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Preface

In many societies, a leader or group of leaders formulates rules that regulate the
interactions among individuals and possesses means by which to (imperfectly)
enforce these rules. The rules restrict, tax, and subsidize the members’ actions.
For example, theft may be punishable, economic activity taxed, and members
of the society with skills not highly valued by others subsidized. The degree to
which the members of a society may influence the selection of the group of lead-
ers and the rules that they enact, and the manner in which they may do so, varies
widely. In some societies, elections determine the composition of an assembly
that plays a role in determining the rules enacted. However, the nature of the
role this assembly plays and the sensitivity of its composition to the preferences
of the members of the society varies considerably across societies. These topics
are subjects of the field of political economy.

Many other topics fall under the heading of political economy. This book
covers only a small part of the field; its title should be read as “some models in
political economy”. In terms of methodology, it is restricted to formal models.
In terms of subjects, it concentrates on collective choice, voting, and electoral
competition, with brief forays into bargaining and regime change.

I present a small number of models in detail, and make no attempt to survey
related work. I personally appreciate a result only when I understand its proof,
and for this reason I include full proofs of almost all the results I state.

The models I discuss are the ones that I find appealing—they elegantly ex-
press original ideas and help me organize my thoughts about aspects of the world.
One way in which they do that is bringing to the fore the common threads in
disparate situations. For example, the model of collective decision-making in
Chapter 1 highlights the elements common to the problems of the residents of
a country choosing a national health policy and a group of friends choosing a
restaurant for dinner. In linking situations in this way, the model make me think
that I better understand some aspect of the world, although the precise nature of
that improvement is often hard to pin down .

In models as in many other spheres, tastes differ. I prefer relatively general
models over ones that assume specific functional forms and am wary of refine-
ments of the basic solution concepts of game theory, Nash equilibrium and sub-
game perfect equilibrium. I find models that assume specific functional forms
unsatisfying because they leave open the possibility that their properties depend
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viii Preface

on the forms, and models that consider only a subset of equilibria unsatisfying
because they they leave open the possibility that other equilibria do not have
the same properties. But in both cases, the dividing line is fuzzy. After all, every
model is an example of a more general model. In some of the models I discuss,
the decision-makers’ payoff functions are linear, a specific functional form, and
the players are assumed not to use weakly dominated actions, a refinement of
the standard notions of equilibrium.

One large class of models that I omit is worth mentioning explicitly. Many of
the models I discuss involve candidates competing in elections. In all of these
models I assume that each candidate aims to maximize her probability of win-
ning. Many models that have been studied assume instead that each candidate
aims to maximize the expected number of votes she receives or her expected plu-
rality. These criteria, while often simplifying the analysis, are generally inconsis-
tent with the maximization of the probability of winning: a candidate’s expected
vote share or expected plurality may be higher in one situation than in another
even though her probability of winning is lower.

Format and conventions

The formal content is contained in definitions and propositions, which are self-
contained. The text is intended to make the formal content digestible, but the
definitions and propositions are intended to be entirely self-contained: if you
read nothing else you will not miss only discussion and motivation, not any
formal content.

In the electronic version of the book, every term in the boxes containing
the formal content that has a technical meaning, other than basic mathemati-
cal terms, is hyperlinked to its definition. If you click on the hyperlink you are
taken to the definition; your pdf viewer probably allows you to return to where
you were by pressing the Alt and left arrow keys. My intention is that these hy-
perlinks allow you to read any definition or result independently of the other
material.

With a few exceptions, the names I attach to concepts, models, and results re-
late to their content rather than the people who originated them, even when the
names of the originators are commonly used by researchers in the area. Names
that relate to the originators are convenient shorthands for the cognoscenti, but
are unhelpful for the uninitiated or for those of us who are memory-challenged.
Further, many models have mixed and unclear parentage, and in those cases
assigning one name implies a misplaced certainty regarding their origin.
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The residents of a country have to choose a national health policy. The members
of an organization have to choose a board of directors. A group of friends has to
choose a restaurant for dinner. These problems all involve collective choice. In
each case, a group of people whose members may disagree about the desirability
of the available alternatives has to select a common action.

The study of collective choice lies at the heart of political economy. One line
of inquiry analyzes the properties of specific mechanisms for choosing an action.
This chapter discusses a more ambitious avenue that involves formulating a list
of properties that appear to be desirable and determining the mechanisms that
satisfy these properties.

What do we mean by a mechanism? In this chapter I assume that the indi-
viduals’ preferences are known, and a mechanism takes these preferences and
the set of available alternatives as inputs and generates a subset of the available
alternatives as output. (Ideally, this subset consists of a single alternative.) In
the next chapter, I consider models in which the individuals’ preferences are not
known.

What can we know about the individuals’ preferences? For each pair of alter-
natives, we may know the one that each individual prefers. We may in addition

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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4 Chapter 1. Collective choice with known preferences

have information about the intensity of each individual’s preference for one al-
ternative rather than another, and about the well-being each individual derives
from each alternative and how these well-beings differ among the individuals.

Synopsis

The models in Sections 1.1 through 1.7 include information only about the in-
dividuals’ rankings of alternatives. A collective choice problem consists of a set
of individuals, a set of alternatives, and a specification of the individuals’ prefer-
ences over the alternatives. Proposition 1.1, known as May’s theorem, shows that
for a problem with two alternatives, the mechanism that selects the alternative
favored by a majority of individuals is the only one for which the outcome does
not depend on the names of the individuals (anonymity) or the names of the al-
ternatives (neutrality) and responds sensibly when the individuals’ preferences
change (positive responsiveness).

For collective choice problems with three or more alternatives, the existence
of mechanisms for selecting alternatives with desirable properties depends on
the nature of the individuals’ preferences. Suppose that for a given problem there
exists an alternative x such that, for every other alternative y , a majority of indi-
viduals prefer x to y . Such an alternative is called the strict Condorcet winner
of the problem. Proposition 1.2 shows that if every member of a set of problems
has a strict Condorcet winner then the mechanism that selects that alternative
for each problem in the set is the only one that satisfies properties similar to,
though less obviously compelling than, the properties in May’s theorem.

Under what conditions does a collective choice problem have a strict Con-
dorcet winner? One such condition is that the alternatives may be ordered so
that every individual’s preferences are single-peaked: as we move through the
ordering, every individual initially becomes better off, and then, after we pass
her favorite alternative, worse off. Proposition 1.4 shows that for a problem that
satisfies this condition, the median of the individuals’ favorite alternatives is the
strict Condorcet winner if the number of individuals is odd. Another condition
under which a collective choice problem has a strict Condorcet winner is that
the individuals’ preferences satisfy the single-crossing condition: the individuals
may be ordered so that for every individual i and any alternatives x and y , if i
likes x at least as much as y then either (a) all individuals who precede i in the
ordering or (b) all individuals who follow i in the ordering prefer x to y . Propo-
sition 1.5 shows that for a problem that satisfies this condition, if each median
individual with respect to the ordering of individuals has a unique favorite alter-
native then each such alternative is a Condorcet winner of the problem. Further,
if the number of individuals is odd then for any alternatives x and y , the (unique)
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median individual prefers x to y if and only if a majority of individuals do so, and
hence in particular the favorite alternative of the median individual is the strict
Condorcet winner.

For sets of problems that are more than slightly larger than the set of all prob-
lems with a strict Condorcet winner, the conclusion is negative. Proposition 1.3
shows that for any set of problems that includes all problems with a strict Con-
dorcet winner plus all problems that would have a strict Condorcet winner if the
preferences of a single individual were changed in a certain way, no mechanism
for selecting an alternative satisfies the properties in Proposition 1.2.

Section 1.7 presents a different approach. Instead of considering mecha-
nisms for selecting alternatives in collective choice problems, it studies the prob-
lem of aggregating the individuals’ preferences. The objective is to find a sin-
gle (societal) preference relation that reasonably reflects the individuals’ prefer-
ences. One motivation for finding such a preference relation is that we do not
know the collective choice problem the society will face, and we want to be pre-
pared for whatever problem arises. Proposition 1.9 (Arrow’s impossibility the-
orem) shows that no mechanism for constructing a societal preference relation
from the individuals’ preference relations satisfies three appealing properties.

The model in Section 1.8 includes information about each individual’s wel-
fare for each alternative, not merely her preferences. A social welfare ordering
ranks welfare profiles. Three examples are the utilitarian ordering, which ranks
profiles according to their sum, the Nash ordering, which ranks positive profiles
according to their product, and the leximin ordering, which ranks profiles ac-
cording to the welfare of the worst-off individual. All three of these orderings
are anonymous and indicate an increase in social welfare when all individuals’
welfares increase. Propositions 1.11, 1.12, and 1.13 show the implications of
adding one more requirement. Proposition 1.11 shows that the leximin order-
ing results when the additional requirement imposes a particular type of equity.
Proposition 1.12 shows that the utilitarian ordering results when the additional
requirement is that the welfare index is invariant to transformations of the indi-
viduals’ welfares that preserve the rankings of welfare differences but not nec-
essarily those of welfare levels. Proposition 1.13 shows that the Nash ordering
results when the additional requirement is that the welfare index is invariant to
transformations of the individuals’ welfares that preserve the rankings of welfare
ratios.

1.1 Collective choice rules

A society consists of a set of individuals and a set of alternatives.
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Definition 1.1: Society

A society 〈N , X 〉 consists of a set N (of individuals) and a set X (of alterna-
tives). The society 〈N , X 〉 is finite if N and X are finite.

A collective choice problem consists of a society and, for each individual, a
preference relation over the set of alternatives. The preference relation ¼i of in-
dividual i models her preferences: for all alternatives x and y , we interpret x ¼i y
to mean that i likes x at least as much as y . For any preference relation ¼i we
define the binary relation �i by

x �i y ⇔ x ¼i y and not y ¼i x (1.1)

and interpret x �i y to mean that i prefers x to y , and we define the binary
relation ∼i by

x ∼i y ⇔ x ¼i y and y ¼i x (1.2)

and interpret x ∼i y to mean that i is indifferent between x and y (that is, she
likes them equally well). (See Section 16.1 for more discussion of preference re-
lations.) I refer to an assignment of preference relations to the individuals as a
preference profile.

Definition 1.2: Preference profile

A preference profile for a society 〈N , X 〉 is a function that associates with
each individual (member of N ) a preference relation on X . A preference
profile is strict if every individual’s preference relation is strict (i.e. no indi-
vidual is indifferent between any two alternatives).

I denote by (¼i )i∈N the preference profile in which the preference relation of
each individual i ∈N is ¼i . I denote this profile also simply by ¼; the absence of
a subscript indicates that the symbol denotes a profile rather than a preference
relation.

Definition 1.3: Collective choice problem

A collective choice problem 〈N , X ,¼〉 consists of a society 〈N , X 〉 for which
both N and X have at least two members and a preference profile ¼ for
〈N , X 〉. The problem is finite if the society is finite.



1.1 Collective choice rules 7

Example 1.1: Collective choice problem

An example of a collective choice problem is 〈{1,2,3},{a ,b , c },¼〉where

a �1 c �1 b

b �2 a ∼2 c

a ∼3 b ∼3 c

(with �i and ∼i derived from ¼i in (1.1) and (1.2)). Here is an evocative
representation of this problem.

1 2 3

a b ab c
c a c
b

Each column shows the preference relation of the individual whose name
heads the column. In each column, the alternatives are listed in order of
preference, with the best at the top. Multiple alternatives in a cell indicate
indifferences. For example, the middle column indicates that individual 2
likes b best and is indifferent between a and c .

A target of the analysis in this chapter is to specify, for each collective choice
problem, alternatives that are reasonable compromises given the individuals’
(possibly divergent) preferences. A function that specifies a set of alternatives
for each collective choice problem is called a collective choice rule. I formulate
properties for collective choice rules that seem to be desirable and look for rules
that satisfy these properties.

To require that the properties hold for all collective choice problems is de-
manding. In some environments, some preference profiles are not plausible, and
we may be content for the properties to be satisfied for only a limited set of pro-
files. For example, if we are studying the choice of a political position from the
set {left, center, right}, we might assume that center is not the worst alternative for
any individual: an individual whose favorite position is left prefers center to right,
and an individual whose favorite position is right prefers center to left. So in this
environment it may be enough that a collective choice rule specifies outcomes
for preference profiles in which center is not the worst alternative for any individ-
ual. To accommodate such cases, I allow a collective choice rule to apply to only
a subset of the set of all collective choice problems. Following the conventional
terminology, I call such a set of collective choice problems a domain.

A domain that fits the example in the previous paragraph is the set of collec-
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tive choice problems 〈N ,{left, center, right},¼〉 for which the preference relation
¼i of each individual i ∈N satisfies left ¼i center ¼i right, center ¼i left ¼i right,
center ¼i right ¼i left, or right ¼i center ¼i left. Another domain consists of all
problems 〈N , X ,¼〉 for a given set N where X has three members. In this case
the preference relation ¼i of each individual i ∈N is one of the thirteen possible
preference relations over a three-member set (the one for which all three alter-
natives are indifferent, the six for which exactly two alternatives are indifferent,
and the six for which no two alternatives are indifferent). A domain that is con-
veniently assumed in some models is the set of collective choice problems for a
given set of individuals in which every individual’s preference relation is strict.

A collective choice rule intended to recommend the alternative to be chosen
is most useful if it specifies, for each collective choice problem, a single alterna-
tive. However, this requirement conflicts with the requirement that the alterna-
tives be treated symmetrically. Suppose, for example, that the number of individ-
uals is even, the set of available alternatives is {a ,b}, and half of the individuals
prefer a to b while the other half prefer b to a . Then if we treat the alternatives
symmetrically we have to declare a tie between a and b . For this reason I de-
fine a collective choice rule for a domain to specify a set of alternatives for each
collective choice problem in the domain.

Definition 1.4: Collective choice rule

For any set D of collective choice problems, a collective choice rule for D is
a function that associates with every collective choice problem 〈N , X ,¼〉 in
D a nonempty subset of X (the alternatives selected by the rule).

Perhaps the most well-known collective choice rule is plurality rule, which
selects the alternative (or alternatives, in the case of a tie) that is ranked first by
the largest number of individuals. To define this rule precisely, I first define an
individual’s set of favorite alternatives: the alternatives she likes at least as much
as every other alternative.

Definition 1.5: Favorite alternatives

For any set X (of alternatives) and any preference relation ¼i on X , the set
of favorite alternatives in X for ¼i is

{x ∈ X : x ¼i y for all y ∈ X }.

If, for example, X = {a ,b , c } and a ∼i b �i c , then the set of favorite alternatives
in X for ¼i is {a ,b}. Note that if X has infinitely many members then the set of
favorite alternatives for a preference relation on X may be empty. For example, if
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X = [0,1) and the preference relation ¼i is defined by x ¼i y if and only if x ≥ y
then the set of favorite alternatives in X for ¼i is empty.

Plurality rule assigns to a collective choice problem the alternatives that are
favorites of the largest number of individuals.1

Definition 1.6: Plurality rule

Let D be a set of collective choice problems 〈N , X ,¼〉 for which N is fi-
nite and for each i ∈ N the set X ∗i of favorite alternatives in X for ¼i is
nonempty. Plurality rule is the collective choice rule for D that assigns to
each collective choice problem 〈N , X ,¼〉 ∈D the set

{x ∈ X : |{i ∈N : x ∈ X ∗i }| ≥ |{i ∈N : y ∈ X ∗i }| for all y ∈ X }.

For the collective choice problem in Example 1.1, plurality rule selects {a ,b}, be-
cause a and b are both favorite alternatives of two individuals and c is a favorite
alternative of only one individual.

The alternatives selected by the plurality rule collective choice rule depend
only on the individuals’ favorite alternatives. A rule that takes into account the
individuals’ preferences among the alternatives they rank below their favorite
alternatives was proposed by Jean-Charles de Borda (1733–1799). This rule is
defined only for collective choice problems in which all preference relations are
strict (no individual is indifferent between any two alternatives). It assigns to
each alternative x in each individual’s preferences a number of points equal to
the number of alternatives the individual ranks lower than x . Then it chooses the
alternative (or alternatives, in the case of a tie) for which the sum of the number
of points over all individuals is largest.

Definition 1.7: Borda rule

Let D be a set of collective choice problems 〈N , X ,¼〉 for which N is finite
and the preference relation ¼i of each individual i ∈N is strict. The Borda
rule is the collective choice rule for D that assigns to each collective choice
problem 〈N , X ,¼〉 ∈D the set of alternatives x ∈ X that maximize

∑

i∈N

pi (x ),

where pi (x ) = |{z ∈ X : x �i z }| for each i ∈ N and x ∈ X , the number of

1The name plurality rule is used also in a different context, for a voting mechanism in which
each individual selects (votes for) one alternative (not necessarily her favorite), and the alter-
native selected by the most individuals wins. I analyze this voting mechanism in Chapters 3
and 4.
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alternatives that ¼i ranks below x .

Example 1.2: Borda rule

Consider the collective choice problem 〈{1,2,3},{a ,b , c , d },¼〉 in which the
individuals’ preferences are given in the following table.

1 2 3

a a b
b b c
c c d
d d a

We have p1(a ) = p2(a ) = 3 and p3(a ) = 0, p1(b ) = p2(b ) = 2 and p3(b ) =
3, and p1(c ) = p2(c ) = 1 and p3(c ) = 2, so the Borda rule selects {b}. By
contrast, plurality rule selects {a }. The Borda rule takes into account that
even though b is ranked first by only one individual, it is ranked second by
the other two, whereas a is ranked last by the third individual.

The model of a collective choice problem includes only information about
the individuals’ preference rankings. One interpretation of the Borda rule is that
it imbues these rankings with interpersonally-comparable cardinal significance:
it treats each rung in each individual’s ranking as equivalent to each rung in ev-
ery other individual’s ranking. If, for example, an alternative goes up one rung in
one individual’s preferences and down one rung in another’s, the total number
of points it receives remains the same. In some circumstances, using the indi-
viduals’ preference rankings in this way seems inappropriate. For example, if, in
the situation that the collective choice problem in Example 1.2 models, there is
a meaningful scale on which individuals 1 and 2 regard b as much worse than a
whereas individual 3 regards c , d , and a as only slightly worse than b , then {a }
may be a more reasonable choice for the group than {b}.

For a collective choice problem with k alternatives, the Borda rule assigns
k − 1 points to the top alternative in an individual’s preferences, k − 2 points to
the next alternative, and so on. A scoring rule is a generalization of the Borda
rule in which for some numbers r 1 ≥ r 2 ≥ · · · ≥ r k , r 1 points are assigned to the
top alternative in an individual’s preference, r 2 points are assigned to the next
alternative, as so forth. Like the Borda rule, such a rule may be interpreted as
imbuing the individuals’ preference rankings with interpersonally-comparable
cardinal significance. It differs from the Borda rule in the weights it assigns to
the rungs in the individuals’ rankings. Note that a scoring rule for which r 1 is a
positive number and r j = 0 for j = 2, . . . , k is plurality rule.
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Exercise 1.1: Scoring rules

Consider the collective choice problem 〈N ,{a ,b , c },¼〉 for ten individuals
in which one individual prefers a to b to c , four prefer b to a to c , three
prefer c to a to b , and two prefer c to b to a . For each number p ∈ (0,1)
find the alternatives selected by the scoring rule that assigns 1 point to
the top alternative in each individual’s preferences, p points to the middle
alternative, and 0 points to the bottom alternative.

1.2 Anonymity and neutrality

Plurality rule and the Borda rule both treat the individuals symmetrically—every
individual’s preferences have the same influence on the outcome. They also treat
the alternatives symmetrically—no alternative has any special significance. I
now define these properties precisely.

First define a permutation on a finite set to be a one-to-one function from
the set to itself, and a permutation of a profile to be a one-to-one reassignment
of the elements in the profile.

Definition 1.8: Permutation

For any finite set Y , a permutation on Y is a one-to-one function from Y
to Y . For any finite set N and profile (xi )i∈N , the profile (yi )i∈N is a permu-
tation of (xi )i∈N if for some permutation π on N we have yi = xπ(i ) for all
i ∈N .

One permutation on the set N = {1,2,3}, for example, is the function π for which
π(1) = 2, π(2) = 1, andπ(3) = 3, and the corresponding permutation of the profile
(x1,x2,x3) is the profile (x2,x1,x3). There are five other permutations on the set
{1,2,3}, including the one that maps each member of the set to itself.

Now let N be a set of individuals, ¼ a preference profile for N , and ¼′ a per-
mutation of¼. For example, for the collective choice problem 〈{1,2,3},{a ,b , c },¼〉
in Example 1.1 and the permutation π on {1,2, 3} for whichπ(1) = 2,π(2) = 1, and
π(3) = 3, the preference profile ¼′ is

1 2 3

b a ab c
a c c

b

A collective choice rule is anonymous if it assigns the same set of alternatives to
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the collective choice problems 〈N , X ,¼〉 and 〈N , X ,¼′〉 whenever ¼′ is a permu-
tation of ¼. That is, the set of alternatives assigned by an anonymous collective
choice rule depends only on the collection of preference relations, not on which
individual has which preference relation.

Definition 1.9: Anonymous collective choice rule

Let D be a set of finite collective choice problems. A collective choice rule F
for D is anonymous if for every collective choice problem 〈N , X ,¼〉 ∈D and
every permutation ¼′ of ¼ for which 〈N , X ,¼′〉 ∈ D we have F (N , X ,¼′) =
F (N , X ,¼).

Plurality rule and the Borda rule are both anonymous. Dictatorship is decid-
edly not.

Example 1.3: Dictatorship

Let N be a set (of individuals). For any individual i ∈N , dictatorship by in-
dividual i is the collective choice rule (for any set of collective choice prob-
lems) that selects for any collective choice problem 〈N , X ,¼〉 the favorite
alternatives in X for ¼i .

Although dictatorship does not treat the individuals equally, it treats the alter-
natives equally, as do plurality rule and the Borda rule. To be precise, let 〈N , X ,¼〉
be a collective choice problem, let σ be a permutation on X , and consider the
collective choice problem 〈N , X , (¼σi )i∈N 〉 in which ¼σi is the preference relation
defined by

x ¼i y if and only if σ(x )¼σi σ(y ).

That is, i ’s preference between x and y according to¼i is her preference between
σ(x ) andσ(y ) according to ¼σi .

Consider again, for example, the collective choice problem 〈{1,2,3},{a ,b , c },
¼〉 in Example 1.1. Define the permutation σ on X by σ(a ) = c , σ(b ) = a , and
σ(c ) = b . Then (¼σi )i∈N is given by

1 2 3

c a ab c
b b c
a

A collective choice rule is neutral if for any permutation on the set of alterna-
tives, the alternatives the rule selects for the permuted problem are the permu-
tations of the alternatives it selects for the original problem. If, for example, {a }
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is selected for the problem in Example 1.1, then σ(a ), namely c , is selected for
the problem 〈{1,2,3},{a ,b , c }, (¼σi )i∈N 〉 just defined.

Definition 1.10: Neutral collective choice rule

Let D be a set of finite collective choice problems. A collective choice rule
F for D is neutral if for every collective choice problem 〈N , X ,¼〉 ∈ D and
every permutation σ on X for which 〈N , X ,¼σ〉 ∈D , we have

F (N , X ,¼σ) = {x ∈ X : x =σ(z ) for some z ∈ F (N , X ,¼)},

where for each individual i ∈N the preference relation ¼σi is defined by

x ¼i y if and only if σ(x )¼σi σ(y ).

The set of alternatives selected by a neutral collective choice rule depends
only on the individuals’ preferences over the alternatives, not on the names of
the alternatives. If for one collective choice problem a neutral rule selects alter-
native a but not alternative b , for example, then for the problem in which the
individuals’ rankings of a and b are reversed, the rule selects b but not a . In
particular, a neutral collective choice rule gives no significance to any given al-
ternative, like the status quo if one exists. The idea is that the priority of any
given alternative is reflected in the individuals’ preferences; no alternative has
any special status independent of its rankings by the individuals.

Many collective choice rules, including ones that do not seem sensible, are
anonymous and neutral. For example, the rule that selects the alternative ranked
lowest by the largest number of individuals is anonymous and neutral. I now
discuss additional properties that appear to be desirable. I first analyze the case
of two alternatives, which turns out to differ significantly from that of three or
more alternatives.

1.3 Two alternatives: majority rule

For collective choice problems in which the set of alternatives contains two mem-
bers, many collective choice rules, including both plurality rule and the Borda
rule, are equivalent to majority rule. That is, they select the alternative favored
by more than 50% of the individuals, or, if both alternatives are favored by exactly
50% of the individuals, they select both alternatives, in a tie.
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Definition 1.11: Majority rule

Majority rule is the collective choice rule for any set of finite collective
choice problems with two alternatives that selects both alternatives (i.e.
declares a tie) when each alternative is a favorite alternative of the same
number of individuals, and otherwise selects the alternative that is a fa-
vorite alternative of a strict majority of individuals. An alternative with the
latter property is a strict majority winner.

Note that if majority rule selects a single alternative, that alternative is not
necessarily preferred to the other alternative by a majority of individuals. For
example, if one individual prefers a to b and all the remaining individuals are
indifferent between a and b then a is the alternative selected by majority rule.

One anonymous and neutral rule that is not equivalent to majority rule is
minority rule, which selects the alternative favored by fewer than 50% of the
individuals. What property distinguishes majority rule from minority rule?

We can represent an anonymous collective choice rule for the set of prob-
lems with two alternatives and no restrictions on the individuals’ preferences in
a diagram like those in Figure 1.1. These diagrams represent rules for problems
with five individuals in which the alternatives are a and b . In each diagram, each
disk represents a set of collective choice problems. (Ignore for the moment the
letters inside the disks.) The disk at the point (x , y ) represents the problems in
which x individuals prefer a to b , y prefer b to a , and the remainder are indif-
ferent between a and b . For example, the disk surrounded by an orange circle
in Figure 1.1a represents problems in which one individual prefers a to b , two
prefer b to a , and two are indifferent between a and b .

In each diagram, the letters inside the disks define an anonymous collective
choice rule: each disk indicates the outcome selected by the rule for the prob-
lems that the disk represents. For example, in Figure 1.1a the label ab on the
disk at position (1,0) indicates that the rule the figure depicts assigns a tie to
every problem in which one individual prefers a to b and the remainder are in-
different between a and b . For easy identification, disks labeled a are red, those
labeled b are blue, and those labeled ab are gray.

The rule shown in Figure 1.1a is not neutral. Denote by G (x , y ) the set of
alternatives assigned by the rule when x individuals prefer a to b , y prefer b to
a , and the remainder are indifferent between a and b . For the rule to be neutral,
we need G (x , y ) = {a } if and only if G (y ,x ) = {b}, and G (x , y ) = {a ,b} if and only
if G (y ,x ) = {a ,b}. In particular, we need G (x ,x ) = {a ,b} for all values of x . Thus
a rule is neutral if and only if the pattern of outcomes in a diagram like those
in Figure 1.1 is symmetric about the main diagonal, so that in particular every
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(b) A neutral rule.

Figure 1.1 Two anonymous collective choice rules for collective choice problems with
five individuals and two alternatives, a and b . (The rules indicated are not intended to
be sensible.)

outcome on the diagonal is {a ,b}. The rule in Figure 1.1a is not neutral because,
for example, it assigns b to problems in which two individuals prefer a to b , two
prefer b to a , and the remaining individual is indifferent between a and b .

The rule given in Figure 1.1b is neutral, but it has an unattractive feature:
as the disk circled in green indicates, when three individuals prefer a to b , one
prefers b to a , and the remaining individual is indifferent between a and b , the
outcome is a , but, as the disk circled in orange indicates, if the individual who
is indifferent switches to preferring a then the outcome switches to b . That is,
when more individuals favor a , the outcome moves away from a . (Symmetri-
cally, the outcome is b when three individuals prefer b to a , one prefers a to b ,
and the remaining individual is indifferent between a and b , and is a when the
individual who is indifferent switches to preferring b .)

To eliminate collective choice rules that behave in this way, we can require
that if an alternative moves up in some individuals’ preferences then the out-
come specified by the collective choice rule moves in the direction of that alter-
native. To define this requirement precisely, I first define a preference profile ¼′

to be an improvement of a profile ¼ for an alternative x relative to an alternative
y if the profiles differ only in the preferences of the individuals in some set J and
for every individual j ∈ J , either x is ranked equal to or below y by ¼j and above
y by¼′j or x is ranked below y by¼j and equal to or above y by¼′j , while all other
alternatives are ranked the same by ¼j and ¼′j . I give a definition of the property
for collective choice problems with any number of alternatives, because I use it
later for problems with more than two alternatives.
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1 2 3

a b ab c
c a c
b

Original problem

1 2 3

a b ab c
b c a c

Improvement of b
relative to c

1 2 3

a b b
c a c a c
b

Improvement of b
relative to c

Figure 1.2 The collective choice problem in Example 1.1, at the left, and two problems
in which the preference profiles are improvements for b relative to c . For the problem
on the right, the preference profile is also an improvement for b relative to a .

Definition 1.12: Improvement of preference profile for alternative

Let 〈N , X ,¼〉 be a finite collective choice problem, let¼′ be another prefer-
ence profile for 〈N , X 〉, and let J ⊆ N be the set of individuals j for whom
¼j differs from ¼′j . The profile ¼′ is an improvement of ¼ for x ∈ X relative
to y ∈ X if for each j ∈ J we have

either y ¼j x and x �′j y , or y �j x and x ¼′j y

and

w ¼′j z if and only if w ¼j z for all w ∈ X \ {x } and all z ∈ X \ {x }.

Consider the collective choice problem in Example 1.1, which is shown at the
left in Figure 1.2. The preference profiles for the other two problems in the figure
are improvements for b relative to c . In the problem in the middle, b moves up in
individual 1’s preferences, to become indifferent with c . (If b moves further up,
to lie between a and c , to be indifferent with a , or to be above a , the resulting
problem is also an improvement for b relative to c .) In the problem on the right,
b moves up in individual 3’s preferences to become preferred to a and c rather
than indifferent with them. (This profile is also an improvement for b relative
to a .)

For a collective choice problem 〈N , X ,¼〉 with two alternatives, a and b , the
preference profile ¼′ is an improvement of ¼ for a relative to b if for every indi-
vidual j in some set J we have (i) b �j a and a �′j b , (ii) a ∼j b and a �′j b , or
(iii) b �j a and a ∼′j b , and all other individuals’ preferences remain the same.
Thus the number of individuals for whom a �i b either remains the same or in-
creases and the number for whom b �i a either remains the same or decreases.
In terms of Figures 1.1a and 1.1b, for any problem at position (x , y ) and any po-
sition (x ′, y ′) to the east, southeast, or south of (x , y ), some problem at (x ′, y ′) is
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an improvement for a relative to b .
I now define the property of positive responsiveness, which rules out the

unattractive feature of the rule shown in Figure 1.1b. For now I define the prop-
erty only for problems with two alternatives. In this case, a collective choice rule
is positively responsive if, when an alternative x goes up in some individuals’
rankings, the rule selects {x } if it did so originally or if originally it selected both
alternatives, in a tie. (In Definition 1.15 I extend the definition to problems with
three or more alternatives.)

Definition 1.13: Positively responsive collective choice rule for two
alternatives

Let 〈N , X 〉 be a finite society for which X consists of two alternatives, and
let D be a set of finite collective choice problems 〈N , X ,¼〉. A collective
choice rule F for D is positively responsive if for every preference profile
¼ for 〈N , X 〉 for which 〈N , X ,¼〉 ∈ D and every improvement ¼′ of ¼ for
alternative x relative to the other alternative for which 〈N , X ,¼′〉 ∈ D we
have

x ∈ F (N , X ,¼) ⇒ F (N , X ,¼′) = {x }.

In terms of the diagrams, a rule is positively responsive if for every position
assigned to {a } or {a ,b}, like the one labeled z in Figure 1.3a, the positions to the
east, southeast, and south are assigned to {a }, and for every problem assigned to
{b} or {a ,b}, the problems to the west, northwest, and north are assigned to {b}.

Majority rule, shown in Figure 1.3b, is positively responsive: if a goes up in
some individuals’ preferences, then either the number of individuals for whom
a is a favorite increases or the number of individuals for whom b is a favorite
decreases, so that if the rule originally selected a then it still does so, and if it
originally selected {a ,b} then it switches to selecting a .

In fact, majority rule is the only anonymous, neutral, and positively respon-
sive collective choice rule for collective choice problems with two alternatives:
the requirements of neutrality (Figure 1.1b) and positive responsiveness (Fig-
ure 1.3a) generate Figure 1.3b. This result is known as May’s theorem, after its
originator, Kenneth O. May (1915–1977).

Proposition 1.1: May’s theorem

Let 〈N , X 〉 be a society for which N is finite and X has two members, and
let D be (a) the set of all collective choice problems 〈N , X ,¼〉, (b) the set of
all such problems in which each individual’s preference relation is strict,
or (c) the set of all such problems with a strict majority winner. A collective
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(b) Majority rule, the only anonymous,
neutral, and positively responsive collec-
tive choice rule.

Figure 1.3 Anonymous collective choice rules for collective choice problems with five
individuals and two alternatives, a and b . (The diagram on the left only partially speci-
fies a rule.) See the text discussing Figure 1.1 for an explanation of the way in which the
diagrams represent collective choice rules.

choice rule for D is anonymous, neutral, and positively responsive if and
only if it is majority rule.

Proof

I have argued that majority rule is anonymous, neutral, and positively
responsive (for any domain).

Now consider a collective choice rule that is anonymous, neutral, and
positively responsive on D . I argue that it is majority rule. Given that the
rule is anonymous, it may be represented in a diagram like Figure 1.1. (For
the domains in cases (b) and (c), the relevant diagrams contain only a sub-
set of the positions in the triangle.) By neutrality, every position on the
main diagonal (if any exist for the domain D) is labeled ab . Suppose that
some position (x , y ) with x < y (so that (x , y ) is above the main diagonal)
is labeled a . Then by neutrality, (y ,x ) is labeled b . But each problem as-
sociated with (x , y ) is an improvement for b relative to a for a problem
associated with (y ,x ), so by positive responsiveness (x , y ) is labeled b , a
contradiction. Similarly, every position (x , y ) with x > y is labeled a . Thus
the collective choice rule is majority rule (Figure 1.3b).
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Exercise 1.2: Collective choice rules consistent with two of the three
conditions

As I note, the rule shown in Figure 1.1b is anonymous and neutral but
not positively responsive. Give examples of collective choice rules for
problems with two alternatives that are (a) anonymous and positively re-
sponsive but not neutral and (b) neutral and positively responsive but not
anonymous.

The condition of positive responsiveness is fairly strong. It requires that any
increase in the number of individuals favoring an outcome breaks a tie. Suppose
we relax the condition to nonnegative responsiveness: if the number of individu-
als favoring alternative x increases then either the outcome remains x or changes
from a tie to x (as for positive responsiveness) or remains a tie. More precisely,
the collective choice rule F is nonnegatively responsive if for any improvement¼′

of ¼ for a relative to b we have

F (N , X ,¼) = {a }⇒ F (N , X ,¼′) = {a } and F (N , X ,¼) = {a ,b}⇒ a ∈ F (N , X ,¼′)

and symmetrically for an improvement for b relative to a . Rules other than ma-
jority rule are consistent with anonymity, neutrality, and nonnegative respon-
siveness.

Exercise 1.3: Nonnegatively responsive collective choice rules

In a diagram like Figure 1.1, characterize the collective choice rules for
sets of alternatives with two members that are anonymous, neutral, and
nonnegatively responsive (but not necessarily positively responsive).

1.4 Three or more alternatives: Condorcet winners

For a collective choice problem with two alternatives, an alternative is selected
by majority rule if it beats or ties the other alternative. For collective choice prob-
lems with three or more alternatives, a natural extension of majority rule selects
the alternatives that beat or tie every other alternative in pairwise contests. These
alternatives are called Condorcet winners, after Marie Jean Antoine Nicolas de
Caritat, Marquis of Condorcet (1743–1794).
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Definition 1.14: Condorcet winner

Let 〈N , X ,¼〉 be a collective choice problem for which N is finite and let
x ∈ X and y ∈ X be alternatives. Then x beats y if the number of individuals
i ∈N for whom x �i y exceeds the number for whom y �i x , and ties with
y if these two numbers are equal. The alternative x is

• a Condorcet winner of 〈N , X ,¼〉 if it beats or ties every other alternative

• a strict Condorcet winner of 〈N , X ,¼〉 if it beats every other alternative.

A problem can have at most one strict Condorcet winner; if it has no strict
Condorcet winner then it may have more than one Condorcet winner.

Exercise 1.4: Collective choice problem with no strict Condorcet winner
but unique Condorcet winner

Given an example of a collective choice problem with no strict Condorcet
winner but a unique Condorcet winner.

Exercise 1.5: Alternative that ties with Condorcet winner

Is an alternative that ties with a Condorcet winner necessarily a Condorcet
winner?

For a collective choice problem with two alternatives, the set of Condorcet
winners is exactly the set of alternatives selected by majority rule, and if one al-
ternative is preferred to the other by a strict majority of individuals, then that
alternative is the strict Condorcet winner.

The collective choice problem in Example 1.1, in which there are three alter-
natives, has two Condorcet winners, a and b , and no strict Condorcet winner.
The next example shows that the strict Condorcet winner may differ from the
alternatives selected by plurality rule and the Borda rule.

Example 1.4: Condorcet winner, plurality winner, and Borda winner

For the following collective choice problem, c is the strict Condorcet win-
ner: four individuals prefer it to a , four individuals prefer it to b , and four
individuals prefer it to d . By contrast, a is selected by plurality rule and b
is selected by the Borda rule.
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1 2 3 4 5 6 7

a a a c c b d
c b b b b d c
b c d d d c b
d d c a a a a

Some collective choice problems with three or more alternatives have no
Condorcet winner.

Example 1.5: Condorcet cycle

For the following collective choice problem, known as a Condorcet cycle,
two individuals prefer a to b , but only one prefers a to c , so that a is not a
Condorcet winner; b and c are not Condorcet winners for similar reasons.

1 2 3

a c b
b a c
c b a

Among all logically possible collective choice problems with three alterna-
tives in which all individuals’ preferences are strict, the percentage with a Con-
dorcet winner declines as the number of individuals increases; for any number of
individuals it is at least 91%. For problems with more alternatives, this bound on
the percentage is smaller. For example, it is about 58% for problems with eight
alternatives (Gehrlein and Fishburn 1976). In some environments, some pref-
erence profiles may be unreasonable. In Section 1.5 I discuss two domains for
which every collective choice problem has a Condorcet winner.

For the domain of collective choice problems that have Condorcet winners,
we can generalize May’s theorem. To do so, we need to first generalize the prop-
erty of positive responsiveness to many alternatives. One generalization requires
that if an alternative x selected for a collective choice problem improves relative
to some other alternative y , then (i) x is still selected for the new problem, (ii) y
is not selected for the new problem, and (iii) an alternative is selected for the new
problem only if it was selected for the original problem.

Definition 1.15: Positively responsive collective choice rule

For any set D of collective choice problems, a collective choice rule F for D
is positively responsive if, for every collective choice problem 〈N , X ,¼〉 ∈D ,
every alternative x ∈ F (N , X ,¼), every alternative y ∈ X , and every im-
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provement ¼′ of ¼ for x relative to y for which 〈N , X ,¼′〉 ∈D ,

1. x ∈ F (N , X ,¼′)

2. y 6∈ F (N , X ,¼′)

3. F (N , X ,¼′)⊆ F (N , X ,¼).

Note that if a collective choice rule selects {x } for some collective choice
problem and an alternative y improves relative to x , then the property of pos-
itive responsiveness does not have any implications for the alternatives selected
by the rule for the new problem.

For the domain of collective choice problems with a strict Condorcet win-
ner, the collective choice rule that assigns the strict Condorcet winner to each
collective choice problem is positively responsive: if a strict Condorcet winner
improves in some individuals’ preferences then it remains a strict Condorcet
winner.

Plurality rule satisfies condition 1 of positive responsiveness: if x is one of the
alternatives the rule selects (maybe the only one) and goes up in some individ-
uals’ preferences, it remains one of the selected alternatives. But plurality rule
does not satisfy condition 2: if x and y are both members of the set it selects and
y improves relative to x , then x may still be among the selected alternatives. The
reason is that the alternatives plurality rule selects are not affected by the rela-
tive ranking of alternatives that are not at the top of an individual’s preferences.
Consider the following example.

1 2 3

a b c
b a b
c c a

1 2 3

a b c
b a a
c c b

In the problem on the left, plurality rule selects {a ,b , c } (all three alternatives, in
a tie). The preference profile for the problem on the right is an improvement for
a relative to b (via individual 3), so that condition 2 of positive responsiveness
requires that b not be selected for this problem. Since plurality rule continues to
select {a ,b , c }, condition 2 is violated.

Exercise 1.6: Plurality rule with runoff

Plurality rule with runoff is the collective choice rule that selects the al-
ternative that is the favorite of the largest number of individuals if this
number is more than half the number of individuals, and otherwise first
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identifies the two alternatives that are the favorites of the largest number
of individuals and then selects the one of these two that beats the other in
a two-alternative contest (or both, if they tie). The idea behind the rule is
that the result of the first round determines which two alternatives have
the most support, and the second round allows everyone to express a pref-
erence between these alternatives. Use the following example, in which
each column is a preference ordering, to show that this rule does not satisfy
condition 1 of positive responsiveness.

6 individuals 5 individuals 4 individuals 2 individuals

a c b b
b a c a
c b a c

That plurality rule is not positively responsive when there are three or more
alternatives is not surprising. When there are two alternatives, knowing an in-
dividual’s favorite alternative tells us the individual’s complete preference rela-
tion. When there are three or more alternatives, that is no longer the case, and
the identity of the individuals’ favorite alternatives, the only information used by
plurality rule, seems inadequate to make a collective decision that fully reflects
the individuals’ preferences.

The Borda rule is designed to address this problem: it gives weight to indi-
viduals’ rankings of alternatives below their favorites, and is indeed positively
responsive. If an alternative x improves in an individual’s preferences relative to
y , then the number of points assigned to x goes up and the number of points
assigned to every other alternative either goes down or remains the same. So if
x was selected for the original problem it is the only alternative selected for the
new problem.

However, when there are three or more alternatives, the Borda rule has an
undesirable property. Consider the following collective choice problem.

1 2 3 4 5

b b b a a
a a a c c
c c c b b

The Borda rule selects a for this problem. (It gets 7 points; b gets 6 points, and
c gets 2 points.) Now suppose that c is no longer available, so that we have the
following problem.
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X

F (N , X ,¼)

X

X ′ F (N , X ,¼)
= F (N , X ′,¼ |X ′ )

Figure 1.4 An illustration of Nash independence. In the problem on the right, X ′ is a sub-
set of X that contains F (N , X ,¼). Nash independence requires that the set F (N , X ′,¼|X ′ )
of alternatives selected for 〈N , X ′,¼|X ′ 〉 is equal to the set F (N , X ,¼) selected for 〈N , X ,¼〉.

1 2 3 4 5

b b b a a
a a a b b

Originally, c was not chosen, so one might expect that its unavailability should
not affect the alternative selected: a should remain the selected alternative. How-
ever, the Borda rule selects b for the new problem. Thus the fact that c , which was
not selected initially, becomes unavailable, causes b to be chosen rather than a .

To restrict to collective choice rules that do not behave in this way we can
require, in addition to anonymity, neutrality, and positive responsiveness, that
removing unchosen alternatives from the set of available alternatives does not
affect the set of alternatives selected. More precisely, if, when the set of available
alternatives is X , the set of alternatives selected is Y , then when the set of avail-
able alternatives is a subset of X that includes Y , the set of alternatives selected
remains Y . This condition is illustrated in Figure 1.4. It is a version of one pro-
posed by Nash (1950) and is named after him. In the following definition, ¼|X ′ is
the restriction of the preference profile ¼ to the set X ′: for a , b ∈ X ′, a ¼|X ′ b if
and only if a ¼b .

Definition 1.16: Nash independence

For any set D of collective choice problems, the collective choice rule F for
D is Nash independent if for every collective choice problem 〈N , X ,¼〉 ∈D
and every set X ′ ⊂ X for which 〈N , X ′,¼|X ′ 〉 ∈ D and F (N , X ,¼) ⊆ X ′, we
have F (N , X ′,¼|X ′) = F (N , X ,¼).

On the domain of problems that have a strict Condorcet winner, the rule
that selects the strict Condorcet winner satisfies this property: if an alternative
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beats every other in pairwise contests then it continues to do so if some of these
alternatives are eliminated.

Thus for the domain of collective choice problems that have a strict Con-
dorcet winner, among the examples of collective choice rules I have described
only the one that selects the strict Condorcet winner is anonymous, neutral, pos-
itively responsiveness, and Nash independent. In fact, if every individual’s pref-
erence relation is strict, it is the only rule that satisfies these properties among
all possible rules.

Definition 1.17: Strict Condorcet domain

For any finite sets N and A, the strict Condorcet domain for (N , A), de-
noted C (N , A), is the set of all collective choice problems 〈N , X ,¼〉 for
which (i) X ⊆ A, (ii) ¼i is strict for all i ∈ N , and (iii) 〈N , X ,¼〉 has a strict
Condorcet winner.

Proposition 1.2: Generalization of May’s theorem to many alternatives

For any finite sets N and A, a collective choice rule F for the strict
Condorcet domain C (N , A) is anonymous, neutral, positively responsive,
and Nash independent if and only if, for every collective choice problem
〈N , X ,¼〉 ∈C (N , A), F (N , X ,¼) contains only the strict Condorcet winner of
〈N , X ,¼〉.

Proof

I have argued that the collective choice rule for C (N , A) that selects the
strict Condorcet winner satisfies the four properties.

Now let F be a collective choice rule for C (N , A) that is anonymous,
neutral, positively responsive, and Nash independent. If A contains two
alternatives then by May’s theorem F (N , X ,¼) = {c }, where c is the strict
Condorcet winner of 〈N , X ,¼〉.

Now suppose that A contains three or more alternatives.

Step 1 Let 〈N , X ,¼〉 be a collective choice problem in C (N , A) and let c be its
strict Condorcet winner. If F (N , X ,¼) contains an alternative different from
c then it contains at least two alternatives different from c .

Proof. Suppose, to the contrary, that F (N , X ,¼) = {x , c } or F (N , X ,¼) =
{x } for some x ∈ X \ {c }. The alternative c is a strict Condorcet win-
ner of 〈N ,{x , c },¼|{x ,c }〉, so this problem is in C (N , A), and F (N , X ,¼) ⊆
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{x , c }, so by Nash independence F (N ,{x , c },¼|{x ,c }) = F (N , X ,¼) and hence
F (N ,{x , c },¼|{x ,c }) = {x , c } or F (N ,{x , c },¼|{x ,c }) = {x }. Now, given that F
is anonymous, neutral, and positively responsive, in particular it satisfies
these properties for two-alternative problems in C (N , A). Thus by May’s
theorem F (N ,{x , c },¼|{x ,c }) = {c }, a contradiction. Ã

Step 2 If for some problem 〈N , X ,¼〉 ∈ C (N , A) the set F (N , X ,¼) has k
members with k ≥ 2, there exists a problem 〈N , X ,¼′〉 ∈ C (N , A) for which
F (N , X ,¼′) has fewer than k members, including at least one different from
its strict Condorcet winner.

Proof. Let 〈N , X ,¼〉 ∈ C (N , A), let c be its strict Condorcet winner, and let
F (N , X ,¼) = {x1,x2, . . . ,xk } with k ≥ 2. By Step 1, at least two members of
F (N , X ,¼) differ from c . Suppose that x1 6= c and x2 6= c . A strict major-
ity of individuals prefer c to x1 and a strict majority prefer c to x2, so at
least one individual prefers c to both x1 and x2. Suppose that c �i x1 �i x2.
Modify i ’s preference relation by raising x2 to come between x1 and c ; keep
the preference relation of every other individual the same. Denote the new
preference profile by ¼′. The alternative c is the strict Condorcet winner
for 〈N , X ,¼′〉, so in particular this problem has a strict Condorcet win-
ner and hence is in C (N , A). Thus by positive responsiveness F (N , X ,¼′)
is a subset of {x1,x2, . . . , xk } that contains x2 but not x1. Hence it con-
tains fewer alternatives than does F (N , X ,¼), among them an alternative
different from c . Ã

An implication of Step 2 is that for some problem 〈N , X ,¼〉 the set
F (N , X ,¼) contains a single alternative different from c , contradicting
Step 1.

Is any collective choice rule anonymous, neutral, positively responsive, and
Nash independent on a domain larger than the strict Condorcet domain? For
domains that are more than slightly larger than the strict Condorcet domain, the
answer is no. Define the Condorcet-plus domain to consist of all problems with
a strict Condorcet winner plus all problems for which some improvement for a
single individual generates a problem that has a strict Condorcet winner. (This
domain, unlike the strict Condorcet domain, contains problems for which the
preference relations are not strict.)



1.4 Three or more alternatives: Condorcet winners 27

Definition 1.18: Condorcet-plus domain

For any finite sets N and A, the Condorcet-plus domain for (N , A), denoted
C+(N , A), is the set of collective choice problems 〈N , X ,¼〉 such that X ⊆ A
and either (i) 〈N , X ,¼〉 has a strict Condorcet winner or (ii) there is a pref-
erence profile ¼′ for 〈N , X 〉 that differs from ¼ only in the preference rela-
tion of one individual and is an improvement of ¼ such that the problem
〈N , X ,¼′〉 has a strict Condorcet winner.

If A contains two alternatives then for any finite set N the Condorcet-plus
domain for (N , A) contains all collective choice problems with two alternatives:
for any two-alternative problem that does not have a strict Condorcet winner,
the alternatives tie, and an improvement for any individual breaks this tie.

If A is a finite set containing three or more alternatives then for any finite set
N the Condorcet-plus domain for (N , A) contains the Condorcet cycle in Exam-
ple 1.5: if a is raised above c in individual 2’s preferences then it becomes a strict
Condorcet winner. But some three-alternative problems are not in C+(N , A).
An example is the following problem, which does not have a strict Condorcet
winner and for which no improvement for a single individual produces a strict
Condorcet winner.

1 2 3 4 5 6

a a c c b b
b b a a c c
c c b b a a

Each alternative beats one of the other alternatives four to two and loses to the re-
maining alternative two to four. If an alternative improves in any one individual’s
preferences, it improves its performance against the alternative that previously
beat it only to a tie, so the new problem, like the old one, has no strict Condorcet
winner.

I now show that if N and A are finite sets each containing at least three ele-
ments, then no collective choice rule is anonymous, neutral, positively respon-
sive, and Nash independent on C+(N , A) or any domain that contains C+(N , A).

Proposition 1.3: No rule is anonymous, neutral, positively responsive,
and Nash independent on Condorcet-plus domain

Let N and A be finite sets, each containing at least three elements. No
collective choice rule for any set of finite collective choice problems that
contains the Condorcet-plus domain C+(N , A) is anonymous, neutral, pos-
itively responsive, and Nash independent.
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Proof

Let F be an anonymous, neutral, positively responsive, and Nash inde-
pendent collective choice rule for a set of collective choice problems that
includes C+(N , A). Let N = {1,2, . . . , n} and X = {a ,b , c } and suppose
that the preferences of individuals 1, 2, and 3 form the Condorcet cycle
in Example 1.5 while the other individuals are indifferent between a , b ,
and c :

1 2 3 4 · · · n

a c b ab c · · · ab c
b a c
c b a

This problem, 〈N , X ,¼〉, is in C+(N , A) because raising b above a in indi-
vidual 1’s preferences makes it a strict Condorcet winner.

I argue that the fact that F satisfies neutrality and anonymity implies
that F (N , X ¼) = {a ,b , c }. Consider the permutation σ on X given by
σ(a ) = c , σ(b ) = a , and σ(c ) = b . The problem 〈N , X ,¼σ〉, where ¼σ is
the preference profile derived from ¼ as given in Definition 1.10, is

1 2 3 4 · · · n

c b a ab c · · · ab c
a c b
b a c

This problem is in C+(N , A) because raising a above c in individual 1’s pref-
erences makes it a strict Condorcet winner. So by neutrality, (i) F (N , X ,¼σ)
consists of the alternatives σ(z ) for each z ∈ F (N , X ,¼). But ¼σ is the per-
mutation of¼ obtained by mapping individual 1 into 3, 2 into 1, and 3 into
2. Thus by anonymity (ii) F (N , X ,¼σ) = F (N , X ,¼). Conditions (i) and (ii)
are satisfied if and only if F (N , X ,¼) = {a ,b , c }.

Now starting with 〈N , X ,¼〉 raise b to be indifferent with a in individ-
ual 1’s preferences, generating the problem

1 2 3 4 · · · n

ab c b ab c · · · ab c
c a c

b a

Denote this problem 〈N , X ,¼′〉. It is in C+(N , A) because raising b above a
in individual 1’s preferences makes b a strict Condorcet winner, so that by
positive responsiveness, b ∈ F (N , X ,¼′) and a 6∈ F (N , X ,¼′).
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If F (N , X ,¼′) = {b}, remove c from the set of alternatives, to generate
the problem

1 2 3 4 · · · n

ab a b ab · · · ab
b a

This problem is in C+(N , A) because raising b above a in individual 1’s
preferences makes b a strict Condorcet winner, so by Nash independence
F assigns {b} to it, contradicting May’s theorem, which assigns {a ,b} to it.

If F (N , X ,¼′) = {b , c }, remove a from the set of alternatives, to generate
the problem

1 2 3 4 · · · n

b c b b c · · · b c
c b c

This problem is in C+(N , A) because b is a strict Condorcet winner, so by
Nash independence F assigns {b , c } to it, contradicting May’s theorem,
which assigns {b} to it.

Exercise 1.7: Nash independent rules consistent with two of the three
other conditions

For each pair of the conditions anonymity, neutrality, and positive respon-
siveness, find a collective choice rule that satisfies that pair of conditions
and is Nash independent for the domain of all collective choice problems.

Proposition 1.2 shows that the collective choice rule that selects the strict
Condorcet winner is the only rule for the domain of problems that have a strict
Condorcet winner that satisfies the properties of anonymity, neutrality, positive
responsiveness, and Nash independence. Proposition 1.3 shows that this result
cannot be extended much beyond this domain. For any domain that includes
problems for which no improvement in any individual’s preferences generates
a problem with a strict Condorcet winner, no collective choice rule satisfies the
four properties.

1.5 Two domains with Condorcet winners

The results in the previous section show that for a domain consisting of collective
choice problems with strict Condorcet winners, the collective choice rule that
selects the strict Condorcet winner has attractive properties. In this section I
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discuss two such domains.

1.5.1 Single-peaked preferences

Suppose that for some ordering of the alternatives, individual i has a favorite
alternative, say a ∗i , and prefers a ∗i to b to c whenever c <b < a ∗i or a ∗i <b < c . We
say that her preference relation is single-peaked with respect to the ordering.

Definition 1.19: Single-peaked preference relation

Let X be a set (of alternatives) and letÄ be a linear order on X . A preference
relation¼i over X is single-peaked with respect toÄ if it has a single favorite
alternative, say a ∗, and

c Ãb Ã a ∗ or a ∗ Ãb Ã c ⇒ a ∗ �i b �i c . (1.3)

For any strict preference relation, there are linear orders of the alternatives
with respect to which the preference relation is single-peaked. (One such order,
for example, arranges the alternatives from most preferred to least preferred.)
If a preference profile has the property that every individual’s preference rela-
tion is single-peaked with respect to the same linear order of the alternatives, we
say that the profile is single-peaked (with respect to the order). Assuming that a
preference profile has this property may be reasonable, for example, if the alter-
natives are the amounts of money society spends on a certain endeavor: some
people like low spending better than moderate spending better than high spend-
ing, some people have the reverse preference, and some people like moderate
spending best, but no one likes both low spending and high spending better than
moderate spending.

Definition 1.20: Single-peaked preference profile

Let 〈N , X 〉 be a society and letÄ be a linear order on X . A preference profile
¼ for 〈N , X 〉 is single-peaked with respect to Ä if every preference relation
¼i for i ∈N is single-peaked with respect to Ä. A collective choice problem
〈N , X ,¼〉 has single-peaked preferences if for some linear order Ä on X the
preference profile ¼ is single-peaked with respect to Ä.

The name single-peaked comes from the shape of the payoff functions that
represent the preferences. An example is shown in Figure 1.5. In this diagram,
there is a small colored disk for each alternative and each individual, and the
fact that the y -coordinate of the disk for some alternative x of a certain color is
larger than the y -coordinate of the disk for another alternative x ′ of the same
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Individual 3

Individual 2

Individual 1

a Ã b Ã c Ã d Ã e

Figure 1.5 A single-peaked preference profile.

color means that the individual associated with the color prefers x to x ′. (The
magnitude of the difference between the y -coordinates has no significance.) For
example, individual 3’s preference relation ¼3 is given by d �3 c �3 e �3 b �3 a .
Note that each individual’s preference relation in a single-peaked preference pro-
file is strict on each side of the individual’s favorite alternative, but the individual
may be indifferent between alternatives on different sides of her favorite alterna-
tive. In the preference profile in Figure 1.5, for example, individual 2 is indifferent
between a and c .

The next result involves the median of the individuals’ favorite alternatives.
An odd number of ordered alternatives has a single median, namely the mid-
dle alternative in the order; an even number of ordered alternatives has two
medians, namely the two middle alternatives.

Definition 1.21: Median of finite collection

Let X be a set andÄ a linear order on X . Suppose that xi ∈ X for i = 1, . . . , n ,
where n is a positive integer, with x1 Ä x2 Ä · · · Ä xn . If n is odd then the
median of (x1, . . . , xn )with respect toÄ is xk for k = 1

2
(n+1), and if n is even

then the medians of (x1, . . . , xn )with respect to Ä are xl and xl+1 for l = 1
2

n .

For example, for the preferences illustrated in Figure 1.5, for which the individ-
uals’ favorite alternatives are a , b , and d , we have a Ã b Ã d , so that b is the
median of the favorite alternatives with respect to Ä.

I now show that for a collective choice problem with single-peaked prefer-
ences, an alternative is a median of the individuals’ favorite alternatives if and
only if it is a Condorcet winner, and if the number of individuals is odd then the
unique median favorite alternative is the strict Condorcet winner. The result has
the name “median voter theorem” although the median is defined with respect
to an ordering of the alternatives, not the individuals (voters).
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1:

2:
3:
4:
5:

a Ã b Ã c Ã d Ã e Ã f Ã g

Figure 1.6 An illustration of Proposition 1.4 for a collective choice problem with five
individuals. The median of the individuals’ favorite positions is c .

Proposition 1.4: Median voter theorem for single-peaked preferences

Consider a collective choice problem in which the number of individuals is
finite. If the problem has single-peaked preferences with respect to a linear
order Ä, an alternative is a Condorcet winner if and only if it is a median
of the individuals’ favorite alternatives with respect to Ä. If the number of
individuals is odd, the unique median is the strict Condorcet winner.

Proof

Denote by n the number of individuals and let m be a median of the indi-
viduals’ favorite alternatives with respect to the ordering Ä. (In Figure 1.6,
for example, the individuals’ favorite alternatives are a , b , c , e , and g
(indicated in yellow), so that m = c .)

For every individual i , denote i ’s favorite alternative by x ∗i . If x Â m
then for all individuals i for whom m Ä x ∗i we have m �i x by the single-
peakedness of preferences. The number of such individuals is 1

2
(n +1) if n

is odd and at least 1
2

n if n is even, because m is a median of the favorite
alternatives. Similarly, if m Â x then for all i with x ∗i Äm we have m �i x ,
and the number of such individuals is 1

2
(n +1) if n is odd and at least 1

2
n if

n is even. Thus m is a Condorcet winner of the collective choice problem,
and is a strict Condorcet winner if n is odd.

If an alternative x is not a median of the individuals’ favorite alterna-
tives, it is beaten by any median, and hence is not a Condorcet winner.

Exercise 1.8: Median rule and Borda winner

Give an example to show that for a single-peaked preference profile the
median favorite alternative may differ from the alternative selected by the
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Borda rule.

In some models, the assumption that the individuals’ preferences are single-
peaked is unreasonable, but a weaker version of this condition is acceptable. One
such version allows each individual’s preferences to have a single plateau, rather
than a single peak, with strict preferences on each side of the plateau. Precisely,
for some linear order Ä on the set of alternatives and, for each individual i ∈ N ,
alternatives ai and a i (not necessarily distinct), we have a ≺i b if a Ã b Å ai ,
a ∼i b if ai Å a Ã b Å a i , and a �i b if a i Ã a Ã b . Denote the number of individ-
uals by n and let z 1, z 2, . . . , z 2n be an ordering of {a1, a2, . . . , an , a 1, a 2, . . . , a n} such
that z 1 Å z 2 Å · · · Å z 2n . Fishburn (1973, Theorem 9.3) shows that in this case an
alternative x is a Condorcet winner of the collective choice problem 〈N , X ,¼〉 if
and only if z n Å x Å z n+1. The next exercise asks you to find an example in which
each individual’s preferences have a single plateau and the median of some col-
lection of the individuals’ favorite alternatives does not satisfy this condition,
and hence is not a Condorcet winner.

Exercise 1.9: Median of collection of favorite alternatives and Condorcet
winner for single-plateau preferences

Give an example of a collective choice problem 〈N , X ,¼〉with an odd num-
ber of individuals in which each individual’s preferences have a single
plateau rather than a single peak (as defined in the previous paragraph)
and the median of some collection (a ∗i )i∈N of alternatives for which each a ∗i
is a favorite alternative of individual i differs from the unique Condorcet
winner.

Now suppose that each individual has a single favorite alternative but may
be indifferent among alternatives on the same side of her favorite. Then the
(unique) median of the individuals’ favorite alternatives may differ from the Con-
dorcet winner, as you are asked to demonstrate in the next exercise.

Exercise 1.10: Median of favorite alternatives and Condorcet winner for
variant of single-peaked preferences with indifference

Consider a collective choice problem 〈N , X ,¼〉 with an odd number of in-
dividuals in which each individual has a single favorite alternative and, for
some linear order Ä of the alternatives, each individual’s preferences sat-
isfy the variant of (1.3) in which the right-hand side is a ∗ ¼i b ¼i c . Give an
example of such a problem that does not have a Condorcet winner and also
an example with a unique Condorcet winner that differs from the median
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of the individuals’ favorite alternatives.

The next exercise leads you through an alternative, inductive, proof of the
median voter theorem (Proposition 1.4) for a finite collective choice problem. A
variant of this proof establishes an elegant generalization of that result, discussed
after the exercise.

