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THE NATURE OF EQUILIBRIUM IN A LOCATION MODEL* 

BY MARTIN J. OSBORNE AND CAROLYN PITCHIK** 

1. INTRODUCTION 

Models of location are appropriate in a number of contexts in economics and 
political science. For example, firms choose where to position stores and which 
of a spectrum of goods to produce, and politicians select the nature of their plat
forms. In such models it is natural to look for a collection of locations with the 
property that the location of each individual is optimal, given the positions of all 
other individuals. However, the pure strategy Nash equilibrium provides a 
solution which is both incomplete and unsatisfactory. Incomplete, because in 
many cases no such equilibrium exists. Unsatisfactory, because even when it 
does exist it may not be robust to the specification of the model. 

Consider, for example, a simple case (the "pure" location model of Hotelling 
[1929]). Consumers are distributed on the interval [0, 1]. Each of a fixed 
number of firms chooses a location in [0, 1] and receives a payoff equal to the 
fraction of consumers for which it is the nearest firm. Then if there are three 
firms, there is no pure strategy equilibrium unless the distribution of consumers is 
degenerate. There is such an equilibrium if there are four or more firms and the 
distribution of consumers is uniform; but there is none if there are five or more 
firms and the density of this distribution is either strictly convex or strictly 
concave, however close it is to being uniform. 

One way to avoid these problems is to modify the model. For example, if the 
firms locate on a circle rather than a line segment, or move sequentially rather than 
simultaneously, the difficulties may be mitigated. However, in many cases of 
interest a line segment is the relevant space, and the assumption of simultaneous 
moves is appropriate (or, at least, any particular sequence of moves is arbitrary). 

For these reasons, our approach is to study a modification of the solution. 
The standard game theoretic route in the absence of pure strategy equilibria is to 
allow the players to randomize. Given that many location decisions are more or 
less irreversible, this solution makes sense (if there is ex post mobility then the 
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appropriate model is a repeated game). However, the idea of individuals con
sciously randomizing may be unappealing. If so, the results on the "purification'' 
of equilibria provide an attractive alternative interpretation. The basic idea is 
that a mixed strategy equilibrium can, under appropriate conditions, be viewed 
as a pure strategy equilibrium in a game of incomplete information. Firms may 
not know precisely what the payoffs are- for example, they may obtain infor
mation about the distribution of consumers from noisy market surveys. If the 
private signals they receive are independent and atomless, then an equilibrium in 
which firms randomize may be equivalent to one in which, contingent on the 
signal received, each firm uses a pure strategy. The randomness of the signals 
means that the action taken by each firm varies randomly, but no firm consciously 
randomizes. 

A variety of results on purification has been established, notably by Aumann 
et al. [1983] and Milgram and Weber [1981]. Our games do not satisfy the 
assumptions in either of these papers, since each firm has a continuum of pure 
strategies (rather than finitely many, as in Aumann et al.), and its payoff function 
has discontinuities (rather than being continuous, as (for the most part) in Milgrom 
and Weber). Thus we cannot directly apply their results; it is possible that the 
results could be extended to cover our games. The type of purification result of 
perhaps the most relevance to our games is the convergence result <?f Harsanyi 
[1973] (although once again our games do not satisfy his assumptions). He 
considers approximating a game of complete information with a sequence of games 
of incomplete information. Each of the latter has a pure strategy equilibrium, 
as described above, in which the action of each player depends on his type, and is 
thus random from the p'oint of view of the other players. Harsanyi shows that 
pure strategy equilibria in a sequence of approximating games can almost always 
be found with the property that the distributions over pure strategies which these 
equilibria generate converge to the distribution associated with any given mixed 
strategy equilibrium in the original game. In our context, games in which the 
firms are slightly uncertain about their payoffs may have equilibria which generate 
distributions over actions which are very similar to those generated by the mixed 
strategy equilibria we find. (Section 5 of Milgram and Weber [1981], and 
Harsanyi [1977] contain further discussion of issues in the interpretation of mixed 
strategy equilibria.) 

Our results concern mixed strategy equilibrium in the simple location model 
described above. They are of three types. First, we study the symmetric mixed 
strategy equilibria (F, .. . , F) for an arbitrary distribution of consumers and 
arbitrary number of firms (see Proposition 3). An explicit characterization of 
an equilibrium strategy F appears to be impossible; we show that any such F 
possesses some natural properties. Second, we show that the symmetric 
equilibrium strategy approaches the distribution function of consumers as the 
number of firms increases (see Proposition 4). That is, when the number of firms 
is large, the firms distribute themselves in the same way as the consumers. This 
makes sense: when there are many firms, it is likely that each firm will have 
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neighbors to the left and right, so that the endpoints of the line segment exert little 
influence on the solution, and firms spread out according to the distribution of 
consumers, as they would on a circle. Finally, we study the case of three firms 
and a uniform distribution of consumers. It is known that in the symmetric mixed 
strategy equilibrium of this game, each firm randomizes uniformly over [1/4, 3/4] 
(see Shaked [1982]). We show that the game has other, asymmetric equilibria. 
In fact, there is a unique (up to symmetry) equilibrium in which at least one firm 
uses a pure strategy (see Propostion 5). In this equilibrium, two firms randomize, 
putting most weight near 1/4 and 3/4 (see Figure 1), while the third locates with 
probability one at 1/2. 

