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1. Introduction

In most elections the candidates’ positions are dispersed. One explanation for

the dispersion appeals to the existence of potential entrants: the candidates

distance themselves from each other in order to deter the entry of additional

candidates, or at least to minimize the impact of such entry.1 This explana-

tion is not supported by the one-dimensional three-candidate (simultaneous-

move) Hotelling–Downs spatial model under the assumption that each candi-

date is perfectly informed about the voters’ preferences and has preferences

that satisfy

win � tie for first place � stay out � lose.

If, in this model, two candidates adopt distinct positions on each side of the

median voter’s favorite position then a single entrant at any position loses,

no matter how close the candidates’ positions. Hence either candidate can

move closer to the median without inducing entry, and thereby win. But if

both candidates adopt the median voter’s favorite position then an entrant

at a point sufficiently close to the median wins. Thus the incentive for entry

does not increase smoothly as the candidates’ positions converge, but rather

rises discontinuously from zero, when the candidates’ positions are distinct,

to one, when the positions are the same. The model fails to capture the idea

that entry is deterred by a dispersal in the candidates’ positions not because

the incentives upon which the idea hinges are absent, but because they appear

1Two other explanations build on the ideas that the candidates care about the winning
position, not simply about winning (Wittman (1983), Roemer (1994)), and that citizens are
uncertain about the candidates’ positions (Hug (1995)). These explanations are others are
surveyed in Osborne (1995, Section III).
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with too much vigor: an arbitrarily small amount of dispersion is enough to

discourage entry.

I show that if two ingredients are added to the model then its equilibria

capture the idea. The ingredients are uncertainty by the candidates about

the voters’ preferences, and the possibility that the candidates can move asyn-

chronously. The addition of one of these ingredients without the other in a

three-candidate model is not sufficient to generate pure strategy equilibria in

which two candidates enter, at different positions. If the three candidates

move simultaneously then there is no pure strategy equilibrium, whether or

not the candidates are uncertain about the distribution of voters’ preferences.

If the candidates are certain about the distribution of voters’ preferences and

move in a fixed order, then there is a unique pure subgame perfect equilibrium

outcome, in which the first candidate to move enters at the median voter’s

favorite position, the second candidate stays out, and the third candidate en-

ters at the median.2 If the candidates are certain about the distribution of

voters’ preferences and each candidate may move whenever she wishes, then

in every subgame perfect equilibrium only one candidate enters, and for every

distribution of favorite positions there is an equilibrium in which the position

of the single entrant is the median (Osborne (1993, Proposition 6)).

I study a model in which there are three players, each of whom is uncertain

about the distribution of the voters’ favorite positions and wishes to maximize

her probability of winning. For each player, the minimal acceptable probability

2Weber’s (1992) conclusion is different because he assumes that each player’s objective is
vote maximization, an objective inconsistent with a preference for winning over losing (see
the discussion of Palfrey’s model below).
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of winning is p0: each player prefers to stay out of the competition than to

enter and win with probability less than p0. (The expected payoff to running

may exceed the expected cost only if the probability of winning exceeds p0.)

Each player may choose a position whenever she wishes: time is discrete, and

in each period any player who has not yet chosen a position may do so; once

chosen, a position is immutable.

I show that if there is sufficient uncertainty, the game has an equilibrium

(essentially a subgame perfect equilibrium) in which two players enter at dis-

tinct positions simultaneously in the first period and the third player either

stays out, or, if there is enough uncertainty, enters in the second period at a

position between those of the other candidates. This equilibrium supports the

intuition that candidates may differentiate their positions in order to deter the

entry of an additional candidate, or at least to minimize the impact of such

entry.

The following logic lies behind the equilibrium. If there is relatively little

uncertainty, then each of a pair of candidates has an incentive to choose a

position close to the other, in order to obtain the support of a large number

of moderate voters. But a candidate, say i, who moves too close to the center

invites the entry of the third player, who, by taking a position slightly more

extreme than i’s, can win with sufficiently high probability to justify her entry,

reducing the probability with which candidate i wins. Thus each of the two

entrants is motivated to maintain some distance from the other. As the degree

of uncertainty increases, the extent of the separation necessary to prevent

such entry increases, until entry either on the wings or in the center becomes
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inevitable. At this point, the first two entrants choose positions far enough

apart that the best position for the third candidate is in the middle (where

she does least damage to each of the other candidates).

The model I study is closely related to that of Palfrey (1984). The most

important respect in which the models differ is in the candidates’ preferences.

Palfrey assumes that each candidate prefers the profile x of vote totals to the

profile y if and only if she obtains more votes in x than in y. When there are

three or more candidates this assumption is inconsistent with the candidates’

preferring to win than to lose: in some circumstances, a candidate who wins

outright may increase the number of votes she receives by moving her position

closer to that of a neighbor, but in doing so may also sufficiently increase the

number of votes received by another neighbor that she causes herself to lose

rather than to win. I take a basic feature of electoral competition to be that

candidates prefer to win than to lose, and thus argue that the criterion of

vote maximization is inappropriate for electoral candidates. I do not claim

that winning is all that matters—the margin of victory, for example, may be

significant—but I do suggest that a candidate should prefer any outcome in

which she wins to any in which she loses.

A less significant respect in which Palfrey’s model differs from mine is in

the temporal structure of choices: Palfrey assumes that two candidates choose

positions simultaneously, then a third candidate has the opportunity to do so,

while I allow each candidate to move whenever she wishes. The remaining

difference between the models is that I allow the candidates to be uncertain
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about the voters’ preferences.3

Palfrey shows that his game has a subgame perfect equilibrium in which

the first two candidates choose distinct positions, and the third candidate

subsequently enters between them. As I have argued, such an equilibrium

owes its existence to the unappealing assumption that candidates are vote-

maximizers. However, my results show that if each candidate aims to maximize

the probability of winning, then, in the presence of uncertainty by candidates

about the voters’ preferences, Palfrey’s intuition is strongly rehabilitated: not

only is there an equilibrium in which the pattern of choices is the same as it is

in the equilibrium of his model, but also the timing of actions that he posits

arises endogenously.

My results illustrate two broader points. First, two-candidate models can

be misleading. My results support the intuition that the presence of more

than two potential candidates (as in almost every election) significantly af-

fects the behavior of any players that choose to run. Second, models in which

all the parties are certain of the parameters can be misleading. In most elec-

tions both candidates and voters are significantly uncertain about each others’

preferences. In some prominent elections (e.g. us presidential races), candi-

dates’ uncertainty about voters is tempered by extensive polling. But in many

elections the residual uncertainty is significant. My results suggest that the

presence of uncertainty can dramatically affect the outcome: under perfect

information, all the equilibria of the model I study entail the entry of a single

candidate (Osborne (1993, Proposition 6)), while my main result here shows

3Palfrey (1984, Remark 2 on pp. 154–155) briefly discusses the role for candidate uncer-
tainty in his model, but does not explore its consequences.
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that when candidates are uncertain about the voters’ preferences, the equilibria

have an entirely different flavor.

2. The model

2.1 Extensive game

The model is an extensive game that differs from the one studied in Os-

borne (1993, Section 4) only in its payoffs, which are derived from a model in

which the candidates are imperfectly, rather than perfectly, informed of the

voters’ preferences. The players are three potential candidates, each of whom

chooses whether to enter an electoral competition, and if so at what position.

Each player may enter where she wants, when she wants. Once a player has

chosen a position, she has no further choices.

Precisely, the space of positions is the real line, R. An election is to be

held at a fixed date. Before this date, there is an infinite sequence of times,

starting with “period 1”, at each of which each player who has not yet chosen

a position either chooses a position (a point in R) or waits (W ). In each period

the players’ decisions are made simultaneously.