Exercise 1.11: Another proof of existence of Condorcet winner when
preferences are single-peaked

Let 〈N , X ,¼〉 be a finite collective choice problem with an odd number
of individuals that has single-peaked preferences with respect to a lin-
ear order Ä. Denote the alternatives arranged according to this order by
(x1,x2, . . . , xk ) and for any t ∈ {1, . . . , k } let Xt = {x1, . . . ,xt−1} and Zt =
{xt , . . . , xk }. (a) Show that if for somet ∈ {1, . . . , k } (i) no alternative x j ∈ Xt

is the favorite alternative in Zj of a majority of individuals and (ii) xt is the
favorite alternative in Zt of a majority of individuals, then xt is the strict
Condorcet winner of 〈N , X ,¼〉. (b) Use this result to give an inductive proof
of the existence of a strict Condorcet winner of 〈N , X ,¼〉 in which at each
step the first remaining alternative according to Ä is selected if it is the fa-
vorite among the remaining alternatives of a majority of individuals and
otherwise is removed from the set of alternatives.

A tree is a connected graph with no cycles. Define a preference profile to be
single-peaked on a tree if for some tree each individual’s preferences are single-
peaked on every path through the tree. The proof in Exercise 1.11 may be adapted
to show that every finite collective choice problem in which the preference pro-
file is single-peaked on a tree has a strict Condorcet winner. At each step in the
inductive argument, one of the terminal nodes of the tree is either selected or
removed. An example of a collective choice problem with preferences that are
single-peaked on a tree but not on a line is given in Figure 1.7. These prefer-
ences are not single-peaked in the sense of Definition 1.20 because the individ-
uals’ worst alternatives (d , c , and b ) number more than two. But they are single-
peaked on all the paths in the tree on the right of Figure 1.7, and a is the strict
Condorcet winner of the problem.

1.5.2 Single-crossing preferences

The single-crossing property is another condition on preference profiles that is
sufficient for the existence of a Condorcet winner.

Suppose that the individuals can be ordered in such a way that for any alter-
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a

b c

d1 2 3

a a a
b d c
c b d
d c b

Figure 1.7 A collective choice problem (left) with preferences that are single-peaked on
the tree on the right, but are not single-peaked on a line.

natives x and y , if a median individual in the ordering likes x at least as much as
y then either all individuals earlier in the ordering or all individuals later in the
ordering prefer x to y . Then if a median individual prefers x to y , a majority of
individuals prefer x to y , so that in particular if a median individual has a unique
favorite alternative then that alternative is a Condorcet winner. Further, if the
number of individuals is odd and the (unique) median individual has a unique
favorite alternative, then that alternative is the strict Condorcet winner. In addi-
tion, under these conditions the preferences of the median individual coincide
with those of the majority in the sense that for any alternatives x and y the me-
dian individual prefers x to y if and only if a majority of individuals do so. That is,
the median individual’s preference relation coincides with the majority relation,
defined as follows.

Definition 1.22: Majority relation

Let 〈N , X ,¼〉 be a finite collective choice problem. The binary relation Ä
on X defined by

x Ä y if and only if the number of individuals i for whom x �i y is
at least the number for whom y �i x

is the majority relation for 〈N , X ,¼〉.

A preference profile has the single-crossing property if the individuals can be
ordered in such a way that the preferences of every individual, not only those of
the median individual, satisfy the condition in the previous paragraph. That is,
there is a linear order ≥ of the individuals such that for every individual i and all
alternatives x and y , if x ¼i y then either (a) x �j y for every individual j < i or
(b) x �j y for every individual j > i .
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1 2 3 4 5 6 7

x x x y y y y

y y y x x x x

1 2 3 4 5 6 7

y y
x y

x x x x

x x y y y y

Figure 1.8 An illustration of the individuals’ preferences between the alternatives x and
y for two collective choice problems with single-crossing preferences and seven individ-
uals. Each column in each diagram indicates the preference between x and y for one
individual, with the alternative that the individual prefers at the top. In the diagram on
the right, individual 3 is indifferent between x and y .

Definition 1.23: Single-crossing preferences

Let 〈N , X ,¼〉 be a collective choice problem for which N is finite and let ≥
be a linear order on N . The problem 〈N , X ,¼〉 has single-crossing prefer-
ences with respect to ≥ if for every i ∈N , x ∈ X , and y ∈ X \ {x },

x ¼i y ⇒ x �j y either (a) for all j < i or (b) for all j > i .

The problem has single-crossing preferences if this condition is satisfied for
some linear order ≥ on N .

If a collective choice problem has single-crossing preferences and x ¼i y for
some individual i then either x �j y for every individual j or there is a unique
individual i ∗ such that x ¼i ∗ y and either (a) x �i y for all i < i ∗ and x ≺i y for all
i > i ∗ or (b) x ≺i y for all i < i ∗ and x �i y for all i > i ∗. Figure 1.8 shows two ex-
amples and in doing so motivates the term “single-crossing”. This implication of
Definition 1.23 leads to an equivalent definition of single-crossing that involves
a linear order of the alternatives in addition to a linear order of the individuals.

Exercise 1.12: Alternative definition of single-crossing

Show that a collective choice problem 〈N , X ,¼〉 has single-crossing prefer-
ences if and only if there is a linear order ≥ of the individuals and a linear
order Ä of the alternatives such that whenever x ¼i y , (a) x Ã y ⇒ x �j y
for all j < i and (b) y Ã x ⇒ x �j y for all j > i .

That individuals’ preferences satisfy the single-crossing property is plausible
in some economic models in which individuals differ in a characteristic like their
earning-power or their degree of risk aversion or altruism, by which they can be
ordered. Section 11.3.2 contains an example.

The next exercise concerns the relation between single-peaked and single-
crossing preferences: (a) single-peaked preferences may not be single-crossing,
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(b) if every individual’s preferences are strict and every alternative is some indi-
vidual’s favorite, single-crossing preferences are single-peaked, and (c) otherwise
they may not be.

Exercise 1.13: Single-crossing and single-peakedness

a. Show that the collective choice problem 〈{1,2,3},{a ,b , c , d },¼〉 for
which a �1 b �1 c �1 d , b �2 c �2 d �2 a , and c �3 b �3 a �3 d has
single-peaked but not single-crossing preferences.

b. Suppose that a collective choice problem with a finite number of indi-
viduals in which every individual’s preference relation is strict has single-
crossing preferences with respect to a linear order ≥, and every alterna-
tive is the favorite of some individual. Show that the problem has single-
peaked preferences with respect to the ordering of the alternatives given
by the preference relation of the first individual according to ≥.

c. Specify a collective choice problem that has single-crossing preferences
but does not satisfy the conditions in (b) and does not have single-peaked
preferences. (Such a problem exists with three individuals and three alter-
natives.)

Here is a precise version of the claims at the start of this section.

Proposition 1.5: Median voter theorem for single-crossing preferences

Consider a collective choice problem with a finite number of individuals
that has single-crossing preferences with respect to a linear order ≥. Sup-
pose that each median individual with respect to ≥ has a unique favorite
alternative.

a. The favorite alternative of each median individual is a Condorcet win-
ner of the problem, and if the number of individuals is odd, the favorite
alternative of the (unique) median individual is the strict Condorcet
winner of the problem.

b. If the number of individuals is odd, the preference relation of the
(unique) median individual coincides with the majority relation.
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Proof

Denote the collective choice problem by 〈N , X ,¼〉 and the number of indi-
viduals (members of N ) by n . Let i be a median individual according to ≥
and let x ∗ be her favorite alternative.

a. For every alternative x ∈ X \ {x ∗} we have x ∗ �i x , and hence by single-
crossing either x ∗ �j x for all j < i or x ∗ �j x for all j > i . Thus x ∗ �j x for
at least 1

2
(n + 1) individuals j if n is odd and for at least 1

2
n individuals j if

n is even. Hence x ∗ is a Condorcet winner, and a strict one if n is odd.

b. If i prefers x to y , then by single-crossing either all individuals j < i or
all individuals j > i prefer x to y , so that a majority of individuals prefer x
to y . If i is indifferent between x and y , then by single-crossing either all
individuals j < i prefer x to y and all individuals j > i prefer y to x , or vice
versa, so that the number of individuals who prefer x to y is equal to the
number who prefer y to x .

For a problem for which the number of individuals is even, note that, unlike
the companion result Proposition 1.4 for single-peaked preferences, this result
claims only that the favorite alternative of a median individual is a Condorcet
winner, not the converse. Here is an example that shows that the converse is
false. There are three alternatives, a , b , and c , and four individuals. Two indi-
viduals prefer a to c to b and the other two prefer b to c to a . This problem
has single-crossing preferences with respect to any ordering of the individuals in
which the two individuals who prefer a to b to c are either first and second or
third and fourth. The alternative c is a Condorcet winner but for no ordering of
the individuals is it the favorite alternative of either median individual.

The proof of part a of the result applies the single-crossing condition only
to the case in which i is the median individual and x is her favorite alternative.
Thus, as the argument at the start of this section suggests, the assumption in the
result that the problem has single-crossing preferences may be replaced with the
assumption that for some linear order ≥ on N and all y ∈ X \ {x ∗}we have

x ∗ ¼i ∗ y ⇒ either (a) x ∗ �j y for all j < i ∗ or (b) x ∗ �j y for all j > i ∗

where i ∗ is the median individual according to≥ and x ∗ is her favorite alternative.
The property in part b of the result does not hold for problems with single-

peaked preferences: there are such problems in which no individual’s preference
relation coincides with the majority relation.
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Exercise 1.14: Single-peaked preferences and no individual with
preferences of majority

Give an example of a collective choice problem with single-peaked pref-
erences in which for no individual i is it the case that for all alternatives
x and y , x ¼i y if and only if x ¼j y for a majority of individuals j . (An
example exists with three individuals and four alternatives.)

If the assumption in Proposition 1.5 that each median individual has a unique
favorite alternative is removed, each favorite alternative of the median individ-
ual is a Condorcet winner (but not necessarily a strict one) if the number of in-
dividuals is odd but a favorite alternative of a median individual may not be a
Condorcet winner if the number of individuals is even, as you are asked to show
in the next exercise.

Exercise 1.15: Single-crossing preferences and individual with multiple
favorite alternatives

Show that for a collective choice problem with single-crossing preferences
and an even number of individuals, a favorite alternative of a median indi-
vidual with multiple favorite alternatives may not be a Condorcet winner.

Exercise 1.16: Condorcet winner exists but preferences not single-
peaked or single-crossing

Give an example of a collective choice problem that has a strict Condorcet
winner but for which the preference profile is not single-peaked and does
not satisfy the single-crossing property.

Propositions 1.4 and 1.5 and the results in Exercises 1.13 and 1.16 imply that
the sets of collective choice problems that have a Condorcet winner, have single-
peaked preferences, and have single-crossing preferences are related in the way
indicated in Figure 1.9.

1.6 Condorcet winners for two-dimensional sets of alternatives

For a collective choice problem in which the set of alternatives is a subset of a
a one-dimensional space, the assumptions of single-peaked or single-crossing
preferences, which require the alternatives to be linearly ordered, may be appro-
priate, and if they are then the collective choice problem has a Condorcet winner
by Proposition 1.4 or 1.5. For a problem in which the set of alternatives is a sub-
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Condorcet winner exists

Single-peaked Single-crossing

Figure 1.9 The structure of the set of collective choice problems that have a Condorcet
winner.

set of a space with two or more dimensions, these assumptions seem less likely
to be appropriate. In this section I consider conditions unrelated to the con-
ditions of single-peaked or single-crossing preferences under which a collective
choice problem for which the set of alternatives is R2, the set of pairs of real num-
bers, has a Condorcet winner. As in the previous section, I assume that the set of
individuals is finite.

1.6.1 City block preferences

In a city with streets that form a grid with square blocks, you have a favorite lo-
cation and you evaluate other locations according to their walking distance from
that location. Suppose that streets that run north–south are called avenues and
ones that run east–west are called streets. Then if, for example, your favorite lo-
cation is (5th Avenue,10th Street), you are indifferent between (3rd Avenue,9th Street)
and (2nd Avenue,10th Street): both of these locations are three blocks away. We
say you have city block preferences. The following definition does not restrict the
alternatives to be located on a grid: the set of alternatives is R2.

Definition 1.24: City block preferences

A preference relation ¼i on R2 reflects city block preferences if for some
alternative (x ∗i 1,x ∗i 2)∈R

2 it is represented by the payoff function u i defined
by

u i (x1,x2) =−|x1−x ∗i 1| − |x2−x ∗i 2| for all (x1,x2)∈R
2.

The alternative x ∗i in this definition is the individual’s favorite alternative, and
each of her indifference sets has the form

{(x1,x2)∈R
2 : |x1−x ∗i 1|+ |x2−x ∗i 2|= c }

for some number c , a square with center x ∗i whose diagonals are vertical and
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x ∗ia

b

Figure 1.10 Some indifference sets of an individual with city block preferences. The
individual’s favorite alternative is x ∗i , and darker indifference sets correspond to more
preferred alternatives. The city-block distance from x ∗i to a , for example, is the same as
the city-block distance from x ∗i to b .

horizontal. Figure 1.10 shows an example. For such a preference relation, two
alternatives are indifferent if they are equidistant from x ∗, where the distance
between two alternatives is the length of the shortest path between them that
consists only of horizontal and vertical line segments.

I show that every collective choice problem in which each individual has city
block preferences has a Condorcet winner. Each component of this winner is a
median of the individuals’ favorite values of that component. More precisely, for
a problem in which the number of individuals is odd, denote by m j , for j = 1,
2, the (unique) median of (x ∗i j )i∈N , the collection of the j th components of the
individuals’ favorite alternatives. The alternative (m1, m2) is the strict Condorcet
winner of such a problem. (Figure 1.11a shows an example.) For a problem in
which the number of individuals is even, every pair (m1, m2) for which, for j = 1,
2, m j ≤ x ∗i j for exactly half of the individuals (and hence m j ≥ x ∗i j for the other
half) is a Condorcet winner. (Figure 1.11b shows an example.)

Suppose that the number of individuals is odd and (x1,x2) is a point for which
|m1 − x1| 6= |m2 − x2|. Then the reason that the number of individuals who pre-
fer (m1, m2) to (x1,x2) exceeds the number with the opposite preference may be
seen geometrically. Figure 1.12a shows a case in which (x1,x2) lies northeast of
(m1, m2). An individual whose favorite alternative is in the area shaded green
prefers (m1, m2) to (x1,x2). For every value of (x1,x2) with |m1 − x1| 6= |m2 − x2|,
this area includes all alternatives (z 1, z 2) with z 2 ≤m2, so that by the definition
of m2 it includes the favorite positions of a majority of individuals. The argu-
ments for the cases in which (x1,x2) lies in one of the three other quadrants are
symmetric.

If (x1,x2) is a point for which |m1−x1|= |m2−x2| then the favorite positions of
the individuals who prefer (m1, m2) to (x1,x2) lie in the area shaded green in Fig-
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x ∗4
x ∗5

x ∗1

x ∗2
x ∗3

m1

m2

(a) A problem with five individuals. The
strict Condorcet winner is (m1, m2), indi-
cated by the yellow disk.

x ∗4
x ∗5

x ∗1

x ∗2

x ∗6

x ∗3

m1

m2

(b) A problem with six individuals. Each
alternative in the yellow rectangle (for ex-
ample (m1, m2)) is a Condorcet winner.

Figure 1.11 Collective choice problems in which the set of available alternatives is R2

and each individual has city block preferences.

ure 1.12b. The argument that the favorite positions of a majority of individuals
lie in this area is given in the proof of the result.

Proposition 1.6: Condorcet winner for collective choice problem with
two-dimensional set of alternatives and city block
preferences

Let 〈N , X ,¼〉 be a collective choice problem for which the set N of individ-
uals is finite, the set X of alternatives is R2, and each individual has city
block preferences.

If the number of individuals is odd, for j ∈ {1, 2} let m j be the median
of the j th components of the individuals’ favorite alternatives with respect
to the linear order ≥. Then the alternative (m1, m2) is the strict Condorcet
winner of 〈N , X ,¼〉.

If the number of individuals is even, for j ∈ {1, 2} let mj and m j , with
mj ≤m j , be the medians of the j th components of the individuals’ favorite
alternatives with respect to ≥. Then the Condorcet winners of 〈N , X ,¼〉 are
the alternatives (m1, m2)with m j ∈ [mj , m j ] for j = 1, 2.

Proof

Denote the number of individuals by n . First suppose that n is odd. Let
(x1,x2) ∈ R2 be an alternative different from (m1, m2). I argue that a strict
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(x1,x2)

m1

m2

(a) |m1−x1| 6= |m2−x2|.

(x1,x2)

m1

m2

(b) |m1−x1|= |m2−x2|.

Figure 1.12 Collective choice problems in which the set of available alternatives is R2

and each individual has city block preferences. In each case, an individual whose fa-
vorite alternative is on the blue line or in the area shaded blue is indifferent between
(m1, m2) and (x1,x2), and one whose favorite alternative is in the area shaded green
prefers (m1, m2) to (x1,x2).

majority of the individuals prefer (m1, m2) to (x1,x2), so that (m1, m2) is a
strict Condorcet winner. Denote the favorite position of each individual i
by x ∗i .

First suppose that x2 >m2+|x1−m1| (as in the example in Figure 1.12a).
Then every individual i whose favorite position is at most m2 (individuals
3, 4, and 5 in Figure 1.11a) prefers (m1, m2) to (x1,x2):

|x1−x ∗i 1|+ |x2−x ∗i 2|> |x1−x ∗i 1|+ |m2−x ∗i 2+ |x1−m1||

= |x1−x ∗i 1|+ |m1−x1|+ |m2−x ∗i 2| (given m2 ≥ x ∗i 2)

≥ |m1−x ∗i 1|+ |m2−x ∗i 2|.

By the definition of m2, the number of such individuals is 1
2
(n + 1), a strict

majority.
Now suppose that x2 =m2+ |x1−m1|, with x1 >m1, as in the example in

Figure 1.12b, so that (x1,x2) lies on the black line in Figure 1.13 (which ex-
cludes the point (m1, m2)). Divide the space into four regions, as in the fig-
ure; each region consists of an area shaded in a light color plus the bound-
aries with the corresponding dark color, if any. Denote the numbers of
the individuals’ favorite alternatives in the regions by n 1, n 2, n 3, and n 4,
as shown in the figure. (In the case shown in Figure 1.11a, for example,
n 1 = 2 and n 2 = n 3 = n 4 = 1.) Given the definitions of m1 and m2, we
have n 1+n 2 > n 3+n 4 and n 1+n 3 > n 2+n 4, so that n 1 > n 4. By variants
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(x1,x2)

n 1 n 2

n 3 n 4

m1

m2

Figure 1.13 The regions in the second part of the proof of Proposition 1.6.

of the argument for the previous case, the n 1 individuals with favorite al-
ternatives in the orange region prefer (m1, m2) to (x1,x2) and the n 2 + n 3

individuals with favorite alternatives in the green and violet regions like
(m1, m2) at least as much as (x1,x2). Thus given n 1 > n 4, more individuals
prefer (m1, m2) to (x1,x2) than prefer (x1,x2) to (m1, m2).

Similar arguments apply to every alternative (x1,x2) with |m1 − x1| =
|m2−x2| and x1 <m1, so that (m1, m2) is a strict Condorcet winner.

If n is even, for any (m1, m2) satisfying the condition in the result, sim-
ilar arguments establish that for any other alternative (x1,x2), at least as
many individuals prefer (m1, m2) to (x1,x2) as prefer (x1,x2) to (m1, m2), so
that (m1, m2) is a Condorcet winner.

This result does not generalize to problems in higher dimensional spaces: not
all problems with city block preferences in spaces of three or more dimensions
have Condorcet winners (Wendell and Thorson 1974, Example 3.1).

1.6.2 Max preferences

Suppose that each individual focuses exclusively on the dimension for which an
alternative differs most from her favorite alternative.

Definition 1.25: Max preferences

A preference relation ¼i on R2 reflects max preferences if for some alter-
native (x ∗i 1,x ∗i 2) ∈ R

2 it is represented by the payoff function u i defined
by

u i (x1,x2) =−max{|x1−x ∗i 1|, |x2−x ∗i 2|} for all (x1,x2)∈R
2.
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x ∗i

(a) Indifference sets of an individual with
max preferences and favorite alternative
x ∗i . Darker indifference sets correspond to
higher payoffs.

r (x ∗1)r (x ∗2)

r (x ∗3)

x ∗1

x ∗2

x ∗3

(b) A collective choice problem with three
individuals in which each individual has
max preferences. The Condorcet winner
is x ∗2.

Figure 1.14

The indifference sets for such preferences are squares centered at x ∗i with sides
parallel to the axes, as in Figure 1.14a.

Given Proposition 1.6 and the fact that these indifference sets are rotations
by 45 degrees of the indifference sets for city block preferences, we can find the
Condorcet winners of a collective choice problem in which each individual has
max preferences as follows. Rotate the set of the individuals’ favorite positions
by 45 degrees and for j ∈ {1,2} let m j be a median of the j th components of
the rotated alternatives. A Condorcet winner of the problem is the alternative
obtained by applying the inverse of the rotation to (m1, m2). (The outcome is
independent of the center and direction of the rotation.)

Proposition 1.7: Condorcet winner for collective choice problem with
two-dimensional set of alternatives and max
preferences

Let 〈N , X ,¼〉 be a collective choice problem for which the set N of individ-
uals is finite, the set X of alternatives is R2, and each individual has max
preferences. Denote the favorite alternative of each individual i ∈N by x ∗i
and let r : R2 → R2 be a 45◦ rotation of the plane. An alternative x ∗ is a
Condorcet winner of 〈N , X ,¼〉 if and only if for j ∈ {1,2} the number rj (x ∗)
is a median of the set of points rj (x ∗i ) for i ∈N .

Figure 1.14b shows an example with three individuals in which I use a clock-
wise rotation about (0,0). For an arbitrary problem, a Condorcet winner is not
necessarily the favorite alternative of any individual, but in this example the
strict Condorcet winner is the favorite alternative of individual 2. Note that the
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value of its first dimension, x ∗21, is the smallest value of the first dimension over
all the individuals’ favorite alternatives. It is the strict Condorcet winner of the
problem because for each of the other individuals, the second dimension, not
the first, is salient: |x ∗j 2− x ∗22| > |x

∗
j 1− x ∗21| for j ∈ {1,3}. To verify directly that it is

the strict Condorcet winner, let x be an alternative different from x ∗2. If x2 < x ∗22

then individuals 1 and 2 prefer x ∗2 to x ; if x2 > x ∗22 then individuals 2 and 3 prefer
x ∗2 to x ; and if x2 = x ∗22 then individual 2 prefers x ∗2 to x and individuals 1 and 3
are indifferent between x ∗2 and x .

1.6.3 Euclidean preferences

Finally, suppose that each individual evaluates an alternative x according to the
length of the line segment between her favorite alternative and x , the Euclidean
distance between these alternatives.

Definition 1.26: Euclidean preferences

A preference relation ¼i on R2 reflects Euclidean preferences if for some
alternative x ∗i ∈R

2 it is represented by the payoff function u i defined by

u i (x ) =−‖x −x ∗i ‖ for all x ∈R2

where ‖x − x ∗i ‖ is the Euclidean distance between x and x ∗i (the length of
the line segment joining x and x ∗i ).

An indifference set of an individual with Euclidean preferences has the form

{x ∈R2 : ‖x −x ∗i ‖= c }

for some number c , a circle with center x ∗i .
Some collective choice problems in which every individual has Euclidean

preferences have Condorcet winners. Suppose, for example, that there are three
individuals and their favorite alternatives are the ones given in Figure 1.15a. The
favorite alternative of individual 2, x ∗2, is a Condorcet winner of this collective
choice problem. Take any other alternative, x . An individual prefers x ∗2 to x if and
only if x ∗2 is closer to her favorite alternative than is x . The alternatives equidis-
tant from x ∗2 and x lie on the perpendicular bisector of the line segment joining
x ∗2 and x , indicated by the violet dashed line in Figure 1.15a. All individuals with
favorite alternatives on the x ∗2-side of this perpendicular bisector prefer x ∗2 to x ,
and all individuals with favorite alternatives on the x -side of it prefer x to x ∗2.
Thus x ∗2 beats the alternative x in the figure two to one, and you should be able
to convince yourself that it beats every other alternative by at least two to one.
Thus x ∗2 is a Condorcet winner—in fact, the strict Condorcet winner.
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x ∗3

x ∗1

x ∗2

x

(a) A collective choice problem with a
Condorcet winner (x ∗2).

` `′

x ∗3

x ∗1

x ∗2

x y

(b) A collective choice problem with no
Condorcet winner.

Figure 1.15 Collective choice problems in which the set of available alternatives is R2,
the set of all pairs of real numbers.

The fact that x ∗3 is a Condorcet winner in this example depends on the fact
that it lies on the line through x ∗1 and x ∗3. Consider the collective choice problem
in Figure 1.15b, in which x ∗2 does not have this property. This problem has no
Condorcet winner. For every alternative x , there is a line ` through x with the
property that the favorite alternatives of more individuals lie on one side of `
than on the other side, where an alternative on ` is counted as being on both
sides. For example, in the figure, the favorite alternatives of individuals 2 and 3
lie on the right of ` and the favorite alternative of individual 1 lies on the left of
it. Now select the favorite alternative on the side of `where a majority of favorite
alternatives lie that is closest to ` (x ∗3 in the figure) and draw a line `′ through it
parallel to `. Finally, choose the point y that is on both `′ and a line through x
perpendicular to `. Then more individuals prefer y to x than x to y , showing that
x is not a Condorcet winner.

The next result generalizes these arguments to collective choice problems
with any number of individuals.

Proposition 1.8: Condorcet winner when set of alternatives is two-
dimensional and preferences are Euclidean

Consider a collective choice problem 〈N , X ,¼〉 in which the set N of in-
dividuals is finite, the set X of alternatives is R2, and each individual has
Euclidean preferences. An alternative x is a Condorcet winner of 〈N , X ,¼〉
if and only if the favorite alternatives of at least half of the individuals lie
on each side of every line through x (with a point on the line counted as
being on both sides).
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Proof

Denote the number of individuals by n .
I first argue that if x is an alternative with the property that the favorite

alternatives of at least half of the individuals lie on each side of every line
through x then x is a Condorcet winner. Let y be another alternative.
Draw the line through x perpendicular to the line segment joining x and
y . By assumption, the favorite alternatives of at least 1

2
n individuals lie on

the side of this perpendicular line opposite to y , so that those individuals
prefer x to y . Thus x is a Condorcet winner.

x

y

≥ 1
2 n favorite

alternatives

I now argue that if x does not satisfy the property then it is not a Con-
dorcet winner. Given that fewer than 1

2
n individuals’ favorite alternatives

lie on one side of some line ` through x , more than 1
2

n individuals’ favorite
alternatives lie strictly on the other side of `. Let x ∗i be a favorite alternative
closest to ` among those on the other side of `, and draw a line `′ parallel
to ` through x ∗i .

y

`
`′

`′′

x ∗i

x

< 1
2 n favorite

alternatives

> 1
2 n favorite

alternatives

Choose the alternative y at the intersection of `′ and the line perpendicu-
lar to ` (and to `′) through x . Let `′′ be the line midway between ` and `′

(the dashed line in the diagram). The alternative y is preferred to x by all
individuals with favorite alternatives on the opposite side (relative to x ) of
`′′, who number more than 1

2
n , so x is not a Condorcet winner.

The condition in the result for an alternative to be a Condorcet winner is aptly
characterized as requiring the alternative to be a “median in every direction”. For
every collective choice problem in which the set of alternatives is two-dimensional
and there are four individuals, an alternative exists that satisfies the condition.
If one of the individual’s favorite alternatives lies within the triangle formed by
the other individuals’ favorite alternatives, as in Figure 1.16a, then this alter-
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x

(a) Four individuals, Con-
dorcet winner x .

x

(b) Four individuals, Con-
dorcet winner x .

x

(c) Seven individuals,
(strict) Condorcet winner x .

Figure 1.16 Configurations of favorite alternatives satisfying the condition in Proposi-
tion 1.8 for x to be a Condorcet winner. Each small disk, black or red, is an individual’s fa-
vorite alternative. (In the middle case, x , indicated by a circle, is not a favorite alternative
of any individual.)

native satisfies the condition and hence is a Condorcet winner. Otherwise, as
in Figure 1.16b, the favorite alternatives can be divided into two pairs with the
property that the two lines connecting the members of each pair intersect inside
the quadrilateral formed by the alternatives. In this case, the alternative at the
intersection of the line (and only this alternative) is a Condorcet winner.

For most collective choice problems with a two-dimensional set of alterna-
tives and either three individuals or at least five, no alternative is a median in
every direction. Suppose, for example, that the number n of individuals is odd.
Then 1

2
n is not an integer, and the condition requires the favorite alternatives of

at least 1
2
(n + 1) individuals to lie on each side of every line through x . Thus x

must be the favorite alternative of some individual. Further, as a line through
x rotates, whenever it passes through an alternative different from x it must at
the same time pass through another such alternative, to keep 1

2
(n + 1) alterna-

tives on each side of it. If n = 3 only configurations of the individuals’ favorite
alternatives that lie on a line satisfy this condition; the middle alternative is the
Condorcet winner. An example of a configuration satisfying the condition for
n = 7 is shown in Figure 1.16c.

1.7 Preference aggregation: Arrow’s theorem

The object of study of the previous sections is a collective choice rule, which as-
sociates with each collective choice problem an alternative or set of alternatives,
based on the individuals’ preferences. This section considers the possibility of
associating with each collective choice problem a (societal) preference relation
over the set of alternatives; that is, the possibility of aggregating the individuals’
preferences. Rather than looking for an alternative that best reflects the indi-
viduals’ possibly diverse preference relations, we look for an entire ranking of
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the alternatives that best reflects these preference relations. One motivation for
this line of inquiry is that the members of the society do not currently know the
collective choice problem they will face, and they wish to be prepared for what-
ever problem arises. Armed with a preference relation for society, for any set of
alternatives that arises they can select the alternative that is best according to
the preference relation. The main result is due to Kenneth J. Arrow (1921–2017),
whose work is the foundation of social choice theory.

I assume that every individual has a strict preference relation over the set of
alternatives. Our job is to associate with every profile of such preference rela-
tions a single (not necessarily strict) preference relation over the set of alterna-
tives, which I call the social preference relation. That is, we seek a preference
aggregation function, defined as follows.

Definition 1.27: Preference aggregation function

Let 〈N , X 〉 be a society and D a set of strict preference profiles for 〈N , X 〉.
A preference aggregation function for (〈N , X 〉, D) is a function that assigns
a (“social”) preference relation over X to every collective choice problem
〈N , X ,¼〉with ¼ ∈D .

Example 1.6: Borda aggregation

Assign to each collective choice problem the preference relation Ä over
the set of alternatives that ranks x at least as highly as y if and only if the
number of points

∑
i∈N pi (x ) that the Borda rule assigns to x is at least the

number it assigns to y . For instance, for the problem in Example 1.2, this
preference relation is given by b Â a Â c Â d (b is assigned 7 points, a is
assigned 6, c is assigned 4, and d is assigned 1).

Example 1.7: Condorcet aggregation

For each pair (x , y ) of alternatives, say that x beats y if a majority of in-
dividuals prefer x to y , and x and y tie if the number of individuals who
prefer x to y is the same as the number who prefer y to x . Assign to each
alternative one point for every alternative it beats and half a point for ev-
ery alternative with which it ties. Rank the alternatives by the number of
points received. For example, for the problem in Example 1.2, the prefer-
ence relation Ä thus defined is given by a Â b Â c Â d (a beats b , c , and d ,
b beats c and d , c beats d , and d beats no alternative).

The following property of a preference aggregation function plays a central
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role in the analysis: the ranking of two alternatives according to the social pref-
erence relation depends only on the individuals’ preferences between these two
alternatives. More precisely, if for two preference profiles ¼ and¼′ and two alter-
natives x and y , the preference of every individual i between x and y is the same
according to¼i as it is according to ¼′i , then the social preference between x and
y generated by ¼ is the same as the social preference between these alternatives
generated by ¼′. This property is known as independence of irrelevant alterna-
tives (a name that seems calculated to convince the reader that the property is
reasonable).

Definition 1.28: Independence of irrelevant alternatives (IIA)

Let 〈N , X 〉 be a society and D a set of strict preference profiles for 〈N , X 〉.
A preference aggregation function F for (〈N , X 〉, D) is independent of irrel-
evant alternatives (IIA) if for all preference profiles ¼ ∈ D and ¼′ ∈ D for
〈N , X 〉 and any alternatives x ∈ X and y ∈ X with

x �i y if and only if x �′i y for every i ∈N

we have
x Ä y if and only if x Ä′ y ,

where Ä= F (N , X ,¼) and Ä′ = F (N , X ,¼′).

The Borda preference aggregation function defined in Example 1.6 does not
satisfy this property for a domain that includes the following two collective choice
problems.

1 2 3

a a a
b b b
c c d
d d c

1 2 3

c a d
d b a
a c b
b d c

Each individual ranks c relative to d in the same way for both problems, but for
the problem on the left c gets more points than d (2 versus 1) whereas for the
problem on the right the opposite is true (c gets 4 points and d gets 5), so that
according to the Borda rule c is socially preferred to d for the left problem and d
is socially preferred to c for the right problem.

The Condorcet aggregation function defined in Example 1.7 also does not
satisfy independence of irrelevant alternatives for a domain that includes these
two problems. For the problem on the left, c beats only d whereas d does not
beat any alternative, so that c is socially preferred to d , but for the problem on
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the right, c beats only d whereas d beats a and b , so that d is socially preferred
to c .

One preference aggregation function that does satisfy independence of irrel-
evant alternatives assigns to every preference profile the social preference rela-
tion in which all alternatives are indifferent. In addition to failing to meaningfully
aggregate the individuals’ preference relations, this function violates the natu-
ral requirement that the social preference relation ranks one alternative above
another one whenever all the individuals do so. This requirement is called the
Pareto property, after Vilfredo Pareto (1848–1923), who introduced the idea that
one social state is better than another if all individuals prefer it.

Definition 1.29: Pareto property of preference aggregation function

Let 〈N , X 〉 be a society and let D be a set of strict preference profiles for
〈N , X 〉. A preference aggregation function F for (〈N , X 〉, D) has the Pareto
property if for every preference profile ¼ ∈ D and all x ∈ X and y ∈ X with
x �i y for all i ∈N we have x Â y , where Ä= F (N , X ,¼) (and Â is the strict
relation associated with Ä).

A simple argument shows that no preference aggregation function satisfies
independence of irrelevant alternatives, the Pareto property, and adaptations of
anonymity and neutrality to preference aggregation. Consider a society with two
individuals, 1 and 2, and three alternatives, a , b , and c . Here are three possible
preference profiles.

1 2

b c
a a
c b

1 2

c c
b a
a b

1 2

b c
c a
a b

Alternatives b and c are symmetric in the first problem, so anonymity and neu-
trality imply they are socially indifferent. Similarly, a and b are socially indiffer-
ent in the second problem. Now, each individual’s rankings of b and c in the first
and third problems are the same, so by independence of irrelevant alternatives
these alternatives are socially indifferent in the third problem, and each individ-
ual’s rankings of a and b in the second and third problems are the same, so these
alternatives are socially indifferent in the third problem. By the transitivity of so-
cial preferences, a and c are thus socially indifferent in the third problem. This
conclusion conflicts with the implication of the Pareto property that, because
both individuals prefer c to a in this problem, c is socially preferred to a .

The next result, Arrow’s impossibility theorem, does not impose the assump-
tions of anonymity and neutrality on a preference aggregation function. Without



1.7 Preference aggregation: Arrow’s theorem 53

these assumptions, preference aggregation functions that satisfy independence
of irrelevant alternatives and the Pareto property exist: for any individual i ∗ ∈N
assign i ∗’s preference relation, ¼i ∗ , to every preference profile. Such a preference
aggregation function is, naturally, called dictatorial.

Definition 1.30: Dictatorial preference aggregation function

Let 〈N , X 〉 be a society and let D be a set of strict preference profiles for
〈N , X 〉. A preference aggregation function F for (〈N , X 〉, D) is dictatorial if
for some individual i ∗ ∈N , for every preference profile¼ ∈D we have x Ä y
if and only if x ¼i ∗ y , where Ä= F (N , X ,¼).

Arrow’s theorem shows that a preference aggregation function satisfies inde-
pendence of irrelevant alternatives and the Pareto property only if it is dictatorial.

Proposition 1.9: Arrow’s impossibility theorem

Let 〈N , X 〉 be a finite society for which X contains at least three alternatives
and let D be the set of all strict preference profiles for 〈N , X 〉. A prefer-
ence aggregation function for (〈N , X 〉, D) satisfies the Pareto property and
independence of irrelevant alternatives if and only if it is dictatorial.

Proof

If a preference aggregation function is dictatorial then it satisfies the Pareto
property and independence of irrelevant alternatives (IIA). I now show the
converse.

Let F be a preference aggregation function for (〈N , X 〉, D) that satisfies
the Pareto property and IIA. Let N = {1, . . . , n} and fix b ∈ X .

Step 1 Let¼ be a preference profile for 〈N , X 〉 for which b is either at the top
or the bottom of each individual’s ranking, and let Ä = F (N , X ,¼). Then
b is either the unique maximal alternative for Ä or the unique minimal
alternative for Ä (that is, either b Â x for all x ∈ X \ {b} or x Â b for all
x ∈ X \ {b}).

Proof. Assume to the contrary that for two other alternatives a and c we
have a Ä b Ä c . Let ¼′ be a preference profile that is obtained from ¼ by
moving c just above a for every individual i for whom a �i c (so that it
remains below b for all individuals for whom b is best), as illustrated in the
following example.
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1 2 3 · · · n −1 n

b b · · · a b
a a · · ·

c c · · · c a
c · · · c

a b · · · b
¼

→

1 2 3 · · · n −1 n

b b · · · c b
c c · · · a

c a a · · · c
· · · a

a b · · · b
¼′

Let Ä′ = F (N , X ,¼′). By the Pareto property, c Â′ a . We have a �i b if
and only if a �′i b for every i ∈ N and a Ä b , so that a Ä′ b by IIA. Also,
b �i c if and only if b �′i c for every i ∈ N and b Ä c , so that b Ä′ c by IIA.
Thus a Ä′ c by the transitivity of Ä′, contradicting c Â′ a . Ã

Step 2 Consider two preference profiles ¼ and ¼′ for 〈N , X 〉 for which b is
either at the top or the bottom of each individual’s ranking and the set of
individuals who rank b at the top is the same. Let Ä= F (N , X ,¼) and Ä′ =
F (N , X ,¼′). Then b is either the unique maximal alternative for both Ä and
Ä′ or the unique minimal alternative for both Ä and Ä′.

Proof. By Step 1, b is either the unique maximal alternative for Ä or the
unique minimal alternative for Ä. Suppose the former. The ranking of b
relative to any other alternative x is the same in ¼i and ¼′i for every indi-
vidual i and hence by IIA b and x are ranked in the same way by both Ä
and Ä′. Thus b is the unique maximal alternative for Ä′. If b is the unique
minimal alternative for Ä the argument is analogous. Ã

Step 3 For some individual i ∗ ∈N ,

i. for every preference profile ¼ for 〈N , X 〉 for which 1, . . . , i ∗ − 1 rank b
at the top and i ∗, . . . , n rank it at the bottom, the preference relation
F (N , X ,¼) ranks b uniquely at the bottom

ii. for every preference profile ¼ for 〈N , X 〉 for which 1, . . . , i ∗ rank b at
the top and i ∗+1, . . . , n rank it at the bottom, the preference relation
F (N , X ,¼) ranks b uniquely at the top.

Proof. Let ¼ be a preference profile in which b is at the bottom of all in-
dividuals’ preferences. By the Pareto property, b is the unique minimal al-
ternative for F (N , X ,¼). Now, for each individual i in turn, starting with
individual 1, move b from the bottom to the top of i ’s preferences. By
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Step 1, b is always either the unique maximal or unique minimal alter-
native for the resulting social preferences. By the Pareto property, it is the
unique maximal alternative after it moves to the top of all individuals’ pref-
erences. Let i ∗ be the first individual for whom the change in her prefer-
ences moves b from the bottom to the top of the social preferences. By
Step 2, the identity of i ∗ does not depend on the individuals’ rankings of
the other alternatives. Ã

Step 4 For any preference profile ¼ for 〈N , X 〉 and all alternatives a and c
different from b we have a Â c if and only if a �i ∗ c , where Ä = F (N , X ,¼)
and i ∗ is the individual identified in Step 3.

Proof. Assume to the contrary that for some preference profile ¼ for 〈N , X 〉
we have a �i ∗ c and c Ä a . Let ¼′ be the profile obtained from ¼ by raising
b to the top of the preferences of individuals 1, . . . , i ∗ − 1, lowering it to the
bottom of the preferences of individuals i ∗+1, . . . , n , and moving it between
a and c for individual i ∗, as in the following example.

1 · · · i ∗ −1 i ∗ i ∗+1 · · · n

· · · c a · · · b
b · · · a · · ·
a · · · c · · · c
· · · a c b · · · a

c · · · b b · · ·
¼

→

1 · · · i ∗ −1 i ∗ i ∗+1 · · · n

b · · · b a · · ·
· · · c a · · · c

a · · · b c · · · a
· · · · · ·

c · · · a c b · · · b
¼′

Let Ä′ = F (N , X ,¼′). The relative positions of a and c are the same in
¼ and ¼′, so c Ä′ a by IIA. In ¼′, the individuals’ rankings of a relative to
b are the same as they are in any profile in which b is ranked at the top
by 1, . . . , i ∗ − 1 and at the bottom by the remaining individuals, so that by
Step 3i and IIA we have a Â′ b . Similarly, using Step 3ii and IIA, b Â′ c .
Thus by transitivity a Â′ c , contradicting c Ä a . Ã

Step 4 says that i ∗ is the dictator regarding any two alternatives other
than b . It remains to show that i ∗ is also the dictator regarding the com-
parison of b with any other alternative.

Step 5 For any preference profile ¼ for 〈N , X 〉 and every alternative a we
have a Â b if and only if a �i ∗ b , where Ä = F (N , X ,¼) and i ∗ is the
individual identified in Step 3.
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Proof. Let¼ be a preference profile for which a �i ∗ b . Let c be an arbitrary
third alternative. Let ¼′ be a preference profile obtained from ¼ by moving
c in i ∗’s ranking to between b and a (if it is not already there) and raising c
to the top of all the other individuals’ rankings, as in the following example.

1 · · · i ∗ −1 i ∗ i ∗+1 · · · n

· · · c a · · · b
c · · · a · · ·
a · · · b c · · · c
· · · b b · · ·

b · · · a c · · · a
¼

→

1 · · · i ∗ −1 i ∗ i ∗+1 · · · n

c · · · c c · · · c
· · · a a · · · b

a · · · c · · ·
· · · b b b · · ·

b · · · a · · · a
¼′

Let Ä′ = F (N , X ,¼′). By the Pareto property, c Â′ b . By Step 4, given
a �′i ∗ c we have a Â′ c and hence a Â′ b by transitivity. Since a �i b if and
only if a �′i b for all i ∈N , we thus have a Âb by IIA. Ã

This result has the same flavor as Proposition 1.3: no aggregation method
satisfies a list of attractive properties for the domain of all possible preference
profiles. The results differ both in the type of aggregation considered—collective
choice rule or preference aggregation function—and in the nature of the proper-
ties imposed, but the message is similar.

Proposition 1.2 shows that for the domain of collective choice problems that
have a strict Condorcet winner, a collective choice rule that satisfies a list of at-
tractive properties does exist: the one that assigns to each problem its strict Con-
dorcet winner. An analogous result holds for preference aggregation functions.

For a problem 〈N , X ,¼〉 with the property that for every subset X ′ of X (in-
cluding X itself) the problem 〈N , X ′,¼|X ′ 〉 has a strict Condorcet winner, the ma-
jority relation is transitive, so that the function that assigns it to each problem
in the domain of problems with this property is a preference aggregation func-
tion. This preference aggregation function also satisfies the Pareto property and
independence of irrelevant alternatives.

Proposition 1.10: Preference aggregation with a strict Condorcet winner

Let 〈N , X 〉 be a finite society for which the number of individuals is odd and
let D be the set of strict preference profiles ¼ for 〈N , X 〉 for which for every
subset X ′ of X the collective choice problem 〈N , X ′,¼|X ′ 〉 has a strict Con-
dorcet winner. For any preference profile ¼ ∈ D , the majority relation for
〈N , X ,¼〉 is a preference relation, and the preference aggregation function
for (〈N , X 〉, D) that for each ¼ ∈D assigns to 〈N , X ,¼〉 the majority relation
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for 〈N , X ,¼〉 satisfies the Pareto property and independence of irrelevant
alternatives.

Proof

By definition the majority relation for 〈N , X ,¼〉 is complete. I now argue
that it is transitive. Let x ∈ X , y ∈ X , and z ∈ X and suppose that a majority
of individuals prefer x to y and a majority prefer y to z . Let X ′ = {x , y , z }.
By assumption, the collective choice problem 〈N , X ′,¼ |X ′ 〉 has a strict Con-
dorcet winner. This alternative is not y , because a majority of individuals
prefer x to y , and it is not z , because a majority of individuals prefer y to z ,
so it must be x . Thus a majority of individuals prefer x to z and hence the
majority relation for 〈N , X ,¼〉 is transitive. We conclude that the majority
relation for 〈N , X ,¼〉 is a preference relation.

Denote the majority relation by Ä. If for any alternatives x and y all
individuals prefer x to y then x Â y , so the Pareto property is satisfied.
Whether x Ä y or y Ä x depends only on the individuals’ preferences be-
tween x and y , so also independence of irrelevant alternatives is satisfied.

If a preference profile on a set X is single-peaked with respect to a linear or-
der Ä, then the restriction of the profile to a subset of X is single-peaked with
respect to the restriction of Ä to the subset, so by Proposition 1.4 the domain of
single-peaked preference profiles for a society 〈N , X 〉 for which the number of
individuals is odd satisfies the property in this result. Hence for this domain the
function that assigns to each collective choice problem its majority relation is a
preference aggregation function that satisfies the Pareto property and indepen-
dence of irrelevant alternatives. By Proposition 1.5, the same is true for the do-
main of single-crossing preference profiles for a society with an odd number of
individuals, and moreover for this domain the majority relation is the preference
relation of the median individual.

1.8 Preference intensities and interpersonal comparisons

The information in a collective choice problem about the individuals’ prefer-
ences concerns only the individuals’ rankings of the alternatives. For some col-
lective choice problems, this information appears to be an inadequate basis for
the selection of a collective action.

Consider, for example, the simplest of all collective choice problems: two
individuals have to decide between two alternatives, a and b . One individual
prefers a to b and the other prefers b to a . To select one of these alternatives, we
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need more information about the individuals’ evaluations of the alternatives.
Now suppose that two individuals have to decide among three alternatives,

a , b , and c . One individual prefers a to b to c and the other prefers c to b to
a . The collective choices consistent with anonymity and neutrality are {a , c },
{b}, and {a ,b , c }. The last is a non-choice, and to choose between {a , c } and {b}
again we need more more information about the individuals’ evaluations of the
alternatives.

One piece of information that we can use to choose an alternative in both
of these examples is a comparison of the individuals’ welfares for the alterna-
tives. Such information not only allows us to select alternatives in problems like
these two, but may also overturn our resolutions of other problems. For exam-
ple, suppose that three individuals have to decide between the alternatives a
and b . Two individuals prefer a and the third prefers b . Then a is the strict
Condorcet winner, so that it is selected by any anonymous, neutral, positively
responsive, and Nash independent collective choice rule (Proposition 1.2), and
is ranked first in the social preference relation generated by a preference aggre-
gation function that satisfies the Pareto property and independence of irrelevant
alternatives (Proposition 1.10). But if we have information on the intensity of the
individuals’ preferences, and the first two individuals’ preferences for a over b
are slight compared with the last individual’s preference for b over a , we may de-
cide to select b rather than a , especially if the first two individuals’ welfares for b
are higher than the last individual’s.

One reason that the models in the previous sections do not include inter-
personally comparable measures of welfare is the difficulty of quantifying wel-
fare and comparing it across individuals. We can in principle obtain informa-
tion about individuals’ ordinal preferences by observing their choices, but these
choices do not directly reveal the individuals’ welfares, and especially do not al-
low us to compare one individual’s welfare with another’s. However, individuals’
welfares can be assessed and compared in other ways. We can ask individuals to
report their well-beings on a common scale; we can assess the extent to which
each individual experiences certain states, like hunger and ill-health; and we can
observe individuals’ incomes and wealths.

I assume for the remainder of this section that associated with each alterna-
tive is a profile of numbers, interpreted as the individuals’ welfares. How should
such profiles be ranked? My approach, as in the previous sections, is axiomatic:
I state some properties for an ordering of welfare profiles that embody certain
principles and investigate the orderings that satisfy these properties and hence
are consistent with the principles.

A social welfare ordering is a complete transitive binary relation—that is, a
preference relation—over welfare profiles.
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Definition 1.31: Social welfare ordering

A social welfare ordering over a set X n of welfare profiles for a set of n
individuals is a preference relation over X n .

For two of the specific social welfare orderings that I discuss, the set X is R,
the set of all real numbers, and for the remaining ordering it is R++, the set of
positive numbers.

The interpretation of a social welfare ordering ¼ is that for any profiles u and
v of the individuals’ welfares, u is at least as socially desirable as v if and only if
u ¼ v . (In this section I use u and v to denote profiles of numbers, rather than
functions, as elsewhere.)

One example of a social welfare ordering is the utilitarian ordering, which
ranks welfare profiles according to the sum of the welfares.

Definition 1.32: Utilitarian social welfare ordering

Let N = {1, . . . , n} be a set of individuals. A social welfare ordering ¼ over
Rn for N is the utilitarian ordering if u ¼ v if and only if

∑
i∈N u i ≥

∑
i∈N vi .

This ordering pays no attention to inequality in welfare. For a society of two indi-
viduals, for example, it makes the welfare profile (1,1) indifferent to the profiles
(2,0) and (5,−3), and ranks the profile (101,0) above the profile (50,50).

A related social welfare ordering ranks profiles of positive welfares according
to the product of the welfares.

Definition 1.33: Nash social welfare ordering

Let N = {1, . . . , n} be a set of individuals. A social welfare ordering ¼ over
Rn
++ for N is the Nash ordering if u ¼ v if and only if

∏
i∈N u i ≥

∏
i∈N vi .

This ordering puts some weight on the equality of welfare. For a society of two
individuals, for example, it ranks the welfare profile (3,3) above the profile (8,1).

An example of a social welfare ordering that is even more sensitive to inequal-
ity is the leximin ordering, which gives priority to the smallest welfare. When
comparing the profiles u and v according to this ordering, we arrange their com-
ponents according to size, smallest to largest, and rank the profiles according to
the first components in this order that differ. For example, for u = (1,4,2,1,5) and
v = (3,1,8,2, 1), the orderings by component size are (1,1,2,4,5) and (1,1, 2,3,8),
so because these vectors are the same up to their third components and the
fourth component of the first vector, 4, exceeds the fourth component of the
second vector, 3, u is ranked above v . (The utilitarian and Nash orderings rank
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(u ∗2, u ∗1)

(u ∗1, u ∗2)

u 1 = u 2

better than
(u ∗1, u ∗2)

worse than
(u ∗1, u ∗2)

u 1→

↑
u 2

(a) Utilitarian ordering

(u ∗2, u ∗1)

(u ∗1, u ∗2)

u 1 = u 2

better than
(u ∗1, u ∗2)

worse than
(u ∗1, u ∗2)

u 1→

↑
u 2

(b) Nash ordering

(u ∗2, u ∗1)

(u ∗1, u ∗2)

u 1 = u 2

better than
(u ∗1, u ∗2)

worse than
(u ∗1, u ∗2)

u 1→

↑
u 2

(c) Leximin ordering

Figure 1.17 The pairs (u 1, u 2) ranked better than (u ∗1, u ∗2) (green), worse than it (red),
and equal to it (gray) by three welfare orderings. For the leximin ordering, each region
includes its boundaries with a dark shade of the color of the region, and the only pair
indifferent to (u ∗1, u ∗2) is (u ∗2, u ∗1).

v above u .)

Definition 1.34: Leximin social welfare ordering

Let N = {1, . . . , n} be a set of individuals and for any u ∈ Rn and k ∈ N let
k (u ) be the k th smallest component of u (so that u k (u ) ≤ u (k+1)(u ) for all
k = 1, . . . , n −1). The social welfare ordering ¼ over Rn for N is the leximin
ordering if u ¼ v if and only if either u is a permutation of v or there exists
k ∈N such that u j (u ) = vj (v ) for j = 1, . . . , k −1 and u k (u ) > vk (v ).

Note that this ordering is not continuous. For example, for a society of two
individuals, (1,3) is better than (1,2), but for all ε > 0, (1−ε,3) is worse than (1,2).

For the case of two individuals (n = 2), the sets of welfare pairs ranked better
than, equal to, and worse than a pair (u ∗1, u ∗2) by the three orderings are shown in
Figure 1.17.

I now present axiomatic characterizations of these orderings. The character-
izations share two properties, adaptations of the anonymity property for collec-
tive choice rules and the Pareto property for a preference aggregation function,
both of which are appealing. The anonymity property says that an ordering does
not depend on the individuals’ names.

Definition 1.35: Anonymous social welfare ordering

A social welfare ordering¼ over a set X n of welfare profiles for n individuals
is anonymous if for every u ∈ X n and every permutation v of u we have
u ∼ v .
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The Pareto property says that if the welfare of every individual is at least as
high in u as it is in v and is higher for at least one individual, then u is ranked
above v .

Definition 1.36: Strong Pareto condition for social welfare ordering

A social welfare ordering ¼ over a set X n of welfare profiles for a set N =
{1, . . . , n} of individuals satisfies the strong Pareto condition if for all u ∈ X n

and v ∈ X n ,

u i ≥ vi for all i ∈N with at least one inequality ⇒ u � v.

Each characterization involves one additional property. For the leximin or-
dering this property says that the welfare profile u is ranked above the profile v
if these profiles differ only in the welfares of two individuals, say i and j , i ’s wel-
fare is higher in u than in v , j ’s welfare is higher in v than in u , and j ’s welfare
in u is higher than i ’s welfare in u . Thus moving from v to u makes i better off
and j worse off, and both before and after the change j is better off than i . The
property is named after its originator, Peter J. Hammond.

Definition 1.37: Hammond-equitable social welfare ordering

A social welfare ordering ¼ over Rn for a set N = {1, . . . , n} of individuals is
Hammond-equitable if for all i ∈N and j ∈N with i 6= j and all u ∈Rn and
v ∈Rn with u k = vk for all k ∈N \ {i , j },

vj > u j > u i > vi ⇒ u � v.

All three welfare orderings that I have defined are anonymous and satisfy the
strong Pareto condition, but only the leximin ordering is Hammond equitable:
both the utilitarian and Nash orderings rank the profile (1,7) above the profile
(2,3), in violation of Hammond equity. In fact, among all possible orderings, the
leximin ordering is the only one that satisfies all three conditions.

Proposition 1.11: Characterization of leximin social welfare ordering

A social welfare ordering over Rn for a set of n individuals is anonymous
and Hammond-equitable and satisfies the strong Pareto condition if and
only if it is the leximin ordering.

I present a proof of this result only for a society consisting of two individuals.



62 Chapter 1. Collective choice with known preferences

Proof for two individuals

The leximin ordering satisfies the three conditions. I now show that if a
social welfare ordering for a set of two individuals satisfies the three con-
ditions then it is the leximin ordering.

First suppose that u ∗1 > u ∗2 and consider the ordering of the pair (u ∗1, u ∗2)
of welfares relative to any other pair. Refer to Figure 1.18.

• By the strong Pareto condition, pairs in the green region are ranked
above (u ∗1, u ∗2) and ones in the violet region are ranked below (u ∗1, u ∗2).

• By Hammond equity, pairs in the yellow region are ranked above
(u ∗1, u ∗2) and ones in the red region are ranked below (u ∗1, u ∗2).

• Given these rankings, anonymity implies that pairs in the blue region
are ranked above (u ∗1, u ∗2) and ones in the brown region are ranked
below (u ∗1, u ∗2).

• The pairs that remain are (u ∗2, u ∗1) and the ones on the dashed black
line.

The pair (u ∗2, u ∗1) is equivalent to (u ∗1, u ∗2) by anonymity.

Finally, for any pair (u 1, u 2) on the dashed black line there is a pair
(u ′1, u ′2) in the yellow region with u 1 > u ′1 and u 2 > u ′2, so that by the
strong Pareto condition (u 1, u 2) is ranked above (u ′1, u ′2). Given that ev-
ery pair in the yellow region is ranked above (u ∗1, u ∗2), the transitivity of
a social welfare ordering implies that (u 1, u 2) is ranked above (u ∗1, u ∗2).

A symmetric argument applies to pairs (u ∗1, u ∗2) with u ∗1 < u ∗2. The only
comparisons that remain are between pairs (u ∗1, u ∗2) and (u 1, u 2) with u ∗1 =
u ∗2 and u 1 = u 2. The strong Pareto condition implies that (u ∗1, u ∗2) is ranked
above (u 1, u 2) if u ∗1 > u 1 and below it if u ∗1 < u 1.

We conclude that the rankings of all pairs of welfares are the ones given
by the leximin ordering, shown in Figure 1.17c.

I now present a property that, in addition to anonymity and the Pareto con-
dition, characterizes the utilitarian social welfare ordering. The character of this
property is completely different from that of Hammond-equity. It says that if one
welfare profile is ranked above another, then certain transformations of the first
profile are ranked above the same transformations of the second profile. Specif-
ically, if u is ranked above v , then for any profile (a i )i∈N of numbers, the profile
u ′ defined by u ′i = u i + a i for all i ∈ N is ranked above the profile v ′ defined by
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(u ∗1, u ∗2)

(u ∗2, u ∗1)

u 1 = u 2

better
(Pareto)

worse
(equity)

worse
(Pareto)

better
(equity)

better
(anonymity)

worse
(anonymity)

u 1→

↑
u 2

Figure 1.18 The proof of Proposition 1.11 when there are two individuals. (Each region
includes any of its boundaries with a dark shade of the color of the region.)

v ′i = vi +a i for all i ∈N .

Definition 1.38: Invariance of social welfare ordering with respect to
additive transformations of welfares

A social welfare ordering ¼ over Rn for a set of n individuals is invariant
with respect to additive transformations of welfares if whenever u ¼ v we
have u +a ¼ v +a for any a ∈Rn .

This condition may make sense if we cannot observe the individuals’ welfare
levels but we can observe whether the difference in one individual’s welfare be-
tween two welfare profiles is bigger or smaller than the difference in any other
individual’s welfare between two other welfare profiles. The reason is that the
transformations of welfare in the definition preserve comparisons of differences
in welfare: u i − vi ≥w j − yj if and only if u i +a i − (vi +a i )≥w j +a j − (yj +a j ).

Proposition 1.12: Characterization of utilitarian welfare ordering

A social welfare ordering over Rn for n individuals is anonymous and in-
variant with respect to additive transformations of welfares and satisfies
the strong Pareto condition if and only if it is the utilitarian ordering.

For a society consisting of two individuals, this result may be given a simple
proof. Let v be a welfare pair for which v1 = v2, let w be a pair for which w1+w2 =
v1+ v2, and let w ′ = (w2, w1), as in Figure 1.19. By anonymity, w ∼ w ′. Now let
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u 1 = u 2

u 1+u 2 = const.

v

w

w ′

u 1→

↑
u 2

Figure 1.19 An illustration for the proof of Proposition 1.12 for a society consisting of
two individuals.

a 1 = v1 −w1 and a 2 = v2 −w2. Then vi = wi + a i and w ′
i = vi + a i for i = 1, 2.

Thus if w � v then v �w ′ by invariance with respect to additive transformations
of welfares, and hence w � w ′, contradicting w ∼ w ′. Similarly, if w ≺ v then
v ≺ w ′, contradicting w ∼ w ′. Thus w ∼ v . Finally, the strong Pareto condition
implies that (v1 +α, v2 +α) � (v1, v2) for any α > 0, so that v ′ � v if and only if
v ′1+ v ′2 > v1+ v2.

I now present a proof of the result for an arbitrary number of individuals.
The main part of the argument shows that if a social welfare ordering ¼ satisfies
the conditions in the result then for any two welfare profiles u and v for which∑n

i=1 u i =
∑n

i=1 vi we have u ∼ v . To reach this conclusion, u and v are repeat-
edly transformed. Let u 0 = u and v 0 = v . First, the components of u 0 and v 0 are
put in order, from smallest to largest, to generate û 0 and v̂ 0. By the anonymity
condition, û 0 ∼ u 0 and v̂ 0 ∼ v 0. Then for each component i , the smaller of û 0

i

and v̂ 0
i is subtracted from both û 0

i and v̂ 0
i , to generate u 1 and v 1. By the invari-

ance condition, u 1 ∼ û 0 and v 1 ∼ v̂ 0, so that u 1 ∼ u 0 and v 1 ∼ v 0. For each value
of i , either u 1

i = 0 or v 1
i = 0, and at least one component of u 1 and one compo-

nent of v 1 is zero (given that it is not the case that every component of u exceeds
the corresponding component of v , or vice versa). The components of u 1 and
v 1 are then put in order to generate û 1 and v̂ 1, so that the first components of
û 1 and v̂ 1 are 0, and the process is repeated. At step n , all components of the
resulting profiles u n and v n are 0, so that u ∼ u n ∼ v n ∼ v .

Proof of Proposition 1.12

The utilitarian ordering satisfies the conditions in the result.
To show that it is the only social welfare ordering that does so, let ¼ be

a social welfare ordering that satisfies the conditions in the result and let
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N = {1, . . . , n}. Let u ∈ Rn and v ∈ Rn with
∑n

i=1 u i =
∑n

i=1 vi . I argue that
u ∼ v .

To do so, I apply a sequence of transformations to u and v and ar-
gue that the invariance condition implies that the welfare profiles gener-
ated at each step are socially indifferent to the profiles from the previous
step. Denote the welfare profiles generated by the transformations at each
step t ≥ 1 by u t and v t , and let u 0 = u and v 0 = v . For t ≥ 1, u t and v t are
generated from u t−1 and v t−1 as follows.

1. Let û t−1 be a permutation u t−1 of with û t−1
1 ≤ û t−1

2 ≤ · · · ≤ û t−1
n and let

v̂ t−1 be a permutation v t−1 of with v t−1
1 ≤ v t−1

2 ≤ · · · ≤ v t−1
n .

2. For each i ∈ N , let u t
i = û t−1

i − min{û t−1
i , v̂ t−1

i } and v t
i = v̂ t−1

i −
min{û t−1

i , v̂ t−1
i }.

Step 1 For all t ≥ 1 we have u t ∼ u t−1 and v t ∼ v t−1.