Our results on the qualitative properties of equilibrium have direct empirical 
implications. For example, across independent three-person political races, the 
prediction is that either all the platforms chosen will be uniformly distributed over 
the middle two quartiles of the spectrum, or one will always be in the center, while 
the other two are close to the quartiles. 

2. THE MODEL AND RESULTS 

Consumers are distributed on the line segment [0, 1]. Let C(x) be the fraction 
of consumers to the left of x plus half of the fraction at x (so that if there are no 
atoms in the distribution of consumers, C is just the cumulative distribution 
function). Let F"(C) be the game in which n firms choose locations in [0, 1]. 
Precisely, the pure strategy set of each firm is S = [0, 1], and each payoff function 
K1: S"--+ R is defined as follows. Let ~ = ( s 1 , ... , s11) E S", let L;(§;) and R;(§:) be the 
sets of firms to the left and right of i in §:, let 1;(§:) and r;(§:) be the positions of the 
firms in L;(§;) and R1(~) closest to i, let ?c1(§:) = (s1 + 11(~))/2 and p1(§:) = (s1 + r1(~) )/2 
(the locations of the consumers equidistant from i and its nearest neighbors), and 
let q;(~) be the number of firms located at s1 in §:· Then 

(1) 

if L;(~) f= ¢, R;(§:) f= ¢ 

if L;(~) = ¢, R;(~) f= ¢ 

if L;(§:) f= ¢, R;(~) = ¢ 

if £1(~) = ¢, R;(~) = ¢. 

As usual, the set of mixed strategies of each firm is the set of cumulative distri
bution functions on S, and we extend K 1 to mixed strategy n-tuples. We always 
use upper case letters (e.g. F, G) to denote mixed strategies, reserving lower case 
letters for pure strategies. Thus when, for example, we write K 1(s, F, t), it is to 
be understood that firms 1 and 3 are using pure strategies, and firm 2 is using a 
mixed strategy. 

The two-firm game F 2(C) can easily be completely solved. Call m a median 
of C if C(m-) ;£ 1/2 ;£ C(m +) (where C(m-) and C(m +) are the left and right 
limits of Cat m); the set M(C) of medians of Cis a nonempty closed interval. 
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It is clear that the strategy pair (F 1 , F 2 ) is an equilibrium of T 2( C) if the support 
of each F; (denoted supp F;) is a subset of M(C). It is also easy to show that 
there are no other equilibria, as follows. 

PROPOSITION 1. The strategy pair (F1 , F 2) is an equilibrium of P(C) if and 
only ifsupp F;£M(C)for i=1, 2. In particular, ifC has a unique median m 
then F 2(C) has a unique equilibrium, in which each firm locates at m with 
probability one. 

PROOF. It is clear that (s1 , s2) is a pure strategy equilibrium if s;EM(C) for 
i = 1, 2. Suppose (F 1, F 2 ) is also an equilibrium. Then since F2( C) is constant 
sum, (F 1 , s2) is an equilibrium. But this is so only if supp F 1 £ M( C). 

Lerner and Singer [1937] and Eaton and Lipsey [1975] have studied the pure 
equilibria of F"( C) for n;;::; 3. Eaton and Lipsey show, in particular, the 
following. 1 

PROPOSITION 2. (Eaton and Lipsey). (a) If C is increasing and (s1 , ... , s,) 
is a pure strategy equilibrium of T"(C) with s1 ~ ... ~s, then s1 =s2 and s,_ 1 =s,. 

(b) If C is increasing then T 3(C) has no pure strategy equilibrium. 
(c) If Cis differentiable then T"(C) has a pure strategy equilibrium only if 

n is at most twice the number of local maximizers of C'. 
(d) If Cis uniform then F"(C) possesses a unique pure strategy equilibrium 

ifn=4 or 5, and a continuum of such equilibria ifn;;:;6. 

Part (a) of this result is easy to see: if a peripheral firm is not paired then since C 
is increasing, the firm can gain customers by moving towards its neighbor. Part 
(b) follows from (a), given that s1 =s2 =s3 is obviously not an equilibrium. The 
equilibria in (d) are easy to find. For example, if n = 4 then s 1 = s 2 = 1/4, s 3 = s4 = 
3/4 defines the equilibrium, and if n=5 we have s1 =s2 =l/6, s3 =1/2, and s4 = 
s5 = 5/6. 

Part (b) shows that pure strategy equilibrium is an inadequate solution concept 
for the location problems we are considering. The implications of part (c) 
emphasize this: if C is differentiable and C' is either strictly concave (one local 
maximizer) or strictly convex (two local maximizers) then, however close C is 
to being uniform, F"( C) possesses no pure strategy equilibrium if n;;::; 5. More 
generally, if C' has finitely many local maximizers then T"(C) possesses no pure 
strategy equilibrium when the number of firms is large enough. 

