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AN ANALYSIS OF POWER IN EXCHANGE ECONOMIES
Martin J. Osborne, Ph.D. |
Stanford University, 1979

The aim of this study is to understand how the allocation of goods
in an economy depends on the set of possible actions available to each}
group of individuals. Onto a standard exchange economy we add the struec-
ture of a strategic game, and study the outcomes generated by the set of
nontransferable utility Harssnyi-~-Shapley vaiues. We make éeveral different
sets of assumptions about the strategies available to each group of agents,
and also analyze how the outéome varies as these assﬁmptions are varied
within a certain class.

We first study the consequences of three sets of assumptions which
involve the political structure of majority rule. For example, under one
set of &ssumptions any coalition containing a majority of the population-
has the power to expropriaté all the goods whiéh the members of the com-~
plementary minority a$tempt‘to trade in the market, while the best any
member of the minority can do is to consume his initial endowment. The
solution éoncept gives ué a set of allocations of the availasble goods,
which could be. achieved simply be redistributing the goods themselves.
Since the allocations are efficient, however, we know from a result of
welfare economics that they can also be realized as the outcome of the
individuals in the economy-trading at fixed prices, after their initiﬁl
wealth has been modified by a system of taxation. Aumann and Kurz, using
a model similar to ours, have shown that under their assumptions the tax

an individual pays depends solely on his wealth; in this sense their

vi
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model provides aﬁ explanation for the existence of wealth taxes. Under
the assumptions whiéh we mentioned above we show that the.taxes which
result are an idealized form of income taxes. Under some other assump-
tions which draw a distinction between the classical categories of "labor"
and "land" on the basis that labor-time can be destroyed (an individual
can choose not to work, can go on strike) while iand cannot be, we find
‘that the tax rate on thé wgalthéé?ivédf?om thevownership of laqa is very
high, while that derived from labor is much lower.

-Wé also study the qﬁestion of hoﬁ sensitive the resﬁlts of Aumann
and Kurz ere to the precise assumptionslthey meke. We find that wealth
taxgtion is the outcome under a wide range of assumptions which ineludes
those of Aumann and Kurz. In paerticular the dichotomized power distribu-
tion enteiled in the assuﬁpﬁion of majority rule is guite inessential; what
are important, rather, are the factors upon which power depends. One con-

. sequencé of this result is that since the set of outcomes under majority
rule coincides with that under a large variety of other "power distribu-
tions" (for exemple, the one where power is proportional to size), one can
view the political structure of majority rule as a way of realizing the
outcome implied by the power ;tructure, rather than as an exogenous

feature of the economy.

v
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AN ANALYSIS OF POWER IN EXCHANGE ECONOMIES*
by

Mertin J. Osborne
CHAPTER l: Introduction

Classical econocmic theory attempts to explain the surface
phenomena of market economies--relative prices, profits, and the
distribution of output--without looking far helow the surface for an
explenation. In particular, the only actions available to agents in
that theory are the purchase and sale of goods in the marketplace. As
far as the expianation of the diséribution of output is concerned,
this abstraction seems to ignore many of the most important factors,
especially those involving the relative "power" of groups of agents.
Thus, though individuals certainly do acquire income by selling some of
the goods with which they are endowed, and use that income to buy other
goods, the prices of those goods are not always outside their control
(wages are certainly an object of bargaining), and neither are the taxes
they pay and subsidies they receive (they can form and vote for political
parties to effect taxation schemes to their liking). Here, in an attempt
to take into account these factors in a study of the determinants of
the distribution of output, we model the economy as a strategic game

in which individual players are powerless, but the power which groups

#*
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possess is of central importance. Thus we simply assume that there
is available to each group of individuals in the economy a set of
strategies, and corresponding to each selection of strategies there
is a payoff to each individual. One possible strategy of a group
might be to go on strike, ancther might be to form a government and
impose certain taxes. The outcome in this setting is determined by
the strategies which the individuals choose to employ. These choices
may depend on the whole sets of possible actions which are available
to the other individuals, and not simply on those which they actually
choose to carry out. (It is in this sense that in the approach here
we look below the "surface".) For example, the wage a capitalist
decides to pay may well depend on the fact that his workforce could
go on strike. Game theory provides a number of models of the way
individuals choose their strategies--i.e. it provides a number of
"solution concepts" for strategic games, Here we use one which is
associated with a specific model of a bargaining procedure. The
question we study is how the distribution of output predicted by this
solution concept depends on the strategies which are availseble to the
groups in the economy. In particular, we ask what factors confer upon
the groups the power to obtain a large share of the output for them-
selves. We do so by investigating the nature of the set of outcomes
predicted by the solution concept for a number of different sets of
assumptions on what are the strategic possibilities of the groups.
Before explaining our model in more detail (in Chapter 2) we

shall discuss a general issue. In classical economic theory the actions
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of agents which are significant to the solution concept--or "equilibrium
notion"--used are all cnes which the individuals might actually carry
out; they are important insofar as they benefit the agents taking them.
For this reason we can base our assumptions about them on the actions
we observe that individuals take. Thus it is possible to mseke the
Judgement that the actions which are possible for agents in classical
economic theory constitute a reasonsable abstraction of the opportunities
actually available to individuals in an economy, insofar as these
opportunities relate to aspects of the operation of an economy which
the theory attempts to capture. In any solution concept which looks
8 little deeper, and gives a central role to the actions which individuals
can threaten to make (but which, at least in equilibrium, would never
actually be carried out) we cannot base our assumptions about the
strategy sets of the groups of agents in the economy on the choices
which we observe individuals actually making. To some extent we can
glean information sbout what are possible strategies for groups of
individuals in market economies by observing "non-equilibrium" actions
(1ike strikes), but this still leaves us a good deal of lattitude when
it comes to meking specific assumptions. What we do here is study
the outcome of a number of different assumptions on the strategies
available to the groups of agents in the economy. In doing so we get
some idea of the range of outcomes our model can generate, as well as
obtaining characterizations of the outcomes under specific assumptions.
In the next chapter we outline our model in more detail, describe

some of the previous work within the fremework we are using, and summarize
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our results. In Chapter 3 we introduce the game theory we shall sub-
sequently use; in Chapter 4 we describe the economic model, cite a
number of results we shall use, and prove a slight generalization of

a well-known result. The next four chapters contain our results., In
Chapters 5, 6, and 7 we study in detail the outcomes predicted under
three different groups of assumptions on the strategy sets. In Chapter
8 we study how the outcome changes as we vary our assumptions within

a certain class.
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CHAFTER 2: Outline of the Model and Summary of the Results

The setting for the games we shall analyze is an exchange
economy with a continuum of agents {i.e. the economy is specified by
a collection of utility functions and endowment densities, aqne for
each agent). The games are defined by assigning to each set of agents
(each "comslition") a strategy set, and by specifying a payoff function
which associates with every collection of strategies a payoff density

to each agent. To such a strategic game there are a number of solu-

tion concepts which we might apply. We should like to use one which is
derived directly from a coherent model of bargaining in which the final
outcome is a compromise that depends on the availability to all individuals
of strategies which can be used as "threats". Harsanyi's [1963] Bar-
gaining Solution meets this criterion (though one might argue thet it

is not without flaws), but is very difficult to work with. The solution
concept we choose to employ is the set of Harsanyi-Shapley values, which
has some features in common with Harsanyi's Bargaining Solution, and
may approxiﬁate it well under some circumstances. We shall provide
precise definitions, and discuss some criticisms of the set of Harsanyi-
Shapley values in the next chapter (see Sections 3.2 and 3.3).

Aumann and Kurz [1977] initiated the use of the set of Harsanyi-
Shapley values as a solution concept for the sort of games we study.
They explored the consequences of one set of assumptions about the
strategy sets of the groups of agents in the economy. A central element

in the procedure for calculating the set of Harsanyi-Shapley values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6=

is the bilateral bargaining between a group of players and its complement
in the population, so when we specify the strategic possibilities for
the groups of agents we need to do s¢ with this game in mind. Aumann
and Kurz assume that when & group contains a majority of the population
{so that its complement is a minority) it can expropriate the endowment
of its complement, while the best its complement can do in responsé is
to destroy its own endowment. They show under these assumptions that
(given their conditions on the utility functions and endowment density)
in every economy there is at least one allocation which generates a
Harsanyi-~Shapley value, and they provide a characterization of such
allocations. Under their assumptions each such allocation is effi-

"supported" as a competitive

cient, and hence can certainly be
allocation after lump-sum wealth taxation--in the sense that there

is a price, and a tax for each agent which depends on his utility func-
tion and endowment, such that if each agent maximizes his utility given
his after-tax income he will choose the quantities of goods assigned
him by the Harsanyi-Shapley value allocation. One of the major conse-
quences of the characterization which Aumann and Kurz establish is that
the tax of each individual depends only on his utility function and

the value of his initial endowment at the supporting prices, and not
independently on the endowment itself, so that the tax which results

is really a tax on "income"--or, more properly, "wealth". They also
establish that the marginal tax rate is always at least 50%.

One might argue that for a private ownership economy the assump-

tion that a majority coalition can expropriate the entire endowment of
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its complement is a little extreme. Rather one might claim that a

majority has the power to tax away only that part of the endowment

of the minority which is traded in the market. For example, if we

think of agents as being endowed with leisure, it seems reasonable to

assume that a majority can tex only that part of this endowment which

ig offered in the market as labor-time, and cannot directly expropriate

the leisure-time of the agents. If, under these conditions, the minority

can redistribute its endowment among itself in any way it pleases

without entering into any trade, we are back to a situation where the

minority and the majority have the same possibilities open to them.

To give the majority some power we can assume that the only way the

minority can redistribute its endowment is via trade, and that the

majority can tax away any goods which minority members attempt to trade--

i.e. the majority can effectively prohibit the members of the minority

from trading among themselves. We examine the consequences of these

assumptions in Chapter 5 below. Our main result there {Theorem A)

states that each economy possesses at least one Harsﬁnyi-Shapley value

allocation, and provides a characterization of such allocations. Naturally,

when we interpret the outcome as the result of a tax, it is not a wealth

tax as in Aumann and Kurz [1977]; it is a tax which is related to the

extent to which agents benefit from trading, and under some circumstances

can be interpreted as an idealized form of income tax (see Section 5.6).
Within our basic model, restricting the power of the majority

to the prohibition of trade among the members of the minority is among

those assumptions which give the majority the least power, without
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reverting to a situation where the majority and minority are symmetric
(as in a market game). In Chapter 6 we consider a modification of

the assumptions of Aumann and Kurz in the opposite direction: we allow

g majority to expropriaste the endowment of ;ts complement, and assume
that the latter can do nothing to prevent this expropriation. The
consequences of this set of assumptions are interesting not only because
a majority is given as much power as it can possibly expect to have,

s0 that we have a "boundary" case, but also because our analysis allows
us to investigate {in Chapter 7) the case where the members of a minority
can destroy some goods, but not others. TFurthermore, under these
assumptions we might expect the outcome to be very "egalitarian” since
the power of & group of agents depends solely on its size (in addition

to the utility functions of its members), and not at all on its endowment.
In one class of cases where it is possible to compute the set of Harsanyi-
Shapley values, this is indeed the case {see Theorem B): an allocation

is a Harsanyi-Shapley value allocation in this case if and only if it

is a competitive allocation in an economy in which every individual

has the same wealth.

In Chapter 7 we study an economy in which some goods (like land)
cannot be destroyed, while others (like labor-time) can be destroyed.
Proposition 7.5 provides a characterization of the set of Hersanyi-Shapley
value allocations under these assumptions for a class of economies, A
consequence which is of interest concerns the way such allocations can
be supported as competitive allocations after taxation of the wealth

derived from possession of the different sorts of goods at different
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rates. Inthe classical theory of public finance, where the question asked

is how taxes should be set so as to minimize the amount of "distortion",
the prescription is to tax goods in inelastic supply at high rates,
and those in elastic supply at low rates. In our case, where the
question is how the cutcome of bargaining can be supported as a com-
petitive equilibrium after taxation, we find that the taxes on those
goods which cannot be destroyed are high relative to the taxes on the
goods which can be destroyed. Given that the property of being in
inelastic supply has features in common with the property of being not
destroyable ("land" is a typical good in both cases), there is some
connection between our result and that of the classical theory (though
the underlying model is quite different).

The results of Chapters 5, 6, and 7 give us some idea of the range
of outcomes which is possible within our framework, but we should like
to be more precise, In particular, we should like to be able to answer
questions like "what is it about the assumptions on the strategic game
which leads to an outcome which can be supported by a wealth tax, or
by a tax on trade?", and "what characteristics of the assumptions meke
the outcome more or less 'egalitarian'?". In Chapter 8 we establish
some results which provide some answers to these questions. We show
that the Harsanyi-Shapley value allocations can be supported as competitive
allocations after wealth taxation (as is the case under the assumptions
of Aumann and Kurz [1977]) under a wide range of conditions (see Proposi-
tion 8.10).  What are important are the factors upon which the strategic

possibilities of the groups of individuals depend, rather than the
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specific form of that dependence. For example, the dichotomized power
distribution involved in the assumption of majority rule made by
Aumann and Kurz (which we also maintain in Chapters 5, 6, and T) is
quite inessential: quite general power distributions lead to the same
result. This result allows us to view the political system of majority
rule as a method of implementing the outcome implied by the actual
distribution of power (in which, perhaps, power is proportional to

size), rather than simply as a given institution.
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CHAPTER 3: The Solution Concept

In this chapter we define a strategic game, and the solution we
shall subsequently apply to such gemes (the set of Harsanyi-Shapley
values); we then relate this solution to Harsanyi's [1963] Bargaining
Solution. It turns out that the procedure for calculating the set of
Harsanyi-Shapley values of a strategic game can be decomposed into two
stages. First, a class of coalitional form games is derived from the
strategic geme, and then the (Shapley) value of each of these coalitional
forms is calculated. Thus in order to describe the set of Harsanyi-Shapley
values of a strategic game we need to define the value of & game in
coalitional form. In the following chapters we shall need a number
of results concerning this velue for games with a continuum of players;
in order not to interrupt the argument at & later stage, we collect
together all the results concerning values of coalitional games in

Section 3.1 below.

3.1 The Shapley Value of a Game in Coalitional Form

A game in coalitional form (or simply a same) consists of a

measurable space (T,C) which is isomorphic to ([0,1],B), where B
is the o-field of Borel subsets of [0,1], and a funetion v: C+ R
such that v(@) = 0. T is the set of players, C the collection of
coalitions, and v(S) for S € C is the worth of S. We denote such
a game by ({(T7,C),v), or simply by v. If T is finite and C = 2T

then the game is finite.
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A non-decreasing sequence of sets of the form

= -ooc =
1) socslc Sm T

is a chain. If v is a game the variation norm [lvl of v 1is defined

by
ivil = sup ZIV(Si) - V(Si_l)l >

where the supremum is taken over all chains. The space of all games v
for which vl is finite (i.e. which are of bounded variastion) 1s denoted
BV. BV is in fact a Banach space with the norm |{[«|| (Proposition 4.3

of Aumann and Shapley [1974]). The subspace of BV consisting of all
bounded finitely-additive games is denoted FA; a member of FA is celled
a payoff. If v is finite, we can think of this payoff as a vector.

A (Shapley) value on finite games is a funetion ¢ which assigns

to every finite game v a payoff vector ¢v such that
(3.1) (¢v)(T) = v(T) (efficiency) ,

(3.2) (¢v)({1}) = (¢v)({J}) whenever v(S U {i}) = v(S U {J})

for all SE€C with S$#i and S 33 (symetry) ,

(3.3) (¢v)({i}) = 0 whenever v(S U {i}) = v(8) for all S €

with S #i (ineffective players get nothing) ,
and

(3.4) ¢(v + w) = ¢v + ¢w for every palr of finite games v and

w {additivity) .
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Shapley [1953] proved the following.

Proposition 3.5 (Shapley): There is one and only one value ¢

on finite games; it is defined by
(3.6) (pv)({1}) = E[V(Si U {i}) - v(Si)] for each i€T ,

where 8 is the set of players preceding i1 in & random order on T,

i
and E is the expectation operator when a1l |T|! such orders are

assigned equal probability.

(3.6) allows us to calculate the value of every finite game;
Aumann and Shapley [1974] studied a number of ways of extending the
value concept to games with a continuum of players. One way is to view
such a game as the limit of & sequence of finite games. This leads to
the asymptotic value, which has been studied extensively (see for example
Aumsnn end Shapley [1974], Chepter III, and Neyman [1978]), and which
we shall use in this study. We shall frequently cite the results of
Aumann and Shapley [19T4]; in order to avoid excessive repetition we
shall refer to this source simply as "Aumann and Shapley" throughéut.
We can now define the asymptotic value of a game.

A partition @ of (T,C) is a collection of disjoint members
of € the union of which is T. The partition H2 is a refinement
of the partition Iy if each member of nl is the union of members
of m,. A sequence of partitions {nm}:=1 is admissible if Mos1

is a refinement of IIm for all m and for each s, t €T there exists

m such that s and t are in different members of 1 . Let ((r,c),v)
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be a game, and 1 a partition of (T,C). Then we can define a finite

game v with player set {a: a € N} by

vn(A) =v(Ua) foreach AC{a:a €1} .
acA

A payoff ¢v 1is then the asymptotic value of v if for every S € (C

and every admissible sequence of partitions {Hm}w 1 in which IIl
m=

is a refinement of (S, T\S), lim (q:vn )(Sk) exists and equals (¢v)(8),
koo k
where Sk = {a: a € 1'Ik and a C S}. The set of all games in BV which

possess an asymptotic value is denoted ASYMP. Frém Theorem F of Aumann
and Shapley, ASYMP is a closed linear subspace of BV,

The conditions under which a game v belongs to ASYMP have been
a major object of study. We shall now state a result in this ares
which we shall use in the sequel to establish that the games wvhich arise
do in fact have asymptotic wvalues,

The subspace of BV consisting of all nonatomic measures {i.e.
countably additive set functions) is denoted NA; the subset of NA
consisting of nonnegative measures 1s denoted NA+, and that consisting
of probabllity measures 1is denoted NAl. bv'NA is the subspace of BY
spanned by games of the form foyu where f: [0,1] + R is of bounded
variation, £(0) = 0, £ is continuous at O and 1, and u € NAL,

pNA is the closed subspace of bv'NA spanned by powers of members of

NA]'. If Ql and Q2 are subsets of BV, we write Ql'QZ to denote

the closed linear symmetric subspace spanned by all games of the form
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V.V, Where v, €Q and v, € Q, (ana (vlvz)(s) = vl(s)vz(s) for
all S € C). We can now state the following, which is a special case

of Theorem 4.1 of Neymen [1978].
Theorem 3.7 (Neyman): pNAwbv'NA C ASYMP.

Now, let DIAG be the set of all v € BV such that there is g
positive integer k, a k-dimensiocnal vector n of measures in NAl, and a
neighborhood M in R® of the disgonal D = {(x,X,...,x) € R*: x € [0,1]}
such that if n(S) €M then +v(8) = 0. Thus DIAG consists of those games
which vanish "close" to the diagonal D. Define pNAD to be the varia-
tion closure of pNA + DIAG (so that pNAD consists of games which
behave like those of pNA in a neighborhood of the diagonael). Then we

have the following corcllary of Theorem 3.7.

Corollary 3.8: pNAD#bv'NA C ASYMP.

Proof: By the definition of DIAG we have DIAG#bv'NA C DIAG,
and by Proposition 43.11 of Aumann and Shapley, DIAG C ASYMP. So from
Theorem 3.7 and the fact that ASYMP is a linear space,

(pNA + DIAG)#bv'NA C ASYMP. But ASYMP is closed, and pNADwbv'NA is

contained in the closure of (pNA + DIAG)w#bv'NA, so pNADxbv'NA C ASYMP.

Now, define the supremum norm Mfvl' of a bounded game v: C + R

by

Ivl* = sup {|v(S)|: SEC} .
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Let BS ©Dbe the Banach space of bounded games with the supremum norm,
and let pNA' be the subspace of BS spanned by powers of members of
NAl. If v € pNAD N pNA' +then not only does v have an asymptotic
velue, but there is an elegant formula for it (due to Aumann and Shapley)
vhich is analogous to (3.6). We shall now explain this formula (see
also Chapter IV of Aumann and Shapley). First we need to géneralize

the notion of a coalition. An ideal subset of (T,C) (or simply an

ideal coalition) is a measursble function from (T,C) to ([0,1],B).

The family of all ideal subsets of (T,C) is denoted I. The coalition
S E(C is not itself an ideal coalition; however, we can associate it
with the ideal coalition Xg» and under this identification regard C(
as a8 subset of J. Members t € T either belong or fail to belong to
any coalition S € C; we can think of them as belonging to an ideal
coalition with some "density" between zero and one.
Define the supremum norm |v*||' of a bounded ideal game v¥*: ] + R
by

Iv*¥l' = sup {|v*(£)|: £ €I} .

Aumann and Shapley establish (see Proposition 22.16 and Remark 22.20)
that there is a unique mapping that mssociates each game v: C -+ R
which is a member of pNA' with an ideal geme v¥: I + R in such a

way that
(3.9)  (av + Bw)* = av* + gw*
(3.10) if f is a continuous real-valued function then (fov)* = fovyk

(3.11) u*(£) = frau
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and
(3.12) the mapping v W v* is continuous in the supremum norm

whenever v, wE pNA', ¢, BE R, u €E NA, and f € I. Moreover,

v*(xs) v(S) for each S € C, so we can regard v* as an extension
of v to the collection of ideal coalitions.

For any game v, coalition S &€ C(C, and 8 € [0,1], let

V*(BXT + TXS) - V*(GXT)
T

(3.13) 3v*(0,8) = 1lim
™0

(which may or may not exist). The following is a consequence of Proposi-

tions 44.22 and 43.13 of Aumenn and Shapley.

Theorem 3.1l4 (Aumann and Shapley): For each v € pNAD N pNA'

and each S € C, 3v*(0,S) exists for almost all 6 € [0,1] and is
integrable over [0,1] as a function of 6; moreover, the asymptotic

value ¢v of v is defined by
1

(3.15)  {(¢v)(8) = fav#(8,5)a® for each SE€C .
0

The similarity between (3.15) and (3.6) is apparent when we take
into account the fact that the characteristics of the members of a
subset dravn "randomly" from T = [0,1] will almost certainly be the
same as those of T: if we choose an ideal coalition "at random" from

T then it will almost certainly be of the form X with 6 € [0,1].
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In the sequel we shall need to calculate the asymptotic values
of truncations of games in pNAD N pNA'; we shall use the following

result.

Proposition 3.16: Let u € NAl, let v € pNAD N pNA', and let

a € (0,1). Define the game q: C + R by

v
33

" ws) if u(s) 2
S) =
: {o if u(s)

A
Q

Then q € ASYMP and the asymptotic value of ¢q is defined by
1
(¢a)(8) = v*(axu(s) + fov#(e,5)de for all SEC .
0

Proof: Define f: [0,1] - [0,1] by

r—t—
=
[
in-]
b
nv
2

Then fou € bv'NA, so q = (fou)s € bv'NA*pNAD. So by Corollary 3.8,
g € ABYMP. But then the formula follows from Proposition 13.1 and

Remark 12.1 of Aumann and Kurz [1977].

Now, Theorem 3.14 and Proposition 3.16 provide us with formulas
for the asymptotic value ¢v of games which we shall subsequently study.
These formulas involve the derivative 9v¥*(8,S), and in general we should
expect to have to know the form of the extension v¥* before we could

calculate 2v*{6,S). However, for a certain class of gemmes it is possible
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to give & formula for this derivative which does not directly involve
the extension v* (see Lemmas 3.17 and 3.18); for another class we
can establish that the derivative behaves in a very regular manner

(see Lemma 3.19).

Lemma 3.17: Let v € pNA be of the form v = gov, where v
is an n-vector of members of NA. Then for each S € C, 5v*(0,S8) exists

for almost all 8 € [0,1], and when it exists we have

v*(0,8) = gv(s)(ev(T)) s

where g is the derivative of g in the direction V(8).

v(s)

Proof: The first claim follows immediately from Theorem 3.1k. To
establish the second claim, note that since v € pNA, certainly g is con-
tinuous on the range of v, so by (3.10) we have (gov)* = gov*. Now
suppose 0v*(0,S) exists for © = 6,. Then
* ol + -y

VO Xp + Txg) - v*(8 Xx.)

1lim
0

*
v (BO,S) -

(gov*)(8 xp * Txg) - (sov*)(ﬂoxT)
T

linm
>0

g(8 v(T) + tv(8)) - g(ﬁov(T))
T

lim
0

(using (3.11)). Thus gv(S)(GQV(T)) exists (since av*(eo,s) exists
by assumption), and we have av*(eo,s) = gv(s)(eov(T)), completing the

proof.
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If, under the assumptions made in the lemma, the components of Vv
are linearly independent, then note that gv(s)(eov(T)) = gvi(s)gi(eov(T))
(where g; is the partial derivative of g with respect to the i-th
component ).

If the game v 1is a function of & vector of games, rather than

measures, then we have the following (which we shall use in Chapter 8).

Lemma 3.18: Let v € pNAD N pNA' be of the form v = gow, where
W = (wl,...,wn) is an n-vector of members of pNAD M pNA', and g: R~ + R
is differentiable. Then for each S € C, 3v*(0,5) and awi(e,s) for

i=1l,...,n exist for almost all © € [0,1], and when they exist we have

n
av#(8,s) = ] g, (w*(ex,))aw#(6,s) ,
Rl § T i
i=l
where 8; is the partial derivative of g with respect to the i~th

component .