Proof. By the anonymity of ¼, û t−1 ∼ u t−1 and v̂ t−1 ∼ v t−1, and by its in-
variance with respect to additive transformations of welfares, u t ∼ û t−1

and v t ∼ v̂ t−1. Ã

Step 2 For t = 1, . . . , n we have û t
i = 0 and v̂ t

i = 0 for i = 1, . . . , t .

Proof. At each step t ≥ 1, for each i ∈N we have

u t
i = 0 and v t

i ≥ 0 if û t−1
i ≤ v̂ t−1

i

u t
i ≥ 0 and v t

i = 0 if û t−1
i ≥ v̂ t−1

i .

Thus in particular u t
i ≥ 0, v t

i ≥ 0, and either u t
i = 0 or v t

i = 0 (or both). Fur-
ther,

∑n
i=1 u t

i =
∑n

i=1 v t
i if

∑n
i=1 u t−1

i =
∑n

i=1 v t−1
i , and thus since

∑n
i=1 u 0

i =∑n
i=1 v 0

i we have
∑n

i=1 u t
i =

∑n
i=1 v t

i for t = 1, . . . , n . Hence u t
i = 0 for at least

one value of i and v t
i = 0 for at least one value of i .

In particular, û 1
1 = 0 and v̂ 1

1 = 0 and hence û t
1 = 0 and v̂ t

1 = 0 for all t ≥ 1.
I now argue by induction. Let 1≤ t ≤ n−1 and suppose that û t

i = 0 and
v̂ t

i = 0 for i = 1, . . . , t , so that û t+1
i = 0 and v̂ t+1

i = 0 for i = 1, . . . , t . Then∑n
i=t+1 û t

i =
∑n

i=t+1 v̂ t
i , so that u t+1

i = 0 for at least one value of i ≥ t +1 and
v t+1

i = 0 for at least one value of i ≥ t + 1. Thus û t+1
t+1 = 0 and v̂ t+1

t+1 = 0 and
hence û t+1

i = 0 and v̂ t+1
i = 0 for i = 1, . . . , t +1. Ã

Step 3 u ∼ v .
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Proof. By Step 2, u n
i = v n

i = 0 for i = 1, . . . , n , so that u n ∼ v n and hence by
Step 1, u t ∼ v t for t = 0, . . . , n . Thus in particular u ∼ v . Ã

The strong Pareto condition implies that if
∑n

i=1 u i >
∑n

i=1 vi then u � v ,
so that ¼ is the utilitarian ordering.

If you find the invariance condition appealing, this result may make the util-
itarian social welfare ordering more appealing (or less unappealing). I am not
in this camp. We can plausibly assess at least imperfectly whether one individ-
ual is better off than another, while assessing how one individual’s gain in wel-
fare compares with another’s seems an order of magnitude more difficult. So as-
suming that welfares cannot be compared but differences in welfare can seems
backwards.

The Nash social welfare ordering is characterized by a different invariance
property, in conjunction with anonymity and the Pareto condition.

Definition 1.39: Invariance of social welfare ordering with respect to
multiplicative transformations of welfares

A social welfare ordering ¼ social welfare ordering over Rn
++ for a set

N = {1, . . . , n} of individuals is invariant to multiplicative transforma-
tions of welfares if whenever u ¼ v we have (b1u 1,b2, u 2, . . . ,bn u n ) ¼
(b1v1,b2v2, . . . ,bn vn ) for any b ∈Rn with bi > 0 for all i ∈N .

This condition may make sense if we cannot observe the individuals’ welfare
levels but we can observe whether the ratio u i/vi of one individual’s welfare be-
tween two welfare profiles is bigger or smaller than the ratio w j /yj of another
individual’s welfare between two other welfare profiles, because the transfor-
mations of welfare in the definition preserve these ratios. The next result is a
corollary of Proposition 1.12.

Proposition 1.13: Characterization of Nash welfare ordering

A social welfare ordering on Rn
++ is anonymous and invariant with respect

to multiplicative transformations of welfares and satisfies the strong Pareto
condition if and only if it is the Nash ordering.

Proof

The Nash ordering satisfies the conditions in the result.
Now let ¼ be a social welfare ordering on Rn

++ that satisfies the condi-
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tions in the result. Define the social welfare ordering ¼∗ on Rn by

u ¼∗ v if and only if (e u 1 , e u 2 , . . . , e u n )¼ (e v1 , e v2 , . . . , e vn ).

Then ¼∗ is invariant with respect to additive transformations of welfares
by the following argument. For any a ∈Rn , let bi = e a i for all i ∈N , where
N is the set of individuals. Suppose that u ¼∗ v , so that (e u 1 , e u 2 , . . . , e u n )¼
(e v1 , e v2 , . . . , e vn ). Then (b1e u 1 ,b2e u 2 , . . . ,bn e u n )¼ (b1e v1 ,b2e v2 , . . . ,bn e vn ) by
the assumption that ¼ is invariant with respect to multiplicative transfor-
mations of welfares, and hence u +a ¼∗ v +a .

Now, the fact that ¼ is anonymous and satisfies the strong Pareto con-
dition means that ¼∗ satisfies these conditions, so by Proposition 1.12, ¼∗

is the utilitarian ordering. That is, u ¼∗ v if and only if
∑

i∈N u i ≥
∑

i∈N vi .
Thus u ¼ v if and only if

∑
i∈N ln u i ≥

∑
i∈N ln vi or equivalently

∏
i∈N u i ≥∏

i∈N vi , so that ¼ is the Nash ordering.

In the models of collective choice in the remainder of the book, the outcome
is determined either by voting or by the balance of power, as determined by the
availability of actions to individuals and groups that can affect other individu-
als and groups. For the most part, the models assume that all individuals are
selfish—no individual’s welfare is directly affected by the other individuals’ well-
beings—and so considerations of relative welfare, which dominate the analysis
of this section, are absent.

Notes

Proposition 1.1 is due to May (1952). The notion of a Condorcet winner is due to
Condorcet (1785). Section 1.4 is based on Horan et al. (2019); Proposition 1.2 is
Theorem 1 in the paper and Proposition 1.3 is a weak version of Theorem 2. (The
notion I call positive responsiveness is called full positive responsiveness in the
paper.) The proof I give for Proposition 1.2 is a simplification due to Ariel Ru-
binstein of the argument in Horan et al. (2019) and the proof for Proposition 1.3
is due to him. (The stronger Theorem 2 in Horan et al. 2019 requires a different
proof.) The results in this section are related to those of Dasgupta and Maskin
(2008). Their model has a continuum of individuals and they require a collec-
tive choice rule to assign a single alternative to almost every preference profile.
They identify a set of conditions that are satisfied by the collective choice rule
that assigns to each collective choice problem its set of Condorcet winners and
show, roughly, that no other collective choice rule satisfies these conditions on a
larger domain of problems. The conditions include anonymity, neutrality, and a
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relative of Nash independence that treats each alternative, rather than each set
of alternatives, as a unit.

Proposition 1.4 is due to Black (1958) (see the theorems on pp. 16 and 18). The
generalization to trees discussed after Exercise 1.11 is due to Demange (1982).
The use of single-crossing preferences in the context of collective choice has its
origin in Roberts (1977); Proposition 1.5 is due to Rothstein (1990) (who uses
the term “order-restricted preferences”) and Gans and Smart (1996). My pre-
sentation of the material in Section 1.5.2 benefitted from discussions with Navin
Kartik.

Proposition 1.6 is due to Rae and Taylor (1971, 77) and Wendell and Thorson
(1974, Theorem 3.2). Wendell and Thorson (1974, Example 3.1) show that the
result does not generalize to three dimensions (contrary to the claim on p. 78 of
Rae and Taylor 1971). McKelvey and Wendell (1976) and Humphreys and Laver
(2010) further investigate Condorcet winners when alternatives are multidimen-
sional. Proposition 1.8 is due to Davis et al. (1972); see also Enelow and Hinich
(1984, Section 3.6).

Proposition 1.9 is due to Arrow (1951). The proof I give is due to Geanako-
plos (2005), and is taken almost verbatim from Osborne and Rubinstein (2020,
Proposition 20.1). Other parts of Section 1.7 are based on Chapter 20 of that
book; some are quoted verbatim. I am grateful to Ariel Rubinstein for permit-
ting me to include the material here. The preference aggregation function in
Example 1.7 (Condorcet aggregation) has a long history, dating back at least to
Ramon Llull (c. 1232–1315/16) (see Hägele and Pukelsheim 2001). It is some-
times called the Copeland method, after Arthur H. Copeland (1898–1970), who
(re)proposed it in 1951 (see, for example, Goodman 1954, 42; apparently no copy
of the mimeographed notes he cites survive).

The study of collective choice based on interpersonal comparisons of wel-
fare was initiated by Sen (1970). The Nash social welfare ordering is named for
its relation with the bargaining solution of Nash (1950). Proposition 1.11 is due
to Hammond (1976, Theorem 7.2). The proof for two individuals that I present is
taken from Blackorby et al. (1984, Theorem 6.1) and Bossert and Weymark (2004,
Theorem 12.2). Proposition 1.12 is due to d’Aspremont and Gevers (1977, Theo-
rem 3). The proof for two individuals is taken from Blackorby et al. (1984, 351–
352). My presentation of both results draws upon Bossert and Weymark (2004).
Proposition 1.13 is a slight variant of Moulin (1988, Theorem 2.3).

Exercise 1.3 is based on Fishburn (1974, 67) (see also Moulin 1988, Exercise
11.2). The example in Exercise 1.6 is taken from Moulin (1988, 235). The argu-
ment in Exercise 1.11 and its extension to trees is taken from Exercise 10.4 in
Moulin (1988, 279). The examples in parts a and c of Exercise 1.13 are taken from
Austen-Smith and Banks (1999, Example 4.6). The result in part b is Corollary 3
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points 1× 4× 3× 2×

1 a b c c
p b a a b
0 c c b a

a : 1+7pb : 4+3p

c : 5
5
4

1

0 1
3

3
4

1
p →

c chosen
b chosen

a chosen

Total points for each alternative

Figure 1.20 The collective choice problem in Exercise 1.1.

of Puppe (2018); the proof that I give is taken from Elkind et al. (2022, Proposi-
tion 3.19). The observation in Exercise 1.14 is taken from Rothstein (1990).

Solutions to exercises

Exercise 1.1
Refer to Figure 1.20. The set of alternatives selected by the rule is







{c } if 0< p < 1
3

{b , c } if p = 1
3

{b} if 1
3
< p < 3

4

{a ,b} if p = 3
4

{a } if 3
4
< p < 1.

Exercise 1.2
(a) For an anonymous and positively responsive collective choice rule, the
pattern of outcomes in a diagram like those in Figure 1.1 has to satisfy the
condition in Figure 1.3a and the symmetric condition for b . An example is
shown in Figure 1.21. The rule shown in not neutral because the pattern of
outcomes is not symmetric about the main diagonal. Another example is the
rule that selects {a } if more than 2

3
of the individuals who are not indifferent

between a and b prefer a to b , selects {b} if fewer do so, and selects {a ,b} if
exactly 2

3
do so.

(b) A collective choice rule that is neutral and positively responsive but not
anonymous is dictatorship by any individual.

Exercise 1.3
For an anonymous and neutral collective choice rule, the pattern of outcomes
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Figure 1.21 A collective choice rule that is anonymous and positively responsive but
not neutral. See the discussion of Figure 1.1 for an explanation of the way in which the
diagram represents a collective choice rule.

in a diagram like those in Figure 1.1 has to be symmetric about the main
diagonal.

If a nonnegatively responsive collective choice rule selects {a } for some prob-
lem then it selects {a } for every problem in the region to the east, southeast,
and south; if it selects {b} for some problem then it selects {b} for every prob-
lem in the region to the west, northwest, and north; and if it selects {a ,b}
for some problem then it selects either {a } or {a ,b} for every problem in
the region to the east, southeast, and south and either {b} or {a ,b} for every
problem to the west, northwest, and north (cf. Figure 1.3a).

A pattern that satisfies these conditions is given in Figure 1.22. Another ex-
ample is the rule that selects {a } if more than 2

3
of the individuals who are

not indifferent between a and b prefer a to b , selects {b} if more than 2
3

of
the individuals who are not indifferent between a and b prefer b to a , and
otherwise selects {a ,b}.

Exercise 1.4
In the following problem, a is the unique Condorcet winner, but is not a strict
Condorcet winner. It beats b , but ties with c (which loses to b ).

1 2 3

a c b
b a a c
c b
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Figure 1.22 A collective choice rule that is anonymous and nonnegatively responsive
but not positively responsive. See the discussion of Figure 1.1 for an explanation of the
way in which the diagram represents a collective choice rule.

Exercise 1.5
The following collective choice problem shows that the answer is negative: a
is a Condorcet winner and b ties with it, but is not a Condorcet winner.

1 2 3 4

a a b c
c c a b
b b c a

Exercise 1.6
On the first round a and b are selected, and on the second round a wins (11
to 6). Now raise a above b in the preferences of the last two individuals, so
that their preferences become a � b � c . Then on the first round a and c are
selected and on the second round c wins. Thus after a ’s ranking improves, it
is no longer selected.

Exercise 1.7
Neutrality, positive responsiveness, and Nash independence: Dictatorship by
individual i : for any individual i , select i ’s favorite alternatives.

Anonymity, positive responsiveness, and Nash independence: For an arbitrary
alternative, select that alternative for every collective choice problem.

Anonymity, neutrality, and Nash independence: Select the set of all alterna-
tives.

Exercise 1.8
Suppose there are five alternatives, a , b , c , d , and e and five individuals. Two
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individuals have the preference ordering b �i a �i c �i d �i e , one has the
ordering c �i b �i a �i d �i e , and two have the ordering d �i c �i b �i e �i

a . This preference profile is single-peaked relative to the ordering Ã with
a Ã b Ã c Ã d Ã e . The median favorite alternative is c and the Borda winner
is b . (This alternative gets 15 points; c gets 14 points, d gets 11 points, a gets
8 points, and e gets 1 point.)

Exercise 1.9
Consider the collective choice problem in which the set of individuals is {1,2,3},
the set of alternatives is {a ,b , c }, and the individuals’ preferences are given by
a �1 b �1 c , a ∼2 b �2 c , and a ∼3 b ∼3 c . This preference profile satisfies the
single-plateau condition for the linear order Ä for which a Ã b Ã c . Then
a ∗1 = a , a ∗2 = b , and a ∗3 = c are favorite alternatives for the individuals. The
median of these alternatives with respect to Ä is b , but the only Condorcet
winner of the collective choice problem is a .

Exercise 1.10
Consider the collective choice problem in which the set of individuals is {1,2,3,4,5},
the set of alternatives is {a ,b , c , d , e }, and the preference profile is given as
follows.

1 2 3 4 5

a b c d e
b c d e a b c d

c d e a b c
d e a b

e a

Each individual has a single favorite alternative and the profile satisfies the
variant of (1.3) for the linear order Ä for which a Ã b Ã c . Alternatives a
and b are beaten by c , d and e are beaten by a , and c is beaten by d , so the
problem has no Condorcet winner.

Now suppose that with the same set of individuals the set of alternatives is
{a ,b , c } and the preference profile is given as follows.

1 2 3 4 5

a a b c c
b c b c a ab ab

c

Each individual has a single favorite alternative and the profile satisfies the
variant of (1.3) for the linear order Ä for which a Ã b Ã c . The median
of the individuals’ favorite alternatives with respect to Ä is b , but the only
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Condorcet winner of the collective choice problem is a .

Exercise 1.11
a. By (ii), xt beats every other alternative in Zt . Suppose, contrary to the
claim, that some x j ∈ Xt beats xt . That is, a majority of individuals prefer x j to
xt . Then by the single-peakedness of preferences, the same individuals prefer
xt−1 to xt and hence also prefer xt−1 to every other alternative in Zt , so that
xt−1 is the favorite alternative in Zt−1 of a majority of individuals, contrary to
(i) for j = t −1. Thus no x j ∈ Xt beats xt , and hence xt is the strict Condorcet
winner of 〈N , X ,¼〉.

b. At step t , if xt is the favorite alternative in Zt of a majority of individuals,
select it and terminate. Otherwise proceed to step t + 1. This procedure ter-
minates at latest at step k . If it terminates at step t then it selects xt , which
by part a is the strict Condorcet winner of 〈N , X ,¼〉.

Exercise 1.12
If the condition in the exercise is satisfied then the condition in Definition 1.23
is satisfied because for any alternatives x and y either x Ã y or y Ã x .

Now suppose that the condition in Definition 1.23 is satisfied. I construct a
linear order on X such that the condition in the exercise is satisfied.

Define the binary relation Ä on X as follows. Let x and y be alternatives. If
x �j y for all j ∈ N , then x Ã y . Otherwise, if x ¼i y for some individual i ,
let i ∗ be the unique individual implied by Definition 1.23 for whom x ¼i ∗ y
and either (a) x �j y for all j < i ∗ and x ≺j y for all j > i ∗ or (b) x ≺j y for all
j < i ∗ and x �j y for all j > i ∗. Define x Ã y in case (a) and x Â y in case (b).
If x ≺j y for all j ∈N , then x Â y .

Given that the collective choice problem satisfies the condition in Defini-
tion 1.23, the binary relation Ä is complete. It is transitive by the following
argument. If x Ã y and y Ã z then by the transitivity of each individual’s
preference relation either x �j z for every individual j or there exists an indi-
vidual j ∗ such that x �j z for all j < j ∗ and x ≺j z for all j > j ∗. Thus x Ã z , so
that Ä is transitive. Finally, x Ã y and y Ã x are possible only if x = y . Thus Ä
is a linear order.

If x Ã y then either x �j y for all j ∈ N or for some individual i ∗ we have
x �i y for all i < i ∗ and x ≺i y for all i > i ∗, so that (a) in the condition in the
exercise is satisfied; if y Ã x then (b) is satisfied.

Exercise 1.13
a. The preference profile is given as follows.
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1 2 3

a b c
b c b
c d a
d a d

3:

2:

1:

a b c d

The profile is single-peaked for the orderings a Ã b Ã c Ã d and d Ã c Ã b Ã
a , and only for these orderings.

It is not single-crossing because the condition in Definition 1.23 is not satis-
fied for any ordering of the individuals:

• a �1 b but b �2 a and b �3 a , so the condition is not satisfied by any
ordering in which 1 is in the middle

• d �2 a but a �1 d and a �3 d , so the condition is not satisfied by any
ordering in which 2 is in the middle

• c �3 b but b �1 c and b �2 c , so the condition is not satisfied by any
ordering in which 3 is in the middle.

b. Denote by ¼1 the preference ordering of the first individual according to
≥. Suppose, contrary to the result, that the preferences of some individual i
are not single-peaked with respect ¼1. That is, for some alternatives x , y , and
z with x ≺1 y ≺1 z we have x �i y and z �i y . Let j be an individual with
favorite alternative y , so that y �j x and y �j z . Given that x ≺1 y and x �i y ,
by single-crossing every individual after i prefers x to y . Thus j comes before
i . But y �j z and y ≺1 z , so everyone after j prefers y to z , contradicting the
fact that i comes after j and prefers z to y .

c. Consider the collective choice problem given as follows.

1 2 3

a c c
b a b
c b a

This problem has single-crossing preferences with respect to the ordering ≥
of the individuals for which 1< 2< 3.

The preference profile is not single-peaked with respect to any ordering of
the alternatives because for single-peakedness the middle alternative cannot
be ranked lowest for any individual, and every alternative is ranked lowest by
one individual.
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Exercise 1.14
Consider the problem with three individuals and four alternatives in which
the individuals’ preferences are a �1 b �1 c �1 d , b �2 c �2 d �2 a , and
c �3 b �3 a �3 d . This problem has single-peaked preferences with respect to
the ordering a Ãb Ã c , but no individual’s preference relation coincides with
that of the majority, for which b beats c beats a beats d .

Exercise 1.15
Consider the problem with four individuals and four alternatives in which the
individuals’ preferences are a �1 b �1 c �1 d , a ∼2 b �2 c �2 d , c �3 b �3 d �3

a , and d �4 c �4 b �4 a . This problem has single-crossing preferences with
respect to the ordering 1, 2, 3, 4 of individuals, and a , a favorite alternative of
individual 2, a median individual, is not a Condorcet winner (it loses to b ).

Exercise 1.16
Take the preference profile in the solution of Exercise 1.13a, which is single-
peaked but not single-crossing, and raise d to between b and c in individ-
ual 1’s preferences. For the resulting profile, b is a strict Condorcet winner.
However, the resulting profile is not single-peaked and does not have the
single-crossing property.

It is not single-peaked because the alternatives the individuals rank lowest, c ,
a , and d , are distinct and thus cannot all be the smallest or largest alternative
according to the ordering of alternatives, as single-peakedness requires.

It is not single-crossing because the condition in Definition 1.23 is not satis-
fied for any ordering of the individuals:

• a �1 c but c �2 a and c �3 a , so the condition is not satisfied by any
ordering in which 1 is in the middle

• d �2 a but a �1 d and a �3 d , so the condition is not satisfied by any
ordering in which 2 is in the middle

• c �3 b but b �1 c and b �2 c , so the condition is not satisfied by any
ordering in which 3 is in the middle.
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A mechanism for selecting an alternative in a collective choice problem should
sensibly use information about the individuals’ preferences. The models in the
previous chapter assume that these preferences are known to the designer of
the mechanism. The models in the remainder of the book assume that each
individual’s preferences are known only to the individual.

One way for a mechanism designer to proceed if she does not know the indi-
viduals’ preferences is to ask each individual to report a preference relation from
a set of the designer’s choosing and to select an alternative based on these re-
ports. Suppose that when the profile of reported preference relations is ¼, the
mechanism designer selects the alternative g (¼). The individuals are assumed
to know the function g , and can be modeled as players in a strategic game. In
this game, the set of actions of each individual is the set of permitted preference
relations, say P , and the action profile ¼ (the profile of reported preference re-
lations) results in the alternative g (¼) being selected, so that each individual i
prefers to report an action profile ¼1 to an action profile ¼2 if and only if she
prefers g (¼1) to g (¼2). Assume for expositional convenience that the solution
concept we apply to the game assigns a unique action profile to every true pref-
erence profile of the individuals. The task of the mechanism designer is then
to specify the set P of permitted reports and the function g in such a way that,
for any given true preference profile ¼∗ for the individuals, the alternative g (¼),
where¼ is the preference profile given by the solution concept of the game when
the true preference profile is ¼∗, varies reasonably with ¼∗.

Synopsis

Section 2.1 studies environments in which for some set P of preference relations,
every collective choice problem in which each individual’s preference relation is
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2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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in P has a strict Condorcet winner. For such an environment, consider the mech-
anism in which each individual is restricted to report a preference relation in P
and the function g selects the strict Condorcet winner of the collective choice
problem in which the preference profile is the one reported. Proposition 2.1
shows that for this mechanism, whenever the true preference relation of each
individual is in P , no individual can do better than report her true preference re-
lation, regardless of the preference relations reported by the other individuals. In
the argot of the field, that is, the mechanism is strategy-proof. If each individ-
ual does in fact report her true preference relation, then the mechanism selects
the strict Condorcet winner for the true preference profile, which Proposition 1.2
suggests is a reasonable choice.

Suppose, for example, that the number of individuals is odd and for some lin-
ear order on the set of alternatives, P is the set of all preference relations that are
single-peaked with respect to the order. Then by Proposition 1.4, every collective
choice problem in which each individual’s preference relation is in P has a strict
Condorcet winner. Thus by Proposition 2.1, if every individual’s preference rela-
tion is in P then for the mechanism that asks each individual to report a prefer-
ence relation in P and selects the strict Condorcet winner for the reported prefer-
ence profile, no individual can do better than report her true preference relation.
In assessing the significance of this result, a reasonable question to ask is: how
could a mechanism designer know that every individual’s preference relation is
single-peaked?

Suppose that the mechanism designer does not want to pre-judge the char-
acter of the individuals’ preferences, and thus restricts herself to mechanisms
in which the set P of permitted reports is the set of all possible preference rela-
tions. Call a collective choice rule acceptable if (i) no individual is a dictator—
for no individual i is the outcome i ’s favorite alternative regardless of the other
individuals’ preferences—and (ii) whenever every individual’s favorite alterna-
tive is the same, the rule selects that alternative. The main result in Section 2.2,
Proposition 2.3 (known as the Gibbard-Satterthwaite theorem) is a strong con-
trast to Proposition 2.1. It shows that if there are at least three alternatives and
every individual is free to report any preference relation, then no acceptable col-
lective choice rule that selects a single alternative for every profile of reported
preference relations is strategy-proof.

This result does not by itself imply that a mechanism designer who has no
information about the individuals’ preferences can implement only collective
choice rules that are not acceptable. Suppose that you want to implement a
collective choice rule that assigns a single alternative f (N , X ,¼) to each collec-
tive choice problem 〈N , X ,¼〉. Doing so is possible if, when you announce that
you will select the alternative given by the collective choice rule, every individ-
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ual reports her true preference relation. Proposition 2.3 rules out this possibility
for any acceptable collective choice rule. Another route you could consider is
less direct: you announce that for some mapping g from preference profiles to
alternatives that differs from the collective choice rule, you will select the alter-
native g (¼′) if the reported preference profile is ¼′, and you design g in such a
way that each individual i reports a preference relation¼′i , which may differ from
her true preference relation ¼i , such that g (¼′) = f (N , X ,¼). That is, you com-
pensate for the distortion in the reported preferences by distorting the mapping
from reported preferences to alternatives. The argument in Section 2.3 shows
that under certain conditions you cannot gain by such a tactic. Specifically, sup-
pose there is a mechanism that induces the individuals to submit reports that
generate the alternative specified by some (single-valued) collective choice rule,
where “induces” means that each individual’s report is optimal for her regard-
less of the other individuals’ reports. Then Proposition 2.4 (known as a “revela-
tion principle”) shows that the collective choice rule is strategy-proof. But then
Proposition 2.3 implies that the collective choice rule is not acceptable: it either
is dictatorial or does not respect unanimity.

2.1 Strategy-proofness of strict Condorcet winner

Proposition 1.2 in the previous chapter shows that for collective choice prob-
lems that have a strict Condorcet winner, the collective choice rule that selects
that alternative has singular appeal. Can this rule be implemented if we do not
know the individuals’ preferences? Consider the mechanism in which each indi-
vidual reports a preference relation and the alternative chosen is the strict Con-
dorcet winner for the profile of reported preference relations. Can we expect
self-interested individuals to report their true preference relations?

The answer is a qualified yes. Let P be a set of preference relations such that
every collective choice problem for which every individual’s preference relation
is in P has a strict Condorcet winner. (By Proposition 1.4, if the number of in-
dividuals is odd, the set of single-peaked preference relations is one such set.)
I argue that if each individual is restricted to report a member of P and the al-
ternative selected for any profile of reported preference relations is the strict
Condorcet winner for that profile, no individual can do better than report her
true preference relation, regardless of the preference relations reported by the
other individuals. We say that the collective choice rule that selects the strict
Condorcet winner is strategy-proof over P .

If there are two alternatives, the number of individuals is odd, and P is the
set of strict preference relations, this result is clear: an individual’s saying that
she favors b when in fact she favors a either does not affect the strict Condorcet
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winner or changes it from {a } to {b}, which is worse for her.
When there are three or more alternatives, the idea behind the result may be

conveyed by an example. Suppose that the number of individuals is odd, the
alternatives are a , b , c , d , e , and f , and every individual’s preferences are single-
peaked relative to that ordering. By Proposition 1.4, the strict Condorcet winner
of the reported preference profile is the median of the favorite alternatives for
the reported profile, so we can think of everyone simply reporting an alternative,
rather than her entire preference relation, and the mechanism selecting the me-
dian of these reports. Suppose that you favor b and that, given the alternatives
reported by everyone else, if you report b then the median reported alternative
is d .

a b c d e f

What can you do? The crucial point is that you can do nothing to bring the me-
dian reported alternative closer to b . If you switch to reporting a or c , the me-
dian does not change: the number of reported alternatives less than d remains
the same.

a b c d e f

If you switch to d the median also does not change. If you switch to e or f , the
median might change, but if it does then it changes to e , which is worse for you
than c .

a b c d e f

Thus by changing your report, you may be able to move the selected alternative
away from your favorite, but you can do nothing to move it closer. So what-
ever the other individuals report, you can do no better than report your favorite
alternative.

I now show a general result; subsequently I return to problems with single-
peaked preferences. Given a set P of preference relations, the set of collective
choice problems in which every individual’s preference relation is in P is called
the domain generated by P .
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Definition 2.1: Domain generated by set of preference relations

Let 〈N , X 〉 be a finite society. For any set P of preference relations over X ,
the domain D(N , X , P) is the set of all collective choice problems 〈N , X ,¼〉
where ¼i ∈ P for each i ∈N .

The subsequent results concern collective choice rules that assign a single
alternative to each collective choice problem. I call such a rule a collective choice
function.

Definition 2.2: Collective choice function

For any set D of collective choice problems, a collective choice function
for D is a function that associates with every collective choice problem
〈N , X ,¼〉 in D a single member of X (the alternative selected by the rule).

A collective choice function is strategy-proof over a set P of preference rela-
tions if, for every collective choice problem in which every individual’s prefer-
ence relation is in P , no individual can induce a better outcome according to her
true preference relation by reporting a preference relation in P different from her
true preference relation, regardless of the preference relations (in P) submitted
by the other individuals.

Definition 2.3: Strategy-proof collective choice function

Let 〈N , X 〉 be a finite society, let P be a set of preference relations over
X , and let f be a collective choice function for the domain D(N , X , P).
Then f is strategy-proof over P if for every 〈N , X ,¼〉 ∈ D(N , X , P) and every
individual i ∈N ,

f (N , X ,¼)¼i f (N , X , (¼′i ,¼−i )) for every ¼′i ∈ P,

where (¼′i ,¼−i ) is the preference profile that differs from ¼ only in that i ’s
preference relation is ¼′i rather than ¼i .

This concept is closely related to that of weak domination for an action in
a strategic game. Consider the strategic game in which the players are the in-
dividuals, each player’s set of actions is a set P of preference relations, and each
player i prefers the action profile¼ to the action profile¼′ if and only if f (N , X ,¼)�i

f (N , X ,¼′). Then the collective choice rule F is strategy-proof over P if and only
if, for each individual i and each preference relation ¼′i ∈ P different from i ’s
true preference relation ¼i , i ’s action ¼i either weakly dominates ¼′i or is equiv-
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alent to ¼′i in the sense that i is indifferent between the two actions regardless
of the other individuals’ actions. To see that an individual’s true preference re-
lation may be equivalent to another preference relation in this game, suppose
that X = {a ,b , c } and P contains exactly two preference relations: a preferred to
b preferred to c , and a preferred to c preferred to b . Then for every preference
profile the strict Condorcet winner is a , and in particular the winner is the same
whether an individual reports her true preference relation or the other possible
preference relation.

Let P be a set of preference relations and suppose that every collective choice
problem in the domain D(N , X , P) has a strict Condorcet winner. Consider the
collective choice function that selects the strict Condorcet winner for the sub-
mitted preference profile, let that alternative be a if every individual submits her
true preference relation, and let b be an alternative that individual i prefers to a .
Can i cause b to become the selected alternative by submitting a preference rela-
tion that ranks b higher than it is in her true preferences? No: the fact that a is the
strict Condorcet winner for the true preference profile, in which i ranks b above
a , means that it beats all other alternatives, including b ; i ’s submitting a prefer-
ence relation in which b is ranked even higher than it is in her true preferences
does not change that fact. Individual i may be able to change the outcome to an
alternative, say c , that she ranks below a , by submitting a preference relation in
which c is ranked above rather than below a , but that makes her worse off, not
better off. She cannot change the outcome to one that she prefers to a . Thus the
collective function that selects the strict Condorcet winner is strategy-proof.

Proposition 2.1: Collective choice function for strict Condorcet domain
is strategy-proof

Let 〈N , X 〉 be a finite society and let P be a set of preference relations over X
for which every collective choice problem in the domain D(N , X , P) has a
strict Condorcet winner. The collective choice function for D(N , X , P) that
assigns to each collective choice problem in D(N , X , P) its strict Condorcet
winner is strategy-proof over P .

Proof

Let 〈N , X ,¼〉 ∈ D(N , X , P) be a collective choice problem and let a be its
strict Condorcet winner. Suppose that for ¼′i ∈ P , the strict Condorcet win-
ner of 〈N , X ,¼′〉, where ¼′ = (¼′i ,¼−i ), is b 6= a . Then the number of in-
dividuals j for whom a �j b exceeds the number for whom b �j a , and
the number for whom b �′j a exceeds the number for whom a �′j b . The
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preference profiles ¼ and ¼′ differ only in i ’s preference relation, so a �i b
(and b �′i a ), establishing the result.

The next exercise shows that this result cannot be extended to domains with
Condorcet winners that are not strict.

Exercise 2.1: Non-strict Condorcet winners and strategy-proofness

Suppose that N = {1,2,3}, X = {a ,b , c }, and c �1 b �1 a , a �2 c �2 b , and
a ∼3 b �3 c . Consider the collective choice rule that assigns to every col-
lective choice problem its set of (not necessarily strict) Condorcet winners.
Suppose that individual 1 prefers one set of alternatives to another if and
only if she prefers the alternative she likes best in the first set to the one
she likes best in the second set. Show that by reporting a preference rela-
tion different from her true relation, individual 1 can induce an outcome
that she prefers. Construct an example to show that the same is true if
she (pessimistically) evaluates a set of alternatives according to the worst
alternative for her in the set.

For a set of collective choice problems each of which has a strict Condorcet
winner, Proposition 2.1 suggests a way of implementing the rule that selects the
strict Condorcet winner even if we do not know the individuals’ preferences: ask
each individual to submit a preference relation from an appropriate set and se-
lect the strict Condorcet winner of the submitted relations. The result establishes
that each individual can do no better than submit her true preference relation,
regardless of the preference relations submitted by the other individuals.

But if we do not know the individuals’ preferences, how can we know whether
the collective choice problem they face has a strict Condorcet winner? And how
can we select an appropriate set of preference relations from which the individ-
uals are allowed to choose? If the number of individuals is odd, two sufficient
conditions for a collective choice problem to have a strict Condorcet winner are
that the problem has single-peaked preferences (Proposition 1.4) and that it has
single-crossing preferences (Proposition 1.5). If the set of alternatives is naturally
one-dimensional (e.g. the amount of money to spend on a public good) we may
have reason to believe that one or other of these properties is satisfied. Never-
theless, it is hard to see how we can be sure that is the case, with the consequence
that if we ask each individual to submit a preference relation, we need to handle
submitted relations that are not single-peaked or do not belong to the collection
of relations with the single-crossing property that we have in mind.

One option in a one-dimensional environment is to prohibit non-compliant
submissions by restricting each individual to report a single alternative and se-
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lecting the median of the submitted alternatives. In a single-peaked or single-
crossing domain, the strict Condorcet winner is the median of the individuals’
favorite alternatives, so if every individual reports her favorite alternative, this
mechanism yields the strict Condorcet winner. I formulate the mechanism as a
strategic game.

Definition 2.4: Median-based collective choice game

A median-based collective choice game 〈N , X ,Ä, (¼i )i∈N 〉, where N is a finite
set (of individuals) with an odd number of members, X is a set (of alter-
natives), Ä is a linear order on X , and, for each i ∈ N , ¼i is a preference
relation on X , is a strategic game with the following components.

Players
The set N .

Actions
The set of actions of each player is X .

Preferences
The outcome of an action profile a is the median m (a ) of the individu-
als’ actions with respect to Ä, so each player i prefers the action profile
a to the action profile b if and only if m (a )�i m (b ).

An implication of Proposition 2.1 is that in such a game in which each indi-
vidual’s preference relation is single-peaked with respect to the order, no individ-
ual can do better than choose her favorite alternative, regardless of the alterna-
tives chosen by the other individuals. In fact, each individual’s action of choosing
her favorite alternative weakly dominates all her other actions.

Proposition 2.2: Collective choice game with single-peaked preferences

For a median-based collective choice game 〈N , X ,Ä, (¼i )i∈N 〉 in which the
set X of alternatives is finite and the preference relation ¼i of each in-
dividual i is single-peaked with respect to Ä, each individual’s action of
choosing her favorite alternative weakly dominates all her other actions.

Proof

Let P be the set of single-peaked preference relations over X . A collective
choice problem 〈N , X ,¼〉 is in the domain generated by P if N is finite and
¼i ∈ P for each i ∈ N . By Proposition 1.4 the median of the individuals’
favorite alternatives is the strict Condorcet winner of any such problem.
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Thus by Proposition 2.1 the collective choice rule that assigns the median
of the individuals’ favorite alternatives to each collective choice problem in
the domain generated by P is strategy-proof. That is, for each individual i
and each alternative b different from her favorite alternative, a ∗, the action
a ∗ either weakly dominates b or is equivalent to b in the collective choice
game. But no action is equivalent to a ∗: for any action b 6= a ∗, if the other
individuals’ actions are equally split between a ∗ and b , then for i ’s action
a ∗ the median action is a ∗ and for her action b the median action is b .

Exercise 2.2: Collective choice game with preferences not single-peaked

Given an example of a median-based collective choice game for which the
preference profile is not single-peaked and the action profile in which each
individual chooses her favorite alternative is not a Nash equilibrium.

Exercise 2.3: Game in which outcome is smallest chosen alternative

Consider a variant of a median-based collective choice game in which the
outcome is the smallest chosen alternative (according to the ordering of
alternatives) rather than the median. Show that if each individual’s pref-
erence relation is single-peaked with respect to the ordering of alterna-
tives, each individual’s action of choosing her favorite alternative weakly
dominates all her other actions, as it does in Proposition 2.2.

The models I have presented so far assume that all individuals participate
in the mechanisms. If participation is costly, they may not. To communicate
her preferences, an individual may have to attend a meeting or file a report.
These activities take time and effort, and some individuals may decide that the
expected return does not justify the cost. If so, which information is lost, and
how is the chosen alternative affected? The next two exercises ask you to analyze
examples.

Exercise 2.4: Collective choice game with costly reporting

Consider a variant of a median-based collective choice game in which re-
porting an alternative is optional, and an individual who does so incurs
a cost. For simplicity, assume that each individual is restricted to either
report her favorite alternative or not submit a report. Assume also that al-
ternatives are real numbers, the number of individuals is 2k + 1 for some
positive integer k , and each integer from −k to k is the favorite alternative
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of exactly one individual. Assume further that the outcome is the mean of
the two medians of the submitted reports if the number of individuals who
submit reports is positive and even, and the outcome is 0 if no individual
submits a report. Finally, assume that the payoff of each individual i is
−|x −x ∗i | − c if she submits a report and −|x −x ∗i | if she does not, where x ∗i
is her favorite alternative and c , the cost of reporting, is a positive number.
Show that for some positive number h, the game has a Nash equilibrium in
which an individual submits a report if and only if her favorite alternative
is at most −h or at least h.

Exercise 2.5: Collective choice game with shareable reporting costs

Consider a variant of the game in the previous exercise in which each in-
dividual may report any alternative (she is not restricted to reporting her
favorite alternative) and the cost she incurs is decreasing in the number of
other individuals who report the same alternative (but is always positive).
Show that in a Nash equilibrium (i) no more than four distinct alterna-
tives are reported, (ii) if one alternative is reported then it is reported by
exactly one individual, is the individual’s favorite alternative, and differs
from 0, and (iii) if three or four alternatives are reported then exactly one
individual reports each middle alternative.

2.2 Strategy-proofness for domain of all preference profiles

Is any collective choice function strategy-proof for the domain of all preference
profiles? If there are two alternatives, the number of individuals is odd, and the
individuals’ preferences are strict, then the alternative favored by a majority is a
strict Condorcet winner, so that the collective choice rule that assigns this alter-
native is strategy-proof over the set of all strict preference relations by Proposi-
tion 2.1. Other rules are strategy-proof over this set also. For example, denote
the alternatives a and b and let k be a nonnegative integer at most equal to the
number of individuals. Then the rule that assigns a to a problem if and only if at
least k individuals favor a is strategy-proof.

If there are three or more alternatives, a dictatorship is strategy-proof over the
set of all preference relations: if, for some individual i , the rule selects i ’s favorite
alternative then no individual can induce an outcome she prefers by reporting
any preference relation different from her own. I now show (Proposition 2.3) that
if there are three or more alternatives, then among collective choice functions
that respect the individuals’ unanimous agreement regarding the best alterna-
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tive, dictatorship is the only one that is strategy-proof over the set of all strict
preference profiles.

Definition 2.5: Unanimous collective choice function

Let D be a set of collective choice problems for which every individual’s
preference relation is strict. A collective choice function f for D is unani-
mous if for any collective choice problem 〈N , X ,¼〉 ∈D ,

x is the favorite alternative in X for ¼i for every i ∈N ⇒ f (N , X ,¼) = x .

The result is named for its originators, Allan Gibbard and Mark A. Satterth-
waite. The proof I present uses Arrow’s impossibility theorem (Proposition 1.9).
For any collective choice function f , it defines a preference aggregation function
G and shows that if f is unanimous and strategy-proof then G satisfies the Pareto
property and independence of irrelevant alternatives. Thus by Arrow’s theorem
G is dictatorial, which implies that f is also dictatorial.

Proposition 2.3: Gibbard-Satterthwaite theorem

Let 〈N , X 〉 be a finite society for which X contains at least three alternatives
and let P be the set of all strict preference relations over X . Let f be a
collective choice function for the domain D(N , X , P) generated by P . If f
is unanimous and strategy-proof over P then it is a dictatorship: for some
individual i ∗ ∈ N , f (N , X ,¼) is the favorite alternative of individual i ∗ for
every profile ¼ ∈ P .

Proof

Let f be a unanimous and strategy-proof collective choice function for
the domain generated by P . Throughout the argument, every preference
relation is strict and every preference profile consists of strict preference
relations.

Step 1 Let f (N , X ,¼) = x and let ¼′ be a preference profile that differs from
¼ only in the preference relation of individual j and, for some alternative
y 6= x , (i) a �′j b if and only if a �j b for all alternatives a and b different
from y and (ii) y ≺j z and y �′j z for some alternative z . (That is, ¼′i differs
from ¼i in that y is raised relative to at least one other alternative while the
ordering of all other alternatives is maintained.) Then f (N , X ,¼′)∈ {x , y }.

Proof. Suppose to the contrary that f (N , X ,¼′) =w for some w /∈ {x , y }. If
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w �j x then f is not strategy-proof because

f (N , X , (¼′j ,¼−j )) = f (X , N ,¼′) =w �j f (N , X ,¼)

(if j ’s preference relation is ¼j she is better off reporting ¼′j than report-
ing ¼j when every other individual i reports ¼i ). If x �j w then x �′j w
(because x and w differ from y ) so that f is also not strategy-proof because

f (N , X , (¼j ,¼′−j )) = f (X , N ,¼)�′j w = f (N , X ,¼′)

(if j ’s preference relation is ¼′j she is better off reporting ¼j than reporting
¼′j when every other individual i reports ¼′i ). Ã

Step 2 For any alternatives x and y and any preference profile ¼ in which
x and y are the top two alternatives for every individual, f (N , X ,¼)∈ {x , y }.

Proof. Assume to the contrary that there is a preference profile ¼ for which
x and y are the top two alternatives for every individual but f (N , X ,¼) 6∈
{x , y }. Let ¼ be such a profile with the maximal number of individuals
who prefer x to y , say k , among such profiles. Then k < |N | because by
unanimity we have f (N , X ,¼) = x if x is the favorite alternative of every
individual. Let f (N , X ,¼) = z , let j be an individual for whom y �j x , and
let ¼′j be a preference relation for which x is at the top and y is ranked
second. Then the number of individuals who prefer x to y according to
(¼′j ,¼−j ) is k +1, so that f (N , X , (¼′j ,¼−j )) ∈ {x , y }, which, given x �j z and
y �j z , contradicts the strategy-proofness of f . Ã

Step 3 Let ¼ and¼′ be preference profiles for which x and y are the top two
alternatives for every individual and for every i ∈ N we have x �i y if and
only if x �′i y . Then f (N , X ,¼) = f (N , X ,¼′).

Proof. By Step 2, f (N , X ,¼)∈ {x , y }. Without loss of generality assume that
f (N , X ,¼) = x . We can transform¼ into¼′ by a sequence of moves, at each
of which we raise one alternative, other than x or y , in one individual’s
preferences, keeping x and y as the top two alternatives for all individuals.
By Step 1 the alternative given by f after each move is either the raised
alternative, which is not x or y , or the alternative given by f before the
move. By Step 2 the alternative given by f after each move is either x or y .
Thus the alternative given by f after every move, f (N , X ,¼′), is x . Ã
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Step 4 For any alternatives a and b and any preference profile ¼, for each
individual i define ¼ab

i to be the preference relation obtained from ¼i by
moving a and b to the top, keeping them in the same order as they are in
¼i and not changing the order of the other alternatives. For any prefer-
ence profile ¼, define the binary relation Ä on X by x Ä y if and only if
f (N , X ,¼x y ) = x , for all x ∈ X and y ∈ X . The binary relation Ä is a strict
preference relation.

Proof. From Step 2, for all alternatives x and y we have f (N , X ,¼x y ) ∈
{x , y }, so that either x Ä y or y Ä x , and hence Ä is complete.

To verify that Ä is transitive, assume to the contrary that there exist
alternatives a , b , and c for which a Ä b Ä c Ä a . Consider the profile
¼′′ obtained from ¼ by moving a , b , and c to the top, preserving their
order, in every individual’s preference relation. By an argument analo-
gous to the proof of Step 2, f (N , X ,¼′′) ∈ {a ,b , c }. Without loss of gen-
erality, let f (N , X ,¼′′) = a . Now let ¦ be the preference profile obtained
from ¼′′ by moving b to the third position in all preferences. The con-
clusions of the following two arguments are contradictory. (i) By Step 2,
f (N , X ,¦) ∈ {a , c } because the top two alternatives in every preference re-
lation¦i are a and c . The preference profile¼′′ may be obtained from¦ by
a sequence of changes in each of which b is raised in one individual’s pref-
erences. Thus by Step 1, f (N , X ,¼′′) ∈ {b ,x }, where x = f (N , X ,¦). Given
that f (N , X ,¼′′) = a , we have x = a , so that f (N , X ,¦) = a . (ii) By defini-
tion, given c Ä a we have f (N , X ,¼a c ) = c . For each individual the relative
order of a and c in the profiles ¦ and ¼ is the same, so that Step 3 applied
to ¼a c and ¦ imply that f (N , X ,¦) = c .

Finally, given¼x y =¼y x for all alternatives x and y , if x Ä y then it is not
the case that y Ä x , so that the ordering is strict. Ã

Step 5 Let G be the preference aggregation function for (〈N , X 〉, P) that
maps a preference profile ¼ into a preference relation Ä as described in
Step 4. This preference aggregation function is dictatorial.

Proof. I argue that G satisfies the conditions of Proposition 1.9 (Arrow’s
impossibility theorem).

Suppose that x �i y for all i ∈ N . Then x is the favorite alternative of
every individual in the preference profile ¼x y defined in Step 4, so that be-
cause F is unanimous, f (N , X ,¼x y ) = x , and hence x Ä y . Thus G satisfies
the Pareto property.
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Let x and y be two alternatives and let ¼ and ¼′ be two preference pro-
files for which for every i ∈N we have x �i y if and only if x �′i y . Then by
Step 3 we have f (N , X ,¼x y ) = f (N , X ,¼′x y ), so that x Ä y if and only if x Ä′ y
where Ä=G (N , X ,¼) and Ä′ =G (N , X ,¼′). Thus G satisfies independence
of irrelevant alternatives.

The conclusion that G is dictatorial follows from Proposition 1.9. Ã

Step 6 There exists an individual i ∗ such that f (N , X ,¼) is the favorite al-
ternative of i ∗ for all ¼ ∈ P.

Proof. By Step 5 there is an individual i ∗ such that G (N , X ,¼) = ¼i ∗ for all
¼ ∈ P . Let ¼ ∈ P , let f (N , X ,¼) = x , and let y be another alternative. By
Step 2 we have f (N , X ,¼x y ) ∈ {x , y }. The profile ¼ may be obtained from
¼x y by a sequence of steps in each of which one alternative other than x
and y is raised in one individual’s preferences. By Step 1, after each step,
the alternative selected by f is either the raised alternative or the alter-
native selected previously. Given that f (N , X ,¼) = x , we conclude that
f (N , X ,¼x y ) = x . Thus by the definition of G , x �i ∗ y . Ã

2.3 General mechanisms

So far I have discussed only mechanisms in which each individual reports a pref-
erence relation and the alternative selected is the one given by a collective choice
rule for the reported preference profile. More generally, a mechanism designer
can ask each individual to select a report from a set of the designer’s choosing
and base her choice of an alternative in an arbitrary fashion on the profile of
submitted reports.

Definition 2.6: Mechanism

Let 〈N , X 〉 be a finite society. A mechanism 〈(Si )i∈N , g 〉 for 〈N , X 〉 consists of
a set Si (of reports) for each individual i ∈N and a function g :×i∈NSi → X
(the outcome function).

For the mechanisms considered in the previous sections, Si is a set of prefer-
ence profiles for 〈N , X 〉 and g (¼) is the alternative selected by a collective choice
rule for the collective choice problem 〈N , X ,¼〉. The question addressed is: for
which collective choice rules does every individual optimally report her true pref-
erence relation, regardless of the preference relations reported by the other indi-
viduals? For the case in which there are at least three alternatives and Si is the
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set of all strict preference profiles, the answer given by the Gibbard-Satterthwaite
theorem is: among unanimous rules, only dictatorships. Can we do better with a
general mechanism?

To be more precise about the meaning of doing better, define a mechanism
to implement a collective choice rule in quasi-dominant strategies if, for every
preference profile¼, there is a report profileσ(¼) such that the outcome g (σ(¼))
of the mechanism is the alternative selected by the collective choice rule for ¼
and no individual can induce an outcome that she prefers by choosing a different
report, regardless of the other individuals’ reports.

Definition 2.7: Mechanism implementing collective choice function in
quasi-dominant strategies

Let 〈N , X 〉 be a finite society, let D be the set of all collective choice prob-
lems 〈N , X ,¼〉, and let f be a collective choice function for D . The mecha-
nism 〈(Si )i∈N , g 〉 for 〈N , X 〉 implements f in quasi-dominant strategies if for
every individual i ∈ N and every preference relation ¼i on X for individ-
ual i there exists a report σi (¼i )∈Si such that

g (σ(¼)) = f (N , X ,¼), (2.1)

whereσ(¼) = (σi (¼i ))i∈N , and

g (σi (¼i ), s−i )¼i g (s ′i , s−i ) for all s ′i ∈Si , all s−i ∈S−i , and all i ∈N . (2.2)

This concept is sometimes called implementation in dominant strategies.
However, the report σi (¼i ) in the definition does not necessarily weakly domi-
nate individual i ’s other possible reports in the sense of Definition 16.18 because
it may not satisfy the second condition in this definition. For this reason I attach
the prefix quasi.

The question now is: are there collective choice functions that are not strategy-
proof but can be implemented in quasi-dominant strategies? The answer is neg-
ative. Here’s the argument, illustrated for the case of two individuals in Figure 2.1.
If a collective choice function can be implemented in quasi-dominant strategies,
then for some collection of sets of permitted reports and some outcome function
g , for every preference profile¼ there is a permitted report profileσ(¼) for which
(i) the outcome g (σ(¼)) is the alternative f (N , X ,¼) and (ii) no individual has a
different permitted report that induces an outcome she prefers for any list of the
other individuals’ reports. Now consider the mechanism in which the set of per-
mitted reports of each individual is the set of preference relations and the out-
come of the report profile ¼ is g (σ(¼)). We can think of this mechanism as one
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σ2(¼2)

σ1(¼1)

σ1(¼′1)

g (σ(¼1,¼2))¼
1

g (σ(¼′1,¼2))

¼2

¼1

¼′1

g (σ(¼1,¼2)) = f (N , X , (¼1,¼2))¼
1

g (σ(¼′1,¼2)) = f (N , X , (¼′1,¼2))

Mechanism implements
collective choice function

in quasi-dominant strategies
⇒

Collective choice function
is strategy-proof

Figure 2.1 An illustration for the case of two individuals of the structure of the argument
that if a mechanism implements a collective choice rule in quasi-dominant strategies
then the collective choice rule is strategy-proof.

in which each individual i reports ¼i and the mechanism operator then reports
σi (¼i ) to the first mechanism on her behalf. For any given preference profile ¼,
the outcomes of the two mechanisms are the same: g (σ(¼)). Further, under the
first mechanism, no individual i is better off changing her report from σi (¼i ) to
the reportσi (¼′i ) she would submit if her preference relation were ¼′i , for any¼′i ,
regardless of the other individuals’ reports. Thus in particular i is not better off
changing her report from σi (¼i ) to σi (¼′i ) for the reports the other individuals
would choose for any given specification of their preference relations. Thus i is
not better off changing her report from ¼i to ¼′i under the second mechanism,
regardless of the preference relations reported by the other individuals. That is,
the collective choice rule is strategy-proof.

Proposition 2.4: Revelation principle for implementation in quasi-
dominant strategies

Let 〈N , X 〉 be a finite society, let D be the set of all collective choice prob-
lems 〈N , X ,¼〉, and let f be a collective choice function for D . If some
mechanism for 〈N , X 〉 implements f in quasi-dominant strategies then f
is strategy-proof over the set of all preference relations over X .

Proof

Suppose that the mechanism 〈(Si )i∈N , g 〉 for 〈N , X 〉 implements f in quasi-
dominant strategies. For each preference profile ¼ for 〈N , X 〉 and each in-
dividual i ∈N , letσi (¼i ) be the member of Si given in Definition 2.7. Then
for any preference profile ¼ and any preference relation ¼′i different from
¼i , substitute s ′i =σi (¼′i ) and s−i = (σj (¼j ))j∈N \{i } into (2.2) to obtain

g (σ(¼))¼i g (σ(¼′i ,¼−i )) for all ¼′i and all i ∈N .
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Using (2.1), this condition is equivalent to

f (N , X ,¼)¼i f (N , X , (¼′i ,¼−i )) for all ¼′i and all i ∈N ,

so that f is strategy-proof.

An implication of this result and Proposition 2.3 (the Gibbard-Satterthwaite
theorem) is that if a unanimous single-valued collective choice rule for the do-
main of all strict preference profiles can be implemented in quasi-dominant strate-
gies then it is dictatorial.

Corollary 2.1: Unanimous collective choice rule that can be
implemented in dominant strategies is dictatorial

For a finite society in which there are at least three alternatives, any collec-
tive choice function for the set of all strict preference profiles that is unan-
imous and can be implemented in quasi-dominant strategies is dictato-
rial: for some individual i ∗ it selects the favorite alternative of i ∗ for every
collective choice problem.

Notes

Proposition 2.1 is due to Black (1948b, 32); it is a special case of Moulin (1980,
Proposition 1) (see also Moulin 1988, Lemma 10.3). Proposition 2.3 is due to Gib-
bard (1973) and Satterthwaite (1975). My presentation of this result and its proof
are taken from Osborne and Rubinstein (2020); I am grateful to Ariel Rubinstein
for allowing me to use this material. Proposition 2.4 was first established by Gib-
bard (1973); several versions have been demonstrated in various models subse-
quently. For discussions of the implementation of a collective choice rule via so-
lution concepts other than equilibrium in dominant strategies, see Osborne and
Rubinstein (1994, Sections 10.4 and 10.5) and Austen-Smith and Banks (2005,
Section 3.3).

The result in Exercise 2.3 is generalized by Moulin (1980), who character-
izes the collective choice rules that are strategy-proof in a single-peaked domain.
Saporiti (2009) provides an analogous characterization for a single-crossing do-
main. Osborne et al. (2000) study a model that generalizes the example in Ex-
ercise 2.4 and Osborne and Tourky (2008) study a model that generalizes the
example in Exercise 2.5.
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Solutions to exercises

Exercise 2.1
If individual 1 reports her true preference relation, then there is a single Con-
dorcet winner, a . (Alternatives a and b tie, a beats c , and c beats b .) If she
instead reports the ordering b �1 c �1 a then the Condorcet winners are a
and b . (Alternatives a and b tie, and both a and b beat c .) So by reporting a
preference relation different from her true preference relation she can induce
the outcome {a ,b}, in which the best outcome for her is b .

Now suppose that N = {1,2,3}, b �1 a �1 c , a �2 b �2 c , and c �3 a ∼3 b . Then
the set of Condorcet winners is {a ,b}. If individual 1 switches to reporting
b �1 c �1 a , then the set of Condorcet winners becomes {b}.

Exercise 2.2
Suppose the game has three individuals and three alternatives, a , b , and c ,
with the ordering a Ã b Ã c . Individual 1 prefers a to b to c , individual 2
prefers b to a to c , and individual 3 prefers c to a to b . If every individual
chooses her favorite alternative, the outcome is b . If individual 3 deviates
and chooses a , the outcome changes to a , which she prefers to b .

Exercise 2.3
Suppose that an individual i chooses her favorite alternative, say a ∗i . Denote
the smallest alternative chosen by all individuals by a. If a ∗i = a then the out-
come is a ∗i , and i can do no better by choosing another alternative. If a ∗i > a
then i can affect the outcome only by choosing an alternative smaller than a,
which is worse for her than a, given that her preferences are single-peaked.
Thus the first condition in Definition 16.18 is satisfied. Now let a ′ be an alter-
native different from a ∗i . If all the individuals other than i choose alternatives
larger than a ′, the outcome is better for i is she chooses a ∗i than if she chooses
a ′, so that the second condition in Definition 16.18 is satisfied.

Exercise 2.4
Let h be a positive integer and consider the action profile in which an indi-
vidual i submits a report if and only if |x ∗i | ≥ h. The outcome is 0 (the mean
of the two submitted reports that are smallest in absolute value). First sup-
pose that x ∗i ≥ h. Then i ’s payoff is −x ∗i − c . If she deviates to not submit
a report, the outcome changes to −h, so that her payoff becomes −x ∗i − h.
Thus her submission of a report is optimal for her if and only if h ≥ c . If
x ∗i ≤ −h, a symmetric argument yields the same conclusion. Now suppose
that 0≤ x ∗i < h. Then i ’s payoff is −x ∗i . If she deviates to submit a report, the
outcome changes to her favorite position, x ∗i , and her payoff becomes −c .
Thus her non-submission of a report is optimal for her if and only if x ∗i ≤ c . If
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−h < x ∗i ≤ 0, a symmetric argument yields the same conclusion.

In summary, the action profile is a Nash equilibrium if and only if h ≥ c and
x ∗i ≤ c whenever x ∗i < h. If c is an integer, these conditions are satisfied if and
only if h = c or h = c +1, and if c is not an integer, the conditions are satisfied
if and only if h is the smallest integer that is at least c .

Exercise 2.5
Two factors limit the number of distinct alternatives reported. First, by switch-
ing from reporting an alternative that is being reported by k individuals to
reporting a different one that is being reported by at least k individuals, an
individual reduces her reporting cost. Second, some switches in the alterna-
tive an individual reports do not affect the outcome—for example, that is the
case if both alternatives are less than an alternative that is in turn less than
the outcome. These two factors run through the following arguments.

i. Denote the outcome of the equilibrium x ∗. First suppose that three or
more distinct alternatives greater than x ∗ are reported. Denote the two
largest alternatives reported by x and y , and suppose that the number
of individuals who report x is at least the number who report y . Then if
an individual who is reporting y switches to reporting x , she reduces her
reporting cost and does not affect the outcome, and hence is better off.
Thus in any equilibrium at most two distinct alternatives greater than the
outcome are reported. A symmetric argument shows that also at most
two distinct alternatives less than the outcome are reported.

We conclude that at most five distinct alternatives are reported, and if
five are reported then the outcome is the middle reported alternative.
In this last case, let x and y be the two smallest reported alternatives,
with the number of individuals reporting x at least the number report-
ing y . Then, as in the previous paragraph, an individual reporting y who
switches to report x reduces her reporting cost and does not change the
outcome, and hence is better off. Thus at most four distinct alternatives
are reported.

ii. If one alternative is reported, it is reported by only one individual, be-
cause if two or more individuals report it, any one of them can switch to
not reporting without changing the outcome, and thereby save the cost of
reporting. The alternative is the individual’s favorite because if it is not,
she can switch to reporting her favorite, which changes the outcome to
that alternative. Her favorite alternative must differ from 0, because if it
is 0 she is better off switching to not reporting.

iii. Suppose that three distinct alternatives are reported, x < y < z . Suppose
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that the outcome is greater than y . If two or more individuals report y
then an individual who switches from reporting x to reporting y , or vice
versa, does not affect the outcome. Thus if two or more individuals re-
port y then if the number who report x is at least the number who report
y , an individual who reports y can benefit by switching to report x , and
if the number who report y is at least the number who report x , an in-
dividual who reports x can benefit by switching to report y . So only one
individual reports y . A symmetric argument leads to the same conclusion
if the outcome is less than y . If the outcome is equal to y , the number of
individuals who report x and the number who report z are at least the
number who report y , otherwise an individual reporting x or z is better
off switching to reporting y . But then if two or more individuals report y ,
either the outcome does not change if one of them switches to x or the
outcome does not change if one of them switches to z . In both cases the
individual who switches is better off, so only one individual reports y .

Now suppose that four distinct alternatives are reported, w < x < y < z .
If the outcome is at most x an individual benefits from switching from y
to z or vice versa, and if the outcome is at least y an individual benefits
from switching from w to x or vice versa. So the outcome is the mean of
x and y . Then as for the case of three reported alternatives, the number
reporting w is at least the number reporting x , so that if two or more in-
dividuals report x one of them is better off switching to report w . Hence
only one individual reports x . Similarly, only one individual reports y .
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3 Voting with two alternatives

3.1 Voting as a strategic game 101
3.2 Costly voting with uncertainty about cost 104
3.3 Turnout and population size with uncertain

preferences 118
3.4 Preferences with regret 121

A group of individuals selects one of two alternatives by voting, which may entail
a cost. How do the individuals’ decisions to vote depend on their preferences
and voting costs? How does the fraction of individuals who vote depend on the
population size?

Synopsis

Section 3.1 models voting as a strategic game. In the game, an individual’s voting
for her favorite alternative weakly dominates her voting for the other alterna-
tive and, if her cost of voting is zero, also weakly dominates abstention (Proposi-
tion 3.1). In particular, if every individual’s cost of voting is zero, an action profile
is a Nash equilibrium in which no individual’s action is weakly dominated if and
only if each individual who is not indifferent between the alternatives votes for
her favorite alternative (Corollary 3.1). If the individuals’ voting costs are pos-
itive, most voting games in which the costs are not so high that no individual
optimally votes have no Nash equilibrium, rendering the model of little use for
understanding voting behavior when voting is costly.

