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Abstract

We study a collective decision-making process in which people interested in an

issue may participate, at a cost, in a meeting, and the resulting decision is a

compromise among the participants’ preferences. We show that the equilibrium

number of participants is small and their positions are extreme, and when the

compromise is the median, the outcome is likely to be random. The model and

its equilibria are consistent with evidence on the procedures and outcomes of

us regulatory hearings. (JEL D7, H0, L5)
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We study a model of collective decision-making. Each member of a group

of people independently decides whether to participate, at a cost, in a decision-

making process whose outcome is a compromise among the participants’ fa-

vorite positions. In deciding whether or not to participate, each person com-

pares the cost of participation with the impact of her presence on the compro-

mise. Our analysis focuses on the determination of the set of participants and

the resulting collective decision.

Much us federal regulation is made by such a process. Federal regulators

are required to seek out and respond to public comment on proposed regula-

tions (see Section III); participation in the regulatory process is costly because

participants spend time preparing submissions and may travel to hearings. Our

model of collective decision-making is a stylized description of the rules used

to determine regulations. Existing analyses of the regulatory process typically

ignore procedural details (as in Gary S. Becker, 1985), or characterize optimal

procedures (as in Jean-Jacques Laffont and Jean Tirole, 1993, chs. 11, 15).

Our model also describes other forms of participatory democracy. Exam-

ples include the ancient Athenian ekklesia (the primordial democratic assem-

bly), parent-teacher associations, faculty associations, neighborhood associa-

tions, and many societies and clubs.

Under a wide range of conditions, equilibria of our model have the following

features.

Nonparticipation of moderates. In any equilibrium a bloc of moderates does

not participate.

Low participation. In a large population, the proportion of individuals who
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participate is small.

Randomness of the outcome. If the compromise is the median and individ-

uals are prevented from participating with arbitrarily small probability then

the outcome varies randomly and is likely to be extreme.

I. The Model

We are interested in collective decision processes in which the people affected

by the decision have heterogeneous preferences, participation in the decision-

making process is costly, and the outcome is a compromise among the partic-

ipants’ preferences. We study the following model.

A group of n people must collectively choose a policy, a point in a compact

convex subset of R
`; we assume for convenience that this subset contains 0.

We refer to a policy also as a position. Denote person i’s favorite policy by xi.

Each person cares about the remoteness of the collectively chosen policy

from her favorite policy. Specifically, person i’s valuation of the policy x is

v(xi−x), where v : R
` → R− is a continuous valuation function, with v(0) = 0.

If x is random, each person’s valuation is the expected value of v(xi − x). We

assume that v decreases in each direction: for each d ∈ R
`, v(αd) decreases in

α for α ≥ 0. This assumption allows v to be asymmetric: a person’s dislike

for a policy may depend on the direction in which it differs from her favorite

policy. If each person’s valuation of a policy x depends only on the (Euclidean)

distance between x and her favorite policy, we say that the valuation function

is symmetric, and, with a slight abuse of notation, denote person i’s valuation

of policy x by v(‖xi − x‖).
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Each person chooses whether or not to attend a meeting, at which a policy

is selected. Denote by ai the action of person i—either Attend or Do not

attend. Every person who attends a meeting bears the cost c > 0. We refer to

a person who attends as an “attendee” or “participant”.

Given an action profile a (a list of actions, one for each person), let X(a)

be the list of the participants’ favorite positions. Denote by X \ {x} the list

of positions that differs from X only in that one copy of the position x is

excluded, and by X ∪ {x} the list consisting of all elements of X with the

addition of one copy of position x.

The outcome of the action profile a is a policy m(X(a)), where m is the

compromise function. We assume that if no one attends the meeting, the out-

come is an arbitrary “default policy”; if a single person attends, the outcome

is her favorite policy; and any person’s withdrawal moves the outcome fur-

ther from her favorite policy. In a one-dimensional policy space (` = 1), the

median1 satisfies these conditions; in any finite-dimensional policy space any

weighted mean satisfies the conditions.

Some of our results apply to arbitrary compromise functions, while others

are restricted to the median in a one-dimensional policy space. The median

has special appeal as a model of compromise in a one-dimensional space. First,

it is the only policy not defeated by any other policy in majority-rule two-way

contests.2 Second, it is the unique member of the core of the coalitional game

1If the number of attendees is odd, the median is the middle favorite policy of the
attendees. If the number of attendees is even and positive, we take the median to be the
mean of the two middle favorite policies of the attendees. (Taking it instead to be a random
variable that assigns probability 1

2
to each middle position in this case makes little difference

to the character of the equilibria.)
2When the number of attendees is odd, the median defeats every other policy in majority-
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in which each majority coalition can enforce any outcome while each minority

coalition is powerless.3 Third, it is a subgame perfect equilibrium outcome

of any binary agenda game in which no voter’s strategy in any subgame is

weakly dominated, and is the only such outcome if the number of participants

is odd. This fact is particularly relevant in a study of meetings, because binary

agenda games are intended to model committee procedure. Fourth, if everyone

knows that the outcome will be the median of the policies they announce, no

player has an incentive to announce a policy other than her favorite policy: the

announcement of her favorite policy weakly dominates every other announce-

ment. Finally, if the outcome is determined by competition for votes by two

parties, the median voter theorem implies that both parties will propose the

participants’ median favorite policy.

In summary, we study a strategic game in which the players are the n peo-

ple, each player’s set of actions is {Attend,Do not attend}, and each player’s

payoff to an action profile is equal to her valuation of the outcome of this

profile, less c if she attends. A (Nash) equilibrium of the game is an action

profile for which no player is better off changing her action, given all the other

players’ actions.

We interpret a Nash equilibrium as a steady state. Each player, through

her experience in similar situations, knows the players who will participate

and their positions (or, in the case of a mixed strategy equilibrium, the partic-

ipation probabilities and positions of those whose participation probabilities

rule two-way contests (it is the “Condorcet winner”).
3Consequently the median is the outcome of any stationary subgame perfect equilibrium

of the extensive game modeling committee procedure studied by Eyal Winter (1997).
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are positive); each player makes her participation decision optimally, given this

knowledge. Each player does not necessarily know the positions of players who

do not participate; an external agent (e.g. regulator) that organizes a meeting

may not know the favorite position of any player prior to the meeting.

II. Intuition

A. Nonparticipation of Moderates (Section V)

In order for a player’s participation to be worthwhile, her withdrawal must

sufficiently increase the distance of the compromise from her favorite policy.

Suppose that (i) the valuation function is concave and (ii) the sensitivity

of the compromise to a player’s withdrawal is nondecreasing in the distance

of the player’s favorite position from the compromise. Then the further a

player’s favorite position is from the compromise, the more her payoff changes

if she withdraws. (Refer to Figure 1.) Thus in an equilibrium only players

whose favorite positions are sufficiently far from the compromise participate.