There is a continuum of voters, each with single-peaked symmetric pref-

erences over positions. I assume (like Palfrey (1984)) that voting is sincere.

Specifically, each voter endorses the candidate whose position is closest to her

favorite position; two or three candidates who share the same position share

the votes associated with that position.

The potential candidates regard the outcome of a pure strategy profile as

uncertain because they are uncertain about the location of the distribution of
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the voters’ favorite positions. Let F be a nonatomic probability distribution

function on R whose support is a finite interval; denote its median by m∗. For

each real number α, let Fα be the probability distribution function on R defined

by Fα(x) = F (x − (α − m∗)). The median of Fα is α; the distributions Fα

share the same shape, but differ in their locations. (Note that Fm∗ = F .) Each

potential candidate knows that the shape of the distribution of the citizens’

favorite positions is F , but is uncertain about its location, given by the value

of α. They share the belief that the probability distribution function of α is G,

which is nonatomic and has median m∗ and support equal to a finite interval.

(Thus, m∗ is the median of the median distribution Fm∗ .)

Denote by πi(x1, x2, x3) the probability that player i wins when all three

players enter and the position of each player j is xj. If x1, x2, and x3 are all

different, for example, we have

πi(x1, x2, x3) = µG({α : vi(α|x1, x2, x3) > vj(α|x1, x2, x3) for all j 6= i})

where vk(α|x1, x2, x3) is the fraction of the votes received by candidate k when

the distribution of favorite positions is Fα and the candidates’ positions are

x1, x2, and x3, and µG is the measure associated with G.

Each potential candidate is indifferent between entering and staying out of

the competition if and only if her probability of winning is p0, where p0 ∈ (0, 1
3
).

For any p > p0 each candidate prefers to win with probability p than to win

with any probability less than p, and prefers to stay out than to win with

probability less than p0. (Such preferences are consistent with there being a

benefit to winning and a cost to running. Under perfect information, when

a candidate’s probability of winning is either 0 (lose), 1
3

(tie with two other
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candidates), 1
2

(tie with one other candidate), or 1 (win), they imply that each

candidate prefers to win than to tie for first place than to stay out than to lose,

as I assume in Proposition 6 of my 1993 paper, mentioned in the introduction.)

2.2 Equilibrium

The notion of equilibrium I use is a slight variant of pure strategy subgame per-

fect equilibrium. A strategy profile in an extensive game with perfect informa-

tion and simultaneous moves (Osborne and Rubinstein (1994, Section 6.3.2))

is a subgame perfect equilibrium if no player can increase her payoff by unilat-

erally changing her strategy at any history after which it is her turn to move.

Thus the behavior the players’ strategies specifies after histories in which two

or more players have simultaneously deviated has no bearing on whether a

strategy profile is a subgame perfect equilibrium, as long as this behavior con-

stitutes an equilibrium in the resulting subgame. Precisely, let σ be a subgame

perfect equilibrium, and let σ′ be another strategy profile. Suppose that every

history h at which σ and σ′ specify different actions for some player has a

subhistory at which σ and σ′ specify different actions for at least two players.

Suppose also that the strategy profile induced by σ′ after every such history

h is a subgame perfect equilibrium of the subgame following h. Then σ ′ is a

subgame perfect equilibrium with the same outcome as σ.

Thus in a game in which every subgame has a subgame perfect equilibrium,

we can check that a strategy profile is a subgame perfect equilibrium without

knowing the players’ complete strategies: we need to know only the action

every player takes after every history in which, in every period, at most one
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player has deviated from her strategy.

Precisely, define a substrategy σi of player i to be a function that assigns an

action of player i to every member of a subset of the set of histories at which

it is player i’s turn to move (i.e., in the game being studied, player i has not

already chosen a position). Denote the set of histories after which σi specifies

an action by H(σi) and define an equilibrium∗ to be a profile σ of substrategies

for which (1) for every player i, H(σi) includes all histories that result when

at most one player deviates from σ in any given period, and (2) after any such

history, no player can increase her payoff by changing her strategy, given that

the other players continue to adhere to σ.

Condition (1) requires that the substrategies contain enough information

to determine whether condition (2), the optimality condition for strategies in

a subgame perfect equilibrium, is satisfied.

To illustrate the notion of an equilibrium∗, consider the two-fold play of a

two-player strategic game in which each player has two actions, A and B. If

the strategic game has two Nash equilibria, (A, A) and (B, B), then the pair of

substrategies of the repeated game in which each player chooses A in the first

period and A in the second period after any history in which at least one player

chose A in the first period is an equilibrium∗; there is no need to specify the

players’ actions when, contrary to both of their strategies, they both choose

B in the first period. This equilibrium∗ corresponds to two subgame perfect

equilibria—one in which each player’s strategy calls for her to choose A after

the history (B, B) and one in which each player’s strategy calls for her to

choose B after the history (B, B).
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In the game I study here, the difference between a strategy profile and a

substrategy profile is greater than it is in this example. For instance, while

a strategy for player 1 must specify an action in period 2 for every first-

period action profile (W, s2, s3), where s2 and s3 are members of R ∪ {W}, a

substrategy profile in which the strategies of players 1 and 2 call for them to

enter in period 1, say at x1 and x2 respectively, and player 3’s strategy calls

for her to wait in period 1, requires player 1’s substrategy to specify an action

for period 2 only after a single history, namely (W, x2, W ). (After any history

in which player 1 chooses a position she has no further choice; any history in

which player 1 chooses W and either player 2 takes an action different from

x2 or player 3 takes an action different from W involves deviations by two or

more players.)

The notions of equilibrium∗ and subgame perfect equilibrium are very

closely related: a subgame perfect equilibrium is an equilibrium∗, and in a

game in which every subgame has a subgame perfect equilibrium, any equilib-

rium∗ is a substrategy profile of a subgame perfect equilibrium. In particular,

the notions can differ only in a game in which some subgame does not possess a

subgame perfect equilibrium. In such a game, there may be no subgame perfect

equilibrium corresponding to some equilibrium∗ σ because a subgame reached

when two or more players simultaneously deviate from σ fails to possess a

subgame perfect equilibrium.

An equilibrium∗ models a steady state in which no player can increase her

payoff by deviating, knowing how the other players will behave both if she

adheres to her strategy and if she deviates from it. (A player may accumulate
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such knowledge by observing the other players’ behavior when she adheres

to her strategy and when she occasionally deviates from it.) The requirement

imposed by the notion of subgame perfect equilibrium that an equilibrium exist

in every subgame reached after two or more players simultaneously deviate is

not relevant to the question of whether a pattern of behavior is a steady state;

as a model of such a steady state, the notion of equilibrium∗ fits better than

that of subgame perfect equilibrium.

I use the notion of equilibrium∗ in my 1993 paper to study the version of

the game studied here in which candidates know the voters’ preferences. When

the candidates are uncertain of these preferences, an equilibrium∗ appears not

to exist; to get insights from the model we need to relax the equilibrium

conditions. The problem is that a player’s payoff may increase as she moves

her position closer to another player’s position, but then fall precipitously

when the locations coincide; she wants to be close to the other player, but not

at the same point. The relaxation I make in the equilibrium conditions is to

consider “ε-equilibrium”, allowing responses that are almost optimal.4

Precisely, an equilibrium is a sequence {σn} of substrategy profiles for

which

• for each n, the profile σn satisfies condition (1) of an equilibrium∗

• the induced sequence of profiles of positions converges

• for every ε > 0 there exists an integer N such that whenever n > N

4An alternative way around the difficulty is to take limits of subgame perfect equilibria
for increasingly fine discretizations of the action space. The results of this approach appear
to be the same as the ones I obtain. Palfrey’s (1984) “limit equilibrium” is closely related
to the notion I use.
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the payoff of every player i under σn is within ε of the supremum of her

payoffs over all her substrategies, given σn
−i.