A variant of the model that does have equilibria assumes that each individ-
ual knows her own voting cost but is uncertain of the other individuals’ costs.
Sections 3.2 and 3.3 explore a model in which each individual believes that ev-
ery other individual’s voting cost is drawn independently from a given distribu-
tion and each individual’s preferences are represented by the expected value of
a Bernoulli payoff function. As in the model in Section 3.1, each individual is
assumed to know the other individuals’ preferences between the alternatives. In
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every equilibrium of the game I formulate, there is a number c ∗i for each individ-
ual i such that i votes for her favorite alternative if her cost is less than c ∗i and
abstains if it is greater than c ∗i (Lemma 3.1). Proposition 3.2 characterizes these
threshold costs for equilibria in which every individual who favors the same al-
ternative has the same threshold cost (symmetric equilibria) and Proposition 3.3
shows that such an equilibrium exists.

Intuition suggests that if many individuals vote then the probability of an in-
dividual’s vote affecting the outcome—the probability that among the other indi-
viduals the vote is tied or nearly tied—is small, so that only individuals with small
voting costs vote. If all voting costs are drawn from distributions with positive
lower limits, an implication is that equilibria in which a large number of individ-
uals vote are impossible. Proposition 3.4 formalizes this idea. It gives conditions
under which as the number of individuals increases without bound the expected
number of individuals who vote remains finite. Section 3.3 explores the idea fur-
ther in a model in which each individual is uncertain of the other individuals’
preferences between the alternatives.

Section 3.4 considers an alternative to the assumption that each individual’s
preferences are represented by the expected value of a payoff function. Instead,
each individual considers, for each of her actions and each list of the other in-
dividuals’ actions, how much better off she would have been had she chosen a
different action. She chooses the action for which the largest value of this gain
over all lists of the other individuals’ actions is smallest. That is, she chooses the
action for which her maximal possible regret is smallest. If she votes, then the
outcomes that generate the most regret are that her favored alternative loses or
wins by two votes or more, in which case the outcome would have been the same
had she not voted (and thereby saved the cost of doing so). If she abstains then
the outcomes that generate the most regret are that her favored alternative ties or
loses by one vote, so that had she voted she would have increased the probability
of her favored alternative’s winning by one-half. Thus if her cost of voting is not
too high she optimally votes, regardless of the number of individuals, so that this
model can generate high turnout even in large populations.

When an individual chooses to abstain in any of these models, she does so
because the cost of voting exceeds the benefit from doing so. Another rational-
ization for abstention is that individuals feel they are insufficiently informed to
make a choice, and prefer to delegate the decision to those who are informed. I
explore this approach in Chapter 7.
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3.1 Voting as a strategic game

I formulate voting as a strategic game. The model includes the option for each
individual not to vote and the possibility that voting is costly. The players are
individuals, each of whom can vote for one of two alternatives, a and b , or ab-
stain. If one alternative, say z , receives more votes than the other, it wins, and
the payoff of each individual i is u i (z )− ci if she votes and u i (z ) if she does not,
where u i is a real-valued function on {a ,b} and ci is a nonnegative number. If
the alternatives receive the same number of votes, the payoff of each individual i
is 1

2
(u i (a )+u i (b ))−ci if she votes and 1

2
(u i (a )+u i (b )) if she does not. One ratio-

nale for this specification of an individual’s payoff in the case of a tie is that in this
event each alternative is selected with probability 1

2
and u i is a Bernoulli payoff

function whose expected value represents the player’s preferences over lotteries
over outcomes.

Definition 3.1: Two-alternative voting game

The two-alternative voting game 〈N ,{a ,b}, (u i )i∈N , (ci )i∈N 〉, where N is a fi-
nite set (of individuals) with at least two members, a and b are alternatives,
each u i is a real-valued function on {a ,b}, and each ci is a nonnegative
number, is the following strategic game.

Players
The set N .

Actions
For each player i , the set of actions is {vote for a , vote for b , abstain}.

Payoffs
For any action profile x , denote by W (x )⊆ {a ,b} the set of alternatives
that receive the most votes: W (x ) = {z } if more individuals vote for z
than for the other alternative and W (x ) = {a ,b} if the same number of
individuals vote for each alternative. The payoff of each player i for x is

¨∑
w∈W (x )u i (w )/|W (x )| if xi = abstain∑
w∈W (x )u i (w )/|W (x )| − ci if xi ∈ {vote for a , vote for b}.

3.1.1 Costless voting

A two-alternative voting game with three or more individuals in which every in-
dividual’s voting cost is zero has many Nash equilibria. For example, any action
profile in which every individual chooses (votes for) the same alternative is an
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equilibrium, because no change in any individual’s action affects the outcome.
(Remember that in a Nash equilibrium, no change in any player’s action makes
her better off, but changes may not make her worse off, either.) The next exer-
cise asks you to describe all Nash equilibria in the case that (for simplicity) no
individual is indifferent between the alternatives.

Exercise 3.1: Nash equilibria of two-alternative voting game with zero
costs

Find all the Nash equilibria of a two-alternative voting game 〈N ,{a ,b},
(u i )i∈N , (ci )i∈N 〉 in which ci = 0 and u i (a ) 6= u i (b ) for each i ∈N .

Among the Nash equilibria are ones in which at least one individual votes
for the alternative she likes least. Such equilibria seem implausible, because an
individual who votes for such an alternative can gain no possible advantage by
doing so and, intuitively, risks influencing the outcome in favor of that alterna-
tive. The notion of Nash equilibrium assumes that no individual wavers from her
equilibrium action, so that an equilibrium is not affected by such risk. The idea
is captured, instead, by the notion of a weakly dominated action: an action a i

for which there is another action bi that yields i at least as high a payoff as does
a i for all actions of the other players and a higher payoff than does a i for some
actions of the other players. An individual’s voting for her favorite alternative
weakly dominates her voting for the other alternative: no matter how the other
individuals vote, an individual is not worse off voting for her favorite alternative
than voting for the other alternative, and for some configurations of the other
individuals’ votes she is better off. If an individual’s voting cost is zero, her voting
for her favorite alternative also weakly dominates abstention.

Proposition 3.1: Weak domination in two-alternative voting game

Let 〈N ,{a ,b}, (u i )i∈N , (ci )i∈N 〉 be a two-alternative voting game and let i be
an individual for whom u i (a ) 6= u i (b ). Individual i ’s action of voting for
her favorite alternative weakly dominates her action of voting for the other
alternative and, if ci = 0, weakly dominates abstain.

This result is closely related to Proposition 2.1, but the following proof em-
ploys an argument independent of that result.

Proof

Table 3.1 shows an individual’s payoffs as a function of her action and the
winning margin in favor of a among the other individuals’ votes. For an
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winning margin for a among other individuals
≥ 2 1 0 −1 ≤−2

vote a u i (a )− ci u i (a )− ci u i (a )− ci
1
2 (u i (a )+u i (b ))− ci u i (b )− ci

vote b u i (a )− ci
1
2 (u i (a )+u i (b ))− ci u i (b )− ci u i (b )− ci u i (b )− ci

abstain u i (a ) u i (a )
1
2 (u i (a )+u i (b )) u i (b ) u i (b )

Table 3.1 The payoffs of individual i in a two-alternative voting game as a function of
her action and the winning margin for a among the other individuals.

individual who prefers a to b , for each column, the entry in the top cell is
at least the entry in the middle cell, and for the second and fourth columns,
the entry in the top cell is larger than the entry in the middle cell. So for
such an individual, voting for a weakly dominates voting for b . If ci =
0 then for each column, the entry in the top cell is at least the entry in
the bottom cell, and for the third and fourth columns, the entry in the top
cell is larger than the entry in the bottom cell, so that voting for a weakly
dominates abstention. Symmetric arguments apply to an individual who
prefers b to a .

An immediate corollary of this result is that in any Nash equilibrium of a two-
alternative voting game with costless voting in which no individual’s action is
weakly dominated, every individual votes for her favorite alternative.

Corollary 3.1: Nash equilibrium in weakly undominated actions in
two-alternative voting game with zero costs

Let 〈N ,{a ,b}, (u i )i∈N , (ci )i∈N 〉 be a two-alternative voting game in which
ci = 0 for all i ∈ N . An action profile is a Nash equilibrium in which no
individual’s action is weakly dominated if and only if every individual who
is not indifferent between the alternatives votes for her favorite alternative.

Because of this result, most models in which individuals vote between two
alternatives and voting is costless assume that no individual uses a weakly dom-
inated action.

3.1.2 Costly voting

When voting costs are positive, the nature of the equilibria is completely differ-
ent: most two-alternative voting games in which every individual’s voting cost
is positive have no Nash equilibria unless the voting costs are sufficiently high,
when they have equilibria in which no one votes or a single individual does so.
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When voting is costly, an individual optimally votes only if doing so makes
a difference to the outcome—if her vote is pivotal. If the numbers of votes for
the two alternatives differ, then no vote on the losing side is pivotal, so in any
equilibrium with votes for both alternatives, the alternatives tie. Consider such
an equilibrium. If individual i votes for a , then by switching to abstention she
changes the outcome from a tie to b . Thus her voting for a is optimal only if
1
2
(u i (a ) +u i (b ))− ci ≥ u i (b ), or equivalently 1

2
(u i (a )−u i (b )) ≥ ci . Similarly, her

voting for b is optimal only if 1
2
(u i (b )−u i (a ))≥ ci , and her abstaining is optimal

only if 1
2
(u i (a )+u i (b ))≥max{u i (a ), u i (b )}− ci .

Thus if ci 6=
1
2
|u i (a )− u i (b )| for all i ∈ N then in any equilibrium in which

both alternatives receive votes, an individual i votes for a if and only if 1
2
(u i (a )−

u i (b )) > ci and votes for b if and only if 1
2
(u i (b )−u i (a )) > ci , so that given that

the alternatives tie,

|{i ∈N : 1
2
(u i (a )−u i (b ))> ci }|= |{i ∈N : 1

2
(u i (b )−u i (a ))> ci }|.

Most two-alternative voting games do not satisfy this condition, so that they have
no Nash equilibria in which both alternatives receive votes.

Games in which the voting costs are high enough have equilibria in which no
one votes and may have equilibria in which one individual votes. These equilib-
ria are of little interest.

These arguments lead to the conclusion that the notion of Nash equilibrium
for a two-alternative voting game with positive voting costs is not useful for un-
derstanding voting behavior. One option is to consider instead the notion of
mixed strategy equilibrium. However, interpretations of mixed strategy equi-
libria do not fit many environments that voting games are intended to model.
Instead, I discuss a related approach, in which each individual is uncertain of
the other individuals’ voting costs.

3.2 Costly voting with uncertainty about cost

Suppose that each individual knows her own voting cost but is uncertain of the
the other individuals’ voting costs. In this section I specify a model, show that it
has an equilibrium, and characterize its equilibria. A focus of the analysis is the
fraction of individuals who vote in a large population. An individual in the model
is motivated to vote by the possibility that doing so affects the outcome, which
happens only if the votes for the alternatives among the other individuals are tied
or almost tied. Intuition suggests that if the other individuals’ characteristics are
uncertain then a tie or near tie is unlikely if a large number of the other individ-
uals vote. As a consequence, voting is optimal for the remaining individual only
if her voting cost is small, so that when the number of individuals is large, only
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1

0

Fa (c )
Fb (c )

c →ca c a
1
2

cb c b

Figure 3.1 An example of distributions of voting costs of the form assumed in a two-al-
ternative voting game with uncertain voting costs.

individuals with small costs vote and thus turnout is low. The analysis leads to
Proposition 3.4, which gives conditions under which this intuition is correct.

I retain the assumption in a two-alternative voting game that the number
of individuals who favor each alternative is known. For many elections this as-
sumption is not reasonable, but the resulting model captures the fact that each
individual is uncertain about the other individuals’ voting behavior, and limiting
the uncertainty to one source keeps the model relatively simple.

The game-theoretic model of a Bayesian game accommodates these assump-
tions. It differs from a strategic game in that it includes a specification of the
uncertainty that each individual faces (and a payoff function for each individual
that applies to the uncertain environment). It models the uncertainty by speci-
fying a set of possible states, the information each individual has about the state,
and each individual’s belief regarding aspects of the state about which she is not
informed.

The uncertainty in the game we wish to analyze concerns the individuals’
voting costs, so a state is a profile of such costs. I assume that every individual i
knows her own cost, ci , and believes that the cost of every individual who favors a
given alternative is drawn from the same distribution. I assume specifically that
the voting cost of every individual who favors x ∈ {a ,b} is drawn independently
from a nonatomic distribution Fx with support [cx , c x ] where 0 < cx < c x . The
assumption that the distributions are nonatomic means that no single cost has
a positive probability, so that the probability distribution functions are continu-
ous, like those in Figure 3.1.
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Definition 3.2: Two-alternative voting game with uncertain voting costs

A two-alternative voting game with uncertain voting costs 〈(Na , Nb ),{a ,b},
(Fa , Fb )〉, where Na and Nb are finite sets, a and b are alternatives, and Fa

and Fb are nonatomic probability distribution functions whose supports
are intervals of positive numbers, is the following Bayesian game, where
[cx , c x ] (with 0< cx <

1
2
< c x ) denotes the support of Fx for each x ∈ {a ,b}.

Players
The set N = Na ∪Nb (Na consists of individuals who favor a and Nb

consists of individuals who favor b ).

States
The set of states is the set of profiles (c j )j∈N of voting costs, with c j ∈
[ca , c a ] for every player j ∈ Na and c j ∈ [cb , c b ] for every player j ∈ Nb .
An individual with a given voting cost is referred to as a type of the
individual.

Actions
The set of actions of each player is {vote for a , vote for b , abstain}.

Signals
The signal function τi of each player i is given by τi ((c j )j∈N ) = ci (every
individual knows her own cost, but has no information about any other
individual’s cost).

Prior beliefs
Every player believes that for each x ∈ {a ,b} the voting cost of each
player i ∈ Nx is drawn from Fx , and that each player’s cost is drawn
independently of every other player’s cost.

Payoffs
The Bernoulli payoff function of each player over the set of pairs of
action profiles and states is defined as follows.

For each player i ∈ Na (who favors a ), let u i (a ) = 1 and u i (b ) = 0, and
for each i ∈Nb (who favors b ), let u i (b ) = 1 and u i (a ) = 0. For any state
(c j )j∈N and any x ∈ {a ,b}, if more players choose vote for x than vote for
y , the other alternative, then the Bernoulli payoff of player i is u i (x )−ci

if she votes and u i (x ) if she abstains; if the number of players who vote
for each alternative is the same, then 1

2
(u i (a ) +u i (b )) replaces u i (x ) in

each case.
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Comments

• The assumption that each individual’s preferences are represented by the
expected value of a Bernoulli payoff function is not innocuous. Section 3.4
presents an analysis based on a different assumption about the individuals’
preferences.

• The assumption that u i (x ) = 1 and u i (x ) = 0 for an individual i who favors
x means that no individual is indifferent between the alternatives. It implies
that a voting cost of 1 is equivalent to the difference between an individ-
ual’s payoff to her favorite alternative and her payoff to the other alternative.
Given that the payoffs are the same in every game, they do not appear as
parameters in the specification 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉.

• The assumption that ca and cb are less than 1
2

rules out equilibria in which
no type of any individual votes, because if no one votes then an individual
who deviates to voting for her favorite alternative changes the outcome from
a tie to a win for her favorite alternative, changing her payoff from 1

2
to 1− c ,

which is a increase if c < 1
2

.

• The assumption that c a and c b are greater than 1
2

means that with positive
probability an individual’s cost is high enough that she does not optimally
vote even if her vote is pivotal. (Perhaps she faces a medical emergency at the
time of the vote.) This assumption rules out equilibria in which every type
of every individual votes, because if everyone votes then an individual who
deviates from voting for x to abstention either does not change the outcome
or changes it from a win for x to a tie, or from a tie to a win for the other
alternative, and hence increases her payoff by at least 1

2
−(1−c ) = 0−( 1

2
−c ) =

c − 1
2

, which is positive if c > 1
2

.

An individual’s strategy specifies an action for each of her possible types. That
is, for each x ∈ {a ,b}, a strategy for an individual who favors x is a function from
[cx , c x ] to {vote for a , vote for b , abstain}. A strategy profile s ∗ is a Nash equilib-
rium if the action si (c ) of each type c of each individual i is optimal given i ’s be-
lief about the other individuals’ types and the action s ∗j (c

′) chosen by each type
c ′ of every other individual j , which together generate a probability distribution
in i ’s mind over the combination of actions of the other individuals.

If you are not a frequent user of the notion of a Bayesian game, you may won-
der why we require an equilibrium strategy to specify an action for every type
of every individual, given that each individual knows her own type. The reason
is that in an equilibrium we want the actions that each individual believes each
type of every other individual will take to be the ones that the type would in fact
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take. The way we do that is to specify, and verify the optimality of, each indi-
vidual’s strategy, which includes a specification of the action chosen by each of
her possible types. No individual knows the type of any other individual, and the
actions an individual’s strategy specifies for types different from her actual type
function as the other individuals’ beliefs about the actions the individual would
take were she to have these types.

Given an individual’s belief about the other individuals’ actions, which action
should she choose? Intuition suggests that she should vote for her favorite alter-
native if her voting cost is low and abstain if her voting cost is high. That is, she
should employ a threshold strategy.

Definition 3.3: Threshold strategy in two-alternative voting game with
uncertain voting costs

Let 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉 be a two-alternative voting game with uncer-
tain voting costs and denote the support of Fx by [cx , c x ] for each x ∈ {a ,b}.
For each x ∈ {a ,b} and each player i ∈ Nx (who favors x ), a strategy
si : [cx , c x ]→ {vote for a , vote for b , abstain} of player i is a threshold strat-
egy if for some number c ∗i ∈ [cx , c x ] (the threshold for individual i ) we
have

si (ci ) =

¨
vote for x if cx ≤ ci < c ∗i
abstain if c ∗i < ci ≤ c x

and si (c ∗i )∈ {vote for x , abstain}.

The intuition that each individual’s best response to any strategies of the
other individuals is a threshold strategy is confirmed by the following analysis.

Consider an individual who favors a . For each of her actions, the outcome
generated by each combination of actions of the other individuals, and hence her
payoff, depends only on the winning margin for a among the other individuals’
actions. Her payoffs when her voting cost is c are given in Table 3.2. For c > 0,
these payoffs have several relevant features.

• Abstention strictly dominates voting for b .

• If c > 1
2

then abstention strictly dominates voting for either alternative.

• If c < 1
2

then voting for a is better than abstaining if and only if the winning
margin for a among the other individuals is 0 or −1 (the highlighted cells in
Table 3.2), and the gain in payoff to switching from abstention to voting for
a for these two winning margins is the same, equal to 1

2
− c .

Specifically, for an individual with voting cost c > 0 who favors a , a vote for a is a
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winning margin for a among other individuals
≥ 2 1 0 −1 ≤−2

vote for a 1− c 1− c 1− c 1
2
− c −c

vote for b 1− c 1
2
− c −c −c −c

abstain 1 1 1
2

0 0

Table 3.2 The payoffs of an individual of type c who favors a in a two-alternative voting
game with uncertain voting costs as a function of her action and the winning margin for
a among the other individuals. For the highlighted cells, the individual’s voting for a and
abstaining generate different outcomes.

best response to the other individuals’ strategies if and only if

1
2

�
Pr(tie among others’ votes)+Pr(a loses by 1 among others’ votes)

�
≥ c

and abstention is a best response if and only if this inequality is reversed (≤);
voting for b is never a best response. In particular, if voting for a is a best re-
sponse for an individual when her cost is c , it is a best response also when her
cost is less than c , and if abstention is a best response when her cost is c , it is a
best response also when her cost exceeds c . The same considerations apply to an
individual who favors b , so every best response of any individual is a threshold
strategy.

Lemma 3.1: Equilibrium of two-alternative voting game with uncertain
voting costs

In every Nash equilibrium of a two-alternative voting game with uncertain
voting costs, each individual’s strategy is a threshold strategy.

I consider only Nash equilibria that are symmetric in the sense that every
individual who favors a uses the same strategy and every individual who favors
b uses the same strategy.

Definition 3.4: Symmetric equilibrium of two-alternative voting game
with uncertain voting costs

A Nash equilibrium s ∗ of a two-alternative voting game with uncertain
voting costs 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉 is symmetric if there are strategies sa

and sb such that s ∗i = sa for every individual i ∈ Na and s ∗i = sb for every
individual i ∈Nb .

How do the thresholds ca and cb in a symmetric equilibrium depend on the
individuals’ characteristics? Given the other individuals’ strategies, an individual
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who favors x is indifferent between voting for x and abstaining when her cost is
cx . Her expected payoff in each case depends on the other individuals’ strategies
and her belief about their types. I now explore these payoffs in detail.

Consider a profile of threshold strategies in which some types of each indi-
vidual vote and some abstain; let i be an individual who favors a . What proba-
bility does i assign to the event that a and b are tied among the other individuals’
votes? Only individuals who favor a vote for a , and only those who favor b vote
for b , so the maximum number k such that a and b both get k votes among the
other individuals is min{n a−1, nb}, where n a = |Na | and nb = |Nb |. The probabil-
ity i assigns to the event that an individual who favors a votes is the probability
that the individual’s cost is at most ca , which is Fa (ca ), and the probability she
assigns to the event that an individual who favors b votes is Fb (cb ). Thus the
probability i assigns to a tie between a and b among the other individuals’ votes
is the sum from k = 0 to k =min{n a ,−1, nb} of the probability the voting cost of
k of the other n a − 1 individuals who favor a is at most ca and the voting cost of
k of the individuals who favor b is at most cb .

To write a compact expression for this probability, for any positive integer n ,
integer l with 0≤ l ≤ n , and number p ∈ [0,1]), denote by B (n , l , p ) the probabil-
ity of exactly l successes in n independent trials when the probability of success
on each trial is p :

B (n , l , p ) =

�
n

l

�

p l (1−p )n−l .

Then the probability that i assigns to a tie among the other individuals’ votes
when each of the other individuals who favors a votes with probability pa and
each of the individuals who favors b votes with probability pb is

P0
a (pa , pb , n a , nb ) =

min{n a−1,nb }∑

k=0

B (n a −1, k , pa )B (nb , k , pb ).

Similarly, the probability i assigns to a ’s losing by one vote among the other
individuals is

P1
a (pa , pb , n a , nb ) =

min{n a−1,nb−1}∑

k=0

B (n a −1, k , pa )B (nb , k +1, pb ).

Thus i ’s expected gain from voting is

Ga (pa , pb , n a , nb ) =
1
2

�
P0

a (pa , pb , n a , nb )+P1
a (pa , pb , n a , nb )

�
. (3.1)

She optimally votes if this gain is greater than her cost, abstains if it is less than
her cost, and is indifferent between voting and abstaining if it is equal to her cost.
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For the threshold strategies we are considering, an individual who favors a votes
with probability Fa (ca ), the probability that her voting cost is less than ca , and an
individual who favors b votes with probability Fb (cb ), so the condition in terms
of ca and cb for a symmetric equilibrium in which some types of each individual
who favors a vote and some abstain is c ∗a =Ga (Fa (c ∗a ), Fb (c ∗b ), n a , nb ), the condi-
tion for an equilibrium in which all types abstain is c ∗a ≥Ga (Fa (c ∗a ), Fb (c ∗b ), n a , nb ),
and the condition for an equilibrium in which all types vote is c ∗a ≤Ga (Fa (c ∗a ), Fb (c ∗b ), n a , nb ).

For an individual who favors b , the expressions differ only in that the roles of
a and b are interchanged, so a pair of threshold strategies with thresholds c ∗a and
c ∗b is a symmetric equilibrium if and only if

c ∗a







≥

=

≤






Ga (Fa (c

∗
a ), Fb (c

∗
b ), n a , nb )







if Fa (c ∗a ) = 0

if 0< Fa (c ∗a )< 1

if Fa (c ∗a ) = 1

c ∗b







≥

=

≤






Gb (Fa (c

∗
a ), Fb (c

∗
b ), n a , nb )







if Fb (c ∗b ) = 0

if 0< Fb (c ∗b )< 1

if Fb (c ∗b ) = 1.

(3.2)

By Lemma 3.1, each individual’s strategy in a Nash equilibrium is a threshold
strategy, so this argument establishes the following result.

Proposition 3.2: Symmetric equilibrium of two-alternative voting game
with uncertain voting costs

A strategy profile s ∗ of a two-alternative voting game with uncertain vot-
ing costs 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉 is a symmetric Nash equilibrium if and
only if for numbers c ∗a and c ∗b that satisfy (3.2) and threshold strategies sa

and sb with thresholds c ∗a and c ∗b respectively we have s ∗i = sa for every
individual i ∈Na and s ∗i = sb for every individual i ∈Nb .

Exercise 3.2: Two-alternative voting game with uncertain voting costs

a. Find a Nash equilibrium of a two-alternative voting game with uncertain
voting costs 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉 in which |Na |= |Nb |= 2 and Fa and Fb

are uniform on [0,1] (so that Fa (x ) = Fb (x ) = x for x ∈ [0,1]).

b. If Fa is uniform on [0,1], for which distributions Fb , if any, does the game
have a Nash equilibrium in which no type of any individual in Nb votes?
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Informal analysis for n a = nb and Fa = Fb

To get an idea of the nature of a symmetric equilibrium and the way it varies
with the number of individuals, suppose first that the number of individuals who
favor a is the same as the number who favor b and the probability distribution
of every individual’s voting cost is the same: n a = |Na | = nb = |Nb | =m (= 1

2
|N |)

and Fa = Fb = F , with ca = cb = c and c a = c b = c .
Under these assumptions, it is reasonable to look for an equilibrium in which

all individuals have the same cost thresholds for voting, and hence the same
probabilities of voting. If they all vote with probability p , then the expected
gain of any individual from voting is Ga (p , p , m , m ) = Gb (p , p , m , m ). Denote
the common function by G , and for any value of m define the function g m by
g m (p ) =G (p , p , m , m ) for all p . That is, g m (p ) is each individual’s expected gain
from voting when m individuals favor each alternative and every other individ-
ual votes with probability p . By (3.2), the condition for an equilibrium in which
p ∗a = p ∗b = p ∗ with 0< p ∗ < 1 is F−1(p ∗) = g m (p ∗).

Consider the function g m . Let i be an individual who favors a . If the proba-
bility that each of the other individuals votes is zero, a vote by i certainly changes
the outcome, from a 0–0 tie to a win for a , so that i ’s gain from voting is 1

2
. If the

probability that each of the other individuals votes is positive but close to zero,
the probability of a tie between the alternatives among the other individuals’
votes is relatively high, and hence i ’s voting is likely, but not certain, to change
the outcome; thus the benefit to her of voting is less than 1

2
, but not much less. As

the probability that each of the other individuals votes increases, the probability
of a tie among those individuals’ votes decreases, reducing i ’s benefit of voting.
When the probability that each of the other individuals votes is 1

2
, the probability

of a tie among their votes reaches a minimum, and hence i ’s gain from voting is at
a minimum. As the probability that each of the other individuals votes increases
above 1

2
, the probability of a tie increases, raising i ’s benefit of voting; when the

probability reaches 1, her benefit from voting is again 1
2

. For any value of p , an
increase in the number m of individuals who favor each alternative reduces the
probability of a tie among the other individuals’ votes, and hence reduces i ’s gain
from voting.

Figure 3.2 shows examples of the function g m for a few values of m , as well
as an example of F−1. For any given value of m , the equilibrium values of p are
those for which F−1(p ) = g m (p ).

This analysis suggests the following results.

• If F is continuous, an equilibrium exists: given c≤ 1
2

, the graph of F−1 crosses
each colored line in Figure 3.2 at least once.
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Figure 3.2 The colored curves are graphs of the function g m defined by g m (p ) =
G (p , p , m , m ), an individual’s expected gain from voting when every other individual
votes for her favorite alternative with probability p and abstains with probability 1− p
and m individuals favor each alternative, for various values of m .

• Multiple equilibria may exist: for example, for m = 4 in Figure 3.2 the game
has three equilibria.

• For every value of p with 0< p < 1 the value of g m (p ) decreases to zero as m
increases without bound, so that if m is large enough the game has only one
equilibrium.

• As m increases without bound the equilibrium probability that an individual
votes goes to zero.

The general case

Existence of an equilibrium The first observation for the special case, that the
continuity of the probability distribution function of the voting cost ensures that
an equilibrium exists, applies also to the general model.

Proposition 3.3: Nash equilibrium of two-alternative voting game with
uncertain voting costs

Every two-alternative voting game with uncertain voting costs has a sym-
metric Nash equilibrium and every such equilibrium is a threshold strategy
profile.
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Proof

Denote the game 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉 and define the function bGa :
[0,1]× [0,1]→ [0,1]× [0,1] by

bGa (ca , cb ) =Ga (Fa (min{max{ca , ca }, c a }), Fb (min{max{cb , cb}, c b}), n a , nb )

and the function bGb analogously. Given that Fa and Fb are continuous and
Ga and Gb are continuous in pa and pb , bGa and bGb are continuous, so that
by Brouwer’s fixed point theorem there is a pair (ĉa , ĉb ) ∈ [0,1]× [0,1] such
that

ĉa = bGa (ĉa , ĉb )

ĉb = bGb (ĉa , ĉb ).
(3.3)

Let c ∗a = min{max{ĉa , ca }, c a } and c ∗b = min{max{ĉb , cb}, c b}. I argue that
(c ∗a , c ∗b ) satisfies (3.2), so that by Proposition 3.2 the threshold strategy pro-
file in which the threshold of every individual who favors a is c ∗a and the
threshold of every individual who favors b is c ∗b is a Nash equilibrium.

To see that (c ∗a , c ∗b ) satisfies (3.2), first suppose that Fa (c ∗a ) = 0. Then ĉa ≤
ca = c ∗a from the definition of c ∗a in terms of ĉa , so that the first condition in
(3.3) implies that c ∗a ≥Ga (Fa (c ∗a ), Fb (c ∗b ), n a , nb ), using the definition of bGa .
Now suppose that 0 < Fa (c ∗a ) < 1. Then ĉa = c ∗a , so that the first condition
in (3.3) implies that c ∗a = Ga (Fa (c ∗a ), Fb (c ∗b ), n a , nb ). The other cases follow
similarly.

Every equilibrium is a threshold strategy profile by Lemma 3.1.

Properties of equilibrium with large number of individuals How does equilib-
rium turnout vary as the number of individuals increases? My informal analysis
suggests that if n a = nb and Fa = Fb then when the number of individuals is large
the game has only one symmetric equilibrium in which p ∗a = p ∗b , and in this equi-
librium the common probability of voting goes to 0 as the number of individuals
increases.

To study the equilibria more generally, first consider how an individual’s ex-
pected gain from voting varies with the probabilities with which the other indi-
viduals vote. Figure 3.3 shows two examples of this gain for an individual who
favors a , as a function of the probability pa of voting for each of the other n a −1
individuals who favor a and the probability pb of voting for each of the nb indi-
viduals who favor b . Figure 3.3a shows an example in which n a and nb are equal
and Figure 3.3b shows one in which they differ. (The restriction of the surface in
Figure 3.3a to the line pa = pb is the orange curve in Figure 3.2.) Notice that when
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pa←

pb→

(a) n a = nb = 20.

pa←

pb→

(b) n a = 20, nb = 10.

Figure 3.3 The expected gain Ga (pa , pb , n a , nb ) from voting for an individual who favors
a as a function of the probability pa of voting for each of the other n a−1 individuals who
favor a and the probability pb of voting for each of the nb individuals who favor b .

n a and nb are equal, the expected gain from voting is close to 1
2

when (pa , pb ) is
close to either (0,0) (no one else votes) or (1,1) (everyone else votes), and when
n a and nb differ, it is close to 1

2
only when (pa , pb ) is close to (0,0).

As n a and nb increase, the expected gain decreases at all points except (0,0)
and, if n a = nb , (1,1), where it remains 1

2
. Suppose that the numbers of indi-

viduals who favor each alternative increase proportionately. That is, consider a
sequence of games in which n x = r kx for each x ∈ {a ,b}, where kx is a given pos-
itive integer and r = 1,2, . . .. For (ka , kb ) = (20,10), Figure 3.4 shows two examples
of Ga : the left panel is for r = 1 and the right panel is for r = 4.

Figure 3.4 shows also the function F−1
a in the case that Fa is uniform on [0,1].

The first equilibrium condition in (3.2) is F−1
a (pa ) =Ga (pa , pb , n a , nb ) for 0< pa <

1, which means that an equilibrium lies on the intersection of the two surfaces
in Figure 3.4. The second equilibrium condition is the analogue for F−1

b and Gb ,
a function that has the same general form as Ga when n a and nb are large. An
equilibrium pair (pa , pb ) lies at the intersection of (i) the intersection of the two
surfaces in Figure 3.4 and (ii) the intersection of the analogous surfaces for F−1

b

and Gb . The figures suggest that as r , and hence the number of individuals who
favor each alternative, increases, the possible equilibrium values of pa and pb

converge to 0.
I now present a result that shows that this property of an equilibrium holds

generally: if ka 6= kb then in the equilibria of the game in which r ka individu-
als favor a and r kb favor b , as r increases without bound the probability that
any individual votes goes to zero. Further, the expected number of individuals
who vote for each alternative remains bounded as the number of individuals in-
creases without bound. The reason is that if the expected number of individuals
who vote increases without bound, the probability of any individual’s vote af-
fecting the outcome goes to zero, so that no individual optimally votes. But if no
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pa←

pb→

Ga (pa , pb ,20,10)

F−1
a (pa )

(a) n a = 20, nb = 10.

pa←

pb→

Ga (pa , pb ,80,40)

F−1
a (pa )

(b) n a = 80, nb = 40.

Figure 3.4 The expected gain Ga (pa , pb , n a , nb ) from voting for an individual who favors
a and the function F−1

a (pa ) in the case that Fa is uniform on [0,1].

individual votes, any individual with voting cost less than 1
2

optimally votes.

Proposition 3.4: Voting probability converges to zero as population
increases

Fix positive integers ka and kb with ka 6= kb and for any positive integer r
let Na (r ) be a set with r ka members and Nb (r ) a set with r kb members. Let
Γ(r ) = 〈(Na (r ), Nb (r )),{a ,b}, (Fa , Fb )〉 be a two-alternative voting game with
uncertain voting costs and for each x ∈ {a ,b} denote the support of Fx by
[cx , c x ]. Let (c ∗a (r ), c ∗b (r ))be the thresholds in a symmetric Nash equilibrium
threshold strategy profile of Γ(r ).

a. The limits of c ∗a (r ) and c ∗b (r ) as r increases without bound are ca and
cb , so that the limiting probability that any individual votes is zero.

b. The limits of the expected numbers of individuals favoring each al-
ternative who vote, limr→∞ r ka Fa (c ∗a (r )) and limr→∞ r kb Fb (c ∗b (r )), are
finite.

The result follows from the properties of the binomial distribution. I do not
establish these properties, but instead refer to a known result.

Proof

a. The conditions for an equilibrium in threshold strategies are given by
(3.2) with n a = r ka and nb = r kb . For all values of (pa , pb ) except those
close to (0,0), the values of Ga (pa , pb , r ka , r kb ) and Gb (pa , pb , r ka , r kb )
converge to zero as r increases without bound. Precisely, for every ε > 0,



3.2 Costly voting with uncertainty about cost 117

p ∗a
p ∗b c ∗a

1

0

Fa (c )

Fb (c )

c →ca c acb = c ∗b c b

Figure 3.5 The thresholds and probabilities of voting in an equilibrium of a two-alter-
native voting game with uncertain voting costs in which individuals who favor b do not
vote.

for all (pa , pb )with pa ≥ ε and pb ≥ ε,

lim
r→∞

max
pa ,pb

{Gx (pa , pb , r ka , r kb ) : pa ≥ ε or pb ≥ ε}= 0

for x = a , b . This result, suggested by Figure 3.3, follows from the prop-
erties of the binomial distribution, and specifically from Rosenthal (2020,
Corollary 10).

Combined with the equilibrium conditions (3.2), the result implies that
the equilibrium probability that any individual votes converges to zero, so
that each threshold c ∗x (r ) converges to cx .

b. If the expected number of individuals voting among those who favor
a given alternative x increases without bound as r increases, then for r
sufficiently large the expected gain Gx (p ∗a (r ), p ∗b (r ), r ka , r kb ) is less than cx ,
so that p ∗x (r ) = 0. But (pa , pb ) = (0,0) is not an equilibrium because then
a vote by any individual changes the outcome from a tie to a win for the
individual’s favored alternative, so that every individual whose voting cost
is less than 1

2
optimally votes.

In an equilibrium, one of the alternatives may receive no votes: none of the
individuals who favor that alternative may vote (see Figure 3.5). In such an equi-
librium, the number of votes for the other alternative is zero with positive prob-
ability, so that the alternative that certainly receives no votes ties with positive
probability. The alternative that receives votes may win with high probability,
even if the number of individuals who favor it is much smaller than the number
who favor the other alternative, as the following exercise shows.
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Exercise 3.3: Equilibrium in which low-cost minority is likely to win

Let 〈(Na , Nb ),{a ,b}, (Fa , Fb )〉 be a two-alternative voting game with uncer-
tain voting costs. Suppose that n a = |Na |= 2 and let w ∈ ( 1

2
,1). Find distri-

butions of voting costs Fa and Fb such that the game has a symmetric Nash
equilibrium in which individuals who favor b do not vote and a wins with
probability w regardless of the number of individuals who favor b .

Exercise 3.4: Voluntary and mandatory voting

Compare the outcome when voting is mandatory with the symmetric equi-
libria of a two-alternative voting game with uncertain voting costs for the
parameters in Exercise 3.2a and Exercise 3.3.

Note that the analysis of this section is limited to symmetric equilibria. The
game may in addition have equilibria in which the individuals who favor a given
alternative use different strategies.

Note also, more fundamentally, that the notion of Nash equilibrium may be
inappropriate as a solution concept for a model of an election. The interpreta-
tion of the notion of Nash equilibrium is most appealing for situations in which
individuals repeatedly and anonymously interact. In such situations, it may be
reasonable to assume that each individual’s long experience playing the game
allows her to form accurate beliefs about the actions the other individuals will
take. Most elections do not fit into that category: they are unique events, so that
individuals have scant basis to form accurate beliefs about each other’s strate-
gies. The problem is particularly significant for a voting game with imperfect
information, where the notion of Nash equilibrium requires that each individual
form accurate beliefs about the action taken by every type (voting cost) of every
other individual. In many elections, the source of the information an individual
could use to form such beliefs is unclear.

3.3 Turnout and population size with uncertain preferences

Is the turnout in elections consistent with a model in which individuals decide
to vote by comparing the costs and benefits? Theory alone cannot answer this
question, but can provide a framework for thinking about it. I present a brief
analysis of the rate of change of the probability that an individual’s vote affects
the outcome of an a election as the population increases.

An individual motivated to vote by the chance that her vote will affect the
electoral outcome must form a belief about that probability. The basis of her be-
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lief is plausibly information about the voting intentions of the other individuals.
Sources of such information include polls, reports in media, the individual’s own
observations, and other individuals. A model of equilibrium can impose disci-
pline on these beliefs by requiring that they be correct. For the purposes of this
analysis, the model of the previous section, a two-alternative voting game with
uncertain voting costs, seems inadequate, because it assumes that the number
of individuals who favor each alternative is known; the only uncertainty in the
model concerns the other individuals’ voting costs. An essential feature of an in-
dividual’s estimate of the probability that her vote will affect the outcome of an
election appears to be uncertainty about the other individuals’ preferences.

One option is to assume that each individual believes that the option favored
by every other individual is drawn independently from a known distribution.
But this assumption implies that in a large population the distribution of pref-
erences, if not the preference of any one individual, is known almost with cer-
tainty. For example, if each individual believes that every other individual inde-
pendently favors a with probability p and b with probability 1− p , then if the
number of individuals is large, she knows that the fraction who favor a is close
to p and the fraction who favor b is close to 1−p . In a large population, if p > 1

2

then the probability that individuals who favor a are in a majority is close to 1
and if p < 1

2
then the probability that they are in a minority is close to 1. Thus

the model is hardly more appealing for a large population than one in which the
fractions of individuals who favor the alternatives are known.

An alternative assumption, which is consistent with uncertainty about the
majority preference surviving in a large population, is that each individual be-
lieves that the probability p with which every other individual independently
favors a is itself uncertain. One specific assumption is that every individual has
the same prior belief about the distribution of p , and her only private informa-
tion concerns her own preferences. That is, every individual views her own pref-
erence for a or b , as well as every other individual’s preference, as being the out-
come of a random draw: with probability p she has been assigned a preference
for a , and with probability 1−p a preference for b . She treats her realized pref-
erence as evidence regarding the distribution of p . If she favors a , she concludes
that the this distribution is skewed towards large values, and if she favors b , she
concludes that it is skewed towards small values. If, for example, the mean of the
prior distribution of p is 1

2
, then the posterior probability density that an indi-

vidual who favors a assigns to p = 1
3

is (using Bayes’ rule) 2
3

of the prior density,
whereas the density that an individual who favors b assigns to this value of p is 4

3

of the prior density. The assumption that individuals view their own preferences
as having been generated by a random process and that they make inferences
from their own preferences about this process seems odd, and its implication re-
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n a →0 1
2

n n

f (n a/n )

g n (n a )

(a) A common prior over the number of in-
dividuals who favor a , fitted to a continu-
ous distribution.

n a →0 1
2

n n
(b) Posterior belief over the number of in-
dividuals who favor a for an individual
who favors a .

Figure 3.6 Beliefs about the number of individuals who favor a .

garding the individuals’ posterior beliefs seems implausible. For these reasons, I
analyze a different model.

Assume that each individual starts with a prior directly over the number of in-
dividuals who favor each alternative, rather than deriving this prior from a model
of the probabilistic determination of each individual’s preferences. Assume that
every individual has the same prior. We want to study how the individuals’ be-
liefs change as the total number n of individuals increases, so assume specifically
that each individual has in mind a continuous probability density f of the frac-
tion q of individuals in the population who favor a , and f is independent of n .
One possible source of this belief is a poll, which might suggest, for example, that
48% of the population favors a , with a margin of error of 2%. For any given pop-
ulation size n , each individual derives her prior belief about the distribution of
the number of individuals who favor a by approximating f by a discrete distri-
bution g n over the numbers 1 through n , as illustrated in Figure 3.6a. She knows
her own political preference, and derives her posterior belief about the distri-
bution of the number of individuals who favor a in the standard way from g n ,
using Bayes’ rule. (If, for example, she favors a , then the information she uses
to update her prior is that at least one individual favors a .) Under this assump-
tion, when n is large, the posterior distribution for an individual who favors a
differs only slightly from the prior distribution (and thus also only slightly from
the posterior distribution for an individual who favors b ). (Figure 3.6b shows the
posterior for an individual who favors a given the prior in Figure 3.6a.)

If the number n of voters is odd, the vote of an individual who favors a makes
a difference to the outcome if the number of other individuals who vote in favor
of a is 1

2
(n −1); if n is even, it makes a difference if this number is 1

2
(n −2). When

n is large, the individual’s posterior belief assigns a probability of approximately
f ( 1

2
)/n to each of these events. Thus the individual believes that the probabil-
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ity that her vote will make a difference to the outcome is proportional to 1/n .
When the population of voters doubles, for example, the probability that the
individual’s vote makes a difference to the outcome halves.

To get an idea of the magnitude of the probability, suppose that, based on a
poll that reports that 48% of the individuals who intend to vote support a , with
margin of error 2%, f is a (truncated) normal distribution with mean 0.48 and
standard deviation 2/1.96 ≈ 1.02. (The truncation makes little difference, be-
cause the density of the distribution outside [0,1] is close to zero.) Then f ( 1

2
) ≈

0.39. Thus the probability of an individual’s vote making a difference to the out-
come of an election in a population of n voters is approximately 0.39/n . For
example, in an electoral district with 10,000 voters, the probability is approxi-
mately 0.000039. Thus to make voting worthwhile for an individual in such a
district, the benefit to her from the election of her favorite candidate rather than
the other candidate has to be about 25,000 (= 1/0.000039) times her voting cost.

Throughout this analysis I have assumed that every individual’s voting cost is
nonnegative. For an individual who has to travel far or to wait a long time in line
to vote, the cost may be significant. But for an individual who can vote by mail or
online, or has only to walk a short distance to her polling station, the cost may be
trivial, to the extent that she treats it as zero when making her decision. Further,
an individual may derive satisfaction from endorsing a candidate she likes, or
may feel good about carrying out a task that she believes is her duty, so that her
cost is effectively negative. In a two-alternative voting game with uncertain vot-
ing costs, such an individual optimally votes regardless of her beliefs about the
other individuals’ behavior—and hence also regardless of the expected closeness
of the election.

In the models I have discussed so far, every individual is self-interested; she
considers only the change in her personal welfare that her vote might cause. Sup-
pose instead that individuals consider the benefit to society. The size of this ben-
efit is plausibly proportional to the number n of individuals in the society, so that
even if the probability of an individual’s vote affecting the outcome of the elec-
tion is proportional to 1/n , the expected benefit of voting may be large. Evren
(2012) studies a model of this type. Chapter 6 presents a different model of voting
in which individuals are public-spirited. Under some conditions, the equilibria
of this model entail positive turnout even in an arbitrarily large population.

3.4 Preferences with regret

A key assumption of the model of a two-alternative voting game with uncertain
voting costs is that each individual’s preferences over uncertain electoral out-
comes are represented by the expected value of a payoff function over the pos-



122 Chapter 3. Voting with two alternatives

sible deterministic outcomes. This function assigns a number to each outcome,
independently of the lotteries among which the individual is choosing. But an
individual’s evaluation of an outcome may depend not only on the outcome it-
self but also on the outcomes that would have occurred had she taken a different
action. For example, if an individual who favors a abstains, she may experience
regret if the outcome is a tie between a and b , because in that case her voting
would have benefitted her. If the outcome is that a wins, she experiences no
such regret. If the outcome is that a loses by a large margin, she may also ex-
perience no regret, but if it loses by a small margin, she may regret that she did
not vote and did not do more to persuade her a -favoring friends to vote. Re-
gret may be experienced not only by an individual who abstains, but also by one
who votes: if an individual who favors a votes and the outcome is that a loses or
wins by two votes or more, she may regret that she needlessly incurred the cost
of voting.

An individual’s knowing that she will experience regret for certain outcomes
plausibly influences the action she chooses. For example, an individual may be
inclined to vote if she knows she will deeply regret abstaining if the vote turns
out to be a tie but will only mildly regret voting if the outcome is far from a tie.

The assumption that each individual maximizes the expected value of a pay-
off function embodies another premise: each individual has a precise belief about
the probabilities of the various possible outcomes. In some elections, individu-
als have few sources of information about this probability distribution. Consider,
for example, the election of a legislator in a district in which the candidates have
not previously competed against each other, and few opinion polls exist. When
the basis for forming beliefs about the probabilities is unclear, individuals may
use an alternative calculus. One option is for an individual to choose an action
that minimizes the most she will regret from taking the action.

Consider an individual who favors a and has a cost c of voting that is less
than 1

2
. Suppose that she abstains. If the vote among the other individuals is a

tie, she obtains the payoff 1
2

, but could have obtained the higher payoff of 1− c
by voting for a , so her regret from abstaining is 1− c − 1

2
= 1

2
− c . If among the

other individuals the winning margin for a is 1, then she obtains the payoff 1; no
other action yields a higher payoff, so her regret from abstaining in this case is
0. Table 3.3 gives the regret for each action and each possible winning margin
for a among the other individuals (given c < 1

2
). The entry in the cell in row r

and column w of the table is the difference between the largest entry in column
w of Table 3.2 (which gives the individual’s payoffs) and the entry in row r and
column w of that table.

We see that the most the individual regrets from voting for a is c , which hap-
pens when it turns out that her vote makes no difference. The most she regrets
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winning margin for a among other individuals
≥ 2 1 0 −1 ≤−2

vote for a c c 0 0 c

vote for b c 1
2
+ c 1 1

2
c

abstain 0 0 1
2
− c 1

2
− c 0

Table 3.3 The regret for an individual who favors a and has voting cost c < 1
2 as a func-

tion of her action and the winning margin for a among the other individuals. For each
action, the highest regrets are highlighted.

from voting for b is 1, which happens when the other votes are tied, so that her
vote makes a difference in the wrong direction, and the most she regrets from ab-
staining is 1

2
− c , which happens when her vote would have made a difference to

the outcome in her favor. So given c < 1
2

, the action that minimizes her maximal
regret is voting for a if c < 1

2
− c , or c < 1

4
, and abstaining if c > 1

4
. A similar anal-

ysis for c > 1
2

shows that in this case abstention always minimizes her maximal
regret.

The logic can be stated succinctly as follows. If the individual abstains, the
outcome for which she incurs the most regret for not having voted is a tie; if she
votes for a , the outcome for which she incurs the most regret for having voted is
a win for a by two votes or more. If c < 1

4
then the amount of her maximal regret

if she votes for a is less than the amount of her maximal regret if she abstains, so
she votes for a . That is, if an individual acts to minimize her maximal regret, she
votes (for her favorite alternative) if her voting cost is less than one-quarter of
her payoff from her favored alternative, regardless of the number of individuals.
Hence turnout is independent of the size of the population.

Exercise 3.5: Minmax regret individual with three alternatives

Suppose that there are three alternatives, a , b , and z , rather than two. An
individual’s payoffs to the alternatives are u (a ) = 1, u (b ) = k , and u (z ) = 0,
with 0 < k < 1. If k > 1

2
and c < 1

2
k , the maximum regret for each of the

individual’s actions is achieved for the following events. Vote for a : among
the other individuals, z wins by 1 vote over b and a gets fewer votes than
b . Vote for b , vote for z , or abstain: among the other individuals, a and
z are tied and b gets at least two fewer votes than a and z . Which action
minimizes the individual’s maximum regret? The same action minimizes
the individual’s regret for all other parameter values. Do these conclusions
make sense?
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Notes

The methods of noncooperative game theory were first applied to the study of
voting by Robin Farquharson in his doctoral thesis of 1958, published as Far-
quharson (1969). Section 3.1.2 draws on Palfrey and Rosenthal (1983, Proposi-
tion 1). Section 3.2 is based on Ledyard (1981) and Palfrey and Rosenthal (1985),
and draws also on Krasa and Polborn (2009) and Taylor and Yildirim (2010). Propo-
sition 3.3 is due to Ledyard (1981, Proposition 2) and Proposition 3.4 is due to
Palfrey and Rosenthal (1985, Theorem 2). The first two models of the relation
between turnout and population size discussed in Section 3.3 are analyzed by
Chamberlain and Rothschild (1981) and Myatt (2015). Section 3.4 (including Ex-
ercise 3.5) is based on Ferejohn and Fiorina (1974). General models of decision-
making under uncertainty that incorporate regret are explored by Loomes and
Sugden (1982) and Bell (1982); Bleichrodt and Wakker (2015) discuss these theo-
ries.

Campbell (1999) (see also Taylor and Yildirim 2010, Proposition 2) explores
the effect of differences in the distributions of voting costs on the winning alter-
native, an issue touched upon in Exercise 3.3.

Börgers (2004) and Krasa and Polborn (2009) explore the difference between
voluntary and mandatory voting considered in Exercise 3.4.

Solutions to exercises

Exercise 3.1
An action profile is a Nash equilibrium if and only if it satisfies one of the
following conditions, where the winning margin is the difference between
the number of votes for the winner and the number of votes for the other
alternative.

1. The winning margin is at least three votes.

2. The winning margin is two votes and every individual who votes for the
winning alternative prefers that alternative to the other alternative.

3. The winning margin is one vote and every individual who either votes for
the winning alternative or abstains prefers the winning alternative to the
other alternative.

4. Each alternative receives the same number of votes, all individuals vote,
and every individual votes for her favorite alternative.

(Case 4 is possible only if the number of individuals is even and each alterna-
tive is the favorite of exactly half of the individuals.)
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Exercise 3.2
a. We have

P0
a (Fa (ca ), Fb (cb ),2,2) = B (1,0, Fa (ca ))B (2,0, Fb (cb ))+ B (1,1, Fa (ca ))B (2,1, Fb (cb ))

= (1− Fa (ca ))× (1− Fb (cb ))
2+ Fa (ca )×2Fb (cb )(1− Fb (cb ))

= (1− ca )(1− cb )
2+2ca cb (1− cb )

and

P1
a (Fa (ca ), Fb (cb ),2,2) = B (1,0, Fa (ca ))B (2,1, Fb (cb ))+ B (1,1, Fa (ca ))B (2,2, Fb (cb ))

= (1− Fa (ca ))×2Fb (cb )(1− Fb (cb ))+ Fa (ca )× (Fb (cb ))
2

= 2(1− ca )cb (1− cb )+ ca c 2
b .

After some algebra we get Ga (F (ca ), F (cb ),2,2) = 1
2
(1− ca + 2ca cb − c 2

b ), and
similarly Gb (F (ca ), F (cb ),2,2) = 1

2
(1− cb + 2ca cb − c 2

a ). Thus condition (3.2)
for a symmetric equilibrium in which some types of each individual vote and
some abstain and the thresholds are ca and cb is

ca =
1
2
(1− ca +2ca cb − c 2

b )

cb =
1
2
(1− cb +2ca cb − c 2

a )

or
3ca = 1+2ca cb − c 2

b

3cb = 1+2ca cb − c 2
a .

Subtracting the second equation from the first we get 3(ca−cb ) = (ca−cb )(ca + cb ),
so that if ca 6= cb then ca + cb = 3, which is not possible. Thus ca = cb . Denote
the common value c . Then the condition for an equilibrium is 1−3c + c 2 = 0
or c = 1

2
(3−
p

5)≈ 0.382. (The other root of the equation is greater than 1.)

Thus the game has a symmetric Nash equilibrium in which each individual
votes if her cost is less than 1

2
(3−

p
5) and abstains if her cost is greater than

1
2
(3−
p

5).

b. If no individual who favors b votes, then for an individual who favors a we
have P0

a (Fa (ca ), Fb (cb ),2, 2) = 1− Fa (ca ) (the alternatives are tied if and only if
the other individual who favors a does not vote) and P1

a (Fa (ca ), Fb (cb ), 2,2) = 0
(the winning margin for b is never positive). Thus Ga (Fa (ca ), Fb (cb ),2,2) =
1
2
(1− ca ), and hence each individual who favors a is indifferent between vot-

ing and abstaining if ca =
1
3

.

Now consider an individual who favors b . If each individual who favors a
votes if and only if their cost is less than ca and the other individual who
favors b does not vote, the probability assigned by an individual who fa-
vors b to a tie between a and b among the other voters is (1− ca )2 (neither
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of the individuals who favor a vote) and the probability that the winning
margin for a is 1 is 2ca (1− ca ) (exactly one of the individuals who favors a
votes). Thus the expected gain from voting for an individual who favors b is
1
2
[(1− ca )2+ 2ca (1− ca )] =

1
2
(1− c 2

a ) =
4
9

. Hence any distribution Fb for which
the lower limit of the support is at least 4

9
is consistent with an equilibrium

in which no type of individual who favors b votes. In such an equilibrium,
a wins with probability 5

9
(the probability that neither of the individuals who

favor a votes) and a and b tie with probability 4
9

.

Exercise 3.3
Denote by pa the probability with which each individual who favors a votes.
Then

P0
a (pa ,0,2, nb ) = 1−pa

P1
a (pa ,0,2, nb ) = 0,

so that Ga (pa ,0,2, nb ) =
1
2
(1−pa ), and

P0
b (pa ,0,2, nb ) = (1−pa )

2

P1
b (pa ,0,2, nb ) = 2pa (1−pa ),

so that Gb (pa , 0,2, nb ) =
1
2
(1−p 2

a ). Now, if neither of the individuals who favor
a votes then the vote is a tie, so that a wins with probability 1

2
; otherwise a

wins. So the probability that a wins is 1
2
(1−pa )2+ 1− (1−pa )2 =

1
2
(1+ 2pa −

p 2
a ). Let p ∗a be the (unique) number such that this probability is w . Then

p ∗a ∈ (0,1). Construct Fa with the property that Fa (
1
2
(1− p ∗a )) = p ∗a and Fb

with the property that Fb (
1
2
(1− (p ∗a )

2)) = 0, as in Figure 3.7. Then the game
has a threshold equilibrium in which the thresholds are c ∗a =

1
2
(1− p ∗a ) and

c ∗b =
1
2
(1− (p ∗a )

2) and a wins with probability w , regardless of the number nb

of individuals who favor b .

Exercise 3.4
For the game in Exercise 3.2a, the outcome of the symmetric Nash equilib-
rium is that each alternative is selected with probability 1

2
. If voting is manda-

tory, the outcome is the same, but every individual incurs the voting cost with
certainty. Thus voluntary voting is better than mandatory voting.

In the symmetric equilibrium of the game in Exercise 3.3, a wins unless both
individuals who favor a abstain, which occurs with probability (1− p ∗a )

2, in
which case both a and b win with probability 1

2
. Thus the probability that b

wins is 1
2
(1−p ∗a )

2. Hence each of the nb individuals who favor b obtains the
payoff 1 with probability 1

2
(1−p ∗a )

2 and the payoff 0 otherwise.

If voting is mandatory, b wins with certainty and each individual i who favors
b obtains the payoff 1− ci . If c b < 1, then all of these payoffs are positive, so
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p ∗a

p ∗b c ∗a

c = 1
2
(1−p 2

a )

c = 1
2
(1−pa )

1

0

Fa (c )
Fb (c )

c →ca c ac ∗b cb c b
1
2

Figure 3.7 The thresholds and probabilities of voting in an equilibrium of a two-alter-
native voting game with uncertain voting costs in which individuals who favor b do not
vote (Exercise 3.3).

for nb large enough the sum of the individuals’ payoffs under mandatory vot-
ing exceeds the sum of the payoffs under voluntary voting (regardless of p ∗a ).
Thus the utilitarian welfare criterion leads to the conclusion that mandatory
voting is better than voluntary voting. However, the outcome under manda-
tory voting does not dominate the outcome under voluntary voting: the in-
dividuals who favor a are worse off under mandatory voting. If c b > 1 then
some individuals who favor b are worse off under mandatory voting, so the
comparison between voluntary and mandatory voting according to the util-
itarian welfare criterion depends on the forms of the distributions Fa and Fb

of voting costs.

Exercise 3.5
Given that the maximum regret for each of the individual’s actions is achieved
for the events given in the question, the individual’s maximal regrets are

vote for a : payoff −c ; switch to b ⇒ payoff 1
2

k − c , so regret 1
2

k

vote for b : payoff 1
2
− c ; switch to a ⇒ payoff 1− c , so regret 1

2

vote for z : payoff −c ; switch to a ⇒ payoff 1− c , so regret 1

abstain : payoff 1
2

; switch to a ⇒ payoff 1− c , so regret 1
2
− c .

Given k < 1, the action that minimizes the individual’s maximal regret is to
vote for a , her favorite alternative.

If an individual has no information about the probabilities of the voting be-
havior of the other individuals, and wants to choose an action that minimizes
her regret, voting for her favorite alternative makes sense. One possibility is
that the votes among the other individuals make voting for her second choice,
b , optimal: if among the other individuals b and z are tied, and a is two or
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more votes behind, then voting for a yields a payoff of 1
2

k whereas voting for
b yields a payoff of k . However, voting for b could lead to a bigger regret: if a
and z are tied and b is trailing for two votes or more, voting for b yields a pay-
off of 1

2
whereas voting for a yields a payoff of 1. Voting for a is a safer option

for an individual who wants to minimize her regret, because it is guaranteed
to generate a regret of at most 1

2
k .

Plausibly an individual who chooses the action that minimizes her maximal
regret votes for her favorite alternative regardless of the number of alterna-
tives, but I do not know whether that is in fact the case.
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One method a group of individuals can use to select an alternative from a set of
many alternatives is plurality rule: each individual votes for a single alternative
and the winners are the alternatives that receive the most votes. This chapter
analyzes models of this mechanism under the assumption that voting is costless.

Synopsis

The main model, a plurality rule voting game, is an extension to many alterna-
tives of a two-alternative voting game with the restriction that all voting costs
are zero. This game has many Nash equilibria. For example, for every alterna-
tive, the strategy profile in which every individual votes for that alternative is a
Nash equilibrium. Further, restricting attention to actions that are not weakly
dominated, which reduces the set of equilibria dramatically in two-alternative
games, has little impact in many-alternative games. For an individual who is
not indifferent among all the alternatives, voting for her least favored alternative
is weakly dominated (by voting for her favorite alternative), but if there are at
least four individuals, no other action is weakly dominated (Proposition 4.1). De-
spite the game’s profusion of Nash equilibria and the limited number of weakly
dominated actions, it is not obvious that every plurality rule voting game has a
Nash equilibrium in which no individual’s action is weakly dominated. However,
Proposition 4.2 asserts that this result holds.

Section 4.2 considers plurality rule voting games in which the set of alterna-
tives is an interval of numbers and each individual’s payoff function is strictly
concave. Proposition 4.3 shows that in any Nash equilibrium of such a game,
at most two alternatives tie for first place. As for a general plurality rule voting
game, for every alternative a the game has a Nash equilibrium in which every

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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individual votes for a . Further, given the strict concavity of the payoff func-
tions, every individual’s least favored alternative is an endpoint of the interval
of alternatives, so for any alternative a except these two, the game has a Nash
equilibrium in which the sole winner is a and no individual’s action is weakly
dominated.

Here is a situation that might seem challenging for plurality rule. There are
three alternatives, a , b , and c . Sixty percent of individuals prefer a and b to c ,
with about half of them preferring a to b and the remainder preferring b to a ,
while the remaining forty percent prefer c to both a and b , between which they
are indifferent. The plurality rule voting game that models this situation has a
Nash equilibrium in which every individual votes for her favorite alternative, so
that c wins, even though it is the worst alternative for a majority of individuals. It
also has Nash equilibria in which all the individuals who favor a or b vote for a ,
so that a wins, or all of these individuals vote for b , so that b wins. Is there any
reason to think that one of these equilibria is more likely to occur than the others?
Section 4.3 studies this question in a model in which each individual is uncertain
of the other individuals’ preferences. The analysis identifies circumstances in
which, when the number of individuals is sufficiently large, in every equilibrium
the individuals who favor a or b all vote for one of these two alternatives, so that
it wins, as well as circumstances in which equilibria in which c wins persist even
when the number of individuals is arbitrarily large.

4.1 Plurality rule voting games

Definition 4.1: Plurality rule voting game

The plurality rule voting game 〈N , X , (u i )i∈N 〉, where

• N is a finite set (of individuals) with at least two members

• X is a set (of alternatives) that is either finite, with at least two mem-
bers, or a nonempty interval of real numbers

• u i : X →R for each i ∈N (individual i ’s payoff function)

is the strategic game with the following components.