Similarly, only players whose favorite positions are sufficiently close to the

compromise do not participate.

The mean has the required nondecreasing sensitivity, as does any weighted

mean for weights sufficiently close to uniform. The median has nondecreas-

ing sensitivity when the number of participants is even, and we show that

the equilibrium number of participants is indeed even when the compromise

function is the median and the valuation function is concave and symmetric.
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Figure 1. When the list of participants’ favorite positions is Y , the compromise is m(Y ).
If player i withdraws, the compromise moves to m(Y \ {xi}), while if player j withdraws,
the compromise moves a smaller distance, to m(Y \ {xj}). Because of the concavity of
the valuation function, the change (A) in player i’s valuation exceeds the change (B) in
player j’s valuation.

B. Low Participation (Section VI)

Suppose that the impact of a participant’s withdrawal on the compromise

decreases to zero as the number of participants increases. Because the impact

of a participant’s withdrawal on the compromise has to be large enough to

offset the cost of participation, we deduce that the equilibrium number of

participants is relatively small. In fact, as the population size increases without

bound, the equilibrium fraction of participants approaches zero.

The mean satisfies this condition of decreasing impact. The median does

not: a player’s withdrawal may have a large impact on the median even in

a large population. However, if randomness is added to the model then the

median does satisfy the decreasing impact condition, no matter how small the

amount of randomness. Specifically, assume that with fixed positive probabil-

ity any player who intends to participate is (independently) prevented from

doing so (e.g. she gets a flat tire on the way to a meeting). Then given the

players’ intentions, the set of participants is random. The expected impact
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of a player’s withdrawal on the median is large only if with high probability

the realized set of participants consists of two widely separated subsets that

differ in size by at most one. In the perturbed model, the probability of such

a realization is small when the number of intended participants is large. Thus

when the number of intended participants is large, the expected impact on the

median of a player’s withdrawal is small; consequently the equilibrium number

of intended participants is small.

C. Randomness of the Outcome (Section VII)

We find that when the compromise function is the median, the outcome is

likely to be highly random. This finding has two bases.

First, in a wide range of circumstances the game has no pure strategy

equilibrium: in all equilibria some individuals participate with positive prob-

ability less than one. In such a mixed strategy equilibrium there is, with high

probability, an interval of moderates who do not participate. The reason is

the same as before: a participant’s withdrawal must significantly affect the

outcome in order for her participation to be worthwhile. Thus even a small

amount of randomness in the players’ equilibrium actions generates significant

randomness in the equilibrium outcome.

Second, we show that in the modified model in which chance events pre-

vent intended participants from attending, the equilibrium probability that

the outcome is extreme is significant. As in an equilibrium in the absence of

chance events, two groups of extremists of equal or almost equal sizes intend

to participate. Thus the outcome is extreme unless equal numbers of intended
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participants on each side are prevented from attending. Because each intended

participant is independently prevented from attending with the same proba-

bility, the probability of this occurring is bounded away from one independent

of the population size, and thus the probability of an extreme outcome does

not approach zero in a large population.

III. Anecdotal Evidence

The properties of the process by which much us federal regulation is made

correspond to those of our model.4 The requirement that regulators seek out

and respond to public comment about proposed regulation is contained in leg-

islation and court cases. The Administrative Procedure Act requires that all

us federal regulatory agencies “shall give interested persons an opportunity

to participate in the rule making through submission of written data, views,

or arguments with or without opportunity for oral presentation”5. The Mag-

nuson Fishery Conservation and Management Act specifies the way in which

interested parties’ views will be heard: it requires “public hearings . . . to al-

low all interested persons an opportunity to be heard in the development of

fishery management plans”6. The case Corrosion Proof Fittings v. Environ-

mental Protection Agency establishes that courts are willing to enforce laws

requiring that public opinion be adequately consulted. In this case, the court

vacated proposed regulation because the Environmental Protection Agency

prematurely ended public hearings and deprived the public of sufficient oppor-

4We exclude cases in which regulatory discretion is eliminated by statute.
5Title 5 U.S. Code §553(c), 1988 edition.
6Title 16 U.S. Code §1852(h)(3), 1988 edition.
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tunity to “analyze, comment [on], and influence the [regulatory] proceedings”

(p. 1212)7.

The regulation of New England federal fisheries and Rhode Island state

fisheries corresponds closely to our model. Fishers often travel long distances to

attend public hearings, and regulation depends in part on the positions taken

by attendees at these hearings. Both regulatory bodies occasionally change

policies dramatically from one meeting to the next, solely because of changes

in the set of participants in the hearings. For example, George Allen (1991)

describes a conflict between conservation-minded sport fishers and extraction-

minded commercial fishers in Rhode Island. Both groups took fairly extreme

positions and the attendance at two successive public hearings was lopsided

in different directions, producing a policy that was first pro-conservation and

then pro-extraction. Similarly, the record of the public hearings held by the

New England Fishery Management Council (1985, p. 9.45) describes a conflict

between two different groups of fishers (gillnetters and trawlers), who attended

successive public hearings in lopsided proportions. As in Rhode Island, the

result was a policy that first favored one group, then the other.

Randomness of the outcome and the nonparticipation of moderates are also

apparent in the history of timber harvesting in the Pacific Northwest. Kathie

Durbin (1996) chronicles timber policy there from the early 1970’s until the

mid 1990’s. This policy was formed with very little input from moderates: the

factions involved were primarily environmentalists and timber interests. Both

groups appear to have preferences sharply at odds with the median preference

7In this case public participation is mandated by the Toxic Substances Control Act rather
than the Administrative Procedure Act.
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in the region—one group is prepared to forego all other activities to save trees,

while the other wants to cut all trees down. Further, the policy on timber

extraction fluctuated dramatically from year to year.

Another situation to which our model applies is the Athenian assembly

(ekklesia) of the fifth century bc. Any citizen could attend the assembly,

and although items could be put on the agenda only by a council of 500 peo-

ple, participants could make alternative proposals—compromise was possible

(Mogens H. Hansen, 1991, pp. 138–139; Josiah Ober, 1989, p. 109). Atten-

dance was costly, and the evidence suggests that attendance was not more

than 6,000 of the approximately 30,000 eligible (Hansen, 1976; R. K. Sinclair,

1988), although at least 12,000 citizens lived close to the assembly place (Robin

G. Osborne, personal communication). In the fourth century a payment for

attendance (of approximately a day’s wage) was introduced to improve atten-

dance; Aristotle (1959, p. 283) writes that “When the democracy was first

restored, no payment was allowed for attendance at the Assembly, with the

result that absenteeism was common. The [council of 500] tried all sorts of

tricks to get the citizens to come and ratify the votes, but in vain.”

