efficiency 

price for ~' p~(t) < p~(t) a.e. in S. But then p(:(t) - ~(t)) 

+ JA(u(x) - u{e)) > 0 a.e. in S, so that (5.4} is not satisfied by x. 
... ... -
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In the proof of Theorem 5.45 we aruged that if : is an efficient 

allocation in M then it is a value allocation of E = (M, r(M)). 

Using Lemma 5.46, we can make the following stronger claim. 

Corollary 5 • 4 7 : If M is a bounded market and e is an efficient .. 
allocation in M then x is a value allocation of E-- (M, r(M)) 

if and only if ut(~(t)) = ut(:{t)) and p~(t) = p:(t) a.e., where 

p is an efficiency price for x. 

Proof: If ~ is a value allocation of E then from Lemma 5, 46 and 

the fact that e is efficient we have ut(~(t)) = ut(:(t)) a.e •• But 

then £rom (5.4) we have p:(t) = p~(t) a.e .• Conversely, if ~ is 

an allocation for which ut(~(t)) = ut(!(t)) a.e. it is efficient, and 

if in addition px(t) = pe(t) a.e. then (5.4) is satisfied, so that .. -
by Theorem A, x is a value allocation of E. 

This allows us to deal very quickly with the one good case. 

Corollary 5.48: If M is a bounded market and R. = 1 then 

x = e is the unique value allocation of E = (M, r(M)). 

Proof: If R. = 1 then e is efficient, and we can take p = 1. 

The result then follows from Corollary 5.47. 

This result is of course erttirely to be expected: if there is 

only one good then any redistribution of it will make someone worse off, 

and every coalition S E C has a strategy which ensures it a pQfoff 

of Ju(e}. If e is efficient in the multi-good case then we can make s .. 
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the same argument, except that there may be redistributions of e in 

this case which preserve everyone's utility, so that we can only make 

the statement of Corollary 5.47. If every utility function ut is 

strictly concave, however, any redistribution will make someone worse 

off, and we can conclude that x is a value allocation if and only 

i£ x(t) = e(t) a.e •• - -
The more interesting case arises if there are many goods and the 

initial endowment is not efficient (this is also the realistic case). 

We shall now study a class of examples which illuminates what happens 

in general. 

Assume that u = u 
t 

for all t E T, and u is homogeneous of 

degree a E (0,1]. A market with these utility functions does not 

actually satisfy our boundedness assumption (4.6). However, our calcula-

tiona will apply to an economy in which each ut is bounded but ut(x) 

coincides with u(x) so long as x is less than some real number B. 

Let x be a value allocation in such an economy. Since u is homogeneous 

all efficient allocations consist of bundles lying on the ray from 

the origin through the aggregate initial endowment J~. So we can set 

p = u ' <J:) , and 

x( t) = ~( t) J: where ~: T -+ JR+ is measurable and J~ = 1 

Assume that x(t}>> 0 a.e •• Then from (4.13) we have X(t) = pi/u1(x(t)). 

So from (5.4) we obtain a.e. 

piu(x(t)) 

i u (x(t}) 
x( t)) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-92-

Let J~[u(~) - u{:)] = c. Then we have a.e • 

. i u{e{t)) u1{x(t))x1(t) 
Pi~i(t) ~ ( ) ~ [ ( ( ) ( ))] ~ ~ - - p ~ t -u(,_~..,..(t'""'l')"""') = c + p e t - ~ t u{x{t)) 

or, summing over i, and using the ~act that the homogeneity o~ degree 
' . . 

a of u means that L ul(~(t))~l(t)/u(~(t)) =a, 
i=1 

[ 
u(e(t))l 

p~(t) 1- u{;(t)) - ac = ap(:(t) - ~(t)) a.e., 

or 

(5.49) [ 
u(e{t))] 

p~(t) 1 +a- u(;(t)) = a(c + p~(t)) a.e. 

Now recalling that ~(t) = ~(t)J~, we have 

u(e(t)) 
1 

a(c + p:(t)) 
(1 + a)~(t) - uCJ:) (~(t)) -a= pf~ a.e. 

It is easy to solve this equation ~or ~(t) i~ a = 1; if not, the 

solution is rather complex. In the case a = 1 we have a.e. 

k(t) = 

so that a.e. 

u(e(t)) 

+ 2u(/e) 

1 [c + pe ( t ) u ( ~ ( t ) ) l 
~(t) = 2 J!: pj; + u(/~) 

; 
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Integrating, and using the fact that f ~ = J!, we obtain 

[ 
Ju(~) j 

c = pf: 1 - u() ~) 

Hence a.e. 

where p = u' (f! ) . So a. e • 

1 1 [ u{e{t)) -/u(e)ll 
p;{t) - p~(t) = 2 p:(t) - pf: 1 + ~ u(J;) ~ 

1 
u(e(t)) 

= ~p~(t) - u{]:) pf~) - c 

So a.e. 

{ 5. 50)· 

since p = u'(/~) and u'(f~>f:Ju(J:> = 1 since u is homogeneous 

of degree one. 

Now, for each price vector p, let up: JR+ -+:JR.+ be the indirect 

utility function at p (see (5.28)) and define yp: T-+ ll\ by 
~0 

p -1 
~(t) = (u ) (u(e(t)) for each t E T 
_o -

{see Diagram 3 for the two good case). Since u is homogeneous of 

degree one, up is homogeneous of degree one in y -~ i.e. up(y) = a.y 
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~----..-u(x) =u(e(t)) = up(~(t)) 
--------~~----~----~-------- - -0 

0 

Dia.e;ram 3 

quantity of 
good 1 -+ 

for some a > 0, for all y E JR+. But we have up(p/e) = u(Je) since 
- -

/~ lies on the efficient ray, so because of the way we normalized the 

p~ice vector, we have 

uP(pf~) u(je) 

a= pf~ = u•(J~)J~ = 1 

So we have ~(t) = u(e(t)), Hence from (5.50), x is a value alloca-
_o -

tion in the economy if a.e. 

(5.51) p~ { t ) - p~ ( t ) = ~ p~ ( t ) - fa ( t ')) - c 

Since p (= u'(/~)) is an efficiency price for ~' this allocation 

can be realized 'in a competitive equilibrium at prices p in which 
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each agent t E T starts with the wealth p~(t) rather than pe(t) 

i.e. he pays the "tax" p:(t) - p~(t). Now, the quantity ~(t) ..o 

measures how badly off t is when he is prevented rrom trading (at 

prices p)--it is his implicit "wealth" in this circumstance. Thus 

(5.51) shows that at the value allocation ~ each agent is taxed at 

the marginal rate of 50% on the increase in his wealth due to the 

possibilities for trade. When utility is transfe~able we have from 

Proposition 5.24 that for all t E T, 

{~q)(S) = lJ(s)!2 [r(T) - n(T)] + Ju(e) + -
2
1 [/[u(x) -p(x-e)] -/u(e)] 

s~ s- ~- s .. 

for each S E C, so that we can see that the value is the result of a 

50% "tax" on J[u(~) - p{~- :>J - JuC:), which can be interpreted as 
s s 

the "gains from trade" since J[u(x) - p{x- e)] is the t.u.c.e. payoff s .. ~ -
of S. Given this, we obtain the result above when all agents have 

the same utility function which is homogeneous of degree one because 

the price is then independent of the efficient allocation chosen, and 

income is proportional to utility: pe{t) - ~(t} measures precisely 
- .. o 

the "gains from trade". 

Aumann and Kurz [1977] established that in general the tax density 

of an agent implicit in the allocations their model generates depends 

solely on his wealth density p~(t); we might hope that in general the 

tax in our cases is levied on pe ( t } - ~ ( t ) . 
- -0 

But this is not so. 

When all agents have the same homogeneous utility function then the 

tax does depend solely on p:(t) and ~(t), but it is not tr~e that .. o 
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agents for which p:(t) - ~p(t) is'the same pay the same tax (a 

calculation for the case a= 1/2 confirms that this is so). The 

tax here depends on the utility loss from being prohibited from trading 

and this utility loss can be different for agents with identical 

preferences, so that the tax is not simply related to the quantity of 

trade in which an agent wants to engage at the equilibrium prices. 

Thus the value allocations in the game which we have studied in this 

chapter involve an "ideal" form of tax on the "value" of trades which 

depends on the cardinal characteristics of the agents' utility functions. 
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CHAPTER 6: Economies in which the Entire Endowment of 
Society Is Available to any Majority 

6.1 Introduction 

Here we shall study the consequences of giving majority coali-

tions as much power as they can possibly expect to have; we shall 

retain the idealization of "majority rule" employed in the previous 

chapter. What we assume is that any coalition containing a majority 

of the population has a strategy which allows it to expropriate the 

entire endowment of the complementary minority, while the latter can 

do nothing to retaliate. We choose to investigate the consequences 

ofthisextreme assumption about the power of majorities for a number 

of reasons. Firstly, we are interested in the range of outcomes which 

can be generated by different assumptions about the strategic game, 

and in studying an extreme case we shall obtain a "bound" on these 

possible outcomes. Secondly, under our assumptions the worth of each 

coalition is independent of its ~ndowment, so that the final allocation 

of each agent is independent of his endowment, and depends solely on 

his utility function. Thus the outcome is "egalitarian" in a cer-

tain sense; it is interesting to see what form of "egalitarianism" 

the Harsanyi-Shapley values give rise to. Finally, it appears to be 

realistic to assume that it is not feasible to threaten to destroy 

some goods (like land), though this is clearly not true of all goods 

(consider, for example, labor-time). Our study of the extreme case 

where no good can be destroyed provides the basis for the study of 
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an economy in which some goods can and some cannot be destroyed 

(see Chapter 7). Note that with respect to majority coalitions our' 

assumption here is the same as that of Aumann and Kurz [1977], but 

that they assume that minorities can threaten to destroy their endow-

menta in response to any threat of a majority to expropriate them, 

thereby preventing the majority from obtaining use of the entire endow-

ment of society. 

Let M be a market. The strategy sets and payoff functions 

of the stategic game r(M) of the economy E = (M, r(M)) which we 

shall studY here satisfY the following conditions: 

(6.1) if SEC is such that )J(S) >1/2, then for every S-allocation 

x of the total endowment e(T) there is a strategy a of 

S such that for every strategy ~ of T\s, 

S 
{

= ut(x(t)) 
h (t) ~ 
-crt = 0 

if t E S 

if t E T\S 

(6.2) if S E C is such that ~(S) ~ 1/2, then for all strategies ~ 

of T\s and all strategies a of S, there exists an S-allocation 

X of the total endowment e(T) such that .. 
s e "t(x(t)) if t E S 

h (t) .. 
.. crt ~ 0 if t E T\S 

and 

(6.3) if S E C is such that ~(S) = 1/2, then for each S-allocation x 

there is a strategy a of S such that for each strategy ~ 

of T\ S there is a T\ S-allocation ~ such that 
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if t E S 

if t E '1\S 

(Note that (6.3) is the same as {5.3).) 

The main result in this chapter is the following. 

Theorem B: Let M be a homogeneous market and assume that r(M) 

satisfies (6.1) through (6.3). Then an allocation x is a value 

allocation of the economy E = (M, r(M)) if and only if it is effi-

cient and a.e. 

p~(t) = pe(T) 

where p is an efficiency price for x. Moreover, such an allocation 

exists. 

Throughout this chapter r(M) will denote a strategic game 

associated with the market M which satisfies (6.1) through (6.3). 

6.2 Optimal Threats 

As in the previous chapter, the first step in characterizing the 

set of value allocations of E is to establish the nature of a collec-

tion of optimal threats in the two-person games between S and T\S 

for each S E c. We first study the case where A{t) = 1 for all 

t E T. Recall that for each S E C the fWlction u8 : ~ -+ 1R+ is 

defined by 

{6.4) =sup <Ju(x): /x =a} 
s - s~ 

for each 
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and that we say that u8(a) is uattained" if it is finite and there 

is an S-allocation x of a such that u8 (a) = /u(~) (see Section 
s 

4.2). Now, define the game v: C _.. :m+ by 

(6.5) v(S) = u8(e(T)) for all SEC 

and let r: C _.. JR+ be the market game derived from M (i.e. 

r(S) = u8{e(S)) for each SEC). Then we have the following. 