Thus the pure strategy equilibria are nonrobust to variations in the specification 
of the model; our approach is to turn to the mixed strategy equilibria. We prove 
three results about these equilibria. It is known from the work of Dasgupta and 
Maskin [1982a and b] that F"(C) possesses a symmetric mixed strategy equi-

1 Note that •n"?;2M" about two thirds of the way down their p, 35 is a typographical error for 
•n;;;.2M'. 
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librium (F~, ... , F~). (See also Simon [1984] for a very general existence theorem 
for equilibria in location games.) We first study the general characteristics of 
F~, and then prove a result on its asymptotic behavior as n-HYJ. Finally, when 
n = 3 and C is uniform we find all (asymmetric) equilibria in which at least one 
firm uses a pure strategy. All proofs are in the Appendix. 

Our first result is the following. 

PROPOSITION 3. If n ~ 3 and C is nonatomic then the game T"(C) has a 
symmetric mixed strategy equilibrium (F~, ... , F~), and in every such equi
librium F~ is atomless. If C is symmetric about 1/2 (i.e. C(s)=1-C(1-s)) 
then P(C) has an atomless symmetric mixed strategy equilibrium (F~, ... , F~) 
in which F~ is symmetric about 1/2. IfC is uniform then in addition the support 
ofF~ is an interval [a~, 1-aH 

Even though Proposition 3 puts some restrictions on the characteristics of a 
symmetric equilibrium, it would be nice to have some explicit examples. However, 
except in the case n = 3 and C uniform, it seems not to be possible to make the 
necessary calculations. To appreciate the problem, consider the payoff of firm 1 
when it locates at z and every other firm uses the atomless strategy F. This 
payoff is 

K 1(z, F, ... , F) = (n-1) ~: [1- C((u + z)/2)] (F(u))"-2dF(u) 

+ 'I;3 
(n -1) (n- 2) ( 11 

;-
3 ) (z (1 [C((z + v)/2) 

k=O '' Jo J z 

- C((z + u)/2)] (F(u))k(l- F(v))n-k- 3dF(v)dF(u) 

+ (n-1) ~: C((u+z)/2)(1-F(u))"-2dF(u). 

Using the binomial theorem on the middle term, and integrating by parts, this 
reduces, in the case where C is differentiable, to 

(2) 

K 1(z, F, ... ,F) = [1-C((1+z)/2)](F(z))"-1 + C(z/2)(1-F(z))"-1 

+ (1/2) ~: C'((u + z)/2)(1- F(z)+ F(u))"- 1du 

+ (1/2) ~: C'((u+z)/2)(1+F(z)-F(u))"-1du. 

The problem of finding a symmetric equilibrium is thus the problem of finding a 
nondecreasing F such that K 1(z, F, ... , F) is constant on supp F. Even if C is 
uniform this is a difficult problem - (2) is a nonlinear integral equation, about 
which little in general is known. 

We can however use (2) to prove a result on the behavior ofF as n increases 
without bound. The idea is simple. If there is a large number of firms, all using 
F, then wherever firm i locates it is very likely to have neighbors close to the left 
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and right, and we can ignore the possibility that all the other firms are on one side 
of firm i. If C is uniform but F is not, then at those points where the density of 
F exceeds 1, the left and right neighbors are likely to be closer than when this 
density is less than 1, so that the payoff at the former is lower than at the latter. 
Thus such an F cannot be an equilibrium - a firm is not indifferent between all 
points in the support of F. Similarly, for arbitrary (but differentiable) C, when n 
is large the payoff is not constant if F'(x) is different from C'(x). Formally, the 
result is as follows. (The strong assumptions, which make the proof relatively 
straightforward, can probably be relaxed somewhat.) 

PROPOSITION 4. Let C be twice continuously differentiable and suppose 
(F", ... , F") is an equilibrium of F"(C) for each n=1, 2, ... , where F" is twice 
continuously differentiable and there exists a strategy F which is twice contin
uously differentiable such that F"-+F, F"'-+F', and F""-+F" uniformly. Then 
F=C. 

When n = 3 and C is uniform, it is known that there is a symmetric equilibrium 
(F, F, F) in which F is uniform on [1/4, 3/4] (see Shaked [1982]). Our final 
result exhibits all the asymmetric equilibria, within a certain class, of this game. -
Let U be the uniform distribution. 

PROPOSITION 5. There is a unique (up to symmetry) equilibrium of F 3(U) 
in which at least one firm uses a pure strategy. It is (1/2, F, F), where the 
support ofF is [5/24, 19/24] and 

8 

0 5/24 1/2 19/24 1 
FIGURE 1 

THE DENSITY OF THE STRATEGY F DEFINED IN PROPOSITION 5. 
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[ 

1 - 2-2/3(6t-1)-1/3 
F(t) = 

2-2/3(5- 6t)-1/3 

if 5/24 ~ t ~ 1/2 

if 1/2 ~ t ~ 19/24. 