IV. Related Literature

The focus of our model is the determination of the set of participants in a

meeting and its implications for the action decided. The determination of the

outcome given the set of participants is the focus of many strategic models

of bargaining. Most of these models study the division of a pie, rather than

the selection of a policy in some space. Winter’s (1997) model is an excep-
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tion. He studies a strategic model of committee procedure whose stationary

subgame perfect equilibrium, under our assumptions, leads to the median of

the participants’ favorite positions.

Models of costly voting (for example, Thomas R. Palfrey and Howard

Rosenthal 1983, 1985) bear a family resemblance to our model. However, the

questions addressed are different from those we study, and voters’ incentives

differ fundamentally from the players’ incentives in our model. A citizen’s vote

affects the outcome only if it is cast for one of the two leading alternatives;

a citizen cannot introduce new alternatives. This assumption is appropriate

when studying voting in elections, but not when studying the compromise

reached in a meeting.

In the voting literature, Timothy J. Feddersen’s (1992) model is closest

to ours. Feddersen analyzes a game in which citizens simultaneously decide

whether to vote and the policy to vote for; the policy with the most votes

wins. When the policy space is one-dimensional, in every equilibrium exactly

two policies receive votes, and these policies tie. The set of equilibrium pairs

is large; in an example with quadratic preferences, every possible policy is part

of some equilibrium.

Feddersen’s model leaves open the question of how agents coordinate on a

particular pair of policies. In a model of elections, it may be reasonable to leave

this coordination problem open—arguably the role of parties is to help solve

it. But in a model of meetings, in which the participants are well-informed

about each others’ preferences, it is reasonable to assume that the participants

will coordinate only on policies that reflect some kind of compromise among
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their favorite positions. Our compromise function may thus be viewed as a

solution of the coordination problem in Feddersen’s model.

In the literature on economic regulation, our approach is most closely re-

lated to that of Becker (1983, 1985). Becker proposes that regulators respond

to “pressure” from various interest groups, and that regulation favors groups

better able to apply pressure. Exogenous “influence functions” describe how

regulators respond to political pressure. Unlike Becker, we explicitly model the

process by which regulation is selected. In consequence, Becker’s approach is

more general, while our approach fits a particular class of regulatory problems

better. Our model makes predictions very different from those of Becker’s. In

particular, our approach endogenizes the formation of factions and predicts

that outcomes vary from meeting to meeting. Becker’s factions are exogenous

and the outcome of his model is unique and deterministic.

Several other models share significant features with ours. Feddersen and

Wolfgang Pesendorfer (1996) analyze a voter’s costless decision to participate

in an election in a setting with imperfect information; they find that some

types of voters will choose strategic abstention. This result is driven by the

way that elections aggregate information. The aggregation of information

is also at the heart of Susanne Lohmann’s (1993) model. Individuals may

take costly political action to signal their information to a leader who aims to

please the median voter. In an equilibrium the activists are extremists. Jeffrey

Zwiebel (1995) analyzes the adoption of a new technology by a heterogeneous

group of managers. Like us he finds that the set of players separates into

extremists and moderates: good and bad managers adopt a new technology,
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average managers do not. These results are driven by managers’ desires to

influence their own wages, not by any effort to manipulate a collective decision.

Michael R. Baye et al. (1993) find that outcomes are random in a model of

lobbying based on an “all pay” auction. They are primarily interested in the

decision by a policy maker to exclude some interested parties; their analysis

does not apply when regulators are under a statutory obligation to allow public

participation. Avinash Dixit and Mancur Olson (1998), in a model closely

related to that of Palfrey and Rosenthal (1984), explore the decisions of the

members of a homogeneous group to participate in the costly private provision

of a public good. Finally, George Bulkley, Gareth D. Myles, and Bernhard R.

Pearson (1999) independently study a model that is essentially the special case

of ours in which the policy space is one-dimensional, the set of the players’

favorite positions is symmetric, the compromise function is the median, and the

valuation function is symmetric and concave. They show that a pure strategy

equilibrium exists in which the set of participants consists of all players with

sufficiently extreme favorite positions; this result is thus a special case of our

Proposition 1.

V. Nonparticipation of Moderates

We first give conditions under which there is an equilibrium in which no “mod-

erate” participates, and all “extremists” participate: that is, a person partic-

ipates if and only if her favorite position is sufficiently far from the central

position.

We begin with some definitions. Say that a list of positions is symmetric
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if the number of occurrences of −x in the list is the same as the number

of occurrences of x, and a compromise function m is symmetric if for any

symmetric list X of positions and any position x we have m(X) = 0 and

m(X ∪ {x}) = −m(X ∪ {−x}). Say that a symmetric compromise function

m has nondecreasing sensitivity on symmetric lists if for any symmetric list

X of positions, the effect on the compromise of a player’s withdrawal is a

nondecreasing function of the distance of her favorite position from m(X) = 0.

That is, for any x ∈ X and x′ ∈ X with ‖x‖ > ‖x′‖ we have

‖x − m(X \ {x})‖ − ‖x‖ ≥ ‖x′ − m(X \ {x′})‖ − ‖x′‖.

In a one-dimensional policy space the median is symmetric and has nonde-

creasing sensitivity. In a space of any finite dimension, any weighted mean in

which the weights are symmetric about 0 is symmetric, and any such weighted

mean in which the weights are sufficiently close to uniform has nondecreasing

sensitivity.8

PROPOSITION 1: Suppose that the valuation function is concave and sym-

metric, the set of all the players’ positions is symmetric, the default policy is 0,

and the compromise function is symmetric and has nondecreasing sensitivity

on symmetric lists. Then for some real number z∗ ≥ 0 there is an equilibrium

in which every player i for whom ‖xi‖ > z∗ attends and every player i for

whom ‖xi‖ < z∗ does not attend.

(A proof is in the appendix, together with all other proofs not given in the

8Precisely, a sufficient condition for the weighted mean
∑

w(x)x/
∑

w(x) to have non-
decreasing sensitivity is that whenever ‖x‖ > ‖x′‖ we have (w(x′) − w(x))/w(x′) ≤
3

5
(‖x‖ − ‖x′‖)/‖x‖.
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text.) An example of a symmetric equilibrium in a two-dimensional policy

space is shown in Figure 2.

z∗

0

Figure 2. An example of a symmetric equilibrium in two dimensions, which exists under
the conditions in Proposition 1. Each small disk is the favorite position of a player who
attends, while every small circle is the favorite position of a player who does not attend.
Every player whose favorite position is outside the gray circle attends, while no player whose
favorite position is inside the circle does so. Pairs of players whose favorite positions are on
the circle may or may not attend.

We now give a lower bound on the distance of any participant’s favorite

position from the compromise and an upper bound on the distance of any

nonparticipant’s favorite position from the compromise. This result depends

on the concavity of the valuation function, but not on any characteristics of

the compromise function.