For example, a subgame in which two candidates are located symmetrically

around the median m∗ at m∗ − δ and m∗ + δ, for δ > 0 sufficiently small, has

an equilibrium in which the third candidate enters at positions approaching

m∗ − δ from below. If F is symmetric about its median then the limit of

the third candidate’s winning probabilities in this equilibrium is G(m∗ − δ/2),

the probability that the median of the distribution of favorite positions is at

most m∗ − δ/2. (There is another equilibrium in which the third candidate’s

position approaches m∗ + δ from above.)

I refer to an equilibrium in which a player’s positions converge from below

(respectively, above) to the position x as one in which the player “chooses the

position x− (respectively, x+)”. Similarly, I write πi(x1, x2, x1−) for the limit

of the probability that player i wins when players 1 and 2 are at x1 and x2

respectively and player 3’s position approaches x1 from below.

In summary, an equilibrium differs from a subgame perfect equilibrium

in two ways. First, an equilibrium does not necessarily specify the players’

actions after all histories, but only after histories that result when, in every

period, at most one player deviates from her strategy. Second, rather than

requiring the players’ strategies to be optimal, an equilibrium requires that

no player gain more than an arbitrarily small amount by deviating from her

strategy.
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3. Symmetric single-peaked distributions

I begin by considering the case in which the densities of the distributions F

and G are single-peaked and symmetric about their medians. (The equilibria I

find may not survive large departures from the assumptions that F and G are

symmetric, but in Appendix 2 I argue that they do survive small departures

from these assumptions.)

3.1 An equilibrium with two entrants

In one of the equilibria I study, denoted {σ∗n}, two players enter in the first

period, one at a position x∗

1 < m∗ and the other at a position x∗

2 > m∗, and

the third player does not enter. The positions x∗

1 and x∗

2 are such that

(a) the third player’s probability of winning if she enters at x∗

1− or at x∗

2+

is p0

(b) at no position can the third player win with probability greater than p0.

If either entrant chooses a position closer to the center then the third player

enters beside her at a slightly more extreme position. If either entrant moves

away from the center then the third player enters between the two entrants

so as to equalize their probabilities of victory (or, if this is not possible, to

minimize the difference between these probabilities) if by doing so she wins

with probability at least p0, and otherwise stays out.

Before defining the substrategy profile σ∗ precisely, I consider informally

the circumstances under which it is an equilibrium. Given player 3’s reac-

tions to deviations by players 1 and 2, it is plausible that neither entrant can
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profitably deviate. Further, if either entrant moves closer to the center then

plausibly it is optimal for the third player to enter at a slightly more extreme

position (where she wins with probability greater than p0). It remains to con-

sider player 3’s optimal reaction to a move away from the center by either

entrant.

To study this optimal reaction, first consider how the players’ vote shares

depend on the value of α (the median of the distribution of the citizens’ favorite

positions) for any positions x1, x2, and x3 with x1 < x2 and x3 = x1−. For such

positions, player 3’s vote share v3(α|x1, x2, x3) is nonincreasing in α, player 2’s

vote share is nondecreasing in α, and player 1’s vote share first increases then

decreases. By the symmetry and single-peakedness of F , candidate 1’s vote

share is maximal when candidate 2’s and 3’s vote shares are equal. There are

two cases.

(i) If x1 and x2 are sufficiently separated, player 1 wins with positive prob-

ability (for some range of values of α player 1’s vote share exceeds those

of players 2 and 3), so that the vote shares have the shapes shown in

Figure 1, and player 3 wins if and only if α < α, the point at which her

vote share is equal to that of player 1.

(ii) If x1 and x2 are relatively close then player 1 does not win for any value

of α (the maximum of player 1’s vote share is less than the value of

player 2’s and player 3’s vote shares when they are equal), and player 3

wins if and only if α is less than the point at which her vote share is

equal to that of player 2.
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α →α

Player 3’s vote share

Player 2’s vote share

Player 1’s vote share

Figure 1. The candidates’ votes shares when their positions are x1, x2, and x3, where
x3 = x1−, x1 < x2, and x2 − x1 is large enough.

Now, a move away from the center by player 2 decreases her vote share

for all values of α and increases that of player 1. (The curve for player 1

in Figure 1 shifts up for all values of α and that for player 2 shifts down.)

The implication for player 3’s optimal response differs between cases (i) and

(ii). In case (i) player 3 competes with player 1 at the margin, and player 3’s

probability of winning at x∗

1− decreases when player 2 moves away from the

center. In case (ii) player 3 competes with player 2 on the margin, and her

probability of winning at x∗

1− increases when player 2 moves away from the

center. A symmetric argument applies to a move by player 1 away from the

center.

This informal analysis suggests that if x∗

1 and x∗

2 are sufficiently separated

then player 3’s optimal response to a move away from the center by either

entrant is to enter between them. But if x∗

1 and x∗

2 are close together then

player 3’s optimal response to such a move is to enter at a position just more

extreme than that of the other entrant, making the move desirable for its per-
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petrator. In conclusion, it seems that we need the points x∗

1 and x∗

2 satisfying

(a) and (b) above to be sufficiently separated in order for the substrategy

profile σ∗ defined informally at the start of the section to be an equilibrium.

Subsequently I show that if the voters’ preferences are uncertain enough

then sufficiently separated points x∗

1 and x∗

2 satisfying (a) exist. These points

may not satisfy (b) because they are too far apart, so that player 3 can win

with probability p0 at some point between them. I show that in this case an

alternative equilibrium exists in which the third candidate enters.

I now define x∗

1 and x∗

2 and the associated equilibrium precisely, and then

define the alternative equilibrium. In Section 3.3 I present the main result,

giving conditions under which the equilibria exist.

The positions x∗

1 and x∗

2 are defined by the conditions that player 3 wins

with probability p0 at x∗

1− and at x∗

2+, that player 1 wins with positive prob-

ability when player 3 enters at x∗

1−, and that player 2 wins with positive

probability when player 3 enters at x∗

2+. Given that the vote shares take the

forms shown in Figure 1, these conditions are equivalent to player 3’s tying for

first place when she locates at x∗

1− and α is such that G(α) = p0, and when

she locates at x∗

2+ and α is such that G(α) = 1 − p0:

1 − FG−1(p0)

(

1
2
(x1 + x2)

)

≤

FG−1(p0)(x1) = FG−1(p0)

(

1
2
(x1 + x2)

)

− FG−1(p0)(x1)

FG−1(1−p0)

(

1
2
(x1 + x2)

)

≤

1 − FG−1(1−p0)(x2) = FG−1(1−p0)(x2) − FG−1(1−p0)

(

1
2
(x1 + x2)

)

.
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These conditions are equivalent to

2FG−1(p0)(x1) = FG−1(p0)

(

1
2
(x1 + x2)

)

≥ 2
3

(1)

2(1 − FG−1(1−p0)(x2)) = 1 − FG−1(1−p0)

(

1
2
(x1 + x2)

)

≥ 2
3
. (2)

If there is little uncertainty about the distribution F (i.e. the dispersion

in G is small), then the two inequalities are inconsistent, so that the condi-

tions have no solution. If there is enough uncertainty about F—specifically,

if FG−1(p0)(m
∗) ≥ 2

3
—then the conditions have a solution. By the symmetry

of F and G we have FG−1(1−p0)(x) = 1 − FG−1(p0)(2m
∗ − x) for any value of

x, so that if x2 = 2m∗ − x1 then (1) and (2) are the same condition, namely

2FG−1(p0)(x
∗

1) = FG−1(p0)(m
∗) ≥ 2

3
. The equation in this condition has a unique

solution because the support of F is an interval. Thus we have the following

result.