Proof: Once again the first claim follows immediately from
Theorem 3.1L. To establish the second claim, note that by (3.10) we
have (gow)* = gow®*., Now fix S € C and suppose that each

awg(e,s) for 1 =1,...,n exists for 6 =6 _. Then

* -
v (eoxT + rxs) v*(eoxT)

T

lim
™0

av*(eo,s)

8(w*(8°xT + X)) - g(w*(eoxT))
T

lim
™0
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or

ors, ) = (awntig < o)

Now, by assumption
L%
(d't vi(0xg + T"s)))

exists for each i =1,...,n and equals aw*(e ,3), and g 1is differ-
entiable, 50 by the chain rule we know that (dg(w*(® oXp * sz))/dr)

exists, and we have

(f;g(w*(eoxT + -sz)))Tgo 1213 (w*(o_xp))owt(e_,s) ,

so that

av*(e_,S) = ): g, (w*(e x,))ow(e_,8) .
i=1

This completes the proof,

Finally, we say that a game v: ( > R 1is homogeneous of degree

a if v*(kxg) = k*v(S) for all k € [0,1] and all S € C. The proof
of the following result is modelled closely on that of Lemma 27.2 of

Aumann and Shapley.
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Lemma 3.19: Let v € pNAD N pNA' be homogeneous of degree
e € [0,1]. Then 8v*{(#,S) exists for all o € (0,1) and is homogeneous

of degree oo -1 in 8 for each S € C.

Proof: By Theorem 3.1h, for each S € C, 3v*(6,5) exists for
almost all ® € (0,1). Suppose it exists for 8 = 6, € (0,1). Let

8, = kb , for some k € (0,1). Then for each S € C
1 o

* J— L - K&y
v (ele + sz) v (le,l,) kv (eoxT + ('r/k)xs) kv (eoxT)

T T

#* JEH
- ka-l v (BOXT * T'XS) v (eoxT)

Tl
where 1' = 1/k. So since t'> 0 as T - O,

v x., + T'xs) - v*¥{e x.)
o"T ? o7 > BV*(BO,S)

T

as T -+ 0, so that Bv*(el,S) exists and
~1
av*(6,,8) = av¥(ke _,S) = x* av*(e_,S) -

Since we can take eo arbitrarily close to 1, this establishes that
av¥(9,5) exists for all 6 € (0,1) and is homogeneous of degree a - 1

for each fixed S € C.

3.2 The Harsanyi-Shapley Values of a Strategic Game

The primitive notion in the sequel is a strategic game, which

we now define., A strategic game T consists of
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(a) a measure space (T,C,u), where T is the set of players,
C is the collection of coalitions, and u 1is the population measure;

(b) a set X° for each S € C, called the strategy set of S; and

(c) for eech S € C, o € XS, and 1 € XT\S a funetion Pg-r: T+ R,

with hS = pD'S

; hS (t) is the payoff density of t when S uses
~6T ~10 ’ <ot

the strategy o and TS the strategy r.

We assume that

{3.20) wu{T)=1 ,

(3.21) X¢ is a singleton ,

and

(3.22) hST is measurable in t for all S E€ ¢, 0 € XS, and 1 € XT\S

Throughout, we shall write functions on T in boldface; if f
and g are such functions we shall sometimes write ]f instead of
If(t)u(dt), ff instead of [f, and fg for the function on T whose
value at t is £(t)g(t). gf f(t) is the payoff density of t, we
say that f(t)u(at) is his payoff.
¢ T T T

i . = € .
In view of (3.21) we write EUT ?To as h_ for every 1 X

We sometimes use hs(t) to denote the real-valued function on Xs % XT\S

the value of which at (o,1) is hsr(t)' A strategic game I is finite

T

if T is finite, C = 27, and u({t}) = 1/|T| for each t € T; if

IT| =2 then I is a two-person strategic game. If T is a finite

strategic game, we allow hir(t) to be defined as an extended real
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number, the set of which we denote R¥, If T is a two-person strategic
geme with T = {1,2} then we call y{}}(i): X{l} x x{a}-+:m* the

payoff function of i, for i = 1,2; if hii}(l) + yéf}(Q) =0 for
€ X{l} X X{E}

every (o,t) , then T 1is a two-person zero-sum strategic

geme.

We can now explain the procedure for calculating the set of
Harsanyi=-Shapley values of s strategic game T; we shall discuss its
motivation in the next subsection. We call a real-valued measurable func-~
tion on (T,C) which is a.e. (with respeet to ) positive a comparison
function. The following is & brief outline of the procedure. Fix a
comparison function A. First we shall look at the two-person strategic
game between S and M S, for each 8 € C, in which the payoff function
of S 1is f%ys: XS X XT\S + IR*¥, The Nash variable threat bargaining
solution giies at least one pair of optimel threats in this game. Let
the payoffs to § and T\S when they carry out these optimal threats
be qA(S) and qA(T\S). This process defines a game in coalitional
form ~ql: C+ R ~of which we can calculate the value. It may be that
thermyé}fsassigned by this value cannot be attained in the game without
transfers; if 5 is such that they can, then the resulting payoff is a
Harsanyi-~Shapley value of T.

Formally, the procedure is as follows. Let 5 be a comparison

function. Let

s P S
HX(O’T) - ééPOT - T{Sébct
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for each SE€C(, ¢ E,XS, and T € XT\S. If, for a given S € C,
Hf(a,r) is defined (as an extended reazl number) for all o € XS and
T E XT\S, we can regard Hf: XS x XT\S + R* @as the payoff function

~

of a two-person zero-sum game with player set {S, T™\S}; in this case

f is defined. Suppose that (00,10) e x> x XTNS

~

we shall say that

is sueh that

(3.23) H?(a,ro) < Hf(oo,ro) < Hi(ao,r) for all o € XS and all T € XT\S

-~

5
A

-~

and Hf(co,ro) is finite, for every S &€ C. (If H  is defined,

Hi(oo,ro) ~is then the (unique) minmax value of the two-person zéro-sum

-~

geme.) Define the game q,: C+ R by

(3.24) q,(8) = flhs for each S e C .
~n°’ T
~ 8 o0

If 9, Possesses an asymptotic value, and there exists O-E XT such that

(3.25) [Ah” = (¢q, )(S) for each S€C ,
g~~o A

~

then bg: T+ R 1is a Harsanyi-Shapley value, or simply a value, of T.

If there exists (00,10) € xs X XF\S satisfying (3.23) with

Hi(co’To) finite, we shall say that (oo,ro) is a finite saddle point

-

S
of HA'

threats in the two-person strategic game between S and T\S in which

For each S € ¢ such a pair (oo,ro) is a pair of optimal

the payoff function of § is fags (see the discussion above). Each

such game may possess a number of pairs of optimal threats. However,
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the following result shows that if there are two collections of optimal
threats satisfying our conditions then the Harsanyi-Shapley values they

generate (if indeed they do so) must be the same.

Lemma 3.26: Suppose there are pairs (Ui,Ti) and (os,rg) which

satisfy (3.23) for each S € C, and that Hf(ai,ri) is finite for each

S € . Define the game q;: C+ R by

fan®,
5 gt
[»)

i = q;(s) for each S €C ,
T ~
o

for i =1,2. Then if q € ASYMP for i = 1,2, we have ¢aq> = éq°.
A ‘ A A

Proof: First, the minmax value of a two-person zero-sum game is

2 2

unique, so HS(OO,TO) = Hf(ai,ri), and in particular is finite. Now,

A

let the games v;: C+ R for i=1,2 be defined by

vy (8) = 3(a(8) + g(T) - ¢H(M\8)) = Ha (8) + ¢, (5))

for each SE€C ,

vwhere the dusl v#: C+ R of a game v: C+ R is defined by
v#{(S) = v(T) - v(T\S) for each S € C (v¥(g) = 0, so v? is a game),.
For any game v, if ¢v exists then ¢v# exists, and ¢v = ¢V#, s0 v;

-~

possesses an asymptotic value for i = 1,2, and

i i if i
ovy = (cbq,_t + ¢q; y/2 = ¢q; for 1 =1,2
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But qA(S) - ql(T\S) = H (a )T 1) = HS( ) = qx(s) - qA(T\S) for

each S € ¢, so that in particular qA(T) = qx(T), and

(8) = vf(S) for all SEC .-

~

v

1

1 _ .2

Hence ¢q; = ¢q§. This completes the proof.

Thus corresponding to any given comparison function the game T
has at most one Harsanyi-Shapley value, and in order to determine if
in fact it does possessone it suffices to locate one collection of pairs
of optimal threats for which the game a, defined in (3.24) has an
asymptotic value. Note however that in general T possesses a number
¢of Harsanyi=-Shapley values, corresponding to different comparison

funetions.

3.3 Harsanyi's Bargaining_ﬁolution and its Relation to the Set of
Harsanyi-Shapley Vslues

As we saw in the previous section, the procedure for calculating
the set of Harsanyi-Shapley values consists of two parts: first a coali-
tional form is derived from the strategic game for each choice of weights
for the players (see (3.24)), and then the weights are chosen so that
the value of the ccalitional game is feasible (see (3.25)). If we are
given a game which is in coalitional form to begin with, then we can
apply the second éart of the procedure directly; if we do so, the result
is the set of "non-transferable utility (NTU) values" of the game in
coalitional form., It has been argued by Shapley [1969], Aumann [1975]

(Section 6), and others that this solution concept for a game in
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coalitional form has merits of its own. On the other hand, Roth [1978]
produces a class of examples where the unique NTU value giveé quite
unsatisfactory results: players who are completely powerless, and
whom we should expect to get zero payoffs if they were bargainigg over
the outcome, are assigned positive payoffs. Of course, the existence
of one such class of examples does not mean that the solution concept
is worthless (indeed, no Solution concept can be expected to give good
results for all games); but we believe that the examples do highlight
the fact that the argument which has been made to support the solution
is unsatisfactory. Equally clearly, this is no reason to abandon

the solution altogether: there might be another interpretation which
makes it very attractive, Moreover, in a number of applications (e.g.
Aumann [1975], Aumann and Kurz [1977]) it has given intuitively appealing
results which contribute to our understanding of the way an economy
operates,

Aumann and Kurz, who use the full Harsanyi-Shapley procedure,
argue that this also has merits of its own (see, for example, Aumann and
Kurz [1978], pp. 144-145). They view the two steps of the procedure
(see the previous paragraph) us having separate justifications: the
solution applied to the transferable game for each set of weights is
"reasonable", as is the method of finding "equilibrium" weights. We
do not believe that such an argument provides a justification for the
whole procedure, and prefer to think merely of applying a single solution

concept to the original strategic game.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-29-

Harsanyi [1963] constructs a model of bargaining which applies
to every finite strategic game. He generates a solution in two stages:
first the basic bargaining process leads to a number of possible outcomes;
these provide the basis for a further round of bargaining in which a
unique outcome is sglected. We regard the second stage as rather ad hoc,
and shall be concerned only with the possible outcomeg of the first

stage; we shall call this set Hersanyi's Bargaining Solution, and define

it precisely below. For gemes with transferable utility it coincides
with the set of Harsanyi-Shapley values, which is in fact a singleton.
For gemes without transferable utility this is not in general so, though
Shapley was attempting to approximate Harsanyi's Bargaining Solution
when he constructed his set of non-transferable utility values (see
Shapley [1969], p. 260), on which the set of Harsanyi-Shapley values

is based; it is not clear how good an approximation it is (we shall
comment further on this matter below).

Given that Harsanyi's Bargaining Solution is based on a well-
motivated model of bargaining, we regard it as a suitable solution
concept for our purposes. The reason we do not use it is that it is
very difficult to calculate. Instead, we use the set of Harsanyi-Shapley
values, viewing it as an approximation to Harsanyi's Bargaining Solution.
For this reason, we wish to understand the relation between the two.

As we remarked earlier, when utili£y is transferable they coincide and
generate a uniqQue outcome; not only that, but Selten [1964] has p1 .vided
an axiomatization of the solution in this case. We shall now define

'Harsanyi's Bargaining Solution in the general case, and remark on the
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circumstances under which the set of Harsanyi-Shapley values might
approximate it well.

Let T be a finite strategic game, with ITI = n. For clarity,
we shall write h (os, E['\S) instead of Pg'r(t) in the remainder of

this section. We shall also make a distinction between the symbols

C and C: if ACB then A # B. We shall assume that for every

S = {tl,...,tk} C T and each strategy TT\S of TS,
{(n, (o5 t T8y ..,ytk(os,rq‘s)): S e x5

is convex. Let X ©be a comparison function (i.e. a real-valued function

on T with A{(t) > 0 for all t € T). As in the previous section,
8 S ns e xT\ S

for each ¢ € X and T let

B (05,70 %) = aen (5205 - T aMe)p, (6% TE)
teh s

~ s
For each S € C suppose there exists (US,TT\S) € x> x X such thet
(3.27) H (OS,TT\S) = max min ‘HA(GS,TT\S)

!
c,sexs TT\SEXT‘\S
A (1) =y (4)) =A (1) (x5(1) -y5(1)) if t €S and 1 €S, and

A(t)(xT\s(t)-yT\S(t))=A(i)(xms(i)-yT\s(i)) if + € T\S and i eT\s}

T\8 ) I'\S(t) 5 m\s)

h, (o )Ty

S
where x (t) = h (o 7o A

for each t € 5, x

for each t € T\S, and
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(3.28) a_rs(t) = ] (-l)a"ﬁl:;R(t) (where s = |s| ana r = [R]) .
RSt .
RCS

Then a payoff vector x 1is a member of Harsanyi's Bargaining Solution

TexT such that

if there exists ©

;f(t) = PE(UT,T‘J) for all tE€T ,

¢ ¢

where T is the single member of X . (This is equivalent to the defini-
tion on pp. 21hk-215 of Harsanyi [1963]: (3.27) above. implies that
Harsanyi's equations (10.1), (10.2), and (10.5) are satisfied, and

~ conversely.)

Now, for each comparison function A and each S €T define the

cocalitional form geme vf on S by

-~

(3.29)  Vi(R) = ZA(t)xR(t) for all RCS ,

A -~ -
< tER

where the collection of payoff vectors {xB} for RCT is defined by

the simultaneous solution of the optimization problems in (3.27). We

demonstrate in Appendix 1 that we can deduce from the constraints in

(3.27) that for each S CT
(3.30)  A(£)x°(t) = (¢v])({t}) for each tE€S .

The fact that this is true for S8 = T reveals the similarity hetween the
set of Harsanyi-Shapley values and Harsanyi's Bargaining Solution. The

only difference between the two lies in the way the "optimal threat"
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pair (ci,x?s) for esch SC T 1is defined. Thus, (3.23) and (3.27)
differ only in that the latter optimization problem is subject to some
constraints, (3.24) and (3.29) for S =T are the same, and (3.25) and
(3.30) for S = T are the same. So if it turns out when we calculate
the threat pairs without restrictions that they in fact satisfy the
constraints in (3.27), the set of Harsanyi-shapley values coincides with
Harsanyi's Bargaining Solution. This is the case, for example, when
utility is transferable. For then by (3.27) for S = T we have

§(t) =1 for all t € T, and from (3.29) and (3.30) for each 8§ crT
only ) §S(t), and not fs(t) for each t € S, is of relevance; but
then h:ifng solved (3.27) ignoring the constraints, we can always choose
values §S(t) so that the constraints are satisfied and ) fs(t) is
preserved. When utility is not transferable, it is possibfgsto make
the following argument. In a large game, there is a sense in which
"most" of the coalitions have almost the same composition as T, and the
value depends only on the worths of these coalitions. So iﬁ such a case
we need to verify that the constraints in (3.27) are satisfied only for
coélitions whose composition is almost the same as that of T. But then
if the structure of the game has a certain homogeneity, and the constraints
are satisfied for some such coalitions, they will be satisfied for all;
on the other hand, for feasibility, they must be satisfied for the coali-
tion T. This argument suggests that in a game with a continuum of
players which is homogeneous in some sense the set of Harsanyi~Shapley

values coincides with Harsanyi's Bargaining Solution. To meske it precise

we should first have to generalize the definition of Harsanyi's Bargaining
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Solution so that it can be applied to gemes with a continuum of players.

Within a limited framework this can in fact be done, using the fact

that not only do the constraints in (3.27) imply that (3.30) is satisfied,

but alsc the converse of this statement is true. A limited result on

equivalence in the presense of homogeneity can also certainly bhe

establishedl/; the limited nature of the result does not Jjustify the

lengthy explanation which it requires, so we shall not go into the details

here. It is an open question whether a stronger result, which covers

some of the games which we shall subsequently study, can be established.
We have yet to explain how the constraints in (3.27) arise end

why they take the forﬁ they do. To do so in detail would necessitate

a lengthy argument, so we shall merely outline Harsanyi's [1963] model.

The final payoff fT(t) of each player is made up of "dividends" gs(t)

which he receives from each coalition S of which he is a member--i.e.

§T(t) ) Es(t). The dividends which any coalition pays must be backed

by threaii? in the sense that each coalition must possess a strategy

which, given that its complement chooses its strategy in an optimal fashion,

yields payoffs which allow it to pay the dividends it proposes. Thus

the payoff §S(t) which the threat strategy of S gives t € S must

be such that §S(t) = Z yR(t). Now, the threat strategy of a coalition

Rt
RCS

has to be agreed upon by all its members, and is thus constrained by any
agreements which might be reached between its members as té the distribu-
tion of dividends. Harsanyi in fact assumes that each pair of players

bargain over the distribution of the dividends which are available to
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them, given the dividends to all other players, in all coalitions to

which they both belong. In this bargaining, the dividends received in
small coalitions will serve as the threat points for the bargaining in

the larger coalitions, and knowing this each player will only accept
dividends in smell coalitions which "protect" his position in the larger
coalitions. The agreements thus reached between each pair of players
generate the constraints in (3.27). (Using the fact that §s(t) = 7 YB(t)

RSt
RCS

for each S C T, and (3.28), it can be seen that :5S(t) - gs(t) is just
ys(t), the dividend which S pays t.) Note that the presence of the
constraints in (3.27) makes the process of calculating the optimal threats
much more complicated: what are aliowed as threats in the game between

S 'and T™\S depend on the optimal threats in the games between all other
pairs R and T\R --the whole collection of optimal threats has to be
determined simultaneously,

We close this section by remarking that the fact that in a large
game the value depends only on the worths.of those coalitions whose com-
position is close to that of T derives from the implicit assumption that
every player is equally willing to cooperate with any coalition. In some
situations this may be a bad assumption: for example in a game in which
there are two types of players whose characteristics are very different,
it is quite conceivable that it would be to the advantage of each group
for its members to refuse to cooperate with the members of the other group.
Recently some attempts have been made to build game theoretic solution

concepts which predict which coalitions will form "cartels" in this wey;
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it seems that the spplication of such solution concepts could well enrich
our understanding of the phenomena which we study in the subsequent
chapters. For the present, we have restricted ourselves to the use
of the set of Harsanyi-Shapley values; the fact that it is based on

assumptions which may not be applicable must be borne in mind.
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CHAPTER 4: The Economic AFramework

In this chapter we describe the economic model which will be
used in the sequel, discuss some properties of efficient allocations,
study a class of games derived from the economic model, and finally
describe the solutim concept we shall subsequently apply to eccnamies.
Throughout, when x, y € R® we write x = (xl,...,xn), x>y if and
only if xi;yi for all i, x >y if and only if X2y and XxX#Yy,
and x >> y Iif and only if x:l > yi for all i; we also write
n

R

L = {x € R"; x 2 0}, and JR:_= {x € B*: x >> 0}.

4.1 Markets and Efficient Allocations

A market M consists of
(a) a measure space (T,C,u) where T is the set of agents,

C the collection of coalitions, and u € NA+ 18 the population measure;

(b) a positive integer &, the number of goods;

)

(¢) a function wu: T x Q -+ R,, vhere @ = R; u(t,*}: g » R,

is the utility function of t, and we often write ut(x) instead of

u{t,x) when x € ; and

(d) an integrable function e: T+ @, the initial endowment density.

We shall denote the partial derivative But/axi by ui for 1 =1,...,%,
and write u} = (ui',.. .,ui). We assume that (T7,C) is isomorphic to

([0,1],B), where (as before) B is the 0-field of Borel subsets of
[0,1]. If we make no further assumptions sbout e and u we shall

refer to the market as & general market; whenever we refer to M simply
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as a market we mean that u(T) =1 and e and u satisfy the following

five assumptions (such markets will be the main object of our studies).
(4.1) fe> 0 .

(L.2) For each t €T, u,

concave, and continuous on Q .

is increasing f(i.e. x> ¥y =»ut(x) > ut(Y)),

(4.3) ut(o) =0 forall t€T .

(L.}%) u is measurable in the product field Bsz, x C, where Bﬂ, is

the o-field of Borel subsets of .

(h.5) For each t €T and i = 1,...,2, the partial derivative ui

of ut exists and is continuous at each x € @ with x> o .
In the following chepters we shall have to further restrict the

characteristics of the utility functions u, . We shall say that a market

M 1is bounded if
(L.6) u is uniformly bounded (i.e. sup {u(t,x): t €T, x € Q} < =) ,
and

(4.7} ut(l,l,...,l) is uniformly positive

(i.e. inf {ut(l,l,...,l): t €T} > 0) .

We shall say that M 1is homogeneous of degree B € (0,1) if

(4.8) every utility function u, is homogeneous of degree B

(i.e. ut(kx) = kBut(x) for every k> 0 and x€Q) ,
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and we shall say that M 1is homogeneous if it is homogeneous of degree B8
for scme B € (0,1). Note that if u.  is homogeneous of degree 8 € (o,1)
and x € Q@ is such that f>0 for 211 i =1,...,4 then by Euler's

Theorem we have
2
I xui(x) = gy (x) .
i=1

In the general case in which same xi = 0, the restriction of ut to
those components which are positive is homogeneous of degree B in thcese

components (fixing the others at zero), so that we have

(4.9) I xMui(x) = sy (x) .
{1i:x>0}
If g, is a real-valued function on Iﬁ for each t € T and
x: T > E® then we write g(x) for the real-valued function on T
the value of vhich at t €T is g (x(t)). If f: T+ R is measurable,
we often write f(S) rather then If in the sequel. If a E_ IlRi, an
S-ellocation of a is & measurablesfunction x: 8§+ Q with [x = a;

s
we call an S-allocation of e(S) simply an S-allocation, and a T-allocation

simply an allocation. When we say that a function f on T is the
unique such function satisfying a certain property, we mean that a

function g on T satisfies the property if and only if f = g a.e..

-~

(Here and subsequently "a.e." refers to the measure u.) A price vector,

or simply a price, is an element p of :mi+. Recall that we call a

real-valued measurable function on (T,C) which is a.e. positive a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-39-

comparison function. If 5 is a comparison function, the market obtained

from M by multiplying u_ by A(t) for each t € T is denoted AM,

t
Now, we say an allocation x is efficient if there is no alloca-
tion y with ut(g(t)) > ut(§(t)) a.e.. We shall now state some
properties of efficient allocations which are used in the sequel (see
Section 9 of Aumann and Kurz [1977]). With each efficient allocation x

in M we can associate a price vector p, unique up to multiplication

by a positive constant, such that

(k.10) the maximum of ut(x) over {x € 9: px < px(t)} 1s a.e.

achieved at x = x(t) .

Such & price is called an efficiency price for X. (We are assured that
p >> 0 since we have assumed u, to be increasing for each t € T.)
From (4.10) we can deduce the existence of a function A: T + R, such

that

(L.11) the maximum of a(t)ut(x) -px over x €Q is a.e. achieved

at x = x(t) .

Given p, A 1s unigue if x(t) >> 0 a.e.. We call (A,p) an efficiency
pair for x; if A 1is & comparison function, we say that A is an

efficiency comparison function for x. From (4,11) it follows that

(4.22) the maximum of [Au(y) over all allocations Yy 1is achieved

at x=Yy .

t
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{Note that this meximum may be infinite, however.) Conversely, any one
of the statements (4.10), (k.11), or (4.12) implies that x 1is efficient.

Also, from (4.11) we have a.e.

i

(4.13) 5(t)ui(§(t))=p if ici(t)>0 )

Note that from (4.13) we have a.e. é(t) >0 if x(t) # 0, so if
x(t) # 0 a.e. and (A,p) is an efficiency pair for x, A is in fact
a comparison function.

A transferable utility competitive equilibrium (t.u.c.e.) in M

is a pair (x,p) where x is an allocation and p is a price vector

such that a.e.

(L.1%) the maximum of ut(x) - p(x - e(t)) over xe€q is attained

at x = g(t) .

Though M may possess many t.u.c.e.'s, the competitive payoff density
ut(f(t)) - p(f(t) - ?(t)) is unique (see Proposition 32,3 of Aumann
and Shapley). From (4.11) we have that (§,p) is a‘t.u.c.e. in AM
if and only if (&,p) is an efficiency pair for x.

Finally, a Walrasien equilibrium in M is a pair (x,p) where
x 1s an allocation and p is a price vector such that p 1is an effi-
ciency price for x and px(t) = pe(t) a.e.. If (x,p) is a Walrasian

equilibrium in M then '3 is a Walrasian allocation in M.
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k.2 Merket Games

Let M be a market. Define a game r: C+ R by

(4.15)  r(s) = sup {Ju(x): [x = e(8)} for all SEC .
s s

The game r is the market game derived from M. Under the assumptions
we are meking ((4.1) through (4.5)) it may be that r(S) is not attained,
or is infinite, or both. In order toc apply the results of Aumann and
Shapley (and, in some cases, to make economic sense) we need to make an
assumption which ensures that this does ﬁot happen. One such assumption
was provided by Aumann and Perles [1965]; we shall now state their result.