For any k ≥ 2 define the withdrawal sensitivity β(k) to be the highest value

of the ratio ‖x − m(X \ {x})‖/‖x − m(X)‖ for all k-member lists X and all

x ∈ X. More precisely,

β(k) = sup
{(X,x):|X|=k, x∈X, and x6=m(X)}

‖x − m(X \ {x})‖

‖x − m(X)‖
.

When m is the mean, for any k-member list X of positions with k ≥ 2 and

any x ∈ X we have ‖x − m(X \ {x})‖/‖x − m(X)‖ = k/(k − 1), independent
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of X and x, so that β(k) = k/(k − 1). Because we assume that any person’s

withdrawal moves the compromise away from her favorite position, we have

β(k) ≥ 1.

Similarly, for any k ≥ 1 define the attendance sensitivity β(k) to be the

highest value of the ratio ‖x − m(X ∪ {x})‖/‖x − m(X)‖:

β(k) = sup
{(X,x):|X|=k and x6=m(X)}

‖x − m(X ∪ {x})‖

‖x − m(X)‖
;

we have β(k) ≤ 1.

For any integer k ≥ 2, define z(k) to be ∞ if β(k) = 1 and 0 if β(k) is ∞,

and define z(k) to be ∞ if β(k) = 1; otherwise define z(k) and z(k) to be the

unique solutions of

v(z(k)) − v(β(k)z(k)) = c

v(β(k)z(k)) − v(z(k)) = c.

The condition defining z(k) is illustrated in Figure 3. We can now establish

z(k) β(k)z(k)

c

0

v(z(k))

v(β(k)z(k))

v(z)

z →

Figure 3. An illustration of the condition defining z(k).

the following result.

PROPOSITION 2: Suppose that the valuation function is concave and sym-
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metric. In any equilibrium in which k ≥ 2 players attend we have

‖xj − m(Y )‖ ≥ z(k) if j attends(1)

‖xj − m(Y )‖ ≤ z(k) if j does not attend(2)

where Y is the list of the attendees’ favorite positions (so that, in particular,

|Y | = k). If m is the mean and a is an action profile for which k ≥ 2 players

attend and the list of attendees’ positions satisfies (1) and (2), then a is an

equilibrium.

This result says that if the valuation function is concave and symmetric

then in any equilibrium in which there are k attendees, the distance of every

attendee’s favorite position from the compromise is at least z(k), and the

distance of every nonattendee’s favorite position from the compromise is at

most z(k).9 Further, if the compromise is the mean then any configuration

that satisfies these conditions is an equilibrium. The result does not restrict the

behavior of any player j for whom the distance between xj and the compromise

is between z(k) and z(k). Thus it is more restrictive the larger is z(k) and the

smaller is z(k). The general character of an equilibrium that the result implies

is illustrated in Figure 4.

When the compromise function is the median, we can fully characterize

all equilibria. To do so, define y = 2z(k) and let y be the unique solution

of −v(1
2
y) = c; for any z ≥ 0, define ∆(z) to be the unique solution of

v(∆(z)) − v(z + ∆(z)) = c.

9For any value of k, we can of course find lists Y of attendees’ favorite positions that
satisfy (1) and (2). However, in order for Y to correspond to an equilibrium, it must, in
addition, have k members.
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z(34)

z(34)

m(Y )

Figure 4. The character of an equilibrium (with 34 attendees) in two dimensions when
the compromise function is the mean, as given by Proposition 2. Each small disk is the
favorite position of a player who attends; each small circle is the favorite position of a player
who does not attend. Every player whose favorite position is outside the outer gray circle
attends, while no player whose favorite position is inside the inner circle does so. Players
whose favorite positions lie between the two circles may or may not attend.

PROPOSITION 3: Suppose that the policy space is one-dimensional, the com-

promise function is the median, the valuation function is strictly concave and

symmetric, the list of all the players’ favorite positions is symmetric, and the

default policy is 0. An action profile with at least one attendee is an equi-

librium if and only if the number of attendees is even, the distance between

the favorite positions xh and xi > xh of the two central attendees h and i

is at least y, the distance between xh+1 and xi−1 is at most y if i ≥ h + 2,

and no player whose position is less than xh − ∆(1
2
(xi − xh)) or more than

xi + ∆(1
2
(xi − xh)) does not attend.

This result is illustrated in Figure 5.10 The argument for it makes use of

Proposition 2, which says that every attendee’s favorite position is at least

z(k) (which for the median is independent of k) from the compromise, so that

there is a gap of length at least 2z(k) of nonattendees around the median.

10The result implies that if c ≥ −v(K), where K = maxj |xj |, there is an equilibrium in
which no one attends, and if c > v(K) − v(2K), there is no other equilibrium.
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All attend All attend

gap of nonattendees
not too long or too short

equal number of
attendees on each side

Figure 5. The structure of an equilibrium when the compromise function is the median
and the valuation function is concave and symmetric, as given by Proposition 3. Each disk
represents the favorite policy of an attendee and each circle represents the favorite policy of
a nonattendee.

Thus any nonattendee outside the gap who switches to attendance moves the

median by at least z(k). Given the strict concavity of the valuation function,

we conclude that no nonattendee’s favorite position can be too far from the

median.

All results so far assume that the valuation function is concave and symmet-

ric. The next two results show that, even in the absence of these assumptions,

in every equilibrium in a one-dimensional policy space players whose favorite

positions are close to the compromise do not attend.

Define a compromise function m to be regular if for any list X of positions

and any x ∈ X, m(X) is a convex combination of x and m(X \{x}). (In a one-

dimensional policy space, this condition holds if and only if m(X\{x}) ≥ m(X)

whenever x ≤ m(X), and m(X \ {x}) ≤ m(X) whenever x ≥ m(X).) A

compromise function m is continuous if for any sequences {xn}∞n=1 and {yn}∞n=1

of positions with limn→∞ ‖xn−yn‖ = 0 we have limn→∞ supX ‖m(X ∪{xn})−

m(X ∪ {yn})‖ = 0. (These conditions are satisfied by the median and by any

weighted mean with a continuous weighting function.)

PROPOSITION 4: Suppose that the policy space is one-dimensional and the
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compromise function is regular and continuous. Then there exists δ > 0, in-

dependent of the number of players and their favorite positions, such that in

every equilibrium at least one of the open intervals (M −δ, M) and (M, M +δ)

contains no attendee’s favorite position, where M is the equilibrium compro-

mise.

This result says that given a continuous compromise function, any equi-

librium has a gap of nonattendees on at least one side of the compromise.

The idea is that there cannot be attendees close to the compromise on both

sides because the withdrawal of any such player would have little effect on the

compromise.

We argue later (Section VII) that when the compromise is the median in

a one-dimensional policy space and the valuation function is not symmetric

or not concave, pure strategy equilibria typically do not exist. Thus mixed

strategy equilibria (which exist because the game is finite) are of particular

interest.

The next result says that in a large population, all mixed strategy equilibria

share the main features of the equilibria characterized in Proposition 3 for

symmetric concave valuation functions.