Lemma 1 Suppose that the densities of F and G are symmetric about their

medians. If FG−1(p0)(m
∗) ≥ 2

3
then (1) and (2) have a solution (x∗

1, x
∗

2) defined

by FG−1(p0)(x
∗

1) = 1
2
FG−1(p0)(m

∗) and 1
2
(x∗

1 + x∗

2) = m∗.

(If, in addition, the density of F is single-peaked, then (x∗

1, x
∗

2) is the only

solution of (1) and (2).)

The conditions defining x∗

1 and x∗

2 are illustrated in Figure 2: the second

tertile t2 of FG−1(p0) is at most m∗ and the area under fG−1(p0) (the density of

FG−1(p0)) up to x∗

1 is equal to the area between x∗

1 and m∗; x∗

2 is symmetric

with x∗

1 about m∗.

I now specify the substrategy profile σ∗n precisely. The players’ actions

after any history depend only on the positions currently occupied, not on the
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A B

Figure 2. The positions x∗

1 and x∗

2. The points t1 and t2 are the tertiles of FG−1(p0):
ti = FG−1(p0)(i/3). The areas A and B under fG−1(p0) delimited by the dashed lines are
equal.

period in which they were occupied, and are defined as follows:

• Player 1 enters at x∗

1 at the start of the game and after any history in

which the only position occupied is x∗

2.

• Player 2 enters at x∗

2 at the start of the game and after any history in

which the only position occupied is x∗

1.

• Player 3

· stays out at the start of the game and after any history in which

the set of occupied positions is {x∗

1}, {x
∗

2}, or {x∗

1, x
∗

2}

· enters at min{x− 1/n, x∗

2 − 1/n} after any history in which the set

of occupied positions is {x, x∗

2}, where x > x∗

1

· enters at

min{x∗

2 − 1/n, 2m∗ − 1
2
(x + x∗

2)}
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if her probability of winning there is at least p0, and otherwise does

not enter, after any history in which the set of occupied positions

is {x, x∗

2}, where x < x∗

1

· behaves analogously after histories in which the set of occupied

positions is {x∗

1, x} for x 6= x∗

2.

(It is straightforward to check that this description characterizes a triple of

substrategies.)

In the proposition below I give conditions under which {σ∗n} is an equi-

librium. Players 1 and 2 are deterred from moving closer to the center by the

“threat” of player 3 to enter beside them, at a slightly more extreme position,

a move that is rational for her. Note that if player 1 stays out in period 1

then player 3 expects her to enter in the next period, so player 3 optimally

does not enter.5 Note also that although all the action in every σ∗n takes

place in a single period, the simultaneous move game does not have an equi-

librium in which player 1 chooses x∗

1, player 2 chooses x∗

2, and player 3 stays

out: player 3’s threat to enter after a deviation by one of the other players is

essential in maintaining the equilibrium.

3.2 An equilibrium with three entrants

In the presence of great uncertainty about the location of F , the positions x∗

1

and x∗

2 are far enough apart that player 3’s probability of winning at a point

between them exceeds p0, so that {σ∗n} is not an equilibrium. Instead, there is

5Alternatively, there is an equilibrium in which player 3 enters at x∗

1 in the second period
if player 1 does not enter in the first period, and player 1 stays out.
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an equilibrium {σ̂n} in which players 1 and 2 enter at points x̂1 and x̂2 > x̂1 in

the first period, and player 3 enters at m∗ in the second period, where x̂1 and

x̂2 are such that player 3’s probabilities of winning at m∗, at x̂1−, and at x̂2+

are equal, and 1
2
(x̂1 + x̂2) = m∗. Player 3’s reactions to deviations are the same

as they are for the equilibrium {σ∗n}: if either entrant chooses a position closer

to the center then the third player enters beside her at a slightly more extreme

position, while if either entrant moves away from the center then the third

player enters between the two entrants so as to equalize their probabilities of

victory (or, if this is not possible, to minimize the difference between these

probabilities).

If players 1 and 2 follow their strategies then player 3 is indifferent between

staying out, entering at m∗, entering at x̂1−, and entering at x̂2+, and is

worse off entering at any other point. If either player 1 or player 2 deviates

then player 3’s reactions are also optimal, for the same reasons as they are in

the equilibrium {σ∗n}. Finally, the reactions of player 3 deter deviations by

players 1 and 2, again as in {σ∗n}. Note that it is not an equilibrium for all

three candidates to enter in the first period, since in this case player 3 has no

means by which to “punish” a deviation by player 1 or player 2, since she has

already committed herself to a position.

The following result gives conditions under which such positions x̂1 and x̂2

exist. (A proof is in Appendix 1.)

Lemma 2 Suppose that the densities of F and G are symmetric about their

medians and the density of F is single-peaked. For any position x1, let h(x1) =
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2m∗ − x1. Then there exists x̂1 such that

π3(x̂1, h(x̂1), m
∗) = π3(x̂1, h(x̂1), x̂1−) = π3(x̂1, h(x̂1), h(x̂1)+).

If there exists such a value of x̂1 for which the common value p̂ of these

probabilities is positive then there is no other value of x̂1 that satisfies the

equations. We have p̂ < 1
3

and FG−1(p̂)(m
∗) > 2

3
if p̂ > 0.

The substrategy profile σ̂n is defined precisely as follows. As in the pro-

file σ∗n, the players’ actions after any history depend only on the positions

currently occupied, not on the period in which they were occupied. They are

defined as follows:

• Player 1 enters at x̂1 at the start of the game and after any history in

which the only position occupied is x̂2.

• Player 2 enters at x̂2 at the start of the game and after any history in

which the only position occupied is x̂1.

• Player 3

· stays out at the start of the game and after a history in which the

set of occupied positions is {x̂1} or {x̂2}

· enters at m∗ after a history in which the set of occupied positions

is {x̂1, x̂2}

· enters at min{x− 1/n, x̂2 − 1/n} after any history in which the set

of occupied positions is {x, x̂2}, where x > x̂1
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· enters at

min{x̂2 − 1/n, 2m∗ − 1
2
(x + x̂2)}

after any history in which the set of occupied positions is {x, x̂2},

where x < x̂1

· behaves analogously after histories in which the set of occupied

positions is {x̂1, x} for x 6= x̂2.

3.3 Main result

My main result (proved in Appendix 1) shows that if there is sufficient uncer-

tainty then either {σ∗n} or {σ̂n} is an equilibrium.

Proposition Suppose that the densities of F and G are single-peaked and

symmetric about their medians, and FG−1(p0)(m
∗) ≥ 2

3
(i.e. the location of F

is sufficiently uncertain).

(a) If

FG−1( 1

2
(1−p0))(

1
2
(m∗ + x∗

1)) ≥
1
2
FG−1( 1

2
(1−p0))(

1
2
(m∗ + x∗

2)) (3)

(so that player 3’s probability of winning at m∗ is at most p0 when play-

ers 1 and 2 enter at x∗

1 and x∗

2) then {σ∗n} is an equilibrium. In this

equilibrium players 1 and 2 enter in period 1 at x∗

1 and x∗

2 respectively

and player 3 does not enter.