The market M 1is integrably sublinear if for each € > 0 there exists

an integrable function n: T+ R such that if lxl > n(t) then

ut(x) < elxll, where we can take [.] to be the norm on ZIRR' defined by

)
Ixt = } Ixi| for each x € R*. We also say that the function
i=1

u: T x Q » ]R+ is integrably sublinear in this case. For each S € C

define the function ug: ]Rf’_ + R + by

ug(a) = sup {Ju(x): [x = a} for each a € IR_]:'_ .
s ° 8 _

us(a.) is attained if it is finite and there is an S-allocation x of

a such that ug(a) = [u(x).
s -

Proposition 4.16 (Aumann and Perles): If M is integrably sub-

linear then for each S € (C, us(a.) is attained for each a € JRf'_.
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Since r(8) = us(e(s)), this gives us a condition'under which
r(S) is attained for each S € C. Now, in the sequel we shall be
concerned with the market game derived from the market AM for any com-
parison function %; we shall denote this game by ry - Unfortunately,
if M is integrably sublinear it maey not be the cas; that éM is
integrably sublinear for all comparison functions 5. In order to ensure
that this is so, we need to make additional assumptions about M. In
Chapter 5 we shall assume that M 1is bounded. The following result

(Proposition 14.9 of Aumenn and Kurz {1977]) is sufficient for our needs.

Proposition 4.17 (Aumann and Kurz): Let A be a comparison func-

tion. Then if M 1is bounded and rA(T) is finite, AM is integrably

sublinear.

In Chapter 6 we shall assume that M is homogeneous. In this

case we have the following.

Proposition 4.18: If M is homogeneous and r(T) is finite

then M is integrably sublinear.

Proof: From Corollary 3.7 of Hart [1979] we know that if r(T)
is finite then there exist A > 0 and an integrable function B: T -+ IR

such that for each t €T
u, (y) < B{t) + Allyl for all y € .

(A is positive here, rather than simply nonnegative, because u, is

increasing for all t € T.) From this we have
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(L.19) ut(y) - Allyl ¢ B(t) for all y€Q

Since u, 1is homogeneous of degree B for some B € (0,1), we know

t
that max {ut(y) - Alyl: y € R} is finite and attained; let it be

attained at y*{(t). From the first-order conditions for a maximum we

can deduce that

ut(g*(t)) = Aﬂy*(t)ﬂ .

Now let z*(t) = y*(t)/0y*(t)I. Then Wz*(t)l =1 and u (y*(t))

= Iy*(6)1%u, (24(2)), so
y*(6) = (Bu, (z4(2))/a)/ (18
(since A > 0). Hence

ut(g*(t)) - Allg*(t)ll

(B, (z*(6)) /)8 (1B)y. (gu(s)) - ACgu, (2%(2)) /m)*/ (1B
= (8/)¥ () (1 _ g)(u, (am(x)) /(18D

So from (L.19)
(4.20) (ut(z*(t))ll(l-s) is integrable .

Now, let 2z €Q be such that |[z] = 1, and let y = [y*(t)fz.

Then Byl = ly*(t)l, and
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ut(y) - Allyl ¢ ut(g*(t)) - Aln_r*(t)l »

so u.(y) g u (y*(t)). Hence ﬂg*(t)lsut(z) < lg?(t)isut(f*(t)), 8o

that ut(z) < ut(g*(t)). Thus for 811 +t+ € T,

A

(4.21) ut(z) < ut(z*(t)) for all z €N with [zl =1 .
Now fix € > 0 and let n: T+ R be defined by

E(t) = (ut(g*(t))/e)l/(l-e) for each t €T ;

n is integrable by (4.20). Suppose x €2 is such that fxl > n(t).

Then using (4.21),

v

Izl > (ut(g*(t))/B)l/(l'B) > (ut(xlﬂxﬂ)/e)l/(l's)

(ut(x)/eﬂxls)ll(l-ﬁ) >

so that Hxﬂll(l‘s) > (ut(x)/s)l/(l's), or Hxi > ut(x)/s. Hence

ut(x) elx||. Thus we have shown that

nA

fxll 2 n(t) =u (x) ¢ elxl

por in other words M is integrably sublinear. This completes the proof.

Corollary 4.22: Let A be a comparison function. Then if M

is homogeneous and rA(T) is finite, AM is integrably sublinear.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=L5-

Proof: If M is homogeneous then AM is homogeneous; the

result then follows from Propositicn 4.18.

Now, in the sequel we shall need results which give conditions
under which the game r possesses an asymptotic value. Aumann and
Shapley studied this question extensively; we shall now state some of

their results which we shall subsequently use. The market M is of

finite type if there is a finite set of functions { £15e005f, ) With
f.: Q-+ R for all i =1,...,n, such that for every t € T, u_ =°¢f

i + t i

for some i = 1,...,n0. Recall that unless we explicitly say otherwise,
a market M is assumed to satisfy (k.l) through (4.5). The following

is a consequence of Proposition 31.5 of Aumann and Shapley.

Proposition 4.23 (Aumann and Shapley): If M is integrably

sublinear and of finite type then r € pHNA.

From Theorem 3.7 we can conclude that 1r possesses an asymptotic
velue. If M is not necessarily of finite type then under some cir-
cumstances we can approximate 1 by & market game derived from a finite
type market, as in the following result, which is a consequence of
Propositions 40.24, 35.6, and 36.3 of Aumann and Shapley (Proposition

36.3 is needed since we are assuming that u_ 1s concave for all 1t €T).

Proposition 4.24 (Aumann and Shapley): If M is integrably

sublinear and -

(4,25) for all t+ € T either e(t) »> 0 or e(t) =0 ,

*
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then for each € > 0 there is an integrably sublinear finite type market
M which differs from M only in the utility functions of the agents,

such that
e - 70 < ¢ ,
where r is the market game derived from ﬁ

From these last two results we have the following (which is

Proposition 40.26 of Aumann and Shapley).

Corollary 4.26 (Aumann and Shapley): If M is integrably sublinear

and (L4.25) is satisfied, then r € pNA.

If we drop assumption (4.25) then we have the following (which is

a consequence of Corollary 45.8 and Proposition 45.10 of Aumann and Shapley).

Proposition 4.27 (Aumann and Shapley): If M is integrably sub-

linear then r € pNAD N pNA'.

Give;1 Corollary 3.8 these results establish that r possesses an
asymptotic value if M 1is integrably sublinear. Not only does it possess
a value in this case, but we can give an expression for that value in
terms of the components of M. The following is a consequence of Proposi-

tions 45.10, 31.7, and 32.3 of Aumann and Shapley, and Lemma 3.18.

Proposition 4.28 (Aumann and Shapley): If M is integrably

sublinear then r is homogeneous of degree one, so that for all S € (C,

ar*(e,S5) is a constant independent of 6 and for any 6 € [0,1] we have
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(¢r)(8) = ar¥(e,s) .

In fact, ¢r coincides with the (unique) competitive payoff distribution,
so that we have '

(47)(8) = [(ulx) - p(x - e))
S

for all 8 € C, where (x,p) is a t.u.c.e. in M,

In Chapter 6 we shall have occasion to consider (in the proof of

Proposition 6.14) a general market in which u

rather than increasing, for some t € T. Theorem D of Hart [197T]

is merely non-decreasing,

establishes that any such integrably sublinear general market possesses

an asymptotic value, but this result is not strong enough for our purposes=—-
we shall need a result which generalizes Proposition 4.24. We shall lead
up to this result--Proposition 4.50--via a series of 1emma;.

We shall use the following two assumptions:

v

(4.29) for each t € T either u, is increasing, concave, and con-

tinuous on @, or ut(x) =0 forall x€Q ,
and

{(4.30) 7 € C where Z = {t €T: ut(x) =0 for all x €}

we shall call a general market which satisfies (4.1), (L4.3), (L.4), (4.29),

and (4.30) a quasi-market with zero-utility agents. The main cbject of

our attention is now an integrably sublinear quasi-market with zero-utility
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A4

agents which ve shall demote M . We shall use the symbols (T,Cou), 2,

e, and u to denote the components of Mo' From now through the end

of this section these symbols will be reserved for the general market

M, rather than for a market satisfying (4.1) through (4.5). We shall

also write R = T\Z. Note that we do not assume that u(T) = 1. If
u(Z) = 0 and (4.25) is satisfied then we are back to the case covered
by Proposition 4,24, since the behavior of "M, on R conforms with (4.1)
through (4.5). However, if u(Z) > O then since the utility functions
of the agents in 2Z are not increaging, we need to generalize Proposition
L.24., To do so, we shall first approximate the market Mo by a related
market Ma in which the utility functions of all agents are increasing.
Then we shall use Proposition 4.24 to conclude that there is a finite
type approximation to Ma in which all the agents in Z have utility
functions wh;ch are identically zero. This will give us a finite type
epproximation to Mo in which all the agents in Z have utility func-
tions which are identically zero.

Thus, for any o > 0 let M‘x be the market with player space
(T,Cyu), & goods, and endowment density e (i.e. M, is the same eas
Mo in these respects), in which the utility function of each agent

teT is u®

P where

(4.31) 4if t €R then u:=ut

and
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(4.32) if t €2 then u:‘= ug, vhere ug is increasing, concave,
and for each 1 =1,...,%, w**  exists and is continuous at

o
each x € Q for which xi >0 and

uz(x) <a for all x € Q, and

uzl(x)qx for all x € R, and all i = 1,...,8 ,

and u* satisfies (4.%). Under these assumptions u” satisfies all
the conditions of Proposition h.2k. 1In Mo’ each agent t € Z has a
utility function which is identically zero on &3 in Ma he has a func-
tion which is bounded by « and the derivatives of which are also
bounded by «a.

For each S € ( define ug: JRf > ZIR+ by

ug(a) = sup {fu®(x): [x = a} for each a e:mf .
S b 8~

with respect to ai is denoted ui and

8 s?

the vector of partiamls is written ué; similarly for ug. The ecalitional

form of the market Mo is then w: C - R, defined by w(8) = us(e(S))

The paertial derivative of u

for each S € C, and that of Ma is v C » ]R+ defined by
wa(S) = uos‘(e(s)) for each S € C,
We need to introduce one more concept (from Aumann and Shapley)

before beginning our formal arguments. If f: § + R, let

L
Il = sup [[£(x)|/(1 + T xD)] .
X0
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Let u: Tx 8+ R_ be integrably sublinear and satisfy (4.2) through
(4.5). Then for &6 > O we say that u: T x Q - R, 1is a §-approximation
to u: Tx @+ R, if u satisfies (4.2) through (L4.5) and there

exists E € C such that u(E) ¢ § and

H:J.t—utlgﬁ for all t € M\E
and
~ _ i .
. (x)= /Y x forall t€E .

If K€€ and KCT, and u: T x Q » ]R+ is integrably sublinear and
satisfies (4.2) through (L4.5) then we say that u: T x Q + R, isa

§-approximation on K to wu if the restrietion of ﬁ to Kx g is a

§-approximation to the restriction of u to Kx @ and u(t,x) = a(t,x)
for all t € MK and ell x€Qq. If u is a §-approximation on K

to u then we shall write ;r: C > ]R+ for the game defined by
w(s) = ﬁs(e(s)) for each S € (¢ .

If ;1 is a §-approximation on R to u then we define ® to be the

s~approximation on R to u“ given by u: = ﬁt if t€R (and a: = u%

if t € 2) (see Diagram 1). We write wa for the market game associated

with 13.“l .

We shall now show that given some positive number B, if o and §
are sufficiently small ;VG(S) is small whenever u(S NR) is sufficiently

small and u is a S-approximation on R to u (see Corollary 4.35),
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and GB(S) = w(S) whenever u(S NR) > g and u is a §=-approximation
on R to u (see Corollary 4.39). These results will allow us to
show that for sufficiently small o and 6 the gaﬁeS' & and ;a are
close in variation whenever u is a §-approximetion on R to u

(see Lemma 4.43). Through the proof of Lemma k.43 we shall assume

that u(2) > 0.

Lemma 4,33: For each e > 0 there exists y > O such that if

u(8) < y then uS(e(T)) < E.
Proof: From Proposition L4.16, us(e(T)) is attained, so we have

ugle(T)) = éu(g)
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wvhere x: T+ 0 is integrable and [x = e(T). From Lemma 37.9 of
Aumann and Shapley we know that if p > 0 then there exists an integrable

function ;p: T-+ZR+ such that for all t €T and x € Q,

S
ug(x) ¢ (g (8) + Ixl)
Now, fix € > 0. Then for any p > 0 we have

ugle(T)) = fu(x) ¢ [o(z () + Ix(t)1) g Jor_(t) + ple(T)D .
s ~ "8 ~P - s ~P
Set p = ¢/2le{T)l. We know (see for example Proposition 13 on p. 85
of Royden [1968]) that

there exists y > 0 such that if u(8) < y then Ipcp < e/f2
S-\-.

(since pz;p is a fixed nonnegative integrable function on T). Using

this y we conclude that if u(S) < y then

us(e(T)) <ef2+ef2=¢ |,

ccmpleting the proof of the lemma.

Corollary 4.3k: For each € > O there exist y > 0 and &§ > 0

such that if p(S) < y and & is a S-approximation on R to u then

ug(e(T)) < ¢.

Proof: Fix ¢ > 0, and take the y given in Lemma 4,33 corre-

sponding to €/2. Then we have
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u(s) < ¥y "us(e(T)) <e/2 .

Now take the ¢ given in Proposition 37.11 of Aumann and Shapley corre-
sponding to e/2(1 + Zei(T)). Then if u is a S~approximation on R

to u (and hence certainly a 8-gpproximation to u),

I:xs(e(T)) - us(é(T))l <eg/2 forall SEC .

Combining these two conditicns we conclude that if u is a S-approximation

on R to u, then

W(E) <y = ugle(m) < ¢

as was to be shown.

Corollary 4.35: For each ¢ > O there exist vy > 0, § > 0,
and o > 0 such that if pu(S NR) <y &and u is a §-approximation on

R to u then wa(s) < g.

v

Proof: From Proposition 4,16, wa(S) is attained for each o > 0,

each §-approximation u on R to u, and each S € C, so we have

v (8) = [u%(x)
v, éu x

where x: T + Q is integrable and fx = e(S). So
) 5~

w(8) = Jux) + [ @) = [ w¥(x) + [ ulx)
sz - SM - se - SR -
< au(8 Nz) + asra(e(S)) N
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and hence w&(s) < ap(zZ) + usrR(e(T)). (We have used the fact that

A

u:(x)<u if t€Z and x €0.)
Now, fix € > O, take the y and & given in Corollery L.3k
which correspond to ¢/3, and set o = ¢/3p(Z). Then if u(S NR) < ¥y

and u is a S~approximstion on R to u, usrR(e(T)) < €/3, and hence
wa(S) <e/3+ef3<e ,
as was to be shown.

Lemma 4.36: For each B > 0 there exists a > 0 such that if

u(s NR) > 8 and eJ(S) > 0 then ug(e(s)) > a.

Proof: If ei(S) = 0 for some i, we can just ignore the i-th
good in our analysis of ps(e(S)); thus we can assume without loss of
generality that e(S) >> 0 in this proof. Now, fix B > 0 and some
Je{l,...,2)., Let y De an S-allocation et which us(e(S)) is attained,

and let z: T+ be defined by

i

2(8) = (yH(6),e .y 0D, 2ed(mi/m, yIMH), Ly (e))

for each t € T (see Diegram 2). Since u is measurable over Bz x C
(see (4.4)), ug(g(t)) is measurable in t, so we can define the function

g:IR+ 4&R+ by

g(b) = p{t € R: ul(z(t)) < b} for each bER, .

g is continuous from the right, and g(0) = 0 (because u

" is increasing

for every t € R), so
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ut(x)

u, (z(t))

0 oed(T)/8 x>

Diggram 2: Cross-Section of Typical u, with

x = yH(t) for a1l i 4

for all € > 0 there exists “J > 0 such that

u{t € R: ui(g(t)) < aJ} <e .

Let a, correspond to € = 8/3. Then

J

(.31 uit €R:u(z(t)) ga ) < B/3 .

Let S € C be such that u(S NR) > B, and define the set DCS NR

nv

by

v
Q
—

D={t €S NR: uﬂ(g(t))
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Then from {4.37) we have wu(D) > 28/3. We shall now show (by contradic-

tion) that ug(e(s)) > o,. From Proposition 38.5 of Aumann and Shapley,

J

setting x = z(t) and using concavity, we have

u,(2(4)) - u(y(t))

ul g(e(8)) 2 2 u)(z(t))

2e9(1)/8 - yI(%)

for almost all t € S N R for which yJ(t) < EeJ(T)/B .

But for all t €D, ui(g.(t)) >a, and u(D) > 0, so if we are to have

J
ulp(e(8) £, then for almost all t €D it must be the case that
yj(t) > 2e'j(T)/B > 0. But then (from Proposition 38.5 of Aumann and

Shapley again)

ugm(e(s)) ui({r(t)) for almost all t &€D

So if ugm(e(s)) then ug(y(t)) < a, for almost all t € D; but

A

a

J J

u,‘g(g(t)) > a, for all t € D, so using concavity we must have

J
yJ(t) > 2e'J('I')/B for almost all t € D. But then

[ v > fv) > 2umied(myze > ved(n)/3 .
SR~ D~

But g‘j(t) =0 if t€2, 80 [y =fyl=el(s) and ve have a con-
, sR~ 8"
tradiction. Hence we must have ugm(e(s)) > ay. But since )_[‘j(t) =0

if t €3, ugp(a) = ula) for all aemf end 811 S € C, so

SﬂR(
ugm(e(s)) = ug(e(s)). Hence we have shown that ug(e(s)) > aJ if

u(s NR) 2 8.
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Now set a = min uj. Then a > 0, and if u(S NR) > B then

ué(e(s)) > (a,0,...,2)., This completes the proof.

Corollary 4.38: For each B > 0 there exist @« >0 and 6§ >0
such that if u(S NR) 2 B and u is a S-approximation on R to u

then ﬁg(e(s)) >a if eJ(S) > 0,

Proof: Once again we can restrict attention to the subset of
goods for which ei(S) > 0, and so can without loss of generality assume.
that e(8) >> 0 in this proof. TFix B > 0, and let a  be the value
of o given in Lemma 4.36. Choose o > 0 such that
¢ < min {30/2, B, min ei(S)}. Then from Lemma k.36

u(s NR)

nv

B =-ué(e(s)) > (ao,ao,...,ao) > (20,20,00.520) .

Now choose the & > 0 given in Proposition 38.14 of Aumann and Shapley
which corresponds to a. Then if u 1is a S-approximation on R +to

u and u(S) > o, we have
lud(e(s)) - ul(e(s))] <o for all 4 & {1,...,8} .

(We can apply this result of Aumann and Shapley since we chose o so

that o < min ei(S).) But we chose a 8o that B > a, and u(S) 2 B
i
if u(S NR) 2 B, 80 We have

u(S NR) 2 B wul(e(s)) > (a,0,...00)

which is what we needed to establish.
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Corollary 4.39: For each B > O there exist a > 0 and 6 > 0

such that if W(S NR) 28 and u is a S-spproximation on R to u

then w_(8) = w(8) for all « g a.

Proof: If el(8) = 0 for some i, this good can certainly not
contribute to any difference between ;’G(S) and ;'(S), 50 we can restrict
attention to the set of i for which ei(S) > 0, and can thus assume
without loss of generality that e(S) >> 0. Fix 8> 0 and let a > 0
and 6 > 0 be the values of a and & given in Corollary L4.38.

Then if u 1is & S-approximation on R to u,

(S NR) 2 8 =ulle(s) > (§,3,...,8) .

nv

Let w(8) = us(e(S)) be attained at the S-mllocation x. Then

from Proposition 38.5 of Aumann and Shapley we have

(14.40) ﬁg(x(t)) > & for almost all t €8 for which :f"(t) > 0,

for all J§ € {1,...,%} .

"~

Let @ < a. Now, u: differs from u, only if t € Z, in which case
(4.h1) u:(x) > ut(x) for all x € Q

and

(4.42) ;:J(x) <ac< ¢ forall }e{l,...,8} andall x€8 .,
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Let w (8) = E;(e(s)) be attained at the S-allocation y.

#(S), but from (4.4%0) and (4.42) we have

nv

From (4.41) we have ;A(S)

) . L,
) i(SﬁZ)+Iu(g,t)-m{yl(sﬁz)
i=1 sMR i=1

A

v, (8) = ui(e(s))

2 a -~ ~ % 1
1 JyHsnz)>0,and [ ulx) =ugle(s)) = w(s). Hemce ]y (sNz)=o0,
i=1 . SMR i=1
and u&(S) = w(S). This completes the proof.
Lemma L4.43: For every € > 0 there exist o > 0 and & > O

such that if u is a é-approximetion on R to wu then nwa - vl < e,

Proof: Fix € > 0. We need to show that there exist o > 0 and

8§ > 0 such that if u is a §-approximation on R to u then
m ~ ~ ~ ~
- - - <
Lo (a(8i) = w(80)) - (v, (8,) - w(s,)) | <¢

= 1
€.+ C8 Cs8 . =T. Let v, ', and

a' be the values of vy, 8, and a corresponding to €/2 which are

for all chains @ = So Cs

given in Corollary L4.35, and let ao" and &" be the values of a
and & corresponding to B = y/2 which are given in Corollary 4.39.
Let a = min {(a',a") and let & = min (§',8"). Then from Corollaries

4,35 and 4.39, if u is a S-approximation on R to u we have
(4.44)  w(SNR) <y =.H“;m(s) < e/2

(since w (8) ¢ w ,(8) for all SE€C if a g a¥) and

L]
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(3.45)  u(S NR) 2 v/2=w(s) = w(8) .

Let ¢-.~soCS C...CSmCSm_ =T be a chain. We can insert

1 1

finitely many additional sets in this chain so that the difference
in size between any two adjacent sets is at most +vy/2; this cannot
reduce the sum in which we are interested. Relable the chain

¢=UOCU C...CUPCU+ = T. Let q be such that u(UqﬁR)<y

1 ptl
and 1.|(Uq_'_:L NR) > v. Then ;1(IJq N R) > v/2, so by (k4.45),

(h46) 3 [(W, (U, ) = WU, 1)) - (W (u) - wu ) =0 .
: .k=q

But

a=1 .
(b.47) ) l(wa(U
k=0

) = WUL)) = (W (U) = WU )]

" q=1 - - .
) - wa(Uk)) + kEo(w(Ukﬂ) - W(Uk)) = wa(Uq) + w(Uq) s

na

Qzl .
? (w (U
k=g & K

80 since l.l(Uq AR) <y and w(8) < Ga(S) for all S € C and all

a > 0, we can conclude from (4.4h4) that

(4.18) Ga(uq) + G(uq) <efe+e/2=¢ .
From (4.46), (4.47), and (L4.U48) we have
E 16,0000 - ) - Gy -l <e

completing the proof of the lemma.
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The following result generalizes Corollary 4.26 and

Proposition 4.27.

Corollary L.49: If Mo is an integrably sublinear quasi-market

with zero-utility agents then w & pNAD N pNA', where w 1is the market
game derived from Mo; if in addition Mo satisfies (4.25) then

w € pNA.

Proof: If u{Z) = 0 the result follows from Proposition 4.2k,
If u(Z) > 0, then from Lemma L4.43 for each ¢ > 0 there exists o > O
such that nwh - w|| < &, where wa is the market game derived from Mﬁ
{(since u is certainly = S—-approximation on R to itself for all
§ > 0). But Ma is an integrably sublinear market (not just a éenerai
market), so by Proposition 4.27 we have v, € pNAD N pNA', and if (h4.25)
is satisfied then by Corollary L4.27 we in fact have vy € pNA. Since
pNAD, pNA', and pNA are all closed in the variation norm, the }esult

follows.

’

This result allows us to establish in Chapters 6 and T that the
games we study there are members of pNA and pNAD N pNA' respectively,
but in order to calculate the values of these games we need the following

stronger result, which generalizes Proposition 4.2k,

Proposition 4.50: Let Mo be an integrably sublinear quasi-market
with zero-utility agents which satisfies (4.25) and let w be the market
geme derived from Mo' Then for every € > 0 +there is an integrably
sublinear finite type quasi-market with zero-utility agents ﬁo which

differs from Mo only in the utility functions of the agents such that
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lw - wk < €
where w 1s the market game derived from Mo'

The strategy of the proof is to first use Lemma 4.43 to approximate
the original market Mo by a market qu which satisfies all of the
assumptions of Aumann and Shapley, then to use their results to find
a finite type approximation ﬂa to Nh, and finally to use Lemma 4.h43
aga;n to show that there is a market ﬁo which is of finite type and
in which the utility function of every t € Z 1is identically zero which

approximates Ma' We shall then have approximated Mo by Mo.g/

Proof of Proposition 4.50: If u(Z) = 0 then the result follows

immediately from Proposition 4.24, so assume that u(Z) > 0. Fix € > 0
and let o and &' be the values of o and 6§ given in Lemma L.h3
which correspond to e/3. Then if ﬁ is a §-approximation on R to

u, we have
(4.51) o, - %l <e/3 ,

where & is the coalitional form of the market where the utility function

of t is u, (and u, =u, if t € %), and %a is the coalitional

t t t
form of the market where the utility function of t 1is ﬁ: (and
ﬁ%=&t if t€R and W =u’ if te€z). (See Diagram 1, p. 51).

In particular we have

(4.52) lw - w&ﬂ <e/3 ,
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since u is certainly a §'-approximation on R to itself. But the
market Mﬁ associated with LA satisfies all the assumptions of Aumann
and Shapley (including (L4.25))--i.e. all the utility functions are
increasing--so from their Proposition 40.24 (on which Proposition 4.2k
is based) we can deduce that there exists &" > 0 such that if ;F

is a 6"—approximetion to ua, then “;d - w&ﬁ < e/3. Now set !

8§ = min (6',5"), and note that it can be assumed throughout Section 35

of Aumann and Shapley that every utility function is concave. So among

the S-approximations uq to ua there is one which is concave and of

finite type, and for which u: = ug if t € 2 (since ug on Z 1is

Y

already of finite type). Choose such a u . Then since & < 8",

certainly
(4.53) ﬂua - w&" <e/3 ,
Now let u be defined by

u, if t €2

>

t ‘o,
" if t€R .