PROPOSITION 5: Suppose that the policy space is one-dimensional and the

compromise function is the median. Then there are positive numbers λ, γ,

γ′, and γ′′, independent of the number of players and their favorite positions,

such that for any mixed strategy equilibrium there is a position z such that

∑

{i:z≤xi≤z+λ}

pi ≤ γ,
∑

{i:xi<z}

pi(1 − pi) ≤ γ′,
∑

{i:xi>z+λ}

pi(1 − pi) ≤ γ′
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and
∣

∣

∣

∣

∣

∣

∑

{i:xi<z}

pi −
∑

{i:xi>z+λ}

pi

∣

∣

∣

∣

∣

∣

≤ γ′′,

where pi is the equilibrium participation probability of player i. In particular,

∑

i pi(1 − pi) ≤ γ + 2γ′.

In words, this result says that (i) there is an interval of positions such that

most players whose favorite positions are in the interval participate with at

most small probability; (ii) the sum of the participation probabilities of the

players whose favorite positions are to the left of the interval is close to the

sum of the participation probabilities of the players whose favorite positions

are to the right of the interval; and (iii) within these two extreme groups most

of the participation probabilities are close to either 0 or 1.

The idea behind the result is that a player’s participation is worthwhile only

if it is sufficiently likely to significantly improve the median from her point

of view. This requires a sufficiently high probability that the participants’

positions have a significant gap (the interval [z, z + λ]) and that the numbers

of participants on each side of this gap differ by at most 1. Now, the more

random is the action profile, the less likely is such a gap to exist. Hence the

amount of randomness (
∑

i pi(1 − pi)) in an equilibrium is limited, and in a

large population most of the participation probabilities must be close to 0 or 1.

VI. Low Participation

Intuitively, a player’s participation is worthwhile only if her withdrawal sig-

nificantly changes the compromise. Therefore when the impact of a player’s
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attendance decreases as the number of participants increases, attendance can

be worthwhile only when the number of participants is small.

To make this intuition precise, say that a compromise function m for a

fixed compact policy space reflects small influence in a large meeting if the

limit, as the number of participants increases without bound, of the impact of

any player’s withdrawal on the compromise is zero:

lim
k→∞

sup
{Y :|Y |≥k}

sup
yi /∈Y

‖m(Y ∪ {yi}) − m(Y )‖ = 0.

PROPOSITION 6: Suppose the compromise function reflects small influence

in a large meeting. Then for every valuation function and cost of participation

there exists an integer k, independent of the number of players in the popula-

tion, such that in any (pure) equilibrium the number of participants is no more

than k.

Both the mean and any weighted mean for which all relative weights go

to zero as the number of participants increases without bound reflect small

influence in a large meeting. The median, however, does not. If, for example,

the policy space is the one-dimensional interval [−1, 1], half of the attendees’

favorite positions lie in [−1,− 1
2
], and half of these positions lie in [ 1

2
, 1], a

switch to attendance of a player whose favorite position is in [ 1
2
, 1] changes the

median from 0 to at least 1
2
, regardless of the number of attendees. Indeed,

Proposition 3 shows that when the compromise function is the median and

the valuation function is concave and symmetric, the equilibrium fraction of

the population that attends stays essentially constant as the population size

increases.
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However, if we perturb the model by adding a small amount of noise and let

the compromise be the median of the actual participants’ positions, then the

resulting (stochastic) compromise function reflects small influence in a large

meeting. Specifically, suppose that with (small) probability p an exogenous

event prevents any given player from participating, and these events are inde-

pendent across players; suppose also that a player incurs the cost c only if she

decides to participate and (with probability 1−p) is not prevented from doing

so. In this case, the expected impact on the median of a player’s withdrawal is

small when the number of participants is large, as argued in Section IIB. The

next result shows that the conclusion of Proposition 6 holds in the perturbed

model.

PROPOSITION 7: Consider a sequence {P n}∞n=2 of populations such that (i) in

each population P n, the policy space is the one-dimensional interval [−1, 1] and

the default policy is 0, (ii) in P n the players’ favorite positions xn
1 , . . . , xn

n are

symmetric about 0 and satisfy xn
1 = −1, xn

n = 1, xn
i ≤ xn

i+1 for 1 ≤ i ≤ n − 1,

and (iii) limn→∞ maxi |x
n
i − xn

i−1| = 0. Suppose that the compromise func-

tion is the median, the valuation function v is concave and symmetric, and

c < −v(1). Suppose that each player who decides to participate is indepen-

dently prevented from doing so with probability p > 0. Then for each value

of n the game for population P n has a (pure) equilibrium in which the set

of players who decide to participate is {1, . . . , jn(p)} ∪ {n − jn(p) + 1, . . . , n},

where jn(p) ≥ 1. The function jn remains bounded as n → ∞.

The idea behind the proof is that the greater the randomness in the set

of participants, the smaller the impact of any player’s switching between par-

24



ticipation and nonparticipation. Thus in an equilibrium the amount of ran-

domness is small. Given the exogenous probability p with which players are

prevented from participating, the randomness is small only when the number

of intended participants is small—if this number increases without bound as

the size of the population increases, then the probability of any given player’s

participation having a large influence on the median approaches zero. Thus

given p > 0, in any equilibrium the number of participants is small. (In partic-

ular, there is a discontinuity at p = 0 in the limiting fraction of the population

that participates as the population size increases without bound.)

VII. Randomness of the Outcome

When the policy space is one-dimensional and the compromise function is

the median, the outcome of an equilibrium in which there are two sets of

participants separated by a large gap (like those in Proposition 3 when y is

large) is very sensitive to a change in any player’s action, which changes the

compromise from the middle to one end of the gap. This suggests that in the

presence of even a small amount of randomness, the equilibrium outcome may

vary dramatically.

One source of such randomness is the players’ behavior in a mixed strategy

equilibrium. We argue that under a wide range of circumstances the game has

no pure strategy equilibrium, so that randomness is inevitable: all equilibria

are mixed. Specifically, if c is small enough that there is no equilibrium in

which no one attends or one person attends, the game has no pure strategy

equilibrium when the number of players is large if the valuation function is
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either (i) concave and sufficiently asymmetric, or (ii) strictly convex on each

side of 0. We give the ideas behind the nonexistence of a pure equilibrium

with an even number of participants in each case; the ideas for an odd number

of participants is similar.

For case (i), denote the two central attendees by j and k > j. Suppose that

players are more sensitive to changes in positions to the left of their favorite

positions than they are to changes in positions to the right. Now, j’s desire

to attend depends upon the gap of nonattendees being sufficiently long, while

k − 1’s desire not to attend depends upon this gap being sufficiently short.

When the number of players is large these two requirements are incompatible.