The corresponding equilibrum payoffs are (38/96, 29/96, 29/96). 

229 

The density of the strategy F given in this result is illustrated in Figure 1. 
Note that the result does not rule out the possibility of asymmetric mixed strategy 
equilibria in which all three firms randomize. 

Columbia University, U. S. A. 
and McMaster University, Canada 

University of Toronto, Canada 

APPENDIX: PROOFS 

We use the following notation. For any strategy F, cx(F) and f3(F) are respec
tively the smallest and largest members of supp F, J(F) is the set of atoms ofF, 
and J F(x) is the size of the atom x of F. For any n-tuple f= (F 1, ... , F11 ) of 
strategies and any strategy G of firm i, P;(G, f)=K;(F 1, ... , Fi_ 1, G, Fi+ 1, ... , F11). 

For any function f, f(x-) and f(x +) are respectively the left and right limits of 
fat x. 

The following result (a generalization of Proposition 2(b)) is used in the proofs 
of Propositions 3 and 5. 

LEMMA 1. Let C be atomless. Then in any equilibrium of F"(C), each point 
in [0, 1] is an atom of the strategies of at most two firms. 

PROOF. Let f=(Fv ... , F11) be an equilibrium of P(C). If xis an atom of 
F 1 then we need P 1(x, f)"?;,P1(x-, f) and P1(x, f)"?;,P1(x+, f), and hence, 
in particular, we need 

or, using the Dominated Convergence Theorem and letting ~=(x, s2 , ... , s,.), 

~: ... ~: ([P1(x, ~)- P 1(x-, ~)] 
(3) 

+ [P1(x, ~)- P 1(x+, ~)])dF2(s2) .. ·dF11(S11) "?;, 0. 

Now, using (1) and the nonatomicity of C, we find that 

(4) 

[P1(x, ~)- P1(x-, ~)]+[P1(x, ~)-P1(x+, ~)] 

= [ ~2/ql(~)-1) CCCP1C~))- C(l1C~))) if ql(~);:;;;, 2, 

where p 1(~)=p 1(~) if R1(~)f:¢, p 1(~)=1 if R1(~)=¢, and l1(~)=A.1(~) if L1(~) 
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#¢, ~1Cl:)=Oif L1(£)=¢. Since p 1Cl:)~~1 (§)for all(s2 , ... , s11), we have C(p 1 (~)) 
~ C(~1 (~)) for all (s2 , ... , S11). Thus, using ( 4), the integrand in the left-hand side of 
(3) is nonpositive for all (s2, ••• , s11); because of the inequality in (3) it must therefore 
be zero except possibly on a set ofF 2 .. · F11-measure zero. Hence if the strategies 
of two firms - say firms 2 and 3 -in addition to firm 1 have atoms at x, then, 
since 2/q 1 (x, x, x, s4 , ... , S11 ) -1 < 0 for all s4 , ... , s11 , we need C(p 1 (x, x, x, s4 , ... , s11)) = 
C(~1(x, x, x, s4 , ... , S11)) for all (s4 , ... , s11) except possibly a set of F 4 .. ·F11-measure 
zero. Since C(p 1(x, x, x, s4 , .... , S11)) ~ C(p 1(x, s2, ... , S11)) and C(~ 1(x; x, x, s4 , ... , s11)) 

~C(~1 (x, s2 , ... , S11)) for all (s2 , ... , S11), this implies that C(p 1(x,s2 , ... , S11))=C(~1 (x, 
s2 , ... , S11)) for all (s2 , ... , S11) except possibly a set of F 2 .. ·F11-measure zero. (If, 
when firms 2 and 3 locate at x, firm 1 attracts no customers with probability one, 
then this is also true wherever firms 2 and 3 locate.) But then P1(x, .fj=O, 
contradicting the fact that the equilibrium payoff of firm 1 is positive (since it can 
obtain a positive payoff by locating at any point in the support of C). Thus the 
strategy of at most one firm in addition to firm l has an atom at x. 

PROOF OF PROPOSITION 3. If n ~ 3 and C is nonatomic then the game F"(C) 
possesses a symmetric mixed strategy equilibrium by Theorem 6 of Dasgupta and 
Maskin [1982b]. Let (F, ... , F) be such an equilibrium. By Lemma 1, F is 
nonatomic. 

We now show that if Cis symmetric about 1/2 then P(C) possesses an equili
brium (F, ... , F) in which F is symmetric about 1/2. Consider the game F"(C) 
in which the pure strategy setS of each firm is [0, 1/2], and the payoff function of 
i is defined by 

K 1(s1 , ... , s") = KtC1/2(s1)*1/2(1-s1), ... , 1/2(s11)*1/2(1-s11)) for i = 1, ... , n, 

where 1/2(x)*1/2(1-x) denotes the mixed strategy in P(C) which has atoms of 
size 1/2 at x and 1- x. That is, using a pure strategy s in T"( C) is the same as 
using s with probability 1/2 and 1-s with probability 1/2 in P( C). Note that 
given the definition of K 1, whenever F1 is a mixed strategy for each i we have 
KtCF1> ... , F11)=K1(F 1, ... , F,) where F1 is defined by F1(x)=FtCx)/2 if O~x<1/2 
and F1(x)=1-FtC1-x)f2 if 1/2~x~l. 