Players
The set N .

Actions
Each player’s set of actions consists of vote for a for each a ∈ X and
abstain.
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Payoffs
For any action profile x , denote by W (x )⊆ X the set of alternatives that
receive the most votes (the winning alternatives): for each a ∈W (x ), the
number of players i for whom xi = vote for a is the same and, if W (x ) 6=
X , exceeds the number for whom xi = vote for b for every b ∈ X \W (x ).
The payoff of each player i ∈N for x is the average value of u i (w ) over
W (x ) (that is,

∑
w∈W (x )u i (w )/|W (x )| if W (x ) is finite, as it is unless no

one votes and X is an interval of real numbers).

As for a two-alternative voting game, one rationale for the specification of
the players’ payoffs in case of a tie for first place is that every alternative in the
winning set is selected with the same probability, and each player evaluates a
lottery according to its expected payoff.

Consider an action profile in a plurality rule voting game in which some alter-
natives are tied for first place, so that every individual’s payoff is her average pay-
off for these alternatives. An individual who abstains or votes for an alternative
that is not a winner can, by deviating to vote for a winner, cause that alternative
to win outright. Thus in a Nash equilibrium every such individual is indifferent
among the winners. Also, each individual who votes for a winner can, by switch-
ing her vote to another winner, cause that alternative to win outright. So in an
equilibrium her payoff for each winning alternative for which she does not vote is
at most her average payoff for the winning alternatives. Hence she either prefers
the alternative for which she votes to every other winner or is indifferent among
all the winners. These observations are stated in the following result.

Lemma 4.1: Nash equilibrium of plurality rule voting game

Let 〈N , X , (u i )i∈N 〉 be a plurality rule voting game, let x be a Nash equilib-
rium of this game, and let W (x ) be the set of winning alternatives for x .

a. If for any i ∈ N the action xi is either a vote for an alternative out-
side W (x ) or abstain, then u i (w ) is the same for all w ∈ W (x ) (i is
indifferent among all winning alternatives).

b. If for some a ∈W (x ) the action xi is vote for a , then

u i (b )≤
∑

w∈W (x )

u i (w )/|W (x )| for all b ∈W (x ) \ {a }

and hence either u i (a ) > u i (b ) for all b ∈ W (x ) \ {a } (i prefers a to
every other winning alternative) or u i (a ) = u i (w ) for all w ∈W (x ) (i is
indifferent among all the winning alternatives).
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When the alternatives number three or more, a complete characterization
of the set of Nash equilibria of a plurality rule voting game is complicated. The
details are less significant than the message that if there are three or more indi-
viduals then regardless of the individuals’ preferences, the game has many Nash
equilibria. In particular, if there are three or more individuals then for any pref-
erence profile and any alternative, the game has Nash equilibria in which that
alternative wins. For example, all individuals’ voting for any given alternative is
a Nash equilibrium, because no deviation by a single player affects the outcome.
Thus the Nash equilibria are unrelated to the individuals’ preferences.

Weakly dominated actions

When there are two alternatives, the only action of an individual in a plurality
rule voting game that is not weakly dominated is a vote for her favorite alter-
native (Proposition 3.1). An application of the logic for this result shows that
when there are three or more alternatives, an individual’s voting for any alter-
native that she ranks lowest is weakly dominated (by her voting for one of her
favorite alternatives). If there are four or more individuals, no other alternative
is weakly dominated. To see why, suppose that z is an alternative that individ-
ual i ranks lowest and b is an alternative that she does not rank lowest. If b and
z are tied for the highest number of votes among the other individuals and every
other alternative has two or more fewer votes (which requires the total number
of individuals to be at least four), then i ’s voting for b is better for her than voting
for any other alternative: if she votes for b , then b wins, whereas if she votes for
any other alternative, then either z wins or b and z tie. Thus no action weakly
dominates voting for b .

Proposition 4.1: Weak domination in plurality rule voting game

Let 〈N , X , (u i )i∈N 〉 be a plurality rule voting game for which X contains
three or more alternatives.

a. Let i ∈ N be an individual who is not indifferent among all the alter-
natives. Individual i ’s abstaining and her voting for any alternative z
that she likes least (that is, u i (z ) ≤ u i (y ) for all y ∈ X ) are both weakly
dominated by her voting for any of her favorite alternatives.

b. Suppose that the number of individuals is at least four. If an individ-
ual is indifferent among all the alternatives then none of her actions
are weakly dominated. Otherwise, her only weakly dominated actions
are votes for one of the alternatives she likes least.
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Proof

a. Let a be one of i ’s favorite alternatives and z be one of the alternatives
she likes least.

First consider an arbitrary list of actions of the individuals other than
i . Denote by W 0 the set of winning alternatives given these actions when
i abstains. If i switches to vote for a then the set of winning alternatives
either remains W 0, becomes W 0 ∪ {a }, or becomes {a }, depending on the
other individuals’ actions. Each of these outcomes is at least as good for i
as W 0.

Now suppose that everyone but i abstains. Then if i abstains, the set of
winning alternatives is the set X of all alternatives, and if she votes for a it
is {a }. So her payoff is higher when she votes for a .

Thus i ’s voting for a weakly dominates her abstaining.
Now let W 0 be the set of winning alternatives given the actions of the

individuals other than i when i votes for z . If she switches to vote for a
then the set of winning alternatives either remains W 0, becomes W 0∪{a },
becomes W 0 \ {z }, becomes {a }, or changes from {z } to {z } ∪ Y for some
set Y of alternatives. In each case, the outcome when i votes for a is as
least as good for her as the outcome when she votes for z . If everyone but
i abstains, the winning alternative is z if i votes for z and a if she votes for
a , so her payoff when she votes for a is higher than it is when she votes for
z . So i ’s voting for a weakly dominates her voting for z .

b. Let z be an alternative that individual i likes least, and let b be one that
she prefers to z . I argue that i ’s voting for b is not weakly dominated.

Consider an action profile in which one individual votes for b , two vote
for z , and the remainder, except for i , abstain. (Such an action profile is
possible because there are four or more individuals.) If i votes for b the
outcome is a tie between b and z and if she votes for any other alternative
or abstains the outcome is z . Thus her payoff from voting for b exceeds her
payoff from all her other actions, and hence no action weakly dominates
voting for b .

Exercise 4.1: Weak domination in plurality rule voting game with three
individuals

Consider a plurality rule voting game with three individuals. Show that an
individual’s voting for an alternative b is weakly dominated if and only if
the individual is not indifferent between all alternatives and her payoff for
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b is at most her payoff for a set of alternatives consisting of b , one of her
favorite alternatives, and an alternative she likes least.

For any alternative a , the action profile in which every individual votes for
a is a Nash equilibrium of a plurality rule voting game. For which alternatives
a does such a game have a Nash equilibrium in which the winner is a and no
individual’s action is weakly dominated? If a is ranked last by some individuals
who are not indifferent among all the alternatives then if every individual votes
for a , the actions of the individuals who rank a last are weakly dominated by
Proposition 4.1a. However, if the number of individuals who rank a last is at
most 1

2
(n−3), where n ≥ 5 is the total number of individuals, the game does have

a Nash equilibrium in which no individual’s action is weakly dominated and the
winner is a . In one such equilibrium, every individual who ranks a last votes
for her favorite alternative and every other individual votes for a . The number
of individuals who vote for a is at least three more than the number who vote
for any other alternative, so that no change in any individual’s vote affects the
identity of the winner, and hence the action profile is a Nash equilibrium; by
Proposition 4.1b, no individual’s action is weakly dominated.

Even though, as this argument shows, restricting individuals to actions that
are not weakly dominated has no impact in many plurality rule voting games on
the set of alternatives that are winners in some Nash equilibrium, such a restric-
tion still seems sensible simply because weakly dominated actions lack appeal.
Imposing the restriction raises a question: does a plurality rule voting game with
three or more alternatives necessarily have a Nash equilibrium game in which no
individual’s action is weakly dominated? The answer is affirmative.

Proposition 4.2: Existence of Nash equilibrium in weakly undominated
actions of plurality rule voting game

Every plurality rule voting game has a Nash equilibrium in which no indi-
vidual’s action is weakly dominated.

For a game with two individuals, this result follows from Proposition 3.1. For a
game with three individuals, you are asked to prove the result in the next exercise.

Exercise 4.2: Nash equilibrium in weakly undominated actions of
plurality rule voting game with three individuals

Show that every plurality rule voting game with three individuals has a
Nash equilibrium in which no individual’s action is weakly dominated.
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For a game with four or more individuals, each of whom has strict prefer-
ences, the proof is easy.

Proof of Proposition 4.2 for four or more individuals, strict preferences

Assume that no individual is indifferent between any two alternatives.
Choose two alternatives arbitrarily; call them a and b . Consider the action
profile in which each individual votes for the alternative in {a ,b} that she
prefers. Suppose without loss of generality that the number of individuals
who prefer a to b is at least the number who prefer b to a .

• If a receives three or more votes than b , no change in any individual’s
action affects the outcome.

• If a receives two votes more than b , the only change in an individual’s
action that affects the outcome is a switch by an individual voting for
a to vote for b , which changes the outcome from a to a tie between a
and b , and hence makes her worse off.

• If a receives one more vote than b , the only change in an individual’s
action that affects the outcome is a switch by an individual voting for
a . If she switches to b , the outcome changes from a to b , so that she
is worse off. If she switches to another alternative or to abstention, the
outcome changes to a tie between a and b (given that the number of
individuals is at least four), so that she is also worse off.

• If a and b receive the same number of votes, any change in an individ-
ual’s action changes the outcome from a tie between a and b to a win
for the alternative the individual likes less.

We conclude that the action profile is a Nash equilibrium. In the profile,
no individual votes for the alternative she likes least, so that by Proposi-
tion 4.1b no individual’s action is weakly dominated.

For a game with four or more individuals whose preferences are not necessar-
ily strict, the only proof of which I am aware, due to Duggan and Sekiya (2009),
is lengthy, and I omit it. This proof shows that the following procedure gener-
ates an equilibrium in which no individual’s action is weakly dominated. At each
step t = 1,2, . . ., an action profile x t is defined. In the initial profile, x 1, every
individual votes for an alternative selected arbitrarily from her set of favorite al-
ternatives. If, at any step t , x t is a Nash equilibrium, the procedure ends. Oth-
erwise, some individual i , by voting for an alternative z different from x t

i , can
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cause z to become a winner or tie for first place and thereby increase her payoff,
given the other individuals’ actions. (If there is more than one such individual,
select one arbitrarily.) Define x t+1 to be the profile derived from x t by chang-
ing x t

i to a vote for an alternative that yields i the highest payoff among such
alternatives z . (If there is more than one such alternative, select one arbitrar-
ily.) Duggan and Sekiya (2009, Theorem 1) show that this procedure terminates
and generates a Nash equilibrium in which no individual’s action is weakly dom-
inated. (Their model does not allow abstention, but adding that option does not
affect the result.)

Exercise 4.3: Nash equilibrium in weakly undominated actions of
plurality rule voting game

Use the procedure just described to find a Nash equilibrium in weakly
undominated actions of the plurality rule voting game 〈{1,2,3,4,5,6},
{a ,b , c , d }, (u i )i∈N 〉, in which the payoffs are given as follows.

1 2 3 4 5 6

payoff 9: c d c a a b
payoff 6: d b b d c a
payoff 0: a ,b a , c a , d b , c b , d c , d

If we eliminate from a plurality rule voting game the actions of each individ-
ual that are weakly dominated, some actions may be weakly dominated in the
resulting game. For example, suppose that in a game with four individuals and
three alternatives, a , b , and c , three individuals rank c last and one ranks it first.
Then by Proposition 4.1, voting for c is weakly dominated for the individuals who
rank it last, and if we eliminate this action for these individuals then for the re-
maining individual voting for c is weakly dominated by voting for her preferred
alternative in {a ,b} because for no remaining actions of the other individuals is
c a winning alternative. In some cases the procedure of iteratively eliminating
weakly dominated actions leads to a single action profile, as you are asked to
demonstrate in the following exercise.

Exercise 4.4: Iterated elimination of weakly dominated actions in a
plurality rule voting game

Consider a plurality rule voting game in which there are three alternatives
and at least four individuals, all with strict preferences. Show that if more
than two-thirds of the individuals rank the same alternative last then af-
ter all the weakly dominated actions are removed from the game, a single
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action profile remains.

Exercise 4.5: Voting game under proportional rule

Consider a variant of a plurality rule voting game in which the alterna-
tives are numbers, abstention is not an option, and the outcome is a
vote-weighted average of the alternatives. The set of players (individu-
als) is N = {1, . . . , n} and the set of alternatives is X = {a 1, . . . , a k }, where
each a j is a number and a 1 < a 2 < · · · < a k . For an action profile x in
which the number of votes for each alternative a j is vj (x ), the outcome
is O(x ) =

∑k
j=1 vj (x )a j /n and the payoff of each individual i is u i (O(x )),

where each u i :R→R− is a single-peaked function.

a. Show that for any Nash equilibrium x ∗, all individuals except those with
favorite positions close to O(x ∗) vote for one of the extreme alternatives
(a 1 or a k ). Specifically, every individual i whose favorite alternative is at
most O(x ∗)− (a k −a 1)/n votes for a 1 and every individual i whose favorite
alternative is at least O(x ∗)+ (a k −a 1)/n votes for a k .

b. Suppose that for some number z ∗ that is not the favorite alternative of
any individual we have z ∗ = [L(z ∗)a 1+G (z ∗)a k ]/n , where L(z ∗) is the num-
ber of individuals whose favorite alternatives are less than z ∗ and G (z ∗) is
the number of individuals whose favorite alternatives are greater than z ∗.
Find a Nash equilibrium of the game in which every individual votes for
one of the two extreme alternatives.

4.2 Spatial model with concave payoff functions

In any Nash equilibrium of a plurality rule voting game in which the set of alter-
natives is a closed interval of real numbers and the individuals’ payoff functions
are strictly concave, the number of winning alternatives is at most two. To see
why, suppose that the number of winning alternatives in a Nash equilibrium is
three or more. Denote the average of the winning alternatives by a . Either at least
two alternatives are at least a , or at least two alternatives are at most a . Suppose
the latter, as in the example in Figure 4.1. Given the strict concavity of the in-
dividuals’ payoff functions, no individual is indifferent among all the winning
alternatives, so in every equilibrium every individual votes for one of the win-
ning alternatives by Lemma 4.1a and prefers the alternative for which she votes
to every other winning alternative by Lemma 4.1b. I claim that an individual, say
i , who votes for the smallest winner, a 1, can increase her payoff by switching her
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u i (a )∑3
j=1

1
3 u i (a j )

a 1 a 2 a a 3

u i (z )

z →

Figure 4.1 A strictly concave payoff function of individual i in a plurality rule voting
game in which the alternatives are real numbers. If, when the individual votes for a 1, the
set of winners is {a 1, a 2, a 3}, then her payoff is

∑3
j=1

1
3 u i (a j ); if she switches her vote to

a 2, the set of winners becomes {a 2}, yielding her the larger payoff u i (a 2).

vote to the next smallest winner, a 2, which causes that alternative to become the
unique winner. The reason is that given u i (a 1) > u i (a 2), the strict concavity of
u i , and the fact that a 2 ≤ a , we have u i (a 2)≥ u i (a ), and given the strict concavity
of u i , u i (a ) is greater than the average of i ’s payoffs to the winners, which is her
payoff for the action profile. Part a of the next result states this conclusion and
the remaining parts state other properties of the Nash equilibria.

Proposition 4.3: Nash equilibria of plurality rule voting game in spatial
setting with strictly concave payoff functions

Let G = 〈N , X , (u i )i∈N 〉 be a plurality rule voting game in which X ⊆ R is a
(nonempty) closed interval and u i is strictly concave for each i ∈N .

a. In any Nash equilibrium of G the number of winning alternatives is at
most two.

b. If N contains at least three individuals, for every alternative a ∈ X the
game G has a Nash equilibrium in which a is the sole winner. If N
contains at least four individuals, for every alternative a ∈ X other than
the boundary points of X , G has a Nash equilibrium in which a is the
sole winner and no individual’s action is weakly dominated.

c. In a Nash equilibrium of G with two winning alternatives, each indi-
vidual who is not indifferent between these alternatives votes for the
one she prefers.
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Proof

a. This result is proved in the text.

b. For any a ∈ X , the action profile in which every individual votes for a is
a Nash equilibrium because no change in any individual’s action has any
effect on the outcome. If a is not a boundary point of X , it is not the low-
est ranked alternative for any individual, and hence by Proposition 4.1b if
there are at least four individuals then voting for a is not weakly dominated
for any individual.

c. This result follows from parts a and b of Lemma 4.1.

Exercise 4.6: Variant of plurality rule voting game in spatial setting

Consider a variant of a plurality rule voting game satisfying the conditions
in Proposition 4.3 in which each individual’s preferences are lexicographic:
she is primarily concerned with the set of winning alternatives, but among
actions that yield the same set of winning alternatives (given the other in-
dividuals’ actions) she prefers to abstain. What is the set of Nash equilibria
of this game?

4.3 Strategic and sincere voting: divided majority

When there are two alternatives, an individual’s voting for her favorite alternative
weakly dominates her voting for the other alternative (Proposition 3.1). In the
argot of the field, her voting sincerely is a weakly dominant action. When there
are three or more alternatives, voting sincerely is no longer a weakly dominant
action: if, among the other individuals’ votes, a and b are tied and every other al-
ternative gets at least two fewer votes, an individual whose favorite alternative is
neither a nor b and who is not indifferent between these alternatives is better off
voting for whichever of a and b she prefers, making that alternative the winner,
than for her favorite alternative, which results in a tie between a and b . Such an
individual may be perfectly sincere in the everyday sense of the word (“proceed-
ing from genuine feelings”), but her action is called strategic. In an equilibrium,
are individuals’ votes sincere or strategic?

In this section, I consider this question for an environment known as divided
majority. There are three alternatives, say a , b , and c . A majority of individuals
rank c last; among these individuals, n A prefer a to b (type A) and n B prefer b
to a (type B ). The remaining minority of individuals (type C , who number nC )
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Type A Type B Type C
n A individuals n B individuals nC individuals

a 1 v 0
b v 1 0
c 0 0 1

majority

Figure 4.2 The payoffs in a divided majority, with max{n A , n B } < nC < n A + n B and
v ∈ (0,1).

prefer c to both a and b , between which they are indifferent. Although types A
and B constitute a majority, each of these types is less populous than type C .
That is, max{n A , n B}< nC < n A +n B . The payoffs are given in Figure 4.2.

The associated collective choice problem has a Condorcet winner. If n A > n B

then a is the unique Condorcet winner, if n A < n B then b is the unique Con-
dorcet winner, and if n A = n B then both a and b are Condorcet winners. But
if, in the associated plurality rule voting game, every individual votes sincerely,
then c wins.

Voting for c and abstaining are weakly dominated for each individual of type A
or B (by Proposition 4.1a) and voting for a or b and abstaining are weakly dom-
inated for each individual of type C . So in any Nash equilibrium in which no
individual uses a weakly dominated action, all individuals of type A or B vote
for a or b and all individuals of type C vote for c . The set of such equilibria are
of two types. In one type, the numbers of votes cast for a and for b are both at
most nC − 2, resulting in a win for c . Two such equilibria are illustrated in Fig-
ures 4.3a and 4.3b; in the first case each individual votes sincerely. In the other
type of equilibrium, for either x = a or x = b , nC +1 or more votes are cast for x ,
resulting in a win for x , as in Figures 4.3c and 4.3d.

If, for a given action profile, some change in an individual’s vote would affect
the outcome, we say that her vote is pivotal at that action profile. At the equilib-
rium shown in Figure 4.3c, where b gets one more vote than c , the vote of every
individual of type A or B is pivotal: if an individual voting for a switches her vote
to c or an individual voting for b switches her vote to a or switches to abstention
then the outcome changes to a tie between b and c . (Also, if an individual voting
for b switches her vote to c then the outcome changes to a win for c .) At none of
the other equilibria shown in the figure is any individual’s vote pivotal.

In this model, at any action profile an individual’s vote is either pivotal or not.
If we modify the model so that each individual is uncertain of how the other in-
dividuals will vote, a formulation that seems appropriate for many elections, an
individual may believe that her vote is pivotal with positive probability less than
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a b c
(a)

a b c
(b)

a b c
(c)

a b c
(d)

Colors indicate type of voter: type A type B type C

Figure 4.3 Some Nash equilibria in weakly undominated actions for a plurality rule vot-
ing game modeling a divided majority (Figure 4.2) in which n A > n B . Each block in
each column represents an individual’s vote for one of the alternatives. The colors of the
blocks indicate the type of individual casting the vote: orange for type a , red for type b ,
and blue for type c . In panel a every individual votes sincerely, whereas in the other
panels some individuals of types a and/or b vote strategically.

one, and even if this probability is small it may significantly affect her strategic
calculations. If, for example, an individual of type B believes that, even though
the pattern of votes is likely to be the one shown in Figure 4.3a, there is a small
chance that enough of her fellow type B individuals will vote for a to make a
and c tie, but no chance that enough type A individuals will vote for b to make
b and c tie, then her optimal action may be to vote for a . The reason is that at
any action profile for which the vote difference between the leading alternatives
is two or more, her vote is not pivotal. The point is that the configurations of the
other individuals’ votes that determine an individual’s optimal vote are the ones
for which her vote is pivotal. If, at the only action profiles at which her vote is
pivotal she is better off voting for a than for b , then she should vote for a .

One model that captures the individuals’ uncertainty about each other’s ac-
tions is a Bayesian game in which each individual knows her own type (prefer-
ences), but is uncertain of the other individuals’ types. A strategy of each individ-
ual in such a game assigns an action (a vote for a , b , or c , or abstention) to each
of her possible types. A strategy profile is a Nash equilibrium if the action of each
type of every individual i is optimal given the distribution of the other individu-
als’ actions implied by their strategies and i ’s belief about the distribution of their
types. One interpretation of such an equilibrium is that every individual knows
every other individual’s strategy, possibly from her long experience of voting in
similar elections, and, given her probabilistic belief about the distribution of the
other individuals’ types in the population, chooses her vote optimally given her
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own type.
In Nash equilibria of the Bayesian game, do individuals vote sincerely or strate-

gically? The answer depends on the individuals’ beliefs about each other’s types.
I start by assuming that for some numbers pA , p B , and pC , each individual be-
lieves that the type of every other individual is t with probability pt , for t = A,
B , and C , independently of the type of every other individual. This assumption
on the structure of the individuals’ beliefs means that as the size of the popula-
tion increases, every individual becomes increasingly certain of the proportions
of the types in the population, and for this reason is not particularly plausible.
However, it yields a striking result that is illuminating.

For simplicity, I assume that the number of individuals is odd and abstention
is not an option for any individual.

Definition 4.2: Divided majority with independent beliefs

A divided majority with independent beliefs 〈N ,{a ,b , c },{A, B ,C }, v,
(pA , p B , pC )〉, where N is a finite set (of individuals) with an odd number
of members that is at least five, a , b , and c are alternatives, A, B , and C are
preference types, v ∈ (0,1), and pA , p B , and pC are positive numbers with
pA+p B+pC = 1 and max{pA , p B}< pC < pA+p B , is the following Bayesian
game.

Players
The set N .

States
The set of states is the set of profiles (t j )j∈N of preference types, with
t j ∈ {A, B ,C } for every player j ∈N .

Actions
The set of actions of each player is {vote for a , vote for b , vote for c }.

Signals
The signal function τi of each player i is given by τi ((t j )j∈N ) = ti (every
player knows her own preference type, but no other player’s preference
type).

Prior beliefs
Every player believes that the preference type of every individual is A
with probability pA , B with probability p B , and C with probability pC ,
independently of every other individual’s preference type.

Payoffs
The Bernoulli payoff function of each player over the set of pairs of
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action profiles and states is defined as follows.

For each preference type t ∈ {A, B ,C } and each alternative z ∈ {a ,b , c },
let u t (z ) be the number given in the cell in column t and row z of Fig-
ure 4.2, and for any action profile x , denote by W (x ) ⊆ {a ,b , c } the set
of alternatives that receive the most votes. For any action profile x and
any profile of preference types, the Bernoulli payoff for x of each player
with each preference type t ∈ {A, B ,C } is

∑
w∈W (x )u t (w )/|W (x )|.

In a divided majority with independent beliefs, voting for c is weakly domi-
nated for an individual of type A or type B and voting for a or b is weakly domi-
nated for an individual of type C , so the main question is whether individuals of
types A and B vote for a or for b . The argument that, regardless of the values of
pa , p B , and pC , the game has an equilibrium in which all individuals of types A
and B vote for a , and also one in which they vote for b , is straightforward.

Proposition 4.4: Nash equilibria of divided majority with independent
beliefs

A divided majority with independent beliefs has a Nash equilibrium in
which every individual votes for a if her preference type is A or B and votes
for c if her preference type is C , and also one in which every individual
votes for b if her preference type is A or B and votes for c if her preference
type is C .

Proof

For the strategy profile in which every individual of type A or B votes for a
and every individual of type C votes for c , the set of winners is {a } or {c },
depending on the realized distribution of preference types. (A tie is not
possible because the number of individuals is odd and abstention is not
allowed.) The action of an individual of type A or B is pivotal at this strat-
egy profile if and only if the the realized number of individuals of types A
and B exceeds the realized number of individuals of type C by 1, an event
with positive probability. For such a realization of types, the outcome of
the strategy profile is a win for a . If an individual of type A or B changes
her vote to b , the outcome changes to a tie between a and c (given that
the number of individuals is at least five), and if she changes it to c , the
outcome changes to a win for c . She prefers a win for a to each of these
outcomes, so her voting for a is optimal.



144 Chapter 4. Voting with many alternatives: plurality rule

Similar arguments apply to an individual of type C and to the strategy
profile in which every individual of type A or B votes for b .

Is the strategy profile in which every individual votes sincerely also a Nash
equilibrium of the game? We know that for some configurations of the other indi-
viduals’ actions an individual is better off voting for an alternative different from
her favorite, so that whether a vote for her favorite alternative is optimal depends
on the probabilities of such configurations and her payoffs for the alternatives.

Denote the number of individuals by n+1. For any given individual i , the set
of configurations of the other n individuals’ preference types is illustrated in Fig-
ure 4.4. Each small disk represents one possible configuration; the three corners
of the triangle represent configurations in which all n individuals have the same
type, and the (brown) disk in the center represents the configuration in which
the same number of individuals have each type. (The diagram assumes that n is
divisible by both 2 and 3.) For the strategy profile in which each individual votes
sincerely, the diagram represents also the possible configurations of the other
individuals’ votes for the three alternatives. Now, the alternative for which i op-
timally votes depends on the probabilities of vote configurations for the other
individuals for which her vote is pivotal. These configurations are the ones in
which there is a tie or near-tie (the margin of victory of the outright winner is
one vote) for first place among the other individuals’ votes. These close races are
indicated in color in Figure 4.4.

Consider type A of individual i . If the close race is between a and b (blue
disks) or between a and c (purple disks), then she optimally votes (sincerely) for
a . But if it is between b and c (magenta disks) then, given that she prefers b to c ,
she optimally votes for b . To determine her optimal action we need to compare
the probabilities of these events. The probability density over the configurations
of types that the model generates for n = 60, pA = 0.25, p B = 0.3, and pC = 0.45
is shown in Figure 4.5. In this case, if all of the n individuals other than i vote
sincerely, close races between b and c are more likely than ones between a and
b or between a and c , so there is a number v ∗ such that if v ≤ v ∗ then type A of
individual i optimally votes sincerely, for a , and if v ≥ v ∗ then she optimally votes
strategically, for b . (If v = v ∗, both votes are optimal.) Whenever pA < p B < pC ,
the conclusion is the same.

Now suppose that the number of individuals increases. As it does so, the
probability density over the configurations of types of the n individuals other
than i becomes increasingly concentrated around (npA , np B , npC ), and the prob-
ability of a close race decreases (even if pA = p B = pC =

1
3

). For pA = 0.25,
p B = 0.3, and pC = 0.45, Figure 4.6a shows this probability as a function of n ; for
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Figure 4.4 Possible configurations of the types of n individuals in a divided majority
(Figure 4.2). Each disk represents one configuration (n A , n B , nC ). The corners of the
triangle are the configurations in which all n individuals have the same type and the
central disk (brown) is the configuration in which there are 1

3 n individuals of each type.
(The diagram assumes that n is divisible by 2 and by 3.) The colored disks represent close
races when every type of every individual votes sincerely.

n > 300 it is less than 0.001, and for n > 430 it is less than 0.0001. If pA < p B < pC

then as the number of individuals increases, the proportion of the probability of
a close race attributable to a close race between b and c increases, approach-
ing one. Figure 4.6b shows the proportions attributable to close races between
each of the three pairs of alternatives, as a function of n , for the case in which
pA = 0.25, p B = 0.3, and pC = 0.45. (A tie between all three alternatives is also
possible; the probability of this event rapidly decreases to zero.) In this case, for
n > 320 the proportion attributable to a close race between b and c exceeds 0.99.
The proof of the general result that if pA < p B < pC then the probabilities of a tie
or near tie for the most populous type between A and B and between A and C
become negligible compared with the probability of a tie or near-tie between B
and C is routine but intricate; Lemma 2 of Palfrey 1989 is the result for a different
tie-breaking rule. As a consequence of this result, for any given value of v > 0
there is a number N such that if n > N then the strategy profile in which each
type of each individual votes sincerely is not a Nash equilibrium, because almost
every case in which the vote of an individual of type A is pivotal is a close race
between b and c , so that such an individual optimally votes for B if each type of
every other individual votes sincerely.

An implication of this result is that if pA < p B < pC then for any given value
of v > 0, if the number of individuals is sufficiently large then if the game has
a Nash equilibrium in which all individuals of the same type vote for the same
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Figure 4.5 The probability density over the configurations of types for 60 individuals
when each individual’s type is a with probability 0.25, b with probability 0.3, and c with
probability 0.45, independently of the types of the other individuals. (The distribution
is discrete; its density is smoothed in the figure.) The regions indicated in dark blue,
purple, and magenta are the closes races between two of the alternatives when every
type of every individual votes sincerely.

alternative and no type uses a weakly dominated action, in any such equilibrium
all individuals of types A and B vote for the same alternative, either a or b , and
all individuals of type C vote for c . In particular, in any such equilibrium only
two of the three alternatives receive votes.

These results concern the limit as the population size increases without bound.
They do not mean that for any number that you or I might classify as large, the
game has no equilibrium in which every type of every individual votes sincerely.
The sufficiently large number depends on the parameters, and could be 100, 1
million, 1 billion, or any other number. Note also that the analysis implies that
for any values of pA , p B , and pC with pA < p B < pC and any given (finite) pop-
ulation size, there is a positive number v ∗ such that for v < v ∗ the game has a
Nash equilibrium in which every type votes sincerely. Finally, note that the anal-
ysis assumes that each individual chooses the alternative for which to vote by
comparing the probabilities that votes for each of the alternatives changes the
outcome, even though these probabilities are minuscule in a large population. If
her motivation for voting is, instead, expressive (see Section 6.2), then she may
vote sincerely regardless of the population size.

These conclusions depend on the model of the individuals’ beliefs. The as-
sumption that each individual believes that every other individual’s type is t with
probability pt , independently of the other individuals’ types, has two significant
implications. First, when the number of individuals is large, every individual is
almost certain of the proportions of the types in the population. Second, every
individual’s belief is the same. These implications seem implausible. Even in
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Figure 4.6

a large population—particularly in a large population?—each individual seems
likely to be uncertain of the distribution of the other individuals’ characteristics,
and different individuals get information from different sources, so that their
beliefs are likely to differ.

An alternative model assumes that the probabilities pA , p B , and pC are them-
selves uncertain, so that the uncertainty about the proportion of individuals of
each type in the population does not vanish as the population size increases
without bound. In this case, every individual of each type may optimally vote
sincerely if all the other individuals’ votes are sincere, regardless of the popula-
tion size. If, for example, an individual of type a believes that a tie between b and
c is more likely than a tie between a and c , but thinks that the difference between
the likelihoods is not large, then the expected loss from voting for b rather than a
in the event of a tie between a and c may outweigh the expected gain from doing
so in the event of a tie between b and c . For specific models of the uncertainty
regarding pA , p B , and pC , we may be able to say more about the circumstances
under which the strategy profile in which every type of every individual votes
sincerely.

If the individuals’ beliefs differ, then their strategic calculations differ. Sup-
pose that each individual of type a believes that in expectation, individuals of
type a outnumber those of type b , and the reverse is true for individuals of type b .
Then if all other individuals vote sincerely, an individual of type a may conclude
that voting for a is optimal and an individual of type b may conclude that vot-
ing for b is optimal, so that again an equilibrium in which all individuals vote
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sincerely exists. If instead each individual of type a or type b believes that their
type is outnumbered, then an equilibrium may exist in which every individual of
type a votes for b and every individual of type b votes for a .

One way in which an individual may gather information about the voting in-
tentions of the other individuals is through her interactions with those individ-
uals. The next exercise asks you to analyze a model in which each individual
bases her vote on the information obtained from a random sample of two other
individuals.

Exercise 4.7: Sampling equilibrium in a divided majority

Consider the divided majority in Figure 4.2. Denote the fraction of the pop-
ulation consisting of individuals of type t by qt for t = A, B , C . Each indi-
vidual observes the voting intentions of two random-selected individuals.
An individual of type A whose sample consists of one individual who in-
tends to vote for B and one who intends to vote for C concludes that she
should vote for B ; for every other sample she votes for A. Symmetrically, an
individual of type B whose sample consists of one individual who intends
to vote for A and one who intends to vote for C concludes that she should
vote for A, and for every other sample votes for B . An individual of type C
votes for C regardless of her sample. For each type T , let pT (A), pT (B ), and
pT (C ) be the fractions of the individuals of that type who vote for each al-
ternative. In an equilibrium, pA(C ) = p B (C ) = 0, pC (C ) = 1, pA(B ) is equal
to the probability that the sample of an individual of type A consists of one
individual who intends to vote for B and one who intends to vote for C , and
p B (A) is equal to the probability that the sample of an individual of type B
consists of one individual who intends to vote for A and one who intends
to vote for C . Assume that the number of individuals is large enough that
you can take the probability that a given member of the sample of an indi-
vidual i of type T is an individual of type T other than i to be qT . Find the
equilibria. Why is there no equilibrium in which all individuals of types A
and B vote for the same alternative?

Notes

Lemma 4.1 is based on Lemmas 1 and 2 of Feddersen et al. (1990). One source
of Proposition 4.1b, which Duggan and Sekiya (2009, 879) say is well known, is
Dhillon and Lockwood (2004, Lemma 1). The proof of Proposition 4.3a is based
on the proof of Lemma A.3 in Feddersen et al. (1990). The main part of Section 4.3
is based on Palfrey (1989). Myatt (2007) and Bouton et al. (2017) study models in
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which the uncertainty regarding the proportions of the various preference types
does not vanish as the population size grows without bound.

Exercise 4.3 is taken from Duggan and Sekiya (2009). Exercise 4.4 is based
on Dhillon and Lockwood (2004), who study the iterated elimination of weakly
dominated actions in plurality rule voting games more generally. Exercise 4.5 is
based on De Sinopoli and Iannantuoni (2007). Voting under proportional rule is
explored further by Indriðason (2011) and Cho (2014). The notion of equilibrium
in Exercise 4.7 is taken from Osborne and Rubinstein (2003).

Solutions to exercises

Exercise 4.1
Let i be an individual, let a be one of i ’s favorite alternatives, let z be an
alternative she likes least, and let u i be her payoff function over alternatives.

If i is indifferent between all alternatives, for any alternative b her voting for
b is not weakly dominated by her voting for any other alternative.

Now suppose that i is not indifferent between all alternatives, so that u i (a )>
u i (z ). I argue that i ’s voting for b is weakly dominated if and only if her pay-
off to {b} is at most her payoff for the set of winners {a ,b , z }, in which case
u i (a )> u i (b ).

First, i ’s voting for b is weakly dominated if and only if it is weakly dominated
by her voting for a . I now consider the conditions under which her voting for
b is weakly dominated by her voting for a .

• If the other two individuals vote for the same alternative, i ’s vote does not
affect the set of winners.

• If the other two individuals vote for different alternatives, say x and y ,
neither of which is a or b , the set of winners when i votes for a is {a ,x , y }
and the set of winners when she votes for b is {b ,x , y }, so her payoff is
higher when she votes for a .

• If one of the other individuals votes for a and the other votes for an alter-
native, say x , other than a or b , then the set of winners is {a } if i votes for
a and {a ,b ,x } if she votes for b , so her payoff is higher if she votes for a .

• If one of the other individuals votes for b and the other votes for an al-
ternative, say x , other than a or b , then the set of winners is {a ,b ,x } if i
votes for a and {b} if she votes for b , so her payoff is at least as high if she
votes for a if and only if her payoff for {a ,b ,x } is at least as high as her
payoff for {b}.



150 Chapter 4. Voting with many alternatives: plurality rule

• If one of the other individuals votes for a and the other votes for b then
the set of winners is {a } if i votes for a and {b} if she votes for b , so her
payoff is higher if she votes for a .

In the second, third, and fifth cases, i ’s payoff is higher when she votes for
a than it is when she votes for b , and in the first case it is the same, so her
voting for b is weakly dominated by her voting for a if and only if for every
alternative x other than a and b her payoff for {a ,b ,x } is at least as high as
her payoff for {b}, which is the case if and only if her payoff for {a ,b , z } is at
least as high as her payoff for {b}.

Exercise 4.2
For each individual i ∈N , denote by Ti the set of i ’s favorite alternatives. For
no alternative a in Ti is voting for a weakly dominated for individual i .

Thus if some alternative a is a member of T1, T2, and T3, then the action pro-
file in which each individual votes for a is a Nash equilibrium in which no
individual’s action is weakly dominated.

If for some alternatives a and b , a is a member of two of the sets T1, T2, and T3,
say Ti and Tj , and b is a member of the remaining set, say Tk , then the action
profile in which i and j vote for a and k votes for b is a Nash equilibrium in
which no individual’s action is weakly dominated.

The remaining possibility is that the sets T1, T2, and T3 have no alternative in
common. In this case, select one alternative from each set, say a from T1, b
from T2, and c from T3.

• If the action profile in which 1 votes for a , 2 votes for b , and 3 votes for c
is a Nash equilibrium, we are done.

• If not, one of the individuals can increase her payoff by changing her vote.
Without loss of generality, assume that individual 1 can do so.

◦ If individual 1 changes her vote to another alternative in T1, her pay-
off does not change.

◦ If individual 1 changes her vote to an alternative, say z , outside T1

and z 6∈ {b , c }, then the set of winners changes to {z ,b , c }, so she is
worse off.

◦ Thus individual 1 must increase her payoff by changing her vote to
either b or c , so that the set of winners becomes {b} or {c }.

∗ If b and c yield her the same payoff, then her payoff decreases.

∗ Thus b and c yield her different payoffs. Let b be the one with
the higher payoff. Given that individual 1 can increase her payoff
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by changing her vote, her payoff from {b} is greater than her pay-
off from {a ,b , c }. Thus the action profile in which individuals 1
and 2 vote for b and individual 3 votes for c is a Nash equilib-
rium (because the best deviation for individual 1 is to vote for
a , which generates the set of winners {a ,b , c }) and by the result
of Exercise 4.1 individual 1’s action of voting for b is not weakly
dominated.

Exercise 4.3
For the action profile x 1, in which every individual votes for her favorite al-
ternative, the set of winners is {a , c }. This action profile is not a Nash equilib-
rium because individual 2, by changing her vote to b , can change the set of
winners to {a ,b , c }, thereby increasing her payoff from 0 to 1

3
· 6= 2. Individ-

ual 6 can also increase her payoff by changing her vote to a , which changes
the set of winners to {a } and hence increases her payoff from 1

2
·6= 3 to 6.

If we select individual 2 then the list of votes in x 2 is (c ,b , c , a , a ,b ) and the set
of winners is {a ,b , c }. This action profile is not a Nash equilibrium because
individual 3, by changing her vote to b , can change the set of winners to {b},
thereby increasing her payoff from 1

3
· 9+ 1

3
· 6 = 5 to 6. Individual 5 can also

increase her payoff by deviating to vote for c , and individual 6 can do so by
deviating to vote for a .

If we select individual 3 then the list of votes in x 3 is (c ,b ,b , a , a ,b ) and the set
of winners is {b}. This profile is a Nash equilibrium, so the procedure ends.

(If at the second step we choose individual 6 and set the list of votes in x 2 to
be (c , d , c , a , a , a ) then the set of winners is {a }. This profile is a Nash equi-
librium, so the procedure ends. If at the third step we select individual 5,
we reach the Nash equilibrium with votes (c ,b , c , a , c ,b ), and if we select
individual 6, we reach the Nash equilibrium with votes (c ,b , c , a , a , a ).)

Exercise 4.4
Denote the alternatives a , b , and c , and suppose that more than two-thirds
of the individuals rank c below a and b . By Proposition 4.1, each individual’s
only weakly dominated action is a vote for her least preferred alternative. Af-
ter eliminating this action for each individual, the set of winners generated by
every remaining action profile is {a }, {b}, or {a ,b}, because fewer than one-
third of the individuals vote for c . Thus each individual’s voting for whichever
of a and b she prefers weakly dominates her other remaining actions, by the
same argument as for a two-alternative game. We are left with the action
profile in which every citizen votes for her favorite alternative in {a ,b}.
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Exercise 4.5
a. Let i be an individual and let x be an action profile in which i votes for a l .
Suppose that a l > a 1. If i switches her vote from a l to a 1 then the outcome
decreases from O(x ) =

∑k
j=1 vj (x )a j /n to

1

n

� k∑

j=1

vj (x )a j −a l +a 1

�

≥
k∑

j=1

vj (x )a j /n − (a k −a 1)/n =O(x )− (a k −a 1)/n .

Thus if i ’s favorite alternative is at most O(x )− (a k −a 1)/n then she is better
off voting for a 1 than for a l and hence x is not a Nash equilibrium. Similarly
if a l < a k and i ’s favorite alternative is at least O(x )+(a k−a 1)/n , she is better
off voting for a k than for a l , so that x is not a Nash equilibrium.

b. The action profile in which every individual whose favorite alternative is
less than z ∗ votes for a 1 and every individual whose favorite alternative is
greater than z ∗ votes for a k is a Nash equilibrium. The reason is that if an
individual whose favorite alternative is less than z ∗ deviates to vote for an
alternative other than a 1 then the outcome increases, which makes her worse
off, and if an individual whose favorite alternative is greater than z ∗ deviates
to vote for an alternative other than a k then the outcome decreases, which
makes her worse off.

Exercise 4.6
Every equilibrium of the modified game is an equilibrium of the original game,
so by Proposition 4.3 in every equilibrium of the modified game the number
of winning alternatives is at most two.

The modified game has no equilibrium with a single winning alternative un-
less every individual’s favorite alternative is the same. To see why, consider
an action profile that generates a single winning alternative, say a . Any in-
dividual who votes for an alternative other than a can switch to abstention
without affecting the outcome, and if all votes are cast for a and more than
one individual votes then any individual can switch to abstention without
affecting the outcome. Thus in any equilibrium of the modified game one
individual votes for a . But if some individual’s favorite alternative b differs
from a , an action profile with one vote for a is not an equilibrium because
that individual can switch from abstention to voting for b and induce a tie
between a and b , which she prefers to a .

Consider a two-alternative equilibrium of the original game in which at least
one individual who votes is indifferent between the alternatives. If such an
individual deviates to abstention then her payoff remains the same, so that
such an equilibrium is not an equilibrium of the modified game.
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Now consider a two-alternative equilibrium of the original game in which no
individual who votes is indifferent between the alternatives. If an individual
who votes deviates to voting for another alternative or to abstention, the re-
sulting outcome is worse for her. Thus such an equilibrium is an equilibrium
of the modified game.

Exercise 4.7
The equilibrium conditions are

pA(B ) = 2(qA pA(B )+qB p B (B ))(1−qA −qB )

p B (A) = 2(qA pA(A)+qB p B (A))(1−qA −qB ).

The right-hand side of the first equation is the probability that an individual’s
sample consists of one individual who intends to vote for B and one who
intends to vote for C , and the right-hand side of the second equation is the
analogous expression for A and C . These equations have a unique solution,

pA(B ) = 2(1−qA)qB −2q 2
B

p B (A) = 2(1−qB )qA −2q 2
A .

For the example in which qA = 0.25, qB = 0.35, and qC = 0.4, pA(B ) = 0.28 and
p B (A) = 0.2.

The proportion of the population that votes for A in the equilibrium is

qA pA(A)+qB p B (A) = qA(1−2(1−qA)qB +2q 2
B )+qB (2(1−qB )qA −2q 2

A) = qA

and the proportion that votes for B is qB . Thus even though some individu-
als vote strategically, the total proportions who vote for each alternative are
equal to the proportions of the types in the population.

There is no equilibrium in which all individuals of types A and B vote for the
same alternative, say A, because for such a voting pattern an individual of
type B who gets a sample consisting of two individuals who intend to vote
for A is assumed to vote for B .
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One type of mechanism a group of individuals facing a collective choice problem
can use to select an alternative involves a sequence of two-way votes. Such a
mechanism is called a binary agenda. Suppose, for example, that the alternatives
are a , b , and c . The individuals might first vote on a motion to drop a from
consideration. If that motion passes, they might then vote between b and c , and
if it fails, they might vote whether to choose c , with the failure of that motion
leading to a vote between a and b . This procedure is illustrated in Figure 5.1.
How does the outcome of a binary agenda depend on the sequence of choices
and the individuals’ preferences? Does the outcome have desirable properties?

Synopsis

We model a binary agenda as an extensive game and apply to it the solution con-
cept of subgame perfect equilibrium with the restriction that no player’s vote at
any point in the game is weakly dominated. The resulting strategy profiles are
referred to as the outcomes of sophisticated voting. Say that a finite collective
choice problem with an odd number of individuals, each of whose preference
relations is strict, is odd-strict. As you might suspect, for an odd-strict collective
choice problem that has a strict Condorcet winner, that alternative is the unique
outcome of sophisticated voting for any binary agenda (Proposition 5.1).

For collective choice problems with no strict Condorcet winner, a set of alter-
natives called the top cycle set is relevant. Recall that a strict Condorcet winner
beats every other alternative in two-way comparisons. Say that an alternative
x indirectly beats another alternative y if for some alternatives z 1, . . . , z k , alter-
native x beats z 1, z 1 beats z 2, . . . , z k−1 beats z k , and z k beats y . The top cycle
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Vote (to drop a )
NoYes

b , c a , b , c

Vote (to choose b )
No

c

Yes

b

b c

Vote (to choose c )
NoYes

c

c a , b

Vote (to choose a )
No

b

Yes

a

a b

Figure 5.1 An example of a procedure in a binary agenda.

set consists of the alternatives that beat or indirectly beat every other alterna-
tive. Proposition 5.3 shows that for an odd-strict collective choice problem, ev-
ery outcome of sophisticated voting in any binary agenda is in the top cycle set,
and for any alternative in the top cycle set there is a binary agenda for which
that alternative is the outcome of sophisticated voting. The members of the top
cycle set, unlike a strict Condorcet winner, are not all reasonable outcomes of a
collective choice problem. For example, a member of the top cycle set may be
dominated in the sense that another alternative is preferred by every individual
(Example 5.1).

Sections 5.2 and 5.3 consider binary agendas that take specific forms that
model the procedures used in some legislatures. Section 5.2 considers successive
agendas. In such agendas, the alternatives are considered in some order. A vote is
taken on whether to choose the first alternative or to drop it from consideration;
if it is dropped, a vote is taken on whether to choose the second alternative or to
drop it from consideration; and so forth. Proposition 5.5 shows that for an odd-
strict collective choice problem, for every alternative in the top cycle set there
is a successive agenda for which the alternative is the outcome of sophisticated
voting.

By contrast, for the amendment agendas considered in Section 5.3, the set of
outcomes of sophisticated voting is a subset of the top cycle set. In an amend-
ment agenda, as in a successive agenda, the alternatives are considered in some
order. A vote is taken on whether to eliminate the first alternative or the second
alternative from consideration; then a vote is taken on whether to eliminate the
alternative not eliminated in the first round or the third alternative; and so forth.
For amendment agendas, a subset of the top cycle set called the Banks set plays
the role that the top cycle set plays for successive agendas. Unlike the top cycle
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set, the Banks set contains no alternative that is dominated (Exercise 5.6). Propo-
sition 5.8 shows that for an odd-strict collective choice problem, the outcome of
sophisticated voting in any amendment agenda is in the Banks set, and for ev-
ery alternative in the Banks set we can find an amendment agenda for which the
alternative is the outcome of sophisticated voting.

Section 5.4 considers an environment in which the individuals are not fully
informed about each other’s preferences, as they are in the model of a binary
agenda. Each individual is assumed to know her own preferences but not the
preferences of any other individual. The analysis is restricted to agendas for
which the preference profile is single-peaked, so that the collective choice prob-
lem has a strict Condorcet winner, which means that under perfect informa-
tion the outcome of sophisticated voting is the strict Condorcet winner (Proposi-
tion 5.1). It identifies a condition on the structure of an agenda, convexity, under
which each individual’s voting sincerely is optimal when every other individual
votes sincerely, regardless of the other individuals’ preferences, and the outcome
of such voting is the strict Condorcet winner (Proposition 5.9). Thus for a convex
agenda, the mutual optimality of the simple rule to vote sincerely is not sensitive
to a lack of information about the other individuals’ preferences.

5.1 Binary agendas

A binary agenda consists of a collective choice problem and a procedure for se-
lecting an alternative that consists of a sequence of two-way votes in which ev-
ery alternative is the outcome of at least one possible sequence. Let 〈N , X ,¼〉 be
a collective choice problem. The structure of the choices in a binary agenda for
selecting an alternative for this problem is modeled as a set H of sequences. This
set contains the empty sequence, representing the start of the procedure. Every
element in every other member of H is either Yes or No; for every h ∈ H either
(h, Yes) ∈H and (h, No) ∈H , in which case h is nonterminal, or there is no value
of x for which (h,x ) ∈H , in which case h is terminal. Denote the set of terminal
members of H by Z . Let O be a function that associates a member of the set X
of alternatives (an outcome) with every terminal member of H and suppose that
every alternative is the outcome of some sequence of votes: for every alternative
x ∈ X there is a terminal member h of H for which O(h) = x .

The binary agenda generated by 〈N , X ,¼〉, Z , and O is the extensive game with
perfect information and simultaneous moves in which the set of players is N , the
set of terminal histories is Z , the player function assigns the set N of all players
to every nonterminal history, the set of actions of each player is {Yes, No} after
every history, the action chosen by a majority of players is the next component
of the history, and each player i likes the terminal history h at least as much as
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the terminal history h ′ if and only if O(h)¼i O(h ′).
In the example in Figure 5.1, the votes are given interpretations. For example,

the first one is interpreted as a vote to drop a . These interpretations are not
part of the formal description of the agenda. Everyone knows the structure of
the agenda, and whenever a vote takes place, the options are to move down the
branch on the left or to move down the branch on the right; these options may or
may not have simple interpretations like dropping one of the alternatives from
consideration or selecting one of the alternatives.

For simplicity I assume that the number of individuals is odd and that each
individual’s preferences are strict (no individual is indifferent between any two
alternatives).

Definition 5.1: Odd-strict collective choice problem

An odd-strict collective choice problem is a finite collective choice problem
in which the number of individuals is odd and every individual’s prefer-
ence relation is strict.

Definition 5.2: Binary agenda

Let 〈N , X ,¼〉 be an odd-strict collective choice problem with N = {1, . . . , n}.
Let H be a set of sequences (i) that contains the empty sequence, (ii) in
which every element is either Yes or No, and (iii) for which for every h ∈H
either (h, Yes)∈H and (h, No)∈H , in which case h is nonterminal, or there
is no value of x for which (h,x ) ∈ H , in which case h is terminal. Denote
the terminal members of H by Z and let O be a function that assigns to
each h ∈ Z an alternative O(h) ∈ X . Assume that for every x ∈ X we have
O(h) = x for some h ∈Z .

The binary agenda 〈〈N , X ,¼〉,Z ,O〉 is the following extensive game with
perfect information and simultaneous moves.

Players
The set of players is the set N (of individuals).

Terminal histories
For any profile (v1, . . . , vn )with vi ∈ {Yes, No} for all i ∈N (a vote profile),
denote by M (v1, . . . , vn ) the member of {Yes, No} such that {i ∈ N : vi =
M (v1, . . . , vn )} is a majority of N .

Terminal histories are sequences of vote profiles. Specifically, a se-
quence ((v 1

1 , . . . , v 1
n ), . . . , (v q

1 , . . . , v q
n )) of vote profiles, where q ≥ 1 and

v l
i ∈ {Yes, No} for l = 1, . . . ,q and all i ∈ N , is a terminal history if and
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only if (M (v 1
1 , . . . , v 1

n ), . . . , M (v q
1 , . . . , v q

n )) ∈Z .

Player function
For every nonterminal history h ∈H , the player function assigns the set
N of all individuals to h.

Actions
Each player’s set of actions after any nonterminal history is {Yes, No}.

Preferences
Each player i prefers the terminal history ((v 1

1 , . . . , v 1
n ), . . . , (v q

1 , . . . , v q
n )) to

the terminal history ((y 1
1 , . . . , y 1

n ), . . . , (y q
1 , . . . , y q

n )) if and only if

O(M (v 1
1 , . . . , v 1

n ), . . . , M (v q
1 , . . . , v q

n ))�i O(M (y 1
1 , . . . , y 1

n ), . . . , M (y q
1 , . . . , y q

n )).

Equilibrium

Assume that whenever an individual votes, she is forward-looking: she votes for
the option that, given her expectation of the outcomes of future votes (which,
in equilibrium, are correct), leads to the better outcome for her. Specifically, we
look for a subgame perfect equilibrium: a strategy profile for which no change in
any vote of any individual leads (ultimately) to an outcome that is better for her,
given the other individuals’ strategies.

We further restrict each individual to weakly undominated strategies. If there
are three or more individuals then without this restriction, for every alternative
a ∈ X the game has a subgame perfect equilibrium in which the outcome is
a . The reason is the same as the reason that for each alternative a in a two-
alternative majority rule voting game the action profile in which every individ-
ual votes for a is a Nash equilibrium (Section 3.1.1). Take a terminal history with
the outcome a and suppose that at every opportunity every individual votes for
the option consistent with the history. Then given that there are three or more
individuals, no change in any individual’s strategy has any effect on the outcome.

For brevity, we refer to an alternative that is the outcome of a subgame per-
fect equilibrium in which no individual’s strategy in any subgame is weakly dom-
inated as an outcome of sophisticated voting.

Definition 5.3: Sophisticated voting

An alternative a ∗ is an outcome of sophisticated voting in a binary agenda B
if it is the outcome of a subgame perfect equilibrium s ∗ of B in which for no
individual i is the restriction of s ∗i to any subgame Γ of B weakly dominated
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in Γ: i has no strategy s ′i that, for some strategies of the other individuals,
yields an outcome in Γ that she prefers to the outcome when she uses s ∗i
and, for all strategies of the other individuals, yields an outcome in Γ that
she likes at least as much as the outcome when she uses s ∗i .

Suppose that if the vote at the start of some subgame Γ is in favor of Yes
then, given the individuals’ strategies, the outcome of the game is ultimately a ,
whereas if the vote favors No then the outcome is ultimately b . Then it is rea-
sonable that an individual who favors a votes Yes at the start of Γ and one who
favors b votes No, so that the outcome of Γ is the member of {a ,b} preferred by
a majority of individuals. The next result shows that any outcome of sophisti-
cated voting has this property. It is expressed in terms of a game with a fictional
single player who prefers one outcome to another if and only if a majority of the
individuals do so.

Lemma 5.1: Sophisticated voting and subgame perfect equilibrium

An alternative is an outcome of sophisticated voting in the binary agenda
〈〈N , X ,¼〉,Z ,O〉 if and only if it is a subgame perfect equilibrium outcome
of the variant of an extensive game with perfect information with possibly
nontransitive preferences in which there is one player, the set of terminal
histories is Z , the player function assigns the player to every nonterminal
history, and for any terminal histories h ∈Z and h ′ ∈Z the player prefers h
to h ′ if and only if a majority of the members of N prefer O(h) to O(h ′).

The preferences of the single player in the extensive game with perfect in-
formation defined in this result are not transitive if, for example, the collective
choice problem 〈N , X ,¼〉 does not have a Condorcet winner. However, whenever
the player chooses an action in the game she has exactly two options, so that she
has a well-defined optimal action.

Proof of Lemma 5.1

Denote the binary agenda by B . The argument uses induction on the
length of Γ (i.e. the length of its longest history).

Let Γ be a subgame of B of length 1 (so that Γ is at the end of B ); de-
note the two possible outcomes of Γ by a and b . By Corollary 3.1, in a Nash
equilibrium of Γ in which no individual’s action is weakly dominated, ev-
ery individual votes for the option that leads to the alternative in {a ,b} that
she prefers. Thus the outcome of sophisticated voting in the subgame, it-
self a binary agenda, is the member of {a ,b} preferred by a majority of
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b c da

Γ1 Γ2 →

c a

Figure 5.2 An illustration of the argument for Lemma 5.1 for a binary agenda in which a
majority of individuals prefer c to b , a majority prefer a to d , and a majority prefer a to
c . The agenda, shown on the left, has two subgames of length 1, Γ1 and Γ2. In the game
shown on the right, each of these subgames is replaced by the outcome of sophisticated
voting in the subgame.

individuals.
Now replace each subgame of length 1 with the outcome of sophisti-

cated voting in the subgame. (See Figure 5.2 for an example.) In the result-
ing binary agenda, repeat the process. Continue in the same manner until
reaching the start of the game.

This result makes the outcomes of sophisticated voting easy to find. Starting
at the end of the game, we first find the alternative preferred by a majority of
individuals among the outcomes of each subgame of length 1. Then we replace
each of these subgames with the associated alternative and repeat the process
for the resulting game, working our way to the start of the game.

If, for an agenda with the procedure shown in Figure 5.1, for example, a ma-
jority of individuals prefer a to b , a majority prefer b to c , and a majority prefer
c to a , then the outcome of sophisticated voting in the subgame following the
history Yes is b and the outcome in the subgame following the history (No, No) is
a , so the outcome in the history following No is c , and hence the outcome in the
whole game is b .

An application of this procedure shows that for any binary agenda for a col-
lective choice problem with a Condorcet winner (which is strict, given that the
number of individuals is odd and their preferences are strict), this alternative is
the only outcome of sophisticated voting.

Proposition 5.1: Sophisticated voting in binary agenda with strict
Condorcet winner

If an odd-strict collective choice problem 〈N , X ,¼〉 has a Condorcet win-
ner then for any binary agenda 〈〈N , X ,¼〉,Z ,O〉 this alternative is the only
outcome of sophisticated voting.
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Proof

Denote the Condorcet winner by a ∗. Given that the collective choice prob-
lem is odd-strict, this winner is strict. Let Γ be a subgame of the binary
agenda of length one (i.e. at the end of the game) for which at least one
of the outcomes is a ∗. Then a ∗ is the outcome of sophisticated voting in
the subgame by Lemma 5.1 and the fact that for every other alternative a
a majority of individuals prefer a ∗ to a . But then in the subgame of length
two that includes Γ, the option that leads to Γ, and hence ultimately a ∗ (or
the other option if that also leads to a ∗), wins. Working back to the start of
the game, we conclude that the only outcome of sophisticated voting is a ∗.

For collective choice problems without Condorcet winners, things are more
interesting. In particular, the outcome of sophisticated voting depends on the
agenda. For example, for the collective choice problem of Example 1.5, which is a
Condorcet cycle in which a beats b beats c beats a , the outcome of sophisticated
voting for the agenda

a

c

b

is a (b beats c , a beats b ), whereas the outcome for the agenda

c

a

b

is c (a beats b , c beats a ), and the outcome for the variant of this agenda in which
c and b are interchanged is b .

In this example, every alternative is the outcome of sophisticated voting for
some agenda. The same is not true for every collective choice problem. Recall
that an alternative x is a Condorcet winner if it beats every other alternative y in
two-way comparisons, in the sense that a majority of individuals prefer x to y .
Say that x indirectly beats y if for some alternatives z 1, . . . , z k , alternative x beats
z 1, z 1 beats z 2, . . . , z k−1 beats z k , and z k beats y . The set of alternatives that beat
or indirectly beat every other alternative is called the top cycle set. A subsequent
result, Proposition 5.3, shows that an alternative is the outcome of sophisticated
voting for some binary agenda if and only if it is in this set.
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Definition 5.4: Top cycle set

Let 〈N , X ,¼〉 be an odd-strict collective choice problem and let x ∈ X and
y ∈ X be alternatives. Then x indirectly beats y if for some l ≥ 1 there are
alternatives z 1, . . . , z l such that x beats z 1, z j beats z j+1 for j = 1, . . . , l −1,
and z l beats y . The top cycle set of 〈N , X ,¼〉 is the set of all alternatives x
such that for every alternative y 6= x , x beats y either directly or indirectly.

For a collective choice problem with a strict Condorcet winner, the top cycle
set consists solely of that alternative. For a collective choice problem without a
Condorcet winner, it is nonempty and contains every Copeland winner, defined
as follows.

Definition 5.5: Copeland winner

An alternative is a Copeland winner of a collective choice problem if it
beats at least as many alternatives as does every other alternative.

Proposition 5.2: Nonemptiness of top cycle set and relation to
Condorcet winner

The top cycle set of an odd-strict collective choice problem is nonempty
and contains every Copeland winner. If the problem has a strict Condorcet
winner then its top cycle set consists solely of that alternative.

Proof

Let 〈N , X ,¼〉 be an odd-strict collective choice problem. By definition, its
set of Copeland winners is nonempty. To show that every Copeland winner
is in the top cycle set, I argue that if x is a Copeland winner and y is another
alternative, then x either beats y or indirectly beats it in two steps. The
reason is that if y beats x and there is no such alternative z such that x
beats z and z beats y , then if x beats z , y beats z , so that y beats more
alternatives than does x .

Now assume that 〈N , X ,¼〉 has a strict Condorcet winner, x ∗. Then no
alternative beats x ∗ directly or indirectly, so no other alternative is in the
top cycle set.

The top cycle set can alternatively be characterized as the smallest nonempty
set of alternatives with the property that every member of the set beats every
alternative not in the set.
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Exercise 5.1: Characterization of top cycle set

Show that (a) every alternative in the top cycle set beats every alternative
not in the set and (b) no proper subset of the top cycle set has this property.
Deduce from (a) that any alternative that indirectly beats an alternative in
the top cycle set is in the top cycle set .