Lemma 6.6: Assume that both v(S) and r(S) are attained for 

every SEC. Then for each S·E C there exists a pair 

(o ,-r ) E x8 x X'!\ 8 such that 
0 0 

(6.7) s T\s 
for all a E X , T E X 

s H (o ,T ) is finite, and 
0 0 

v(S) if JJ(S) > 1/2 

fhs = r(S) if l-!(S' = 1/2 
S-OOTO 

0 if JJ(S) < 1/2 

Proof: Consider a coalition S E C with l-!(S) > 1/2. Let ~ 

be an s-allocation of e(T) which attains v(S). Let a be the 
0 

strategy of S corresponding to x given in (6.1). Then 

for all 
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But by (6.2), setting t = t 
0 

(an arbitrary strategy of 'I\ S) , we 

know that there exists an S-allocation z of e(T) such that 

So by the definition of x we have 

Also, from (6.1) we have 

and from (6.2) 

So 

> 

Hence 

s H (a,t ) 
0 

T\S 
for all T E X 

- /hs - { hs < 
-at T S-ato = s 0 

s for all a E X T E XT\S 

s for all a EX , 

H (a ,t ) = h - h s I s { s 
0 0 s-aOTO T s-ooto 

- Jhs I hs s a E X8 , T E Xrt\ S = H (o
0
,t) for all 

-a t -a T s 0 T\S o 
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So (6.7) is satisfied by the pair (a ,T ) when ~(S) > 1/2. 
0 0 

Moreover, 

so H8(a ,T ) = v(S), and we have proved what is claimed in the lemma 
0 0 

in the case when p(S) > 1/2. By reversing the roles of S and T\S 

this completes the proof for those S E C with p(S) < 1/2 also. 

Finally, if p(S) = 1/2 the last part of the proof of Lemma 5.6 

establishes what is claimed, since (5.3) and (6.3) are identical. 

Thus, as we should expect, an optimal threat of a majority is 

to expropriate the resources of its complement and distribute them 

optimally among itself, while a minority can do nothing to prevent this 

expropriation. Define the game q: c -+ JR+ by 

v(S) if p(S) > 1/2 

( 6.8) q(S) = fhs = r(S) if p(S) = 1/2 ... a T s 0 0 

0 if p(S) < 1/2 

As in the previous chapter we have not established that for each S E C, 

(a ,T ) is the only pair of optimal threats. However, once again 
0 0 

since it will turn out that the game defined in (6.8) always possesses 

an asymptotic value we shall, by virtue of Lemma 3.25, locate all the 

value allocations of E by restricting attent.ion to the family of pairs 

(a ,T ) given in Lemma 6.6. Before establishing that q does indeed 
0 0 
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possess an asymptotic value, we shall state two results which we shall 

use later. They are the counterparts of Lemmas 5.17 and. 5.20, and 

since the proofs under the assumptions on r(M) which we are making 

here are the same as those given in Chapter 5, we shall omit them. 

Lemma 6.9: Suppose that HT possesses a finite saddle point. 

Then r(T) = v(T) is attained. 

Lemma 6.10: An allocation x is a value allocation of E = (M, f(M)) 

if and only if there exists a comparison function A such that 

has a finite saddle point for every S E C and 

= JAu{x) 
s- -

for each SEC 
' 

where is the game defined by (3.24). 

Lemma 6.9 is used in the proof of Lemma 6.37. Lemma 6.10 has 

a role parallel to that of Lemma 5.20. Now, from Lemma 6.6 we know 

that in order to characterize the value allocations of E we need to 

study the properties of the grume q defined in (6.8). With that goal 

in mind, we shall now study the game v defined in (6.5). 

6. 3 The Game v 

We shall show here that the game v defined in (6.5) is a 

member of pNA, and can in fact be approximated in the bounded varia-

tion norm by a similar game derived from a finite type market (we shall 

need the latter result in the calculation of the value of the game q). 
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To do so we shall construct a market game which is related to v, 

approximate this game by a finite type market game and then show that 

this generates for us a finite type approximation to v. The finite 

type market we construct contains agents whose utility functions are 

identically zero, and hence in particular not strictly increasing; it 

is at this point that we use Proposition 4.50 (the generalization 

of Proposition 4.24). 

Proposition 6.11: Let M be an integrably subl!near market. 

Let v be the coalitional form derived from M define~ by (6.5). 

Then v E pNA, and for each £ > 0 there is an integrably sublinear 

finite type market M, which differs from M only in the utility func-

tions of the agents, such that 

A 

llv - vii < £ 

"' where v is the coalitional fo~ derived from M defined by (6.5). 

Proof: Let (Z,C',p') be a cop~ of (T,C,p), and let T = Z U T; 

let C be the a-algebra of subsets of T generated by C and C', 

and let p be the measure on (T, C) generated by p and p'. Define 

a general market M in the following way. Let (T,C,p) be the space 

of agents, ut the utility function of t E T, and e the initial 

endowment density, with 

for all X E 0 

for all X E n 

if t E Z 

if t E T 
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if t E Z 

if t E T 

Let the coalitional form of R be denoted by w: C -+ JR+ --i.e. 

w(S) ;;; sup {/u(x): Jx = e(S)} for all s E ~ - .. 
8 s 

Let S E C. Then 

(6.12) w(Z uS)= sup {I u(x): f X= e(Z uS)} 
2lJS - 2lJS"' 

=sup {/u(x): Jx = e(T)} = v(S) 
s .. s-

Now, M is an integrably sublinear quasi-market with zero-utility 

agents which satisfies (4.25), so by Corollary 4.49 we have wE pNA. 

It is easy to verify that from (6.12) we then have v E pNA. 

To demonstrate the second part of the result, fix £ > 0. By 

Proposition 4.50 there is a.n integrably sublinear finite type market 

" M which differs from M only in the utility functions of the agents 

and which has coalitional form w such that 

... 
(6.13) llw - wD < e/2 

Define the market M in the following way. (T,C,~) is the space of 

"' 
agents, : the initial endowment density, and ut the utility rune-

... 
tion of t E T, where ut is the utility function of t E T in M. 
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Let v: C ~ lR be the game derived from M defined by ( 6. 5) • Then 

for S E C, 

( 6.14) ;(S) = sup d~(x): f x = e(T)} 
s ~ s-

"' = w(Z U S) 

" 

"' 
= sup { I u (X } : I X = e ( z u s ) } 

ZLB ZLS-

We shall now show that II v - vii < e • Let 

be a chain (of subsets of T). Then 

(11 c z u so = z c z u sl c ... c z lj sm c z u sm+l = z u T = T 

is a chain of subsets of T. So from (6.13) we have 

< e/2 

.. 
But w(Z) = w(Z) = 0, so 

' 

A 

using (6.12) and (6.14). Hence llv- vii~ e/2 < e, and the proof is 

complete. 
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In the calculation of the value of the game q (in Section 6.5) 

we shall also need a result concerning the nature of the game v in a 

finite type market. Suppose M is of finite type, with ut E {f1 , ... ,fn} 

for each t E T. Let s1 = {t E T: ut = fi} for each i = l, ••• ,n, 

and define the function g: JR~ x Sl -+ E.+ by 

n . 
(6.15) g(y,z) =max { r y 1 fi(x.): xi E Sl for all i = l, ••• ,n and 

i=l 1 

n . r y1x. < z} 
i=l 1 

for each 
. n 

(y,z) E 1R+ x Sl. This maximum is always attained, g is concave, 

nondecreasing, and continuous, and i ag/aa exists and is continuous at 

each a = {y,z) for which i a > 0 (i = l, ••. ,n + i} (see Lemmas 39.9 

and 39.13 of Aumann and Shapley}. The result which we shall need is 

the following. 

Lemma 6.16: If M is of finite type with 'ut E {f1 , .•. ,fn} for 

each t E T, and v is the coalitional form derived from M defined 

in (6.5), then v =go n, where n = (n
1

, ... ,nn)' ni is the member of 

NA 

and 

defined by n
1
(s} = ~(S n s

1
) for each SEC, for each 

g: 1Rn-+ ~ is defined by g(y) = g(y,e(T)} for each + + 

Proof: From Lemma 39.8 of Aumann and Shapley we have 

i = l, ... ,n, 

Ug(z) = g(n(S},z) for each SEC and each z E Sl. Hence v(S) = u8{e(T)) 
.. 

= g(n(S),e(T)) = g(n(S)) for each SeC, completing the proof. 
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(Note that this gives us an alternative way to show that v E pNA 

(cf. Lemma 39.16 of Aumann and Shapley).) For our purposes in this chapter 

we do not need to study the value of the game v, but rather that of the 

game q. However, it. turns out that the value of the game v is of 

some interest, and we discuss. it in Appendix 2, using the results of this 

section. 

6.4 The Value of the Game q 

From Lemma 6.6 the game in which we are interested is q: C ~ m 

defined in ( 6. 8) • Define the game k: C ~ :JR by 

(6.17) 
{

v(S) 
k(S) = O 

if lJ ( s ) > 1/2 
= 

if l!(S) < 1/2 

Define the function g: [0,1] ~ [0,1] by 

g(x) -- {10 
if X ~ 1/2 

if X < 1/2 

Then go lJ E bv'NA, and k = {go 1.1 )•v. In this section we shall argue 

that k and q both possess asymptotic values, and that they coincide. 

We shall then use a result of Aumann and Kurz [1977] (Proposition 3.16) 

to derive an expression for ~k, and hence ~q. 

Let b: C ~ m be the game given by b = k - q. Define the function 

t: [0,1] ~ [0,1] by 

f(x) = t if X = 1/2 

otherwise 
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Then folJ E bv'NA and b = (:folJ)•(v- r). Recall that if v: C-+ m 

is a game, v* denotes the extension of v to the collection of ideal 

coalitions (see Section 3.1). 

Lemma 6.18: If M, is integrably sublinear then q E ASYMP, and 

4lq is given by 

(6.19) 
1 

{~q)(s) = v*(xT/2)1J(S) + f av•(e,s)de 
1/2 

for each S E C 

Proof: If M is integrably sublinear then by Proposition 6.11 

we have v E pNA, so by Proposition 3.16 we have k E ASYMP, with 

4lk defined by 

1 
(4!k){s) = v*{xT/2)1J(S) + f av•(a,s)de 

1/2 
for each S E C 

Now, by Proposition 4.27 we have r E pNAD. Hence v - r E pNAD, 

and b = {f 0 J .. l)•(v - r) E bv'NA•pNAD. So by Corollary 3.8 we have 

bE ASYMP; it is easy to see that (4!b)(S) = 0 for all· SEC. But 

q = k - b. So q E ASYMP; since (~b)(S) = 0 for all S E C, we have 

4lq = ~k, completing the proof. 

6.5 The Calculation of ~q · in Homogeneous Markets 

In order to calculate the value of the game q we know from (6.19) 

that we have to understand the behavior of av*(e,s) for e E [1/2,1]. 

Unlike any market game, which possesses a strong homogeneity property 

independent of the utility functions of the agents comprising the market, 
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the game v can behave quite irregularly unless we restrict the 

characteristics of the utility functions~ making a direct calculation 

of ~q based on (6.19) impossible. For this reason we shall restrict 

our attention here to homogeneous markets (for the definition of which 

see Chapter 4); in this section we shall calculate ~q for such markets. 

The proof of the following result closely follows that of Lemma 39.16 

of Aumann and Shapley. 

Lemma 6.20: If M is homogeneous of degree S E (0,1) and v(T) 

if finite then v is homogeneous of degree 1 - a . 

Proof: We have to show that v*(axs) = a1- 8v(S) for all a E [0,1] 

and all SEC. Fix a E (0,1]. First suppose that M is of finite 

type, with ut E {f1 , •.• ,fn} for each t E T. Then from Lemma 6.16 

we have 

,., 
v(S) = g{n(S)) for each SEC 

where n is an n-vector of nonnegative members of NA, and g: m~ -+- :m+ 

is continuous. Since each component of n is in NA, the domain of g 

can be taken to be compact; denote it by K. Then by the Weierstrass 

approximation theorem (see, for example, Royden [1968], Corollary 29, 

p. 174), for each J = 1,2, ••• we can find a polynomial hj: K + E+ 

such' that 

lhj{y)- g(y)j < 1/j for all y E K 
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But by (3.9)~ (3.10}, and (3.11} we have 

for each a> 0, SEC and j = 1,2, •••. Now let j +~;~sing (3.12) 

we have 

Now, we are assuming that M is homogeneous of degree a, so f 1 is 

homogeneous of degree a for all i = l, •.. ,n, and we have 

,.. n 
g(an(S)) =max { L an.(S)f.(xi}: x. En for all i = l, •.• ,n 

i=l ~ ~ ~ 

and 
n· 
L an.(S)x. < e(T}} 

. 1 ]. ~ 
~= 

n 1-13 
=max { l a n.(S)f.(ax.}: ax. En for all i = l, ••. ~n 

i=l ~ ~ ~ ]. 

n 
and I n.(S)ax

1 
< e(T)} 

i=l ~ 

n 
= a1

- 6 max { l n. ( S) f. ( z. } : z. E G for all i = 1, •.• , n 
i=l ]. ~ ]. ~ 

n 
and I n.(S)z. < e(T)} 

i=l ~ ]. 