Now, by Theorem 6 ofDasgupta and Maskin [1982a] the game F"(C) possesses 
a symmetric mixed strategy equilibrium (F, .. . , F). Let F be the mixed strategy 
corresponding to F, as above. Then 

PtCs, F, .. . , F) ~ K 1(F, ... , F) = K 1(F, .. . , F) for all s E S. 

But we have P1(s, F, ... , F)=P1(1/2(s)*1/2(1-s), F, ... , F)=P1(s, F, ... , F)/2+ 
P 1(1-s, F, ... , F)/2=P1(s, F, ... , F), using the symmetry of C and F to obtain the 
last equality. Hence (F, ... , F) is an equilibrium of P(C) with F symmetric about 
1/2; F is atomless by the first part of the result. 

Finally, we show that if Cis uniform and (F, ... , F) is an equilibrium in which 
F is symmetric about 1/2 then the support ofF is an interval [a, 1- a]. Suppose, 
to the contrary, that xE;t:supp F, a <x< 1-a. Let b=max {s~x: s E supp F} and 
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c=min{s~x: sesuppF}; band c exist since supp F is closed, and F(b)=F(c), 
since F is nonatomic. Let f=(F, ... , F). Then (dropping the superfluous 
subscript from P;(x, F)) we have 

P(c, f)- P(b, f)= [(1-F(b))"-1 - (F(b))"-1](c-b)j2. 

(P(c, ~)-P(b, ~) is zero unless either si < b for all i (in which case it is - (c- b )/2), 
si > c for all i (in which case it is ( c- b )/2), or si = b or c for some i. The probabil
ities of these three events are (F(b))"-1, (1-F(b))"-1 and zero respectively.) 
Since F is atomless, we need P(c, f)=P(b, f)=1fn (the equilibrium payoff of 
each firm). Hence, F(b)=1/2. 

Since F is nondecreasing and atomless, and bE supp F, F is left-increasing at b. 
Therefore the support ofF contains at most a single gap. Since F is symmetric, 
this means that supp F=[a, b] U [1-b, 1-a]. 

We now argue that b = 1/2. In order for f to be an equilibrium we need 
P(z, f)=1Jn almost everywhere with respect to F. Now, for O~z~1 we have 

2P(z, f) = (a+ 1-z) (F(z))"-1 + (a+ z) (1- F(z))"-1 

+ ~: (1-F(z)+F(u))"- 1du +~:-a (1+F(z)-F(u))"- 1du 

(see (2)). Thus, since F is atomless, P( ·, f) is continuous, and hence we need 
P(z, f)= 1/n for all z E supp F. Thus P( ·, f) is differentiable, with derivative 
zero, on [a, b] u [1-b, 1-a]. Now, ifF is differentiable at z then so is P( ·,f), 
and we have 

2P'(z, f)= (n-1)F'(z){(a+1-z)(F(z))"-2 - (a+z)(1-F(z))"-2 } 

+ (n-1)F'(z){~:-z (F(u)+F(z))"-2du- ~: (F(u)+1-F(z)) 11 - 2du} 

+ {(1- F(z))"-1 - (F(z))"-1}, 

where the first term in braces is obtained by using the symmetry of F. Suppose 
that b < 1/2. Then for z = b the first two terms in braces are positive and the third 
is zero (given F(b)= 1/2). J;Ience given the continuity ofF, the first two terms are 
positive on (b-a, b) for some a>O; the third term is also positive on this interval. 
Further, since F is almost everywhere differentiable (being a cumulative distri
bution function), it is differentiable somewhere in (b-a, b) so that this argument 
shows that the derivative of P( ·,f) is positive at some point in (b-a, b), contra
dicting the fact that it must be zero on [a, b]. Thus we must have b=1/2. 

Q.E.D. 

To prove Proposition 4, we need the following preliminary result. 

LEMMA 2. Let c>O. For each n=1, 2, ... let f": [0, c]---t[O, 1],j: [0, c]---t 
[0, 1], and g: [0, c]---tR be twice continuously differentiable and nondecreasing, 
with !"(0)=0, and f"---tf, f"'---tj', and f""---tj" uniformly. Then as n---too, 
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n g'(x) (1-f"(x))"- 1dx ~ ~
c ( oo if f'(O) = 0 and g'(O) > 0 

o g'(O)J f'(O) if f'(O) > 0. 

PROOF. We first claim that 

(5) for all (j > 0 there exist N and e > 0 such that if n > N and x < e then 
lf"'(x)-f'(O)J < o. 

This follows by noting that lf"'(x)-f'(O)J ~ lf"'(x)-f'(x)J + lf'(x)-f'(O)J, and 
using the uniform convergence off"' to f' to bound the first term (uniformly in x), 
and the continuity off' to bound the second term. 