For case (ii), a player whose favorite position is close to the outcome is more

sensitive to a change in the outcome than a player whose favorite position is

far away, so that j’s desire to attend conflicts with j +1’s desire not to attend.

(We omit the straightforward details of the arguments.)

We now show that the randomness in any mixed strategy equilibrium

causes the variance of the compromise to be high. By Proposition 5, in any

equilibrium there is, with high probability, a gap of nonattendees, and any sin-

gle player’s change in attendance could significantly affect the median. This

suggests that if any player’s attendance probability is between 0 and 1 then

the variance of the compromise is high.

PROPOSITION 8: Suppose that the policy space is one-dimensional and the

compromise function is the median. Then there exists η > 0, independent of

the number of players, such that the variance of the compromise in any mixed

strategy equilibrium is at least η maxi pi(1 − pi), where pi is the equilibrium
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probability of player i’s attendance.

Another source of randomness is exogenous, as in the model of Proposi-

tion 7 in which each player is prevented from attending with positive probabil-

ity p. In this case we conclude not only that equilibrium outcome is random,

but that, no matter how small p, in a large population the probability of an

extreme outcome is bounded away from zero. From Proposition 7, for any

population size the equilibrium set of intended participants is the union of

two sets, one containing people with favorite positions close to −1 and one

containing people with favorite positions close to 1. Even though these two

sets have the same number of intended participants, the probability that they

yield the same number of actual participants is bounded above by a number

less than 1 for all n. Thus the probability that the outcome is close to −1 or

1 (rather than being close to 0) is bounded away from zero independent of n.

PROPOSITION 9: Under the conditions of Proposition 7, the equilibrium out-

come is a random variable that assigns equal probability to [−1, xjn(p)] and

[xn−jn(p), 1]; the infimum over n of the probability it assigns to each interval is

positive.

VIII. Concluding Comments

Our model fits a participatory democracy in which people disagree about the

best policy, each person’s participation in the procedure used to choose a

policy is costly, and the outcome of this procedure is a compromise among the

participants’ favorite policies. We show that the outcome will be based on the
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participation of a small number of extremists, and, when the compromise is the

median of the participants’ favorite positions in a one-dimensional policy space,

is likely to be significantly random, swinging from one extreme to the other

over time. Our model and its equilibria are consistent with the procedures

and behavior of the us regulatory process.

We have assumed that all players’ participation costs are the same. At

least some of our results generalize to the case in which individuals’ costs

are heterogeneous but uncorrelated with position, and all costs exceed some

minimum. In this case the analogue of the equilibria in Propositions 1–3 is

an equilibrium in which players sufficiently close to the compromise do not

participate, and the remaining participants are players whose costs are low

relative to the distance of their favorite positions from the compromise.

The properties we find for the equilibrium compromise may, at least in some

contexts, be undesirable. In particular, the fact that the outcome is likely to be

random and extreme when the compromise is the median in a one-dimensional

policy space suggests that mechanisms based on voting may be undesirable.

A question that arises is the character of an “optimal” mechanism.

Appendix: Proofs of Results

PROOF OF PROPOSITION 1:

We construct a symmetric equilibrium. If the action profile in which no one

attends is an equilibrium, we take z∗ to be larger than the distance of every

player’s favorite position from 0. Otherwise, we successively add symmetric

pairs of players to the set of attendees, starting with players whose favorite

positions are furthest from 0; we continue as long as, after the addition of
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each pair, each member of the pair is not better off withdrawing. We argue

that this procedure creates an equilibrium (possibly one in which all players

attend); we take z∗ to be the distance from 0 of the favorite position of the

attendee whose position is closest to 0.

Let A be a set of attendees constructed by the procedure, and let Y be the

list of their positions. We have m(Y ) = 0 by the symmetry of Y . To show

that A is an equilibrium, we need to show that no player in A is better off

withdrawing, and no player outside A is better off attending.

By construction, no player in A whose favorite position is closest to 0 among

the positions in A is better off withdrawing. By the nondecreasing sensitivity

of m and the concavity of v, no other player in A is better off withdrawing.

Now consider a player, say i, furthest from 0 outside A. We need to show

that i is not better off attending. By construction, if both xi and −xi are

added to Y then i is better off withdrawing: v(‖xi − m(Y ∪ {xi, xj})‖) −

v(‖xi − m(Y ∪ {xj})‖) < c, where xj = −xi. By the symmetry of m we

have m(Y ) = m(Y ∪ {xi, xj}) = 0 and m(Y ∪ {xi}) = −m(Y ∪ {xj}). Thus

v(‖xi‖) − v(‖xi + m(Y ∪ {xi})‖) < c. But ‖xi‖ − ‖xi − m(Y ∪ {xi})‖ ≤

‖xi + m(Y ∪ {xi})‖− ‖xi‖ by the triangle inequality, so by the concavity of v

we have v(‖xi−m(Y ∪{xi})‖)−v(‖xi‖) < c. Thus i is worse off if she attends.

Finally, no other player outside A is better off attending because of the

concavity of v and the nondecreasing sensitivity of m.

PROOF OF PROPOSITION 2:

An action profile a in which k players attend is a Nash equilibrium if and

29



only if

v(‖xj − m(Y )‖) − v(‖xj − m(Y \ {yj})‖) ≥ c if j attends

v(‖xj − m(Y ∪ {xj})‖) − v(‖xj − m(Y )‖) ≤ c if j does not attend,

where Y denotes the list of the attendees’ positions.

Now, ‖xj − m(Y \ {xj})‖ ≤ β(k)‖xj − m(Y )‖ and ‖xj − m(Y ∪ {xj})‖ ≤

β(k)‖xj − m(Y )‖. Thus in any equilibrium

v(‖xj − m(Y )‖) − v(β(k)‖xj − m(Y )‖) ≥ c if j attends

(A1)

v(β(k)‖xj − m(Y )‖) − v(‖xj − m(Y )‖) ≤ c if j does not attend.

(A2)

By the concavity of v, these conditions are equivalent to (1) and (2).

If m is the mean, we have ‖xj − m(Y \ {xj})‖ = β(k)‖xj − m(Y )‖ and

‖xj − m(Y ∪ {xj})‖ = β(k)‖xj − m(Y )‖, so that a is an equilibrium if and

only if it satisfies (A1) and (A2).

PROOF OF PROPOSITION 3:

Let a be an equilibrium with at least one attendee. First we argue that the

number of attendees in a is even. If the number of attendees is odd, the median

is the central attendee’s favorite position, say xi. (Refer to Figure 6.) Let the

neighboring attendees’ positions be xh and xj, and denote y = 1
2
(xh + xj) (or

y = 0 if i is the only attendee). If xi = y, the withdrawal of player i has

no effect on the outcome. Thus in an equilibrium xi 6= y. Now consider a

player, say `, whose favorite position is symmetric with xi about y. If this

player attends, the distance the median moves is the same as the distance it

moves if player i withdraws, so that, using the strict concavity of the valuation
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function, if player i is not better off withdrawing then player ` is better off

attending. Thus the configuration is not an equilibrium.

yxh x` xi xj

Figure 6. An illustration of the argument that when the compromise function is the median
there is no equilibrium in which the number of attendees is odd. If either player i withdraws
or player ` attends, the median changes from xi to y.