1 6" =a- g(n(S)) 

for all SEc. Hence 
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for all SEC. So if M is of finite type we have proved the lemma. 

Now consider a market M which satisfies the conditions of the 

lemma, and is not necessarily of finite type. Then by Proposition 4.18, 

M is integrably sublinear (since v(T) = r(T)), so by Proposition 6.11, 
... 

for each E > 0 there is a finite type ~arket M such that II v - vii < E, 

where v is the coalitional form derived from M defined by (6.5). 

By our argument above, v is homogeneous of degree 1 - B; but the space 

of games in pNA which are homogeneous of degree y for any y E [0,1] 

is closed in BV (see the proof of Proposition 27.12 of Aumann and Shapley), 

so v is also homogeneous of degree 1 - B. This completes the proof. 

This result allows us to say-something about the behavior of 

av*(e,s) as e varies, for a fixed SEC. 

Corollary 6.21: If M is homogeneous of degree B E (0,1) and 

v(T) is finite then av*(9,S) exists for all 9 E (0,1) and is homogeneous 

of degree -B in e for each SEC. 

Proof: This follows immediately from Lemma 6.20, Proposition 4.18, 

Proposition 6.11, and Lemma 3.18. 

Given this homogeneity of av*(e,S) we shall be able to calculate 

(~q}(S) for any SEC using (6.19) if we can evaluate it at one point. 

Now, for any game w, aw*(e,s) is the rate of change of w* at the 

point exT in the direction of Xs· Fix s E C with ~(S) < 1 and 

consider a market M~ in which the space of agents, number of goods, and 
.:> 
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utility function of each agent ar~ the same as in M, but in which the 

endowment density ~S satisfies e8 (s) = 0, e8 (T) = e(T), and for each 

t E T either ~8 (t) = o or ~8 (t) >> o. Let r 8 : C + lR be the 

market game derived from M8 --i.e. 

(6.22) for each R E C 

In this game the ideal coalition BXT has endowment ee(T}, and adding 

a small replica of x8 to exT does not increase this endowment (since 

e8 (s} = 0), but only affects the worth through the addition of the utility 

functions of th~ members of S. But it is also the case for the game v 

that adding a small replica of x8 to exT does not affect the quantity 

of goods available to the coalition (e(T) is available to all coalitions), 

so that the worth is only affected through the additions of the utility 

functions of the members of S. The only difference is that the quantity 

of goods available to exT in the game v is e(T), rather than Be(T) 

in the case of the game r 8 • But for a close to 1 these are close, 

so that under such circumstances this argument suggests that ar~(e,s) 

and av*(a,s) are close. Since is a market game, ar~(e,s) is actually 

independent of e. Thus the above reasoning suggests that av*(e,S) con-

verges to ar~(e0 ,S) as e + 1, for any given 0
0 

E (0,1). We shall 

now make this precise. 

Lemma 6.23: Let M be homogeneous, and suppose . v(T) is finite. 

Fix S E C with lJ(S) < 1 and let r 8 be the market game derived from r-13 

(see (6.22)). Then ar~(e,s) exists and is the same for all 0 E (0,1) and 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-114-

(6.24) lim av•(e,s) = ar~(e0 ,S) 
6-+1 

for any e E (0,1). 
0 

Proof: That ar~(e,s) exists and is the same for a.ll e e (0,1) 

follows from Proposition 4.27 and Lemma 3.19. 

To establish the second claim of the lemma., first consider the case 

where M is of finite type, with ut E {f1 , ... fn} for all t E T. Let 

Si = {t E T: ut = f 1 } for i = l, .•• ,n. Then from the proof of Lemma 39.16 

of Aumann and Shapley we have 

where n1(s) = ~(S n s1 ) for each SEC and each i = l, ••• ,n, so that 

n = (n
1

, •.. ,nn) is ann-dimensional vector of nonnegative members of 

NA and g: m~ x n -+ :R+ is defined in (6.15). Thus we have r 8 = go (n,e8 ), 

where (n,e8 ) is an (n + £)-dimensional vector of nonnegative members 

of NA. Also, from Lemma 6 .16 we have 

v(R} = g(n(R},e(T)) for each R E C 

or v = go n (where g: lR~ -+ E+ is defined by g(y) = g(y ,e{T)) for 

each y E JR~). 

Now, the range of n is n-dimensional (since n(s1 ) is the i-th 

unit vector in 

let 

JRn). 

(with 

Suppose the range of e6 is r-dimensional, and 

1 
z1 E JR+ for i = 1, ••. ,r) be a basis for the 
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smallest linear subspace containing the range of e8 • Then there are 

r 
= L vj (R)zj 

j=l 

such that 

for all R E C 

Then since r
8 

= go (n,e
8

) E pNA {by Proposition 4.23), from Lemma 3.18 

we have 

n r 
= L ni(S)g.(an(T),aes(T)) + r vj(S)g (an{T),aes(T)) 

1=1 ~ j=l zj 

(where gzj is the derivative of g in ~he di~ection zj) for all 

e E (0,1). But vj(S) = 0 for all j = l, ••• ,r because e8(S) = 0, so 

n 
ar~( a ,s) = .l n1 (s)g1 (en(T),ee(T)) 

1=1 ' 

Similarly, from the fact that v = go n E pNA (by Lemma 6.16) we have 

n 
av*(a,s) = r n.(S)g.(an(T),e(T)) 

i=l 1 
J. 

for all a E (0,1). But gi is continuous at positive values of its 

argument for all i = l, ••• ,n, so 

lim lg1(en(T},ae(T))- gi(en(T},e(T))j = o 
a+l 

for all i = l, ••• ,n. Hence 
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lim lar~(e,s) - av•(e,s}l = o 
9-+1 

But ar~(e,s) is independent of 8, so we have established (6.24) in the 

case where M is of finite type. 

Now consider the case where M is not necessarily of finite type. 

We know from Proposition 4.24 that for each € > 0 there is a finite 
... 

type market M
8 

such that Ur8 - r
8

U < e:, where r 8 : C + lR+ is the 

market game derived from M8 . Both r 5 and r 8 are members of pNA 

which are homogeneous of degree 1 (see Corollary 4.26) so that by Proposi-

tion 4.28 we have 

,. 
and = ar~(e,R) 

for all R E C and e E (0,1}. But 

for all R E C (using Proposition 18.1 of Aumann and Shapley). Hence 

for all e: > 0 there exists a finite type market M5 such that 

(6.26) lar~(e,R)- a;~(a,R)j < E for all e E (0,1) and all R E C . 

We shall now use the same sort of approximation argument for the game v. 

By Propositions 4.18 and 6.14, for each e: > 0 there is a finite type 

market M such that llv - ;u < e:, where v: C -.. lR+ is the coalitional 

form derived from M defined by (6.5). By Proposition 6.11 both v 
... 

and v are members of pNA, so by Theorem 3.14 
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,._ 1 ... 
and (tv}{R) = fav•(a ,R)de 

0 

for all R E C. Using Corollary 6.21 we then have 

1 
(tv)(R) = lim av•(e ,R) f e-Bde = av•(e ,R)/{1 - B) 

9+1 0 . 

for each R E C, where B E (0,1) is the degree of homogeneity of M. 

Similarly 

"' ... 
Ctv)(R) = av*(B,R)/(1 - B) for each R E C 

But 

for all R E C. Hence for all e > 0 there exists a finite type market 

M such that 

(6.27) lav*{e,R)- a;*(e,R)I < e for all e e (0,1) and all R E C 

Finally, from (6.25) we have 

lim la;~(e,s)- a;•(e,s>l = o 
9·+1 

Combining this with (6.26) and (6.27) we have 

lim lar~(e,s) - av*(e,s) I = o 
9+1 

Combined with the first cla~ of the lemma, this completes the proof. 
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We are now in a position to calculate ljlq for a homogeneous market. 

Proposition 6.28: Let M be homogeneous of degree B E (0,1) 

and suppose v(T) is finite. Then q E ASYMP and for each SEC 

(ljlq) (S) = 213- 1v(T)p{S) + (1 - 213 - 1 ) f u(x) 
s .. 

where ~ is an allocation at which v(T) is achieved. 

Proof: From Proposition 4.18 and Lemma 6.18 we have q E ASYMP, and 

1 
(ljlq)(S) = v*(xT/2)p(S) + J av*(9,S)d9 for all sEC 

1/2 

From Lemma 6.20 we have v*(xT/2) = (1/2)1~ 13v*(xT) = 213-
1v(T). From Lemma 

6.23 and Corollary 6.21 we have 

1 
J av*(e,s)de 

1/2 

1 
= ar•

8
(e ,s) f e-Bde 

0 1/2 

for all SEC with p(S) < 1, for any e E (0,1). But from Proposition 
0 

4.28. 

for all S E C, since e8 (s) = 0, where (~,p) is any t.u.c.e. of M8 • 

Now, M8 differs from M only in endowment density, so the t.u.c.e.'s 
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of M8 are the same as the t.u.c.e.'s of M. Hence 

(.Z,q)(S) = 2B-lv(T)J,~(S) + (1 - 2B-l) f (u(x) - px)/{1 - B) s • • 

for any SEC with J.I(S) < 1, where (!,p) is a t.u.c.e. in M. But 

i i i if (,!C,p) is a t.u.c.e. in M, a.e. ut(~(t)} = p if ~ (t) > 0 

(see {4.13)). So a.e. 

1 i . . . . . 
PX = I p ~~(t) = I p~x1 (t) = I au~(~(t))~~(t) 

- i=l i . i 
{i: ~ (t)>O} {i: ! (t)>O} 

= But (~(t}) 

using {4.9). Hence 

/{u(x) - px) = (1 - a)/u(x) 
s • - s -

and so for a.ny S E C with J,~{S) < 1, 

(.Z,q}{S) = 2S-lv(T)J,1(S} + (1 - 2B-l)ju(!) 
s 

where x is an allocation at which r 8 (T) = v(T) is achieved. If 

lJ(S) = 1, then 1.1('1\S} = 0, so (cpq)(S) = (4J.q){T} = q(T) = v(T), in 

accordance with the formula for (¢lq)(S) in the lemma. Hence the proof 

is complete. 
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6.6 An Alternative Method of Calculating ~q 

In the previous section we exploited the similarity between the 

game v and the members of a collection of market games to study the 

characteristics of v for a homogeneous market, and consequently calculate 

~q. Here we shall outline, in an unrigorous fashion, a direct method of 

calculating the "derivatives" av*(e,s). Though this method does not 

involve any results about market games, it is closely related to a method 

of calculating the value of a market game (see Aumann [1975], Section 8) 

and essentially merely rephrases the analysis of the previous section. 

We include it here because of the intuitive appeal of its simple line 

of reasoning; we feel that it illuminates rather clearly what is happening 

in the game v. (However, to make our arguments precise would be a major 

task; this is why we have chosen to rely on the relatively straightforward, 

if not transparent, arguments of the previous section to establish our 

results formally.} 

Our line of reasoning here involves infinitesimal subsets dt of 

T; t is ~ representative member of dt. We shall denote the ideal coali-

tion exT (for e E [0,1]) by BT, and throughout treat it as though 

it were an actual coalition. In particular, if v: C + E is a game, 

we shall write the extension v* of v to the collection of ideal coali-

tions simply as v (no confusion will arise). Using this notation, if 

v possesses a value it seems reasonable to suppose that 

1 
<•v)(dt) = /(v(eT) - v(eT\dt))de 

0 
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We shall not justify this, but shall merely rely on its intuitive reason-

ableness (cr. (3.15)). By phrasing Lemma 6.18 in these terms, we obtain 

the following expression for the value of the game q: for any infinites-

imal dt C T, 

1 
(6.29) (cjlq)(dt) = v(T/2ha(dt) + f (v(eT) - v(e'l\dt))de 

1/2 

We shall now go about characterizing the allocations at which v(BT) 

is attained, and calculating v(BT) - v{eT\dt) for all e E [0,1], 

in order to evaluate (~q){dt) for any dt C T. 