Now assume that f'(O)=O and g'(O)>O. By the mean value theorem for 
derivatives we havef"(x)fx=f"'(y) for some O<y<x, so by (5) we know that for 
any M>O there exist Nand e>O such that if n>N and O~x<e then f"(x)fx< 
g'(0)/4M, or 1-f"(x) > 1- xg'(0)/4M; since g' is continuous, we can choose e 
such that we also have g'(x)>g'(0)/2 if x<e. Hence, 

n ~: g'(x)(1-f"(x))"- 1dx > n ~>'(x)(1-f"(x))"- 1dx 

> n ~: (g'(0)/2) (1-xg'(O)f4M)"- 1dx = 2M(1-(1-eg'(0)/4M)"). 

So, letting N be such that it also satisfies (1- eg'(O)f4M)" < 1/2 if n > N, we have 

n ~>'(x) (1-f"(x))"- 1dx > M if n > N, 

thus establishing the first half of the limit in the Proposition. 
Now supposef'(O)>O. Then by (5) there exist Nand e>O such thatf"'(x)> 

f'(0)/2 > 0 if 0 ~ x ~ e and n > N, and hence 

n ~: g'(x) (1-f"(x))"- 1dx = ~: (g'(x)f f"'(x))nf"'(x) (1-f"(x))"- 1dx 

+ 11 ~: g'(x)(1-f"(x))"-1dx 

= g'(O)/ f"'(O) - (1-f"(e))"g'(e)f f"'(e) 

+ ~: h"'(x) (1-f"(x))"- 1dx + n ~: g'(x) (1-f"(x))"- 1dx, 

where h"(x)=g'(x)/f"'(x). Now, since each f" is nondecreasing, and f"'(x)> 
f'(0)/2 if O~x~e and n>N, we have f"(x)>ef'(0)/2, or 1-f"(x)<1-ef'(0)/2, 
if e ~ x ~ c and n > N. Hence the limits of the second and fourth terms are zero. 
Now consider the third term, in which h"'(x)=g"(x)ff"'(x)-f""(x)g'(x)f(f"'(x))2. 
Since g', g", and!"" are continuous, they are bounded on [0, c]; since in addition 
!"" ~ f" uniformly, {!""} is uniformly bounded on [0, c]. Thus the fact that 
f"'(x)> f'(0)/2 if O~x~e implies that {h"'} is uniformly bounded on [0, c]. 
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Further, we havef"(x)'?;,xj'(0)/2, or 1-f"(x);i;1-xj'(0)/2, ifO;;i;x;;i;e, so that the 
limit of the third term is zero. Finally, the limit of the first term is g'(0)/!'(0), 
completing the proof. 

PROOF OF PROPOSITION 4. Since each F" is atomless, we can conclude, as in 
the proof of Proposition 3, that P"(z, f") = 1/n (the equilibrium payoff of each 
firm), or nP"(z, f")=1, for all zEsuppF". (We write F"=(F", ... ,F"), and 
now explicitly record the dependence of the payoff functions on n .) Also, since the 
equilibrium payoff 1/n goes to zero as n~oo, 

(6) 
for any z E supp C and any e > 0 there exists N such that (z- e, z +e) n 
supp F" # ¢ if n > N 

(otherwise a firm can guarantee a positive payoff by locating at z). Hence, given 
the continuity of nP"(z, f") in z, 

(7) lim nP"(z, f") = 1 for all z E supp C. 
n-HIJ 

Now, for each n we have 

(8) 

nP"(z, f") = n[1- C((1 + z)/2)] (F"(z))"-1 + nC(z/2) (1- F"(z))"-1 

+ ): nC'((u + z)/2) (1- (F"(z)- F"(u)))"- 1duj2 

+ ) : nC'((u + z)/2) (1- (F"(u)- F"(z)))"-1du/2 

(see (2)). Let a=minsupp C, b=max supp C. Obviously supp F"c[a, b] for 
all n, and if z E supp C n (a, b) then O<F"(z) < 1 for large enough n (see (6)), so 
that the first two terms in (8) go to zero. Since C(a/2)=0 and C((1+b)/2)=1, 
the first two terms of nP"(z, f") are also zero for z=a or b. 

We can use Lemma 2 to determine the limits of the last two terms as n ~ oo by 
defining the variables appropriately (i.e. in the first case c=z, x=z-u, g(x)= 
-2C(z--:-x/2) and f"(x)=F"(z)-F"(z-x), while in the second case c= 1-z, 
x=u-z, g(x)=2C(xj2+z), and f"(x)=F"(x+z)-F"(z)). If F'(z)>O the 
limits are both C'(z)/2F'(z), so that lim nP"(z, f")= C'(z)/F'(z); if F'(z)=O and 

IJ-'100 

C'(z) > 0 the limits are infinite. Thus from (7) we conclude that if z E supp C and 
C'(z)>O then F'(z)> 0, and hence in fact C'(z)/F'(z) = 1; if C'(z)= 0 then F'(z) =0. 
Thus F'(z)=C'(z) for all zEsupp C; since F'(z)=C'(z)=O if z~supp C, we have 
F = C, completing the proof. 