For a problem without a strict Condorcet winner, the top cycle set contains
at least three alternatives.

Exercise 5.2: Size of top cycle set

Show that for an odd-strict collective choice problem without a strict Con-
dorcet winner, the top cycle set contains at least three alternatives.

For a Condorcet cycle, the top cycle set consists of all three alternatives (in
Example 1.5, a beats b , b beats c , and c beats a ). If we add an alternative to
Example 1.5 that does not beat a , b , or c (for example, it could be ranked third
by all individuals), then the top cycle set remains {a ,b , c }.

The next result shows that the alternatives in the top cycle set may be ordered
so that each alternative beats the next one and the last alternative beats the first
one. This result justifies the word “cycle” in the name of the notion and is used
in the proof of the next result.

Lemma 5.2: Top cycle set is a cycle

If the top cycle set of an odd-strict collective choice problem contains more
than one alternative, for some ordering x1, x2, . . . , xk of its members x1

beats x2 beats . . . beats xk beats x1.

Proof

Step 1 For some subset {x1, . . . ,xp} of the top cycle set with p ≥ 2, x1 beats x2

. . . beats xp beats x1.

Proof. Let x1 and x2 be members of the top cycle set, where x1 beats x2.
Given that x2 is in the set, it indirectly beats x1. Ã

Let C = {x1, . . . , xp} be a largest subset of the top cycle set such that x1

beats x2 . . . beats xp beats x1 and suppose, contrary to the result, that C is
not the whole top cycle set.
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Γ1

b c da

Γ2

Figure 5.3 An illustration of the argument that an outcome of sophisticated voting beats
every other alternative either directly or indirectly.

Step 2 For each alternative y in the top cycle set outside C , either (i) y beats
every member of C or (ii) every member of C beats y .

Proof. If not, then for two consecutive members xi and x j of the sequence
(x1,x2, . . . , xp ,x1), xi beats y and y beats x j . But then the sequence can
be extended by adding y between xi and x j , contradicting the maximality
of C . Ã

Step 3 Denote by C+ the set of alternatives in (i) of Step 2 and by C− the set
in (ii). Both C + and C− are nonempty.

Proof. Either C− or C+ is nonempty. If C− is empty, no member of C beats
any member of C+ directly or indirectly. If C+ is empty, no member of C−

beats any member or C directly or indirectly. Thus both C+ and C− are
nonempty. Ã

Now, take y ∈ C−. Given that y is in the top cycle set and does not
beat any alternative in C , it beats some alternative z ∈ C+. But then C
can be augmented by adding the alternatives y and z , contradicting its
maximality.

To understand why every outcome of sophisticated voting in a binary agenda
is in the top cycle set, look at Figure 5.3, in which the red branches indicate the
outcomes of sophisticated voting in the game and its subgames. For the outcome
of sophisticated voting in the game to be a , this alternative must beat d , against
which it is pitted in the subgame Γ2. It must beat also the winner in the subgame
Γ1, namely c , which beats b in the subgame. Thus a must beat c and d directly
and b indirectly (a beats c beats b ).

The next proposition establishes the general result and also its converse: for
any alternative in the top cycle set, there is a binary agenda for which that alter-
native is the outcome of sophisticated voting,
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Proposition 5.3: Sophisticated voting in binary agenda and top cycle set

Let 〈N , X ,¼〉 be an odd-strict collective choice problem.

a. For any binary agenda 〈〈N , X ,¼〉,Z ,O〉, every outcome of sophisticated
voting is in the top cycle set of 〈N , X ,¼〉.

b. For every alternative x in the top cycle set of 〈N , X ,¼〉 there is a binary
agenda 〈〈N , X ,¼〉,Z ,O〉 for which x is the outcome of sophisticated
voting.

Proof

a. Let a be an outcome of sophisticated voting. By Lemma 5.1, a is the
outcome of a subgame perfect equilibrium of the one-player game G ∗ in
which the set of terminal histories is Z , the player function assigns the
player to every nonterminal history, and for any terminal histories h ∈ Z
and h ′ ∈ Z the player prefers h to h ′ if and only if O(h) �i O(h ′) for a
majority of i ∈N .

I use induction. The top cycle set is nonempty, and every member of
it is the outcome of at least one terminal history of G ∗ (by the assumption
that every alternative is the outcome of some terminal history). Thus the
outcome of sophisticated voting in a subgame of G ∗ of length 1 is in the top
cycle set of 〈N , X ,¼〉.

Now let ` be a positive integer less than the length of the longest sub-
game of G ∗ and suppose that Γ is a subgame of G ∗ of length ` for which the
outcome of sophisticated voting, say x , is in the top cycle set of 〈N , X ,¼〉.
Let Γ′ be the subgame of G ∗ of length `+1 that contains Γ. I argue that the
outcome of sophisticated voting in Γ′ is in the top cycle set. The player has
the option to choose the action at the start of Γ′ that leads to the subgame
Γ, and hence to the outcome x . Thus the subgame perfect equilibrium
outcome of Γ′ is either x or an alternative y that beats x . By Exercise 5.1a
every alternative in the top cycle set beats every alternative outside the set,
so y , like x , is in the top cycle set.

Thus by induction the outcome of sophisticated voting in G ∗ is in the
top cycle set.

b. Denote the cycle among all the members of the top cycle set that is
shown to exist by Lemma 5.2 by (x , a 1, a 2, . . . , a k ) and denote the remaining
members of X (in an arbitrary order) by (z 1, z 2, . . . , z l ). The outcome of
sophisticated voting for the binary agenda with the procedure shown in
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x a 1 a 2

. . .

a k z 1 z 2

. . .

z l

Figure 5.4 Binary agenda used in the proof of Proposition 5.3b.

Figure 5.4 is x : a k beats every z j , a i beats a i+1 for i = 1, . . . , k − 1, and x
beats a 1.

Part b of this result says that for any alternative in the top cycle set, a binary
agenda can be designed so that the outcome of sophisticated voting is that alter-
native. If every alternative in the top cycle set were a reasonable outcome of the
collective choice problem, that might not be bad. But unfortunately the top cycle
may be large and include alternatives that are dominated by other alternatives,
as the following example (a generalization of a Condorcet cycle) shows.

Example 5.1: Large top cycle set, containing dominated alternatives

Suppose that N = {1,2,3}, X = {a 1, a 2, . . . , a k }, and

a k �1 a 1 �1 a 2 �1 · · · �1 a k−2 �1 a k−1

a 1 �2 a 2 �2 a 3 �2 · · · �2 a k−1 �2 a k

a 2 �3 a 3 �3 a 4 �3 · · · �3 a k �3 a 1.

Then a i beats a i+1 for i = 1, . . . , k −1 and a k beats a 1, so that the top cycle
set contains all k alternatives. However, all three individuals prefer a 2 to
each alternative a 3, a 4, . . . , a k−1. (More generally, all individuals prefer a i

to a j for i = 2, . . . , k −2 and j = i +1, . . . , k −1.)

Further, the outcome of sophisticated voting (a member of the top cycle set
by Proposition 5.3a) may not respond positively to changes in the individuals’
preferences, as you are asked to show in the following exercise.

Exercise 5.3: Outcome of sophisticated voting not positively responsive
in binary agenda

Let N = {1,2,3}, X = {a ,b , c , d }, b �1 a �1 c �1 d , c �2 d �2 b �2 a , and
d �3 a �3 c �3 b . Consider the binary agenda 〈〈N , X ,¼〉,Z ,O〉with the pro-
cedure shown in Figure 5.5, in which the individuals first vote on whether
to decide in the order (a ,b , c , d ) or in the order (d , c ,b , a ), and then con-
duct three votes, first whether to select the first alternative in the order,
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abc

d

d c b

a

Figure 5.5 The procedure in the binary agenda in Exercise 5.3. (Note that the initial
history is in the middle.)

then whether to select the second alternative, and then whether to select
the third alternative. Find the outcome of sophisticated voting for this bi-
nary agenda and also for the binary agenda that differs only in that indi-
vidual 1’s preference between a and b is reversed. Check that the change
is inconsistent with positive responsiveness.

5.2 Successive agendas

The procedural rules in many European and Latin American legislatures are ap-
proximated by a specific type of binary agenda known as a successive agenda. In
a such an agenda the alternatives are considered in some order (x1, . . . ,xk ). First
a vote is taken on whether to choose x1 or to drop it from consideration; if it is
dropped, then a vote is taken on whether to choose x2 or to drop it from con-
sideration; and so forth. The successive agenda for four alternatives is shown in
Figure 5.6.

Definition 5.6: Successive agenda

Let 〈N , X ,¼〉 be an odd-strict collective choice problem, denote by k the
number of alternatives (members of X ), and let (x1, . . . ,xk ) be an ordering
of the alternatives. The successive agenda 〈〈N , X ,¼〉, (x1, . . . ,xk )〉 is the bi-
nary agenda 〈〈N , X ,¼〉,Z ,O〉 in which the set Z consists of two terminal
histories h ′ and h ′′ of length k − 1, with O(h ′) = xk−1 and O(h ′′) = xk , and
for each l = 1, . . . , k −2 one terminal history h of length l , with O(h) = xl .

We can find the outcome of sophisticated voting in a successive agenda by
using backward induction, starting from the single subgame of length 1 (a choice
between xk−1 and xk ). Let x ∗k = xk . The choice in the single subgame Γ1 of length
1 is between xk−1 and x ∗k , so, using Lemma 5.1, the outcome of sophisticated
voting in the subgame is x ∗k if x ∗k beats xk−1, and xk−1 if xk−1 beats x ∗k . Denote
this alternative x ∗k−1 and replace Γ1 with it. Continue to the subgame of length
1 in the resulting game, where the choice is between xk−1 and x ∗k−1, and repeat
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NoYes

x1

x1 x2, x3, x4

NoYes

x2

x2 x3, x4

No

x4

Yes

x3

x3 x4

Figure 5.6 The procedure in a successive agenda for which X = {x1,x2,x3,x4} and the
ordering is (x1,x2,x3,x4).

the process. The sequence (x ∗1, . . . ,x ∗k ) thus created is called the sophisticated
sequence for the agenda, and the conclusion of the argument is that x ∗1 is the
outcome of sophisticated voting in the agenda.

Definition 5.7: Sophisticated sequence for successive agenda

Let 〈〈N , X ,¼〉, (x1, . . . , xk )〉 be a successive agenda. The sophisticated se-
quence for 〈〈N , X ,¼〉, (x1, . . . ,xk )〉 is the sequence (x ∗1, . . . ,x ∗k ) of alternatives
defined iteratively as follows, starting with x ∗k and working backwards to
x ∗1. First let x ∗k = xk . Then for any j with 1≤ j ≤ k −1 let

x ∗j =

¨
x j if x j beats x ∗j+1

x ∗j+1 otherwise.
(5.1)

Proposition 5.4: Outcome of sophisticated voting in successive agenda

The outcome of sophisticated voting in a successive agenda is the first
alternative in the sophisticated sequence for the agenda.

One implication of this result is that the outcome of sophisticated voting in a
successive agenda is positively responsive: if the outcome is x and then x rises in
the preferences of some individual, x continues to beat every alternative it beat
previously, and hence remains the outcome of sophisticated voting.

The next exercise concerns two more implications of the result. First, the last
alternative in a successive agenda is the outcome of sophisticated voting only if
it is a strict Condorcet winner. Second, an alternative remains the outcome of
sophisticated voting in a successive agenda if it is moved earlier in the agenda.
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Exercise 5.4: Effect of order of alternatives on outcome of sophisticated
voting in successive agenda

Let B = 〈〈N , X ,¼〉, (x1, . . . ,xk )〉 be a successive agenda. Use Proposition 5.4
to show that (a) if xk is the outcome of sophisticated voting in B then it is
a strict Condorcet winner of 〈N , X ,¼〉, and (b) for any l ∈ {2, . . . , k }, if xl is
the outcome of sophisticated voting in B then it is also the outcome of so-
phisticated voting in the successive agenda 〈〈N , X ,¼〉, (y1, . . . , yk )〉 in which
(y1, . . . , yk ) differs from (x1, . . . ,xk ) only in that xl and xl−1 are interchanged.

The agenda used to prove Proposition 5.3b is a successive agenda, so we have
the following result.

Proposition 5.5: Sophisticated voting in successive agenda and top cycle
set

Let 〈N , X ,¼〉 be an odd-strict collective choice problem. For every alterna-
tive x in the top cycle set of 〈N , X ,¼〉 there is a successive agenda 〈〈N , X ,¼〉,
(x1, . . . , xk )〉 for which x is the outcome of sophisticated voting.

Although the outcome of sophisticated voting in a successive agenda, un-
like the outcome in a general binary agenda, is necessarily positively responsive,
Proposition 5.5 means that the outcome suffers from a drawback: for some col-
lective choice problems, the top cycle set contains dominated alternatives (see
for example Example 5.1), so the outcome of sophisticated voting in a successive
agenda may be dominated.

5.3 Amendment agendas

The procedural rules in a few European legislatures, as well as in Canada and the
United States, are approximated by agendas whose structures differ from those of
successive agendas, and which generate sets of sophisticated outcomes smaller
than the top cycle set, with better properties. Let (x1, . . . ,xk ) be an ordering of
the alternatives. In an amendment agenda, first a vote is taken to eliminate x2

from consideration (Yes) or to eliminate x1 (No); then a vote is taken whether
to eliminate x3 (Yes) or to eliminate whichever of x1 or x2 was retained on the
first round (No); and so on, until the remaining alternative is pitted against xk .
The procedure in an amendment agenda for four alternatives is shown in Fig-
ure 5.7. One interpretation of this agenda is that x4 is the status quo, x3 is a bill,
x2 is an amendment, and x1is an amendment to the amendment. The first vote
determines which version of the amendment is considered, the second vote de-
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NoYes
x1, x3, x4 x2, x3, x4

NoYes NoYes
x1, x4 x3, x4

No

x4

Yes

x1

No

x4

Yes

x3

x2, x4 x3, x4

No

x4

Yes

x2

No

x4

Yes

x3

x1 x4 x3 x4 x2 x4 x3 x4

Figure 5.7 The procedure in an amendment agenda for X = {x1,x2,x3,x4} and the
ordering (x1,x2,x3,x4).

termines whether the bill or an amended version of it is considered, and the final
vote determines whether the (possibly amended) bill passes.

Definition 5.8: Amendment agenda

Let 〈N , X ,¼〉 be an odd-strict collective choice problem and let (x1, . . . ,xk )
be an ordering of the members of X . The amendment agenda 〈〈N , X ,¼〉,
(x1, . . . , xk )〉 is the binary agenda 〈〈N , X ,¼〉,Z ,O〉 in which every termi-
nal history (member of Z ) has length k − 1 and for any terminal history
(y 1, . . . , y k−1) we have O(y 1, . . . , y k−1) = xr+1, where r is the index of the last
No in (y 1, . . . , y k−1), with r = 0 if y j = Yes for all j = 1, . . . , k −1.

The set of alternatives that are the outcomes of sophisticated voting in an
amendment agenda is the Banks set, named for its originator, Jeffrey S. Banks
(1958–2000). Recall that an alternative is in the top cycle set if it beats every other
alternative either directly or indirectly. To qualify for membership in the Banks
set, an alternative x must satisfy a more stringent requirement: there must exist
a sequence (z 1, . . . , z l ) of alternatives such that (i) each z j beats every subsequent
member of the sequence, z j+1, . . . , z l , (ii) x beats every member of the sequence,
and (iii) no alternative beats x and every member of the sequence. For example,
x is in the Banks set if it beats some alternative z and no alternative beats both
x and z , or if it beats some alternatives z 1 and z 2, z 1 beats z 2, and no alternative
beats all three of the alternatives x , z 1, and z 2.

Definition 5.9: Banks set

Let 〈N , X ,¼〉 be an odd-strict collective choice problem. An alternative
x ∈ X is in the Banks set of 〈N , X ,¼〉 if there is a sequence (z 1, . . . , z l ) of
alternatives such that

• for j = 1, . . . , l −1, z j beats each of the alternatives z j+1, . . . , z l
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• x beats each of the alternatives z 1, . . . , z l

• no alternative beats all of the alternatives z 1, . . . , z l and x .

Suppose that x is in the Banks set, with the associated sequence (z 1, . . . , z l ).
Then by the last of the three conditions, every alternative other than x or z 1, . . . ,
z l is beaten by either x or some z j , and hence, given that x beats every z j , is
beaten by x either directly or indirectly. Thus the Banks set is a subset of the top
cycle set. For a problem that has a strict Condorcet winner, say a ∗, the Banks set
is {a ∗}, because a ∗ beats every other alternative. For problems without a strict
Condorcet winner, the Banks set is nonempty.

Proposition 5.6: Banks set is nonempty subset of top cycle set

The Banks set of any odd-strict collective choice problem is a nonempty
subset of the top cycle set. In particular, for a problem with a strict Con-
dorcet winner the Banks set consists solely of that alternative.

Proof

An argument that the Banks set is a subset of the top cycle set is given in
the text.

To prove the nonemptiness of the Banks set I use an induction on the
number of alternatives.

Let 〈N , X ,¼〉 be an odd-strict collective choice problem and Xl =
{x1, . . . , xl } ⊂ X .

If l = 2 and the alternatives are labeled so that x1 beats x2, then the
Banks set of the problem 〈N , X ,¼〉 is {x1}.

Now let l ≥ 2 and assume that the Banks set of 〈N , Xl ,¼|Xl 〉 is nonempty,
with x1 a member of the set and the associated sequence (z 1, z 2, . . . , z p ).
Let Xl+1 = X ∪ {xl+1} for some xl+1 ∈ X \Xl . Either xl+1 beats x1 and every
z j , in which case xl+1 is in the Banks set of 〈N , Xl+1,¼|Xl+1〉 with the as-
sociated sequence (x1, z 1, z 2, . . . , z p ), or some z j or x1 beats xl+1, in which
case x1 is in the Banks set of 〈N , Xl+1,¼|Xl+1〉 with the associated sequence
(z 1, z 2, . . . , z p ). Thus the Banks set of 〈N , Xl+1,¼|Xl+1〉 is nonempty.

The second part of Proposition 5.2 implies that for a problem with a
strict Condorcet winner the Banks set consists solely of that alternative.
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Exercise 5.5: Uncovered set

The uncovered set consists of the alternatives x such that for every other
alternative y either x beats y or x beats y indirectly in two steps. Thus the
uncovered set is a subset of the top cycle set. Show that for an odd-strict
collective choice problem it contains the Banks set.

For a Condorcet cycle, the Banks set, like the top cycle set, consists of all three
alternatives. (In Example 1.5, a sequence of alternatives supporting a , for exam-
ple, is (b ): a beats b and c does not beat b .) But for many collective choice prob-
lems the Banks set is smaller than the top cycle set. An example is the problem
in Example 5.1, in which the Banks set contains only the alternatives that are not
dominated.

Example 5.2: Banks set for Example 5.1

For the collective choice problem in Example 5.1, the Banks set is
{a 1, a 2, a k }. A sequence of alternatives supporting a 1 is (a 2, . . . , a k−1) (a k

does not beat a k−1), a sequence supporting a 2 is (a 3, a 4, . . . , a k ) (a 1 does
not beat a k ), and a sequence supporting a k is (a 1) (no alternative beats
both a 1 and a k ). No alternative a i with 3 ≤ i ≤ k − 1 is in the Banks set
because a 2 beats all the alternatives that a i beats.

In fact, no alternative in the Banks set of any odd-strict collective choice
problem is dominated.

Exercise 5.6: No alternative in Banks set is dominated

Show that for any odd-strict collective choice problem, for no member a
of the Banks set is there an alternative that every individual prefers to a .

To show that the set of outcomes of sophisticated voting for amendment
agendas is the Banks set, I first define a procedure for finding the outcome of
sophisticated voting in any amendment agenda. This procedure involves gener-
ating a sequence of alternatives defined as follows.

Definition 5.10: Sophisticated sequence for amendment agenda

The sophisticated sequence for the amendment agenda 〈〈N , X ,¼〉,
(x1, . . . , xk )〉 is the sequence (x ∗1, . . . ,x ∗k ) of alternatives defined iteratively as
follows, starting with x ∗k and working backwards to x ∗1. First let x ∗k = xk .
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x3 beats x2x2 beats x3

x ∗3 = x3

x2 or x3

beats x1

x ∗1 = x2

x1 beats
x2 and x3

x ∗1 = x1

x ∗2 = x2

x3 beats x1

x ∗1 = x3

x1 beats x3

x ∗1 = x1

x ∗2 = x3

Figure 5.8 The sophisticated sequence for the amendment agenda for three alternatives
and the ordering (x1,x2,x3).

Then for any j with 1≤ j ≤ k −1 let

x ∗j =

¨
x j if x j beats x ∗l for l = j +1, . . . , k
x ∗j+1 otherwise.

(5.2)

For k = 2, we have (x ∗1,x ∗2) = (x1,x2) if x1 beats x2 and (x ∗1,x ∗2) = (x2,x2) if x2

beats x1. An analysis of the case k = 3 is illustrated in Figure 5.8. The conclusion
is

(x ∗1,x ∗2,x ∗3) =







(x1,x2,x3) if x1 beats x2 and x3, and x2 beats x3

(x2,x2,x3) if x2 or x3 beats x1, and x2 beats x3

(x1,x3,x3) if x1 beats x3, and x3 beats x2

(x3,x3,x3) if x3 beats x1 and x2.

The next result shows that the outcome of sophisticated voting is the first
alternative in the sophisticated sequence.

Proposition 5.7: Outcome of sophisticated voting in amendment
agenda

The outcome of sophisticated voting in an amendment agenda is the first
alternative in the sophisticated sequence for the agenda.

Proof

Denote by k the number of alternatives and by Γ(y1, . . . , yq ), with 2≤q ≤ k ,
the subgame of the agenda in which the alternatives y1, . . . , yq remain, in
that order. This subgame is itself an amendment agenda.

For q = 2, from (5.2) the sophisticated sequence is (x ∗1,x ∗2)where x ∗2 = y2
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and

x ∗1 =

¨
y1 if y1 beats y2

y2 if y2 beats y1.

By Lemma 5.1, x ∗1 is the outcome of sophisticated voting in Γ(y1, y2).
Now suppose that the outcome of sophisticated voting in every sub-

game in which at most q − 1 alternatives remain, with 3 ≤ q ≤ k , is the
first alternative in the sophisticated sequence for the subgame. I argue
that the same is true for the subgame Γ(y1, . . . , yq ). This subgame starts
with a vote on whether to keep y1 and eliminate y2, moving to the sub-
game Γ(y1, y3, . . . , yq ), or to keep y2 and eliminate y1, moving to the sub-
game Γ(y2, y3, . . . , yq ). Denoting by (b1,b3, . . . ,bq ) and (c2, c3, . . . , cq ) the so-
phisticated sequences for the subgames Γ(y1, y3, . . . , yq ) and Γ(y2, y3, . . . , yq ),
we can thus represent Γ(y1, . . . , yq ) as follows.

y2

Γ(y2, y3, . . . , yq )
sophisticated sequence:

(c2, c3, . . . , cq )

y1

Γ(y1, y3, . . . , yq )
sophisticated sequence:
(b1,b3, . . . ,bq )

Denote the sophisticated sequence for Γ(y1, . . . , yq ) by (a 1, . . . , a q ). Given
that (y1, y3, . . . , yq ) and (y2, y3, . . . , yq ) differ only in their first components,
and (y1, . . . , yq ) shares (y3, . . . , yq )with the first sequence and (y2, . . . , yq )with
the second, from (5.2) we have

a j =b j = c j for j = 3, . . . ,q and a 2 = c2.

Thus we can represent Γ(y1, . . . , yq ) as

y2

Γ(y2, y3, . . . , yq )
sophisticated sequence:
(a 2, a 3, . . . , a q )

y1

Γ(y1, y3, . . . , yq )
sophisticated sequence:
(b1, a 3, . . . , a q )

By assumption, the outcome of sophisticated voting in Γ(y1, y3, . . . , yq ) is
b1 and the outcome of sophisticated voting in Γ(y2, y3, . . . , yq ) is a 2, so the
outcome of sophisticated voting in Γ(y1, . . . , yq ) is

z =

¨
b1 if b1 beats a 2 or b1 = a 2

a 2 if a 2 beats b1.
(5.3)
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We need to show that z is equal to the value of a 1 given by (5.2):

a 1 =

¨
y1 if y1 beats a 2, a 3, . . . , a q

a 2 if some member of {a 2, a 3, . . . , a q} beats y1.
(5.4)

• Suppose that y1 beats a 2, . . . , a q , so that a 1 = y1 by (5.4). The fact that
b1 is the first member of the sophisticated sequence for Γ(y1, y3, . . . , yq )
and y1 beats a 3, . . . , a q implies, using (5.2), that b1 = y1. Since y1 beats
a 2, the value of z given by (5.3), namely b1, is the value of a 1 given by
(5.4).

• Suppose that a j beats y1 for some j = 3, . . . ,q , so that a 1 = a 2 by (5.4).
The fact that b1 is the first member of the sophisticated sequence for
Γ(y1, y3, . . . , yq ) implies, using (5.2), that b1 = a 3.

◦ Suppose that y2 beats a 3, . . . , a q . Then the fact that a 2 is the first
member of the sophisticated sequence for Γ(y2, y3, . . . , yq ) implies,
using (5.2), that a 2 = y2. Given that y2 beats a 3, y2 = a 2, and a 3 =b1,
a 2 beats b1. Thus the value of z given by (5.3), namely a 2, is the
value of a 1 given by (5.4).

◦ Suppose that a j beats y2 for some j = 3, . . . ,q . Then the fact that a 2

is the first member of the sophisticated sequence for Γ(y2, y3, . . . , yq )
implies, using (5.2), that a 2 = a 3. Given b1 = a 3, we have b1 = a 2,
so thus the value of z given by (5.3) is the value of a 1 given by (5.4).

We can now show that the outcome of sophisticated voting in an amendment
agenda is in the Banks set, and for any alternative in the Banks set there is an
amendment agenda for which the alternative is the outcome of sophisticated
voting.

Proposition 5.8: Sophisticated voting in amendment agenda and Banks
set

Let 〈N , X ,¼〉 be an odd-strict collective choice problem.

a. For any amendment agenda 〈〈N , X ,¼〉, (x1, . . . ,xk )〉, the outcome of so-
phisticated voting is in the Banks set of 〈N , X ,¼〉.

b. For every alternative a in the Banks set of 〈N , X ,¼〉 there is an amend-
ment agenda 〈〈N , X ,¼〉, (x1, . . . ,xk )〉 for which a is the outcome of so-
phisticated voting.
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Proof

a. By Proposition 5.7, the outcome of sophisticated voting is the first al-
ternative in the sophisticated sequence for the agenda. By definition, this
alternative beats all other alternatives in the sequence, every alternative in
the sequence beats every later alternative in the sequence, and every alter-
native not in the sequence is beaten by some alternative in the sequence.
Thus the first alternative in the sequence is in the Banks set.

b. Let a be in the Banks set and let (y1, . . . , yl ) be a sequence of alternatives
that supports it. Let z 1, . . . , z p be the remaining alternatives (other than a
and y1, . . . , yl ); the order of these alternatives does not matter. I claim that
a is the outcome of sophisticated voting for the amendment agenda B =
〈〈N , X ,¼〉, (z 1, . . . , z p , a , y1, . . . , yl )〉. By the definition of (y1, . . . , yl ), yj beats
yj+1, . . . , yl for j = 1, . . . , l −1 and a beats every yj . Also, every z j is beaten by
either a or some yj . Thus the first alternative in the sophisticated sequence
for B is a , so that by Proposition 5.7, a is the outcome of sophisticated
voting in B .

Unlike the top cycle set, the Banks set has the property that no member of
it is dominated. In addition, the outcome of sophisticated voting in an amend-
ment agenda, which is a member of the Banks set by Proposition 5.8, is positively
responsive.

Exercise 5.7: Outcome of sophisticated voting in amendment agenda is
positively responsive

Use Proposition 5.8 to show that the outcome of sophisticated voting in an
amendment agenda is positively responsive.

Although the outcome of sophisticated voting in an amendment agenda has
these desirable properties, such an agenda does not treat the alternatives equally.
The last alternative on the agenda is the outcome of sophisticated voting only if
it is a strict Condorcet winner, but an earlier alternative may be the outcome of
sophisticated voting even if it is not a strict Condorcet winner, and an alternative
is never disadvantaged by being moved to an earlier position in the agenda.
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All alternatives

Top cycle set = outcomes of
sophisticated voting in general

binary agendas and in successive agendas

Uncovered set
Banks set =

outcomes of sophisticated
voting in amendment agendas

Figure 5.9 An illustration of the relations among the top cycle set, the Banks set, the un-
covered set, and the outcomes of sophisticated voting in general binary agendas, succes-
sive agendas, and amendment agendas. The set of Copeland winners, like the Banks set,
is a subset of the uncovered set; Laffond and Laslier (1991) show that it may be disjoint
from the Banks set.

Exercise 5.8: Effect of order on outcome of sophisticated voting in
amendment agenda

Show that the outcome of sophisticated voting in an amendment agenda
satisfies the properties of the outcome of sophisticated voting in a succes-
sive agenda given in Exercise 5.4.

The relations among the top cycle set, Banks set, and outcomes of sophis-
ticated voting in general binary agendas, successive agendas, and amendment
agendas, as established in Propositions 5.3, 5.5, 5.6, and 5.8, are illustrated in
Figure 5.9.

5.4 Single-peaked preferences and convex agendas

One feature of the model is that there is only one possible preference relation for
each individual, so that every individual knows every other individual’s prefer-
ences as well as her own. In this section I consider an environment in which each
individual is uncertain of the other individuals’ preference relations, and show
that in a certain type of agenda the individuals’ optimal choices are robust with
respect to this imperfect information. Specifically, I show that if all of the prefer-
ence relations that individuals might have are single-peaked with respect to the
same linear order, then for a certain type of agenda—but not generally—an indi-
vidual’s voting sincerely is optimal when every other individual votes sincerely,
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regardless of the other individuals’ (single-peaked) preferences.
To state the result precisely, I need to define a few concepts. Every vote in a

binary agenda is a choice between two sets of alternatives, and notation for these
sets is useful. For any binary agenda 〈〈N , X ,¼〉,Z ,O〉, any nonterminal history
h, and p ∈ {Yes, No}, let A(h, p ) be the set of alternatives that are outcomes of
sequences of votes following a majority vote of p at h:

A(h, p ) = {O(z ) : z = (h, p , h ′) for some sequence h ′}.

For example, for a successive agenda with the procedure given in Figure 5.6,
A(∅, Yes) = {x1} and A(∅, No) = {x2,x3,x4}, and for an amendment agenda with
the procedure given in Figure 5.7, A(∅, Yes) = {x1,x3,x4} and A(∅, No) = {x2,x3,x4}.

For convenience, I restrict attention to binary agendas for which after every
nonterminal history the set of outcomes possible following a majority vote of
Yes is disjoint from the set of outcomes possible following a majority vote of No.
Such agendas are called partitional. An agenda for which the procedure is given
in Figure 5.6 is partitional, but one for which the procedure is given in Figure 5.7
is not—for example, x3 and x4 are members of both A(∅, Yes) and A(∅, No).

Definition 5.11: Partitional binary agenda

A binary agenda partitional if for every nonterminal history h, A(h, Yes)∩
A(h, No) =∅.

The new concept central to the result in this section is that of a convex agenda.
A binary agenda for a collective choice problem for which the preference pro-
file is single-peaked is convex if for each nonterminal history h and each p ∈
{Yes, No}, whenever the set A(h, p ) of possible outcomes contains some alterna-
tives xr and xs it contains also all alternatives between xr and xs according to
the ordering of the alternatives. That is, at each stage, the alternatives that are
possible outcomes of any given majority decision are adjacent. For example, in
any vote, one option may be low funding for a project and the other may be ei-
ther medium or high funding, but the individuals are never faced with a vote in
which one option is medium funding and the other is either low or high funding.
If the ordering with respect to which the preference profile is single-peaked is
x1 Ã x2 Ã · · ·Ã x4, the successive agenda in Figure 5.6 is convex, for example, but
the amendment agenda in Figure 5.7 is not (e.g. A(∅, Yes) contains x1 and x3 but
not x2).
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Definition 5.12: Convex binary agenda

Let 〈N , X ,¼〉 be an odd-strict collective choice problem for which the pref-
erence profile ¼ is single-peaked with respect to a linear order Ä. A binary
agenda 〈〈N , X ,¼〉,Z ,O〉 is convex if for every nonterminal history h, each
p ∈ {Yes, No}, and any alternatives xr and xs , if A(h, p ) contains xr and xs

then it contains every alternative xt with xr Ã xt Ã xs .

The last concept needed to state the result is that of sincere voting. An in-
dividual is said to vote sincerely at a history h in a binary agenda if she votes for
the option p for which A(h, p ) contains the alternative she likes best in A(h, Yes)∪
A(h, No). That is, we classify a vote as sincere if the best outcome to which it may
lead is better than the best outcome to which the opposite vote may lead. For
example, if a majority vote of Yes leads to either x1 or x3 whereas a majority vote
of No leads to x2, the sincere vote of an individual who prefers x1 to x2 to x3 is Yes:
the best outcome possible if the majority vote is Yes is x1, which the individual
prefers to the best outcome possible if the majority vote is No, namely x3.

Definition 5.13: Sincere voting

An individual’s strategy in a binary agenda for an odd-strict collective
choice problem is sincere if for every nonterminal history h it assigns the
option p ∈ {Yes, No} for which A(h, p ) contains the alternative the individ-
ual likes best in A(h, Yes)∪A(h, No).

The next result says that for a binary agenda with single-peaked preferences
that is partitional and convex, if the strategies of all individuals but one are sin-
cere then a sincere strategy is optimal for the remaining individual, regardless
of the other individuals’ preferences. Further, if every individual votes sincerely,
then the outcome is the strict Condorcet winner. Thus even in an environment
in which each individual knows only her own preferences, not the preferences of
any other individual, every individual’s voting sincerely is mutually optimal and
the outcome of such voting is that the strict Condorcet winner.

Proposition 5.9: Sincere voting in convex partitional binary agenda
with single-peaked preferences

Consider a binary agenda with single-peaked preferences that is parti-
tional and convex.

a. Let i be an individual. If the strategy of every individual other than i is
sincere then i optimally votes sincerely in every ballot.
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b. If every individual votes sincerely in every ballot, the outcome is the
strict Condorcet winner.

Proof

a. Denote by k the number of alternatives and by Ä the linear order with
respect to which the preferences are single-peaked. Label the alternatives
so that x1 Ã x2 Ã · · · Ã xk . Assume, contrary to the result, that i ’s optimal
vote at some history h is not sincere. Specifically, suppose that i ’s sincere
vote is Yes but she prefers the outcome of voting No to that of voting Yes,
given the other individuals’ strategies. Given that the agenda is partitional
and convex, either A(h, Yes) = {xq , . . . ,xr } and A(h, No) = {xr+1, . . . ,xs } for
some alternatives xq , xr , and xs , or the roles of Yes and No are reversed.
Suppose, without loss of generality, the former. (Refer to Figure 5.10.) The
fact that i ’s sincere vote is Yes means that she prefers the best alternative
in {xq , . . . , xr } to the best alternative in {xr+1, . . . ,xs } and hence prefers xr to
every alternative in {xr+1, . . . ,xs }.

I argue that if, at h and later, i always votes for the option that contains
xr , the outcome is xr , contradicting the supposition that i ’s voting Yes at h
is not optimal for her.

Given our assumption that i ’s voting Yes at h is not optimal for her, her
switching her vote from Yes to No must change the outcome. Thus the
votes at h of the other individuals must be split equally between Yes and
No. Given that these individuals are by assumption voting sincerely, the
favorite alternatives of half of them are thus at most xr .

Now suppose that i votes Yes at h, so that Yes wins. At the next vote, the
options are {xq , . . . , xt } and {xt+1, . . . ,xs } for some t ∈ {q , . . . , s − 1}. Given
that the favorite alternatives of half of the other individuals are at most xr ,
at most half of them are at most xt , so that given that these individuals
are voting sincerely, at least half of them vote No at (h, Yes). Thus if i votes
for No, this option wins. Similarly, if i votes for the option that contains
xr in every subsequent ballot, that option wins, so that the ultimate out-
come is xr . But she prefers prefers xr to every alternative in {xr+1, . . . ,xs },
contradicting the supposition that her voting Yes at h is not optimal.

b. At the initial history, the convexity of the agenda means that a majority
of individuals vote sincerely for the option that contains the strict Con-
dorcet winner. Thus this alternative is a member of one of the options in
the next ballot, when the same argument implies that a majority votes for
the option containing the strict Condorcet winner. Repeating this process
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h
NoYes

xq , . . . ,xr xr+1, . . . ,xs

...
NoYes

xq , . . . ,xt xt+1, . . . ,xr

...
...

Figure 5.10 The part of an agenda following the history h used in the proof of Proposi-
tion 5.9.

leads to the conclusion that the outcome is the strict Condorcet winner.

Kleiner and Moldovanu (2017) show that this result does not depend on the
assumption that the agenda is partitional. It does however depend on the as-
sumption that the agenda is convex. Consider an agenda with the structure given
in Figure 5.11 for a collective choice problem with preferences that are single-
peaked with respect to the ordering x1 Ã x2 Ã x3. Suppose there are three indi-
viduals, with individual 1’s preferences given by x1 �1 x2 �1 x3, individual 2’s by
x2 �2 x3 �2 x1, and individual 3’s by x3 �3 x2 �3 x1. Suppose that individuals 2 and
3 vote sincerely. Then at the initial history individual 2 votes No and individual 3
votes Yes, and after the history Yes they both vote No. Thus if individual 1 votes
Yes in the first ballot, the outcome is x3 regardless of her vote in the second ballot,
whereas if she votes No, the outcome is x2. She prefers x2 to x3, so she optimally
votes No, although her sincere vote is Yes.

Notes

The study of binary agendas was initiated by Black (1948a,b, 1958) and Farquhar-
son (1969) (which was completed in 1958). In particular, Farquharson was the
first person to study strategic behavior in agendas using tools from game the-
ory; the names successive agenda and amendment agenda are his (Farquhar-
son 1969, 61). My statements at the start of Sections 5.2 and 5.3 about the cor-
respondence between agenda types and the rules of parliamentary procedure
in various countries are based on evidence assembled by Rasch (2000, Table 1).
This evidence has led some people to refer to successive agendas as Euro-Latin
and amendment agendas as Anglo-American. It has also been questioned: see
Schwartz (2008, 368) and Horan (2021, 236–237).

The top cycle set was first used to analyze voting by Ward (1961) (who calls
it the “majority set”). Lemma 5.2 is due to Camion (1959). Proposition 5.3a
is due to McKelvey and Niemi (1978, Corollary 2). Proposition 5.5, and thus
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No

x2

Yes
x1,x3 x2

No

x3

Yes

x1

x1 x3

Figure 5.11 The structure of a nonconvex agenda for which the individuals’ prefer-
ences are single-peaked with respect to the ordering x1 Ã x2 Ã x3. An individual with
preferences x1 �1 x2 �1 x3 does not optimally vote sincerely when there are two other
individuals, one with preferences x2 �2 x3 �2 x1 and one with preferences x3 �3 x2 �3 x1.

Proposition 5.3b, is due to Miller (1977, Proposition 6).
The Banks set, Proposition 5.6, and Proposition 5.8 are due to Banks (1985).

Proposition 5.7 is due to Shepsle and Weingast (1984, Theorem 1); see also Moulin
(1986, Theorem 3).

Section 5.4 is based on Kleiner and Moldovanu (2017); Proposition 5.9 is due
to them.

The uncovered set (Exercise 5.5) was independently suggested by Miller (1977)
and Fishburn (1977) (C9, p. 473). Duggan (2013) analyzes several closely related
notions, some of which were suggested before the work of Miller and Fishburn.

For the rationale for naming the concept of a Copeland winner (Definition 5.5),
see the discussion of Example 1.7 in the Notes for Chapter 1. Example 5.1 is taken
from Moulin (1986, 274) (see also Fishburn 1977, 478). Exercise 5.3 is taken from
Moulin (1986, 284).

Solutions to exercises

Exercise 5.1
a. Denote the top cycle set by T . If a ∈ T and b beats a , then b indirectly
beats all alternatives that a indirectly beats, and hence b ∈ T . So if b is not in
T then a beats it.

b. Now let T ′ be a proper subset of T with the property that every alternative
in T ′ beats every alternative outside T ′. Let a ∈ T ′ and b ∈ T \ T ′. Given
that b ∈ T , b indirectly beats a ; say b beats u 1 beats u 2 . . . beats u k−1 beats
u k beats a . Then u k ∈ T ′ because a ∈ T ′ and hence beats every alternative
outside T ′. By the same argument, u k−1 ∈ T ′, and hence u j ∈ T ′ for j =
1, . . . , k . But then b ∈ T ′ also, contrary to the assumption that b ∈ T \T ′. Hence
no proper subset of T has the property that every alternative in it beats every
alternative outside it.

Now let a ∈ T and suppose that b beats a indirectly. Then for some alterna-
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abc

d

d c b

a

abc

d

d c b

a

Figure 5.12 The agenda in Exercise 5.3. (Note that the initial history is in the middle.)
The outcomes of the votes for the original preference profile are shown at the top, in red.
Those for the modified preference profile are shown at the bottom, in blue.

tives z 1, . . . , z p , b beats z 1 beats . . . beats z p beats a . If z p 6∈ T then by part
(a), a beats it, so in fact z p ∈ T . Similarly, z p−1 ∈ T and hence . . . z 1 ∈ T and
hence b ∈ T .

Exercise 5.2
For a problem without a strict Condorcet winner, the top cycle set contains
at least two alternatives. Suppose that x and y are both in the top cycle set.
They cannot both beat each other (directly), so one must beat the other indi-
rectly. Suppose that y beats z 1 beats . . . beats z l beats x . Then every z j beats
(indirectly) every alternative that x beats, so that they are all in the top cycle
set. Thus the top cycle set contains at least one alternative in addition to x
and y .

Exercise 5.3
The agenda is shown in Figure 5.12. For the original preference profile, the
outcome of sophisticated voting is a . After a rises in individual 1’s prefer-
ences, positive responsiveness requires that the outcome remains a , but it
changes to d (which is worse for individual 1).

Exercise 5.4
(a) By Proposition 5.4, if xk is the outcome of sophisticated voting then every
member of the sophisticated sequence is xk , which means that xk beats every
other alternative, and hence is a strict Condorcet winner.

(b) The fact that xl is the outcome of sophisticated voting in B means that
the sophisticated sequence for B takes the form (xl ,xl , . . . ,xl ,x ∗l+1, . . . ,x ∗k ). In
particular, xl beats xl−1. Now let (y ∗1 , . . . , y ∗k ) be the sophisticated sequence for
the agenda B ′ = 〈〈N , X ,¼〉, (y1, . . . , yk )〉. If xl−1 beats x ∗l+1 then y ∗l = xl−1, and
given that xl beats xl−1, y ∗l−1 = xl , so that y ∗j = xl for all j = 1, . . . , l − 1. If x ∗l+1

beats xl−1 then y ∗l = x ∗l+1 and hence again y ∗j = xl for all j = 1, . . . , l − 1. Thus
in both cases the outcome of sophisticated voting in B ′ is xl .
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Exercise 5.5
Suppose that x is not in the uncovered set. Then some other alternative y
beats both x and every alternative that x beats. Thus no sequence z 1, z 2, . . . ,
z l satisfies the second and third points in the definition of the Banks set, so
that x is not in the Banks set.

Exercise 5.6
If a is in the Banks set then there are alternatives x1, . . . , xl such that (i) a
beats each of these alternatives and (ii) no alternative beats a and all of these
alternatives. If for some alternative b , every individual prefers b to a , then b
beats a and also beats any alternative that a beats, violating (ii).

Exercise 5.7
Let a be the outcome of sophisticated voting for the amendment agenda
B = 〈〈N , X ,¼〉, (x1, . . . ,xk )〉. By Proposition 5.8, a is in the Banks set, so that
there exists a sequence (x1,x2, . . . ,xl ) of alternatives satisfying the conditions
in Definition 5.9. Let i be an individual, let a ∈ X , and let ¼′ be a preference
profile that differs from ¼ only in that a is ranked higher by ¼′i than it is by
¼i . Then for the problem 〈N , X ,¼′〉, the sequence (x1,x2, . . . ,xl ) satisfies the
conditions in Definition 5.9, since a still beats every x j , every x j beats the
same set of xi ’s as it did for ¼, and no alternative except possibly a beats any
alternative that it did not beat for ¼.

Exercise 5.8
a. By Proposition 5.7 and (5.2), if xk is the outcome of sophisticated voting,
then it beats every other alternative, and hence is the strict Condorcet winner.

b. Denote the sophisticated sequence for B by (x ∗1, . . . ,x ∗k ). Given that xl is the
outcome of sophisticated voting in B , by Proposition 5.7 we have x ∗1 = · · · =
x ∗l = xl .

x1 · · · xl−2 xl−1 xl xl+1 · · · xk

sophisticated sequence: xl · · · xl xl xl x ∗l+1 · · · x ∗k

By (5.2), xl beats every alternative x ∗l+1, . . . , x ∗k and every alternative x1, . . . ,
xl−1 is beaten by some member of {xl ,x ∗l+1 . . . ,x ∗k }.

Now use (5.2) to calculate the sophisticated sequence (y ∗1 , . . . , y ∗k ) for 〈〈N , X ,¼〉,
(y1, . . . , yk )〉. Given that yj = x j for j = l + 1, . . . , k , we have y ∗j = x ∗j for j =
l +1, . . . , k .

If xl−1 beats x ∗l+1, . . . , x ∗k , so that y ∗l = xl−1, then given that xl−1 is beaten by
some member of {xl ,x ∗l+1 . . . ,x ∗k }, xl beats xl−1, and consequently y ∗j = xl for
j = 1, . . . , l −1.
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x1 · · · xl−2 xl xl−1 xl+1 · · · xk

sophisticated sequence xl · · · xl xl xl−1 x ∗l+1 · · · x ∗k

If xl−1 is beaten by one of the alternatives x ∗l+1, . . . , x ∗k , then y ∗l = x ∗l+1, and
again y ∗j = xl for j = 1, . . . , l −1.

x1 · · · xl−2 xl xl−1 xl+1 · · · xk

sophisticated sequence xl · · · xl xl x ∗l+1 x ∗l+1 · · · x ∗k

In both cases y ∗1 = xl , so that xl is the outcome of sophisticated voting in
〈〈N , X ,¼〉, (y1, . . . , yk )〉.
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Each individual in the models of voting in the previous chapters is motivated
by the possibility that her vote will increase the probability that the outcome is
one that she likes. This chapter explores two other motivations. The first model
retains the assumption that individuals vote because they believe that doing so
may affect the outcome of the election, but assumes that rather than being self-
interested, each individual chooses an action that, if chosen by everyone like her,
would lead to the outcome that she believes is the best for society. This model is
one possible formulation of the idea that individuals’ voting decisions are driven
by ethical concerns. The second model retains the assumption that individuals
are self-interested but assumes that they vote because they derive satisfaction
from expressing their opinions, regardless of whether doing so has any effect on
the outcome of the election.

One reason why these models have interest is that in each case the motivation
to vote is not related to the size of the electorate, and in particular turnout does
not necessarily decline as the size of the electorate increases, as it does in the
models in Sections 3.2 and 3.3.

Synopsis

In the model of ethical voting (Section 6.1), individuals differ both in the alterna-
tive they believe to be the best for society and in their voting cost. Each individual
chooses a rule for casting a vote as a function of voting cost that, if adopted by all
individuals who agree with her regarding the best alternative for society, would
produce the best outcome for society given the rules used by individuals with
other beliefs about the best outcome for society, taking into account everyone’s
voting cost. There is a continuum of individuals and two alternatives. Under
these assumptions, no individual’s vote affects the outcome of the election, so no
individual motivated to vote by the possibility of her vote changing the outcome

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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of the election has no incentive to do so. In any equilibrium, a positive mass of
individuals vote. Example 6.1 shows one possible way in which the equilibrium
may vary with the parameters of the model.

The idea that people vote to express their beliefs and to affirm their politi-
cal identity has been subjected to little formal modeling. Section 6.2 briefly dis-
cusses the idea and presents a simple model of one facet of it: the benefit an in-
dividual derives from expressing her beliefs by voting for one candidate rather
than another depends on the proportion of the population who support that
candidate.

6.1 Ethical voting

A society selects alternative a or alternative b by casting votes, with the major-
ity determining the winner. Each individual can vote for one of the alternatives
or abstain. Some individuals believe that a is the best alternative for society,
while others believe that b is the best alternative. For brevity, call the former a -
individuals and the latter b -individuals. Any individual who votes incurs a cost.
Apart from the differences in these costs, for each alternative z all z -individuals
are identical.

The models in the previous chapters assume that each individual is self-interested:
she chooses whether to vote by considering the probability that doing so affects
the outcome in her favor, given the other individuals’ strategies. The model here
assumes that each individual chooses a voting rule that, if used by all individuals
like her, generates what she believes is the best outcome for society, given the
other individuals’ behavior. This assumption is one possible formalization of the
idea that individuals are motivated by ethical concerns. The voting rules chosen
in the model may result in high turnout even in an arbitrarily large population.

For a model in which the individuals are self-interested, the discussion in
Section 3.1.2 concludes that a deterministic model is unlikely to have an equi-
librium. Similar considerations suggest the same conclusion when individuals
act ethically. So we incorporate uncertainty in the model: as in a two-alternative
voting game with uncertain voting costs, we assume that while each individual
knows her own voting cost, she knows only the distribution from which the other
individuals’ costs are drawn. The amount of uncertainty that this assumption
generates, however, converges to zero as the number of individuals increases.
We want to model a large population, and a convenient way to do so is to as-
sume that there are infinitely many individuals, with the set of individuals equal
to the unit interval [0,1]. In this case, the assumption on costs leads to a deter-
ministic outcome, and the problem of the nonexistence of an equilibrium reap-
pears. To generate uncertainty that persists in a large population, we assume also
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0

αqa

ethicals who favor a

favor a α

ethicals who favor b
(1−α)qb

favor b 1

Figure 6.1 The structure of the set of individuals in a two-alternative plurality rule voting
problem with ethical individuals. One realization of α (the fraction of individuals who
favor a ), qa (the fraction of ethical individuals among a -individuals), and qb (the fraction
of ethical individuals among b -individuals), which are random variables, is shown.

that the fraction α of the population consisting of a -individuals is uncertain, and
that within the sets of a -individuals and b -individuals, not all individuals behave
ethically; the fractions qa and qb that do so are randomly-determined, with the
remainder self-interested. (Refer to Figure 6.1.)

Given the continuum of individuals, no individual’s vote affects the outcome
of the election, and I assume that as a consequence no self-interested individual
votes. A voting rule assigns an action (vote for a , vote for b , abstain) to each pos-
sible value of an ethical individual’s voting cost. For each alternative z , each eth-
ical z -individual chooses the voting rule that, if used by all ethical z -individuals,
generates what she believes is the highest social welfare, given the voting rules
chosen by the individuals who believe the other alternative is best, taking into
account all individuals’ voting costs.

In every equilibrium of a two-alternative voting game with uncertain voting
costs studied in Section 3.2, every individual i uses a threshold voting rule: there
is a number c i such that i votes for her favored alternative if her voting cost
is at most c i and abstains otherwise. The logic behind this conclusion applies
also in the current context, and for simplicity here I restrict individuals to such
rules. That is, for each alternative z , each ethical z -individual chooses a number
cz such that if every ethical z -individual votes for z when her voting cost is at
most cz and abstains otherwise, then given the threshold chosen by the individ-
uals who favor the other alternative, her evaluation of social welfare, taking into
account the total cost of voting, is maximized.

Suppose that the fraction α of the population consisting of a -individuals is a
draw from the distribution function H on [0,1] and for each alternative z the
fraction qz of z -individuals who are ethical is an independent draw from the
nonatomic distribution function G on [0,1] that is also independent of α. Sup-
pose also that for some number c > 0, for each alternative z and each number
c ∈ [0, c ] the fraction of z -individuals with voting cost at most c is F (c ), where F
is a nonatomic probability distribution function on [0, c ] that has a density.

Then if the voting thresholds for ethical individuals are ca and cb , the prob-
ability that a wins is the probability that the fraction αqa F (ca ) of individuals—
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those who favor a , are ethical, and have a voting cost at most ca —is greater than
the fraction (1− α)qb F (cb )—those who favor b , are ethical, and have a voting
cost at most cb —plus half the probability that these two fractions are equal. If
F (ca ) = F (cb ) = 0 then the fractions are equal, and otherwise the probability that
they are equal is zero, so the probability that a wins when the thresholds are ca

and cb is

Pr(a wins | ca , cb ) =

¨
1
2

if F (ca ) = F (cb ) = 0

Pr
�
αqa F (ca )≥ (1−α)qb F (cb )

�
otherwise.

(6.1)

The expression for the probability that b wins is analogous.
How does an individual evaluate social welfare? Assume that for each alter-

native z , each ethical z -individual believes that the welfare of every individual is
wz if the outcome is z and 0 if it is the other alternative, minus the individual’s
voting cost if she votes. An individual may construct an index of social welfare
from these individual welfares in various ways. Section 1.8 discusses social wel-
fare orderings in general, and the leximin and utilitarian orderings in particu-
lar. Here, following Feddersen and Sandroni (2006a), I assume that individuals
use the utilitarian ordering, which ranks outcomes according to the sum of the
individuals’ welfares. Adapted to the current model, with a continuum of indi-
viduals of measure 1 and uncertainty, this assumption means that each ethical
z -individual assigns to the pair (ca , cb ) of voting thresholds the social welfare

u z (ca , cb ) =wz Pr(z wins | ca , cb )−C (ca , cb ), (6.2)

where the probability is given by (6.1) and C (ca , cb ), the expected cost of voting, is
the fraction E (αqa ) of individuals who are ethical and favor a times the expected
cost of voting for these individuals, plus the analogous expression for individuals
who favor b :

C (ca , cb ) = E (αqa )

∫ ca

0

c dF (c )+ E ((1−α)qb )

∫ cb

0

c dF (c ). (6.3)

The theory is that each a -individual chooses ca to maximize her evaluation
u a (ca , cb ) of social welfare ((6.2) for z = a ) given cb , and each b -individual chooses
cb to maximize ub (ca , cb ) given ca . That is, (ca , cb ) is a Nash equilibrium of a two-
player game in which the payoff functions are u a and ub . To specify the game
precisely, I first collect the elements of the model in the following definition.
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Definition 6.1: Two-alternative plurality rule voting problem with
ethical individuals

A two-alternative plurality rule voting problem with ethical individuals
〈[0,1],{a ,b}, H ,G , F, (wa , wb )〉 consists of

• [0,1] (the set of individuals)

• {a ,b} (the set of alternatives)

• H , a probability distribution function with support [0, 1] (the distribu-
tion of the fraction α of individuals who favor a )

• G , a nonatomic probability distribution function with support [0,1]
(the distribution of the fractions qa of a -individuals and qb of b -
individuals who are ethical)

• F , a nonatomic probability distribution function on some interval
[0, c ], where c > 0, that has a density (the distribution of the individu-
als’ voting costs)

• wa and wb , positive numbers (the weights assigned to outcomes by
each type of ethical individual).

The strategic game associated with a two-alternative plurality rule voting prob-
lem with ethical individuals is defined as follows.

Definition 6.2: Strategic game for two-alternative plurality rule voting
problem with ethical individuals

Let 〈[0,1],{a ,b}, H ,G , F, (wa , wb )〉 be a two-alternative plurality rule voting
problem with ethical individuals. The strategic game associated with this
problem has the following components.

Players
The set of players is {a ,b}.

Actions
The set of actions of each player is [0, c ], the support of F (the set of
possible cost thresholds for voting).

Payoffs
The players’ payoff functions are u a and ub defined in (6.2), where
Pr(z wins | ca , cb ), in which α, qa , and qb are independent draws from
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H , G , and G respectively, is given by (6.1) and the function C is given in
(6.3).

Not every such game has a Nash equilibrium. One approach to finding con-
ditions for the existence of an equilibrium appeals to the conditions for the ex-
istence of a Nash equilibrium in a general strategic game in Proposition 16.4:
each player’s set of actions is a nonempty compact convex subset of a Euclidean
space and each player’s payoff function is continuous and quasiconcave in her
action for any given action of the other player. This approach is taken by Fed-
dersen and Sandroni (2006a), who apply it to a transformation of the game in
Definition 6.2 in which the strategic variables are the fractions F (ca ) and F (cb )
of ethical individuals of each type who vote rather than the thresholds ca and
cb . Given that F is one-to-one, a pair (c ∗a , c ∗b ) is an equilibrium of the game in
Definition 6.2 if and only if (F (c ∗a ), F (c ∗b )) is an equilibrium of the transformed
game. Each player’s set of actions in the transformed game is [0,1], a nonempty
compact convex set. Each player’s payoff function, however, is not continuous
at (0,0). If F (ca ) = F (cb ) = 0 (no one votes) then the election is a tie. But if one
of these numbers, say F (ca ), is positive, while the other is zero, then given the
assumptions about the distributions F , G , and H , the probability that some in-
dividuals favor a , are ethical, and vote is 1, so that the probability that a wins is 1.
Thus a straightforward application of Proposition 16.4 is not possible. One way
to avoid the problem is to consider the existence of an equilibrium for a variant
of the game in which the set of actions of each player is [ε,1] for some ε > 0 and
then study the equilibria as ε approaches 0. The main remaining condition re-
quired by Proposition 16.4 is the quasiconcavity of each player’s payoff function
in her own action. Feddersen and Sandroni (2006a) show that if G , the common
distribution function of qa and qb , is concave on its support, then this condition
is satisfied, and this property of G is sufficient also for the existence of a Nash
equilibrium in the game in which each individual’s set of actions is [0,1] rather
than [ε,1].1

The fraction of the population that votes in an equilibrium depends on the
distributions H , G , and F , and the numbers wa and wb . Here is an example.

1Feddersen and Sandroni (2006a) study a more general model in which the distributions of qa

and qb may differ. My claim follows from their Proposition 4 combined with the observation that
if the distributions of qa and qb are the same, their Assumption A is satisfied if (and only if) G is
concave.
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v ∗a

αv ∗a

v ∗b (1−α)v ∗b

Turnout

1

0 0.5α→
(a) w /c = 1.

v ∗a

αv ∗a

v ∗b
(1−α)v ∗b

Turnout

1

0 0.5α→
(b) w /c = 0.5.

v ∗a

αv ∗a

v ∗b
(1−α)v ∗b

Turnout

1

0 0.5α→
(c) w /c = 0.25.

Figure 6.2 The fractions v ∗a and v ∗b of a - and b -individuals who vote and the expected
turnout for the unique Nash equilibrium of the strategic game associated with the
two-alternative plurality rule voting problem with ethical individuals in Example 6.1, as
a function of α, the fraction of individuals favoring a , for various values of w /c .

Example 6.1: Voting problem with ethical individuals

Consider a two-alternative plurality rule voting problem with ethical in-
dividuals 〈[0,1],{a ,b}, H ,G , F, (wa , wb )〉 in which H (the distribution of the
fraction of individuals favoring a ) assigns probability 1 to one value, de-
noted α, G (the distribution of the fractions qa and qb ) is uniform on [0,1],
F (the distribution of voting costs) is uniform on [0, c ], and wa =wb =w .
The strategic game associated with this problem has a unique Nash equi-
librium, which can be calculated explicitly. The fractions v ∗a and v ∗b of a -
and b -individuals who vote in this equilibrium are illustrated in Figure 6.2
as a function of α for α ∈ [0,0.5] and various values of c/w , the ratio of
the upper limit of the cost of voting to the weight in the payoff function
on the probability of winning. In the cases shown, v ∗a ≥ v ∗b : the fraction
of a -individuals (a minority of all individuals) who vote is at least the frac-
tion of b -individuals who vote. However, the number (measure) αv ∗a of a -
individuals who vote is less than the number (1−α)v ∗b of b -individuals who
do so if α ∈ (0,0.5), so that b wins despite the higher turnout rate among
a -individuals. As the fraction α of a -individuals in the population declines
to 0, the turnout rate among b -individuals, and hence the overall turnout
rate, approaches 0. All of these properties are shared by the equilibrium of
the strategic game associated with any two-alternative plurality rule voting
problem with ethical individuals (Feddersen and Sandroni 2005, Proposi-
tions 4 and 5). Other properties of the equilibria in the example, like the
fact that turnout is increasing in w /c , do not hold generally.
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6.2 Expressive voting

In the words of Schuessler (2000a, 88), “at least for some voters, voting is a means
to express political beliefs and preferences and, in doing so, to establish or reaf-
firm their own political identity”. Voting may convey expressive benefits even
though it is not publicly observable, and is associated with the observable acts
of wearing a campaign button, displaying a lawn sign, participating in campaign
rallies, and expressing views to other people. Like spectators at a sporting event,
individuals do not expect their actions (voting, cheering) to affect the outcome;
they take these actions to express their support for a team or a candidate.

A simple model is based on the hypothesis that an individual’s expressive
benefit from voting for a candidate depends on the candidate’s identity and the
fraction of the population who support the candidate. The idea is that an individ-
ual’s expressive benefit from supporting a candidate derives from being associ-
ated with the candidate’s community of supporters and from being distinguished
from the supporters of other candidates.

Suppose there are two candidates, 1 and 2, and denote individual i ’s (expres-
sive) benefit from supporting (and voting for) candidate j by u j

i (q
j ), where q j is

the fraction of the population that supports j . Individual i votes for candidate 1
if u 1

i (q
1) > u 2

i (q
2) and u 1

i (q
1) exceeds her voting cost ci , with q 2 = 1−q 1. In an

equilibrium, q 1 is equal to the fraction of individuals for whom these conditions
are satisfied:

q 1 = fraction of individuals i for whom u 1
i (q

1)> u 2
i (1−q 1) and u 1

i (q
1)> ci .

As a simple example, suppose that the benefit from voting for a candidate j
depends only on q j , not on the identities of the candidate or the individual. De-
note it u (q j ). Then if u (q 1) > u (1 − q 1), all individuals vote for candidate 1,
and if u (q 1) < u (1− q 1) they all vote for candidate 2. Thus in an equilibrium
u (q 1) = u (1−q 1). In particular, one equilibrium is q 1 = 0.5.

If an individual’s expressive benefit from supporting a candidate derives from
being identified with the other individuals supporting the candidate and distin-
guished from those supporting the other candidate, then the expressive benefit
from supporting a candidate is small or nonexistent if no one supports the can-
didate or everyone does so. Thus we might expect u (q j ) to initially increase as q j

increases from 0 and ultimately decrease as q j approaches 1, as in Figure 6.3. In
the example shown, in which each individual’s cost ci is assumed to be less than
the smallest value of u (q j ), the model has two asymmetric equilibria in addition
to the equilibrium q = 0.5.