In accordance with our viewing BT as a coalition (to which each 

t E T "belongs" ·with ndensity" 9), we have 

v(BT) = max { f u(x): J ~ = e(T}} for all e e [0,1} 
-! BT • OT 

To avoid complications, we shall assume throughout this informal 

demonstration that any maximizer !eT: T -+ 'm! satisfies x
9T >> 0 a.e •• 

Then under our assumptions on u a necessary and sufficient condition 

eT R. • for x : T -+ lR+ to be a maximizer is that there exist a constant 

taT E m1 such that 

and 

( 6. 31) f !-eT = e { T) 
BT 

eT t for almost all t E T 
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aT R. Henceforth ~ : T -+ lR+ will denote such a maximizer. 

Claim 6.32: For dt C T and 6 E [0,1] we have 

6T 6T( 6T (6.33) v(eT) - v(eT\dt} = [ut(~ (t)) - ut(~ t))~ (t)]~(dt) 

Demonstration: We have v(6T) = f u(x6T). Consider the effect of 
6T -

dt leaving ST. 6T\dt gains the resources which dt was consuming, 

8T namely ~ (t)~(dt), and loses the utility dt received from them, 

6T namely ut(~ (t))~(dt). Given (6.30), the best way for ST\dt to use 

8T the resources ~ (t)~(dt) is to distribute them evenly, leading to a gain 

in utility .for ea,ch ds e 6T\dt of (t 8T~ST(t)~(dt)/J.I(8T\dt)ht(ds) 

(using (6.30) again), so that the gain in utility to ST\dt is just 

t 6Tx6T(t)J.I(dt). Hence .. 

or 

(using (6.30)), as we claimed. 

From Claim 6.32 and (6.29) we have 

( cf!q)(dt) 
1 

= v{T/2)~(dt} + J {[ut(x8T(t)) - ut'(x8T(t))x8T(t)]J.I(dt)}de 
1/2 - .. 
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As before, it is the possibly irregular behavior of the integrand which 

prevents us from calculating (+q)(dt) for all markets. As in the 

previous section, we shall restrict attention to homogeneous markets. 

Claim 6.34: If M is homogeneous then x9T = xT/6 for all - -
e e (o,l]. 

Demonstration: We have ut(~T(t)/6) = e1-6ut(~T(t)) = e1- 6tT 

by (6.30) and /xT/6 =6/xT/6 = JxT = e(T) by (6.31). So xT/6 
6~ T- ~ · 

Hence 6T T 
~ = ~ /e. 

Claim 6.35: If M is homogeneous of degree Be (0,1) then 

for dt c T, where xT is an allocation at which v(T) is achieved. 

Demonstration: From Claim 6.34 we have 

from Claims 6.32 and 6.34 we have 

(using the homogeneity of ut once again). Hence by (6.29) 
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. 1 
{'llq)(dt) = 26- 1v(T)1J(dt) + (1- 6)ut(xT(t))1J(dt) I e-6de 

- 1/2 

= 2B-lv(T)1J(dt) + (1- B}ut(~T(t}}IJ(dt)(l-26 -1 )/(1- B) 

as we claimed. 

Claim 6.35 can be seen to be a translation or Proposition 6.28 

into the language we are using here. This completes what we have to 

say about this approach to the calculation of $q. 

The Proor or Theorem B: The Existence and Characterization or the 
Value Allocations of the Economy (M, r(M)) when M Is Homogeneous 

First we shall prove the following, which constitutes the major 

part of Theorem B, the main result of this chapter. 

Theorem 6.36: Let M be a homogenous market. Then an allocation 

~ in M is a value allocation of the economy E = (M, r(M)) if and 

onlY if it is efficient and a.e. 

px ( t ) = pe ( T) , 

where p is an efficiency price for x. 

To prove this result we shall use the following, which is modelled 

on Proposition 14.10 of Aumann and Kurz [1977]. 

Lemma 6.37: Let M be a homogeneous market, x an allocation, 

and ). a comparison function. Then we can choose a finite saddle 
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s point (a 0 ,~ 0 ) for HA for each SEC so that the game qA defined . 
.. 

in (3.24) has a val~e ~qA which satisfies (~q~)(S) ~ ~~u(~) for 

each S E C if and only if ~ is efficient with efficiency comparison 

function A and 

Proof: First suppose that we can choose a finite saddle point 

for HA_s for each SEC in such a way that (~qA)(S) = J~u(~) for 
- s 

each S E C. Then from Lemma 6.9 we know that vA (T) = rA (T) is finite, 

and we have J~u(~) = (~qA)(T) = qA(T) = vA(T} (using Lemma 6.6 and - -
the fact that qA(T) is independent of the collection of optimal threats 

we choose (see Section 3.2)). Thus x is an allocation at which vA(T) 

is achieved. Now since v~(T) is finite and M is homogeneous, so that 

~M is homogeneous, from Proposition 4.18 we have that XM is integrably 

sublinear. Hence rA (S) and vA(S) are attained for all SEC, so 

that from Lemma 6.6, Proposition 6.28, and the !act that ~q~ is 

independent of the collection of optimal threats which we choose to define 

qA (see Lemma 3.26), 

= 26- 1
v}.. (T)lJ(S) + (1 - 2B-l) J ~u(~) 

s 
for all SEC 

where B is the degree of homogeneity of M, and hence of ~M. But 

we are assuming that (~q~)(S) = ~~u(~) for each SEC, so 

JAu{x) 
s- -

' 
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J ~ u ( ~) = 1J ( S )f ~ u ( ~) for all S E C • 
s 

Hence ~(t)ut(~(t)) = /~u(~) a.e., where ~ is an allocation at which 

vA(T) is achieved, and hence is efficient. This completes the proof 

of necessity. 

Now suppose that ~ is efficient with efficiency comparison func

tion ~ and a.e. ~(t)ut(~(t)) = J~u(~). Then vA(T) = J~u(~) is 

finite, so by Proposition 4.18, ~M is integrab1y sublinear. Hence 

vA(S) and rA(S) are attained for all SEC (Proposition 4.16) and 

so by Lemma 6.6 we can choose a finite saddle point (a , T ) for · H
8 

o o ;\. 

for each SEC such that the gwne qA defined in (3.24) is given by 

if ).I(S) > 1/2 

if ).1(8) = 1/2 

if ).I ( s) < 1/2. • 

Then from Proposition 6.28 we have 

(cjlq:\ )(s) = 2a-1v:\ (T)j..t(s) + (1 - 2a-l) f ~u(~) for all s e C 
s 

But we are assuming that ~(t)ut(~(t)) = J~u(~) a.e., so 

(cl>q:\ )(s) = 2a-1p(s)j~u(~) + (1 - 2a-l) f ~u(!) 
~ s 

= f:\u(x) for every S E C 
s~ ~ 

This completes the•proof. 
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We also need the following. 

Lemma 6.39: Let M be a homogeneous market, x an allocation 

and ). a comparison function. Then ~ is efficient with efficiency com

parison fUnction ~ and (6.38) is satisfied if and only if ~ is 

efficient and px(t) = pe(T) a.e., where p is an efficiency price 

for x. 

Proof: Suppose that ~ is efficient with efficiency comparison 

function >. and a.e. Then there exists 

such that (~,p) is an efficiency pair for x, so that a.e. 

(see (4.13)}. Hence a.e. 

= t ~(t)u!(~(t))~i(t)ut(~(t)) 
{ i: X~ ( t }> 0} 

= aut{~(t))J~u<:c> 

using (4.9) and our assumption that ~(t)ut(~{t)) = J~u(~) a.e., where 

a is the degree of homogeneity of M. But since >.(t} > 0 a.e., ut is 

increasing for all t E T, and J: >> 0, we have J~u(~) > 0, so from 

(6.38} we have ut(~(t)) > 0 a.e. Hence 

p~(t) = BJ~u(~) a.e. 
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So· pf~ = pe{T) = aJ~u(~) a.e., and hence p~(t) - pe(T) a.e., as 

was to be shown. 

No~ assume that p~{t) = pe(T) a.e., where p is an e~ficiency 

price ~or x. Let (~,p) be an e~ficiency pair for x. Then since 

e(T) >> 0, x(t) '0 a.e,, so that ~{t) > 0 a.e.--i.e. ~ is a comparison 

function. Then using (4.13) and (4.9) we have a.e. 

pe{T) L p
1

x1{t) = 
{i: xi(t)>O} ~ 

= a~ ( t ) ut ( ~ { t ) ) 

(where a is the degree of homogeneity of M), so that J~u(~) = pe(T)/a, 

and hence ~(t)ut(~(t)) = /~u(~) a.e., completing the proof. 

Proof of Theorem 6.36: The result follows immediately from Lemmas 

6.10, 6.37, and 6.39. 

Theorem 6.36 can be rephrased with the aid of the following defini-

tion. An allocation x is an equal income competitiv~ allocation of M 

if it is a Walrasian allocation of the market M' which differs from M 

only as regards the initial endowment density, which is given by 

~'(t} = e(T) for all t E T. 

Proposition 6. 40: Let M be a hol!logeneous market. Then an alloca-

tion ~ is a value allocation of the economy E = (M, r(M)) if and 

only if it is an equal income competitive allocation of M. 
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Proof: To say that p is an efficiency price for an allocation 

x means that the maximum of ut(x) over {x En: px ~ p~(t)} is a.e. 

achieved at x = x(t). So Theorem 6.70 implies that x is a value 
~ ~ 

allocation if and ·only if max {ut (x): x e n and px ~ pe(T)} is a. e. 

achieved at x = x(t). But this just says that x is an equal income 

competitive allocation of M. Conversely. if x is an equal income 

competitive allocation of M then it is efficient, and the maximum of 

ut(x) over {x En: px ~ pe(T)} is a.e. achieved at x = x(t). But 

then given our assumptions on ut' px(t) = pe(T) a.e. and p is an 

efficiency price for x. 

Proof of Theorem B: The result follows immediately from Theorem 6.36, 

Proposition 6.40, and Theorem 2 on p. 151 of Hildenbrand [1974] which 

implies that M possesses an equal income competitive allocation. 

6.8 Discussion 

As we explained in Section 6.1 our assumptions here give majority 

coalitions as much power as they can possibly hope for. The worth of 

a coalition S depends solely on its size (~(S)) (in addition to the 

utility functions of its members) and not at all on the resources at its 

disposal (e(S)), so that naturally the set of value allocations has 

the same property. For the class of utility functions which we are con-

sidering, we have concluded that what actually happens is that an agent's 

"after-tax income" is also independent of the precise utility function 

which he possesses: the outcome is, in this sense, the most "equaltt 
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possible. It is interesting that it is this form of equality to which 

the set of value allocations gives rise--even though this solution con

cept rests on the cardinal properties of the utility functions of the 

individuals in the market, the outcomes predicted here have more to do 

with the equal allocation of goods. As under the assumptions of Aumann 

and Kurz [1977], the outcomes here can obviously be supported by a 

system of wealth taxes in which the tax each agent t.E T pays is 

p~(t) - pe(T) (i.e. the marginal tax rate is 100% and there is a lump-sum 

subsidy of pe(T)). 

We cannot in general make the calculations of the previous sections 

for arbitrary nonhomogeneous markets. Howev~r, there is one case for 

which we can quite easily give a partial characterization of the set of 

value allocations. If every individual has the same utility fUnction 

then we can actually calculate v{S) for each S E C (where v is the 

game defined in (6.5)); this allows us to isolate some of the value 

allocations of the economy. In fact, we have the following. 

Lemma 6.41: Let M be a market, and suppose that there is a com

parison function ~· and a utility function u (i.e. a function satistying 

(4.2) through (4.5)) such that ~*(t}ut = u for all t E T. Then if 

x is an efficient allocation in M for which a.e. 

(6.42) p~(t) = pe(T) 

where p is an efficiency price for ~,.then it is a value allocation 

of the economy E = (M, r(M)). 
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Note that if u is strictly quasi-concave then if ~ is effi

cient and a.e. satisfies (6.42), so that px(t) is a.e. constant, we 

must have ~(t) = e(T) a.e .. 