PROOF OF PROPOSITION 5. Let (c, F, G) be an equilibrium of F 3(U). By 
Proposition 2(b) we can assume without loss of generality that F is not pure 
and a(F)<c. Clearly we must then have a(G)=a(F)=a, say (since 2's payoff 
is increasing on [0, a( G))). We can further assume without loss of generality that 
fJ(F)'?;,fJ(G). Clearly we must have fJ(F)'?;,c, and either (i) fJ(G)=fJ(F)'?;,c or 
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(ii) {J( G)< {J(F) =c. We proceed in a number of steps, showing in (h) that (ii) 
is not possible. 

(a) Ifx E J(F) n J(G) and x~c then x=c/3: Since x E J(F), we need Kz(c, x, G) 
~K2(c, y, G) for ally. Since x<c by Lemma 1, the cases y=x- and y=x+ 
imply that JG(x)((x+c)/4-x)~O and JG(x)((x+c)/4-(c-x)/2)~0, or x=c/3, 
given that x E J(G). 

(b) (suppH)n[a,min({J(G),c)]=[a,min(fJ(G),c)] for H=F,G: Let 
[a, min ({J(G), c)] =L. Suppose x, y E supp F, but (x, y) n (supp F) n L=¢ for 
a<x<y<min({J(G), t). Then Kic, t, s+e)-K3(c, t, s) is zero if x<s<y and 
t~x and positive if t~y, so that K 3(c, F, s) is increasing ins. Hence (x, y) n 
(supp G)=¢, and either x$supp G or xeJ(F). Reversing the roles ofF and G 
establishes that x E J(F) n J(G) and, since (x, y) is an arbitrary gap, we have 
(supp F) n L=(supp G) n L. Now, if x<s<y then K 2(c, s, G)-Kic, x, G)= 
JG(x)((c-x)/2-(c+x)/4)+(1-G(x))(s-x)/2; by (a) the first term is zero, so the 
expression is positive, contradicting the fact that x E J(F). '-

(c) IfxeJ(H) then x~c/3 ifx<min({J(G), c), and x~c/3 ifx>a, for H=F, 
G: If xeJ(F) and x<min({J(G), c), then since [x, x+e]c supp G for some e>O 
by (b), we need K 3(c, F, x)~K3(c, F, x+) (which is equal to the equilibrium 
payoff of firm 3). This implies that x~c/3. Similarlyifx>a we need K 3(c, F, x) 
~ K 3 ( c, F, x- ), which implies x ~ c/3. In both cases the argument applies also 
to G. 

(d) a~ c/3: Suppose a< c/3, and let a~ s < c/3. Then 

K3(c,F,c/3)-K3 (c,F,s)=Jp(s)(c;s- c~s) 

+( (c-t _ s+t)dF(t)+Jp(cj3)(c+c/3 _s+c/3) 
)(s,c/3) 2 2 4 2 

+ (c/3 -s) (1- F(c/3))/2. 

Now, using the fact that 

( tdF(t) ~ (c/3)[F(c/3)- Jp(c/3)- F(s)], 
)(s,c/3) 

we obtain 

K 3(c, F, c/3) - K 3(c, F, s) ~ (c- 3s) [3J p(s) + 2(1-F(s))]/12. 

But now since F is not pure we have F(s)<1 for all a~s<a+e for some e>O, 
and hence K 3(c, F, cf3)>K3(c, F, s) for a~s<a+e. But this contradicts the 
fact that \J E supp G. Hence a~ c/3. 

(e) a>cj3: Suppose a~c/3. By (d) we then have a=c/3. Let a~s<t< 
min ({J(G), c). Then making a calculation as in (d) (using (c), which implies that 
Jp(t)=O and Jp(s)=O unless s=a=c/3), we find 

(9) K3(c, F, t)- K3(c, F, s) ~ [(t-s)-3(t-a)F(t)+(s+2t-3a)F(s)]/2. 
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Now let F(a) = 1-b. Since F is not pure we have (j > 0, and since F is continuous 
on (a, min(fJ(G), c)), there exists t* in this interval such that F(t*)~1-5()j6. 
Let e=(t*-a)b/4. Then if a~s<a+e the right-hand side of (9) when t=t* is 
at least 

[t*-a-(t*-a)bj4-3(t*-a)(1-5()j6) + 2(t*-a)(1-b)]/2 ~ (t*-a)b/4 > 0. 

Hence K 3(c, F, t*)>K3(c, F, s) for all a~s<a+e, contradicting the fact that 
a E supp G. Hence a> c/3. 

(f) fJ(G)>a: If fJ(G)=a then K 2(c, a, G)=(c+a)/4<a=K2(c, a-, G) 
(using (e)), while K 2(c, s, G)=(c-a)f2<a for a<s<c, contradicting the fact that 
IX( F)= a. 

(g) If x E [a, min (fJ(G), c)) then xtt=J(F) and xtt=J(G): this follows directly 
from (e) and (c). 