Then since 6 ¢ §', and since W is a §-approximation on R to e
l\a ~

and + = ut

from (4.51) we have

if t€R, u is a 6'-approximation on R to u. So

(L4.5h) uaa -l <e/3 .
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Combining (4.52), (L4.53), and (L.54) we have
e vl g v -wil+ by -5 0+ h -3l<e .

But the general market underlying w is an integrably sublinear finite
type quasi-market with zero-utility agents which differs from M° only

in the utility functions of the agents, sc the proof is complete.

4,3  Economies

An economy is a pair E = (M, I'(M)), where M 1is a market and
'({M) is a strategic game the players of which are the agents in M.
In the following chapters we shall consider a number of such economies,
making different assumptions on the nature of the strategic game. An

allocation x in M is a value allocation of E = (M, T(M)) if u(§)

is a Harsanyi-Shapley value of T(M) (see Section 3.2 asbove). The set
of velue allocations of E 1is the solution concept we shall use in

what follows.
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CHAPTER 5: Economies in which any Majority
Can Control the Pattern of Trade

5.1 Introduction

In this chapter we shall characterize the wvalue allocations of
economies in which the strategic opportunities of each coalition depend
solely on whether it contains a majority of the population or not; our
intention is to model an economy in which there is "majority rule".
If a coalition contains a ma}ority of the population we shall assume
that it can expropriate all the goods which the members of the comple-
mentary minority attempt to trade {(with each other, or with members of
the majority), and redistribute them, in addition to its own endowment,
in any way it pleases. If a coalition contains a minority of the popula-
tion we shall assume that each of its members can assure himself of the
utility derived from consuming his initial endowment (simply by not
attempting to trade anything), and that the coalition has no strategy
which allows its members to receive higher payoffs (the only way it
can redistribute its endowment is by trading). These assumptions give
a majority coalition the minimel amount of power it might expect to
possess in a majority rule private ownership economy. They can be con-
trasted with the assumptions of Aumann and Kurz [1977], where a majority
can exproprlate the entire endowment of the complementary minority; as
we argued in Chapter 1, this seems to give a majority more power than
it could expect to have in a private ownership economy. Roughly speaking
we can think of a majority in Aumann and Kurz [1977) exercising its

power by imposing a 100% wealth tax--where the "wealth" of an agent
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ineludes the total value of his leisure time--while here it does so
by imposing a 100% sales tax. Of course the final outcome will not
in general involve such a high tax rate in either case; what is being
assumed is merely that it is possible for any majority to impose such
a tax. (In Chapter 8 we shall investigate the case where the size of
"the tax a majority coalition can impose depends on the ﬁize of the
coalition--a coalition containing a bare majJority of the population
being less powerful than one containing almost all of the populaetion.)
We now formally state the assumptions we shall make about the economy

= (M, T(T)) in this chapter. Let M be & market. Then T(M) is
a strategic game (with player space (T,C,u)) in which the payoff

functions and strategy sets satisfy the following three conditions:

(5.1) if S € C 1is such that u(S) > 1/2, then for each S-allocation

x there is a strategy o of S8 (i.e. there exists o € XS)

such that for every strategy T of T\S (i.e. for all =t € XT\S)

IIV

t if t€8

h (t)‘
l_ﬁ_u(e(t)) if tE€MS

(5.2) if S € C is such that u(8) > 1/2, then there is a strategy
T of MS such that for each strategy ¢ of 8, there is an
S=allocation x such that

< ut(x(t)) if t €S8

b5 (¢
~0T >ut(e(t)) if t €MS

r
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and

(5.3) if S8 € C 4is such that u(8) = 1/2, then for each S-allocation
x there 1s a strategy o of S such that for each strategy

Tt of TS there is a ™S-allocation y such that

uv

ut(X(t)) if tes
n> () )
~OT

na

ut(y(t)) if t€Ms .

We do not need to specify the strategy sets or payoff functions in any
more detail: every strategic game satisfying (5.1) through (5.3) is
equivalent for our purposes. The following is the mein result of this

chapter.

Theorem A: Let M be a bounded market and assume that [I'(M)
satisfies (5.1) through (5.3). Then an allocation x in M is a
value allocation of the economy E = (M, '(M)) if and only if it is

efficient and a.e.

(5.4} A(£)(u (x(t)) - u (e(t))) - [Alulx) -~ ule)) = ple(t) - x(t))

where (A,p) 4is an efficiency pair for x. Moreover, such an allocation

exists.

Throughout this chapter we shall use TI(M) to denote & strategic

game associated with the market M which satisfies (5.1) through (5.3).
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5.2 Optimal Threats

The first step in establishing the characterization (5.k4) is
to determine the nature ‘of a collection of optimal threats in the
two-person games between S and TS for each S E€ (. We first
study the case where A(t) =1 for all t€T. Let r: C+ R be
the market game derived from M (see (4.15)); recall that when we say
that r(S) 1is "attaeined" we mean that it is finite and there exists
an S-allocation x such that r(S) = fu(ic). If r(T) is attained,
then since fu(g) < r(T) we can definz a totally finite measure n

on (T,C) by
(5.5) n(8) = fu(e)an for each - S €C
S
(u(e) 1s a measurable function of t by (4.4)). Since u € NA, we
have n € NA. The following result establishes the nature of a collec-

tion of pairs of optimal threats in the two-person games between S

and T\S for each S € C.

Lemma 5.6: Assume that r(S) is attained for every S € C.

Then for each S € C there exists a pair (00,1:0) € X° x XT\S such
that
(5.7) HS(U,TO) < Hs(oo,ro) < Hs(co,'r) for all o € XS, T € XT\S R

S
H (oo,ro) is finite, and
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r(s) if wu(s) » 1/2

nv

5°%"0 n(8) if u(s) < 1/2 .

Remark: The strategies (co,to) of course depend on S; we
refrain from explicitly incorporating this fact into the notation for

the sake of clarity.

Proof of Lemma 5.6: First consider the case where u(S) > 1/2.

Let x be an S-asllocation which attains r(S); let o be the strategy
of S8 corresponding to x given in (5.1), and let To be the strategy

of TS given in (5.2). Then from (5.1),

fhs > fu(x) for all 1 € xS
~OT-S~

S o

and from (5.2), setting o = . there exists an S-allocation 2z such

that

S
h s fulz) .
5% " 8 *~

But [u(z) < fu(x) for all S-allocations z by definition, so
s ~ 78 °© -

(5.8) fhg . £ Julx) ¢ fhs . forall t€ X8
00 S5 ~ 8 "o

Similarly from (5.1) we have

T{hs < [ ule) for all = e xS

s %" T ms
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and, setting o =0 _ in (5.2) we obtain

I 5 e IU(G) ’
ns’e'0 T Mg -

80 that

(5.9) i hf__l_ > [ u(e) > f}_lf,r for all T EXII\S .
MS“ oo TS ~ TS o

Hence

5 _ S 5 S s
(5.20) B0 ,7 ) = jspo - Jn o< _Lho . -

S
f = H (o _,t)
o'o S*"o o o Mg %ot °

for all T EXT\S .

In a similar wey we can set T =T _ in (5.1) and use (5.2) to conclude

that

(5.11) [n°_ < fu(x) < [ud for all o € X
~°'T Lnd n~ — ~U T
S o 8 5 oo

and

(5.12) [ 1w > [u(e)> [nS  forell c€X°
ns %% - Mms - - Mms %' ’

so that
(5.13) B(0,t ) =[u - [ S < -
S o MS o S

for all o € X .
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But (5.10) and (5.13) imply that (5.7) is satisfied by the pair (00,10)

we have chosen. Moreover, from (5.8) and (5.11)

5]
/n = fu(x)
55%% s -~

and fu(x) = r(S) by the way we chose o s from (5.9) and (5.12)
g -

[ = [ ule) =n(s) .

Sc for any S with u(S) > 1/2, and, by reversing the roles of S and
TS, for any S with u(8) < 1/2, we have proved what we need.

Now consider the case where u(S) = 1/2. Let x attain r(s)
and let y attain r(T\S); let Oo be the strategy of S corresponding
to the S-allocation x given by (5.3), and let T be the strategy of
T8 corresponding to the T\S-allocation y when the roles of S and

T™\S are reversed in (5.3). Then we have

(5.14) jth < Julx) < hﬁ . £ Julx) ¢ gf , forall o€ x°
870 8 T "800 8 ° 5o -
and all TeXT\S s

and

(5.15) / o > u(y) > no > u(y) > n° for all
ms %% ~ T{S -~ 5 T{S'“o‘o - T{S ~ ° T{S"OOT

for all cEXS and all TEXT\S .
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so that

A

HS(U,TO) < Hs(oo,to) < HS(GO,T) for 81l o € X° and all

and all T € XT\S

Moreover, from (5.14) and (5.15),

fn° _ =fulx) =r(s) ana [ K [ uly) = r(T\S) .
Soo0 S Ms""oc0 T™s ~

This completes the proof of the lemma.

What this result shows is that the strategy pair where the members
of the minority éimply consume their endowment while the majority
threatens to expropriate any goods which minority members attempt to
trade and redistributes its endowment among its members in an optimal
fashion constitutes a pair of optimal threats, Défine the game

q: C > ]R_._ by

1/2

nv

(5.16) a(s) = [n° = {r(s) if  u(s)

S"O' T

oo n(s) if u(8S) < 1/2 .

We have not established that (00,10) is the only pair of optimalfthreats
in the game between S and TS. However, since it will turn out that
the game q always possesses an asymptotic value we shall, by virtue

of Lemma 3.26, locate all the Harsanyi-Shapley values of the economy

E under consideration by restricting attention to the family of pairs

(00,10) given in Lemma 5.6. Before proceeding to the calculation of
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the value of the game q, we shall establish two results which will

be needed later. The following is used in the proof of Proposition 5.25.

Lemma 5.17: Suppose that HT possesses a finite saddle point.

Then r(T) is attained.

Proof: From the fact that HT possesses a finite saddle point

we know there exists GOGXT such that

T_ T T _ T b\
fhc = H (0,1:0) < H (oo,'ro) = fyco for all o € X

(where Ty is the single strategy of ¢@). Now, from (5.2) we know
there exists an allocation x such that }35 (t) < “t(i‘(t)) for all
o

t+ € T3 applying (5.1) to the allocation x we obtain a strategy o

1
of T such that hf (t) > ut(x(t)) for all t € T. Combining these
-0y = .
facts we have
T T : T T
(5.18) Itlo, < I'I'lco < J‘u(:ic) < [{101 for all o &€X |,

so that, teking the case o = o,, we can conclude that

1

(5.19)  H'(o_,t ) = [;130 = fulx) .

By hypothesis HT(oo,to) is finite. Suppose r(T) is not attained at

x. Then there exists an allocation y such that [u(y) > fu(x). Let

~

g, be the strategy of T corresponding to y given by (5.1). Then
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fu(x) T > f~$ > fuly) > fu(x)
o 2

(using (5.18) for o Tos and (5ﬂ19)), which is not possible. Hence

r{(T) = fu(§) < =, where x is an allocation, establishing the lemma.

The definition of a value allocation of E involves the payoff .
function ys of T(M) (see Section 4.3). The following lemma allows
us to work exclusively with the elements of the market M. Aumann and
Kurz [1977] proved the same result under their assumptions {see their
Proposition 11.12). The proof under our assumptions is very similar;
it is included for completeness. Recall that given a comparison func-
tion As q%, is the game defined by qL(S) = éé@i . for each S € C,
where (oo,ro) is a pair of optimal threats in tgeotwo-person strategic

game between S and T\S in which the payoff function of S 1is

flhs (see Section 3.2, and in particular (3.24}),
S~~

Lemma 5.20: An allocation x .is a value allocation of
E = (M, T(M)) if and only if there exists a comparison function )

such that Hf‘ hes a finite saddle point for every S € C and

~

(¢qk)(S) = ééu(*) for each S €(C ,

where q, is the game defined by (3.24).

Proof: If X is a value allocation of E then by definition
u(x) = hz for some o € X° and thg = [au(x) = (¢qA)(S) for each
s~ s T -

S € C for some comparison function A.
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On the other hand, suppose x is an allocation such that

f%u(g) = (¢qi)(S) and Hf has a finite saddle point for each S € C.
S b d
€

T

By (5.1) there exists o € X~ such that

(5.21) hi(t) 2 u (x(t)) forall teT .
So
(5.22) 1l 2 faulx) = (6g, M) = g, (T)

(by (3.1)). But by the definition of q,(T),

T, , T Cm , = T
HA(O ,To) < Hl(oo’ro) = qA(T) for all o' €X |,

~ -~ -~

for some o € XT, where T is the single strategy of @#. So

ql(T) > f%?g- for all o' € Xt .

and in particular qA(T) > IMIE Hence we have equality in (5.22),

and so from (5.21)
(5.23) bi(t) = u (x(t)) for almost all t€T .

So ('MA)(S) = hhg‘ for each S € (. Hence hg‘ is a value of T(M);
L 8"~ =
so by (5.23), u(x) is a value of TI'(M). Thus x 1is a value allocation

of E, as was to be proved.
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5.3 The Calculation of the Value of the Game q

From Lemma 5.6 we know that in order to characterize the Harsa.nyi—
Shapley values of E (see the definition in Section 3.2, in particular
(3.24) and (3.25)) we have to calculate the value of the game gq defined
in (5.16); this we shall now do. Our argument depends heavily on the

results of Aumann and Shapley, and of Aumann and Kurz [1977].

Proposition 5.24: If M is integrably sublinear then q € ASYMP,

and ¢q is given by

(¢a)(S) = (r(T) - n{TIM(8)/2 + [[ulx) - p(x - e)1/2 + [u(e)/2
s - - s

for each S € { where (Jf.p) is a t.u.c.e. in M.
Proof: Define the function g: [0,1] » [0,1] by

1 if x € [1/2,1]

glx) =
0 if =x e [0,1/2) .

Define the games ql: C-> R and q2: C+ R

+ by

+
ql(S) = g(u(8))r(8) and q°(s) = g{u(s)In(8) for each S € .

We have gop € bv'NA, r € pNAD by Proposition 4.27, and n € NA, so

:ql & bv'NA#pNAD and q2 € bv'NA. Hence by Corollary 3.8, ql € ASYMP

and q2 € ASYMP. But

a(8) = ql(S) + (n(8) - q2(S)) for each S € ,
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g0 that q € ASYMP, and by the linearity of the value operator ¢ (see

(3.%4)) we have

$q = ¢q1 + ¢n - ¢q2 .

Now, in fact r € pNAD N pNA' by Proposition 4.27; hence by

*

Propositions 3.16 and hL.28,

(¢ql)(s) = r{T)u(8)/2 + f[u(g) - p(x - e}]/2 for each SE€C ,
& N

vhere (x,p) 1s a t.u.c.e. in M. Also, by Theorem 3.1k and (3.11),
we have (¢n)(S) = n(S) for each S € C. Finally, from Propositions

3.16 and 4.28 once again we have

(4a2)(s) = [n(T)u(S) + n(8)]/2 for each SE(C .

Hence we have

r(Tu(s)/2 + [[u(x) - p(x - )1/2 + n(s)
S

- [n(T)u(S) + n(s)]/2

($a)(5)

(r(T) - n(T)u(s)/2 + [lu(x) ~ p(x - e)1/2 + fu(e)/2
S 5 -

for each S € (¢, where (f,p) is a t.u.c.e. in M, completing the proof

of the proposition.
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5.4 The Characterization of the Value Allocations of the Economy
(M, T(M)) when M Is Bounded

¢

First we have the following, which is analogous to Proposition

14,10 of Aumenn and Kurz [1977].

Proposition 5.25: Let M be a bounded market, x an allocation

in M, and ) a comparison function. Then we can choose a finite

saddle point (GO,TO) for H? for each S € C so that the game qh

-~

defined in (3.24) has a velue ¢aq, which satisfies (¢ql)(S) = [au(x)
~ < g~ -
for each S € C if and only if x 1is efficient with efficiency pair

(A,p) and a.e. (5.4) is satisfied.

Proof: TFirst suppogse that we can choose a finite saddle point

A

-~

(oo,ro) for H> for each S € C in such a way that (¢ql)(8) = f%u(f)
~ S
for each 8 € C. Then by Lemma 5.17, rl(T) is finite, so that by

Proposition 4.17, AM is integrably sublinear. Also we have

fau(x) = (¢q§)(T) = qé(T) = r,(T)

{using the fact that ql(T) is independent of the collection of optimal
threats we choose, and iemma 5.6). But then X ig efficient and so
there exists a price p such that (%,p) is an efficiency pair for

X, so that (f,p) is a t.u.c.e. in M (see Section 4.1). So by

Proposition 5.24 we have

($g,)(8) = (r,(T) ~ n,(T)u(s)/2 + [Trulx) - plx - e)1/2
A A A 5

+ [au(e)/2
5= -
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for each S € C, where nA(T) = flu(g). But then from our hypothesis

that (¢qk)(S) = fﬁu(g) for each S € C we have
2 s
[hu(x) = u(s)/alulx) - u(e)) - pf(x - e) + [rule)
S S S

or

é}(u(§) - u(e)) - u(s)alulx) - ule)) = Pf(s - %)
)

for each S € C, so a.e. (5.4) is satisfied. This completes the proof
of necessity.
Now suppose that x 1is efficient with efficiency pair (A,p)

and a.e. (5.4) is satisfied. Then [Au(x) is finite and [ulx) = r

h(T)

(see (L4.12)). Hence AM is integrably sublinear, so that by Proposition
4,16, rA(S) is attained for each S8 € . Thus from Lemma 5.6 we can

choose g finite saddle point (GO,TO) for Hs for each S € { such

A

-~

that the game q, defined in (3.24) is given by

rA(S) if  u(8) » 1/2

~

v

qA(S) =

~ nA(S) if  u(8s)

1/2 .

A

Then from Proposition 5.24 we have q, € ASYMP and
(5.26)  (¢q,)(8) = (r,(T) - n, (T)u(S)/2 + [[rulx) - p(x - ¢)]/2
~ < S

~

+ [au(e)/2
e
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for each S € C. But integrating (5.4) over S & C gives

[alu(x) = u(e)] - u(8)x, (T) = n,(T)) = [p(e - x)
8 ~ - S

for each S € .

Combining this with (5.26) gives (¢q,)(8) = [Au(x) for each S EC,
2 S

as was to be shown. This completes the proof.
This gives us the characterization part of Theorem A.

Theorem 5.27: Let M be a bounded market. Then x 1is a value

allocation of the economy E = (M, I'(M)) if and only if it is efficient

with efficiency pair (A,p) and a.e. (5.4) is satisfied.
Proof: The result follows immediately from Lemma 5.20 and

Proposition 5.25.

5.5 The Existence of a Value Allocation of the Economy (M, F(M))
when M Is Bounded )

Our argument will follow that of Aumann and Kurz [1977] quite

closely. Let p be a price vector; for each t € T define the

indirect utility function uﬁ: IIB+ +]R+ of t at the price vector p by

(5.28) uE(Y) = max {ut(y): x€Q and px gy} foreach y€R, .

Define the function uY: T x R, *R, by up(t,y) = us(y) for each

t €T and y € ]R+. The following, a consequence of Lemmas 16.1, 17.4,
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and 17.5 of Aumann and Kurz [1977], states some of the properties of

the function up.

Lemma 5.29: For each price vector p, u® satisfies (4.2)
. _ py-1
through (4.5). Also, for each t € T the inverse function (ut) (y)

is continuous in (p,y) for ¥y > 0.

By virtue of this result, for each price vector p we can define
a market M’ with agent space (T,C,u) and £ = 1, in which the utility
funection of t €T is uE:I]R+ +cm+ end the initial endowment density

is pe. The following is a consequence of Lemmas 16.1 and 9.10 of

Aumann and Kurz [1977].

Lemma 5.30: If M is bounded then so is M® for each price
vector p. Also, if X is an efficient allocation in M with effi-
ciency pair (A,p) then px 4is an efficient allocation in MP  with
efficiency pair (%,l), u(x) = up(pg), end A(t) = l/uﬁ'(p{(t)) if

x(t) # o.

We can now state the following alternative characterization of

the velue allocations of M, which we shall use to prove existence.

Proposition 5.31: Let M be a bounded market. Then an alloca-
tion x is a value allocation of the economy E = (M, I'{(M)) if and
only if there is a price vector p and an efficient allocation XP

in MP such that a.e.
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(5.32)  A(£)[uB(¥P(£)) - ule(t)] - ALuP(YP) - ule)] = pelt) - yP(¢)
vhere (5,1) is an efficienc& pair for gp in MP, and a.e.

(5.33) x(t) maximizes ut(x) over {x €Q: px < gp(t)} .

Proof: First assume x 1is a value allocation of E, Then by

Theorem 5.27, x 1is efficient with efficiency pair (A,p) and a.e. (5.4)

is satisfied. BSet Xp = px. Then by Lemma 5.30, gp is an efficient
allocation in Mp, with efficiency pair (g,l). Since p 1is an effi-
ciency price for x, we know that a.e. (5.33) is satisfied (see (4.10)),
80 that uz(gp(t)) = ut(§(t)). But then (5.32) is a.e. satisfied, com-
pleting the proof of necessity.

Now assume that X is an allocation, p is a price vector, and
yp is an efficient allocation in MY such that a.e. {5.32) and (5.33)
are satisfied. From (5.33) we have pg(t) = gp(t) a.e., s0 x is
efficient and there is a comparison function é such that (%,p) is
an efficiency pair for yp =px in M (using Lemma 5.30 agein), so
from (5.32) we have that a.e. (5.4) is satisfied, completing the proof

of sufficiency.

Given this result, we shall locate a value allocation of E
in the following way. First, for each price vector p we shall find
an efficient allocation gp of MP which a.e. satisfies (5.32).
Then we shall argue that for some price vector p the funetion X

defined by (5.33) is an allocation; by Proposition 5.31 this allocation

x is a value allocation of E.
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Lemma 5.34: Let M be a bounded market and assume e is not
an efficient allocation in M. Then for each price vector p there
exists a unique efficient allocation yp in MP such that (5.32) is

a.e. satisfied; moreover, yP(t) is a.e. continuous as a function of P.

Proof: Fix a price vector p, and suppose that the efficient

allocation yp a.e. satisfies (5.32). Since e 1is not an efficient

allocation in M there exists an allocation x with ut(g(t)) > ut(g(t))
a.e.. Let z =px. Then 2z is an allocation of pfg in M® ana

~

uf(g(t)) > ut(f(t))' So applying (4.12) to MY we obtain
[PrP) 2 [2P(2) 2 [aulx) > [aule)

50 fé[up(yp) - u(e)] > 0. But then from (5.32) it cannot be the case
that yp(t) = 0. Hence yp(t) >0 a.e..

Given this fact,from Lemma 5.30 we know that A(t) = l/uﬁi(gp(t))
a.e., so an efficient allocation yp in MP a.e. satisfies (5.32) if

-~

and only if it a.e. satisfies

)) wP(yP) - ule)
+ yP(t) = pe(t) + a -
- P *f up'(yp)

WD(yP(8)) - v, lelt

wPr(yP(¢))

(5.35)

Define 3:2: T + IR+ by

(5.36) gg(t) = (uﬁ)'l(ut(g(t))) for all teT .
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Then gg is measurable, and since Yg(t) < pf.-(t) for all t €T it
is integrable. Also, from Lemma 5.29, gﬁ(t) is continuous as a func-
tion of p for eac.. t € T. Now, as we argued above we have
f[(up(yp) - u(f_-))/up'(yp)] > 0, so from (5.35) and the fact that

yg(t) < pg(t) for all t € T we must have a.e.

A

(5.37)  y°(t) > yolv) .

Consider a general market lle with agent space (T,C,n) and one

gc;od in which the utility function of t €T is Ve IR+ - ]R+ defined by

vt(y) uz(y + g'g(t)) - ut(g(t)) for each ¥y € R,

and the initiasl endowment density is pe = yg. Since e is not efficient

~

we have [(pe - y') > 03 v,(0) = 0, and (4.2) and (4.k) through (4.7)

are satisfied, so #® is in fact a bounded market. Hence by Theorem C

of Aumann and Kurz [1977] there is a unique efficient allocation 2P

-~

in MP satisfying zF(t) >0 a.e. and

v, (2P(t)) v(zP)
P t ~
38)  P(6) ¥ i = pe(t) - yR(8) +j ,
(5.38) v (2P(6)) v (2P)

and by Lemma 17.6 of Aumann and Kurz [1977], g.p(t) is a.e. continuous
in p. Now, rewriting (5.38) we can conclude that there is a unique

efficient allocation zF in M° satisfying zF(t) > 0 a.e. and
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PP(t) + yB(8)) - u(
Py ¢ g2 » LW DD - ule0)

~ uz'(gp(t) + xg(t))

W(zP + yP) - ule)
=pe(t)+f Pl
N up'(gp + gg)

But from (5.37) any efficient allocation yp a.e. satisfying (5.35)

-~

must be of the form yﬁ + ¥£ where g?(t) >0 a.e. and f(yﬁ + yﬁ)

= fpg. Since we have f(gp + yg) = [pe, this establishes that

yp = gp + yg is the uniqué efficient allocation a.e. satisfying (5.35),

completing the proof of the first part of the result.
Finally, as stated above both yg(t) and zF(t) are a.e. con-

tinuous in p, so yp(t) = 2P(t) + yﬁ(t) is also, and the proof is

complete,

In the remainder of this section we shall let Yp be the unigue
efficient allocation in M’ which a.e. satisfies (5.32) which is
provided by Lemma 5.34 when e is not an efficient allocation in M.
For each t € T and each price vector p let

BP(t)

{xeq: px < yp(t)} .

let

'
P
o

1

{x € B*(¢): u (x) 2 u(z) forall ze P(t)) ,
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and let

(5.39)  z(p) = [D° - [e .