Proof of Lemma 6.41: First note that vA*(S) and rA*(S) are 

attained for all SEC and in fact (since u is concave by assumption), 

(where v: 

v~*(S) = p(S)u(e(T)/p(S)) for each SEC 

c -+ JR+ 
I.. 

is the game defined in (6.5)), and 

rA*(S) = p(S)u(e(S)/p(S)) for each SEC 

So b,y Theorem B of Aumann and Shapley we have vA* E pNA and rA* E pNA. 

Now assume that ~ is an efficient allocation in M which a.e. 

satisfies (6.42). Since both vA*(S) and rA*{S) are attained for every 
... 

SEC, by Lemma 6.6 we know that H~* has a finite saddle point for 

every SEC, and the game qA* defined b,y (3.24) is given by 

if p(S) > 1/2 
if p(S) = 1/2 
if p(S) < 1/2 

Since vA* E pNA and ~A* E pNA we can argue as in the second part of 
- -

the proof of Lemma 6.18 that the value ~qA* of the game qA* is the - ... 
same as the value .j>kA* of the game kA*: C -+ JR+ defined by 

if p(S) > 1/2 

if p(S) < 1/2 
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But k~* = u(e(T))(f o IJ) where f: [Otl] _., [0,1] is defined by 

{

xu(e(T}/x)/u(e(T)) 
fbc) = 

0 

if X E (1/2, 1] 

if X E [0, 1/2) 

The function f is of bounded variation and is continuous at 0 and 1. 

Also f(O) = 0 and f(l) = 1, so by Theorem A of Aumann and Shapley and 

Theorem 3.7 we have 

(6.43) for each SEC 

But from (6.42) and the fact that x is efficient we have u(x(t)) 

= ~*(t}ut(~(t)) = u(e{T)) for all t E T, so from (6.43) we have 

= J).*u(x) 
s- -

for each SEC 

So by Lemma 6.10, ~ is a value allocation of the economy E = (M, r(M)), 

completing the proof. 

We cannot give a full characterization of the set of value allocations 

under the assumptions of Lemma 6.41 because in order to do so we should 

need to calculate the value of the game q). for comparison functions 

~ ~ ~*; the restriction that for one comparison function all the weighted 

utility functions are identical gives us no help in this calculation. It 

may be that there is a comparison function ~ ; ~* for which 

(~q).}(S) = J~u(~) for each 6 E c, for some allocation x. 
- s 

A question which arises is whether we can give an example of a (non-

homogeneous) economy for which we can argue that none of the equal income 
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competitive allocations is a value allocation. This we shall now do. 

Let M be a market in which the agent space is (T,C,p) and 

there are 1 goods, with 1 = n + m. Let ft be a utility function 

on the consumption set which is homogeneous of degree a E {0,1) 

for every t E T, and let gt be a utility function on the consumption 

set which is homogeneous of degree BE (0,1) for every t E T. 

Let the utility function of t E T in the market M be ut: C ~ m+ 

defined by ut (x) = ft (x1 ) + gt (x2 ), where x = (xl'x2) with x1 E lRn 

m and x2 E JR ; denote the initial endowment density of t E T by 

~(t) = (~1 (t),!2(t)), with : 1(t) E lRn and : 2(t) E JRm. It is con

venient to give names to the two "sub-markets" involved here: let M1 

be the market with agent space (T,C,P) and n goods in which the utility 

fUnction and initial endowment density of t E T are ft and : 1 (t) 

respectively, and let M2 be the market with agent space (T,C,p) and 

m goods in which the utility function and initial endowment density 

of t E T are respectively. The fact that the utility 

outcomes in the market M are the sums of outcomes in the ~wo homogeneous 

markets M1 and M2 means that we can immediately deduce from Proposition 

6.28 that the game q defined in (6.8) is a member of ASYMP, and for 

each S E C 

($q)(s} = 2a-1v1(T)u(S) + 2B-lv2(T)u(S) + (1- 2a-l)Jr(~1 ) 
s 

+ (1 - 2B-l)fg(~2) 
s 
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where vi is the game defined in (6.5) which is derived from the market 

Mi for i = 1,2, and ~i is an allocation at which vi(T) is achieved 

for i = 1,2. Given this, we can argue as in Section 6.7, exploiting 

the homogeneity of each ft and gt once again to deduce that ! = (!1'!2) 

is a value allocation of the economy E = (M, f(M)) if and only if it 

is efficient and a.e. 

(6.44) 

Now, to 

say that p is an efficiency price for ! means that there exists a 

comparison function ~ such that (!,p) is a t.u.c.e. in ~M (see 

Section 4.1). And if {~,p) = {(~1 ,~2 ),{p1 ,p2 )) is a t.u.c.e. in ~M 

then from the definition of a t.u.c.e. (see (4.14)) it is ~ediate that 

(~1 ,p1 ) is a t.u.c.e. in ~M1 , and (!2,p2 ) is a t.u.c.e. in ~M2 • We 

shall now argue that in general it is not the case that a solution x to 

(6.44) involves P!(t) = pe(T); then we sh~l provide a specific example. 

If p~(t) = p1~1 (t) + p2~2 (t) = pe(T) = p1e1 (T) + p2e2(T) a.e. then 

from (6.44) we have a.e. 

But in general there is no comparison function . 
~ such that there is a t.u.c.e. (!1 ,p1 ) in ~M1 such that p1! 1(t) 

= p1e1(T) a.e. and a t.u.c.e. (~2 ,p2 ) in ~M2 such that p2~2(t) = p2e2(T) 
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a.e., and hence in general there is no solution ~ of (6.44) for 

which p~(t) = pe(T) a.e •• To see this in a specific case, let n = m = 1 

and suppose that for each t E T, 

and = tx 
1/3 

If we are to have p1! 1 (t) = p1e1 (T) a.e. then, given that n = 1, we must 

have ~1 (t) = e1 (T) a.e •• But ft is the same for all t E T, so for 

(~1 ,p1 ) to be a t.u.c.e. in ~M1 we must have ~(t) = 1 for all t e T. 

Now it is easy to verify that there is a unique t.u.c.e. (~2 ,p2 ) in M2, 

given by (~2 ,p2 ) = (22/ 3/3(5e2(T)) 213, 2t2/ 3/5e2(T)); this gives 

where c ; 0 is a constant, so that p2(~2 (t) - e2(T)) ; 0 a.e. and 

hence p~(t); pe(T) a.e •• 

If agents have utility functions which are not homogeneous of the 

same degree, or of a special form like those of the previous paragraph, 

we cannot calculate the set of value allocations directly. In the trans-

ferable case the value of an agent depends on the contribution he makes 

to the worth of "diagonal" coalitions, and it is clear that agents whose 

utility fUnctions have a relatively high marginal utilit¥ throughout will 

have a high value, while those with a relatively low marginal utility will 

do poorly. However, what is crucial in the nontransferable case is the 

"equilibrium" value which the comparison function takes on; the fact that 
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~he way that this depends on the structure of the economy is qui~e complex 

makes the nonhomogeneous case very difficult to analyze. 

What we have concluded from our study in this chapter is that if, 

in an economy with majority rule, every majori~y coalition has as much 

power as it can possibly expect to have (see assumptions (6.1) through 

(6.3}), in a certain class of economies the resulting outcome is "egalitarian" 

in the sense that the tax sys~em gives every agent the same wealth (see 

Theorem B). Our study of this extreme case gives us a 11bound11 on the 

possible outcomes we can generate from the basic model. It also provides 

the basis for the study of the more realistic case in which the members 

·or a minority can prevent their complement from making use of some of the 

goods (like labor-time) with which they (the members of the minority) are 

endowed, but not from making use of others (like land, which cannot be 

"destroyed"); it is this case which we s~udy in the next chapter. 
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CHAPTER 7: An Application: An Economy Containing Labor and Land 

7.1 Introduction 

In this chapter we use the results of Chapter 6 to study an econo~ 

in which there are two sorts of goods. On one sort we make the assumption 

of the previous chapter that if an agent has an endowment of them; he 

cannot prevent a majority coalition of which he is not a member from 

expropriating this endowment. We might think of the flow of land services 

as being a typical good of this type: since land itself cannot be 

destroyed, a majority coalition can expropriate it and hence obtain the 

flow of services from it. (In Chapter 5 we assumed that it is only 

necessary to withdraw a good from the market to avoid taxation; in the 

case of land we are assuming here that whether or not it is offered in 

the market it can be taxed.) On the other sort of goods we make the assump

tion that an agent can destroy his endowment in order to avoid expropria

tion by a majority coalition. A typical member of this group of goods 

might be labor-time: a worker can always "destroy" his labor-time by 

going on strike. On this set of goods for simplicity we actually make 

the assumption of Aumann and Kurz [1977], rather than that of Chapter 5 

above--i.e. if an agent chooses not to destroy his endowment then a majority 

can expropriate it in its entirety, and not just that part of it which 

he offers in trade. We could say that the difference between the two sorts 

of goods lies in their "elasticity of supply"--though no prices are involved 

here. Thinking of the difference in such terms, we can compare our results 

with those of classical public finance. where the question asked is at 
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what level should tax rates be set (to meet a certain objective). The 

conclusion there is that for an efficient outcome tax rates on goods 

with inelastic supply (like land) should be high. Here, where we are 

asking what the tax rates will be, given the power endowed upon individuals 

and groups by their possession of certain goods, the conclusion we reach 

is similar: the goods which cannot be destroyed (the supply of which is 

"inelastic") will be taxed at high rates (see the discussion in Section 7.4). 

The reasons for the high taxes in the two cases are different, however. 

In the classical theor,y the prescription is to tax goods in inelastic 

supply at high rates because to do so will make no difference to the quan-

tity of the goods which is available in the market, so that any ineffi-

ciency will be minimized. Here, the theory predicts high tax rates on 

such goods because their owners can do nothing to reduce the quantity 

of them which is available for expropriation by any majority coalition, 

so that their ownership conveys no special benefits. 

We shall now formally state the assumptions we shall make about the 

strategies available to the groups in the economy. Let M be a market. 

The endowment density of t E T is :<t) = (~( t) ,'E(t)), where a(t) E JR~, 

t.!_)(t) E m:, and n + m = t. If x En, we shall consistently write 

x = (y,z), where it is to be understood that y E JR~ and We 

make the following assumptions about the strategic game r(M), Which 

defines the economy E = (M, r(M)): 

(7.1) if S E C is such that p(S) > 1/2, then for every S-allocation 

~ = (l,:) of (a(S),w(T)) there is a strategy a of S such 

that for all strategies '1' of T\ S 
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if t E S 

if t E T\S ; 

if S E C is such that p(S) ~ 1/2, there is a strategy ~ of 

T\s such that for every strategy a of S there is an 

S-allocation x = (y,z) of (a(S),oo{T)) such that 
~ ~ ~ 

if t E S 

if t E T\S 

if SEC is such that p(S} = 1/2,·then for each S-allocation 

x there is a strategy a of S such that for each strategy 

~ of T\S there is a T\S-allocation i such that 

if t E S 

if t E T\S 

(Note that (7.3) is the same as (5.3) and (6.3).) We shall now stat·e the 

result which will be demonstrated in this chapter. We shall need to 

assume that each utility function ut for t ET is of a rather special 

form: we shall make the following assumption.2/ 

for all t E T, ut(y,z} = ft{y) + gt(z) for each (y,z) en, 

where ft satisfies (4.6) and (4.7) and gt satisfies (4.8) 

(We are also of course maintaining assumptions (4.2) through (4.5).) 
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Proposition 7.5: Let M be a market satisfying (7.4). Then 

if r (M) satisfies (7.1) through (7.3), an allocation x = (y,z) is 
~ ~ ~ 

a value allocation of the economy E = (M, r(M)) if and only if it is 

efficient and a.e • 

. (7.6) 

where (~,p) = (~, (p1 ,p2 )) is an efficiency pair for ~ = (y,~). 

Throughout th~s chapter r(M) will denote a strategic game asso

ciated with the market M which satisfies (7.1) through (7.3). 