If an individual’s expressive benefit from voting for a candidate depends on
the identities of the individual and the candidate, as well as the proportion of
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0

u (q )u (1−q )

q →q1 q2 = 0.5 q3

Figure 6.3 Equilibria in an example of a model of expressive voting. The value of u (q ) is
the expressive benefit of each individual from supporting candidate 1 when the propor-
tion of individuals who do so is q . Each individual i ’s cost ci is assumed to be less than
the smallest value of u (q ). If the proportion of individuals who support candidate 1 is
q1, q2, or q3, no individual has an incentive to switch her support to another candidate.

the population supporting the candidate, then 0.5 may not be an equilibrium. If
some or all of the costs ci exceed u (q ) for some values of q , then in an equilib-
rium some individuals may not vote. But there is no reason for the proportion
of such individuals to increase with the size of the population, as it does in the
models in Sections 3.2 and 3.3.

This model captures only one facet of the idea that people are motivated to
vote, at least in part, by the desire to express their beliefs. To date, other facets of
the idea have not been expressed in formal models.

Notes

Harsanyi (1977b, Section 7) first explored a model in which individuals choose
a voting rule that, if adopted by everyone, would be best for society. (See also
Harsanyi 1977a, 1980.) Section 6.1 is based on Feddersen and Sandroni (2005,
2006a). Example 6.1 is the subject of Feddersen and Sandroni (2006b). Coate
and Conlin (2004) study a closely related model. The main differences between
their model and that of Feddersen and Sandroni are that they make a specific
assumption about the distribution of the fraction of individuals who favor each
alternative and assume that the payoff of each side includes only the voting costs
borne by that side, not the costs borne by the individuals who favor the other
alternative. Thus in their model each ethical individual chooses the voting rule
that, if adopted by all members of her group, is best for her group, given the rule
used by the other group.

Section 6.2 is based on Schuessler (2000a,b). Hamlin and Jennings (2011,
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2019) discuss the idea of expressive voting informally.
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The individuals in the models of voting in the previous chapters disagree about
the desirability of the alternatives. A central question in these models is how
well a voting system aggregates preferences. The individuals in the models in
this chapter differ in their information about the state of society, but agree about
the alternative that is best in each state. A central question is how well a voting
system aggregates the individuals’ information.

Synopsis

The model in Section 7.1.2 is intended to capture the idea that a poorly-informed
individual may abstain because she thinks the decision is better left to well-
informed individuals. In the model, there are two alternatives, a and b , and two
states, α and β . Some individuals, called partisans, prefer one of the alternatives
regardless of the state, and others, called independents, prefer a in state α and b
in state β . Among the independents, some individuals know the state and others
do not. Proposition 7.1 shows that in any equilibrium, every partisan votes for
the alternative she favors, every informed independent votes for the alternative
she favors given the state, and uninformed independents vote so as to cancel
out, as far as possible, the partisans’ votes. The behavior of the uninformed in-
dependents has the effect of putting the decision in the hands of the informed
independents as much as possible, and results in the same outcome as does an
equilibrium of the variant of the game in which every individual is informed of
the state. That is, the equilibrium aggregates information perfectly.

The analysis in Section 7.1.3 shows that the implication of Proposition 7.1
that poorly-informed individuals may abstain does not depend on these indi-
viduals being completely uninformed and facing individuals who are perfectly
informed. In the model, each individual observes a signal about the state; the
quality of this signal is drawn randomly from a distribution, independently of

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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the qualities of the other individuals’ signals. Each individual observes her own
signal and its quality, but not the other individuals’ signals or signal qualities.
Proposition 7.2 shows that if there are two individuals and the states are equally
likely, the game has an equilibrium in which each individual votes if and only
if the quality of her signal is at least equal to some threshold. Thus some indi-
viduals whose signals are informative abstain, ceding the decision to individuals
with higher quality signals. If the individuals were to make a decision by pool-
ing their signals, taking into account the quality of each signal, then every in-
dividual would optimally contribute her signal. But instead they are making a
decision by voting, which provides no means by which to convey the quality of a
signal. An individual with a signal that is only slightly informative does not vote
because if she did so her signal would effectively be given the same weight as the
other individual’s signal, the quality of which is likely to be significantly higher
than hers.

Section 7.2 studies the implications of unanimity rather than plurality rule.
Consider the variant of the model in Section 7.1.2 in which the outcome is a un-
less all individuals vote for b . In this case, in every equilibrium every uninformed
individual votes for b , because that is the only way she can hand the decision to
the informed individuals: if she votes for a then the outcome is a regardless of
the other individuals’ votes. Similar considerations in a variant of the model in
Section 7.1.3, in which the individuals are a priori identical, lead to the conclu-
sion that when the number of individuals is large, the strategy profile in which
every individual votes for the alternative that is more likely to be best according
to her own signal is not an equilibrium. The reason is that when everyone else
votes in this way, the remaining individual’s vote affects the outcome only if all
the other individuals vote for b , which happens only if all of them receive signals
suggesting that b is the best outcome. But if all of them receive such a signal, the
probability that b is the best outcome is high even if the signal of the remaining
individual suggests that a is best, so that the remaining individual should vote
for b regardless of her signal. The general point is that when deciding how to
cast her vote, an individual should take into account the information implied by
the fact that her vote affects the outcome.

7.1 Strategic abstention

Faced in a voting booth with lists of choices for mayor, city councillor, and school
superintendent, you realize that although you believe you know the best candi-
date for mayor and are reasonably confident about the merits of the candidates
for city councillor, you have no idea about the candidates for school superinten-
dent. As a consequence, you decide to abstain on the ballot for that position,
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hoping that other, better-informed, voters endorse the best person for the job.
This section presents a model that captures this idea.

7.1.1 Example

Suppose that there are two alternatives and two individuals, each of whom can
vote for one of the alternatives or abstain. The society is in one of two states, α or
β . The individuals agree that alternative a is best if the state isα and alternative b
is best if the state is β . Each individual’s payoff is 1 if the best alternative for the
state is chosen, 0 if the other alternative is chosen, and 1

2 if the alternatives tie.
The individuals differ in their information: individual 1 knows the state and

individual 2 does not. Individual 2 believes that the state is αwith probability 0.9
and β with probability 0.1. Each individual may vote for a , vote for b , or abstain.
Neither individual incurs any cost when she votes.

An intuitive analysis of this situation suggests that individual 1, who knows
the state, should vote for a in state α and b in state β . If individual 1 acts in this
way, what should individual 2 do? If, absent individual 1, she were choosing an
alternative by herself, she would choose a , because this alternative gives her an
expected payoff of 0.9× 1+ 0.1× 0= 0.9, whereas b gives her an expected payoff
of 0.9×0+0.1×1= 0.1. However, in the presence of individual 1, she can abstain,
leaving the choice to individual 1, who votes for the best alternative in each state.
In fact, abstention is her best option. If she votes for a then if the state is α, her
vote makes no difference, and if the state is β , it changes the outcome from a win
for b to a tie, making her worse off. By a similar argument, her voting for b also
makes her worse off. In both cases, if her vote makes a difference, it leads to an
outcome worse than abstention, an effect known as the swing voter’s curse. So
not only can she safely abstain, but she is better off doing so than voting.

We can model this situation as the following Bayesian game.

Players
The set of players is the set of individuals, {1,2}.

States
The set of states is {α,β}.

Actions
The set of actions of each individual is {vote for a , vote for b , abstain}.

Signals
Individual 1 gets different signals in states α and β ; individual 2 gets the same
signal in both states.
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Prior beliefs
Each individual assigns probability 0.9 to state α and probability 0.1 to state β .

Payoffs
The payoffs are given in the following tables, where φ stands for abstention

and the actions a and b stand for voting for a and voting for b .

a b φ

a 1,1 1
2 , 1

2 1,1

b 1
2 , 1

2 0,0 0,0

φ 1,1 0,0 1
2 , 1

2

State α

a b φ

a 0,0 1
2 , 1

2 0,0

b 1
2 , 1

2 1,1 1,1

φ 0,0 1,1 1
2 , 1

2

State β

A player’s strategy in a Bayesian game is a function that associates an action
with each of her signals. So in this game, a strategy for player 1 specifies two
actions: one associated with the signal generated by state α and one associated
with the signal generated by state β . A strategy for player 2 is a single action
(her signal conveys no information about the state). A Nash equilibrium of the
game is a pair of strategies such that neither player has a strategy that increases
her expected payoff, given the other player’s strategy. The game has two Nash
equilibria, illustrated in Figure 7.1.

a. Player 1 votes for a in state α and for b in state β , and player 2 abstains
(highlighted in pink in Figure 7.1a).

If player 2 abstains, then player 1’s voting for a in state α and for b in state β
is better than any other strategy. If player 1 uses this strategy, then player 2’s
payoff to abstention is 1 whereas her payoff to voting for a is 0.9× 1+ 0.1×
0.5= 0.95 and her payoff to voting for b is 0.9×0.5+0.1×1= 0.55.

b. Player 1 abstains in state α and votes for b in state β , and player 2 votes for a
(highlighted in blue in Figure 7.1b).

If player 2 votes for a , in state α player 1 can do no better than abstain (if
she votes for a , her payoff remains 1, and if she votes for b , her payoff falls
to 1

2 ) and in state β she can do no better than vote for b . If player 1 abstains
in state α and votes for b in state β then player 2’s payoff to voting for a is
0.9×1+0.1×0.5= 0.95 whereas her payoff to abstention is 0.9×0.5+0.1×1=
0.55 and her payoff to voting for b is 0.9×0+0.1×1= 0.1.

In the second equilibrium, player 1’s strategy is weakly dominated: her payoff
from the strategy of voting for a in state α and b in state β is at least as high
whatever strategy player 2 uses, and is higher if player 2 votes for b or abstains.
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a b φ

a 1,1 1
2 , 1

2 1,1

b 1
2 , 1

2 0,0 0,0

φ 1,1 0,0 1
2 , 1

2

State α (prob. 0.9)

a b φ

a 0,0 1
2 , 1

2 0,0

b 1
2 , 1

2 1,1 1,1

φ 0,0 1,1 1
2 , 1

2

State β (prob. 0.1)

(a) Nash equilibrium in which no strategy
is weakly dominated.

a b φ

a 1,1 1
2 , 1

2 1,1

b 1
2 , 1

2 0,0 0,0

φ 1,1 0,0 1
2 , 1

2

State α (prob. 0.9)

a b φ

a 0,0 1
2 , 1

2 0,0

b 1
2 , 1

2 1,1 1,1

φ 0,0 1,1 1
2 , 1

2

State β (prob. 0.1)

(b) Nash equilibrium in which the strat-
egy of player 1 is weakly dominated.

Figure 7.1 The two Nash equilibria of the Bayesian game in Section 7.1.1.

The first equilibrium reflects the earlier informal analysis. Player 1, who is
fully informed, votes for the appropriate alternative in each state. Player 2, who
is uninformed, abstains, leaving the decision to player 1; if she votes and her vote
makes a difference then it affects the outcome adversely.

7.1.2 Model with some informed and some uninformed individuals

What are the implications of the idea captured by the example in a more general
model with many individuals who differ not only in their information, but also
in their preferences?

I analyze a model with two alternatives, two states, and many individuals.
Some individuals, called partisans, prefer one of the alternatives regardless of
the state: some always prefer a , and some always prefer b . Others, called in-
dependents, prefer a if the state is α and b if it is β . Among the independents,
some are informed of the state, and some are not. The state is irrelevant to the
partisans, and I assume that they are not informed of it.

Definition 7.1: Plurality rule voting game with two alternatives and
asymmetric information

A plurality rule voting game with two alternatives and asymmetric informa-
tion 〈{a ,b}, (n a , nb , n i , n u ),{α,β},π, (va , vb )〉, where a and b are alterna-
tives, n a , nb , n i , and n u are nonnegative integers with n a+nb+n i+n u ≥ 3,
α and β are states, π ∈ (0,1), and va and vb are positive numbers, is the
following Bayesian game.

Players
A set with n a + nb + n i + n u members; n a players are a -partisans, nb

are b -partisans, n i are informed independents, and n u are uninformed
independents.
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States
The set of states is {α,β}.

Actions
The set of actions of each player is {vote for a , vote for b , abstain}.

Signals
Each informed independent gets a different signal in each state; every
other player gets the same signal in both states.

Prior beliefs
Each player assigns probability π to state α.

Payoffs
The payoff of player j for an action profile in which a majority of players
vote for x ∈ {a ,b} and the state is s ∈ {α,β} is

j is an a -partisan:

¨
va if x = a
0 if x =b

j is a b -partisan:

¨
0 if x = a
vb if x =b

j is an independent:

¨
1 if (x , s ) = (a ,α) or (b ,β )
0 otherwise.

Her payoff for an action profile in which a and b are tied is the average
of her payoffs for profiles in which a wins and b wins.

We refer to a player in a Bayesian game who has received a given signal as a
type of the player or a player-type. In a voting game with asymmetric informa-
tion, each informed independent has two types, one for the signal α and one for
the signal β , and every other player has a single type. A strategy for a player is
a function that assigns an action to each of her types. Thus a strategy of an in-
formed independent is a pair of actions, one for state α and one for state β , and
a strategy for every other player is a single action.

A plurality rule voting game with two alternatives and asymmetric informa-
tion has many Nash equilibria, and even many in which no player uses a weakly
dominated action. Suppose, for example, that there are no partisans (n a = nb =
0), some informed independents (n i ≥ 1), and at least three more uninformed in-
dependents than informed independents (n u ≥ n i +3). In one Nash equilibrium
every uninformed independent abstains and every informed independent votes
for a in state α and for b in state β . This equilibrium, illustrated in Figure 7.2a,
generalizes the equilibrium of the example in the previous section in which no
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State β vote a
vote b

State α
vote a
vote b

i

i

(a) The Nash equilibrium σ∗,
in which only informed inde-
pendents vote, with the out-
come a in state α and b in
state β .

i
u

i u

(b) The Nash equilibrium σ′,
in which informed and un-
informed independents vote,
with the outcome a in both
states.

Figure 7.2 Two Nash equilibria of a plurality rule voting game with two alternatives
and asymmetric information with no partisans and at least three more uninformed than
informed independents .

player’s strategy is weakly dominated. Call the equilibrium σ∗.
Consider the strategy profile σ′ that differs from σ∗ only in that every unin-

formed independent votes for a . This strategy profile is illustrated in Figure 7.2b.
Likeσ∗, it is a Nash equilibrium, with the outcome a in both states. It is an equi-
librium because no change in any player’s strategy affects the outcome: unin-
formed independents outnumber informed independents by at least three, so
for any deviation by a player from σ′ the alternative a still wins in both states.
Further, no player’s strategy in σ′ is weakly dominated: every informed indepen-
dent is voting for the alternative she prefers, given the state, and the strategy of
every uninformed independent to vote for a would yield a payoff greater than
the strategies of voting for b or abstaining if all other individuals were to abstain,
so that it is not dominated by either of these strategies.

Even thoughσ′ is a Nash equilibrium and no player’s strategy is weakly dom-
inated, the strategy of the uninformed independents to vote for a seems foolish.
Suppose that n u = n i +3, and put yourself in the shoes of one of the uninformed
independents. If everyone votes according to σ′, the outcome is a win for a in
both states, regardless of your action. But if one of the other uninformed in-
dependents fails to vote (perhaps she is ill on election day, or her bicycle chain
breaks on the way to the polling station), then by switching your vote to b , you
change the outcome in state β from a win for a to a tie between a and b , and do
not affect the outcome in state α, so that you are better off. If one of the informed
independents fails to vote, then switching your vote from a to b does not affect
the outcome. If two or more of the other individuals fail to vote, but at least two
remain able to vote, your switching to vote for b does not affect the outcome in
state α and either does not affect it in state β or changes it in state β either from
a to b , from a to a tie between a and b , or from a tie between a and b to b , all of
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which are better for you. Only if all of the other individuals or all but one of them
fail to vote may a change in your vote from a to b make you worse off (because it
changes the outcome from a to either b or a tie between a and b in state α). You
should reasonably believe that the chance that one or two, or a few, of the other
individuals fail to vote is much greater than the chance that all of them or all but
one of them fail to vote, so that your switching to vote for b is sensible: it makes
no difference to the outcome if everyone else complies with σ′, and it raises your
expected payoff in the most likely cases of non-compliance.

More generally, if n u ≥ n i + 3 then a switch from voting for a to voting for b
by an uninformed independent does not effect the outcome if at most n u−n i−3
individuals fail to vote and either has no effect on the outcome or improves it for
her if more than that do so, as long as at least two individuals vote.

These arguments lead to a definition of equilibrium that assumes that a player
deviates from a strategy not only if she has another strategy that yields a higher
payoff given the other players’ strategies, but also if she has another strategy that
yields the same payoff given the other players’ strategies and a higher payoff if
one of the other players fails to vote, or the same payoff in both cases, but a
higher payoff if two of the other players fail to vote, or the same payoff in all
these cases, but a higher payoff if three of the other players fail to vote, and so
on. I define a deviation to be desirable if it satisfies these conditions, and de-
fine an equilibrium to be a strategy profile from which no player has a desirable
deviation.

Definition 7.2: Desirability of deviation from strategy profile in voting
game with asymmetric information

Let σ be a strategy profile in a plurality rule voting game with two alter-
natives and asymmetric information, let t be a player-type, let xt be the
action of t specified by σ, let x ′t be an action of t different from xt , and
let m be the number of other player-types who vote according to σ. The
desirability for t of a deviation from xt to x ′t is determined by the following
procedure.

Initialization
Set k = 0.

Step k
Assume that a randomly-determined group of exactly k of the other
player-types who vote according toσ fail to do so, with each such group
equally likely. Then if the expected payoff generated by x ′t is

• less than that generated by xt , a deviation to x ′t is not desirable
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• more than that generated by xt , a deviation to x ′t is desirable

• the same as that generated by xt and k =m , a deviation to x ′t is not
desirable

• the same as that generated by xt and k ≤ m − 1, continue to
Step k +1.

Definition 7.3: Equilibrium of voting game with asymmetric
information

A strategy profile is an equilibrium of a plurality rule voting game with two
alternatives and asymmetric information if no deviation from the strategy
profile by any player-type is desirable.

Suppose that all individuals are partisans (there are no independents), so that
the game is essentially a two-alternative voting game. I argue that in every equi-
librium (in the sense of Definition 7.3) every individual votes for the alternative
she favors. (By contrast, in some Nash equilibria some individuals vote for their
less-favored alternative.) Consider a strategy profile in which r more players vote
for a than for b , with r ≥ 1.

If r ≤ 2, then a player who deviates from voting for a to voting for b changes
the outcome from a win for a to either a win for b or a tie, both of which are better
for the player if she favors b and worse if she favors a . Thus such a strategy profile
is an equilibrium only if every player who votes for a favors a and, similarly, if
every player who favors b votes for b .

Now let r ≥ 3. Consider a player i who votes for a but favors b . If she de-
viates to voting for b , the outcome does not change if up to r − 3 of the other
players whose strategies call for them to vote in fact fail to do so. Now suppose
that a group of r − 2 of the other players whose strategies call for them to vote
fail to do so. If this group contains both players whose strategies call for them to
vote for a and ones whose strategies call for them to vote for b , then i ’s deviation
from voting for a to voting for b still does not affect the outcome. However, if
the group contains only players whose strategies call for them to vote for a , the
deviation changes the outcome from a win for a to a tie. Thus the procedure in
Definition 7.2 stops at step r − 2 with the conclusion that the deviation is desir-
able. Thus, as for r ≤ 2, such a strategy profile is an equilibrium in the sense of
Definition 7.3 only if every player votes for the alternative she favors.

The next result, illustrated in Figure 7.3, shows that in any equilibrium of a
general plurality rule voting game with two alternatives and asymmetric infor-
mation, every partisan (red and blue in the figure) votes for the alternative she
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State β
a
b

State α
a
b

a
b iu

u

b
a i

u
u

(a) n a −nb < n u . More
than enough unin-
formed independents
to cancel out partisans’
votes.

b
a

iu

b
a i

u

(b) n u < n a − nb <

n i + n u . Not enough
uninformed indepen-
dents to cancel out
partisans’ votes, but
enough independents
in total to do so.

b
a

iu

b
a i
u

(c) n i + n u < n a −
nb . Not enough inde-
pendents to cancel out
partisans’ votes.

Figure 7.3 Equilibria of a plurality rule voting game with two alternatives and asymmet-
ric information (Proposition 7.1) for n a > nb .

favors, every informed independent (green) votes for the alternative she favors
given the state, and uninformed independents (gray) vote so as to cancel out, as
far as possible, the partisans’ votes:

• if there are enough uninformed independents to cancel out the partisans’
votes, uninformed independents vote so that in the absence of any votes by
the informed independents, a and b are tied in both states, and hence the
margin in favor of a in state α among all votes is the same as the margin in
favor of b in state β (Figure 7.3a)

• if there are too few informed independents to cancel out the partisans’ votes,
all uninformed independents vote for the alternative favored by fewer parti-
sans, maximizing the influence of the informed independents in case some
partisans do not participate (Figures 7.3b and 7.3c).

Proposition 7.1: Equilibrium of voting game with asymmetric
information

Consider a plurality rule voting game with two alternatives and asym-
metric information 〈{a ,b}, (n a , nb , n i , n u ), (α,β ),π, (va , vb )〉 with n i ≥ 1 (at
least one individual is an informed independent). A strategy profile is an
equilibrium if and only if

a. every a -partisan votes for a and every b -partisan votes for b

b. every informed independent votes for a in state α and for b in state β

c. the number n a
u of uninformed independents who vote for a and the
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number nb
u who vote for b satisfy

n a
u −nb

u =min{nb −n a , n u } if n a ≤ nb

nb
u −n a

u =min{n a −nb , n u } if n a ≥ nb .
(7.1)

If n a = nb the outcome of an equilibrium is a in state α and b in state β , if
n a > nb it is

a in state α, b in state β if n a −nb < n i +n u

a in state α, tie in state β if n a −nb = n i +n u

a in both states if n a −nb > n i +n u ,

(7.2)

and if n a < nb it is the variant of (7.2) in which a and b and interchanged
and α and β are interchanged.

The outcome of an equilibrium is the same as the outcome of an equi-
librium of the variant of the game in which every individual is informed of
the state.

Comments

• If |n a − nb | < n u (Figure 7.3a if n a > nb ), some uninformed independents
may abstain; the only requirement on their behavior for equilibrium is that
the difference between the number who vote for b and the number who vote
for a is |n a −nb |.

• If a -partisans outnumber b -partisans (n a > nb ) and α is the more likely
state, the alternative for which most uninformed independents vote is b ,
which according to their prior belief is the wrong alternative. By doing so
they nullify, as much as possible, the partisans’ votes, leaving the decision to
the informed independents.

• In each case, the outcome is the same as outcome of the equilibrium in the
variant of the game in which all individuals are informed (that is, there are
n i +n u instead of n i informed independents and no uninformed indepen-
dents). For example, in the cases in Figures 7.3a and 7.3b the outcome is a
in state α and b in state β , and in the case in Figure 7.3c the outcome is a in
both states. One way to express this feature of equilibrium is to say that the
equilibrium fully aggregates information.

In an equilibrium, every partisan and informed independent votes for her fa-
vorite alternative because voting for the other alternative has no possible benefit,
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State β vote a
vote b

State α
vote a
vote b

a
b iu

u

b
a i

u
u

(a) Original strategy profile.

a
b iu

u u
kb

b
a i

u
u u

(b) Effect of uninformed inde-
pendent’s deviation to absten-
tion.

Figure 7.4 The effect of an uninformed independent’s deviation to abstention for a strat-
egy profile in a plurality rule voting game with two alternatives and asymmetric informa-
tion in which the winning margin for a in state α is larger than the winning margin for b
in state β .

however the other players vote; doing so can only generate a worse outcome, if
not when all the other players adhere to their strategies then when some of them
fail to vote.

The argument that uninformed independents vote so that the margin in favor
of a in state α is equal to the margin in favor of b in state β , if possible, is more
involved. Suppose that there are more than enough uninformed independents
to cancel out partisans’ votes, but the uninformed independents vote in such a
way that the margin in favor of a in state α is larger than the margin in favor of b
in state β , as in Figure 7.4a. Suppose that an uninformed independent j who is
voting for a deviates to abstention. (Refer to Figure 7.4b.) The smallest number
of players whose failure to vote causes this change in j ’s strategy to affect the
outcome is the original margin in favor of b in state β , say kb . If kb players whose
strategies call for them to vote for b fail to do so, then the deviation by j changes
the outcome from a tie to a win for b in state β and does not affect the outcome
in state α. If any other kb players fail to vote, the deviation by j does not affect
the outcome. Thus the deviation is desirable, so that the strategy profile is not an
equilibrium.

Now consider a strategy profile for which the margins in favor of a in state α
and b in state β are the same, as in Figure 7.5a. If an uninformed independent j
who is voting for a deviates to abstention, the smallest number of players whose
failure to vote causes the outcome to change is the new margin in favor of a
in state α, say ka . (Refer to Figure 7.5b.) If ka players whose strategies call for
them to vote for a fail to vote, then the deviation by j changes the outcome from
a win for a to a tie in state α, and does not affect the outcome in state β . If
any other ka players fail to vote, the deviation by j does not affect the outcome.
Thus the deviation is undesirable, so that the strategy profile is consistent with
an equilibrium.
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State β vote a
vote b

State α
vote a
vote b

a
b iu

u

b
a i

u
u

(a) Original strategy profile.

a
b iu

u u

b
a i

u
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u u

(b) Effect of uninformed inde-
pendent’s deviation to absten-
tion.

Figure 7.5 The effect of an uninformed independent’s deviation to abstention for a
strategy profile in a plurality rule voting game with two alternatives and asymmetric
information in which the winning margins for a in state α and for b in state β are the
same.

The cases in which the there are enough independents to cancel out the par-
tisans’ votes, but not enough uninformed independents to do so, and in which
there are not enough independents to cancel out the partisans’ votes, require
similar arguments. The following proof contains the details.

Proof of Proposition 7.1

I first argue that a strategy profile satisfying the conditions in the result is
an equilibrium. Let σ∗ be a strategy profile satisfying the conditions in the
result.

Step 1 No change in the strategy in σ∗ of an informed independent or par-
tisan is desirable.

Proof. If an informed independent changes her action in state α from a to
either b or abstention, then either the outcome in state α does not change
or it changes to b with positive probability ( 1

2 or 1), regardless of how many
other players fail to vote, so the deviation is not desirable. A similar argu-
ment applies to an informed independent who changes her action in state
β and to a partisan who changes her action. Ã

Step 2 No change in the strategy in σ∗ of an uninformed independent is
desirable.

Proof. Consider an uninformed independent, say j . Assume that n a ≥ nb .
There are three cases.

n a −nb < n i +n u

The outcome of σ∗ is a in state α and b in state β . (For n a > nb ,
Figures 7.3a and 7.3b show examples.)
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Suppose that j votes for a . If she deviates to abstention and the number
of individuals who fail to vote is the smallest for which this deviation
affects the outcome, then the outcome changes only in state α, where it
becomes a tie between a and b rather than a , decreasing j ’s expected
payoff. Thus the deviation is not desirable. By a similar argument, a
deviation by j to vote for b is not desirable.

A similar argument shows that if j votes for b then any deviation is not
desirable.

Now suppose that j abstains, which happens only if n a −nb < n u (Fig-
ure 7.3a). Suppose that she deviates to vote for a . If the number of
individuals who fail to vote is the smallest for which this deviation af-
fects the outcome, then the outcome changes only in state β , where
it becomes a tie between a and b rather than a win for b , decreasing
j ’s expected payoff. Thus the deviation is not desirable. A symmetric
argument shows that j ’s deviation to vote for b is also not desirable.

n a −nb > n i +n u

Given n i ≥ 1, we have n a > nb , and the outcome of σ∗ is a in both
states (refer to Figure 7.3c). The strategy profile σ∗ specifies that every
uninformed independent, and in particular j , votes for b . If she devi-
ates to abstention and the number of individuals who fail to vote is the
smallest for which this deviation affects the outcome, then the outcome
changes only in state β , where it becomes a win for a rather than a tie
between a and b , decreasing j ’s expected payoff. Thus the deviation is
not desirable.

A similar argument shows that also a deviation by j to vote for a is
undesirable.

n a −nb = n i +n u

The outcome ofσ∗ is a in stateα and a tie between a and b in stateβ . As
in the previous case, every uninformed independent, and in particular
j , votes for b . If she deviates to abstention or to vote for a , the outcome
in state β changes to a win for a and the outcome in state α does not
change, so the deviation is not desirable.

The argument for the case n a ≤ nb is symmetric with this argument. Ã

Step 3 The strategy profile σ∗ is an equilibrium.

Proof. The result follows from Steps 1 and 2. Ã
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I now argue that every equilibrium satisfies the conditions in the result.

Step 4 In every equilibrium, every informed independent votes for a in
state α and for b in state β .

Proof. Let σ be a strategy profile and let j be an informed independent.
Suppose that σj specifies a vote for b in state α. If j deviates to vote for a
in state α and the number of individuals who fail to vote is the smallest for
which this deviation affects the outcome, then the outcome changes only
in state α, where it either becomes a win for a rather than a tie between a
and b , or a win for a rather than a win for b , in both cases increasing j ’s
expected payoff. Thus such a deviation is desirable.

A similar argument shows that if σj specifies abstention in state α then
a deviation to vote for a is desirable.

Symmetric arguments show that if σj specifies a vote for a or absten-
tion in state β then j has a desirable deviation. Ã

Step 5 In every equilibrium, every a -partisan votes for a and every b -
partisan votes for b .

Proof. This conclusion follows from arguments like those in Step 4. Ã

Step 6 In every equilibrium, the number n a
u of uninformed independents

who vote for a and the number n b
u who vote for b satisfy (7.1).

Proof. Suppose that n a ≥ nb . There are two cases.

n a −nb ≥ n u

From (7.1), nb
u − n a

u = n u , so nb
u = n u : all uninformed independents

vote for b . Given n a−nb ≥ n u , if any uninformed independents exist we
have n a > nb ; Figures 7.3b and 7.3c are examples. Consider a strategy
profile in which an uninformed independent j abstains. If she deviates
to vote for b and the number of individuals who fail to vote is the small-
est for which this deviation affects the outcome, the outcome in state β
changes either from a tie to a win for b , or from a win for a to a tie, and
the outcome in state α remains a win for a (given n a > nb , n a−nb ≥ n u ,
and n i ≥ 1), so in both cases her expected payoff increases. A similar
argument shows that if j ’s strategy calls for her to vote for a and she de-
viates to abstention then her expected payoff increases for any minimal
set of players whose failure to vote affects the outcome. We conclude
that in an equilibrium every uninformed independent votes for b , so
that (7.1) is satisfied.
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n a −nb < n u

From (7.1), nb
u − n a

u = n a − nb . Figure 7.3a is an example. Consider
a strategy profile in which nb

u − n a
u > n a − nb . Then nb + n i + nb

u >

nb +n a
u +n a −nb = n a+ n a

u , so that b wins in state β , with a margin of
victory of nb +n i +nb

u −n a −n a
u = n i − (n a −nb )+ (nb

u −n a
u )> n i .

• If a wins in state α, its margin of victory is n a +n i +n a
u −nb −nb

u =
n i+(n a−nb )−(nb

u−n a
u )< n i . Consider an uninformed independent

j whose strategy calls for her to vote for b . If she deviates to absten-
tion and the number of individuals who fail to vote is the smallest
for which this deviation affects the outcome, the outcome in state α
changes from a tie to a win for a , and the outcome in state β , where
the margin of victory is larger, does not change. Thus the devia-
tion increases j ’s expected payoff, so the strategy profile is not an
equilibrium.

• If b wins in state α, its margin of victory is nb +nb
u −n a −n a

u −n i ,
which is less than b ’s margin of victory in state β , nb + nb

u + n i −
n a − n a

u . In this case, consider also an uninformed independent j
whose strategy calls for her to vote for b . If she deviates to absten-
tion and the number of individuals who fail to vote is the smallest
for which this deviation affects the outcome, the outcome in state α
changes from a win for b to a tie, and the outcome in state β does
not change. Thus the deviation increases j ’s expected payoff, so the
strategy profile is not an equilibrium.

Now consider a strategy profile in which nb
u −n a

u < n a−nb . In this case,
a wins in state α and the margin of victory of the winner in state β is
less than the margin of victory of a in state α. By an argument sym-
metric with that in the previous case, an uninformed independent who
switches from voting for a to abstention increases her expected pay-
off when the number of individuals who fail to vote is the smallest for
which this deviation affects the outcome, so that the strategy profile is
not an equilibrium.

The argument for the case n a ≤ nb is similar. Ã

Step 7 The outcome of an equilibrium is given in (7.2).

Proof. If n a = nb then by (7.1) we have n a
u = nb

u , so that given n i ≥ 1, a wins
in state α and b wins in state β . Now suppose that n a > nb . (The case n a <
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nb is symmetric.) Then by the characterization of an equilibrium, in state α
alternative a gets n a +n i +n a

u votes and alternative b gets nb+nb
u votes. If

n a −nb < n u then by (7.1) we have nb +nb
u = nb +n a −nb +n a

u = n a +n a
u ,

so that given n i ≥ 1, alternative a wins. If n a −nb ≥ n u then nb
u = n u and

n a
u = 0, so that a gets n a +n i votes and b gets nb +n u < nb +n a −nb = n a

votes, so that again a wins. In state β alternative a gets n a +n a
u votes and

alternative b gets nb +n i +nb
u votes. If n a −nb < n u then by (7.1) we have

nb
u −n a

u = n a −nb , so that nb +n i +nb
u = n a +n a

u +n i and hence b wins. If
n a −nb ≥ n u then nb

u = n u and n a
u = 0, so that a gets n a votes and b gets

nb + n u + n i votes, and hence a wins if n a − nb > n i + n u , a and b tie if
n a −nb = n u +n i , and b wins if n a −nb < n i +n u . Ã

Step 8 The outcome of an equilibrium is the same as the outcome of an
equilibrium of the variant of the game in which every individual is informed
of the state.

Proof. From the characterization of an equilibrium, in a game in which the
number of informed independents is n i +n u and there are no uninformed
independents, the number of votes for a is n a +n i +n u in state α and n a

in state β , and the number of votes for b is nb in state α and nb +n i +n u

in state β . Thus if n a = nb then a wins in state α and b wins in state β ,
and if n a > nb then a wins in state α and in state β alternative a wins if
n a − nb > n i + n u , the alternatives tie if n a − nb = n i + n u , and b wins if
n a −nb < n i +n u , as when n u of the independents are uninformed. Ã

Note that the equilibria do not depend on the values va and vb that parti-
sans attach to their favorite alternatives. If va = vb = 1 then the outcome of an
equilibrium in each state maximizes the sum of the individuals’ payoffs. Other-
wise, it may not. For example, if the number of independents is not sufficient
to cancel out the partisans’ votes, and a -partisans outnumber b -partisans, then
the outcome is a in both states, but if va and vb are close enough to 0, alternative
b maximizes the sum of the payoffs in state β .

7.1.3 Model with imperfectly-informed individuals

The result that some individuals abstain in equilibrium does not depend on these
individuals being completely uninformed, facing individuals who are perfectly
informed. Consider a variant of a plurality rule voting game with two alterna-
tives and asymmetric information in which in each state the individuals are a
priori identical. The processes generating signals for any individual i are shown
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state α
(alternative a best)

qi 1−qi

signal A signal B

state β
(alternative b best)

qi 1−qi

signal B signal A

Figure 7.6 The processes generating signals for each individual i in a plurality rule vot-
ing game with two alternatives and uncertain signal qualities. The value of qi is a draw
from a distribution F with support [ 1

2 ,1].

in Figure 7.6. In state α each individual i gets the signal A with probability qi and
the signal B with probability 1−qi , and in state β she gets the signal B with prob-
ability qi and the signal A with probability 1−qi , where qi is a draw from a proba-
bility distribution with support [ 1

2 ,1] and a continuous density, independently of
the draw of qj for every other individual j . In particular, with probability 1 each
individual’s signal conveys some information. (Only the signal of an individual i
for whom qi = 1

2 , a value that occurs with probability 0, is completely uninfor-
mative.) Each individual i knows qi and her signal, but not the value of qj or the
signal of any other individual j . To make the model symmetric, I assume that
each individual believes that the prior probability of each state is 1

2 . Each indi-
vidual votes for one of the alternatives or abstains; the outcome is the alternative
that receives the most votes, and each individual’s payoff is 1 if the outcome is a
and the state is α or the outcome is b and the state is β , and is 0 otherwise.

Precisely, the model is the following Bayesian game. A state in this game,
which captures all the uncertain features of the environment, is a triple con-
sisting of the state of nature α or β , the signal qualities, and the signal realiza-
tions. Although “state” has this meaning in the following definition, outside the
definition I continue to use the word to refer to α and β .

Definition 7.4: Plurality rule voting game with two alternatives and
uncertain signal qualities

A plurality rule voting game with two alternatives and uncertain signal
qualities 〈{a ,b}, n , (α,β ),{A, B}, F 〉, where a and b are alternatives, n is a
positive integer, α and β are states of nature, A and B are signals, and F
is a probability distribution function with support [ 1

2 ,1] and a continuous
density is the following Bayesian game.

Players
A set N with n members.
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States
The set of states is the set of triples (ω, (qj )j∈N , (s j )j∈N ) whereω ∈ {α,β}
(the state of nature), qj ∈ [ 1

2 ,1] for each j ∈ N (j ’s signal quality), and
s j ∈ {A, B} for each j ∈N (j ’s signal).

Actions
For each player the set of actions is {vote for a , vote for b , abstain}.

Signals
For each player i the set of signals is {A, B} × [ 1

2 , 1] and the signal
function τi is given by τi (ω, (qj )j∈N , (s j )j∈N ) = (si ,qi ) for each state
(ω, (qj )j∈N , (s j )j∈N ) .

Prior beliefs
Each player i believes that

• the value ofω is αwith probability 1
2 and β with probability 1

2

• qi is drawn randomly from F

• si is A with probability qi and B with probability 1 − qi if ω = α,
and B with probability qi and A with probability 1−qi if ω = β (as
illustrated in Figure 7.6).

Every random draw is independent of every other random draw.

Payoffs
The payoff of each player for each pair consisting of an action profile
and a state (ω, (qj )j∈N , (s j )j∈N ) is

¨
1 ifω=α
0 ifω= β

if more individuals vote for a than for b ,

¨
0 ifω=α
1 ifω= β

if more individuals vote for b than for a ,

and 1
2 (regardless of the value of ω) if the numbers of individuals who

vote for a and for b are the same.

The signal of an individual i is more informative the higher is qi , so it is rea-
sonable to think that the game has an equilibrium in which each individual i
uses a strategy with the following form: there is a number q ∗i ∈ [

1
2 ,1], the thresh-

old, such that type (A,qi ) of any individual i votes for a if qi ≥ q ∗i and abstains if
qi < q ∗i , and type (B ,qi ) of any individual i votes for b if qi ≥ q ∗i and abstains if
qi <q ∗i . I refer to a strategy of this form as a quality threshold strategy.
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Definition 7.5: Quality threshold strategy in voting game with uncertain
signal qualities

A strategy of any individual i in a plurality rule voting game with two alter-
natives and uncertain signal qualities 〈{a ,b}, n , (α,β ),{A, B}, F 〉 is a quality
threshold strategy if there is a number q ∗i ∈ [

1
2 ,1], the threshold, such that

the strategy is







vote for a if i ’s signal is A and qi ≥q ∗i
vote for b if i ’s signal is B and qi ≥q ∗i
abstain if qi <q ∗i .

Given the symmetry of the model, including the fact that the prior probability
of each state is 1

2 , it is also reasonable to think that the game has a Nash equilib-
rium in which every individual uses a quality threshold strategy with the same
threshold.

Definition 7.6: Quality threshold equilibrium of voting game with
uncertain signal qualities

A strategy profile in a plurality rule voting game with two alternatives and
uncertain signal qualities is a quality threshold equilibrium if it is a Nash
equilibrium and every individual’s strategy is a quality threshold strategy
with the same threshold.

I show in the next result that if there are two individuals (n = 2), the game has
a quality threshold equilibrium, and in every such equilibrium the threshold ex-
ceeds 1

2 , so that an individual with an informative but low-quality signal abstains.
If each individual could report both her signal and its quality, and a decision were
made by pooling this information, then each individual would optimally report
her signal regardless of its quality. But voting provides no way for individuals to
report the qualities of their signals. All they can do is vote or abstain, and an
individual who votes based on a low-quality signal influences the outcome just
as much as one who votes based on a high-quality signal. As a consequence,
an individual with an informative but low-quality signal prefers to abstain than
to vote, making the outcome depend on the vote of the other individual, who is
likely to have received a more informative signal.

To understand in more detail why the equilibrium threshold exceeds 1
2 , con-

sider the ingredients of an individual’s decision of whether to abstain or vote. She
should ponder the implications of her action for the outcome, given each possi-
ble action of the other individual, taking into account any information about the



7.1 Strategic abstention 217

state that the other individual’s action conveys.
Consider type (A,qi ) of individual i . Assume that the other individual, j , is

using a quality threshold strategy with threshold q ∗.

j votes for a The outcome is the same whether i votes for a or abstains, so this
possibility is irrelevant to i ’s decision.

j abstains If individual i votes for a then the outcome is a , and if she abstains
then it is a tie, so her gain from voting for a rather than abstaining is 1

2 if the
state is α and − 1

2 if the state is β .
j votes for b If individual i votes for a then the outcome is a tie and if she ab-

stains then it is b , so her gain for voting for a rather than abstaining is 1
2 if the

state is α and − 1
2 if the state is β (as when j abstains).

Thus the expected gain of type (A,qi ) of individual i from voting for a rather than
abstaining is

Pr(j abstains | i ’s signal A)
�

Pr(state α | j abstains & i ’s signal A) · 1
2

+Pr(state β | j abstains & i ’s signal A) · (− 1
2 )
�

+Pr(j votes b | i ’s signal A)
�

Pr(state α | j votes b & i ’s signal A) · 1
2

+Pr(state β | j votes b & i ’s signal A) · (− 1
2 )
�

.

(7.3)

Now, j abstains if and only if her signal qj is less than q ∗, so the probability
that i assigns to her abstaining is F (q ∗) (independent of i ’s signal). The fact that
she abstains conveys no information about the likelihood that the state is α or
β , so Pr(state α | j abstains & i ’s signal A) is the probability of α conditional on
one signal of A with quality qi , which, using Bayes’ rule, is qi (given that the prior
probability of each state is 1

2 ). Thus the expected gain in (7.3) is

1
2 F (q ∗)(qi − (1−qi ))

+Pr(j votes b | i ’s signal A)
�

Pr(state α | j votes b & i ’s signal A) · 1
2

+Pr(state β | j votes b & i ’s signal A) · (− 1
2 )
�

.

(7.4)

For a quality threshold equilibrium with threshold q ∗, this expected gain must
be zero for type (A,q ∗): type (A,q ∗) of individual i must be indifferent between
voting for a and abstaining. Now, individual j votes for b only if her signal is B ,
which is more likely if the state is β than if it is α. Thus j ’s voting for b is ev-
idence in favor of state β . Further, j votes for b only if her signal quality is at
least q ∗, and hence at least as high as i ’s signal quality. So j ’s voting for b pro-
vides stronger evidence about the state than i ’s signal A, and hence conditional
on this event, the probability that i assigns to state α is less than 1

2 : Pr(state α |
j votes b & i ’s signal A) < 1

2 and Pr(state β | j votes b & i ’s signal A) > 1
2 . Thus for

qi =q ∗ the second term in (7.4) is negative, so for the whole expression to be zero
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i ’s gain from voting for a
rather than abstaining posterior prob.

j ’s action if state is α if state is β of state α

vote for a 0 0 irrelevant

abstain 1
2 − 1

2 q ∗

vote for b 1
2 − 1

2 < 1
2

Figure 7.7 The ingredients of the decision of type (A,q ∗) of individual i regarding
whether to vote for a or abstain.

we need the first term to be positive, which requires q ∗ > 1
2 . The ingredients of i ’s

reasoning that lead to this conclusion are summarized in Figure 7.7.
We conclude that in any quality threshold equilibrium, an individual with an

informative but low-quality signal abstains. She does so because if her vote af-
fects the outcome, then taking into account the information implied about the
state by the other individual’s action, her vote is more likely to change the out-
come adversely than advantageously, given the superior quality of the other in-
dividual’s signal. As in a plurality rule voting game with two alternatives and
asymmetric information, in which some individuals are uninformed and others
are perfectly informed, we can characterize her predicament by saying that she
is subject to the swing voter’s curse.

Proposition 7.2: Quality threshold equilibrium of voting game with
uncertain signal qualities and two individuals

Let 〈{a ,b}, n , (α,β ),{A, B}, F 〉 be a plurality rule voting game with two al-
ternatives and uncertain signal qualities for which n = 2. This game has a
quality threshold equilibrium in which the threshold is in ( 1

2 ,1) and in every
quality threshold equilibrium the threshold lies in this interval.

Proof

Denote the individuals by i and j , and suppose that j ’s strategy is a quality
threshold strategy with threshold q ∗. First note that if q ∗ = 1, so that j votes
with probability zero, the outcome is a tie if i abstains and otherwise is the
outcome for which she votes, so voting is optimal for i regardless of her
signal quality. Thus the game has no quality threshold equilibrium with
threshold 1.

Now suppose that q ∗ < 1 and consider type (A,qi ) of individual i . By the
argument preceding the result, her expected gain from voting for a rather
than abstaining is given in (7.4). To show that q ∗ > 1

2 in any equilibrium, it it
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enough to show that the probability that type (A,q ∗) of individual i assigns
to state α in the case that j votes for b is less than 1

2 , as argued informally
in the text preceding this result. But to show that an equilibrium exists, we
need to study the expected gain in more detail.

We have

Pr(j votes b | i ’s signal A)Pr(state α | j votes b & i ’s signal A)

= Pr(j votes b | i ’s signal A)
Pr(j votes b & i ’s signal A | state α)Pr(state α)

Pr(j votes b & i ’s signal A)

=
Pr(j votes b & i ’s signal A | state α)Pr(state α)

Pr(i ’s signal A)

=
Pr(j votes b | state α)Pr(i ’s signal A | state α)Pr(state α)

Pr(i ’s signal A)

=

∫ 1

q ∗
(1−qj )dF (qj ) ·qi · 1

2

1
2qi + 1

2 (1−qi )

=qi

∫ 1

q ∗
(1−qj )dF (qj ).

By a similar argument,

Pr(j votes b | i ’s signal A)Pr(state β | j votes b & i ’s signal A)

= (1−qi )
∫ 1

q ∗
qj dF (qj ).

Substituting these expressions into (7.4), we conclude that the expected
gain of type (A,qi ) of individual i from voting for a rather than abstaining,
given that j ’s strategy is a quality threshold strategy with threshold q ∗, is

G (qi ,q ∗) = 1
2 F (q ∗)(2qi −1)+ 1

2qi

∫ 1

q ∗
(1−qj )dF (qj )− 1

2 (1−qi )
∫ 1

q ∗
qj dF (qj )

= 1
2 (qi − (1−qi )F (q ∗))− 1

2

∫ 1

q ∗
qj dF (qj ).

The expected gain of type (B ,qi ) of individual i from voting for b rather
than abstaining is given by the same expression. Define the function
H : [ 1

2 ,1) → R by H (q ) = G (q ,q ). The game has a quality threshold equi-
librium with threshold q ∗ if and only if H (q ∗) = 0. Now, the integral in
the expression for G (qi ,q ∗) exceeds q ∗(1 − F (q ∗)), so H ( 1

2 ) < 0. Further,
H (q ∗)→ 1

2 > 0 as q ∗ → 1 and H is continuous (given that F has a contin-
uous density). Hence there is a number q ∗ ∈ ( 1

2 ,1) such that H (q ∗) = 0 and
every number q ∗ for which H (q ∗) = 0 is in ( 1

2 ,1).
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7.2 Unanimity rule

For a decision made by unanimity rather than plurality rule, the inference that an
individual makes about the state from the fact that her vote is pivotal has a simple
and striking implication. Assume, as before, that there are two alternatives, a and
b . Alternative a is the default; the outcome is b if and only if every individual
votes for b . Given that for this rule the implication of abstention is the same as
that of voting for a , assume that the only actions available to each individual are
vote for a and vote for b .

Suppose first, as in a plurality rule voting game with two alternatives and
asymmetric information, that some individuals are perfectly informed and oth-
ers are uninformed. The strategy profile in which every informed individual
votes for a in state α and for b in state β and every uninformed individual votes
for b is a Nash equilibrium of the Bayesian game. The reason is that given the
strategies of the other individuals, a change in the action specified by any in-
formed individual’s strategy in state α either does not affect the outcome or, if
only one individual is informed, changes it to b , while a change in the action in
state β changes the outcome from b to a , and a change in any uninformed indi-
vidual’s strategy does not affect the outcome in state α (given the presence of at
least one informed individual) and changes the outcome from b to a in state β .
In fact, this strategy profile is the only equilibrium in the sense of Definition 7.3,
as you are asked to show in the next exercise.

Exercise 7.1: Equilibria of unanimity rule voting game

Show that in the variant of a plurality rule voting game with two alterna-
tives and asymmetric information in which the decision is made by una-
nimity rule, with a the default, the only equilibrium in the sense of Defini-
tion 7.3 is the strategy profile in which every informed individual votes for
a in state α and b in state β and every uninformed individual votes for b .

The point is that under unanimity rule the only way an uninformed indi-
vidual can hand the decision to the informed individuals is by voting for the
non-default alternative, because if she votes for the default alternative then that
alternative is the outcome regardless of the other individuals’ votes.

If the qualities of the individuals’ signals are less extreme, similar consider-
ations lead to the conclusion that when the number of individuals is large, the
strategy profile in which every individual votes for the alternative that is more
likely to be best according to her signal is not a Nash equilibrium. Suppose that,
as in the model in Section 7.1.3, the individuals are a priori identical. Every in-
dividual believes initially that the state is α with probability π and then receives
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state α
(alternative a best)

q 1−q

signal A signal B

q > 1
2

state β
(alternative b best)

p 1−p

signal B signal A

p > 1
2

Figure 7.8 The processes generating signals in a model of unanimity rule in which each
individual is a priori identical.

one of two signals, as shown in Figure 7.8. If the state is α, in which everyone
agrees that alternative a is best, each individual independently gets the signal A
with probability q and the signal B with probability 1− q , where 1

2 < q < 1. If
the state is β , in which everyone agrees that alternative b is best, each individual
independently gets the signal B with probability p and the signal A with proba-
bility 1−p , where 1

2 < p < 1. Given the asymmetry of the alternatives, I allow the
payoffs to be asymmetric: each individual’s payoff is

state α :

¨
va if outcome a
−wb if outcome b

state β :

¨
vb if outcome b
−wa if outcome a

where va > 0, vb > 0, wa > 0, and wb > 0.
We can model this situation as the following Bayesian game. As for the model

of a plurality rule voting game with two alternatives and uncertain signal quali-
ties in Section 7.1.3, a state in the game, which captures all the uncertain features
of the environment relevant to the individuals, includes a specification of the
profile of signals that they receive. However, outside of this definition I continue
to refer to α and β as “states”.

Definition 7.7: Unanimity rule voting game with two alternatives and
asymmetric information

A unanimity rule voting game with two alternatives and asymmetric infor-
mation 〈{a ,b}, n , (α,β ),{A, B},π, (p ,q ), (va , vb , wa , wb )〉, where a and b are
alternatives, n ≥ 2 is an integer, α and β are states of nature, A and B are
signals, π ∈ (0,1), p ∈ ( 1

2 ,1), q ∈ ( 1
2 ,1), va > 0, vb > 0, wa > 0, and wb > 0 is

the following Bayesian game.

Players
A set N with n members.
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States
The set of states is the set of pairs (ω, (s j )j∈N )whereω ∈ {α,β} (the state
of nature) and s j ∈ {A, B} for each j ∈N (j ’s signal).

Actions
The set of actions of each individual is {vote for a , vote for b }.

Signals
The set of signals that each player may receive is {A, B} and the signal
function τi of each player i is defined by τi (ω, (s j )j∈N ) = si for each
ω ∈ {α,β} and each profile (s j )j∈N of signals.

Prior beliefs
For each k ∈ {1, . . . , n}, every individual assigns probability
πq k (1−q )n−k to each state (α, (s j )j∈N ) for which s j = A for k play-
ers and s j = B for the remaining n − k players, and probability
(1 − π)p k (1 − p )n−k to each state (β , (s j )j∈N ) for which s j = B for k
players and s j = A for the remaining n −k players.

Payoffs
The payoff of each player for an action profile in which all individuals
vote for b is ¨

−wb if the state of nature is α
vb if the state of nature is β

and her payoff for every other action profile is

¨
va if the state of nature is α
−wa if the state of nature is β .

I argue that if the number of individuals is sufficiently large, the strategy pro-
file in which every individual votes for a if her signal is A and for b if her signal
is B is not a Nash equilibrium of such a game. The reason derives from the fact
that under unanimity rule, the vote of any individual i affects the outcome only
if all the other individuals vote for b : if at least one of the other individuals votes
for a , the outcome is a regardless of i ’s vote. Thus i ’s voting for b is optimal if
and only if it yields her an expected payoff at least as high as the expected payoff
from her voting for a , given the probabilities of the states that she infers from
the fact that all the remaining individuals vote for b . Under the strategy profile
we are considering, each remaining individual votes for b only if her signal is B ,
so conditional on all remaining individuals voting for b , the probability that the
state is β is high if the number of individuals is large: given p > 1

2 and q > 1
2 , the

probability that every other individual receives a signal of B is larger if the state
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is β than if it is α, and the ratio of these probabilities approaches 1 as the num-
ber of individuals increases without bound. Thus if i ’s vote affects the outcome,
when the number of individuals is large it is likely that the state is β , so i should
vote for b .

Proposition 7.3: Voting according to signal not Nash equilibrium of
unanimity rule voting game

For each integer n ≥ 2 let Γ(n ) = 〈{a ,b}, n , (α,β ),{A, B},π, (p ,q ), (va , vb , wa ,
wb )〉 be a unanimity rule voting game with two alternatives and asymmet-
ric information. (The parameters other than n are fixed.) There is a num-
ber n ∗ such that if n > n ∗ then the strategy profile in which every individual
votes for a if she receives the signal A and for b if she receives the signal B
is not a Nash equilibrium of Γ(n ).

Proof

Consider an individual i who receives the signal A. Her vote affects the
outcome only if every other individual votes for b and hence only if every
other individual receives the signal B . In this case, if she votes for a the
outcome is a and if she votes for b it is b , so her gain from voting for a
rather than b is va +wb if the state is α and −vb −wa if the state is β . Thus
her expected gain from voting for a rather than b is

Pr(state α & n −1 other signals B | i ’s signal A)(va +wb )

−Pr(state β & n −1 other signals B | i ’s signal A)(vb +wa ).

Now,

Pr(state α & n −1 other signals B | i ’s signal A)

=
Pr(state α & n −1 other signals B & i ’s signal A)

Pr(i ’s signal A)

=
Pr(n −1 other signals B & i ’s signal A | state α)Pr(state α)

Pr(i ’s signal A)

=
(1−q )n−1qπ

qπ+(1−p )(1−π)
,

and similarly

Pr(state β & n −1 other signals B | i ’s signal A) =
p n−1(1−q )(1−π)

qπ+(1−p )(1−π)
.
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Hence i ’s expected payoff from voting for a is at least her expected payoff
from voting for b if and only if

(1−p )(1−π)

qπ

�
p

1−q

�n−1

≤
va +wb

vb +wa
.

Now, 1−q < 1
2 < p , so the left-hand side of this inequality increases without

bound as n increases. So for any given values of va , vb , wa , and wb , for n
sufficiently large, type A of individual i prefers to vote for b than for a if
every other individual votes for a if her signal is A and for b if her signal
is B . A similar argument shows that the same is true for type B of individ-
ual i . Thus if n is sufficiently large then the strategy profile in which every
individual votes for a if she receives the signal A and for b if she receives
the signal B is not a Nash equilibrium of Γ(n ).

What is a Nash equilibrium of the game? If every individual votes for a re-
gardless of her signal then the action of any individual has no effect on the out-
come. Thus this strategy profile is a Nash equilibrium. Under some conditions,
the strategy profile in which every individual votes for b regardless of her signal
is also a Nash equilibrium.

Exercise 7.2: Nash equilibria of unanimity rule voting game

Find conditions under which a unanimity rule voting game with two al-
ternatives and asymmetric information has a Nash equilibrium in which
every individual votes for b regardless of her signal.

In addition, for some values of the parameters the game has a mixed strat-
egy equilibrium in which type A of each individual votes for both a and b with
positive probability, the same for each individual, and type B of each individual
votes for b with probability 1.

Proposition 7.4: Symmetric mixed strategy equilibrium of unanimity
rule voting game

Let 〈{a ,b}, n , (α,β ),{A, B},π, (p ,q ), (va , vb , wa , wb )〉 be a unanimity rule
voting game with two alternatives and asymmetric information. Let

σ∗(A) =
p − (1−q )X (n )

qX (n )− (1−p )
where X (n ) =

�
va +wb

vb +wa

q

1−p

π

1−π

�1/(n−1)

.

If 0 < σ∗(A) < 1 then the game has a mixed strategy equilibrium in which
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the strategy of type A of every individual votes for b with probability σ∗(A)
and the strategy of type B of every individual votes for b with probability 1.
For some number n̂ , if n > n̂ the game has no other equilibrium in which
type A of every individual uses the same strategy, type B of every individual
uses the same strategy, and at least one of these strategies assigns positive
probabilities to both voting for a and voting for b .

Proof

Consider a mixed strategy equilibrium in which type A of every individual
votes for b with the same probability and type B of every individual votes
for b with the same probability. Denote these probabilities by σ(A) and
σ(B ).

An individual’s vote affects the outcome only if all the other individuals
vote for b , so the gain of an individual of typeT ∈ {A, B} from voting for a
rather than b is

Pr(state α & n −1 other individuals vote b | i ’s signal T )(va +wb )

−Pr(state β & n −1 other individuals vote b | i ’s signal T )(vb +wa ).

Using the logic in the proof of Proposition 7.3 to transform the probabili-
ties, this gain is positive or negative according to the following inequality:

Pr(n −1 others vote b & i ’s signal T | state β )Pr(state β )

Pr(n −1 others vote b & i ’s signal T | state α)Pr(state α)
Ó

va +wb

vb +wa
.

For T = A, the left-hand side of this inequality is

1−p

q

1−π

π

�
(1−p )σ(A)+pσ(B )

qσ(A)+ (1−q )σ(B )

�n−1

, (7.5)

and for T = B it is

p

1−q

1−π

π

�
(1−p )σ(A)+pσ(B )

qσ(A)+ (1−q )σ(B )

�n−1

. (7.6)

Given that p > 1
2 and q > 1

2 , the first of these expressions is smaller than
the second. Thus if type A of an individual is indifferent between voting
for a and voting for b then type B prefers to vote for b , and if type B of an
individual is indifferent between voting for a and voting for b then type A
prefers to vote for a . Hence in an equilibrium in which 0<σ(B )< 1, every
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individual of type A votes for a , so that σ(A) = 0, and in an equilibrium in
which 0<σ(A)< 1, every individual of type B votes for b , so thatσ(B ) = 1.

Ifσ(A) = 0 then (7.6) is p/(1−q )·(1−π)/π·(p/(1−q ))n−1, which increases
without bound as n increases, so that for any values of va , vb , wa , and wb ,
type B prefers to vote for b when n is sufficiently large. Thus for sufficiently
large values of n no equilibrium exists with 0<σ(B )< 1.

If σ(B ) = 1 then the equality of (7.5) with (va +wb )/(vb +wa ) implies
thatσ(A) =σ∗(A).

The condition 0 < σ∗(A) < 1 is equivalent to (1− p )/q < X (n ) < p/(1− q )
and X (n )> 1, and the second of these conditions is equivalent to qπ(va +wb )>
(1−p )(1− π)(vb +wa ). If this last condition is not satisfied, the game has an
equilibrium in which all individuals vote for b regardless of their signals, as you
know if you have done Exercise 7.2.

As n increases without bound, X (n ) approaches 1, so that σ∗(A) approaches
1. Thus for large values of n , type A of each individual votes for b with high
probability (and type B votes for b with probability 1). For π = 1

2 , va = vb = 0,
wa = 1−wb , and p = q , Feddersen and Pesendorfer (1998) calculate for this
equilibrium the limits of the probabilities that a is selected in state β and b is se-
lected in state α as the number of individuals increases without bound, and show
that these limits are positive. Thus for this example, even in a large population,
in each state the wrong alternative is selected with positive probability.

Note that this result considers only mixed strategy equilibria in which ev-
ery individual’s strategy is the same. The game may also have mixed strategy
equilibria in which the individuals’ strategies differ.

Finally, my comments about the difficulty of interpreting Nash equilibria of
voting games at the end of Section 3.2 apply with equal if not more force to
mixed strategy equilibria. Individuals do not typically engage repeatedly in sim-
ilar voting games, so that the steady state interpretation of equilibrium does not
fit such games well, and good interpretations of mixed strategy equilibria of one-
off games are lacking. See Section 3.2 of Osborne and Rubinstein (1994) for an
extended discussion of interpretations of mixed strategy equilibrium.

Notes

Sections 7.1.1 and 7.1.2 are based on Feddersen and Pesendorfer (1996). The no-
tion of equilibrium is a variant of the one in Osborne and Turner (2010), which
differs from the one used by Feddersen and Pesendorfer but retains the same
spirit. (Feddersen and Pesendorfer’s results are asymptotic in the number of in-
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dividuals, in contrast to the results here, which hold for any number of individu-
als.) The proof of Proposition 7.1 is taken (in parts verbatim) from Osborne and
Turner (2010, 182–184). Section 7.1.3 is based on McMurray (2013), who studies
a model in which the number of individuals is random.

Section 7.2 is based on Austen-Smith and Banks (1996) and Feddersen and
Pesendorfer (1998). This work presents unanimity rule as the decision-making
process for juries in some jurisdictions, with the default outcome acquittal. I
do not give the model this interpretation because juries that use a version of
unanimity rule treat conviction and acquittal symmetrically, with the outcome
a retrial if unanimity is not achieved. In addition, deliberation appears to be an
essential feature of a jury’s decision-making process.