(b) If the inequality in (3) is reversed then {σ̂n} is an equilibrium. In this

equilibrium players 1 and 2 enter in period 1 at x̂1 and x̂2 respectively

and player 3 enters at m∗ in period 2.
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3.4 Comparative statics

When the minimal acceptable probability p0 of winning is small, (3) is violated,

and hence the three-candidate equilibrium {σ̂n} exists. As p0 increases, the

candidates’ positions remain the same as long as (3) is still violated. At

some point (3) is satisfied, in which case the two-candidate equilibrium {σ∗n}

replaces {σ̂n}. As p0 increases further, x∗

1 and x∗

2 converge until FG−1(p0)(m
∗) <

2
3
, at which point neither equilibrium exists.

Now consider the effect of an increase in the degree of uncertainty. Consider

a family of distributions Gβ, indexed by the parameter β, for which Gβ(α) is

increasing in β for all α < m∗ and decreasing in β for all α > m∗. (As β

increases, Gβ becomes more uncertain.) If β takes the smallest value under

which either equilibrium exists (i.e. FG−1

β
(p0)(m

∗) = 2
3
) then (3) is satisfied, so

that the equilibrium {σ∗n} exists: when the uncertainty about the distribution

of voters’ preferences is relatively small, there are two entrants. As the un-

certainty increases (β increases), the positions x∗

1 and x∗

2 separate. However,

given the change in G, the probability of player 3’s winning at some position

between x∗

1 and x∗

2 does not necessarily increase, with the consequence that the

nature of the equilibrium may go back and forth between {σ∗n} (two entrants)

and {σ̂n} (three entrants) as the degree of uncertainty increases.

3.5 Discussion

The proposition is silent about the existence of an equilibrium when the un-

certainty about the location of F is small. My investigation of this issue

suggests, but does not prove, that no (pure) equilibrium exists in this case.
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The equilibrium {σ∗n} does not survive for an interesting reason: each entrant

can increase her chances of winning by making her position a little more ex-

treme. When there is little uncertainty, the positions x∗

1 and x∗

2 are close to

each other, so that if the third player enters at x∗

1− then she competes with

player 2, and player 1 has no chance of winning (the graph of player 1’s vote

share in the analogue of Figure 1 lies entirely below that of player 2’s and

player 3’s shares). In this case, a move by player 2 to a slightly more extreme

position increases player 3’s probability of winning at x∗

1− above p0, thereby

making player 3’s entry worthwhile. Her entry makes player 2 better off, since

it splits the vote on the left between players 1 and 3. Thus the deviation by

player 2 is profitable. Informally, candidate 2 takes a more extreme position

in order to make it worthwhile for her opposition to splinter.

The proposition does not show that {σ∗n} and {σ̂n} are the only equilibria.

It is easy to argue that there is no equilibrium in which all three players enter

simultaneously in the first period (whether or not the distributions F and G

are single-peaked and symmetric), but it is more complicated to rule out other

configurations. In particular, to study the possibility of equilibria in which

one player enters in period 1, we need to study the best responses of a player

to all possible pairs of positions for the other two players, a task that appears

to be complex. (In the simpler model in which two players are constrained to

enter in the first period and the third is restricted to the second period (as in

Palfrey’s (1984) model), {σ∗n} and {σ̂n} are the only equilibria.)

In Appendix 2 I argue that the equilibria {σ∗n} and {σ̂n} do not depend

sensitively on the assumption that the distributions F and G are symmetric:
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if these distributions are slightly asymmetric then similar equilibria continue

to exist. If F and G are far from symmetric, however, it appears that there

may be no equilibrium outcomes like those generated by {σ∗n} and {σ̂n}.

Certainly other equilibria may exist when F and G are far from symmetric.

For instance, for a case in which F is very asymmetric I give an example in

Osborne (1993, p. 146) of an equilibrium in the case of certainty in which

one candidate enters in the first period (at a position more extreme than any

citizen’s favorite position), and no further candidates enter; this equilibrium

survives the introduction of a little uncertainty about F .

4. Concluding remarks

My result provides a set of circumstances under which the intuition that the

protagonists in a two-candidate competition are under pressure to differentiate

their positions in order to deter entry is logically consistent. The result reveals

that the intuition relies on both the candidates’ uncertainty about the voters’

preferences and the possibility of their acting asynchronously.

The case of three potential candidates is the simplest one in which the in-

tuitive argument can possibly make sense. The extent to which the equilibria

depend on there being exactly three potential candidates is unclear. At a min-

imum, the precise forms of the equilibria appear to depend on this assumption.

If the policy differentiation in the equilibria depends on the assumption—if,

when there are four or more potential candidates, the equilibria involve little

or no policy differences—then the model shows another dimension in which

the intuition is not robust. (A full analysis of the model with more than three
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potential candidates appears to be difficult.)

An important question in the study of elections concerns the implications of

different electoral systems for the number of candidates, the dispersion in their

positions, and ultimately the representativeness of the winner’s position. The

fact that tractable multicandidate equilibria exist for almost no distribution of

the voters’ preferences in the standard Hotelling–Downs model has inhibited

approaches to this question. My model, building upon Palfrey’s, provides a

vehicle with which to address the question.

As an example, consider briefly the different implications of plurality rule

and a two-ballot runoff system. In the equilibrium {σ∗n}, the third player’s

entry beside one of the other players leads her to win with probability close

to p0. At this position she also has a positive probability of coming second,

so that her probability of getting into the second round exceeds p0. In the

second round she wins with probability 1
2
, so that if her probability of coming

second in the first round exceeds p0, she will choose to enter. Consequently

the existing candidates will have to adopt somewhat more extreme positions

under a runoff system then under plurality rule in order to keep the third

candidate out of the race. This tendency contrasts with that in the citizen-

candidate model (Osborne and Slivinski (1996), Besley and Coate (1997)),

where in two-candidate equilibria the dispersion in the entrants’ positions is

designed to prevent entry between the two candidates’ positions, so that under

a runoff system less dispersion is possible.
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Appendix 1: Proofs

Proof of Lemma 2. The function π3(x1, h(x1), m
∗) is decreasing in x1 when

it is positive, because for all values of α the vote shares of players 1 and 2

increase with x1, while that of player 3 decreases. (For any given x1, player 1’s

vote share as a function of α decreases, that of player 3 increases, and that

of player 2 increases then decreases.) The function π3(x1, h(x1), x1−), on the

other hand, is increasing in x1 where it is positive, because for all values of

α the vote share of player 1 decreases with x1, that of player 2 remains the

same, and that of player 3 increases. Thus there exists x̂1 satisfying the first

equation; the symmetry of F and G implies that the same value of x1 satisfies

the second equation. Further, if there is a solution of the first equation for

which π3(x̂1, h(x̂1), m
∗) > 0 then there is no other solution.

If FG−1(p̂)(m
∗) ≤ 2

3
then for the profile of positions (x̂1, x̂2, x̂1−), player 3

ties for first place with player 2 when α = G−1(p̂) (because player 3 wins

with probability p̂). Thus G−1(p̂) is the midpoint of [x̂1, m
∗]. It follows that

the maximal vote share, as α varies, of a candidate whose constituency has

length 1
2
[x̂2 − x̂1] is less than 1

3
(using the fact that FG−1(p̂)(m

∗) ≤ 2
3
). Because

player 3 is such a candidate when the profile of positions is (x̂1, x̂2, m
∗), we

have π3(x̂1, x̂2, m
∗) = p̂ = 0.

It follows that if p̂ > 0 then FG−1(p̂)(m
∗) > 2

3
, so that for the profile of posi-

tions (x̂1, x̂2, x̂1−), players 1 and 3 tie for first place when α = G−1(p̂) (player 2

receives less than 1
3

of the vote): v1(G
−1(p̂)|x̂1, x̂2, x̂1−) = v3(G

−1(p̂)|x̂1, x̂2, x̂1−).