7.2 Optimal Threats and the Value of the Game q 

To find a collection of pairs of optimal threats in the games between 

S and T\s for each S E C we can use an argument identical to that 

in Section 6.2. Doing so (we shall not repeat the argument here), we 

find that the game defined by this collection of optimal threats is the 

game q: C -+- lR+ defined by 

(7.7) 
{

w(S) 

q(S} = ~(S) 

if l-1( S) > 1/2 

if l!(S) = 1/2 

if l!(S) < 1/2 

where w: C -+- lR+ is the game defined by 

w(S) = u8(a(S),w(T)) for each S E C 

and r: C -+- lR+ is the market game derived from M. Now, for eacp 

S E C, 
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w(S) = sup· <f f(y) + I g{!}: (/r, I~) = (a(S) ,w(T)')} 
s ~ s s s 

=sup· {/f(y): Jy = a(S)} +sup {/g(z}: Iz = w(T)} 
s .. s- s - s- . 

= rf(S} + vg(S) , 

where r f: C -+ JR is the market game derived from the market Mf with 

agent space (T,C,p), n goods, utility ~ctions 

initial endowment density is the game 

defined as in (6.5) which is derived from the market M with agent space 
g 

(T,C,JJ), m goods, utility functions gt: m! -+JR+' and initial endowment 

density !!;I: T -+ :m!. If M is integrably sublinear, r f(S) and v g(S) 

are attained for every S E C, and we have r f E pNAD n pNA 1 by Proposi

tion 4.27, and vg E pNA by Proposition 6.11. Hence wE pNAD n pNA', 

and we can conclude as in Section 6.4 that q E ASYMP and that the value· 

ljlq of' q is identical to the value of the game k: C-+ lR+ defined by 

{

w(S) 
k(s) = 

0 

Now define games kf! 

kf(S) = 

rf(S) 
0 

and r (S) 
ks(s) • 

0
g 

if p(S) > 1/2 
= 

if p(S) < 1/2 

c -+ JR and k : c -+ JR+ by 
+ g 

if p(S) > 1/2 

if p(S) < 1/2 

if JJ(S) ~ 1/2 

if JJ(S) < 1/2 
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Then k = kf + kg~ so we have ~q = ~kf + ~kg. From Propositions 3.16 

and 4.28 we have an expression for ~kf when M is integrably sublinear, 

and from Proposition 6.28, we have an expression for 4lk in this 
g 

case. Combining these we obtain 

+ (1 - 2B-l) f g(z) 
s ~ 

for each SEC '· 

where (!,p1 ) is a t.u.c.e. in Mf and z is an allocation in Mg at 

which v
8

(T) is attained. From this last fact there exists p2 Em:+ 
such that <:,p2 ) is a t.u.c.e. in M

8
• But then ( (!,~) ,(p1 ,p2 )) is 

a t.u.c.e. in M, so we have 

(7.8) (~q)(S) = [ff(!)/2 + 2B-l g(~)]~(S) + f[f(r) - p1(! - ~)]/2 
s 

+ (1-1-1 ) J g{z) for each SEC 
s -

7.3 The Characterization of the Value Allocations of the Economoc 
(M, r(M)) 

Once again we can reason exactly as we did in Chapter 6; we shall 

only sketch the argument here. Let ~ be a comparison function. Then 

from (7.8) we have 
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(7.9) (~qA)(S) = [J~~(~)/2 + 2B-lf~g(~)}p(S) + /[~f(~) - p1(~ - ~)]/2 
~ s 

+ (1 - 2B-l)jAg(z) for each SEC , 
s"' ~ 

where (~,p) = ((~,~},(p1 ,p2 )) is a t.u.c.e. in AM. Now assume that 

(~q~)(S) = l~u(~) ~or each SEC. Then /~u(~) = (~q~)(T) = qA(T) 

= wA(T) = rA(T), so from (7.9), we have 

(7.10) j~(f(y) + g{z)) = 
s"' .. -

= [j~r(~)/2 + 2B-lJ~g(~)]p(S) + ~[~f(~) - p1(~- ~)]/2 

+ (l-2B-l>J~g(~) for each SEC , 
s 

so that a.e. 

(7.11) 

where (~,p) = ((;r,:),(p1 ,p2 }} is a t.u.c.e. in AM. Conversely, if 

(7.11) is a.e. satisfied we can deduce (7.10) by integrating over S, 

and use (7.9) to deduce that (!qA)(S} = f~u(~) for all SEC. We can 

prove a result analagous to Lemma 6.10 under assumptions (7.1) through 

(7.3), so we have established the following (cf. Lemma 6.37 and Lemma 6.10). 

Proposition 7.12: An allocation x is a value allocation of 

E = (M, r(M)} where M satisfies (7.4) if and only if ~ = <r,~) is 

efficient with efficiency pair (~, (p
1

,p
2

)) and (7.11) is a.e. satisfied, 
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We shall now further exploit the homogeneity properties of 

gt for each t E T. 

Lemma 7.13: Let M be a market satisfying (7.4) and let x = (y,z) - - .. 
be an efficient allocation in M with efficiency pair (A,p) = (~, (p1 ,p2 )). 

Then ~ a.e. satisfies (7.11) if ~d only if it a.e. satisfies (7.6). 

Proof: Suppose ~ a.e. satisfies (7.11). Then since (~,p2 ) 

is an efficiency pair for z in M we have 
g 

. i . i 
~ ( t ) ~ ( : ( t) ) : ( t ) = p 1 z ( t ) for i = 1, ••. ,m, for each t E T 

(using the homogeneity of degree B of each gt). So from (7.11) we 

have a.e. 

~(t)(ft(!(t)) + gt(~(t))) - (1- 2B)~(t)gt(:(t)) = 

= ~(t)ut(!(t)) - (1 - 26 )p2~(t) 

= J~f(!} + J~s<;>- ((1- 26 )/a>J~s(~) + p1 (~(t)- ~(t)) 

= f!u(~} ((1- 2B)/s)p2w(T) + p1(~(t) - !(t)) 

which gives us (7.6). Conversely, if ~ a.e. satisfies (7.6) then we 

can reverse this argument to show that ~ a.e. satisfies (7.11). This 

completes the proof. 

To take w(T) = 0 is formally illegitimate since it violates (4.1), 

but if we do so we can assume that ~(t} = 0 a.e., and (7.6) reduces to 
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the characterization provided by Aumann and Kurz [1977]--which is as 

it should be since in this case every good which exists in the economy 

can be destroyed. Similarly if we take a(T) = 0, (7.6) reduces to the 

characterization given in Chapter 6, namely p2~(t) = p2w(T) a.e. (since 

B < 28 - l for all BE (0,1)). 

Now, since p is an efficiency price for x this allocation can 

be achieved as a competitive a'llocation after wealth has been redistribubed 

so that t E T has p~( t) rather than the amount p~( t) with which he. 

began; thus x can be achieved as a competitive allocation in which 

t E T pays the "tax" p:(t) - p~(t). From (7.6) we can see that, given 

the characteristics of the other agents, the vector of goods which t E T 

receives in the game we are considering depends only on p1~(t) and ut 

(everything else in the equation is a constant). Hence pe(t) - px(t) 
~ ... 

equals p2~(t} plus a function of ut and p1~(t) (and the characteristics 

of the other agents)--i.e. the tax rate on the value of the second group 

of goods is 100% (all of p2~(t) is paid in tax), while that on the 

first group is in general less than 100%. In order to study the size of 

the taxes on this first group we shall now consi4er a class of examples. 

7.4 A Class of Examples 

We shall consider here the economy derived from a market in which 

ut = u for all t E T, and 

(namely a) as each gt = g. 

f = f is homogeneous of the same degree 
t 

(As in the examples considered in Section 

5.6, f does not actually satisf.y our boundedness assumption; however, we 

can reason as we did there that our arguments will still locate the value 
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allocations of the economy we are studying.) Now u is homogeneous 

of degree B ( E { 0 ,1)), so all efficient allocations in M consist 

of bundles lying on the ray from the origin through the aggregate initial 

endowment Je: = <J'=,J«E>· So we can set p = u'{{e) and 

{7.14} ~{t) = ~{t) Je: , where ~: T ~ lR+ is measurable and J~ = 1 

Assume that ~(t) >> 0 a.e •• 

so from (7.6) we have a.e. 

(where c = JAu{x)), so a.e. - .. 

i i Then from (4.13) we have ~(t) = p /u (~(t)), 

p1~1 {t) = [p1 (~(t) - ~(t)) + ((2B- l)/B)p2(w(T) ~(t)) + c] 

ui(~(t) )~i(t) 
X u(x{t}} 

{s~nce ~(t} >> 0 a.e., u(~(t)) > 0 a.e.). Hence, summing and using 

the homogeneity of u, a.e. 

p:5{t) = p1~(t) + p2~(t) 

= B[p1 (~(t) - ~{t)) + ((2B- 1)/B)p2(w(T) - ~(t)) + c] 

so a.e. 
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a where c' = c + (2 - l)p2w(T). Now using (7.14) we have a.e. 

so a.e. 

(7.15) 

where p = (p1 ,p2 ) = u'(/~) = u'(/~,J~) is an efficiency price for 

~ = {!,~). From this last fact the allocation x can be achieved in 

a competitive equilibrium in which t E T pays the "tax" !(t} = p:(t) 

- p~(t). We shall now study these taxes in more detail. We have a.e. 

x (p1a(T) + p
2
w(T}) 

( 

B(p1a(T) + p2w{T)) ) 
= 1- p (a(t)- a(T)) 

(1 + B)p1a(T) + 2Bp2w(T) 1 ~ 

· + p2 (~(t) - w(T)) 
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So a.e. 

(7.16) 

Thus, as we argued above in general, the tax rate on the wealth p2~(-t) 
associated with the second group of goods is 100%, while the tax rate 

on the wealth p1~(t) associated with the first group of goods is 

p1a(T) + (2a- a )p2w(T) 

(1 + B)p1a(T) + 2ap2w(T) 

Now, if we assume that all goods can be destroyed--i.e. the economy satisfies 

the assumptions of Aumann and Kurz [1977]--then from Section 10 of that 

paper we know that the tax rate on wealth i-s 1/ ( 1 + B) • We shall now 

compare this with !l (t). We have 

l/(l +B) = p1a(T) + 2
6
p2w(T)/(l + B) 

!l(t) p
1
a(T) + (2B- B)p

2
w(T) 

a e (o,l), so 

1/(1 +B) > 1 
!l(t} 

Thus in this class of examples the tax rate on wealth derived from goods 

which can be destroyed is lower if there are also goods in the economy 
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which cannot be destroyed than if all goods can be destroyed. In Aumann 

and Kurz [1977], where an econo~ of the latter sort is studied, the 

tax rate is at least 50%. Here the tax rate on the wealth derived from 

goods which can be 11 destroyed11 (e.g. labor-time) can be less than 50%, 

but from the formula above can be shown to be at least 

1-1/(e log 2) :o.465 (where e is the base of hyperbolic logarithms) 
e 

and comes close to this only if p
1

a(T) is very small in relation to 

p
2
w(T). 
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CHAPTER 8: A Class of Power Distributions 

8.1 Introduction 

The aim of this study is not simply to find the outcome of specific 

assumptions about the strategic possibilities of the groups of agents 

(as we have done in the previous three chapters), but also to understand 

how the solutions given by our model change as we allow the strategy sets 

to vary over a wide range: we want to know what it is that makes agents 

more or less "powerful", and how sensitive the set of solutions is to 

the precise assumptions we make. Here we shall report the results of an 

investigation in this area. 

Rather than dealing directly with the strategic gmne, we begin 

our analysis here with the coalitional-game q (see (3.24)) which 

summarizes the threat possibilities of all the groups of agents. The 

fact that q is the result of the groups carrying out certain strategies 

in a game r(M) associated with the market M puts restrictions on 

its characteristics. Thus if M is a market we shall say that q: C -+ lR 

is a bargaining game associated with M if for each S E C, q(S) = F8 (u,E!,J.J) 

(i.e. depends solely on the data u, ~, and 1J of M in addition to S) 

and there is an allocation x in M such that q(S) = Ju(x) 
s -

and 

q(T\S) = f u(x). Let A be a comparison fUnction. We define the game 
'1\ s -

qA: C-+ lR by qA (S) = F8 (~u,:,lJ) for each SEC, and say (slightly 

abusing our terminology) that an allocation x in M is a value allocation 

of q if there exists a comparison function A for which qA(T) is 

finite and 
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fA.u(x) = (ljlq
1 

)(S) 
s~ ~ 

for each S E C 

In the remainder of this chapter we first characterize the value alloca-

tions of a whole class of bargaining games associated with M, and then 

discuss the way they reflect the "distribution of power" and study the 

circumstances under which these allocations can be supported as competitive 

allocations with a particular form of taxation. 