(h) fJ(F)=fJ(G)~c: Assume this is not so. Then fJ(G)<fJ(F)=c (see 
the discussion preceding (a)). Because of (g), K 2(c, s, G) and K 3(c, F, s) are 
continuous in s on [a, fJ(G)), and hence for equilibrium must be constant there. 
Using a standard argument (see, for example, the solution to Problem 17 on p. 294 
of Karlin [1959]) we can establish that F and G are differentiable on this interval. 
The conditions that K 2(c, · , G) and K 3(c, F, ·) be constant then imply that F 
and G satisfy the same first order differential equation on [a, fJ(G)), with the same 
initial condition (F(a)=G(a)=O). Hence F(s)=G(s) if a~s<fJ(G). Thus, 
since we are assuming fJ(G)<fJ(F) (=c), we must have fJ(G)EJ(G). But then 
Kic, fJ(G), G)-Kic, s, G)=JG(fJ(G))(3fJ(G)-c)/4 if fJ(G)<s<c. Since fJ(G)~ 
a>c/3, this is positive and hence supp Fn(/)(G), c)=¢. But then K 3(c, F, s) 
is increasing on (fJ(G), c) (as in (b)), so we must have fJ(G) E J(F) (so that K 3(c, F, ·) 
jumps down at fJ( G)). But then fJ( G) E J(F) n J( G), and c/3 < fJ( G)< c, contrary to 
(a). Hence fJ(G)=fJ(F)~c. 

Now let fJ(G)=fJ(F)=b. Then by (b) we have supp Fn[a,c]=sUppGn 
[a, c]=[a, c]; symmetric arguments yield supp F n [c, b]=supp G n [c, b]= 
[c, b]. By (c), F and G are atomless, except possibly at c. As in the proof of 
(h), they are also differentiable; the conditions that K 2(c, ·,G) and Kic, F, ·) 
be constant on (a, c) imply that G'(t)(c-3t)-G(t)+1=0 and similarly for F. 
Given F(a)=G(a)=O (because of(e) and (c)) we have 

(10) F(t) = G(t) = 1- (3a-c)1/3(3t-c)-1/3 if a~ t <c. 

We can make similar arguments for c<t<b; we obtain 

(11) F(t) = G(t) = (2-3b+c)1/3(2-3t+c)-1/3 if c < t ~b. 

Thus F and G have an atom of the same size at c; since firm 3 has an atom there, 
the size of the atoms is zero by Lemma 1, and F = G is differentiable except possibly 
at c. 

We now determine the position of c. First note that for equilibrium we need 
K 2(c, c-, F)=Kic, c+, F) (both of which must equal the equilibrium payoff 
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of firm 2). A calculation shows that this imples that 

(12) ~: sF'(s)ds = 3c - 2F(c). 

Now, in order for firm 1 to use the pure strategy c, K 1(s, F, F) must be maximized 
at s=c. This requires K~(c-, F, F)~O and K~(c+, F, F)~O ·(where the 
derivative is with respect to the first argument). But if s # c we have 

(13) K~(t, F, F)= F'(t)[2F(t)-3t+ ~: sF'(s)ds] + 1/2- F(t), 

so letting t t c and t t c, and using (12), we need F(c)=1/2. Now we can let t--+c 

in (10) and (11), and use these to calculate~: sF'(s)ds in (12). The only solution 

of the resulting three equations is a= 5/24, c = 1/2, and b = 19/24. Hence the only 
candidate for equilibrium is the one specified in the Proposition. 

To complete the proof we need to show that this is in fact an equilibrium. 
It is clear that K 2(1/2, s, F) increases to K 2 (1/2, a, F)= Kz(1f2, F, F) ass increases 
to a; similarly it increases to Kz(1f2, b, F)=Kz(1f2, F, F) ass decreases to b. 
Hence F is a best reply of firm 2 to (1/2, F); identical arguments apply to firm 3. 
It is also clear that K 1(s, F, F) ~K1(a, F, F) if s ~a and K 1(s, F, F) ~K1(b, F, F) 
if s>b. Thus it remains to show that K 1(s, F, F)~K1(1f2, F, F) if a~s~b. 
Substituting (from (10) and (11)) into (13) we can find K~(s, F, F). Analyzing 
its derivative we find that K~ is negative from s =a until some point, and then is 
positive until s = 1/2. Thus, the only possibilities for maxima of K 1 (s, F, F) on 
[a, 1/2] are s=a or s=1/2. But we find that K 1(a, F, F)=14/48, while K 1(1/2, 
F,F)=19f48. Hence K1(s,F,F)~K1(1/2,F,F) for all a~s~1/2. Since 
F(s)=1-F(1-s), it is immediate that K 1(s, F, F)~K1(1f2, F, F) for all1/2~ 
s ~ b also. Hence s = 1/2 is a best response of firm 1 to (F, F). It is easy to check 
that the payoffs at the equilibrium are (19/48, 29/48, 29/48), completing the proof. 
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