If we can find a price vector p such that O € Z(p), then there is
an allocation X whiéh a.e. satisfies (5.33), and so by Proposition
5.31 the economy ﬁ possesses a value allocation. To show that there
is a price vector p such that O € Z(p), we shall use the following
version of Debreu's lemma (see Lemma 1 on p. 150 of Hildenbrand [197&]3/).
Let A={pegq: % _1_)i = 1}, let int A be the relative interior of
A, and let 234 = z;int A.

Lemma 5.40 (Debreu): Let Z be a compact- and nonempty-valued
correspondence from int A to ]RR' that is bounded from below and

has a graph which is closed in int A x E& for which pz = 0 for

ell z € Z(p) and for which the following is satisfied:

(5.41) if {pn} is a sequence with P, € int A for all n, and
L
P, * P, €8 then inf { ) 2tz e Z(p)} > 0 for large
i=1
enough n .

Then there exists p € int A such that 0 1is a member of the convex

hull of Z(p).

In order to establish that the correspondence Z defined in
(5.39) satisfies the hypotheses of this lemma, we shall need the following

two results.
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Lemma 5.42: If M is a bounded market and e is not an
efficient allocation in M then for each compact subset C of
int A there is a constant c¢ such that y°(t) < c + pe(t) for all

t€T and all pE€ C.

Proof: From the proof of Lemma 5.3L4 we have yp(t) = yg(t) + Ep(t)
for all t € T, where gp is an allocation in the market ﬂp. By
applying Corollary 17.10 of Aumann and Kurz [1977] to the market MP
we know that for each compact subset C of int A there is a constant

¢ such that zP(t) < c + pe(t) - yﬁ(t). But then z°(t) + gg(t)

= yP(t) < c + pe(t), completing the proof.

Lemma 5.43: If M 1is a bounded market and e is not an efficient

allocation in M +then there exists &6 > 0 such that a.e.

wP(yP(t))
yP(t) + —E}E;Er-——-; 8§ for all p€ int A .
- ut'(_ (t))

Proof: Let & = inf {I(pe - yg): p € A}, where yg is defined

in (5.36). yg is continuous by Lemma 5.29, and A is compact, so
the infimum is attained, But if f(pe - yg) =0 for some p €A then
e 1is efficient, contrary to our assumption. So & > 0. But by the

o .

concavity of Uy, we have

uz(gp(t)) - u, (e(t))

WP (P ()

> yP(t) - gﬁ(t) for all tE€T ,
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S0

j‘up(g_rp) - u(f)
upv (YP)

But then from (5.35) we have a.e.

[P -9 = fre =P 2 6 .

14

Py uz(yp(t)) () ut(g(t)) uP(yP) - ule)
t) + ——5—— = pe(t) + -+j = -
- wryP(e)) T uy ' (yP(1)) uP (yP)

as was to be shown.

We now have the following.

Proposition 5.44: If M is a bounded market and e is not an

efficient allocation in M +then there exists a price vector p such

that 0 € Z(p).

Proof: The proof of Lemma 17.22 of Aumann and Kurz [1977] uses only
those propertiés of gp (and hence of the correspondence 2 defined in
(5.39)) which we have established in Lemmas 5.34, 5.42, and 5.43, so their
proof demonstrates that Z satisfies all the hypotheses of Lemma 5.40,

and is convex. Hence there is a price vector p such that 0 € Z(p).
This allows us to establish the existence part of Theorem A.

Theorem 5.45: If M is a bounded market then there exists a

value allocation of the economy E = (M, T'(M)).
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Proof: First we shall deal with the case in which e is an
efficient allocation in M. Then x = e satisfies (5.h4), so that
from Theorem 5.27, e is a value allocation of E.

If e is not an efficient allocation in M +then by Proposition
S.hh there exists a price vector p such that pr = f§ where fp(t)
a.e. maximizes u, over {x €9: px ¢ Xp(t)}, and {p is the unigue
efficient allocation in MP which m.e. satisfies (5.32) (the existence

of which is assured by Lemma 5.34%). But then by Proposition 5.31, xP

is a value allocation of E. This completes the proof,

Proof of Theorem A: Theorems 5.27 and 5.45 immediately yield

Theorem A.

5.6  Discussion end Examples

We shall now investigate the properties of the value allocations

characterized in Theorem A. First, we have the following:

Lemma S5.46: If M is a bounded market and x 1is a value alloca-

tion of E = (M, T(M)) then ut(f(t)) > ut(g(t)) B.e..,

Proof: If x is a value allocation of E then by Theorem A
we know that (5.4) is a.e, satisfied; and by (L4.12) we have

f&(u(g) - u(e)) 2 0. Now suppose that ut(§(t)) < ut(g(t)) for all

t €S where S € eand u(S) > 0. Then since p is an efficiency
price for x, px(t) < pe(t) a.e. in S. But then p(g(t) - §(t))

+ fé(u(g) - u(g)) >0 a.e. in S, so that (5.4) is not satisfied by x.

Hence ut(§(t)) 2 ut(g(t)) a.e..
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In the proof of Theorem 5.45 we aruged that if e is an efficient
allocation in M then it is a value allocation of E = (M, I'(M)).

Using Lemma 5.46, we can make the following stronger claim.

Corollary 5.47: If M is a bounded market and e is an efficient

allocation in M then x is a value allocation of E = (M, T'(M))
if and only if ut(x(t)) = ut(e(t)) and px(t) = pg(t) a.e., where

P is an efficiency price for X.

Proof: If x is a value allocation of E then from Lemma 5.46 and
the fact that e is efficient we have ut(g(t)) = ut(g(t)) a.e.. But
then from (5.4) we have p?(t) = pf(t) a.e.. Conversely, if x is
an allocation for which ut(g(t)) = ut(g(t)) a.e. it is efficient, and
if in addition px(t) = pe(t) a.e. then (5.4) is satisfied, so that

by Theorem A, x is a value allocation of E.
This allows us to deal very quickly with the one good case.

Corollary 5.h8:. If M is a bounded market and £ = 1 then

x = e 1is the unique value allocation of E = (M, T(M)).

Proof: If 2 =1 then e is efficient, and we can take p = 1.

The result then follows from Corollary 5.47.

This result is of course entirely to be expected: if there is
only one good then any redistribution of it will make someone worse off,
and every coalition S € C has a strategy which ensures it a payoff

of fu(e). If e is efficient in the multi-good case then we can make
g - s
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the same argument, except that there may be redistributions of e in
this case which preserve everyone's utility, so that we can only make
the statement of Corollary 5.47. If every utility funetion 'ut is
strictly concave, however, any redistribution will make someone worse
off, and we can conclude that x 1is a value allocation if and only
if g(t) = g(t) a.e..

The more interesting case arises if there are meny goods and the
initial endowment is not efficient (this is also the realistic case).
We shall now study a class of examples which illuminates what happens
in general.

Assume that u = u for all t € T, and u is homogeneous of
degree o € (0,1]. A market with these utility functions does not
actually satisfy our boundedness assumption (L4.6). However, our calcula-
tions will apply to an economy in which each u, is bounded but ut(x)
coincides with u(x) so long as x is less than some real number B.
Let x be a value allocation in such an economy. Since u is homogeneous
all efficient allocations consist of bundles lying on the ray from

the origin through the aggregate initial endowment fg. So we can set

p =u'(fe), and
x(t) = k(t)fe where k: T+ R, is measurable and fe =1 .

Assume that x(t)>>0 a.e.. Then from (4.13) we have a(t) = pi/ui(g(t)).
So from (5.4) we obtain a.e.
i i
p u(x(t)) prule(t))

- - — - [alu(x) - ule)] = ple(t) - x(t))
uwix(t))  u(x(t)) T i ) )
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Let fi{u{x) - u(e)] = ¢c. Then we have a.e.

- 4 ule(t) wt(x(6))x"(¢)
P X (t) - p x (t)m [c + P(g(t) - ?f(t))J u(?f(t'))

or, summing over i, and using the fact that the homogeneity of degree

L, s
o of u means that J u (x(t))x (t)/u(x(t)) =
i=1

u(e(t))
] c = up(g(t) - Jf(t)) a.e.,

P’f‘t’[l " Wxe)
‘or

u(e(t))
(5.149) p{c(t) 1l+ca - m = afc + pe(t)) a.e. .

Now recalling that x(t) = k(t)fe, we have

u(e(t)) a(c + pe(t))

(1 + a)k(t) - “—T]—j—{k(t)) oTe a.e.

It is easy to solve this equation for k(t) if o = 1; if not, the

solution is rather complex. In the case a = 1 we have a.e.

c + pe(t) wu(e(t))
2oJe | aulle) °

K(t) =

80 that a.e.

[c + pe(t) u(e(t))
[ pJe " u(Je)

|
it

x(t) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-



-93-

Integrating, and using the fact that f; = Ie, we obtain

- ofe [1 i ju(e)

Hence a.e.

ey =g |1t e T e

1 pe(t) u(e(t)) - fule)
5 [l + ] e

where p = u'(fg). So a.e.

L u(e(t)}) - fu(g)]
pe(t) - px(t) = 5 jpe(t) - pfe [l * u(Je)

u(e(t))
= —{pe(t) - _—TT—T_pfe) -c

So a.e.

(5.50)  pe(t) - px(t) = (pe(t) - ule(t))) - c

gsince p = u'(fg)! and u'([g)fg/u(fg) = 1 since u is homogeneous
of degree one.
Now, for each price vector p, let up: R -+1R+ be the indirect

+

utility function at p (see (5.28)) and define ygz T+ R, by
P =1
yg(t) = (uP) “(u(e(t)) for each t €T

(see Diagram 3 for the two good case). Since u is homogeneous of

P

degree one, u® is homogeneous of degree one in y —- i.e. ul(y) =

¢
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+
quantity of
good 2

u(x) =ule(t) = u® (y2(t)

[ 4
0 px = y'g(t) quantity of
- good 1 7
Diagrem 3

for some a > 0, for all y € R,. But we have up(pfg) = u(fe) since
fg lies on the efficient ray, so because of the way we normalized the

price vector, we have

uf(pfe) u(fe)
a= pfg =u'(f§)fg=1 .

So we have yz(t) = u{e(t))., Hence from (5.50), x is a value alloca-

tion in the economy if a.e.

(5.51) pe(t) - px(t) = 3(pe(t) - y2(t)) - ¢ .

Since p (= u'(fg)) is an efficiency price for x, this allocation

can be realized in a competitive equilibrium at prices p in whiech
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each agent t € T starts with the wealth px(t) rather than pg(t) -
i.e. he pays the "tax" pg(t) - pg(t). Now, the quantity gg(t)
measures hdw badly off t is when he is prevented from trading (at
prices p)--it is his implicit "wealth" in this circumstance. Thus
(5.51) shows that at the value allocation x each agent is taxed at
the marginal rate of 50% on the increase in his wealth due to the
possibilities for trade. When utility is transferable we have from

Proposition 5.24 that for all t €T,

(6a)(8) = u(S)A[r(T) - n(1)] + fule) + 2[flu(x) ~plx-e)] - fule)]
2 s ” g - T s -

for each S € (¢, so that we can see that the value is the result of a
50% "tax" on [[u(x) - p(x - e)] - [u(e), vwhich can be interpreted as
the "gainé froi trade" since f[u(f? - p(f - g)] is the t.u.c.e. payoff
of S. Given this, we obtain Ehe result above when all agents have

the same utility function which is homogeneous of degree one because

the price is then independent of the efficient allocation chosen, and
income is proportional to utilit&: pg(t) - gg(t) measures precisely
the "gains from trade".

Aumann and Kurz [1977] established that in general the tax density
of an agent implicit in the allocations their model generates depends
solely on his wealth density pg(t); we might hope that in general the
tax in our cases is levied on pg(t) - yg(t). But this is not so.

When all agents have the same homogeneous utility function then the

tax does depend solely on pe(t) and yg(t), but it is not true that
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agents for which pg(t) - gp(t) is ‘the same pay the same tax (a
calculation for the case o = 1/2 confirms that this is so). The

tax here depends on the utility loss from being prohibited from trading
and this utility loss can be different for agents with identical
preferences, s¢ that the tax is not simply related to the quantity of
trade In which an agent wents to engage at the equilibrium prices.

Thus the value allocations in the game which we have studied in this
chapter involve an "ideal" form of tax on the "value" of trades which

depends on the cardinal characteristics of the agents' utility functions.
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CHAPTER 6: Economies in which the Entire Endowment of
Society Is Available to any Majority

6.1 Introduction

Here we shall study the consequences of giving majority coali-
tions as much power as they can possibly expect to have; we shall
retain the idealization of "majority rule" employed in the previous
chapter. What we assume is that any coalition containing a mejority
of the population has a strategy which allows it to expropriate the
entire endowment of the complementary minority, w@ile the latter can
do nothing to retaliate., We choose to investigate the Eonsequences
of this extreme assumption about the power of majorities for a number
of reasons. FPFirstly, we are interested in the range of outcomes which
can be generated by different assumptions about the strategic game,
and in studying an extreme case we shall obtain a "bound" on these
possible outcomes. Secondly, under our assumptions the worth of each
coalition is independent of its endowment, so that the final allocation
of each agent is independent of his endowment, and depends solely on
his utility function. Thus the outcome is "egalitarian" in a cer-
tain sense; it is interesting to see what form of "egalitarianism"
the Harsanyi-Shapley values give rise to. Finally, it appears to be
realistic to assume that it is not feasible to threaten to destroy
some goods (like land), though this is clearly not true of all goods
(consider, for example, labor-time). Our study of the extreme case

where no good can be destroyed provides the basis for the study of
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an economy in which some goods can and some cannot be destroyed
(see Chapter 7). Note that with respect to majority coalitions our
assumption here is the same as that of Aumann and Kurz [1977], but
that they assume that minorities can threaten to destroy their endow-
ments in response to any threat of a majority to expropriate them,
thereby preventing the majority from cbtaining use of the entire endow-
ment of society.

Let M be a market. The strategy sets and payoff functions
of the stategic game T'(M) of the economy E = (M, I'(M)})) which we

shall study here satisfy the following conditions:

(6.1) if S € C is such that u(S) >1/2, then for every S-allocation
x of the total endowment e(T) there is a strategy o of
S such that for every strategy T of T\S,
~OT

=q (x(t)) if t €S8
hst{ _t

=0 if t €EMS ;

(6.2) if S € ¢ is such that u(Ss) > 1/2, then for all strategies T
of T\S and ell strategies o of 8, there exists an S-allocation

x of the total endowment e(T) such that

S
Ecr(t){

na

ut(§(t)) if tE€s

0 if t €Ms ;

nv

and

(6.3) if S E€C is such that u(S) = 1/2, then for each S-allocation x

there is a strategy ¢ of 5 such that for each strategy =

of TS there is a T\S-allocation y such that
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uv

u (x(t)) if t€s8

h (%)
-t {; u(y(t)) ir te€ms .

(Note that (6.3) is the same as {5.3).)

The main result in this chapter is the following.

Theorem B: Let M be a homogeneous market and assume that T (M)
satisfies (6.,1) through (6.3). Then an allocation x is a value
allocation of the economy E = (M, I'(M)) if and only if it is effi-~

cient and a.e.
px(t) = pe(T) ,

where p 1is an efficiency price for x. Moreover, such an allocation

exists.

Throughout this chapter T(M) will denote a strategic game

associated with the market M which satisfies (6.1) through (6.3).

6.2 Optimal Threats

As in the previous chapter, the first step in characterizing the
set of value allocations of E 1is to establish the nature of a collec-
tion of optimal threats in the two-person gemes between S and TS
for each S € C. We first study the case where g(t) =1 for all
t € T. Recall that for each § € C the function ug: K, R, is
defined by

(6.4) ug(a) = sup {fu(x): fx =&} for each a € ]Ri'_ ,
» 8 7 8
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and that we say that uS(a) is "attained" if it is finite and there
is an S-allocation x of a such that us(a.) = fu(y) (see Section

S
4.2). Now, define the game v: C -+ R, by

(6.5) v(s) = us(e(T)) for all SE€C ,

and let r: C -+ R, be the market geme derived from M (i.e.

r(8) = uS(e(S)) for each S € C). Then we have the following.

Lemms, 6.6: Assume that both v(S) and r(S) are attained for
every S € C. Then for each S€ C there exists a pair

(UO’TO) € XS X XII\S such that

(6.7) HS(G,TO) < Hs(co,'ro) < HS(OO,T) for all o € XS, T € XT\S

S s A
H (co,'ro) is finite, and

[v(s) 4if u(s) > 1/2
SECS’ . =1 r{s) if ufs) = 1/2
Q"0

L0 it u(s) < 1/2 .

Proof: Consider a coalition S € C with u(S) > 1/2. Let x
be an S-allocation of e{(T) which attains v(S). Let o, be the

strategy of S corresponding to x given in (6.1). Then

fhg <" fu(ic) for all t € XT\S .

8" o S
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But by (6.2), setting T = T, (an arbitrary strategy of TM™S), we

know that there exists an S-ellocation z of e{(T) such that

ne < Ju(z) for all o € .
"UT - ~
] (o] S

S0 by the definition of x we have

Ju(x) =fhs for ell o € X° R TEXT\S .
s ~ 57%"

Also, from (6.1) we have

\
{y(sm=o for all T € X°
TG o
and from (6.2)
f hst >0 for all o € X .
™S " To ~
So
\
m{hs > [u  =o0= [n  foran seX , rex®
5% = mMs5%' o ms %
Hence
S S s s S
H{o,t ) = [h h < HX(o ,t ) =fn -{h
© 57 9% g% = 6o s %% Ts"%"%
-fj’T- j~§T=HS(oo,r) for all g €X° , 1 € XD
S ™S "o
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f

So (6.7) is satisfied by the pair (00,10) when p(S) > 1/2. Moreover,

Ihs = v(8) and q{ n> =0 ,
~0 T ~0 T
S oo S oo

L

so Hs(oo,to) = v(5), and we have proved what is claimed in the lemma
in the case when u(S) > 1/2. By reversing the roles of § and TS
this completes the proof for those S5 € C with n{(8) < 1/2 also.
Finally, if u(S) = 1/2 the last part of the proof of Lemma 5.6

establishes what is claimed, since (5.3) and (6.3) are identical.

Thus, as we should expect, an optimal threat of a majority is
to expropriate the resources of its complement and distribute them
optimally among itself, while a minority can do nothing to prevent this

expropriation. Define the game q: C - R, by

(v(s)  if u(s) > 1/2
(6.8)  a(s) = [n° _ =4r(s) if u(s) = 1/2
S oo
|0 if u(s) < 1/2 .

As in the previous chapter we have not established that for each S € (,
(co,to) is the only pair of optimal threats. However, once again
since it will turn out that the geme defined in (6.8) always possesses
an asymptotic value we shall, by virtue of Lemma 3.25, locate all the
value allocations of E by restricting attention to the family of pairs

(oo,ro) given in Lemma 6,6, Before establishing that q does indeed
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possess an asymptotic value, we shall state two results which we shall
use later. They are the counterparts of Lemmas 5.17 and 5.20, and
since the proofs under the assumptions on TI'(M) which we are making

here are the same as those given in Chapter 5, we shall omit them.

Lemma 6.2: Suppose that HT possesses a finite saddle point.

Then r(T) = v(T) is attained.

Lemma 6.10: An allocation x is a value allocation of E = (M, T'(M))

if and only if there exists a comparison function A such that H

e TN

has a finite saddle point for every S € C and

(¢qx)(8) = [Au(x) for each S€C ,
- S

vhere a, is the game defined by (3.24).

Lemmea. 6.9 is used in the proof of Lemma 6.37. Lemmsa 6.10 has
& role parallel to that of Lemma 5.20. Now, from Lemma 6.6 we know
that in order to characterize the value allocations of E we need to
study the properties of the game q defined in (6.8). With that goal

in mind, we shall now study the game v defined in (6.5).

6.3 The Game v

We shall show here that the game v defined in (6.5) is a
member of pNA, and can in fact be approximated in the bounded vafia-
tion norm by a similar geme derived from a finite type market (we shall

need the latter result in the celculation of the value of the game q).
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To do so we shall construct a market game which is related to v,
approximate this game by = finite type market geme and then show that
this generates for us a finite type approximation to v. The finite
type market we construct contains agents whose utility functions are
identically zero, and hence in particular not strictly increasing; it
is at this point that we use Proposition 4.50 (the genersalization

of Proposition L.2L),

Proposition 6.11: Let M be an integrably sublinear market.
Let v be the coalitional form derived from M defined by (6.5).
Then v € pNA, and for each € > 0 there is an integrably sublinear
finite type market ﬁ, which differs from M only in the utility func-

tions of the agents, such that
v - vl < ¢
vhere v 1is the coalitional form derived from M defined by (6.5).

Proof: Let (Z,C',u') be a copyE/ of (T,C,u), and let T = Z U T;
let C be the c-algebra of subsets of T generated by C and (',

and let p be the measure on (T, ) generated by u and u'. Define

a general market M in the following way. Let (T,C,u) be the space

of agents, Et

endowment density, with

the utility function of t € T, and e the initial

_ {0 for all x€qQ if t €2

ut(x) for all x€Q if t €T
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and

_ e(t) if tezZ
e(t) =
0 if terT .

Let the coalitional form of M be denoted by w: € +R, --i.e.

w(8) = sup {fﬁ(f): fg = e(8)} forall Sel .
8 §

et S € €. Then

sup { [ u(x): [ x=28(zus)}
ar5s aks

(6.12) w(z U 8)

sup {fu(x): [x = e(T)} = v(8) .
S 8

Now, M is an integrably sublinear quasi-market with zero-utility
agents which satisfies (4.25), so by Corollary L4.49 we have w € pNA.
It is easy to verify that from (6.12) we then have v € pNA.

To demonstrate the second part of the result, fix e > 0. By
Proposition 4.50 there is an integrably sublinear finite type market
ﬁ which differs from M only in the utility functions of the agents

and which has coalitional form ; such that
(6.13) lw - wll < e/2 .

Define the market M in the following way. (T,C,u) is the space of

agents, e the initial endowment density, and wu_ the utility func-

t

tion of t € T, where U, is the utility function of t €T in M,
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let v: C+ R be the game derived from M defined by (6.5). Then

for S5 € (,

(6.1h) v(8) = sup {fﬁ(§): [x = e(T)} = sup { [ ;(g): ) x = e(z U s)}
S S

B s

wzus) .

We shall now show that llv - vl < €. Let

¢=S°CSIC...CSmCSm+l=T

be a chain (of subsets of T). Then

¢CZUS°=ZCZUSlC...CZUSmCZUSm+l=ZU'I'=T

is a chain of subsets of T. So from (6.13) we have

~ m - ~ -
[w(2) -w(2z)} +k£O|(w(zusk+l) -w(zUs, ) - (w(z u‘sk) -w(zusk))l

< egf2 .
But w(Z) = -:r(z) = 0, so
m A "
k£0|(v(3k+l)- v(8,,1)) = (v(8) - v(§ )| < e/2 ,

using (6.12) and (6.14). Hence kv - vl < €/2 < €, and the proof is

complete,
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In the calculation of the value of the game q (in Section 6.5)
we shall also need a result concerning the nature of thé game Vv in a
finite type market. Suppose M 1is of finite type, with u, € {r ,...,fn}
for each t € T. Let §; = {(ter: u, fi} for each 1 = 1,...,n,

and define the function g: R, x 8 > R, by

n .
(6.15) gly,z) = max { Z ylfi(x.): x; €9 for all {1 =1,...,n and
i=1 N

‘Z‘ i
Y ox.
i=1

nA
N
-

for each (y,z) € IRE X Q. This maximum is always attained, g is concave,
nondecreasing, and continuous, and 3g/ Bai exists and is continuous at
each a = (y,z) for which ai >0 (i=1,...,n + 2} (see Lemmas 39.9
and 39.13 of Aumann and Shapley). The result which we shall need is

the following.

Lemma 6.16: If M is of finite type with 'ut

each t €T, and v 1is the coalitional form derived from M defined

€ {fl,...,fn} for

in (6.5), then v = gon, where n = (nl,...,nn), n, is the member of
NA defined by n;(5) =u(8N8;) for each S€C, for each i =1,...,n,

and g: ]Ri + R, 1is defined by gly) = gly,e(T)) for each y € ]Ri.

Proof: From Lemma 39.8 of Aumann and Shapley we have
us(z) = g(n(S),z) for each S E€C and each z € Q. Hence v(S) = us(e(T))

= g(n(sS),e(T)) = g{n(S)) for each S € C, completing the proof.
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(Note that this gives us an alternative way to show that v € phiA
(cf. Lemma 39.16 of Aumann and Shapley).) For our purposes in this chapter
we do not need to study the value of the game v, but rather that of the
game q. However, it turns out that the value of the game v is of
some interest, and we discuss it in Appendix 2, using the results of this

section.

6.4 The Value of the Game g

From Lemma 6.6 the game in which we are interested is q: C + R

defined in (6.8). Define the game k: ¢ >+ R by

v(s) if wu(s) > 1/2
(6.17) k(s) ={

nv

0 if u(s) < 1/2 .

A

Define the function g: [0,1] + [0,1] by

1 if x 2 1/2
glx) =
0 if x<1/2 .

Then gopy € bv'NA, and k = (goyu)wv. In this section we shall argue
that k and q both possess asymptotic values, and that they coincide.
We shall then use a result of Aumann and Kurz [1977] (Proposition 3.16)
to derive an expression for ¢k, and hence ¢q.
Let b: C - IR be the game given by b =k - g. Define the function

£: [0,1] » [0,1] by

1 if x=1/2
f(x) ={

0 otherwise .
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Then fou € bv'NA and b= (fou)#{v - r). Recall that if v:C + R
is a game, v* denotes the extension of v to the collection of ideal

coalitions (see Section 3.1).