Now, the constituency of player 3 at the profile (x̂1, x̂2, m
∗) has the same length

as the constituency of player 1 at the profile (x̂1, x̂2, x̂1−), so by the single-
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peakedness of F , v3(G
−1(p̂)|x̂1, x̂2, m

∗) < v1(G
−1(p̂)|x̂1, x̂2, x̂1−). Further,

v3(G
−1(p̂)|x̂1, x̂2, x̂1−) < v1(G

−1(p̂)|x̂1, x̂2, m
∗). Thus v3(G

−1(p̂)|x̂1, x̂2, m
∗) <

v1(G
−1(p̂)|x̂1, x̂2, m

∗), so that player 1 loses for the profile (x̂1, x̂2, m
∗) when

α = G−1(p̂). It follows that π3(x̂1, x̂2, m
∗) < 1 − 2p̂. By definition we have

π3(x̂1, x̂2, m
∗) = p̂, so that p̂ < 1

3
. �

In the proof of the proposition I use the following result.

Lemma 3 Suppose that the density of F is single-peaked. If the candidates’

positions are x1 < x2 < x3 and candidate 2 wins with positive probability,

then the set of values of α for which she wins is an interval of the form
(

1
2
(x1 + x2) + δ1,

1
2
(x2 + x3) − δ2

)

, where δ1 > 0 and δ2 > 0. The values of

δ1 and δ2, and hence the length of the interval, are independent of x2. If the

density of F is symmetric about its median then δ1 = δ2.

Proof. As the value of α increases, the vote share of candidate 1 decreases,

that of candidate 2 increases then decreases, and that of candidate 3 increases.

Thus if candidate 2 wins with positive probability then she wins for all values

of α such that

Fα

(

1
2
(x2 + x3)

)

− Fα

(

1
2
(x1 + x2)

)

>

max{Fα

(

1
2
(x1 + x2)

)

, 1 − Fα

(

1
2
(x2 + x3)

)

}. (4)

By the single-peakedness of F , this set is an interval (refer to Figure 3). If

α ≤ 1
2
(x1 + x2) then player 1 wins, because she obtains more than one half of

the votes. Thus the smallest point in the interval exceeds 1
2
(x1+x2). Similarly,

the largest point in the interval is less than 1
2
(x2 + x3). Because the length of
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the interval (1
2
(x1 + x2),

1
2
(x2 + x3)) of positions that are closer to x2 than to

either of the other candidates is independent of x2, so too is the length of the

interval of values of α that satisfy (4). Finally, if the density of F is symmetric

about its median, the interval takes the form
(

1
2
(x1 + x2) + δ, 1

2
(x2 + x3) − δ

)

for some δ > 0. �

x1 x2 x3α α

fα fα

Figure 3. Candidate 2, at x2, wins for all values of α between α and α, where α is
determined by the condition that the shaded areas are equal and α is determined by a
symmetric condition. The thick vertical lines indicate the midpoints of [x1, x2] and [x2, x3].

Proof of Proposition. (a) The equilibrium {σ∗n}: optimality of player 3’s

strategy I begin by arguing that player 3’s action is optimal after each history

in which in each period at most one player deviated from her equilibrium

strategy. I consider the possible sets of occupied positions in turn.

∅ and {x∗

1, x
∗

2}: In both cases every action of player 3 results in the same

set of occupied positions, because σ∗n calls for players 1 and 2 to enter

in period 1 at x∗

1 and x∗

2 respectively. If player 3 enters at x∗

1− then

she wins with probability p0; if she enters at x < x∗

1 then she wins with

smaller probability. Symmetrically, her probability of winning at any
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point greater than x∗

2 is at most p0. I now show that entry in (x∗

1, x
∗

2),

or at x∗

1 or x∗

2, leads also to a win with probability at most p0.

x3 ∈ (x∗

1, x
∗

2): From Lemma 3 and the single-peakedness and symmetry

of G, the position that maximizes 3’s probability of winning is m∗

(= 1
2
(x∗

1 + x∗

2)). The inequality (3) implies that the probability of

player 3’s winning at m∗ is at most p0.

x3 = x∗

1 or x3 = x∗

2: First suppose that x3 = x∗

1. Then players 1 and 3

split the votes associated with the position x∗

1. Thus π1(x
∗

1, x
∗

2, x
∗

1) =

π3(x
∗

1, x
∗

2, x
∗

1). Now, for all α, the sum of player 1’s and player 3’s

vote shares for the profile of positions (x∗

1, x
∗

2, x
∗

1) is the same as it

is for the profile (x∗

1, x
∗

2, x
∗

1−). For the profile (x∗

1, x
∗

2, x
∗

1), however,

both player 1 and player 3 need to beat player 2 in order for one

of them to win, while for the profile (x∗

1, x
∗

2, x
∗

1−) only one of them

needs to beat player 2 in order for one of them to win. Thus

π1(x
∗

1, x
∗

2, x
∗

1) + π3(x
∗

1, x
∗

2, x
∗

1) ≤ π1(x
∗

1, x
∗

2, x
∗

1−) + π3(x
∗

1, x
∗

2, x
∗

1−).

Because π1(x
∗

1, x
∗

2, x
∗

1−) = π3(x
∗

1, x
∗

2, x
∗

1+), it follows that

π3(x
∗

1, x
∗

2, x
∗

1) ≤
1
2
[π3(x

∗

1, x
∗

2, x
∗

1+) + π3(x1, x2, x
∗

1−)].

Each term on the right-hand side is at most p0 by the previous

arguments, so the probability of player 3’s winning at x∗

1 is at most

p0. A symmetric argument applies to the case x3 = x∗

2.

I conclude that after any history in which either no position is occupied

or the positions x∗

1 and x∗

2 are occupied, there is no position at which
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player 3’s probability of winning exceeds p0, so that an optimal action

for her is to stay out.

{x1, x
∗

2} where x1 ∈ (x∗

1, x
∗

2): Of the points outside [x1, x
∗

2], clearly none ex-

cept possibly x1− and x∗

2+ are optimal for player 3. If x3 = x1− then

player 3 wins for all values of α up to some critical value greater than x1,

say x1 + δ. If x3 = x∗

2+ then player 3 wins for all values of α in excess of

some critical value; by the symmetry of F , this critical value is x∗

2 − δ.

But now because x1 is closer to m∗ than is x∗

2, and the density of G is

symmetric about m∗, it follows that player 3’s probability of winning at

x∗

2+ is less than her probability of winning at x1−.

I now argue that π3(x1, x
∗

2, x1−) > p0. Relative to the case in which the

profile of positions is (x∗

1, x
∗

2, x
∗

1−), for all values of α player 3’s share of

the vote is higher when the profile of positions is (x1, x
∗

2, x1−). Further,

for α ≤ G−1(p0), player 1’s share is lower, because her constituency

is shorter, FG−1(p0)(x
∗

1) = 1
2
FG−1(p0)(m

∗) ≥ 1
3
, and F is symmetric and

single-peaked. Thus π3(x1, x
∗

2, x1−) > π3(x
∗

1, x
∗

2, x
∗

1−) = p0.

Next I argue that at all points in [x1, x
∗

2] player 3’s probability of winning

is less than p0. For x3 ∈ (x1, x
∗

2), π3(x1, x
∗

2, x3) is decreasing in x1 (for

each value of α, player 1’s share of the vote increases and player 3’s share

decreases as x1 increases). Because π3(x
∗

1, x
∗

2, x3) ≤ p0 by the argument

for a history in which the set of occupied positions is {x∗

1, x
∗

2}, we have

π3(x1, x
∗

2, x3) < p0 for x1 > x∗

1 and all x3 ∈ (x1, x
∗

2).