8.2 The Characterization of the Value Allocations of a Class of Bargaining 
Games Associated with a Bounded Market M. 

Throughout this chapter we shall be concerned with a fixed bounded 

market M. The class of bargaining games q we shall examine here 

contains those for which 

(8.2) q(S) = f(r{S),e(S),p(S)) for each SEC, where 

R.+2 • f: E ~ E 1S increasing and continuously differentiable 

,and f(rA.(T),e(T),p{T}) = rA.(T) for every comparison 

function A. 

(and r is the market game derived from M defined in (4.15)). Note 

that since r(¢) = e(¢) = p(~) = 0, the fact that q is a game implies 

that f(O) = 0. Let f112 : [0,1] ~ [0,1] be defined by 

if X E (1/2,1] 

if X E [0,1/2) 

Then the bargaining game to which the strategic game of Aumann and Kurz 

[1977] leads is given by 
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(8.3) q{S) = f112(p(S))r(S) for each SEC 

Since f
112

· is not differentiable at x = 1/2, q does not fall into 

the class defined by (8.2). However, it can be approximated by members 

of that class. The form (8.3) involves a dichotomized distribution of 

"power", in which the power of any coalition containing more than 50% 

of the population is radically different from that of any coalition with 

less than 50%. It seems that for one reason or another in actual economies 

groups with less than 50% of the population may be quite powerful; included 

in the class defined by (8.2) are such cases. (We shall discuss these 

matters further below.) 

We shall now characterize the value allocations of a bargaining 

game satisr,ying (8.2). First, we have the following. 

Proposition 8.4: Assume M is integrably sublinear, and let 

q: C-+ lR be a bargaining game satisfying (8.2). Then q E pNAD n pNA' 

and cjlq is given by 

(8.5) 

where the constants a1 E lR+' a2 E ~~ and a3 E lR+ are given by 

(8.6) 
1 

bi = f f. (er(T) ,ee(T) ,ep(T)) for i = 1, ••• ,~ + 2 
0 l. 
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Proof: We have ~ E NA, e is a vector of members of NA, and, 

by Proposition 4.27, r E pNAD n pNA'. Let w be the (t + 2)-vector 

of games ( r, e ,~ } , so that q = f o w, Since w i E pNA' for 

i = 1, •.. ,£ + 2 we can find a sequence with 

for each n 
n, such that vi is a vecto~ of members of NA n 

and 1T i is 

a polynomial, and w~ converges to w. in the supremum norm. But then 
~ 1 

f n fo ( n n n 0 n ) _ f n ( n n ) h o w = 1T 1 o v 
1

, ••• , 1T 
1 

+2 v 
1 

+2 - o Tr o v 1 , ••• , v 
1 

+2 w ere 

n 2.+2 t n ) ( n( ) n ( ) ) 
Tr : JR + JR is defined by 1T (x1 , ••• ,xl+2 = 1T 1 x1 , • • • ,'IT 1+2 x1+2 ' 

so since f o nn is continuously differentiable on the range of 

(v~, .•• ,v~+2 ) and (fonn)(o) = 0 (since f(O) = 0), by Theorem B of 

Aumann and Shapley we have n f ow E pNA .• But f o wn converges to f o w 

in the supremum norm, so f o w E pNA' • 

Similarly, since wi E pNAD for i = 1, ••• ,1 + 2, there exists 

di E DIAG and {wnl(l) with -n -n -n for each a sequence wi = 1T 0 v n, 
i n=l i 

such that -n is a vector of members of NA and -n is a polynomial v 'lfi 

and -n converges to wi - di in the wi BV norm. But as above we can 

then argue that f own is a member of pNA for all n, so that f o (w- d) 

is also. Since fow = fo {w- d)+ {fow- fo (w- d)) and 

f ow - f o (w - d) E DIAG (since d E DIAG), we then have f owE pNAD. 

This, together with the conclusion of the previous paragraph, establishes 

the first claim of the lemma. 

Now from Lemma 3.18 we know that for each SEC, aq*(e,S) and 

awr(e ,S) for i = 1, ••• ,n exist for almost all a E (0,1], and when 

they exist we have 
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1+2 
aq*(a,s) = _L r1(w*{exT))awr<e,s) 

1=1 

so that by Theorem 3.14 we have 

1 1+2 
(~q)(s) = f l f1 (w*(exT))aw~(e,s)ae for each seC 

0 i=l 1 

Now, w = (r,e,~) and (e,~) is a vector of members of NA, so for all 

e E [0,1] we have (e*(exT),~*(exT)) = (ee(T),eJ..I(T)) and 

(ae*(e,s),a~•(e,s)) = (e(S),p(S)) for each sEC. Also, by Proposition 

4.28 we know that for all .e E [0,1] we have r*(exT) = er(T) and 

ar*(e,s) = (~r)(S) for each SEC. Hence for each SEC 

1 where a1 E lR+' a2 E lR+' and a
3 

E lR+ are the constants given by (8.6). 

But again from Proposition 4.28 we have 

(~r)(S) = J[u(x) - p(x- e)] for each SEC s .... .... .. 

where (~,p) is a t.u.c.e. in M, so the proof is complete. 

This result allows us to characterize the value allocations of q. 

Theorem 8. 8: Let M be a bounded market and let q be a bar-

gaining game satis~ing (8.2). Then x is a value allocation of q 

if and only if it is an efficient allocation in M and a.e. 
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where (:C,p) 

are the constants given in Proposition 8.4 corresponding to the game qA. 

Proof: First assume that ~ is a value allocation of q. Then 

there exists a comparison function ~ such that qA.(T) is finite and 

(8.1) is satisfied. But then J~u(~) =-(4flqA. )(T) = q
6 

(T) = rA. (T) (using 
- -

(8.2)), so x is efficient with efficiency comparison function ~' 

and rA(T) is finite. But then by Proposition 4.17, AM is integrably 

sublinear, and there is a price vector p such that (A.,p} is an effi-

ciency price for x, so by Proposition 8.4 we have 

(4flqA.)(S) = a1 ~ [~u{~)- p(~- ~)] + a2e(S) + a3p(S) 

for each S E C 

So, using (8.!), for each SEC 

or 

giving us (8.9) a.e •• 

Now assume that x is efficient and (8.9) is a.e. satisfied. 

Since f(O) = 0 and f is increasing we have a1 < 1, so we can 

integrate over T to conclude that rA(T) = J~u(~) is finite. Hence 

by Proposition 4.17 once again, M is integrably sublinear, so that 

by Proposition 8.4, 
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= a1 / ~u(~) - a1p / (~ - ~) + a2e(S) + a3lJ (S) 
s . s 

for each S E C 

Integrating (8.9) over S then gives us (~qX)(S) = J~u(~) for 
~ s 

all SEC; since q). (T) = (~q). )(T) = /~u(~) = r). {T), q). (T) is finite, 
~ ~ 

so that x is a value allocation of q. 

This completes the proof. 

8.3 Wealth Taxes 

Aumann and Kurz [1977] argue that the value allocations of the game 

they consider can·all be supported as competitive allocations after each 

agent's wealth p;(t) has been modified by a wealth tax. Given Theorem 

8.8 it is easy to argue that the same is true for a wide class of bar-

gaining games. 

Proposition 8.10: Let M be a bounded market and let q be a 

bargaining game satisfying (8.2) for which 

(8.11) f(r(S),e(S),lJ(S)) = f(r{S),O,lJ{S)) for each SEC 

(i.e. for which q(S) is independent of e(S}). Let x be a value allo-

cation of q. Then there exists a price vector p such that ~(t) a.e. 

maximizes ut ( x) over { x E n: px ~ p: ( t) - ~ ( t )} where T : T ~ E 

is such that if u = u t s and p:(t) = p:(s} 

(i.e. T is a system of wealth taxes). 

then T(t) = ds) 
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Proof: If we define a fWlction f 1 : JR2 
-+ lR by f1 (r(S),).l(S)} 

= f(r(S),O,).l(S)) for all SEC we can deduce, using an argument as 

in the proofs of Proposition 8.4 and Theorem 8.8, that x is a value 

allocation of q if and only if it is efficient and a.e. (8.9) is 

satisfied with a
2 

= 0 --i.e. a.e. 

(8.12) 

where (~,p) is an efficiency pair for x. The fact that p is an 

efficiency price for x means that x(t) a.e. maximizes ut(x) over 

{x En: px ~ p~(t)}. But it u = u t 6 
and p;(t) = p;(s), any solution 

of (8.12) for x(t) must be a solution for ~(s), and vice versa, so 

if we set !(t) = p~(t} - p~(t), !(t) = ~(s} under these circumstances, 

completing the proof. 

We can see from this proof that if e(S) is independently an 

argument of f then·in general the value allocations of q cannot be 

supported as competitive allocations after wealth taxation--for the solution 

~(t) of (8.9) then depends independently on :(t), not just p:(t) 

(unless it happens that a2 is proportional to p). 

As we noted above, the bargaining game to which the assumptions 

of Aumann and Kurz [1977] lead (see (8.3)) is not a member of the class 

we are cons~dering, but can be approximated by members of that class. 

Proposition 8.9 shows that their result that each value allocation of 

their game can be supported as a competitive allocation after wealth 

taxation is not at all sensitive to the precise characteristics of the 
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game q; all that is important is that for each SEc, q(S) depends solely 

on r(S) and p(S), and not independently on e(S). We have not shown 

how a strategic game can be constructed to generate a given bargaining 

game q, but it is clear that a wide variety of assumptions about the. 

strategic possibilities of groups of agents will lead to a game q which 

depends solely on r(S) and p(S) (we shall return to this matter in the 

next section). 

There is a stronger sense in which the value allocations of 

A,umann and Kurz [1977] are the result of wealth taxation, which we shall 

nov explain. For each price vector p and t E T let ui: m+ + E+ 

be the indirect utility function of agent t at prices p (see (5.28)). 

Let MP be the market with agent space (T,C,p) and t = 1 in which 

the utility function of t E T is u~: lR+ +::R+ and the initial endow

ment density is p~: T + :m+. By Lemma 5.30, for each price vector p, 

Mf is bounded if M is. If q is a bargaining game associated with M, 

with q(S) = F8(u,~,p) for each SEC, for each price vector p we can 

construct the bargaining game qp defined by qP(s) = F6 (uP,p~,~) (qP is 

thus just a one-commodity ("income") version of q). Viewing this as a 

bargaining game associated with ~~ let yP be a value allocation of 

qP. (That is, yP is a value allocation of the game which is played accord-

ing to the same rules as q, but in which "money" (or "income") is treated 

as the sole good.) Finally, let ~(t) a.e. maximize llt(x) over 

{x En: px ~ ~(t)} (so that in particular ~P(t) = p~P(t)). If we have 

JxP = Je, we say that xP is a value allocation of the wealth redistribu-
~ ~ -

tion game derived from q. 
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There is no reason to believe that the value allocations o~ an 

arbitrary bargaining game q coincide with the value allocations o~ the 

wealth redistribution game derived from q even if the former can be 

achieved as competitive allocations after wealth taxation. However, for 

all the bargaining games considered in Proposition 8.10 this coincidence 

does in fact occur. 

Lemma 8.13: Let q be a bargaining game, and suppose that x is 

a value allocation of q if and only if it is efficient with efficiency 

pair (~,p) and a.e. G(ut(~(t)}, ~(t), p~(t), p~(t}) = 0 for some 

4 function G: lR + :R. Then the set of value allocations of q coincides 

with the set of value allocations of the wealth redistribution game derived 

from q. 

Proof: First suppose that ~ is a value allocation of q, with 

efficiency pair (~,p). Then from Lemma 5.30 we have ut(~(t)) = ~(p~(t)), 

so that a.e~ 

(8.14) G(u~(p~(t)), ~(t}, p:(t), p~(t)) = 0 

But also from Lemma 5.30, p~ is an efficient allocation in MP with 

efficiency pair (~,1), so from (8.14) p~ is a value allocation of qP. 