Lemma 6.18: If M, is integrably sublinear then ¢q € ASYMP, and

¢q 1is given by

1
(6.19) (¢q)(8) = V*(XT/B)U(S) + 5 dv*#(0,5)d8 for each SEC .
1/2
Proof: If M is integrably sublinear then by Proposition 6.11
we have v € pNA, so by Proposition 3.16 we have k € ASYMP, with

¢k defined by

(¢k)(S) = v*(xT/z)u(S) + } ov#(0,5)a® for each S €
1/2
Now, by Proposition 4.27 we have r € pNAD. Hence v - r € pNAD,
and b = (fou)#(v - r) € bv'NA#pNAD. So by Corollary 3.8 we have
b € ASYMP; it is easy to see that (¢b)(S) = 0 for all. SE (C. But
q=k-Db. So q € ASYMP; since (¢b)(S) = 0 for all S € C, we have

¢q = ¢k, completing the proof.

6.5 The Calculation of ¢q  in Homogeneous Markets

In order to calculate the value of the game q we know from (6.19)
that we have to understand the behavior of 23v*(8,S) for 6 € [1/2,1].
Unlike any market game, which possesses a strong hoﬁogeneity property

independent of the utility functions of the agents comprising the market,
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the game v can behave quite irregularly unless we restrict the
characteristics of the utility functions, making a direct calculation

of ¢q based on (6.19) impossible., For this reason we shall restrict
our attention here to homogeneous markets (for the definition of which
see Chapter 4)}; in this section we shall calculate ¢q for such markets.
The proof of the following result closely follows that of Lemma 39.16

of Aumann and Shapley.

Lemma 6.20: If M is homogeneous of degree B € (0,1) and v(T)

if finite then v 1is homogeneous of degree 1 - B .

Proof: We have to show that v*(axs) = al-Bv(S) for all o € [0,1]
and 811 S € C. Fix o € [0,1]. Pirst suppose that M is of finite
type, with u, € {fl,...,fn} for each t € T. Then from Lemma 6.16

we have
v(s) = é(n(S)) for each SE€C ,

where n 1is an n-vector of nonnegative members of NA, and é: ]R: + R,

~

is continuous. 8ince each component of n is in NA, the domain of g
can be taken to be compact; denote it by K. Then by the Weierstrass
approximation theorem (see, for example, Royden [1968], Corollary 29,

P- 174), for each J=11,2,... we can find a polynomial h,: K » Iir

J
such that

th(Y) -gly)] <1/3 for all y€K .
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But by (3.9), (3.10), and (3.11) we have

(hJ on}*(axg) = (hj on*)(axg) = hj(an(S))

1,2,.... Now let J -+ =; using (3.12)

for each oo 2 0, SEC and

we have

glan(s)) .

v#(axg) = (g on)*(axg)

Now, we are assuming that M 1is homogeneous of degree B, s0 fi is

homogeneous of degree B for all i = 1,...,n, and we have

~ n
glan(s)) = max { J on,(8)f.(x,): x, ER for all i =1,...,n
i=1 1 il i
0
and ) an,(S)x, < e(T)}
s

n
max { [ ul_Bni(S)fi(axi): ax, € for all i =1,...,n

i=1
n
and ) n.(S)ax, < e(T)}
. i i=
i=1
1-8 4
=a "max { ] n,(8)f.(z,): z, €Q for all i =1,...,n
LTy i‘% i
i=1
n
and ) ni(S)zi < e(T)}

i=1
= o' Pg(n(s))

for all S € (. Hence
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vlaxg) = glan(s)) = aBg(n(s)) = a1 u(s)

.

for all SEC. So if M is of finite type we have proved the lemma.
Now consider a market M which satisfies the conditions of the

lemma, and is not necessarily of finite type. Then by Proposition 4.18,
M 1is integrably sublinear {since v(T) = r(T)), so by Proposition 6.11,
for each € > 0 there is a finite type market M such that lv - ;H < E,
where v 1is the coalitional form derived from & defined by (6.5).

By our argument above, ; is homogeneous of degree 1 -~ B; but the space
of games in pNA which are homogeneous of degree Y for any y € [0,1]

is closed in BV (see the proof of Proposition 27.12 of Aumann and Shapley),

so v 1is also homogeneous of degree 1 -~ B. This compleﬁes the proof.

This result allows us to say  -something about the behavior of

av*(8,S) as O varies, for a fixed S € C.

Corollary 6.21: If M is homogeneous of degree B8 € (0,1) and

v(T) is finite then 3v*(8,3) exists for all 6 € (0,1) and is homogeneous

of degree -B in 6 for each S € C.

Proof: This follows immediately from Lemma 6.20, Proposition L4.18,

Proposition 6.11, and Lemma 3.18.

Given this homogeneity of 3v*(8,S) we shall be able to calculate
{(¢q)(8) for any S E (¢ using (6.19) if we can evaluate it at one point.
Now, for any game w, 9w*(0,S) 1is the rate of change of w* at the
point 8x, in the direction of xg. Fix S5 &€ ( with u{sS) < 1 and

consider a market MS in which the space of agents, number of goods, and
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utility function of each agent are the same as in M, but in which the

e(T), and for each

endowment density e satisfies eS(S) = 0, eS(T)

t €T either gs(t) =0 or gs(t) >> 0. Let rg: C+ R be the

market game derived from MS --i.e.

(6.22)  rg(R) = sup {fu(g): fx = es(R)}  for each REC
R R

In this game the ideal coalition BxT has endowment ©6e(T), and adding

& smell replica of XS to BxT does not increase this endowment (since
eS(S) = 0), but only affects the worth through the addition of the utility
functions of the members of 3S. But it is also the case for the game v
that adding a small replica of Xg to BXT does not affect the quantity
of goods available to the coalition (e(T) is available to all coslitions),
so that the worth is only affected through the additions of the utility
functioﬁs of the members pf S. The only difference is that the quantity
of éoods available to 08X, in the game v is e(T), rather than 0e(T)

in the case of the game r But for 6 close to 1 these are close,

so

so that under such circumstances this argument suggests that arg(a,s)

and 9v*(9,S) are close. Since rg 1is a market game, arg(e,s) is actually
independent of 6. Thus the above reasoning suggests that 9v*(6,S) con-
verges to arg(eo,s) as 6 + 1, for any given 0 € (0,1). We shall

now make this precise.

Lemma 6.23: Let M be homogeneous, and suppose . v(T) is finite.
Fix S € ¢ with u(S) <1 and let rS be the market game derived from MS

(see (6.22)). Then arg(e,s) exists and is the same for all 0 € (0,1) and
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(6.24) lim 3v*(8,8) = arg(eo,s)
8-+1

for any 90 € (0,1).

Proof: That arg(a,s) exists and is the same for all 8 € (0,1)
follows from Proposition 4.27 and Lemma 3.19.

To establish the second claim of the lemma, first consider the case
where M is of finite type, with u € {fl,...fn} for all t €T. Let
8, = {t € T: u,

of Aumann and Shapley we have

= fi} for i=1,...,n. Then from the proof of Lemma 39.16

rS(R) = g(n(R),eS(R)) for each REC ,

where ni(S) = u(s N Si) for each SE€C and each i =1,...,n, 80 that

n = (nl,...,nn) is an n-dimensional vector of nonnegative members of

NA and g: IRE x @ + R, 1is defined in {6.15). Thus we have rg = g° (n,es),
where (n,es) is an (n + 2)-dimensional vector of nonnegative members

of NA. Also, from Lemma 6.16 we have

v(R) = g(n(R),e(T)) for each REC ,

or v=gon (where g: IRE + R, is defined by gly) = g(y,e(T)) for

+

each y € ]Ri) .
Now, the range of n 1is n-dimensional (since n(Si) is the i-th

unit vector in ]Rn). Suppose the range of e is r-dimensional, and

S

L
let =z 92y, (with Zy c ZIR+ for i=1,...,r) be a basis for the

poe-
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smallest linear subspace containing the range of eg. Then there are

nmembers VysesesV, of NA+ such that

r
eS(R) = Z v

:](R)z‘1 for all REC
J=1

Then since rg = gib(n,es) € pNA (by Proposition 4.23), from Lemma 3.18

we have

n : r
or3(0,8) = [ n,(S)ey(on(T),0e5(m)) + ]

L L v (@2, (on(m),0e5(m)

J

(where gz is the derivative of g in the direction 2z ) for all

J
J
8 € (0,1). But vJ(S) =0 forall J=1,...,r because es(S) = 0, so

’ n
ar%(0,8) = iglni(s)si(en(T),ﬂe(T)) .

Similarly, from the fact that v = gon € pNA (by Lemma 6.16) we have

-

n
av*(0,8) = [ n,(s)g;(en(T),e(T))
i=1

for all o € (0,1). But 8 is continuous at positive values of its

argument for all i =1,...,n, SO

lim |g,{en(T),ee(T)) - g, (on(T),e(T))| = 0
6+1

for all i =1l,...,n. Hence
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(6.25) lim |3r§(B,S) - av#(8,s)] =0 .
6-+1

But Brg(B,S) is independent of 6, so we have established (6.24) in the
case where M is of finite type.

Now consider the case where M 1s not necessarily of finite type.
We know from Proposition 4.24 that for each € > 0 there is a finite
such that Hrs - rsn < €, where rg: C +* R, is the
market geme derived from M,. Both r

5 s and rs

which are homogeneous of degree 1 (see Corollary 4.26) so that by Proposi-

type market MS

are members of pNA

tion 4.28 we have

(4r5)(R) = drA(6,R) and (¢rg)(R) = 2rA(6,R)

for all Re(C and 6 € (0,1). But

Irg = Tgl < € = lorg - ¢rgl < € = |(br5)(R) = (¢rg)(R)] < &

for a1l R € C (using Proposition 18.1 of Aumann and Shapley). Hence

for g1l e > 0 there exists a finite type market MS such that
(6.26) |Br§(e,R) - arg(e,n)l <e¢ forall 6 € (0,1) and all REC .

We shall now use the same sort of approximation argument for the game v.

By Propositions 4.18 and 6.14, for each € > O there is a finite type

)

market M such that lv - vl < €, where v: C + Ih; is the coalitional
form derived from M defined by (6.5). By Proposition 6.11 both v

-

and v are members of pNA, so by Theorem 3.1k
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1 . 1.
(¢v)(R) = [av*(8,R)a® and (¢v)(R) = [3v*(6,R)a0
0 0

for all R € C. Using Corollary 6.21 we then have

1
(6v)(R) = 1im 9v*(8,R) [0 Pa0 = av*(8,R)/(1 - B)
61 ") )

for each R € C, where B € (0,1) is the degree of homogeneity of M.

Similarly
(¢v)(R) = av*(8,R)/(1 - B) for each REC .
But
bv = vl < €= ldv - dvl < €= [(ov)(R) - (ov)(R)] < ¢

for all R € C. Hence for all € > 0 there exists a finite type market

M sueh that
(6.27) |av*(e,R) - 3v*(8,R)| < e forall o € (0,1) and all REC .
Finally, from (6.25) we have

lim [ar#(e,5) - av#(8,8)| =0 .
61

Combining this with (6.26) and (6.27) we have

lim |ar§(e,S) - av*(8,5)| =0
8~+1

Combined with the first claim of the lemma, this completes the proof.
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We are now in a position to calculate ¢q for a homogeneous market.

Proposition 6.28: Let M be homogeneous of degree B € (0,1)

and suppose v(T) is finite. Then q € ASYMP and for each S €C
(6a)(5) = 2P Tv(miu(s) + (1 - 2°°%) fu(x)
B -~

where x is an allocation at which v(T) is achieved.
Proof: From Proposition 4.18 and Lemms 6.18 we have q € ASYMP, and

1
WMW)=ﬁuﬂmMM+ ﬁWﬁLMM for all SE€C .
1/2

From Lemma 6.20 we have v*(xT/E) = (1/2)1;Bv“(xT) = EB-lv(T). From Lemma
6.23 and Corollary 6.21 we have
1 1

3v*(0,5)de = ar#(s ,s) | 6 Pas
152 50 152

ar¥(e_,s)(1 - P ya -8

for all S E€ (¢ with u(8) <1, for any 8, € (0,1). But from Proposition

4.28.
arf(e_,S) = (¢rg)(s) = é(u(§) - px)

for all S € C, since eg(S) = 0, vhere (x,p) 1s any t.u.c.e. of Mg.

Now, M, differs from M only in endowment density, so the t.u.c.e.'s

S
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of MS are the same as the t.u.c.e.'s of M. Hence

(¢a)(s) = 2% Tv(mu(s) + (1 - 2871) [ (ulx) - px)/(1 - B)
S

for any S€ C with u(8) < 1, where (x,p) is a t.u.c.e. in M. But

i

if (x,p) is a t.u.c.e. in M, a.e. u;(x(t)) =p if §i(t) >0

(see {4.13)). So a.e.

I et = I sul(x(e))xi(v)

LR
px= ] p x"(t)
) {1: x(¢)>0 {i: x1(¢)>0)

, But(?_((t)) ’
using (4.9). Hence

[Ga(x) - px) = (1 - B)fulx) ,
S S

end so for any S € C with u(S) <1,

(¢a)(8) = 2P7Lv(miu(s) + (1 - 22 L)fu(x)
S

vhere x is an allocation at which rS(T) = v(T) is achieved. If
u(s) =1, then u(MS) =0, so (¢a)(8) = (¢a)(T) = q(T) = v(T), in
accordance with the formula for (¢g)(S) in the lemma. Hence the proof

is complete.
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6.6 An Alternative Method of Calculating ¢q

In the previous section we exploited the similarity between the
game v and the members of a collection of market games to study the
characteristics of v for a homogeneous market, and consequently calculate
¢q. Here we shall outline, in an unrigorous fashion, & direct method of
calculating the "derivatives" 9v*(8,5). Though this method does not
involve any results about market games, it is closely related to a method
of calculating the value of & market game (see Aumann [1975], Section 8)
and essentially merely rephrases the analysis of the previous section.

We include it here because of the intuitive appeal of its simple line

of reasoning; we feel that it illuminates rather clearly whﬁt is hapbening
in the geme v. (However, to mske our arguments precise would be a major
task; this is why we have chosen to rely on the relatively straightforward,
if not transparent, arguments of the previous section to establish our
results formally.)

Qur line of reasoning here involves infinitesimal subsets d4dt of
T; t is & representative member of dt. We shall denote the ideal coali-
tion Ox, (for © € [0,1]) by OT, and throughout treat it as though
it were an actual coalition. In particular, if v: C + R 1is a game,
we shall write the extension v* of v to the collection of ideal coali-
tions simply as v (no confusion will arise). Using this notation, if
v possesses a value it seems reasonable to suppose that

1
(¢v){at) = [(v(eT) - v(eT\dt))de .
0
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We shall not Justify this, but shall merely rely on its intuitive reason-
ableness (cf. (3.15)). By phrasing Lemma 6.18 in these terms, we obtain
the following expression for the value of the game q: for any infinites-
imal 4t CT,

1
(6.29) (¢q)(at) = v(T/2)ulat) + [ (v(eT) - v(eMadt))de .

1/2 '
We shall now go about characterizing the allocations at which v(8T)
is attained, and calculating v(0T) - v(e™dt) for all 6 € [0,1],
in order to evaluate (¢q){dt) for any dt C T.

In accordance with our viewing 6T as a coalition (to which each

t €T "belongs" with "density" ©), we have

v(0T) = max { [ u(x): [x = e(T)} for all o€ [0,1] .
x or oT )

To avoid complications, we shall assume throughout this informel

eT eT

demonstration that any maximizer x 7: T > ]Rf'_ satisfies x = >> 0 a.e..

Then under our assumptions on u a necessary and sufficient condition

for geT: T > IR: 'to be a maximizer is that there exist a constant

£eT € m" such that

(6.30) u%(xe?(t)) = 97 for almost 811 t €T

and

(6.31) [x°T = e(m) .
eT
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Henceforth JSBT: T +» ]Rf'_ will denote such a maximizer.

Claim 6.32: For dt CT and O € [0,1] we have

(6.33)  v(em) - v(emat) = [u, (x*(£)) - uwl (x"T(6))x () Ju(at) .

Demonstration: We have v(8T) = fu(g_:eT). Consider the effect of
dt leaving OT. 06T\ dt gains the resou:"crzes which dt was consuming,
namely g_ceT(t)u(dt), and loses the utility dt received from them,
namely ut(:}eT(t))u(dt). Given (6.30), the best way for 6T dt to use
the resources geT(t)u(dt) is to distribute them evenly, leading to a gain
in utility for each ds € 8T\dt of (EeTlceT(t)u(dt)/U(eT\ﬁt))u(ds)

(using (6.30) agein), so that the gain in utility to O0M\dt 1s just

0
13 TxaT(t Ju{at). Hence

v(omat) = v(or) + £ (t)ulas) - u *T(¢)Iu(at)

or
v(6T) - v(emat) = [u, (x°7(6)) - w (x*T(6))x% (1)) u(at)
(using (6.30)), as we claimed.

From Claim 6.32 and (6.29) we have

(¢q)(at)

1
= v(r/2)ulae) + {lu, (7T(6)) = w («®T ()" (8 ) Ju(at)dae .
1l/2 - ~ -
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As before, it is the péssibly irregular behavior of the integrand which
prevents us from calculating (#q)(dt) for all markets. As in the

previous section, we shall restrict attention to homogeneous markets.

Claim 6.34: If M is homogeneous then 27 - xT/e

~

for all

8 € (0,1].

Demonstration: We have u%(§T(t)/6) = Bl'Bu%(xT(t)) = el'BgT

by (6.30) and [x7/0 =8fx'/6 = [x" = e(T) by (6.31). So x'/o
o7~ T~ 7" ' -

satisfies (6.30) end (6.31) with £°0 = 61B¢T. Hence x°T = x7/e.

Claim 6.35: If M is homogeneous of degree B € (0,1) then
(6a)(as) = 28~ Iw(mhulae) + (1 - 227w (x"(¢))u(at)

for 4t C T, where xT is an allocation at which v(T) is achieved.

Demonstration: From Cleim 6.3h4 we have

w(r/2) = [ u(x*'?) = f2Pu(xT)/2 = 2B fu(xT) = 2P Ny(T)
T/2 - - -

from Claims 6.32 and 6.34 we have

v(eT) - v(eT\dt)}

(1 - )y, (x*(£))u(at)

(1 - By, (x"(t))u(at)/e®

(using the homogeneity of u, once again). Hence by (6.29)
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‘ 1
2~ y(Tin(at) + (1 - B)u, (x"(+)Iu(at) { 6B
172

(¢pq)(at)

22 7ho(u(at) + (1 - Blu (" (6)ulat)(1-22"1) /(1 - )

P lv(mn(at) + (1 - 287y (F()ulat)

as we claimed.
*

Claim 6.35 can be seen to be a translation of Proposition 6.28
into the language we are using here. This completes what we have to

say about this approach to the calculation of ¢q.

6.7 The Proof of Theorem B: The Existence and Characterization of the
Value Allocations of the Economy (M, '(M)) when M Is Homogeneous

First we shall prove the following, which constitutes the major

part of Theorem B, the main result of this chepter.

Theorem 6.36: Let M be a homogenous market. Then an allocation

x in M is a value allocation of the economy E = (M, T(M)) if and

only if it is efficien{'. and a.e.
px(t) = pe(T) ,
where p 1is an efficiency price for x.

To prove this result we shall use the following, which is modelled

on Proposition 14.10 of Aumann and Kurz [1977].

Lemme 6.37: Let M tYe a homogeneousmarket, x an allocation,

and A a comparison function. Then we can choose a finite saddle
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point (00,10) for Hf for each S € C so that the game q, defined
in (3.24) has a value ¢q, vhich satisfies (¢qk)(S) = [au(x) for

. n a S" ~
each S € C if and only if X is efficient with efficiency comparison

function A and

~

(6.38) Alt)u, (x(t)) = [au(x) a.e.

Proof: First suppose that we can choose a finite saddle point

A
each S € C. Then from Lemma 6.9 we know that VX(T) = rA(T) is finite,

for H> for each S € ¢ in such a way that (¢qi)(s) = féu(§) for

~ S
and we have f%u(f) = (¢ql)(T) = qA(T) = vA(T) (;sing Le;ma 6.6 end
the fact that qi(T) is ;ndepende;t of the collection of optimal threats
we choose (see S;ction 3.2)). Thus x is an allocation at which VA(T)
is achieved. Now since VA(T) is finite and M is homogeneous, so~that
AM is homogeneous, from Proposition 4.18 we have that AM 1is integrably
sublinear. Hence rl(s) and VA(S) are attained for all S € C, so
that from Lemma 6.6,~Propositionu6.28, and the fact that ¢q, is

independent of the collection of optimal threats which we choose to define

q, (see Lemma 3.26),

(¢qA)(S) = EB-IVA(T)u(S) + (1 - EB-l)j'éu(f) for all SeC ,
2 3 3

where g 1s the degree of homogeneity of M, and hence of M. But

we are assuming that (¢qk)(S) = [au(x) for each S € C, so
A > -

Jaulx) = 28'1vA(T)u(S) + (1 - 22z
- s” 7

-
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or

I&u(y) = u(S)f&u(;) for all S €(C .
S

Hence é(t)ut(f(t)) = féu(§) a.e., where x 1is an allocation at which
VA(T) is achieved, and hence is efficient. This completes the proof
o; necessity.

Now suppose that x is efficient with efficiency comparison func-
tion A and a.e. a(t)ut(g(t)) = f%u(;). Then v,(T) = fﬁu(*) is
finite, so by Proposition L4.18, AM  is integrably ;ublinear. Hence
VA(S) and rA(S) are attained for all 8 € C (Proposition L4.16) and

so by Lemma 6.6 we can choose a finite saddle point (oo,ro) for - Hf

for each S € C such that the game q, defined in (3.24) is given by

v,‘(s) if p(s) > 1/2
qA(S) = r;(S) if u(s) = 1/2
- 0 if u(s) < 1/2° .

Then from Proposition 6.28 we have

(¢qk)(5) = 2B-lvk(T)u(S) + (1 - EB-I)J'lu(§) forall S €
. : s

But we are assuming that l(t)ut(x(t)) = [au(x) a.e., s0

(g, )(8) = 22" hu(s)au(x) + (1 - 2871 [ pu(x)
< S

Jau(x) for every SEC .
S

This completes the:proof.
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We alsoc need the following.

Lemma 6.39: Let M be a homogeneous market, x an allocation
and A a comparison funetion. Then x is efficient with efficiency com=-

parison function ) and (6.38) is satisfied if and only if x is

efficient and px(t) = pe(T) a.e., where p is an efficiency price

for =x.

Proof: Suppose that x is efficient with efficiency comparison

[

function A and a.e. A(t)ut(x(t)) = fau(x). Then there exists p € R,,

such that (Q,P) is an efficiency pair for x, so that a.e.
i i ii i
M) (x(6))x () = p'x'(8) if xM(8) > 0

(see (L4.13)). Hence a.e.

L
Dotk eu(x(e) = ] pixt(edu(x(e))

Px(t)ut(x(t))
- - 121 i
{i: x (t)>0} .

I aledu(x(e)x (thu, (x(¢))
{i:x°(£)>0}

= gu, (x(t))au(x) ,

using (4.9) and our assumption that §(t)ut(§(t)) = féu(g) a.e., where
B is the degree of homogeneity of M. But since ﬁ(t) >0 a.e., u, is

increasing for all t €T, and [e >> 0, we have fAu(x) > 0, so from

(6.38) we have ut(f(t)) >0 a.,e. Hence

4

px(t) = Bjéu(g) a.e. .
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So - pf§ = pe(T) = Bféu(f) a.e., and hence px(t) = pe(T) a.e., as
was to be shown.
Now assume that pf(t) = pe(T) a.e., vhere p is an efficiency
price for x. Let (é,p) be an efficiency pair for x. Then since
e(T) >> 0, §(t) # 0 a.e.,, so that é(t) >0 a.e.—-i.e. 1 is a comparison

function. Then using (4.13) and (4.9) we have a.e.

A(t)ul(x(e))xl(t)

]
~
Lo
by
——
ot
S

(

pe(T) = § p'x'(¢)

=1 {i:fi(t)>0} {i:fi(t)>0}

Br(t)u, (x(t))

(where B 1is the degree of homogeneity of M), so that [au(x) = pe(T)/8,

and hence ﬁ(t)ut(x(t)) = fAu(x) a.e., completing the proof.

Proof of Theorem 6.36: The result follows immediately from Lemmas

6.10, 6.37, and 6.39.

Theorem 6.36 can be rephrased with the aid of the following defini-

tion. An allocation X is an equal income competitive allocation of M

if it is a Walrasian allocation of the market M' which differs from M
bnly as regards the initial endowment density, which is given by

e'(t) = e(T) for all t €T.

Proposition 6.40: Let M be a homogeneous market. Then an alloca-

tion x is a value allocation of the economy E = (M, T{M)) if and

only if it is an equal income competitive allocation of M.
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Proof: To say that p is an efficiency price for an allocation
X means that the maximum of ut(x) over {x € Q: px < px(t)} is a.e.

achieved at x = §(t). So Theorem 6.70 implies that x is a value

~

allocation if and only if max {ut(x): xe€qQ and px < pe(T)} is a.e,

na

achieved at x = §(t). But this just says tﬂat x is en equal income
competitive allocation of M. Conversely, if X is an equal income
competitive allocation of M then it is efficient, and the maximum of
ut(x) over {x € Q: px < pe(T)} is a.e. achieved at x = f(t)' But

then given our assumptions on u

.» Px(t) = pe(T) a.e. and p is an

efficiency price for x.

Proof of Theorem B: The result follows immediately from Theorem 6.36,

Proposition 6.40, and Theorem 2 on p. 151 of Hildenbrand [1974] which

implies that M possesses an equal income competitive allocation.