If x3 = x1 then player 3 shares with player 1 the votes associated with
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the position x1, and, as I argued in the previous case, π3(x1, x
∗

2, x1) ≤

1
2
[π3(x1, x

∗

2, x1+)+π3(x1, x
∗

2, x1−)]. Because we have π3(x1, x
∗

2, x1+) < p0

and π3(x1, x
∗

2, x1−) > p0 by the previous paragraphs, π3(x1, x
∗

2, x1) <

π3(x1, x
∗

2, x1−), so that entry by player 3 at x1− is better than entry at

x1. A symmetric argument leads to the conclusion that entry at x∗

2 is

not optimal either.

I conclude that player 3’s optimal action when the positions x1 < x∗

1 and

x∗

2 are occupied is to enter at x1−.

{x1, x
∗

2} where x1 ≥ x∗

2: In this case x∗

2− is the optimal position for player 3:

she wins with probability greater than 1
2

there, and with probability less

than 1
2

if she enters at any point greater than x∗

2 (because then player 2

wins with probability greater than 1
2
).

{x1, x
∗

2} where x1 < x∗

1: As before, neither x1 nor x∗

2 is an optimal position for

player 3. I now argue that neither are x1− or x∗

2+. By the symmetry of

F and G, player 3’s probability of winning at x∗

2+ exceeds her probability

of winning at x1− (as argued previously). Now suppose that player 3

locates at x∗

2+. Compared with the situation in which the positions are

(x∗

1, x
∗

2, x
∗

2+), player 1’s share of the votes is lower for all values of α,

player 2’s is higher, and player 3’s is the same; in both cases player 2’s

probability of winning is positive. (Refer to a diagram analogous to

Figure 1.) Thus player 3’s probability of winning is smaller than it is for

the positions (x∗

1, x
∗

2, x
∗

2+), when it is p0.

The remaining possibilities are that player 3 chooses a position in (x1, x
∗

2)
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or does not enter. If she chooses a position in (x1, x
∗

2), she wins for an

interval of values of α whose form is given in Lemma 3. Given the

symmetry and single-peakedness of G, the position that maximizes her

probability of winning is thus such that, if possible, this interval is cen-

tered at m∗, which implies that x3 = 2m∗ − 1
2
(x1 + x∗

2); otherwise the

position that maximizes her probability of winning is x∗

2−. Thus an op-

timal action of player 3 is to enter at min{x∗

2−, 2m∗ − 1
2
(x1 + x∗

2)} if her

probability of winning there is at least p0, and otherwise to stay out.

This completes the argument that the actions of player 3 defined in σ∗n
3 are

ε-optimal given σ∗n
1 and σ∗n

2 .

Optimality of player 1’s and player 2’s strategies Now I argue that player 1’s

action is optimal after every history in which in each period at most one player

deviated from σ∗n. Such histories come in only two types: the initial history

and those in which the set of occupied positions is {x∗

2}. Because σ∗n
2 calls for

player 2 to enter at x∗

2 in period 1, any action by player 1 after any of these

histories results in the same set of occupied positions.

If player 1 follows her strategy and enters at x∗

1 then player 3 subsequently

stays out, and player 1 wins with probability 1
2
. Player 1’s other options are

to stay out and to enter at a point different from x∗

1. So long as she stays

out, player 3 stays out too (in each period she expects player 1 to follow the

precepts of σ∗n
1 and enter in the next period at x∗

1). Thus player 1 is no better

off staying out than entering at x∗

1.

If player 1 enters at x1 > x∗

1 then player 3 enters in the next period at

min{x1−, x∗

2−}. For x1 ∈ (x∗

1, x
∗

2) and x3 ∈ (x1, x
∗

2), the arguments above
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imply that π3(x1, x
∗

2, x3) < p0, so that, in particular, π3(x1, x
∗

2, x1+) < p0. Be-

cause π1(x1, x
∗

2, x1−) = π3(x1, x
∗

2, x1+), I conclude that player 1’s probability

of winning when she locates at x1 ∈ (x∗

1, x
∗

2) and player 3 reacts according to

her strategy is less than p0 < 1
3
. If x1 ≥ x∗

2 then player 3 enters in the next

period at x∗

2−, so that player 1’s probability of winning is less than 1
2
.

If player 1 enters at x1 < x∗

1 then player 3 either stays out or enters at

min{x∗

2−, 2m∗ − 1
2
(x + x∗

2)}. If she stays out then player 1’s probability of

winning is less than it is when player 1’s position is x∗

1. If she enters then

either her position equalizes player 1’s and player 2’s probabilities of winning,

or x3 = x∗

2−, in which case player 2’s probability of winning exceeds player 1’s.

In both cases player 1’s probability of winning is less than 1
2
(1 − p0) < 1

2
.

I conclude that no position is better for player 1 than x∗

1. Given the sym-

metry assumptions, the same arguments imply that no position is better for

player 2 than x∗

2.

(b) The equilibrium {σ̂n}: optimality of player 3’s strategy As for {σ∗n}, I

begin by arguing that player 3’s action is optimal after each history in which

in each period at most one player deviated from her equilibrium strategy;

I consider the possible sets of occupied positions in turn. First note that

given the opposite inequality to (3), we have π3(x
∗

1, x
∗

2, m
∗) ≥ p0. Further,

π3(x
∗

1, x
∗

2, x1−) = p0 by definition. Thus because π3(x1, h(x1), m
∗) is decreasing

in x1 and π3(x1, h(x1), h(x1)−) is increasing in x1 (see the proof of Lemma 2),

we have p̂ ≥ p0.

∅ and {x̂1, x̂2}: In both cases every action by player 3 results in the same

set of occupied positions, because σ̂n calls for players 1 and 2 to enter
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in period 1 at x̂1 and x̂2 respectively. If player 3 enters at x̂1− then

she wins with probability p̂; if she enters at x < x̂1 then she wins with

smaller probability. Symmetrically, her probability of winning at any

point greater than x̂2 is at most p̂. I now show that entry in (x̂1, x̂2), or

at x̂1 or x̂2, leads to a win with probability at most p̂.

x3 ∈ (x̂1, x̂2): From Lemma 3 and the single-peakedness and symmetry

of G, m∗ maximizes 3’s probability of winning, which is equal to p̂.

x3 = x̂1 or x3 = x̂2: As for the equilibrium {σ∗n}, neither of these po-

sitions is optimal.

I conclude that after any history in which either no positions are occupied

or the positions x̂1 and x̂2 are occupied, there is no position at which

player 3’s probability of winning exceeds p̂. Because p̂ ≥ p0, an optimal

action for player 3 is to enter at m∗.

{x1, x̂2} where x1 ∈ (x̂1, x̂2): By the same argument as for the equilibrium

{σ∗n}, we have π3(x1, x̂2, x1−) > π3(x1, x̂2, x̂2+). I now argue that the

probability of 3’s winning at x1− exceeds p̂. By the definition of x̂1

and x̂2, player 3 wins when the profile of positions is (x̂1, x̂2, x1−) if

and only if α < G−1(p̂). Now, p̂ ≥ p0 > 0, so by Lemma 2 we have

FG−1(p̂)(m
∗) > 2

3
; given this inequality, the argument is the same as the

analogous argument for the equilibrium {σ∗n}.

Now let x3 ∈ (x1, x̂2). For all values of α player 1’s vote share is higher

and player 3’s is smaller than when it is (x̂1, x̂2, x3). Thus π3(x1, x̂2, x3) <

π3(x̂1, x̂2, x3) ≤ p̂.
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By the same argument as for the equilibrium {σ∗n}, entry by player 3 at

either x1 or x̂2 is worse for player 2 than entry at x1−.

I conclude that player 3’s optimal action in this case is to enter at x1−.

{x1, x̂2} where x1 ≥ x̂2: By the same argument as for the equilibrium {σ∗n},

x̂2− is the optimal position for player 3.