Now let h and i be the two central attendees, so that m(Y ) = 1
2
(xh + xi).

By Proposition 2, we have xi −xh ≥ 2z(k) = y. If i ≥ h+2 then players h+1

and i − 1 do not attend. In order for their nonattendance to be optimal, we

need v(1
2
(xh +xi)−xh+1) ≥ −c, or, given the symmetry of the list of positions,

v(1
2
(xi−1 − xh+1)) ≥ −c, or xi−1 − xh+1 ≤ y. Finally, suppose that x` <

xh −∆(xi −xh). If ` does not attend, her gain from switching to attendance is

v(xh − x`)− v(1
2
(xh + xi)− x`)− c, or v(xh − x`)− v(xh − x` + 1

2
(xi − xh))− c.

Because xh − x` > ∆(xi − xh) and v is concave, we deduce that `’s gain to

switching to attendance is positive. A similar argument shows that a player `

for whom x` > xi + ∆(1
2
(xi − xh)) must attend.

Now let a be an action profile that satisfies the conditions in the proposi-

tion. By arguments like those in the previous paragraph, no attendee is better

off switching to nonattendance, and no nonattendee is better off switching to

attendance.

PROOF OF PROPOSITION 4:

Suppose to the contrary that there is a sequence {a`}∞`=1 of equilibria (per-

haps involving different numbers of attendees), for which s` ≡ max{|y` −
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m(Y `)|, |y` − m(Y `)|} → 0, where Y ` is the list of favorite positions of the

attendees in a`, y` is the largest member of Y ` (strictly) less than m(Y `), and

y` is the smallest member of Y ` (strictly) greater than m(Y `).

By regularity, m(Y ` \ {y`}) ≥ m(Y `) and m(Y ` \ {y`}) ≤ m(Y `). Now,

|y` − y`| ≤ 2s`, so that by the continuity of m we have |m(Y ` \ {y`})−m(Y ` \

{y`})| → 0. We conclude that |m(Y ` \ {y`}) − m(Y `)| → 0 (and similarly

|m(Y ` \ {y`}) − m(Y `)| → 0).

Now, because v(0) = 0 and v is continuous at 0, we conclude that for large

enough n, the attendee in a` whose favorite position is y` (and similarly the

attendee whose favorite position is y`) is better off withdrawing, contradicting

the assumption a` is an equilibrium.

PROOF OF PROPOSITION 5:

Assume, without loss of generality, that the policy space is the interval

[−1, 1]. For any S ⊆ {1, 2, . . . , n}, denote by µ(S) the equilibrium probability

that the set of attendees is S:

µ(S) =

(

∏

i∈S

pi

)(

∏

i/∈S

(1 − pi)

)

.

Let mS be the median of {xi : i ∈ S}. Given a player i, let di(S) = |mS −mSi|,

where Si denotes the subset in which i’s membership in S is changed: S i =

S ∪ {i} if i /∈ S, and Si = S \ {i} if i ∈ S.

We show that in an equilibrium, every player i who attends with positive

probability can, with some positive probability independent of n, change the

equilibrium outcome by a positive amount (independent of n) by switching

from attendance to nonattendance.
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LEMMA A1: There are positive real numbers α and β that do not depend on

n, such that for all i with pi > 0,

µ{di ≥ α} ≥ β,

where µ{di ≥ α} =
∑

{S : di(S)≥α} µ(S).

PROOF:

Because the valuation function v is continuous and the cost c of attending

does not depend on n, a player i is willing to attend only if she has a good

chance of having a large effect on mS. Specifically, the expected change in mS

from her attending must be at least a certain positive constant that does not

depend on n. That is,

µ(di) ≡
∑

S

µ(S)di(S) ≥ δ > 0 whenever pi > 0,

where δ > 0 depends on neither n nor i. Hence µ(1−di) ≤ 1−δ. Since 1−di is

a nonnegative function, it follows from Markov’s inequality that for any t > 0

we have µ{1 − di ≥ t(1 − δ)} ≤ 1/t, or

µ{di > 1 − t(1 − δ)} ≥ 1 − 1/t.

Choosing t with 1 < t < 1/(1 − δ) and setting α = 1 − t(1 − δ) > 0 and

β = 1 − 1/t > 0, Lemma A1 follows.

For −1 ≤ a < b ≤ 1 and a subset S of players, say that the interval (a, b)

is balancing for S if

{i ∈ S : a ≤ xi ≤ b} = ∅ and
∣

∣

∣
|{i ∈ S : xi < a}| − |{i ∈ S : xi > b}|

∣

∣

∣
≤ 1.
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We write µ{(a, b) is balancing} =
∑

{S:(a,b) is balancing for S} µ(S).

We now show that there is an interval (z, z + α) that is balancing with

probability bounded away from zero.

LEMMA A2: There are positive real numbers λ and ν that do not depend on

n such that for each mixed strategy equilibrium there is a position z for which

µ{(z, z + λ) is balancing} ≥ ν.

PROOF:

If pi = 0 for all i the statement is trivially satisfied, so assume pi > 0 for

some i. From Lemma A1 we have µ{di ≥ α} ≥ β. Thus from the definitions

of di and the median, we conclude that

µ{there exists z such that (z, z + 2α) is balancing} ≥ β.

Now consider the N = [2/α]+1 intervals of the form (−1+`L,−1+(`+1)L)

for ` = 0, . . . , N − 1, each of length L = 2/N < α. If there exists z such that

(z, z +2α) is balancing, then one of these N intervals must itself be balancing.

We thus have

µ{there exists ` with 0 ≤ ` ≤ N − 1 such that

(−1 + `L,−1 + (` + 1)L) is balancing} ≥ β.

Hence, by sub-additivity of probabilities, there exists ` with

µ{(−1 + `L,−1 + (` + 1)L) is balancing} ≥ β/N.

Setting z = −1 + `L, λ = L, and ν = β/N , Lemma A2 follows.
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We now prove the proposition. If it were false, there would be a sequence

{(pn
1 , . . . , p

n
n)}∞n=1 of mixed strategy equilibria, where (pn

1 , . . . , p
n
n) is an equi-

librium in a game with n players, such that one of the four expressions in the

proposition would converge to infinity. We now argue that this is not the case.

Fix n, and let z, λ, and ν be as in Lemma A2. Let Xn, Yn, and Zn be the

random variables equal to the number of attendees whose favorite positions

are less than z, from z to z + λ, and greater than z + λ, respectively. From

Lemma A2 we know that Pr(Yn = 0) ≥ ν and Pr(|Xn − Zn| ≤ 1) ≥ ν. We

have Pr(Yn = 0) =
∏

{i:z≤xi≤z+λ}(1 − pi), so that

∏

{i:z≤xi≤z+λ}

(1 − pi) ≥ ν.