Furthermore, since p is an efficiency price for ~' we know that ~(t) 

a.e. maximizes ut(x) over {x en: px ~ px(t)}; since J~ = J~ b,y 

definition, ! is a value allocation of the wealth redistribution game 

derived from q. 
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Now suppose that x is a value allocation of the wealth redistri

bution game derived from q. Then there is a price vector p such that 

~(t) a.e. maximizes ut(x) over {xED: px ~ p~(t)}, and hence also 

a comparison fUnction ~ such that (~,p) is an efficiency pair tor ~· 

So (8.14) is a.e. satisfied, and so, by Lemma 5.30, G(ut(~(t)), ~(t), p~(t), 

p~(t)) = 0 a.e •• Hence x is a value allocation of q. 

Corolla;y 8.15: Let M be a bounded market and let q be a 

bargaining game satis~ing (8.2) and (8.11). Then the set of value alioca-

tiona of q coincides with the set of value allocations of the wealth 

redistribution game derived from q. 

Proof: The result follows tmmediately from Lemma 8.13 and the 

proof of Proposition 8.10,given that for each price vector p, ~ is 

bounded when M is bounded (see Lemma 5.30). 

Thus if, in any bargaining game satisfying ( 8. 2) and ( 8.11) , the 

agents act as if there is only one good--namely 11wealth11--and exercise 

their power with respect to that good, the outcome is the same as it is 

in the original economy. 

8.4 Discussion: the Distribution of Power 

From (8.5) we can see that the value of the game q, and hence its 

value allocations, depends only of those characteristics of the function 

f which are reflected in the constants a1 , a2 , and a3• So from (8.6) 

we can see that the only pertinent characteristics of f are its 
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.t+2 derivatives on the "diagonal" ( {x E :m : x = 8\I{T) for some 

a E [0,1]}). This follows tram the fact that the value of a game depends 

only of the behavior of that game in a neighborhood of the diagonal 

(because almost all "randomly chosen" coalitions are perfect replicas of 

T), and the market game r is homogeneous of degree one, so that 

q(exT) = t(er(T),ee(T),ep(T)) tor each e E [0,1]. To understand what 

this involves, consider a very special case of a game which satisfies 

(8.2): consider the case where 

(8.16) q{S) = g(p(S))r(S) for each SEC 

for some increasing continuously differentiable function g: m +E with 

g(l) = 1. We might think of g as reflecting the "distribution of power" 

in the case where "power" depends only on size. For a game of this form 

we have 

1 
al = Jg(a )de 

0 
, 

1 
and so a.3 = (1- Jg(8}d6}r(T) 

0 

so that the value allocations of q depend only on the area under g. 

In particular, both the functions g1 and g2 shown in Diagram 4 lead 

to the same set of value allocations: since r is homogeneous of degree 

one, the "contribution" in r of any coalition is constant along the 

diagonal, and so the value of q, which is the average of the contributions 

there, will depend only on the integral over [0,1] of some feature of g. 
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1 

0 1/2 e ..... 1 

Diagram 4 

As we remarked earlier the game q to which the assumptions of 

Aumann and Kurz [1977] leads--n~e1y the one defined in (8.3}--does 

not fall into the class studied here because of its lack of differen-

tiability. However, we can use their results to compare the value 

allocations they obtain with the ones which arise here. Given their 

formula for the value $q of q we can see that the value allocations 

they obtain are identical to those of any game of the form (8.16) for 
1 

1 2 which Jg(e}de = 1/2. Both g and g shown in Diagr~ 4 satisfy this 
0 

1 property. We might think of the game q associated with g as being one 

in which "power" is proportional to size. Given that the model of Aumann 

and Kurz is of an economy in which there is majority rule, if we think 

that it is reasonable to assume that the underlying power associated with 

groups in an economy is proportional to their size, then we can view the 

political system of majority rule as a way of realizing the outcome 
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implied by this power structure, rather than as an exogenous feature of 

the economy. 

Throughout this chapter we have worked with the coalitional game 

q rather than the "basic" strategic form game, and have said nothing 

about how the latter might be constructed to generate the former. This 

does not prevent the games q from standing on their own as models of 

the economy, though there may be some interest in examining their strategic 

bases. Now, in constrast to the assumption of Aumann and Kurz [1977] 

there are some groups in the economy which contain much less than 50% 

of the population which are very powerful--for example, workers in indus

tries which produce "essential" goods. However, it seems that their power 

derives from their ability to form a "union" or "syndicate" and refuse to 

join in coalitions with other groups in the economy--i.e. it derives from 

considerations which are ruled out in the Harsanyi-Shapley value analysis. 

In order to capture these phenomena it thus seems necessary to use a 

different approach; to this extent our stuQy of the role of the distribu

tion of power in this chapter has been somewhat limited. 
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Appendix 1 

Here we shall show that (3.29) can be deduced from the constraints 

in (3.27). Our argument is merely a rearrangement of that in Harsanyi 

[1963]. Fix S C T and let 

Then by (3.28), 

or 

(A1.2) 

!s(t) = !-s(t) _ ~ (-l)s-r+l ~R(t} 

RCS 

!s ( t ) = R~ ( -1) s-r ~R ( t ) 

RCS 

So we have 

r !u(t) = r r (-l)u-r ~t<t) 
tBi U3i R3i 
UCS UCS RCIJ 

s-q ( } = >: r C-l>k a - g t xQ<t> 
Q:t.i. k=O kHs- q- k)r-

~ 

(collecting the coefficients of xQ(t} for each Q C S), so 

(AL 3) r u s 
L ! (t) = ~ {t} 

tBt 
ucs 
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siq( )k (s - g)l 
£ -1 kl(s _ q _ k)l = 0 unless s- q = o. 

k=O 

s f s s ) s Now let Y = ~~(t)! (t) and Z = tEs~(t)~ (t). 

Y8 = r A(t) I {-1) 8 -r xR(t) 
tes"' R3t .. 

RCB 

yS = I {-l)s-r zR 
RCB 

But by the constraints in (3.27), and (Al.l), 

so 

{Al. 5) 

using (Al.4). Hence if t E s, 

~(t)~8 (t) = r ~{t)!u{t) 
tat. 
ucs 

(using {A1.3)) 

(using (Al. 5)) 

Then by 
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= l (r- l)l(s- r)l (ZR _ zT\R) • 
R3t sl 

RCB 

= l (r- l)l(s- r)l ( l A(i)xR(i) - l A(i)xT\R(i)) 
R3t sl iE.R"' .. i€1\R.. -
RCS 

= ( 4Jv~) ({ t } ) 

where v~ is the game on S defined in (3.29), as was to be shown • 
... 
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Appendix 2 

Here we study the game v defined in (6.5); we have not included 

the results in the main body of this study since they are primarily of 

technical interest. 

In Section 8.1 above we define the set of value allocations of 

a class of coalitional form games which are associated with a market. 

The game v: C + lR+ defined by 

v{S) = us(e(T)) for each S E C 

(see (6.5)) does not tall into this class since in general there is no 

allocation ~ in M such that v(S) = /u(!) and v(T\S) = ( u(!), 
s T\s 

but we can still use the definition given in Section 8.1. We can also 

think of the game v as being derived from a coalitional form game in 

which utility is not transferable, where the set of utility allocations 

which the coalition S E C can achieve is 

{u{!): ! is an S-allocation of e(T)} 

To this game we can apply the usual "J..-transter" method of calculating 

the set of value allocations which was proposed by Shapley [1969]. It 

is easy to see that, except for the fact that Shapley allows the weighting 

function ~ to vanish on a set of positive ~easure, the result of doing 

so is the same as if we use the definition in Section 8.1. The result 

which we shall prove is that the set of value allocations of v consists 

of essentially all the efficient allocations. Shapley [1969], p. 259, 
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gives an "equation counting" argument which suggests that generically there 

is at most a 0-dimensional set of value allocations. Our result is of 

interest because it shows that the game v is a member of the negligible 

collection of games for which this set is of higher dimension. The result 

also means that the "prediction" of the set of value allocations is that 

anything can happen in this game. This may not be a bad prediction in this 

case: in the game every coalition has access to the total endowment of 

society, and one might expect that this would create instability which 

would make every efficient allocation a candidate for the final outcome. 

(The fact that v(S} and v(T\S} cannot be simultaneously achieved does 

not mean that the game makes no economic sense; it is certainly perfectly 

reasonable simply as a game.) 

We shall now establish the claim we have made; we shall rely heavily 

on the results of Chapter 6. First we have the following. 

Lemma A2.1: Let M be a homogeneous market and suppose v(T} is 

f.ini te. Then v E ASYMP and for each S E C 

( 4!V }( S) = Ju(x) 
s -

where ~ is an allocation at which v(T) is achieved. 

Proof: By Proposition 4.18 (using the fact that v(T} = r{T}) 

and Proposition 6.11 we have v E pNA. Hence by Theorem 3.14 the asymptotic 

value 41v of v exists and is given by 

1 
(+v)(S} = f av*(B,S)dB 

0 
for each S E C 
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But from Corollary 6.21 and Lemma 6.23 we have 

l 
Jav*(a,s)da 
0 

1 
= ar*8(e ,s) fa-ada= ar~(a ,s)/(1- a) 

0 0 0 

for all SEC with ~(S) < l and any 9
0 

E (0,1), where r 8 is the 

market game defined in (6.22) and B is the degree of homogeneity of 

M. Also, from Proposition 4.28 we have 

for all S E C ,. 

since e8 (s) = O, where (~,~) is any t.u.c.e. of M8 (the market asso

ciated with r 8 ), Hence 

(~v)(S) = /(u(x) - px)/(1 - B) 
s - -

But, as in the proof of Proposition 6.28 we can use the homogeneity of 

each ut to deduce that 

/(u(x) - px) 
s - -

= (1- B) /u(~) 
s 

So we can conclude that (~v)(S) = /u(x) for any SEC with ~(S) < 1, 
s -

where x is an allocation at which r 8(T) = v(T) is achieved. And if 

~(S) = 1 then (~v)(S) = (tv)(T) = v(T) = r(T) = /u(~), where x is 

an allocation at which r(T) = v(T) is achieved. This completes the 

proof. 
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We can now establish the result which is of interest. {Recall 

that we defined the set of value allocations of a coalitional form game 

in Section 8.1.) 

Proposition A2.2: Let M be a homogeneous market. Then an alloca-

tion x is a value allocation of the game v if and only if it is 

efficient and there exists an efficiency pair (~,p) for x for which 

~ is a comparison function and v~{T) is finite. 

Proof: First let x be a value allocation of v. Then there 

exists a comparison function ~ for which v~(T) is finite and (8.1) is 

satisfied. But then J~u(~) = (~v~){T) = v~(T) = r~(T), so there exists 

an efficiency price p such that {A,p) is an efficiency pair for x, . . 
completing the proof of necessity. 

Now suppose that x is efficient with efficiency pair (~,p), 

where A is a comparison function, and vA(T) is finite. Then 

vA(T) = r~(T) is achieved at !' so by Lemma A2.1 we have 

for each S E C 

But this is just (8.1), so x is a value allocation of v. This completes 

the proof. 

Note that if x is efficient with efficiency pair (~,p) and 

~(t} ~ 0 a.e. then certainly A is a comparison function (see the remark 

after (4.13)). Only if !(t) = 0 for some set of positive measure is 

it possible that x fail to satisfy the condition of Proposition A2.2. 
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Footnotes 

!/ This observation, together with the precise formulation of 
the result, is due to Haruo Imai. 

y It might seem that this is a rather roundabout way to find a 
finite type approximation to M

0
: why not simply approximate the 

utility functions of M0 directly? The problem is that while 
we know that among the 6-approximations to u there is one of 
finite type (see Aumann and Shapley, Proposition 35.6), this may 
not be true of other sorts of approximations. But to work directly 
with 6-approximations we should essentially have to duplicate 
the lengthy and complicated arguments of Aumann and Shapley (see 
pp. 210ft.); instead we use an approximation procedure which allows 
us to ~ their arguments. 

]V Hildenbrand states the result under the assumption that Z is 
an upper hemi-continuous correspondence, rather than a correspondence 
with a closed graph (and the two assumptions are not (quite) equi
valent in this context). However, using the fixed point theorem 
for a correspondence with a closed graph; it is easy to prove the 
result as stated here. 

That is, the only difference between the measure spaces (Z,C',~') 
and (T,C,~) is their name. 

We cannot use the more general assumption that for each fixed y E ~~' 
ut(y,•) is homogeneous of some degree a E (0,1) because then 

we should have ut ( y, 0) = 0 for all y E lR~, and so ut would not· 
be increasing. 
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