{x1, x̂2} where x1 < x̂1: By the same argument as for the equilibrium {σ∗n},

an optimal action of player 3 is to enter at min{x̂2−, 2m∗ − 1
2
(x1 + x̂2)}.

This completes the argument that the actions of player 3 defined in σ̂n
3 are

ε-optimal given σ̂n
1 and σ̂n

2 .

Optimality of player 1’s strategy and player 2’s strategy Now I argue that

player 1’s action is optimal after every history in which in each period at most

one player deviated from σ̂n. Such histories come in only two types: the initial

history and those in which the set of occupied positions is {x̂2}. Because σ̂n
2

calls for player 2 to enter at x̂2 in period 1, any action by player 1 after any

of these histories results in the same set of occupied positions.

If player 1 follows her strategy and enters at x̂1 then player 3 subsequently

enters at m∗. Player 1’s other options are to stay out and to enter at a point

different from x̂1. So long as she stays out, player 3 stays out too (in each

period she expects player 1 to follow the precepts of σ̂n
1 and enter in the next

period at x̂1). Thus player 1 is no better off staying out than entering at x̂1.

By the same argument as for the equilibrium {σ∗n}, if player 1 enters at

x1 > x̂1 then player 3’s reaction of entering at min{x1−, x̂2−} leads player 1

to win with probability less than p̂. Because p̂ < 1
3
, player 1 is worse off if she
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makes such a deviation. If x1 ≥ x̂2 then player 3 reacts by entering at x̂2−,

so that player 1’s probability of winning is less than p̂, because it is less than

player 3’s probability of winning when the profile of positions is (x̂1, x̂2, x1).

If player 1 enters at x1 < x̂1 then player 3 enters at min{x̂2−, 2m∗ −

1
2
(x + x̂2)}. In this case either her position equalizes player 1’s and player 2’s

probabilities of winning or x3 = x̂2−, and player 2’s probability of winning

exceeds player 1’s. In both cases player 1’s probability of winning is less than

1
2
(1 − p̂), her probability of winning if she locates at x̂1.

I conclude that no position is better for player 1 than x̂1. Given the sym-

metry assumptions, the same arguments imply that no position is better for

player 2 than x̂2. �

Appendix 2: Slightly Asymmetric Distributions F and G

In this appendix I argue that an analogue of the Proposition continues to hold

if F and G are slightly asymmetric.

The conditions (1) and (2) do not depend on the symmetry of F and G.

The equation in the first condition associates with each value of x1 a unique

value of x2, while the equation in the second condition associates with each

value of x2 a unique value of x1. When F and G are symmetric, the graphs of

these two relations strictly intersect. Small enough perturbations in F and G

change the relations only slightly, so that if the asymmetries of F and G are

sufficiently small, there is a pair (x∗

1, x
∗

2) that satisfies the two conditions (as

Lemma 1 shows for the symmetric case).

Lemma 2 can similarly be extended to the case in which F and G are
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slightly asymmetric: there are points x̂1, x̂2, and x̂3 such that

π3(x̂1, x̂2, x̂3) = π3(x̂1, x̂2, x̂1−) = π3(x̂1, x̂2, x̂2+).

When F and G are asymmetric we need to modify the behavior that

player 3’s equilibrium strategy σ∗n
3 specifies after a history in which the set of

occupied positions is {x, x∗

2} with x < x∗

1. If, in this case, player 3’s optimal

action is to enter, the best point at which to do so is in (x, x∗

2) but is no longer

necessarily min{x∗

2−, 2m∗ − 1
2
(x + x∗

2)}. The third point in the strategy σ∗n
3

should be replaced by “enters at the point in (x, x∗

2) that maximizes her proba-

bility of winning if this maximal probability is at least p0, and otherwise stays

out after any history in which the set of occupied positions is {x, x∗

2}, where

x < x∗

1”. Similarly, the second point in the strategy σ̂n
3 should be replaced by

“enters at the point in (x̂1, x̂2) that maximizes her probability of winning after

a history in which the set of occupied positions is {x̂1, x̂2}” and the fourth

point should be replaced by “enters at the point in (x, x̂2) that maximizes her

probability of winning after any history in which the set of occupied positions

is {x, x̂2}, where x < x̂1”.

Whether or not condition (3) in the Proposition is satisfied determines

which of the equilibria {σ∗n} and {σ̂n} exists. If it is satisfied then x∗

1 and

x∗

2 are close enough together that player 3’s probability of winning at every

point in (x∗

1, x
∗

2) is at most p0 when players 1 and 2 enter at x∗

1 and x∗

2; if it

is violated then there is some point in (x∗

1, x
∗

2) at which player 3’s probability

of winning exceeds p0. If F and G are asymmetric, there appears to be no

simple condition like (3) on F and G that determines which case holds; (3)

can be replaced simply by the condition that there is no point in (x∗

1, x
∗

2) at
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which player 3’s probability of winning is greater than p0.

In the case that F and G are asymmetric, the following further require-

ments need to be added to the Proposition:

π3(x1, x
∗

2, x1−) is increasing in x1

π3(x
∗

1, x2, x2+) is decreasing in x2

π3(x1, x
∗

2, x1−) > π3(x1, x
∗

2, x
∗

2+) for x∗

1 < x1 < x∗

2

π3(x
∗

1, x2, x2+) > π3(x
∗

1, x2, x
∗

1−) for x∗

1 < x2 < x∗

2.

(5)

When F and G are symmetric, all of these (strict) conditions are satisfied; they

continue to be satisfied when the asymmetries in F and G are small enough.

(They guarantee, for example, that player 3 enters if player 1’s position is less

than x∗

1, deterring such a move by player 1.)

The proof of the Proposition can now be modified to cover the case in

which F and G are slightly asymmetric. The first two paragraphs need no

change. In the third paragraph (“x3 ∈ (x∗

1, x
∗

2)”) the modified version of (3),

rather than (3) itself, needs to be used. The next two paragraphs need no

change. The conclusion of the next two paragraphs (the start of the argument

for {x1, x
∗

2} where x1 ∈ (x∗

1, x
∗

2)) now follows from (5). The arguments for the

remainder of this case and the next case need no change. The argument for

the first paragraph of the case {x1, x
∗

2} where x1 < x∗

1 also now follows from

(5); the next paragraph is no longer needed, given the less specific form of

player 3’s strategy in the modified result.

The remainder of the proof for the equilibrium {σ∗n} remains the same,

except for the last argument, concerning the implications of player 1’s entering

at x1 < x∗

1. In this case, player 3 either stays out or enters at the point
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in (x1, x
∗

2) that maximizes her probability of winning. If she stays out then

player 1’s probability of winning is less than it is when player 1 enters at x∗

1.

If she enters then her probability of winning is at least p0, and, for sufficiently

small asymmetries in F and G, player 1’s and player 2’s probabilities of winning

are approximately equal, so that player 1’s probability of winning is less than 1
2
.

The changes in the argument for the equilibrium {σ̂n} are similar.
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Figure legends

Figure 1: The candidates’ votes shares when their positions are x1, x2, and

x3, where x3 = x1−, x1 < x2, and x2 − x1 is large enough.

Figure 2: The positions x∗

1 and x∗

2. The points t1 and t2 are the tertiles of

FG−1(p0): ti = FG−1(p0)(i/3). The areas A and B under fG−1(p0) delimited by

the dashed lines are equal.

Figure 3: Candidate 2, at x2, wins for all values of α between α and α, where

α is determined by the condition that the shaded areas are equal and α is

determined by a symmetric condition. The thick vertical lines indicate the

midpoints of [x1, x2] and [x2, x3].
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