But 1−pi ≤ exp(−pi), so exp
(

−
∑

{i:z≤xi≤z+λ} pi

)

≥ ν, whence
∑

{i:z≤xi≤z+λ} pi ≤

ln(1/ν), establishing the first statement with γ = ln(1/ν).

Next, note that since Xn and Zn are independent random variables, we have

Pr(|Xn−Zn| ≤ 1) =
∑

z Pr(Zn = z) Pr(|Xn−z| ≤ 1), so since Pr(|Xn−Zn| ≤

1) ≥ ν, there exists z with Pr(|Xn−z| ≤ 1) ≥ ν. Now assume for contradiction

that Var(Xn) ≡
∑

{i:xi<z} pi(1 − pi) is unbounded as a function of n. Then

by the Lindeberg Central Limit Theorem (see e.g. Patrick Billingsley 1995,

Theorem 27.2), since Xn is the sum of independent Bernoulli (bounded) ran-

dom variables, the distribution of Xn is approximately normal for certain

sufficiently large n. Specifically, given any ε > 0, we can find n such that

Pr(x < Xn ≤ y) ≤
∫ y

x
N(E(Xn), Var(Xn); t)dt+ ε, where N(m, v; t) is the den-

sity function of the normal distribution with mean m and variance v. But as

v → ∞, we have supm,t N(m, v; t) → 0. Hence we have Pr(x < Xn ≤ y) → 0
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as n → ∞ for any fixed x < y, which contradicts the assumption that

Pr(|Xn − z| ≤ 1) ≥ ν.

We conclude that
∑

{i:xi<z} pi(1 − pi) is bounded, say by γ′, as a function

of n. This establishes the second statement of the result; the third statement

follows similarly.

Finally, since Pr(|Xn −Zn| ≤ 1) ≥ ν and Var|Xn −Zn| ≤ Var(Xn −Zn) ≤

2γ′, we have by Chebyshev’s inequality (see e.g. Billingsley, 1995, p. 80) that

if E|Xn − Zn| > 1, then

ν ≤ Pr(|Xn − Zn| ≤ 1) = Pr (|Xn − Zn| − E|Xn − Zn| ≤ 1 − E|Xn − Zn|)

≤ Pr
(
∣

∣

∣
|Xn − Zn| − E|Xn − Zn|

∣

∣

∣
≥ E|Xn − Zn| − 1

)

≤
Var|Xn − Zn|

(E|Xn − Zn| − 1)2 ≤
2γ′

(E|Xn − Zn| − 1)2
,

so that

|E(Xn) − E(Zn)| ≤ E|Xn − Zn| ≤ 1 +
√

2γ′/ν .

Thus the result follows with γ ′′ = max(1, 1 +
√

2γ′/ν) = 1 +
√

2γ′/ν.

PROOF OF PROPOSITION 6:

Because v is continuous and the set of policies is compact, v is uniformly

continuous on {y − M : y and M are policies}. Thus there exists δ > 0 such

that |v(y − M1) − v(y − M2)| < c for all y whenever ‖M1 − M2‖ < δ.

Now, because m reflects small influence in a large meeting, there is a pos-

itive integer k such that

sup
{Y :|Y |≥k}

sup
yi /∈Y

‖m(Y ∪ {yi}) − m(Y )‖ < δ.
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Thus for any action profile in which k or more players attend, an additional

player who enters changes the compromise by less than δ, and hence changes

her valuation of the compromise by less than c. Thus in any equilibrium at

most k players attend.

PROOF OF PROPOSITION 7:

An argument that an equilibrium of the form given in the proposition

exists follows the lines of the proof of Proposition 1. We have jn(p) ≥ 1

because c < −v(1).

The number jn(p) remains bounded as a function of n by the following

argument. As in Lemma A1, we know that for a player to want to attend, her

presence must have probability at least β of moving the median by at least

α, where α > 0 and β > 0 are independent of n. But for 0 < p < 1, the

proof of Proposition 5 shows that if jn(p) → ∞ then the probability that the

number of attendees in {1, . . . , jn(p)} is within one of the number of attendees

in {n − jn(p) + 1, . . . , n} goes to 0. Further, as n → ∞ the probability that

there is some other gap of size α in the list of positions of actual attendees

also goes to 0. We conclude that if jn(p) → ∞ as n → ∞ then the probability

that a change in the action of any given player moves the median by at least

α goes to 0, contradicting the fact that the action profile in which the set of

attendees is {1, . . . , jn(p)} ∪ {n − jn(p) + 1, . . . , n} is an equilibrium.

PROOF OF PROPOSITION 8:

Fix a player i. Let S be the random variable that represents the realized

set of attendees in the equilibrium, and let R = S \ {i} (so that S = R if i
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does not attend, and S = R ∪ {i} if i does attend). We have

Var (m(S) |R) ≡ E
(

[m(S) − E (m(S) |R)]2 |R
)

= pi [m(R ∪ {i}) − (pim(R ∪ {i}) + (1 − pi)m(R))]2

+ (1 − pi) [m(R) − (pim(R ∪ {i}) + (1 − pi)m(R))]2

= pi(1 − pi) [m(R ∪ {i}) − m(R)]2 .

Now, from Lemma A1 in the proof of Proposition 5, there is probability at

least β that R is such that di(R) ≡ |m(R ∪ {i}) − m(R)| ≥ α. Hence,

Var (m(S)) ≥ E [Var (m(S) |R)]

= E
[

pi(1 − pi) (m(R ∪ {i}) − m(R))2]

≥ pi(1 − pi)βα2 .

Hence, the result follows with η = βα2.

PROOF OF PROPOSITION 9:

The equality of probabilities for the outcome to be in the two intervals

[−1, xjn(p)] and [xn−jn(p), 1] follows from the symmetry of v and the symmetry

of the list of the players’ favorite positions.

Denote by qn(p) the probability that the equilibrium outcome is in [−1, xjn(p)]∪

[xn−jn(p), 1]. We have qn(p) ≥ 1 − E, where E is the probability that the re-

alized numbers of attendees in {1, . . . , jn(p)} and in {n − jn(p) + 1, . . . , n}

are equal. But each of these two numbers of attendees independently follows

the Binomial(jn(p), p) distribution. Hence the probability E that the numbers

are equal is bounded above by the probability of the mode of this distribu-

tion. Given jn(p) ≥ 1 (see Proposition 7), this probability is no larger than
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the probability of the mode of Binomial(1, p), namely max(p, 1 − p). Hence

infn qn(p) ≥ 1 − E ≥ 1 − max(p, 1 − p) > 0, as claimed.
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