6.8 Discussion

As we explained in Section 6.1 our assumptions here give majority
coalitions as much power as they can possibly hope for. The worth of
a coalition S depends solely on its size (p(S)) (in addition to the
utility functions of its members) and not at all on the resources at its
disposal (e(S)), so that naturally the set of value allocations has
the same property. For the class of utility functions which we are con-
sidering, we have concluded that what actually happens is that an agent's
"after~tax income" is also independent of the precise utili£y funetion

which he possesses: the outcome is, in this sense, the most "equal"
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possible. It is interesting that it is this form of equality to which

the set of value allocations gives rise--even though this solution con-
cept rests on the cardinal properties of the utility functions of the
individuals in the market, the outcomes predicted here have more to do
with the equal allocation of goods. As under the assumptions of Aumann
and Kurz [1977], the outcomes here can obviously be supported by a

system of wealth taxes in which the tax.each agent t €T pays is

pg(t) - pe(T) (i.e. the marginal tax rate is 100% and there is a lump-sum
subsidy of pe(T)).

We cannot in general make the calculations of the previous sections
for arbitrary nonhomogenecus markets, However, there is one case for
which we can quite easily give a partial characterization of the set of
value allocations. If every individual has the same utility function
then we can actually calculate v{S) for each 8 € { (where Vv 1is the
game defined in (6.5)}); this allows us to isolate some of the value

allocations of the economy. In fact, we have the following.

Lemma 6.41: Let M be a market, and suppose that there is a com-
parison function 5* and a utility function u (i.e. a function satisfying
(4.2) through (4.5)) such that a\*(t)ut =u for all t € T. Then if

x 1is an efficient allocation in M for which a.e.
(6.42) ' px(t) = pe(T) ,

where p is an efficiency price for x,.then it is a value allocation

of the economy E = (M, I'(M)).
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Note that if u 1s strictly quasi-concave then if x is effi=-
cient and a.e. satisfies (6.42), so that px{(t) is a.e. constant, we

must have x(t) = e(T) a.e..

Proof of Lemma 6.41: First note that v“(s) and rA*(S) are

attained for all S € ¢ and in fact (since u 1is concave by assumption),

vk*(s) = pu(s)ule(T)/u(S)) for each S €

(where v: ¢ + R_ is the game defined in (6.5)), and
.

r,«(8) = u(8)ul(e(s)/u(s)) for each S€C .

So by Theorem B of Aumann and Shapley we have Vyu € pNA and T)» € pNA.
Now assume that x is an efficient allocation in M which &.e.
satisfies (6.42). Since both VA*(S) and r”(s) are attained for every

S

S €C, by Lemma 6.6 we know that H A¥ has a finite saddle point for

. every S € C, and the game q,, defined by (3.24) is given by

vl*(S) if wu(s) » 1/2
9, #(8) =4r 4 (s) ir u(s) =1/2
i 0 if u(s) < 1/2 .

Since v,, € pNA and ra* € pNA we can argue as in the second part of

AW
the proof of Lemma 6.18 that the value ¢ql* of the game q” is the

same as the value ¢k,u of the game kA*. C » R, defined by

' v,.(8) if u(s)
k,#(8) = {O'A'*

v

1/2

if u(s) < 1/2 .
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But k4 = u{e(T))(fou) where f: [0,1] - [0,1] 1is defined by

EM

xule(T)/x)/ule(T)) if xe [1/2, 1]
£x) ={

0 if x€ [0, 1/2) .

The function f is of bounded variation and is continuous at 0 and 1.
Also f{(0) = 0 and f£(1) = 1, so by Theorem A of Aumann and Shapley and

Theorem 3.7 we have
(6.43) (¢k, 4 )(8) = (¢a,4)(8) = u(e(T))u(8) for each SEC .

But from (6.42) and the fact that x is efficient we have u{x(t))

= 5*(t)ut(§(t)) = u(e{T)) for all t € T, so from (6.43) we have

(99,4)(8) = fa*u(x) for each S€C .
~ S -

So by Lemma 6.10, x is a value allocation of the economy E = (M, T(M)),

completing the proof.

We cannot give a full characterization of the set of value allocations
under the assumptions of Lemma 6.41 because in order to do so we should
need to calculate the value of the game Q, for comparison functions
A # 5*; the restricetion that for one compa;ison function all the weighted
utility functions are identical gives us no help in this calculation. It
may be that there is a comparison function A # é* for which
(¢q§)(s) = égu(§) for each B € C, for some allocation x.

A question which arises is whether we can give an example of a (non-

homogeneous) econcmy for which we can argue that none of the equal income
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competitive allocations is & value allocation. This we shall now do.
Let M be a market in which the agent space is (T7,C,n) and
there are ¢ goods, with £ = n + p. Let ft be a utility function
on the consumption set ]Rf which is homogeneous of degree a € {0,1)
for every t € T, and let g be a utility function on the consumption

set IIR’:_l which is homogeneous of degree B € (0,1) for every t € T.

Let the utility function of t € T in the market M be u, C ~» R,

- - - n
defined by ut(x) = ft(xl) + gt(x2)’ where x (xl,xz) with x, € R
and x, € IRm; denote the initial endowment density of t € T by

2
e(t) = (;(t),e,(t)), with e,(t) € B® and eylt) € K. It is con-

venient to give names to the two "sub-markets" involved here: let Ml
be the market with agent space (T,C,u) and n goods in which the utility

function and initial endowment density of t € T are f, and e,(t)

t
respectively, and let M, be the market with agent space (T,C,u) and

m goods ir} which the utility function and initiasl endowment density

of t€T are g, and ge(t) respectiveiy. The fact that the utility
outcomes in the market M are the sums of outcomes in the two homogeneous

markets M. and M, means that we can immediately deduce from Proposition

1 2
6.28 that the game q defined in (6.8) is a member of ASYMP, and for

each S €C
(4a)(8) = 2%7tv ()u(s) + 2P7Lv (mhuls) + (1 - M) fr(x))
5

+ (1 - 28'1)1'3(;_:2)
S
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where v, is the game defined in (6.5) which is derived from the market

M, for i=1,2, and x, is an allocation at which vi(T) is achieved
for i =1,2. Given this, we can argue as in Section 6.7, exploiting

the homogeneity of each f, and g  once again to deduce that x = (51’52)
is a value allocation of the economy E = (M, I'(M)) if and only if it

is efficient and a.e.

(6.44) 82" Tp (x,(6) - e (M) + a2® I (xy(8) - (M) =0,

where p = (Pl'PQ) is an efficiency price for x = (§1,§2). Now, to
say that p 1is an efficiency price for x means that there exists a
comparison function A such that (x,p) is a t.u.c.e. in M (see
Section 4.1). And if (x,p) = ((§1,§2),(p1,p2)) is a t.u.c.e. in AM
then from the definition of & t.u.c.e. (see (4.14))} it is immediate that
(x,,p,) 1is & t.u.c.e. in AM;, and (%,,p;) 1is a t.u.c.e. in AM,. Ve
shall now argue that in general it is not the case that a solution x to
(6.4k4) involves px(t) = pe(T); then we shall provide a specific example.
If px(t) = pl*l(t) + p2§2(t) = pe(T) = plel(T) + PQEQ(T) a.e. then

from (6.44) we have a.e.

(82°% - 02" M) (x, (8) - e (T)) = 0,

so that 1f B2*! # a2®™ ve nave p,x, (t) = p,e,(T) a.e., and hence
P2§2(t) = p2e2(T) a.e.. But in general there is no comparison function

A such that there is a t.u.c.e. ({l,pl) in AM, such that plgl(t)

= plel(T) a.e. and a t.u.c.e. (52,p2) in AM, such that p2§2(t) = paea(T)
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a.e., and hence in géneral there is no solution x of (6.4k4) for
which px(t) = pe(T) a.e.. To see this in & specific case, let n=m =1

and suppose that for each t € T,

1/3

x:I'/2 and gt(x) = tx .

f.(x) =
If we are to have plgl(t) = plel(T) a.e. then, given that n = 1, we must

have §l(t) = el(T) a.e.. But f_ is the same for all t €T, so for

(x,,p,) to be & t.u.c.e. in )M, ve must have A(t) =1 for all t € T.
Now it is easy to verify that there is a unique t.u.c.e. (52,p2) in M2,

given by (§2,p2) = (22/3/3(5e2(T))2/3, 2t2/3/5e2(T)); this gives
Po(x,(8) = ex(T)) = c(2t%/3 - (e(1))?)

where ¢ # 0 is a constant, so that p2(§2(t) - eQ(T)) # 0 a.e. and
hence px(t) # pe(T) a.e.. |

If agents have utility functions which are not homogeneocus of the
same degree, or of a special form like those of the previous paragraph,
we cannot calculate the set of value allocations directly. In the trans-
ferable case the value of an agent depends on the contribution he makes
to the worth of "diagonal" coalitions, and it is clear that agents whose
utility functions have a relatively high marginal utility throughout will
have a high value, while those with a relatively low marginal utility will
do poorly. However, what is crucial in the nontransferable case is the

"equilibrium" value which the comparison function takes on; the fact that
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the way that this depends on the structure of the economy is quite complex
makes the nonhomogeneous case very difficult to analyze.

What we have concluded from our study in this chapter is that if,
in an economy with majority rule, every majority coalition has as much
pover as it can possibly expect to have (see assumptions (6.1) through
(6.3}), in a certain class of economies the resulting outcome is "egalitarian"
in the sense that the tax system gives every agent the same wealth (see
Theorem B). Our study of this extreme case gives us a "bound" on the
possible outcomes we can generate from the basic model. It also provides
the basis for the study of the more realistic case in which the members

"of & minority cen prevent their complement from making use of some of the
goods (like labor-time) with which they (the members of the minority) are
endowed, but not from making use of others (like land, which cannot be

"destroyed"); it is this case which we study in the next chapter.
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CHAPTER T: An Application: An Economy Containing Labor and Land

T-1 Introduction

In this chapter we use the results of Chapter 6 to study an economy
in which there are two sorts of goods. On one sort we make the assumption
of the previous chapter that if an agent has an endowment of them; he
cannot prevent a majority coalition of which he is not a member from
expropriating this endowment. We might think of the flow of land services
a8 being a typical good of this type: since land itself cannot be
destroyed, a majJority coalition can expropriate it and hence obtain the
flow of services from it. (In Chapter 5 we assumed thet it is only
necessary to withdraw a good from the market to avoid taxation; in the
case of land we are assuming here that whether or not it is offered in
the market it can be taxed.) On the other sort of goods we make the assump-
tion that an agent can destroy his endowment in order to avold expropria-
tion by a mejority coalition. A typical member of this group of goods
might be labor-time: a worker can always "destroy" his labor-time by
going on strike. On this set of gocods for simplicity we actually make
the assumption of Aumann and Kurz [1977], rather than that of Chapter 5
above--i.e, if an agent chooses not to destroy his endowment then a majority
can expropriate it in its entirety, and not Just that part of it which
he offers in trade. We could say that the difference between the two sorts
of goods lies in their "elasticity of supply"--though no prices are involved
here. Thinking of the difference in such terms, we can compare our results

with those of classical public finance, where the question asked is at
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what level should tax rates be set (to meet a certain objective). The
conclusion there is that for an efficient outcome tax rates on goods

with inelastic supply (like land) should be high. Here, where we are
asking what the tax rates will be, given the power endowed upon individuals
and groups by their possession of certain goods, the conclusion we reach

is similar: the goods which cannot be destroyed (the supply of which is
"inelastic") will be taxed at high rates (see the discussion in Section T.lh).
The reasons for the high taxes in the two cases are different, however.

In the classical theory the prescription is to tax goods in inelastie
supply at high rates because to do so will meke no difference to the quan-
tity of the goods which is available in the market, so that any ineffi-
ciency will be minimized. Here, the theory predicts high tax rates on

such goods because their owners can do nothing to reduce the quantity

of them which is available for expropriation by any majority coelition,

so that their ownership conveys no special benefits.

We shall now formally state the assumptions we shall make about the
strategies available to the groups in the economy. Let M be a market.
The endowment density of t €T is e(t) = (a(t),u(t)), vhere a(t) € R,
w(t) € IRf, and n+m=2, If x € 9, we shall consistently write
x = {y,z), where it is to be understood that y € ]Ri and 2z € JRI:. We
make the following assumptions about the strategic game T[©(M)}, which

defines the economy E = (M, T'{M)):

(7.1) if S €C is such that u(S) > 1/2, then for every S-allocation
x= (g,g) of (a(8),w(T)) there ig a strategy o of S such

that for all strategies T of T\S
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2 u (y(t),z(¢)) if tes
: no (t)
= 0 if t €T\s ;
(7.2) if 8 € ¢ is such that u(S) > 1/2, there is a strategy t of

T\S such that for every strategy o of S there is an

S-allocation x = (y,z) of (a(8),w(T)) such that

5ut(’y(t),Z(t)) if tES
s - ~ -~
!-101'(1") {

0 if t eT\s ;

v

and

(7.3) if S € ¢ is such that u(S) = 1/2, then for each S-allocation
x there is a strategy o of S such that for each strategy

T of T\S there is a T\S-allocation X such that

v

u (x(t)) if te€s

no, (%)
ot <u(¥(t)) if tE€mM™s .

(Note that (7.3) is the same as (5.3) and (6.3).) We shall now state the
result which will be demonstrated in this chapter. We shall need to
assume that each utility function u, for t €T 1is of a rather special

form: we shall make the following assumption.éj

(T.%) for all t €T, ut(y,z) = ft(y) + gt(z) for each (y,z) €,
where ft satisfies (4.6) and (4.7) and g, satisfies (4.8) .

(We are also of course maintaining assumptions (4.2) through (4.5).)
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Proposition 7.5: Let M be a market satisfying (7.4). Then

if (M) satisfies (7.1) through (7.3), an allocation x = (g, ) is

1. ]

& value allocation of the economy E = (M, I'(M)) if and only if it is

efficient and a.e.
(7.6} Alt)u (x(£)) - [ulx) = p (a(t) -y(t)) + (2P ~1)/8)p (u(T) - 2(t))

where (A,p) = (1, (pl,pe)) is an efficiency pair for x = (y,z).

Throughout this chapter r'(M} will denote a strategic game asso-

ciated with the market M which satisfies (7.1) through (7.3).

T.2 Optimal Threats and the Value of the Game g

To find a collection of pairs of optimal threats in the games between
S and‘ ™S for each S € C we can use an argument identical to that
in Section 6.2. Doing so (we shall not repeat the argument here), we
find that the game defined by this collection of optimal threats is the

game q: C-+ R,_ defined by .

w(s) if u(s) > 1/2
(7.7) a(S) =4 r(s) ir u(s) = 1/2
0 if p(s) <1/2 ,

where w: C » IR+ is the game defined by
w(s) = uS(a(S),w(T)) for each S €C

and r: C » ]R+ is the market game derived from M. DNow, for each

s €ec,
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w(s)

]

sup {[£(y) + falz): (fy, [2) = (a(8),u(T))}
s - S S S

sup {[£(y): [y = a(8)} + sup {[e(z): [z = w(T))
5 5 5 s .

r(8) + v (8) |

where rot C+ R 1is the market game derived from the market Mf with

agent space (T,C,nu), n goods, utility functions f_: IRZ + R, and

t

initial endowment density a: T » ]Ri, and vg: C+ R is the game

defined as in (6.5) which is derived from the market Mg with agent space

(T,C,u), m goods, utility functions g, : ]R:1 +]R+,

and initial endowment

density w: T +]RT. If M is integrably sublinear, rf(S) and vg(S)

are attained for every S € C, and we have r p € pNAD N pNA' by Proposi-

tion 4.27, and Vg € pNA by Proposition 6.11. Hence w € pNAD N pNA',

and we can conclude as in Section 6.4 that ¢ € ASYMP and that the value

dq of q is identical to the value of the game k: C - ]R+

. ‘{w(S) if u(s)
k(s) =
0 if u(s)

1/2

nv

1/2 .

A

Now define games Akf: C - m+ and kg: C~» ]R+ by

r.(s) ifr u(s) 3 1/2
kf(S) ={

0 if u(s8) <1/2 ,
and
vg(8) if  w(8) 2 1/2
k. (8) = {
& 0 if  u(s) < 1/2
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[

Then k = kf + kg, so we have ¢q = ¢k, + ¢kg. From Propositions 3.16

and 4.28 we have an expression for ¢kf when M is integrably sublinear,

and from Proposition 6.28, we have an expression for ¢kg in this

case, Combining these we obtain

[

(9a)(s) = (r (T)/2 + 2 1vg(T))u(S) + [(£(y) -p (y - 8))/2
S

+ (1 - 2P [elz) foreach sSEC ,
S

where (g,pl) is a t.u.c.e. in M, end z is an ellocation in Ms at

~

which vg(T) is attained. From this last fact there exists P, € ]R_':_._
such that (z,pe) is a t.u.c.e. in Mg' But then ((y,z),(‘pl,pz)) is

a t.u.c.e. in M, so we have

(1.8)  (4a)(8) = [[(y)/2 + 2°71 g(z)u(s) + [[£(y) - p (y - &)]/2
S

+(1-23'1)fg(5) for each SEC ,
S

’ where (ch,p) = ((y,z),(pl,pa)) is a t.u.c.e. in M.

T.3 The Characterization of the Value Allocations of the Economy
(M, T(M))

Once again we can reason exactly as we did in Chapter 6; we shall
only sketch the argument here. Let A be a comparison function. Then

from (7.8) we have
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(7.9)  (4g,)(8) = [faz(y)/2 + 2P aalz)u(s) + [laely) - p (y - a)1/2
~ ~ S ~ -~
+ (1 - QB-l)fag(E) for each S €C ,
S
vhere (x,p)} = ((g,g),(pl,pz)) is a t.u.c.e, in AM. Now assume that

(¢9,)(8) = Ja(x) for each S € C. Then [ru(x) = (¢qx)(T) = q,(T)
-~ S ~ ~ n A

= wk(T) = rA(T), so from (7.9), we have

(7.10) IM2(y) + g(2)) =
S
= [Nae(y)/e + 2P ag(2)Tuls) + [Iaely) - o (y - &)1/
! :

+ (1"23-l)f§g(§) for each S €C |,
]
so that a.e.
(1.11)  ale)(g, (y(£)) + 2Pg (2(t)) = [ae(y) +28ag(2) +p, (alt) -y(t)

vhere (x,p) = ((ggg),(pl,pz)) is & t.u.c.e. in AM. Conversely, if
(7.11) is a.e. satisfied we can deduce (7.10) by integrating over S,
and use (7.9) to deduce that (?qk)(S) = [Au(x) for all S €C. We can
prove a result analagous to Lemma~6.10 under assumptions (7.1) through

(7.3), so we have established the following (cf. Lemma 6.37 and Lemma 6.1C).

Proposition 7.12: An allocation x is s value allocation of
E = (M, T{M)) where M satisfies (7.hk) if and only if x = (g,g) is

efficient with efficiency pair (2, (pl,pe)) and (7.11) is a.e. satisfied.
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We shall now further exploit the homogeneity properties of
g, for each t € T.

Lemme 7.13: Let M be a market satisfying (7.4) and let x = (y,z)
be an efficient allocation in M with efficiency pair (a,p) = (A,(pl,pzn.

Then x a.e. satisfies (7.11) if and only if it a.e. satisfies (7.6).

Proof: Suppose x a.e. satisfies (7.11). Then since (5’p2)

is an efficiency pair for 2z in Mé we have
i i ii R )
X(t)gt(z(t))z (t) =pz(t) for i=1,...,my for each t €T

(using the homogeneity of degree g of each gt). So from (7.11) we

have a.e.

AE)(2, (r(6)) + g (2(+))) = (1 - 2P)a(v)g, (2(t)) =

A(6)u (x(t)) = (1 - 2%)p,2(4)

v

fagly) + faelz) - (1 - 28)/p)[aelz) + py(al(t) - y(¢))

faulx) - ((1 - 2%)/@)pu(T) + p(alt) - ¥(t)

vhich gives us (7.6). Conversely, if x a.e. satisfies (7.6) then we
can reverse this argument to show that x a.e. satisfies (7.11). This

completes the proof.

To take w(T) = 0 is formally illegitimate since it violates (L.1),

but if we do so we can assume that z(t) =0 a.e., and (7.6) reduces to
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the characterization provided by Aumann and Kurz [1977]--which is as
it should be since in this case every goo@ which exists in the economy
can be destroyed. Similarly if we take a(T) = 0, (7.6) reduces to the
characterization given in Chapter 6, namely peg(t) = pem(T) a.e. (since
B<2® -1 forall 8 €(0,1)).

Now, since p 1is an efficiency price for x this allocation can
be achieved as a competitive allocation after wealth has been redistribubed
so that t+ € T has px(t) rather than the amount pg(t) with which he
began; thus x can be achieved as a competitive allocation in which
t €T pays the "tax" pe(t) - px(t). From (7.6) we can see that, given
the characteristics of the other agents, the vector of goods which t €T
receives in the game we are considering depends only on plg(t) and u
(everything else in the equation is & constant). Hence pg(t) - px(t)
equals p29(t) plus a function of u, and plg(t) (and the characteristics
of the other agents)--i.e. the tax rate on the value of the second group
of goods is 100% (all of pag(t) is paid in tax), while that on the

first group is in general less than 100%. In order to study the size of

the taxes on this first group we shall now consider a class of examples.

T.4 A Class of Examples

We shall consider here the economy derived from a market in which
u = u for all t €T, and ft = f 1is homogeneous of the same degree
(namely B) as each B, = & (As in the examples considered in Section
5.6, f does not actually satisfy our boundedness assumption; however, we

can reason as we did there that our arguments will still locate the value
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allocations of the economy we are studying.) Now u is homogeneous
of degree 8 (€(0,1)), so all efficient allocations in M consist
of bundles lying on the ray from the origin through the aggregate initial

endowment fe = (fa,fw). So we can set p = u'(fe) and
(7.14)  x(t) = k(t)fe , where k: T +R_ is measursble and [k =1 .

Assume that x(t) >> 0 a.e.. Then from (4.13) we have a(t) = pi/ui(x(t)),

go from (7.6) we have a.e.

plu(x(8))/u’(x(8)) = ¢ = p(a(t) - y(£)) + (28 —1)/B)p, (w(T) - 2(T))

(vhere ¢ = I’.E“(’f))’ so a.e.

p'x () = [p,(alt) =~ y(£)) + ((25 - 1)/B)p,(u(T) - z(t)) + c]

ul(x(6))x (£)
u(Jf(t))

x

(since x(t} >> 0 a.e., u{x(t)) > 0 a.e.). Hence, summing and using

the homogeneity of u, a.e.

px(t) = p y(t) + p,yz(t)

Blp, (a(t) = y(t)) + ((2° - 1)/8)p,(u(T) - 2(¢)) + c]
80 a.e.

(1 +8)py(t) + 2Bp2§(t) = Bpalt) +c'
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where c' = c + (28‘- 1)p2m(T). Now using (7.14) we have a.e.
(1 + 8)k(t)p, [a + 2B§(t)pzfg = Bp,a(t) +c'

so a.el

+

Bp,a(t) + cf
— e .
(1 +8)p,fa + 2°p,fu/ "~

x(t) = k(t)fe = (

Integrating we find that c' = plfg + 2Bp2fg, 80 we have a.e,

8p, (a(t) - [a)

(7.15)  (y(¢),z(¢)) = (% + : )(Ig,fg) )

1+ 8)p,fa + 2Pp fu

vhere p = (pl'Pa) = u'(fg) = u'(fg,,fg) is an efficiency price for
x = (y,z). From this last fact the allocation x can be achieved in

a competitive equilibrium in which t € T pays the "tax" 1(t) = pe(t)

- p:f(t). We shall now study these taxes in more detail. We have a.e.

1(t)

p,a(t) + pu(t) - pyy(t) - pyz(t)

p, (a(t) - a(T)) )

a(t) + pou(t) - 1 +
P2 Pt ( (1 + 8)p,a(T) + EBpgw(T)

x (pla(T) + paw(T))

( B(p,a(T) + pyu(T))
- 1 =

2 )pl(a(t)- a(T))
(1 + B)pla(T) + 2 pzm('l‘) -

++ polu(t) - wl(T))
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So a.e.

p,a() + (2* - B)pu(T)
(7.16) 1(t) = pl(g(t)-a(T)) + pe(g(t)-m(T)) .

(1+8)p,a(T) +2°pu(T)

Thus, as we argued above in general, the tax rate on the wealth ng(t)
associated with the second group of goods is 100%, while the tax rate

on the wealth plg(t) associated with the first group of goods is

p,a(T) +(2° - 8)p(T)

Tl(t) = B-
N (1 + 8)p,a(T) + 2%p,u(T)
Now, if ﬁe assume that all goods can be destroyed--i.e. the economy satisfies
the assumptions of Aumann and Kurz [1977]--then from Section 10 of that
paper we know that the tax rate on wealth is 1/(1 + B). We shall now

compare this with Il(t)' We have

(1 +g) DT + 2Ppu(m)/(1 + 8)

T, (t) p,a(T) + (2f - B)pu(T)

and 23/(1 +8) =28 - p2B/(1 +p) > 2P - B since 2B <1 +B for all

g € (0,1), so

1/{1 +8

> 1
T\t .

Thus in this class of examples the tax rate on wealth derived from goods

which can be destroyed is lower if there are also goods in the economy
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which cannot be destroyed than if all goods can be destroyed. In Aumann
and Kurz [1977], where an economy of the latter sort is studied, i:he

tax rate is at least 50%. Here the tax rate on the wealth derived from
goods which can be "destroyed" (e.g. labor-time) can be less than 50%,
but from the formula above can be shown to be at least ’

1-1/(e 1oge2) ~0.465 (where e 1is the base of hyperbolic logarithms)

and comes close to this only if pla(T) is very small in relation to

pew(T).
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CHAPTER 8: A Class of Power Distributions

8.1 Introduction

The aim of this study is not simply to find the outcome of specifia
assumptions about the strategic possibilities of the groups of agents
(as we have done in the previous three chapters), but also to understend
how the solutions given by our model change as we allow the étrategy sets
to vary over a wide range: we want to know what it is that makes agents
more or less "powerful", and how sensitive the set of solutions is to
the precise assumptions we make. Here we shall report the results of an
investigation in this ares,

Rather than dealing directly with the strategic game, we begin
our anelysis here with the coalitional game q (see (3.24)) which
summarizes the threat possibilities of all the groups of agents. The
fact that q 1is the result of the groups carrying out certain strategies
in a game TI(M) associated with the market M puts restrictions on

its characteristies. Thus if M is a market we shall say that q: C+ R

is a bargaining geme associated with M if for each S € C, q(S)==FS(u,§,u)
(i.e. depends solely on the data u, e, and y of M in addition to S)
and there is an allocation x in M such that q(S) = fu(x) and

a(T\s) = | u(x). Let A be a comparison function. Wesdefine the game

TS
q: C+ R by qA(S) = Fs(iu,g;u) for each S € C, and say (slightly

abusing our terminology) that an allocation x in M is a value allocation
of q if there exists a comparison function A for which qA(T) is

finite and
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(8.1) [aulx) = (¢q,)(8) for each S€EC .
S A

In the remainder of this chapter we first characterize the value alloca-
tions of a whole class of bargaining games associated with M, and then
discuss the way they reflect the "distribution of power" and study the

circumstances under which theseallocations can be supported as competitive

allocations with a particular form of taxation.

8.2 The Characterization of the Value Allocations of a Class of Bargaining
Games Associated with a Bounded Market M.

Throughout this chapter we shall be concerned with a fixed bounded
market M. The class of bargaining games q we shall examine here

contains those for which

(8.2) a(s) = f(r(s),e(8),u(s8)) for each S € ¢, where
+
f: Iﬁ 2-+:m is increasing and continuously differentiable
.and f(rA(T),e(T),u(T)) = rA(T) for every comparison

function )

(and r is the market game derived from M defined in (4.15)). Note
that since r(@) = e(@) = p(@) = 0, the fact that q is a game implies

that f(0) = 0. Let fl/2: [0,1] + [0,1] ©be defined by

0 {1 ir x e [1/2,1]
f xX) =
1/2 0 if xe [0,1/2) .

Then the bargaining game to which the strategic game of Aumann and Kurz

[1977] leads is given by
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(8.3) als) = £

l/a(u(s))r(s) for each S EC .

Since f is not differentiable at x = 1/2, q@ does not fall into

1/2
the class defined by (8.2). However, it can be approximated by members

of that class. The form (8.3) involves a dichotomized distribution of
"power", in which the power of any coalition containing more than 50%

of the population is radically different from that of any coalition with
less than 50%. It seems that for one reason or another in actual economies
groups with less than 50% of the population may be quite powerful; included
in the class defined by (8.2) are such cases. (We shall discuss these
matters further below.)

We shall now characterize the value allocations of a bargaining

game satisfying (8.2). First, we have the following.

Proposition 8.4: Assume M is integrably sublinear, and let

q: C+ R be a bargaining game satisfying (8.2). Then q € pNAD N pNA'

and ¢q is given by

(8.5) (9a)(8) = a [ [u(x) - p(x - e}] + aje(8) + amu(s) ,
. S - - -
where the constants al € ]R_,_, a, € ]R_Q"_, and a3 S ]R+ are given by
1
(8.6) b, = J'fi(er(T),ee(T),eu('r)) for i=1,...,08 +2
o
L+2 . s
where b = (al,ae,a3) €R, ", and (x,p) 1is a t.u.c.e. in M.
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Proof: We have | &€ NA, e is a vector of members of NA, and,
by Proposition 4.27, r € pNAD N pNA', Let w be the (& + 2)-vector

of games (r,e,u), so that g = fow, Since L/ € pNA' for

n n

M1 with w2 = ghof
i i i

i=1,...,2 +2 we can find a sequence {w
i n=1
for each n, such that v? is a vector of members of NA and -n? is

& polynomial, and wril converges to LA in the supremum norm. But then

n

n n n
fow

l,...,n2+2°v“2) = foglo (v2

10" ,v:+2) where

= fo (11;0 v
s IR9'+2 > R* is defined by nn(xl,..‘. ,x2+2) = ("g(ﬁ)"”'“:-ra(xuz))’
so since fon" is continuously differentiable on the range of
(vg,...,vz_'_z) and (for™)(0) = 0 (since f(0) = 0), by Theorem B of
Aumann and Shapley we have foy’ € pNA. But fow converges to fow

in the supremum norm, so fow € pNA'.

Similarly, since LA € pNAD for 1 =1,...,8 + 2, there exists

d. € DIAG and & sequence {Ww.} with #. = 700y for each n,

1 R 157y

such that v° is a vector of members of NA and T?;l is a polynomial
and i'r? converges to w, - d;, in the BV norm. But as above we can

then argue that fow® is a member of pNA for all n, so that fo (w-d)
is also., Since fow = fo(w - d)+(fow - fo(w - d)) and
fow - fo(w - d) € DIAG (since d € DIAG), we then have fow € pNAD.
This, together with the conclusion of the previous paragraph, establishes
the first claim of the lemma,

Now from Lemms 3.18 we know that for each S € C, 3q*{6,S) and
aw;(e,s) for i=1,...,n exist for almost all 6 € [0,1], and when

they exist we have
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L+2
9g*(8,8) = ] f,(w*(ex,)lov¥(e,s) ,
i=1

so that by Theorem 3.14 we have

1+2

+
I £;(w*(oxp))ow¥(e,5)a0 for each SEC .

1
(¢a)(8) = [
0 i=1

i
Now, w = (r,e,u) and (e,n) is a vector of members of NA, so for all
o € [0,1] we have (e*(exT),u*(exT)) = (ge(T),ou(T)) and
(3e*(0,5),3u*(08,8)) = (e(8),u(S)) for each S € C. Also, by Proposition
4.28 we know that for a1l 6 € [0,1] we have r*(exT) = 9r(T) and

ar*(8,8) = (¢r)(S) for each S € C. Hence for each S € C

(8.7) (¢a)(8) = a (97)(8) + aje(s) + a3u(S)

where a, €R,, &, € ]Ri, and a, € R_ are the constants given by (8.6).

2 3
But again from Proposition L4.28 we have

(¢r)(8) = f[u(x) - p(x -« e)] foreach SEC ,
s pol

where (x,p) 1is a t.u.c.e. in M, so the proof is complete.
This result allows us to characterize the value allocations of gq.

Theorem 8.8: Let M be a bounded market and let q be a bar-
gaining game satisfying (8.2). Then x is a value allocation of gq

if and only if it is an efficient allocation in M and a.e,

(8.9) (1 - a) A (t)u (x(¢)) = a,;ple(t) - x(t)) + a,e(t) + a,
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vhere (x,p) is a t.u.c.e. in AM, a. € R, aQEIRi, and a, € R,

1 3
are the constants given in Proposition 8.4 corresponding to the game g, -

Proof: First assume that x is a value allocation of q. Then
_ there exists a comparison function A such that qA(T) is finite and
(8.1) is satisfied. But then féu(ic) ='(¢.qA)(T) = ;A(T) = rA(T) (using
(8.2)), so x 1is efficient with efficiency~cpmpa.rison ﬁmct;.on As
and rA(T) is finite. But then by Proposition 4.17, AM 1is integrably
sublin;ar, and there is a price vector p such that (é,p) is an effi-

ciency price for x, so by Proposition 8.4 we have

(¢ql‘)(S) = aljs' [ru(x) - p(x - €)] + aye(S) + au(s)

for each S E€C .
So, using (8.1), for each S €
égu(ic) = aljs',}u(g) - alpé (x - e) + ase(8) + anu(s)
or B

(1 - al)sfgu(:f) = alps‘{(g - x) + ae(8) + aBu(S) s

giving us (8.9) a.e..

Now assume that x is efficient and (8.9) is a.e. satisfied.
Since f(0) = 0 and f is increasing we have 8y
integrate over T to conclude thet r, (T) = Jau(x) is finite., Hence

< 1, so we can

by Proposition 4.17 once again, M is integrably sublinear, so that

by Proposition 8.4,
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(¢q,)(8) = a1]§u(1c) - alpf (x - e) +ae(s) + a(s)
~ S S

for each S € (C .

Integrating (B8.9) over S then gives us (¢qh)(S) = Iﬁu(g) for
~ s

all S € C; since qA(T) = (¢ql)(T) 2 fau(x) rA(T), qA(T) is finite,
80 that x is a value allocation of q.

This completes the proof.

8.3 Wealth Taxes

Aumann and Kurz [1977] argue that the value allocations of the game
they consider can-all be supported as competitive allocations after each
agent's wealth pg(t) has been modified by a wealth tax. Given Theorem
8.8 it is easy to argue that the same is true for a wide class of bar-

gaining games.

Proposition 8.10: Let M be & bounded market and let q be a

bargaining game satisfying (8.2) for which
(8.11) £(r(s),e(s),u(s)) = £{r(s),0,u(8)) for each S E€CC

(i.e. for which q(S) 1is independent of e(S)). Let x be a value allo-
cation of q. Then there exists a price vector p such that x(t) ea.e.
maximizes ut(x) over {x €9: px ¢ pg(t') - -E(t)} vhere t1: T ~» R

is such that if u = u_ and pe(t) = pe(s) then E(t) = I(S)

(i.e. 1 is a system of wealth taxes).
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Proof: If we define a function fl: BE

= £(r(8),0,u(8)) for all S € C we can deduce, using an argument as

+IR by fl(r(S),l-l(S))

in the proofs of Proposition 8.4 and Theorem 8.8, that x 1is a value
allocation of q if and only if it is efficient and a.e. (8.9) is

satisfied with a2 =0 --i.e, a.e.

(8.12) (1 - a)((ehu(x(e)) - 5y (1) = ap(e(t) - x(e))

where (A,p) is an efficiency pair for x. The fact that p is an
efficiency pfice for x means that f(t) a.e. maximizes ut(x) over
{x € 0: px g px(t)}. But it u =u_  and pe(t) = pe(s), any solution
of (8.12) for ic(t) must be a solution for ic(s), and vice verse, so

if we set t(t) = pe(t) - px(t), t{t) = 1(8) under these circumsta.nceé,

completing the proof.

We can see from this proof that if e(S) is independently an
argument of f +then in general the value allocations of q cannot be
supported as competitive allocations after wealth taxation--for the solution
x(t) of (8.9) then depends independently on e(t), not just pg(t)

(unless it happens that a is proportional to p).

2
As we noted above, the bargaining game to which the assumptions
of Aumann and Kurz [1977] lead (see (8.3)) is not a member of the class
we are considering, but can be approximated by members of that class.
Proposition 8.9 shows that their result that each velue allocation of

their game can be supported as a competitive allocation after wealth

taxation is not at all sensitive to the precise characteristics of the
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game q; all that is important is that for each S & ¢, q(S) depends solely
on r(S) and u(S), and not independently on e(S). We have not shown
how a strategic game can be constructed to generate a given bargaining
game gq, but it is clear that a wide variety of assumptions about the.
strategic possibilities of groups of agents will lead to a game gq which
depends solely on r(S) and u(S) (we shall return to this matter in the
next section).

There is a stronger sense in which the wvalue allocations of
Aumann and Kurz [1977] are the result of wealth taxation, which we shall
now explain. For each price vector p and t €T let uE: ]R+ +R+
be the indirect utility function of agent t at prices p (see (5.28)}).
Let M’ %be the market with agent space (T,C,y) and & = 1 in which
the utility function of t €T 1is uzz Eh_-*lh_ and the initial endow-
ment density is pe: T -+ Ih, By Lemma 5.30, for each price wvector p,
MP is bounded if M is. If q 1is a bargaining geme associated with M,
with q(8) = Fs(u,g,u) for each S € C, for each price vector p we can
construct the bargaining game qf defined by q¢F(8) = Fs(up,pg,u) (P is
thus just e one-commodity ("income") version of q). Viewing this as a
bargaining game associated with Mp, let ¥p be a value allocation of
qp. (That is, gp is a value allocation of the game which is played accord-
ing to the same rules as gq, but in whiéh "money" (or "income") is treated
es the sole good.) Finally, let §P(t) a.e. maximize u (x) over
{x€n: px < gp(t)} (so that in particular {p(t) = p{p(t)). If we have

f{p = Ie, we say that gp is a value allocation of the wealth redistribu-

tion game derived from q.
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There 1s no reason to believe that the value allocations of an
arbitrary bargaining game gq coincide with the value allocations of the
wealth redistribution game derived from q even if the former can be
achieved as competitive allocations after wealth taxation. However, for
all the bargaining games considered in Proposition 8.10 this coincidence

does in fact occur.

Lemma 8.13: Let q ©be a bargaining game, and suppose that x is
a value allocation of q if and only if it is efficient with efficiency
pair (A,p) and a.e. G(ut(g(f)), 5(t), pg(t), p}(t)) = 0 for some
function G: Iﬂ* + R. Then the set of value allocations of g coincides
with the set of value allocations of the wealth redistribution game derived

from q.

Proof: First suppose that x is a value allocation of g, with
efficiency pair (A,p)}. Then from Lemma 5.30 we have ut(§(t)) = uz(px(t)),

so that a.e.
(8.14) G(uf(px(t)), A(t), pe(t), px(t)) =0 .

But also from Lemma 5.30, px is an efficient allocation in MP  with
efficiency pair (5,1), so from (8.1L) px 1is e value allocation of dp.
Furthermore, since p is an efficiency price for x, we know that x(t)
a.e. maximizes u (x) over {x€ Q: px g px(t)}; since fx=Je vy

definition, x 18 a value allocation of the wealth redistribution game

derived from q.
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Now suppose that x is a value allocation of the wealth redistri-
bution game derived from gq. Then there is a price vector p such that
x(t) e.e. meximizes ut(x) over {x € Q: px ¢ px(t)}, and hence also
a comparison function ) such that (),p) is an efficiency pair for x.

8o (8.1L4) is a.e. gatisfied, and 80, by Lemma 5.30, G(ut(f(t)), &(t), pg(t),

p§(t)) = 0 a.e.. Hence x is a value allocation of gq.

Corollary 8.15: Let M be a bounded market and let q be a
bargaining game satisfying (8.2) and (8.11). Then the set of value alloca-
tions of q coincides with the set of vaiue allocations of the wealth

redistribution game derived from q.

Proof: The result follows immediately from Lemma 8.13 and the
proof of Proposition 8.10,given that for each price vector p, M is

bounded when M 1is bounded (see Lemma 5.30).

Thus if, in any bargaining game satisfying (8.2) and (8.11), the
agents act as if there is only one good~-namely 'wealth'--and exercise
their power with respect to that good, the outcome is the same as it is

in the original economy.

8.4 Discussion: +the Distribution of Power

From (B8.5) we can see that the value of the game q, and hence its
value allocations, depends only of those characteristies of the function
f vhich are reflected in the constants a,, a,, and a;. So from (8.6)

we can see that the only pertinent characteristics of f are its
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e, = ov(T) for some

derivatives on the "diagonal" ({x € R
¢ € [0,1]}). This follows from the fact that the value of a game depends
only of the behavior of that game in a neighborhood of the diagonal
(because almost all "randomly chosen" coalitions are perfect replicas of
T), and the market game r is homogeneous of degree one, so that

a(6xp) = £(or(T),6e(T),6u(T)) for each 6 &€ [0,1]. To understand what

this involves, consider a very special case of a game which satisfies

(8.2): consider the case where
(8.16) q(8) = g(u(8))r{(8) for each S€C

" for some increasing continuously differentiable function g: IR -+ R with
g(1) = 1. We might think of g as reflecting the "distributiﬁn of power"
in the case where "power" depends only on size. For a game of this form
we have

1 1
8, = Ig(e)da » &, =0 , and so 8y = (1 - fg(e)de)r(T)
0 . 0

so that the value allocations of q depend only on the area under g.

In particular, both the functions gl and 52 shown in Diagram U lead

to the same set of value allocations: since r is homogeneous of degree
one, the "contribution" in r of any coalition is constant along the
diagonal, and so the value of q, which is the average of the contributions

there, will depend only on the inteéral over [0,1] of some feature of g.
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As we remarked earlier the game q +to which the assumptions of
Aumann and Kurz [1977] leads--namely the one defined in (8.3)--does
not fall into the class studied here because of its lack of differen-
tiabllity. However, we can use their results to compare the value
allocations they obtain with the ones which arise here. Given their
formula for the value ¢qg of q we can see that the value allocations
they obtain are identical to those of any game of the form (8.16) for

1
which [g(8)da® = 1/2. Both gl and 32 shown in Diagram U4 satisfy this

propertg. We might think of the game q associated with gl as being one
in which "power" is proportional to size. Given that the model of Aumann
and Kurz is of an economy in which there is majority rule, if we think

that it is reasonable to assume that the underlying power associated with

groups in an economy is proportional to their size, then we can view the

political system of majority rule as a way of realizing the outcome
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implied by this power structure, rather than as an exogenous feature of
the economy.

Throughout this chapter we have worked with the coalitional game
q rather than the "basic" strategic form game, and have said nothing
about héw the latter might be constructed to generate the former. This
does not prevent the games q from standing on their own as models of
the economy, though there may be some interest in examining their strategic
bases. Now, in constrast to the assumption of Aumann and Kurz [1977]
there are some groups in the economy which contaein much less than 50%
of the population which are very powerful--for example, workers in indus-
tries which produce "essential" goods. However, it seems that their power
derives from their ability to form a "union" or "syndicate" and refuse to
Join in coalitions with other groups in the economy--i.e. it derives from
considerations which are ruled out in the Harsanyi-Shapley value analysis.
In order to capture these phenomena it thus seems necessary to use a
different approach; to this extent our study of the role of the distribu-

tion of power in this chapter has been somewhat limited.
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Appendix 1

Here we shall show that (3.29) can be deduced from the constraints
in (3.27). Our ergument is merely a rearrangement of that in Harsanyi

[1963}. Fix SCT and let

(a1.1)  wP(e) = B5(t) - y(¢) for esch tes .

Then by (3.28),

ys(t)=ggs(t)-R&(-l)s-rﬂg‘cR(t) ;
RCS

or

(a1.2)  wo(t) = ;t(-l)s'r:f(t) :
R

RCS
So we have
UgiyU(t) = Ugi ) (-1)U-T 2.‘R(t)
R3i
Ucs UGS RQU
- s=a (a-a) Q
i Q%j, kéo('l) x!(s - 3 2 T E (¢)
s

(collecting the coefficients of ;l:Q(t) for each Q ¢ S), 8o

(a1.3) - Jw(t) = x5(8)
U3t

s
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8=q
since Z (-1)¥ k!(gs_- qzlk)!

=0 unless 8 - q = 0.

Now let Y° = J x(t)ys(t) and Z° = tésg(t)gcs(t)- Then by

st
(A1.2),
Y= Fae) § (DTNt
t€8° RSt )
RCS
= J ((-1)*" ZE(t)a_gR(t)) ,

RCS teR

or

(A1.4) Y = F (-1)5TER
. ks

But by the constraints in (3.27), and (Al.1),

AEO(E) = A(1P(1) 1f t,1€8

80

(AL.5)  A(e)w(t) = %iezs A(1)65(1) = 145 %—Rés(-l)"'rﬁ :

using (Al.4). Hence if t € S,

Alt)x S(¢) = T A(t)w'(t)  (using (A1.3))
Ut
ucs

=7 3 %(_1)“'%3 (using (A1.5))
USt RCU
ucs
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= J {r - 1);53 =)t (R _ ,I\R)
R3t
RCS

-] ﬁslgﬁ-r“&zynfu)- T R(1))

R3t €r i€NR
RCS
- )
= (4v3)({t})
where vi is the game on S defined in (3.29), as was to be shown.
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Appendix 2

Here we study the game v defined in (6.5); we have not included
the results in the main body of this study since they are primarily of
technical interest.

In Section 8.1 above we define the set of value allocations of
a class of coalitional form gemes which are associated with a market.

The game v: C > 1R+ defined by

v(8) = us(e(T)) for each S €

(see (6.5)) does not fall into this class since in general there is no
allocation x in M such that v(S) = Ju(x) and v(TS) = T{ u(x),

but we can still use the definition givei in Section 8.1. We c;n also
think of the game v as being derived from a coalitional form game in
which utility is not transferable, where the set of utility allocations

which the coalition S € ¢ can achieve is
{u(g): x is an S-allocation of e(T)} .

To this geme we can apply the usual "A-transfer' method of calculating

the set of value allocations which was proposed by Shapley [1969]. It

is easy to see that, except for the fact that Shapley allows the weighting
function A to vanish on a set of positive measure, the result of doing
8o is the same as if we use the definition in Section 8.1. The result
which we shall prove is that the set of value allocations of v consists

of essentially all the efficient allocations. Shapley [1969], p. 259,

[
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gives an "equation counting" argument which suggests that generically there
is at most a O-dimensional set of value allocations. Our result is of
interest because it shows that the game v is a member of the negligible
collection of games for which this set is of higher dimension. The result
also means that the "prediction" of the set of value allocations is that
anything can happen in this game. Thismay not be a bad prediction in this
case: 1in the game every coalition has access to the total endowment of
soclety, and one might expect that this would create-instability which
would make every efficient allocation a candidate for the final outcome.
{The fact that v{S8) and v(T\S) cannot be simultaneocusly achieved does
not mean that the game makes no economic sense; 1t is certainly perfectly
reasonable simply as a game.)

We shall now establish the claim we have made; we shall rely heavily

on the results of Chapter 6. First we have the following.

Lemma A2.1: Let M be a homogeneous market and suppose v(T) is

finite. Then v € ASYMP and for each S € (C

(pv)(8) = [ulx) ,
S

where x is an allocation at which v(T) is achieved.

Proof: By Proposition 4.18 (using the fact that v(T)} = r(T))

and Proposition 6.11 we have v € pNA. Hencg by Theorem 3.14% the asymptotic

v

value ¢v of v exists and is given by

1
(¢v)(8) = [ ov#(6,5)a8 for each SE(C .
0
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But from Corollsry 6.21 and Lemma 6.23 we have

1 1
gav*(e,s)de = ar(s_,S) £0-8d9==3r§(6°,s)/(1 - 8)

for all S€C with u(8) <1 end any 6 € (0,1), where rg is the
market game defined in (6.22) and B is the degree of homogeneity of

M. Also, from Proposition 4.28 we have

ar#(e_,8) = (¢rg)(s) = é(u(§) -px) forall SEC ,

since es(S) = 0, vhere (x,p) is any t.u.c.e. of M, (the market asso-

S
ciated with rS). Hence

(¢v)(8) = [(ulx) - px)/(1 - B)
8

But, as in the proof of Proposition 6.28 we can use the homogeneity of

each ut to deduce that

[(u(x) - px) = (1 - B) fulx) .

S s

So we can conclude that (¢v)(S) = fu(g) for any S € ¢ with wu(S) < 1,
S

where x is an allocation at which rS(T) = v(T) 1is achieved. And if

u(8) =1 then (¢v)(8) = ($v){(T) = v(T) = r(T) = fu(g), where x is

an allocation at which r(T) = v(T) is achieved. This completes the

proof.
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We can now establish the result which is of interest. (Recall
that we defined the set of value allocations of a coalitional form game

in Section 8.1.)

Proposition A2.2: Let M be a homogeneous market. Then an alloca-

tion x is a value allocation of the game v if and only if it is
efficient and there exists an efficiency pair (é,p) for x for which

A is a comparison function and VA(T) is finite.

~

Proof: First let x be a value allocation of v. Then fhere
e#ists a comparison function A for which VL(T) is finite and (8.1) is
satisfied. But then [iu(x) = (¢vx)(T) = v,(T) = r,(T), so there exists
an efficiency price p such that ~(5,p) i; an eff;ciency pair for X,
completing the proof of necessity. _

Now suppose that x 1is efficient with efficiency pair (L,p),

where A 1is a comparison function, and VA(T) is finite. Then

~
~

VA(T) = rl(T) is achieved at x, so by Lemma A2.1 we have

~ ~

(¢vh)(s) = f&u(*) for each S EC
~ S

But this is just (8.1), so x is a value allocation of v. This completes

the proof.

Note that if x is efficient with efficiency pair (),p] and
x(t) # 0 a.e. then certainly A 4is a comparison function (see the remark
after (4.13)). Only if x(t) = 0 for some set of positive measure is

it possible that X fail to satisfy the condition of Propeosition A2.2.
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Footnotes

1/ This observation, together with the precise formulation of
the result, is due to Haruo Imai.

2/ It might seem that this is e rather roundabout way to find a
finite type approximetion to M,: why not simply approximate the
utility functions of M, directly? The problem is that while
we know that among the S-approximations to u there is one of
finite type (see Aumann and Shapley, Proposition 35.6), this may
not be true of other sorts of approximations. But to work directly
with d6-approximaetions we should essentially have to duplicate
the lengthy and complicated arguments of Aumann and Shapley (see
pp. 210ff.); instead we use an approximation procedure which allows
us to use their arguments.

3/ Hildenbrand states the result under the assumption that 2 is
an upper hemi-continucus correspondence, rather than a correspondence
with a closed graph (and the two assumptions are not (quite) equi-
valent in this context). However, using the fixed point theorem
for a correspondence with a closed graph, it is easy to prove the
result as stated here.

4/ That is, the only difference between the measure spaces (Z,0',u')
and (T,C,u) is their name.

We cannot use the more general assumption that for each fixed y € ]R:x_,
ut(y,-) is homogeneous of some degree B € (0,1) because then

we should have ut(y,o) =0 for all ¥y e:mf, and g0 u, Wwould not-
be increasing. :
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