Solutions to exercises

Exercise 7.1
I first argue that the strategy profile is an equilibrium in the sense of Defini-
tion 7.3. A change in any uninformed individual’s strategy or the action spec-
ified by any informed individual’s strategy in state β changes the outcome in
state β to a , making her worse off. Now consider the effect of a change in the
action specified an informed individual i ’s strategy in state α. If there are no
other informed individuals, the outcome changes to b in that state, making
i worse off. If there are other informed individuals, the outcome does not
change. In this case, the smallest number of individuals whose failure to vote
causes the outcome to change is the number of other informed individuals;
their failure to vote would cause the change in i ’s strategy to change the out-
come from a to b , making her worse off. Thus no change in any individual’s
strategy is desirable.

I now argue that no other strategy profile is an equilibrium.

Informed individual
Consider an informed individual who is voting for b in state α. Suppose
she switches to voting for a . If none of the other individuals are voting for
a , the outcome improves from b to a . If some of the other individuals are
voting for a then the smallest number of individuals whose failure to vote
affects the outcome is the number of such individuals, and their failure to
vote would mean that the change in the informed individual’s action im-
proves the outcome from b to a . Thus a change in the individual’s action
from b to a in state α is desirable.

By a similar argument, the change to vote for b for an informed individual
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voting for a in state β is desirable.

We conclude that in every equilibrium every informed individual votes
for a in state α and for b in state β .

Uninformed individual
If an uninformed individual votes for a , the outcome is a in state β , and if
she switches to vote for b the outcome does not get worse in either state,
regardless of how many individuals (if any) fail to vote (given that the in-
formed individuals vote for a in state α) and improves in state β if either
no other individual votes for a or all the individuals planning to vote for
a fail to vote.

Exercise 7.2
Suppose that every individual other than i votes for b independently of her
signal. Then i ’s vote determines the outcome (and the other individuals’
votes convey no information about the state).

Suppose that i ’s signal is A. Then her expected payoff if she votes for a is

Pr(α | signal A)va −Pr(β | signal A)wa =
qπva − (1−p )(1−π)wa

qπ+(1−p )(1−π)

(using Bayes’ rule) and her expected payoff if she votes for b is

Pr(β | signal A)vb −Pr(α | signal A)wb =
(1−p )(1−π)vb −qπwb

qπ+(1−p )(1−π)
,

so that she optimally votes for b if and only if qπva − (1 − p )(1 − π)wa ≤
(1−p )(1−π)vb −qπwb , or qπ(va +wb )≤ (1−p )(1−π)(vb +wa ).

Now suppose that i ’s signal is B . Then her expected payoff if she votes for a
is

Pr(α | signal B )va −Pr(β | signal B )wa =
(1−q )πva −p (1−π)wa

(1−q )π+p (1−π)

and her expected payoff if she votes for b is

Pr(β | signal B )vb −Pr(α | signal B )wb =
p (1−π)vb − (1−q )πwb

(1−q )π+p (1−π)
,

so that she optimally votes for b if and only if (1−q )πva −p (1−π)wa ≤ p (1−
π)vb − (1−q )πwb or (1−q )π(va +wb )≤ p (1−π)(vb +wa ).

Given that p > 1
2 and q > 1

2 , the second inequality is satisfied whenever the
first inequality is satisfied, so that i ’s voting for b regardless of her signal is
optimal if and only if the first inequality is satisfied.
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Thus the game has a Nash equilibrium in which every individual votes for b
regardless of her signal if and only if qπ(va +wb )≤ (1−p )(1−π)(vb +wa ).
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Collective decisions in some societies are made by legislatures consisting of rela-
tively small groups of individuals. In a common procedure, some individuals are
candidates for membership of the legislature and the members of a larger subset
of the society, whom I call citizens, cast votes to determine which candidates are
elected. Most of this chapter is devoted to models of a simple version of such a
legislature, with a single member.

To specify a model, we have many options. For example, the set of candidates
may be exogenous, or individuals may choose whether to be candidates; the cit-
izens may or may not know the candidates’ preferences; each candidate may be
able to commit to act in the legislature according to given preferences, which
may differ from her own, or may be unable to make such a commitment; the
candidates may or may not know the citizens’ preferences; the candidates may
be motivated by the desire to win election, or they may have other motivations—
for example, they may care about the policy ultimately chosen by the legislature;
each candidate may make a decision not knowing the decisions of the remaining
candidates, or the candidates may make their decisions sequentially, with each
candidate observing the decisions of her predecessors.

When discussing models of electoral competition, I refer to an alternative as
a position. A motivation for using this nomenclature is that legislatures decide
multiple issues, some of which may be unknown at the time of an election. Can-
didates for legislative office may state principles that will guide their behavior
if elected—political positions—rather than specifying the alternatives they will
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2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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select if elected. However, formally the set of positions is the same as the set of
alternatives in the earlier chapters.

In this chapter I first present a model that makes the following assumptions.

• The set of candidates

◦ is given exogenously, distinct from the set of citizens

◦ has two members.

• Each candidate

◦ if elected, becomes the sole decision-maker (the legislature has a single
member)

◦ chooses a position, which she is committed to implement if she is elected

◦ is motivated by the desire to win election

◦ knows the citizens’ preferences.

• Each citizen

◦ cares about the position ultimately implemented

◦ votes (“sincerely”) for the candidate whose position she prefers.

• The candidate who receives the most votes is elected.

Subsequently I present variants of this model that retain the assumption of two
exogenously given candidates whose aim is to win election. In the next chapter I
consider models in which the candidates care about the policy ultimately imple-
mented, rather than caring exclusively about winning election, and in Chapter 10
I present models in which individuals decide whether to become candidates. In
Chapter 12 I present a model in which the candidates can affect their chances of
winning by spending money on a campaign.

The analysis in this chapter and the next is restricted to two candidates not
because most elections, or even most elections in which plurality rule deter-
mines the winner, involve two candidates, but because the analysis of models
with many candidates differs significantly from the analysis of models with two
candidates.

In some of the models I discuss, the outcome of an election is uncertain. In
these models, a candidate’s aim to win election is operationalized by the assump-
tion that she aims to maximize the probability that she wins. Two alternatives
to this assumption are that each candidate aims to maximize her expected vote
share and that she aims to maximize her expected plurality. I do not present
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models that make either of these alternative assumptions mainly because they
are generally inconsistent with the maximization of the probability of winning.
Specifically, for some distributions α and β over electoral outcomes for which a
candidate’s expected vote share or expected plurality under α is greater than it is
under β , the candidate’s probability of winning under α is less than it is under β .

The originators of some of the models I present interpret the candidates as
parties; because they are single decision-makers, I generally stick with the term
“candidates”.

Synopsis

In Section 8.1 I present a model with a finite number of citizens in which two
candidates simultaneously choose positions from an arbitrary set and the can-
didate whose position is favored by more citizens wins. Proposition 8.1 shows
that in any Nash equilibrium, both candidates choose a Condorcet winner of the
underlying collective choice problem, so that in particular the game has a Nash
equilibrium only if the collective choice problem has a Condorcet winner. An
implication of this result combined with Propositions 1.4 and 1.5 is that if the
citizens’ preferences are single-peaked or single-crossing and the number of cit-
izens is odd, then the game has a unique Nash equilibrium, and in this equilib-
rium each candidate’s position is the median with respect to the ordering of the
alternatives of the citizens’ favorite positions (Corollary 8.2). In particular, the
candidates are driven to choose the same position, a feature of the equilibria of
most of the models in this chapter.

For the variant of this model in which the candidates move sequentially, Propo-
sition 8.3 shows that for a collective choice problem that has a Condorcet winner,
the outcome of a subgame perfect equilibrium is the same as the outcome of a
Nash equilibrium of the simultaneous-move game, and for a collective choice
problem without a Condorcet winner, the outcome of every subgame perfect
equilibrium is that the second-mover wins.

Section 8.2 studies another variant of the model, in which the set of citizens
is a continuum and the set of alternatives is an interval of real numbers. This
variant is used as a component of several of the models in subsequent chap-
ters. Proposition 8.4 shows that, as for the case in which the number of citizens
is finite, the game has a unique Nash equilibrium, and in this equilibrium the
position of each candidate is the median of the citizens’ favorite positions.

In the models considered so far, the candidates know the citizens’ prefer-
ences. Section 8.3 considers two models in which the candidates are uncertain
of these preferences. In the first model, the candidates share a common belief
about the distribution of the median of the citizens’ favorite positions. The re-
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sulting game has a unique Nash equilibrium, in which the candidates’ common
position is the median of this distribution (Proposition 8.5). In the second model,
each candidate gets a private signal about the median of the citizens’ favorite po-
sitions. Proposition 8.6 characterizes any Nash equilibria that exist (there may be
none).

An assumption common to the models in Sections 8.1 through 8.3 is that all
citizens vote, even when the candidates’ positions are the same, in which case
no citizen’s vote can possibly affect the outcome. Section 8.4 analyzes a model
in which casting a vote is costly and abstention is an option. For simplicity, the
model assumes there is one citizen, whose voting cost is known to her but not to
the candidates. Her preferences over positions are also unknown to the candi-
dates. For any pair of positions for the candidates, the citizen votes if her voting
cost is less than a cutoff that depends on the difference between her payoffs for
the positions of the two candidates. As a consequence, if one candidate’s po-
sition becomes closer to the other candidate’s position then the change in her
probability of winning depends on the nature of the citizen’s preferences and the
distribution of her voting cost. Proposition 8.7 shows than in an equilibrium, the
candidates’ positions are the same, and characterizes the common equilibrium
position. Given that the candidates’ positions are the same in an equilibrium,
the citizen votes only if her voting cost is zero, an event with probability zero.

Section 8.5 studies models in which the citizens have preferences over the
candidates independently of the candidates’ positions. In the main model, each
candidate is uncertain of these preferences and thus is uncertain whether any
given position will lead her to win, given the other candidate’s position. Proposi-
tion 8.8 gives conditions under which in any equilibrium the candidates’s posi-
tions are the same, and characterizes the common position. An example shows
that the result is not vacuous—there are games for which an equilibrium exists—
but no general result on the existence of an equilibrium is available.

Section 8.6 discusses models of legislatures with many members, each of
whom is elected in a single district. Order the districts by the median of the fa-
vorite positions of the citizens in the district. Suppose that each candidate is
associated with one of two parties and decisions in the legislature are made by
the party whose candidates win the most districts. Then a model in which each
party chooses a single position for all of its candidates has a unique Nash equi-
librium, in which the position of each party is the median of the favorite posi-
tions of the citizens in the median district. The same is true for a model in which
each candidate chooses her position independently and the position of a party
is the average of its candidates’ positions. However, if the first model is modified
by assuming that the citizens’ partisanships are uncertain, along the lines of the
model in Section 8.5, and each party values winning an additional district even
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if doing so does not change is minority/majority status in the legislature, then
equilibria in which the parties’ positions are distinct are possible.

8.1 General model

8.1.1 Simultaneous decisions

The set of possible positions is an arbitrary set. Each of two candidates chooses
a position not knowing the other candidate’s position and then each of a finite
set of citizens casts a vote for the candidate whose position she prefers. The elec-
toral mechanism selects as the winner the candidate with the most votes. Each
candidate cares only about whether she wins, preferring to win than to tie than
to lose. One way to characterize these preferences is to say that each candidate
is office-motivated, as opposed to policy-motivated.

I assume that if the candidates’ positions are x1 and x2 and the number of
citizens who prefer x1 to x2 is the same as the number who prefer x2 to x1 then
the outcome of the election is a tie. This assumption is consistent with each
citizen who is indifferent between the candidates’ positions not voting, or split-
ting her vote, casting half a vote for each candidate. (The related assumption
that each such citizen votes with equal probability for each candidate requires a
formulation of the candidates’ preferences regarding lotteries over outcomes.)

Definition 8.1: Electoral competition game with two office-motivated
candidates

An electoral competition game with two office-motivated candidates
〈{1,2}, 〈I , X ,¼〉〉, where 〈I , X ,¼〉 is a collective choice problem in which the
set I (of citizens) is finite, is the strategic game with the following compo-
nents.

Players
{1,2} (candidates).

Actions
The set of actions of each player is X (the set of possible positions).

Preferences
For each (x1,x2) ∈ X × X , denote by O(x1,x2) be the electoral outcome
when each citizen (member of I ) votes for the position in {x1,x2} that
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she prefers and the position that receives the most votes wins:

O(x1,x2) =







win for 1 if |{i ∈ I : x1 �i x2}|> |{i ∈ I : x2 �i x1}|
tie if |{i ∈ I : x1 �i x2}|= |{i ∈ I : x2 �i x1}|
win for 2 if |{i ∈ I : x1 �i x2}|> |{i ∈ I : x2 �i x1}|.

The preference relation Äj of each player j over pairs of positions satis-
fies

(w1, w2)Âj (y1, y2)Âj (z 1, z 2)

whenever O(w1, w2) = win for j , O(y1, y2) = tie, and O(z 1, z 2) = win for
k , where k is the other player.

The Nash equilibria of such a game and the Condorcet winners of the asso-
ciated collective choice problem are closely related. In particular, if the collec-
tive choice problem has a Condorcet winner then in any Nash equilibrium of the
game each candidate’s position is a Condorcet winner and the outcome is a tie.

Proposition 8.1: Nash equilibrium of electoral competition game with
two office-motivated candidates and Condorcet winner

Let 〈{1,2}, 〈I , X ,¼〉〉 be an electoral competition game with two office-
motivated candidates. The outcome of any Nash equilibrium of this game
is a tie, and (x1,x2) is a Nash equilibrium if and only if both x1 and x2 are
Condorcet winners of 〈I , X ,¼〉, so that in particular the game has a Nash
equilibrium if and only if 〈I , X ,¼〉 has a Condorcet winner.

Proof

Suppose that (x1,x2) is a Nash equilibrium of the game. If x1 = x2, the out-
come O(x1,x2) is a tie. If x1 6= x2 and either candidate deviates to the posi-
tion of the other candidate, the outcome becomes a tie, so that O(x1,x2) is
at least as good as a tie for each candidate, and hence also is a tie.

Thus a pair (x1,x2) of positions is a Nash equilibrium if and only if

for all x ′1 ∈ X the outcome O(x ′1,x2) is a tie or a loss for 1

for all x ′2 ∈ X the outcome O(x1,x ′2) is a tie or a loss for 2,

conditions that are satisfied if and only if x1 and x2 are Condorcet winners
of the collective choice problem 〈I , X ,¼〉.
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If an alternative is a strict Condorcet winner then it is the only Condorcet
winner, so if the collective choice problem has a strict Condorcet winner then in
any Nash equilibrium each candidate chooses that position.

Corollary 8.1: Unique Nash equilibrium of electoral competition game
with two office-motivated candidates and strict
Condorcet winner

Let 〈{1,2}, 〈I , X ,¼〉〉 be an electoral competition game with two office-
motivated candidates. If 〈I , X ,¼〉 has a strict Condorcet winner x ∗ then
(x ∗,x ∗) is the unique Nash equilibrium of the game.

If the number of citizens is odd and their preferences are single-peaked or
single-crossing then the collective choice problem has a strict Condorcet win-
ner. This position is the median of the citizens’ favorite positions if the citizens’
preferences are single-peaked (Proposition 1.4), and the favorite position of the
median citizen if the citizens’ preferences are single-crossing (Proposition 1.5),
so the next result follows from Corollary 8.1.

Corollary 8.2: Median voter theorem for electoral competition game
with two office-motivated candidates

Let 〈{1,2}, 〈I , X ,¼〉〉 be an electoral competition game with two office-
motivated candidates in which the number of citizens (members of I ) is
odd.

• If 〈I , X ,¼〉 has single-peaked preferences with respect to a linear or-
der Ä on X , then the game has a unique Nash equilibrium, and in this
equilibrium each candidate’s position is the median with respect to Ä
of the citizens’ favorite positions.

• If 〈I , X ,¼〉 has single-crossing preferences with respect to a linear or-
der ≥ on I and the median individual with respect to ≥ has a unique
favorite position, say x ∗, then the game has a unique Nash equilibrium,
and in this equilibrium each candidate’s position is x ∗.

A strict Condorcet winner is more than a Nash equilibrium action: it weakly
dominates all other actions.
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Proposition 8.2: Dominant actions in electoral competition game with
two office-motivated candidates and strict Condorcet
winner

Let 〈{1,2}, 〈I , X ,¼〉〉 be an electoral competition game with two office-
motivated candidates. If 〈I , X ,¼〉 has a strict Condorcet winner x ∗ then
for each candidate the action x ∗ weakly dominates all other actions in the
game.

Proof

Suppose that candidate i chooses x ∗. If the other candidate chooses x ∗,
the outcome is a tie, and if the other candidate chooses any other action,
i wins. Now suppose that i chooses an action other than x ∗. Then if the
other candidate chooses x ∗, i loses. No outcome is better for i than her
winning, so x ∗ weakly dominates all of her other actions.

candidate i

other candidate
x ∗ 6= x ∗

x ∗ tie i wins
6= x ∗ i loses ?

This result is significant because it means that a candidate’s choosing the
strict Condorcet winner is optimal for her regardless of the other candidate’s ac-
tion. The fact that (x ∗,x ∗) is a Nash equilibrium means that a candidate’s choos-
ing x ∗ is optimal for her if she believes that the other candidate will choose x ∗;
the fact that x ∗ weakly dominates all other actions means that her choosing it
is optimal for her regardless of her belief about the other candidate’s action. If
the other candidate chooses an action different from x ∗, the action x ∗ remains
optimal for i even though other actions may also be optimal for her in that case.

8.1.2 Sequential decisions

If the candidates choose alternatives sequentially, we can model their interac-
tion as an extensive game. In the following game, candidate 1 chooses an alter-
native, candidate 2 observes this alternative, and then candidate 2 chooses an
alternative.
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Definition 8.2: Sequential electoral competition game with two office-
motivated candidates

A sequential electoral competition game with two office-motivated can-
didates 〈{1,2}, 〈I , X ,¼〉〉, where 〈I , X ,¼〉 is a collective choice problem in
which the set I (of citizens) is finite, is the extensive game with perfect
information with the following components.

Players
{1,2} (candidates).

Terminal histories
The set of sequences (x1,x2)where xi ∈ X for each i ∈ {1,2}.

Player function
The function P given by P(∅) = 1 and P(x1) = 2 for all x1 ∈ X .

Preferences
The preference relation of each player over terminal histories (pairs of
positions) satisfies the conditions in Definition 8.1.

The set of electoral outcomes in a sequential electoral competition game with
two office-motivated candidates is finite (win for candidate 1, tie, win for candi-
date 2), so every such game has a subgame perfect equilibrium. If the underlying
collective choice problem has a strict Condorcet winner, then the outcome of
every subgame perfect equilibrium is that both candidates choose this alterna-
tive. The following result gives the subgame perfect equilibrium outcomes also
for problems that do not have strict Condorcet winners.

Proposition 8.3: Subgame perfect equilibrium of sequential electoral
competition game with two office-motivated
candidates and Condorcet winner

Let G = 〈{1,2}, 〈I , X ,¼〉〉 be a sequential electoral competition game with
two office-motivated candidates.

a. If 〈I , X ,¼〉 has no Condorcet winner then a pair (x1,x2) is the outcome
of a subgame perfect equilibrium of G if and only if the electoral out-
come of (x1,x2) is a win for candidate 2.

b. If 〈I , X ,¼〉 has a Condorcet winner then a pair (x1,x2) is the outcome
of a subgame perfect equilibrium of G if and only if x1 is a Condorcet
winner of 〈I , X ,¼〉 and the electoral outcome of (x1,x2) is a tie.



242 Chapter 8. Electoral competition: two office-motivated candidates

c. If 〈I , X ,¼〉 has a strict Condorcet winner x ∗ then the outcome of every
subgame perfect equilibrium of G is (x ∗,x ∗).

Proof

a. The result follows from the observation that because 〈I , X ,¼〉 has no
Condorcet winner, for every alternative x ∈ X there is an alternative y ∈ X
such that the electoral outcome O(x , y ) is a win for candidate 2.

b. First suppose that (x1,x2) is the outcome of a subgame perfect equilib-
rium of G . For any alternative chosen by candidate 1, the electoral out-
come is a tie if candidate 2 chooses the same alternative, so the electoral
outcome of (x1,x2) is either a tie or a win for candidate 2. If candidate 1
chooses a Condorcet winner of 〈I , X ,¼〉, then for every alternative chosen
by candidate 2 the electoral outcome is either a tie or a win for candidate 1.
Thus the electoral outcome of (x1,x2) is a tie. Hence no alternative beats
x1, so that x1 is a Condorcet winner of 〈I , X ,¼〉.

Conversely, suppose that x1 is a Condorcet winner of 〈I , X ,¼〉 and the
electoral outcome of (x1,x2) is a tie. Let (s ∗1, s ∗2) be the strategy pair in which
s ∗1 = x1 and

s ∗2(z 1) =







x2 if z 1 = x1

z 1 if z 1 6= x1 and z 1 is a Condorcet winner
y2(z 1) if z 1 is not a Condorcet winner

where for every alternative z 1 that is not a Condorcet winner, y2(z 1) is an
alternative that beats z 1. I argue that (s ∗1, s ∗2) is a subgame perfect equilib-
rium of G . The outcome of (s ∗1, s ∗2) is (x1,x2); by assumption O(x1,x2) a tie.
If candidate 1 deviates to another alternative z 1, then O(z 1, s ∗2(z 1)) is a tie
if z 1 is a Condorcet winner and is a win for candidate 2 otherwise. Thus s ∗1
is optimal for candidate 1 given s ∗2. The action prescribed by candidate 2’s
strategy s ∗2 after each history is optimal because if z 1 is a Condorcet win-
ner then candidate 2 can do no better than tie and if z 1 is not a Condorcet
winner then the electoral outcome of (z 1, s ∗2(z 1)) is a win for candidate 2.

c. This result follows from b because if x1 is the strict Condorcet winner
of 〈I , X ,¼〉 then the only alternative x2 for which the electoral outcome of
(x1,x2) is a tie is x2 = x1.

The answer to Exercise 1.5 shows that in case (b), the alternative x2 chosen
by candidate 2 is not necessarily a Condorcet winner of the collective choice
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position→1
2 (x1+x2)x xx1 x2

Citizens who vote
for candidate 2

Citizens who vote
for candidate 1

Figure 8.1 Two-candidate electoral competition in which the set of positions is an inter-
val and each citizen’s preference relation is symmetric about her favorite position. The
favorite position of each citizen is indicated with a small circle, and the positions of the
candidates are indicated with small disks.

problem.

8.2 Spatial model

8.2.1 One-dimensional set of positions

Suppose that the set X of positions is an interval of numbers, the number of citi-
zens is odd, and the preference relation ¼i of each citizen i is single-peaked with
respect to≥ (that is, if x < y < x ∗i or x ∗i < y < x then x ∗i �i y �i x , where x ∗i is i ’s fa-
vorite position). Then by Corollary 8.2 the electoral competition game with two
office-motivated candidates has a unique Nash equilibrium, and in this equilib-
rium each candidate’s position is the median of the citizens’ favorite positions
(with respect to ≥).

Now further assume that the preference relation of every citizen i is symmet-
ric in the sense that x ∗i − δ ∼i x ∗i + δ for every δ > 0. Then for any positions
x1 and x2 for the candidates with x1 < x2, any citizen i votes for candidate 1 if
x ∗i <

1
2 (x1+x2) and for candidate 2 if x ∗i >

1
2 (x1+x2). The division of votes between

the candidates is illustrated in Figure 8.1, where the horizontal line represents
the interval of positions and each citizen is identified with her favorite position.
As x1 increases, the dividing line 1

2 (x1+x2) increases, so that the number of votes
for candidate 1 increases and the number for candidate 2 falls.

In a variant of this model the set of citizens is a continuum, rather than being
finite, the distribution of the citizens’ favorite positions has a density, and the
support of this distribution is an interval, so that the distribution has a unique
median.

Definition 8.3: Median of distribution

Let X be an interval of real numbers and let F : X → [0,1] be a distribu-
tion function (a nondecreasing function with F (x) = 0 for some x ∈ X and
F (x ) = 1 for some x ∈ X ). A median of F is a number x such that F (x ) = 1

2 .

This variant may be analyzed with a diagram like Figure 8.2. For any position
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position→1
2 (x1+x2)x xx1 x2

Density of distribution
of citizens’

favorite positions

Citizens who vote
for candidate 2

Citizens who vote
for candidate 1

Figure 8.2 Two-candidate electoral competition in which the set of positions is the
interval [x,x ] and there is a continuum of citizens.

x , the height of the curve represents the density of citizens with favorite posi-
tion x ; the area under the curve between any two positions x and y represents
the fraction of citizens with favorite positions between x and y . The fraction of
citizens who prefer x1 to x2 is thus the area shaded pink and the fraction who
prefer x2 to x1 is the area shaded blue.

Although the symmetry assumption on the citizens’ preferences that this vari-
ant of the model entails is stronger than the assumptions of the model with
finitely many citizens, the graphical analysis that it permits is appealing. Also,
several models analyzed in later chapters take the variant as a starting point. For
these reasons I give a precise definition of the variant.

In the definition, unlike in Definition 8.1, citizens do not appear explicitly. In-
stead, the electoral outcome for any pair (x1,x2) of the candidates’ positions and
any nonatomic distribution F of the citizens’ favorite positions with a unique
median is assumed to be

OF (x1,x2) =







tie if x1 = x2 or 1
2 (x1+x2) =med(F )

win for j if

¨
either xk < x j and 1

2 (x1+x2)<med(F )
or xk > x j and 1

2 (x1+x2)>med(F ),
(8.1)

where k is the player other than j and med(F ) denotes the median of F . One
rationale for this assumption is that each citizen’s preference relation over po-
sitions is single-peaked and symmetric about her favorite position. Note that a
compact way to characterize OF is that the winner is the candidate favored by the
median voter.
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Definition 8.4: Electoral competition game with a continuum of citizens
and two office-motivated candidates

An electoral competition game with a continuum of citizens and two office-
motivated candidates 〈{1,2}, X , F 〉, where X is a closed interval of real num-
bers and F is a nonatomic distribution with support X (and hence a unique
median), is the strategic game with the following components.

Players
{1,2} (candidates).

Actions
The set of actions of each player is X (the set of possible positions).

Preferences
The preference relation Äj of each player j over X ×X satisfies

(w1, w2)Âj (y1, y2)Âj (z 1, z 2)

whenever OF (w1, w2) = win for j , OF (y1, y2) = tie, and OF (z 1, z 2) =
win for k , where k is the other player and OF is given by (8.1).

Any such game has a unique Nash equilibrium, in which each candidate’s
position is the median of F . Further, as for a two-candidate electoral competition
game for an arbitrary collective choice problem, the action of each candidate in
a Nash equilibrium weakly dominates all her other actions. These results do not
follow from Corollary 8.2, because that result assumes a finite number of citizens,
but the arguments are straightforward.

Proposition 8.4: Nash equilibrium of electoral competition game with
continuum of citizens and two office-motivated
candidates

Every electoral competition game with a continuum of citizens and two
office-motivated candidates 〈{1,2}, X , F 〉 has a unique Nash equilibrium,
in which each candidate’s position is the median of F , and for each candi-
date this action weakly dominates all her other actions.

Proof

Denote the median of F by m . We have OF (m , m ) = tie, and if either
candidate deviates from m she loses, so (m , m ) is a Nash equilibrium.

Now let (x1,x2) 6= (m , m ). If 1
2 (x1 + x2) = m then OF (x1,x2) = tie, and
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either candidate can win by deviating to m . Otherwise one of the candi-
dates loses, and by moving to m she at least ties. Thus (x1,x2) is not a Nash
equilibrium.

If candidate i ’s position is m , the outcome is a tie if the other candi-
date’s position is m and a win for i otherwise. If i ’s position differs from m ,
she loses if the other candidate’s position is m . Thus i ’s action m weakly
dominates all her other actions.

Note that this result does not depend on the shape of the distribution F of
the citizens’ favorite positions. This distribution can be concentrated or dis-
persed, unimodal or multimodal, symmetric or skewed; in every case the action
of choosing the median of the distribution weakly dominates all other actions,
and the action pair in which both candidates choose the median is the only Nash
equilibrium.

A notable feature of the unique Nash equilibrium is that both candidates
choose the same position. Harold Hotelling, who in 1929 suggested that the
model captures competition between parties, asserted that in the US at the time
the convergence of positions was “strikingly exemplified” (Hotelling 1929, 54).
Some observers of US politics claim that the exemplification of convergence is
now less striking.

Exercise 8.1: Electoral competition with alienation

Consider a model that differs from an electoral competition game with a
continuum of citizens and two office-motivated candidates only in that
citizens whose favorite positions are more than some distance k from both
candidates’ positions do not vote. (Perhaps citizens’ motivations for voting
are expressive (Section 6.2), with alienation setting in when both candi-
dates’ positions are remote.) Characterize the Nash equilibria of the game
when the distribution of the citizens’ favorite positions is unimodal, with
a differentiable density. Give an example in which the distribution of the
citizens’ favorite positions is not unimodal and a Nash equilibrium exists
in which the candidates’ positions differ.

The fact that a candidate’s choosing m weakly dominates all her other actions
means that regardless of her beliefs about the other candidates, m is an optimal
action for her. However, it does not mean that choosing a position different from
m is unambiguously irrational. If, for example, one candidate believes that the
other will certainly choose some given position x >m , then any position closer
to m than x is optimal for her. But should a candidate not believe that the other
candidate is rational? And also that the other candidate believes she is rational?
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And that the other candidate believes she believes that the other candidate is
rational? And so forth . . . . For an electoral competition game with a finite set of
possible positions, the next exercise asks you to show that the implication of this
set of hypotheses is that a candidate chooses m .

Exercise 8.2: Rationalizable actions in two-candidate electoral
competition

Consider a variant of an electoral competition game with a continuum of
citizens and two office-motivated candidates in which the set of possible
positions is finite: {z 1, . . . , z k } with z 1 < z 2 < · · ·< z k . Each citizen’s favorite
position is a member of the set and each candidate is restricted to choose a
member of the set. Call a candidate’s action rational if it is a best response
to some belief about the other candidate’s actions, or equivalently if it is
not strictly dominated. (Take this equivalence as given; the argument for
it is not simple.) Find a candidate’s rational actions, her rational actions
if she assumes that the other candidate is rational, her rational actions if
she assumes that the other candidate assumes that she is rational, and so
forth. An action that is rational under the union of these assumptions is
rationalizable. Show that the only rationalizable action is the median of
the citizens’ favorite positions.

Just as an electoral competition game with a continuum of citizens and two
office-motivated candidates is a variant of an electoral competition game with
two office-motivated candidates, so we can define a variant with a continuum
of citizens of a sequential electoral competition game with two office-motivated
candidates. I postpone doing so until Section 10.3, where I study a version of
the game with many office-seekers, each of whom has the option to become a
candidate.

8.2.2 Two-dimensional positions

Proposition 8.1 shows that in a Nash equilibrium of an electoral competition
game with two office-motivated candidates, each candidate’s position is a Con-
dorcet winner of the underlying collective choice problem. When the set of al-
ternatives is two-dimensional, what do we know about the set of Condorcet win-
ners? Section 1.6 shows that the character of the Condorcet winners depends on
the nature of the individuals’ preferences. Proposition 1.6 says that when the in-
dividuals have city block preferences, each component of a Condorcet winner is
the median of the individuals’ favorite values of that component, and Proposi-
tion 1.7 says that when the individuals have max preferences, a Condorcet win-
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position→1
2 (x1+x2)x1 x2

Density of distribution G
of median of citizens’

favorite positions

Probability
candidate 2 wins

Probability
candidate 1 wins

Figure 8.3 Two-candidate electoral competition in which median of the citizens’ fa-
vorite positions is uncertain.

ner is a component-wise median of a 45 degree rotation of the individuals’ fa-
vorite positions. For the case in which the individuals have Euclidean prefer-
ences, Proposition 1.8 says that a Condorcet winner exists only if the individuals’
favorite positions possess a specific symmetry: for some position x , half of these
favorite positions lie on each side of x , in which case x is a Condorcet winner.

8.3 Candidates uncertain of citizens’ preferences

In the models of electoral competition discussed so far, the candidates know the
distribution of the citizens’ preferences. I now present two models in which they
are uncertain about this distribution.

8.3.1 Common information

The analysis in Section 8.2.1 shows that when the set of positions is an inter-
val of real numbers, the key feature of the citizens’ preferences is the median
of their favorite positions. In the model I now present, the candidates’ uncer-
tainty about the citizens’ preferences directly concerns this median. The candi-
dates are assumed to share the belief that this median has a nonatomic distri-
bution G . Denote the candidates’ positions by x1 and x2. If x1 = x2 then each
candidate wins with probability 1

2 , and if x1 < x2 then candidate 1 wins with
probability G ( 1

2 (x1+x2)), the probability that the median favorite position is at
most 1

2 (x1+x2), and candidate 2 wins with probability 1−G ( 1
2 (x1+x2)). (Refer to

Figure 8.3.) Each candidate cares about her probability of winning.



8.3 Candidates uncertain of citizens’ preferences 249

Definition 8.5: Electoral competition game with two office-motivated
candidates and uncertain median

An electoral competition game with two office-motivated candidates and
uncertain median 〈{1,2}, X ,G 〉, where X is a closed interval of real numbers
and G is a nonatomic distribution with support X (and hence a unique
median), is the strategic game with the following components.

Players
{1,2} (candidates).

Actions
The set of actions of each player is X .

Preferences
The preferences of each player j over X × X are represented by the
function u j : X ×X →R defined by

u j (x1,x2) =







G ( 1
2 (x1+x2)) if x j < xk

1
2 if x1 = x2

1−G ( 1
2 (x1+x2)) if x j > xk ,

where k is the other player.

The interpretation of this game differs from that of an electoral competition
game with a continuum of citizens and two office-motivated candidates, but for-
mally the games are similar, and their analyses are also similar. The game has a
unique Nash equilibrium, in which each candidate’s position is the median of
the distribution G of the median of the citizens’ favorite positions.

Proposition 8.5: Nash equilibrium of electoral competition game with
two office-motivated candidates and uncertain median

An electoral competition game with two office-motivated candidates and
uncertain median 〈{1,2}, X ,G 〉 has a unique Nash equilibrium, in which
each candidate’s position is the median of G .

Proof

Denote the median of G by m . The outcome of the action pair (m , m ) is
that each candidate wins with probability 1

2 . If either candidate deviates to
a position x , her probability of winning becomes G ( 1

2 (x +m )) <G (m ) = 1
2
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if x <m and 1−G ( 1
2 (x +m )) <G (m ) = 1

2 if x >m . Thus (m , m ) is a Nash
equilibrium.

Now let (x1,x2) 6= (m , m ). Assume without loss of generality that x1 ≤ x2.
First suppose that x1 = x2 < m , so that each candidate’s probability

of winning is 1
2 . Let x = x1 = x2. Then either candidate can increase her

probability of winning to 1−G ( 1
2 (x +m )) > 1

2 by deviating to m . A similar
argument applies if x1 = x2 >m .

Now suppose that x1 < x2, so that candidate 1’s probability of winning
is G ( 1

2 (x1+x2)) and candidate 2’s is 1−G ( 1
2 (x1+x2)). If 1

2 (x1+x2)<m then
G ( 1

2 (x1 + x2)) < 1
2 and candidate 1 can increase her probability of winning

to 1
2 by deviating to x2. If 1

2 (x1 + x2) > m then similarly candidate 2 can
increase her probability of winning by deviating to x1. If 1

2 (x1 + x2) = m
then each candidate’s probability of winning is 1

2 and either candidate can
increase this probability by deviating to m .

8.3.2 Private information

Now suppose that each candidate gets a private signal about the location of the
median of the citizens’ favorite positions (perhaps from a poll she conducts). As-
sume that for each candidate, this signal is drawn from the same finite set T , and
the distribution of the median of the citizens’ favorite positions depends only on
the pair of signals the candidates receive, not on the identity of the candidate
who received each signal. Denote by G{t1,t2} the distribution function of this me-
dian when one candidate’s signal is t1 and the other’s is t2. Assume that each dis-
tribution function G{t1,t2} has a density, g {t1,t2}. An example of possible densities
in a case in which T contains two signals, 1 and 2, is shown in Figure 8.4.

Each candidate observes only her own signal. Before receiving their signals,
the candidates’ beliefs about the probabilities of the pairs (t1, t2) ∈ T ×T are the
same: each candidate believes that the probability of (t1, t2) is P(t1, t2). The func-
tion P is assumed to be symmetric: P(t1, t2) = P(t2, t1) for each (t1, t2) ∈ T × T .
The signal each candidate receives determines, via P , her belief about the other
candidate’s signal.

Definition 8.6: Electoral competition game with two office-motivated
candidates privately informed about citizens

An electoral competition game with two office-motivated candidates pri-
vately informed about citizens 〈{1,2}, X , T, P, (G{t1,t2}){t1,t2}⊂T 〉, where

• X ⊂R is a finite interval
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g {1,1} g {1,2}
g {2,2}

m{1,1} m{1,2}z m{2,2}

Figure 8.4 An example of the distributions over positions of the median of the citizens’
favorite positions for each possible pair of signals in an electoral competition game with
two office-motivated candidates privately informed about citizens. The set of signals
in this example is {1,2}; g {t1,t2} is the density of the distribution function G{t1,t2} of the
median of the citizens’ favorite positions when candidate 1’s signal is t1 and candidate 2’s
is t2, and m{t1,t2} is the median of G{t1,t2}.

• T is a finite set

• P is a probability distribution over T×T with P(t1, t2)> 0 and P(t1, t2) =
P(t2, t1) for all (t1, t2)∈ T ×T

• for each {t1, t2} ⊂ T , G{t1,t2} is a nonatomic probability distribution
function for X that has a density and whose support is an interval

is a Bayesian game with the following components.

Players
{1,2} (the candidates).

States
T ×T (the set of pairs (t1, t2)with ti ∈ T for i = 1, 2).

Actions
The set of actions of each player is X (the set of positions).

Signals
For each player i , the set of signals is T and her signal function asso-
ciates with each state (t1, t2) the signal ti .

Prior beliefs
The players’ common prior belief is that t1 and t2 are drawn from T ×T
according to P .

Payoffs
The payoff of each player j for the pair of actions (z 1, z 2) and state (t1, t2)
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is her probability of winning when the distribution of the median is
G{t1,t2}:

u j ((z 1, z 2), (t1, t2)) =







G{t1,t2}(
1
2 (z 1+ z 2)) if z j < z k

1
2 if z j = z k

1−G{t1,t2}(
1
2 (z 1+ z 2)) if z j > z k

(8.2)

where k is the other player.

Given that the distributions G{t1,t2} depend only on the pair of signals, not
the identity of the candidate who receives each signal, it is natural to consider
the possibility that the game has a Nash equilibrium (x1,x2) (where xi : T → X
for i = 1, 2) in which the candidates choose the same position whenever their
signals are the same: x1(t ) = x2(t ) for all t ∈ T .

Suppose that there are two possible signals, with T = {1, 2}. For each set
{t1, t2} ⊂ T , denote the median of G{t1,t2} by m{t1,t2} and assume that the higher
signal is associated with a larger value of the median: m{1,1} <m{1,2} <m{2,2}, as
in the example in Figure 8.4.

I first argue that the game has no Nash equilibrium in which both types of
each candidate choose the same position: x1(1) = x2(1) = x1(2) = x2(2). For such a
strategy pair, the probability of each type of each candidate winning is 1

2 . Denote
the candidates’ common position by z . Suppose that z <m{1,2}, as in Figure 8.4.
Consider type 2 of candidate 1. She believes that the density of the median is
either g {1,2} (if candidate 2’s signal is 1) or g {2,2} (if candidate 2’s signal is 2). In
both cases, her probability of winning increases if she deviates from z to m{1,2}.
If candidate 2’s signal is 1, this probability becomes equal to the area under g {1,2}

for positions at least equal to the midpoint of z and m{1,2}, shaded purple in Fig-
ure 8.4, and if candidate 2’s signal is 2, it becomes the area under g {2,2} for po-
sitions at least equal to the midpoint of z and m{1,2}, shaded green in Figure 8.4.
Given that 1

2 (z+m{1,2})<m{1,2} <m{2,2}, both of these probabilities exceed 1
2 . Thus

type 2 of candidate 1 gains by deviating from z to m{1,2}, and hence the game has
no equilibrium in which both types of both candidates choose the same position
less than m{1,2}. By a symmetric argument, it has no equilibrium in which both
types of both candidates choose the same position greater than m{1,2}. Finally,
suppose that both types of both candidates choose the position m{1,2}. Then if
type 2 of candidate 1 deviates to a slightly larger position, she slightly reduces
her probability of winning when candidate 2’s signal is 1 and discretely increases
it when candidate 2’s signal is 2, so that she has a deviation that increases her
probability of winning.
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g {1,1} g {1,2}
g {2,2}

m{1,1} z 1
1
2 (z 1+ z 2) z 2 m{2,2}

Figure 8.5 The effect of a deviation by type 1 of a candidate from a strategy pair (x1,x2)
with x1(1) = x2(1) = z 1 and x1(2) = x2(2) = z 2 in an electoral competition game with two
office-motivated candidates privately informed about citizens.

I now consider the possibility that the game has a (“symmetric”) Nash equi-
librium in which type 1 of each candidate chooses the same position, as does
type 2 of each candidate, but the types choose different positions. Consider a
strategy pair (x1,x2) with x1(1) = x2(1) = z 1, x1(2) = x2(2) = z 2, and z 1 6= z 2.
For this strategy pair, type 1 of each candidate i ties with the other candidate,
j , when j ’s signal is 1 (both candidates choose z 1) and wins with probability
G{1,2}( 1

2 (z 1+z 2)) if z 1 < z 2 and with probability 1−G{1,2}( 1
2 (z 1+z 2)) if z 1 > z 2 when

j ’s signal is 2 (i chooses z 1 and j chooses z 2). I argue that if this strategy pair is a
Nash equilibrium then z 1 =m{1,1} and z 2 =m{2,2}. Suppose that z 1 >m{1,1}, as in
Figure 8.5. Then if type 1 of a candidate deviates to a slightly smaller position, her
probability of winning is discretely larger than 1

2 when the other candidate’s sig-
nal is 1 (it is an area like the one shaded purple in Figure 8.5) and is close to what
it was when her position was z 1 when the other candidate’s signal is 2 (if z 2 > z 1,
as in Figure 8.5, it is slightly less than it was before, and if z 2 < z 1 then it is slightly
more than it was before). Thus the deviation increases the candidate’s probabil-
ity of winning. A symmetric argument shows that if z 1 <m{1,1} then a candidate’s
deviation to a slightly larger position increases her probability of winning.

We conclude that if the game has a symmetric equilibrium, then the posi-
tion of each type t of each candidate is the median m{t ,t } of the distribution of
the citizens’ favorite positions when the other candidate’s signal is also t . In a
sense, such an equilibrium amplifies the candidates’ signals: although a candi-
date who receives a signal t assigns positive probability to the other candidate’s
receiving each possible signal, the distribution of the citizens’ favorite positions
that determines her equilibrium position is the one associated with both candi-
dates’ signals being t ; her position is more extreme than the expected value of
the median of the citizens’ favorite positions given her own signal.
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Proposition 8.6: Nash equilibrium of electoral competition game with
two office-motivated candidates privately informed
about citizens

Let 〈{1,2}, X , T, P, (G{t1,t2}){t1,t2}⊂T 〉 be an electoral competition game with
two office-motivated candidates privately informed about citizens. Sup-
pose that T = {1,2} and m{1,1} <m{1,2} <m{2,2}, where m{t1,t2} is the median
of G{t1,t2} for each set {t1, t2} ⊂ T . In any Nash equilibrium of the game, the
position of each type t ∈ T of each candidate is the median m{t ,t } of G{t ,t }.

Proof

In the text I argue that in any Nash equilibrium (x1,x2) in which x1(t ) =
x2(t ) for all t ∈ T we have x1(1) = x2(1) =m{1,1} and x1(2) = x2(2) =m{2,2}.
To complete the proof, suppose that (x1,x2) is a Nash equilibrium in which
x1 6= x2. Then given the symmetry of the game (in particular, the symmetry
of P), (x2,x1) is also a Nash equilibrium. Now, the game is strictly com-
petitive (an outcome that is better for one candidate is worse for the other
candidate), so its Nash equilibria are interchangeable (see for example Os-
borne 2004, Corollary 369.3). Thus if (x1,x2) and (x2,x1) are Nash equilibria
then so are (x1,x1) and (x2,x2). The argument in the text shows that the
game has at most one symmetric equilibrium, so we conclude that it has
no asymmetric equilibria.

This result asserts only that if the game has an equilibrium then it takes a cer-
tain form, not that the strategy pair given is necessarily a Nash equilibrium. I now
give an example in which the strategy pair is in fact a Nash equilibrium. Suppose
that each distribution G{t1,t2} is symmetric about its median and has the same
form, differing only in its location, and the locations of G{1,1}, G{1,2}, and G{2,2} are
equally spaced, as in Figure 8.6. That is, for some number α > 0 and function
H :R→Rwith a symmetric density we have G{1,1}(x ) =H (x +α), G{1,2}(x ) =H (x ),
and G{2,2}(x ) = H (x − α) for each x ∈ X . Consider the strategy pair (x1,x2) for
which x1(1) = x2(1) = m{1,1} and x1(2) = x2(2) = m{2,2}. Suppose that type 1 of
candidate i deviates to z 1. Denote the other candidate by j .

z 1 <m{1,1} or z 1 >m{2,2}

Type 1 of candidate i ’s probability of winning falls regardless of j ’s type.

m{1,1} < z 1 <m{2,2}

If j ’s signal is 1, type 1 of candidate i ’s probability of winning decreases from
1
2 to the area shaded purple in Figure 8.6, and if j ’s signal is 2, this probability
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g {1,1} g {1,2} g {2,2}

m{1,1} z 1 m{1,2} m{2,2}

Figure 8.6 The effect of a deviation by type 1 of a candidate to z 1 from a strategy pair
(x1,x2) with x1(1) = x2(1) =m{1,1} and x1(2) = x2(2) =m{2,2} in an electoral competition
game with two office-motivated candidates privately informed about citizens

increases from 1
2 to the area shaded green in the figure. Given the symmetry of

the distributions, the decrease in the first case is equal to the increase in the
second case. Thus if the probability that j ’s signal is 1 given that i ’s signal is 1
is at least 1

2 , then the deviation does not increase i ’s probability of winning.

z 1 =m{2,2}

If j ’s signal is 1, type 1 of candidate i ’s probability of winning falls from 1
2 to

1−G{1,1}( 1
2 (m{1,1}+m{1,2})) = 1−G{1,1}(m{1,2}), and if j ’s signal is 2 it remains 1

2 .

Symmetric arguments apply to deviations by type 2 of a candidate, so we con-
clude that the strategy pair (x1,x2) is a Nash equilibrium in this example if for
each t ∈ {1,2} the probability that one candidate’s signal is t given that the other
candidate’s signal is t is at least 1

2 .
If the number of possible signals is arbitrary, an extension of this logic implies

that the game has a Nash equilibrium only if the probability that one candidate’s
signal is extreme given that the other candidate’s signal is extreme is at least 1

2

(Bernhardt et al. 2009b, Theorem 2). When the number of signals is large, this
condition is particularly restrictive. If the condition is violated, then a version of
the model has a mixed strategy equilibrium in which the strategy of each type t
of each candidate with a relatively moderate assigns probability 1 to m{t ,t }, like
the strategy of each candidate in Proposition 8.6, and the support of the strat-
egy of type t of each remaining candidate is an interval consisting of positions
more moderate than m{t ,t } (Bernhardt et al. 2009b, Theorem 3). Thus the ampli-
fication of the candidates’ private information in the strategy profile in Proposi-
tion 8.6 carries over to this mixed strategy equilibrium, although it is tempered
for candidates with extreme signals.
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Exercise 8.3: Previous electoral outcomes as information sources

Candidates may obtain information about the citizens’ preferences from
the outcomes of previous elections, leading citizens to consider the effect
of their votes not only on the outcome of the current election but on the
candidates’ positions in future elections. Here is a simple example. Two
candidates compete in a sequence of two elections, in each of which the
set of possible positions is [0,1]. There is a single citizen, whose favorite
position x̂ is unknown to the candidates, who believe that its distribution
function is H . For any outcomes x 1 in period 1 and x 2 in period 2, the
citizen’s payoff is −|x 1 − x̂ | − |x 2 − x̂ |. In the first period the candidates’
positions are fixed at x1 and x2 with x1 < x2; the citizen chooses a cutoff
position x ∗, voting for candidate 1 if her favorite position is less than x ∗

and for candidate 2 if it is greater than x ∗. If candidate 1 wins in the first
period, in the second period, in line with Proposition 8.5, the candidates
both choose the median of the distribution of the citizen’s favorite position
conditional on this position being in [0,x ∗]. If candidate 2 wins in the first
period, in the second period the candidates similarly both choose the me-
dian of the distribution of the citizen’s favorite position conditional on this
position being in [x ∗,1]. If x1 = 1

2 , x2 = 1, and H is the uniform distribu-
tion on [0,1], which position x ∗ does the citizen choose as her cutoff? How
does this position compare with the one she would choose if there were no
second period?

8.4 Costly voting

In the models of electoral competition I have discussed so far, every citizen votes
even if the candidates’ positions are the same. If voting is voluntary, the devotion
to civic duty that this behavior requires seems excessive. In this section I discuss
a model in which voting entails a cost, as in the models in Chapter 4, and a citizen
votes only if she believes that the expected benefit of doing so outweighs this
cost.

Assume that two candidates simultaneously choose positions and then the
citizens simultaneously vote. The citizens differ in their preferences over posi-
tions and their voting costs. Each citizen votes (for the candidate whose position
she prefers) only if her expected benefit from doing so, given the probability that
her vote affects the outcome, is at least her voting cost. Then only if the can-
didates’ positions differ do any citizens vote, and then only those whose voting
costs are sufficiently small.



8.4 Costly voting 257

To simplify the analysis, assume that there is only one citizen. This assump-
tion may seem extreme, but the model captures the main idea we want to study:
that a citizen votes only if doing so sufficiently affects the outcome. In a model
with many citizens, each citizen must consider the probability that her vote will
affect the outcome, given the other citizens’ behavior. This consideration com-
plicates the analysis, but after establishing the main result I argue that it appears
not to affect the key feature of an equilibrium.

I formulate the model as a Bayesian extensive game with observable actions.
In such a game, each player may have many possible types. Each player knows
her own type, but not the other players’ types. Every player observes every other
player’s action, and holds the same probabilistic belief about the other players’
types.

Specifically, in the the model here, two candidates simultaneously choose po-
sitions in a finite interval X and then a single citizen either votes for one of the
candidates, in which case that candidate wins, or abstains, in which case the
candidates tie. The candidates’ characteristics are known (formally, each candi-
date has a single type), but the citizen’s preferences over X and voting cost are
not known to the candidates. Thus the citizen’s type is a pair (θ , c ), where θ ∈ Θ
parameterizes the citizen’s preferences over X (the value of θ may be the citizen’s
favorite position, for example) and c ∈ R+ is her voting cost. The payoff of type
(θ , c ) of the citizen is v (x j ,θ )− c if she votes for candidate j (in which case j
is the winner), where x j is j ’s position, and 1

2 (v (x1,θ ) + v (x2,θ )) if she abstains
(in which case the outcome is a tie). Each candidate’s belief about the citizen’s
type is given by a probability measure P over the set Θ×R+ of the citizen’s types.
Each candidate prefers to win than to tie than to lose. The game is illustrated in
Figure 8.7.

Definition 8.7: Electoral competition game with two office-motivated
candidates and costly voting

An electoral competition game with two office-motivated candidates and
costly voting 〈X ,Θ, P, v 〉, where

• X ⊂R is a finite interval (the set of possible positions)

• Θ⊂R (the set of possible preference parameters for the citizen)

• P is a probability measure on Θ×R+ (the candidates’ beliefs about the
citizen’s preference parameter and voting cost)

• v : X ×R→R (the citizen’s payoff function)
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Two candidates simultaneously choose positions (x1,x2),
not knowing citizen’s preference parameter θ or voting cost c

citizen
votes for

candidate 1
abstains

votes for
candidate 2

candidates’ payoffs:

citizen (θ , c )’s payoffs:

(1,0)

v (x1,θ )− c

( 1
2 , 1

2 )

1
2 v (x1,θ )+ 1

2 v (x2,θ )

(0,1)

v (x2,θ )− c

Figure 8.7 An electoral competition game with two office-motivated candidates and
costly voting.

is a Bayesian extensive game with observable actions with the following
components.

Players
{1,2}∪ {z } (the candidates and a single citizen).

Terminal histories
The set of sequences {((x1,x2),b ) : x j ∈ X for j = 1,2 and b ∈ {1,2,φ}}
(where x j is the position of candidate j , b ∈ {1,2} is the candidate for
whom the citizen votes, and φ stands for abstention).

Player function
The function L with L(∅) = {1,2} (the candidates move (simultane-
ously) at the start of the game) and L((x1,x2)) = {z } for each (x1,x2) ∈
X ×X (the citizen moves after the candidates have chosen positions).

Actions
The set of actions of each candidate at the start of the game is X and
the set of actions of the citizen following any pair of actions of the
candidates is {1,2,φ} (a vote for one of the candidates or abstention).

Types
Each candidate has one possible type, known to the citizen. The set of
types of the citizen is Θ×R+, the set of pairs consisting of a preference
parameter and a nonnegative number (the citizen’s cost of voting). The
probability measure on the set Θ×R+ of the citizen’s types is P .
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Preferences
The preferences over lotteries over terminal histories of each candi-
date j (= 1, 2) are represented by the expected value of the function
u j defined by

u j ((θ , c ), ((x1,x2),b )) =







1 if b = j
1
2 if b =φ
0 if b = k ,

where k is the other candidate. The preferences over terminal histories
of the citizen of type (θ , c ) are represented by the function u defined by

u ((θ , c ), ((x1,x2),b )) =

¨
v (xb ,θ )− c if b ∈ {1,2}
1
2 (v (x1,θ )+ v (x2,θ )) if b =φ.

A strategy for a candidate in such a game is a position (member of X ), and a
strategy for the citizen is a function that assigns an action (member of {1,2,φ})
with each type (θ , c )∈Θ×R+ and each pair of actions (x1,x2) for the candidates.

A standard notion of equilibrium for a Bayesian extensive game with observ-
able actions is perfect Bayesian equilibrium. The definition of this notion of
equilibrium has features that are irrelevant to a two-candidate electoral com-
petition game with office-motivated candidates and costly voting because of the
simple structure of such a game: each player moves only once, and the citizen
is perfectly informed when she does so. The following notion of equilibrium
suffices.

Definition 8.8: Equilibrium of electoral competition game with two
office-motivated candidates and costly voting

An equilibrium of an electoral competition game with two office-
motivated candidates and costly voting is a strategy profile in which, for
each pair of the candidates’ positions, the action of each type of the citi-
zen maximizes that type’s expected payoff, and each candidate’s position
maximizes her expected payoff given the other candidate’s position and
the citizen’s strategy.

IfΘ= X and the parameter θ is the citizen’s favorite position, we can illustrate
the citizen’s optimal decision in a diagram. Figure 8.8 shows the candidates’ po-
sitions, x1 and x2, and the function v (·,θ0). If the citizen’s type is (θ , c ) then she
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↑
c

θ →
x →

v (x1,θ0)

v (x2,θ0)

Vote for 1 Vote for 2
Abstain

1
2 (v (x1,θ )− v (x2,θ ))

1
2 (v (x2,θ )− v (x1,θ ))

v (x ,θ0)

θ0

x1 x2

Figure 8.8 Payoffs in a two-candidate electoral competition with costly voting. The area
shaded red is the set of types (θ , c ) of the citizen who optimally vote for candidate 1 and
the area shaded blue is the set of types who optimally vote for candidate 2. The citizen’s
function v is shown for the parameter value θ0; the magenta lengths are equal.

optimally votes for candidate 1 if

v (x1,θ )> v (x2,θ ) and v (x1,θ )− c > 1
2 (v (x1,θ )+ v (x2,θ )).

The second condition is equivalent to c < 1
2 (v (x1,θ )− v (x2,θ )). The length of

the magenta line segments in the figure is this cutoff 1
2 (v (x1,θ0)− v (x2,θ0)) for a

citizen with preference type θ0. The figure shows the result of a similar calcula-
tion for each preference type: the area shaded red is the set of types (θ , c ) who
optimally vote for candidate 1 and the area shaded blue is the set of types who
optimally vote for candidate 2.

The effect of a change in candidate 1’s position that reduces the difference
between the candidates’ positions is illustrated in Figure 8.9. As for a game in
which every type of the citizen is assumed to vote, this change causes some types
of the citizen to switch from voting for candidate 2 to voting for candidate 1. But
it affects also the set of types of the citizen that vote, because for almost all types
of the citizen it changes the expected gain from voting and thus the cost cutoff for
voting rather than abstaining. For example, it reduces this cost cutoff for types of
the citizen who prefer x1 to x ′1 to x2 or who prefer x2 to x ′1 to x1, and increases this
cost cutoff for types who prefer both x1 to x2 and x ′1 to x1. Informally, it reduces
the motivation to vote for types of the citizen with relatively extreme preferences
and increases this motivation for types whose favorite alternative is close to x ′1. In
a game in which every citizen is assumed to vote, the net effect on candidate 1’s
probability of winning of her moving her position closer to that of candidate 2 is
necessarily positive. In the model here the net effect depends on the character of
the citizen’s preferences and the distribution of her types.

Consider the possibility that the game has an equilibrium in which the can-
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↑
c

θ →
x →

Vote for 1 Vote for 2

Abstain

v (x ,θ0)

x1 x ′1 x2

Figure 8.9 The decision to vote in a two-candidate electoral competition with costly
voting. When candidate 1 moves from x1 to x ′1, the set of types who vote for each candi-
date changes from the areas shaded with light colors (and dashed boundaries) to those
shaded with darker colors (and solid boundaries). For a citizen with preference type θ0,
who is indifferent between x1 and x ′1, the move does not affect the relative attractiveness
of the candidates’ positions.

didates’ positions are the same, say equal to x ∗. In such an equilibrium, the only
types who vote are those for whom the voting cost is zero, and when the distribu-
tion of types is nonatomic, as the next result assumes, such types have measure
zero. If one of the candidates, say i , deviates slightly from x ∗, opening a small
wedge between the positions, only citizen types with cost close to zero vote. For
equilibrium, such a deviation must not increase i ’s payoff. That is, xi = x ∗ must
locally maximize i ’s payoff, given that the other candidate’s position is x ∗. The
next result shows that if for each value of the parameter θ ∈R the function v (·,θ )
is strictly concave and differentiable, and x ∗ is in the interior of X , then the condi-
tion for x ∗ to be a local maximizer implies that x ∗ maximizes the expected payoff,
according to the candidates’ belief, of the citizen types for which the voting cost is
zero. Given the strict concavity of v (·,θ ) for each value of θ , there is only one such
position x ∗, so if the game has an equilibrium in which the candidates’ positions
are the same and in the interior of X then it has exactly one such equilibrium.

Now, for any given strategy of the citizen, the game between the candidates is
strictly competitive (an outcome that is better for one candidate is worse for the
other candidate), and the roles of the candidates are symmetric. So if (x1,x2) is
an equilibrium pair of positions then so is (x2,x1), and hence by the interchange-
ability property of Nash equilibria of strictly competitive games so are (x1,x1) and
(x2,x2). So by the interchangeability property of Nash equilibria of strictly com-
petitive games (see for example Osborne 2004, Corollary 369.3), if the game has
only one equilibrium in which the candidates’ positions are the same then it has
no equilibrium in which they differ.

Combining the arguments in the last two paragraphs, we conclude that if for
each value of θ ∈R the function v (·,θ ) is strictly concave and differentiable and
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the game has an equilibrium in which the candidates’ positions are in the interior
of X then it has one such equilibrium, in which the candidates’ positions are the
same, equal to the position that maximizes the expected payoff of the citizen
types for which the voting cost is zero.

Proposition 8.7: Equilibrium of electoral competition game with two
office-motivated candidates and costly voting

Let 〈X ,Θ, P, v 〉 be an electoral competition game with two office-motivated
candidates and costly voting. If P is nonatomic and has a continuous den-
sity, for each θ ∈R the function v (·,θ ) is strictly concave and differentiable,
and for each x ∈ X the function v (x , ·) is continuous, then in every equilib-
rium of 〈X ,Θ, P, v 〉 in which the candidates’ positions are in the interior of X
these positions are the same, equal to the solution of

max
x∈X

∫

Θ

v (x ,θ )g (θ ,0)dθ , (8.3)

where g is the density of P , and the citizen abstains unless her cost is 0 (an
event with probability zero).

Proof

First consider the citizen. For any pair (x1,x2) of the candidates’ positions,
type (θ , c ) of the citizen chooses a solution of

max
b∈{1,2,φ}

u ((θ , c ), ((x1,x2),b )).

For j = 1, 2, denote by Tj (x1,x2) the set of pairs (θ , c ) such that j (i.e. vote
for j ) is a solution of this problem, and by Tφ(x1,x2) the set of pairs such
that φ (abstain) is a solution.

Now, j is a solution of the problem only if v (x j ,θ ) ≥ v (xk ,θ ) and
v (x j ,θ )− c ≥ 1

2 [v (x1,θ ) + v (x2,θ )], where k is the other candidate. Given
c ≥ 0, these conditions are equivalent to c ≤ 1

2 [v (x j ,θ )− v (xk ,θ )]. So

Tj (x1,x2) =
�
(θ , c )∈Θ×R+ : c ≤ 1

2

�
v (x j ,θ )− v (xk ,θ )

�	
. (8.4)

Thus for any position x , we have P(Tj (x ,x )) = 0 for j = 1, 2, given that P is
nonatomic: if the candidates’ positions are the same, the set of types of the
citizen that vote has measure zero, so the outcome is a tie, and hence each
candidate’s payoff is 1

2 . So for an equilibrium in which both candidates
choose the same position, we need the payoff of a candidate who deviates
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to be at most 1
2 . For the pair of positions (x1,x2), the probability that can-

didate j wins is P(Tj (x1,x2)) and the probability she ties is P(Tφ(x1,x2)), so
her payoff is at most 1

2 if and only if

P(Tj (x1,x2))+ 1
2 P(Tφ(x1,x2))≤ 1

2 ,

or, given that P(T1(x1,x2)) + P(T2(x1,x2)) + P(Tφ(x1,x2)) = 1, P(Tj (x1,x2))−
P(Tk (x1,x2)) ≤ 0, where k is the other candidate. So the game has an
equilibrium in which both candidates’ positions are x ∗ if and only if

P(T1(x1,x ∗))−P(T2(x1,x ∗))≤ 0 for all x1 ∈ X

P(T2(x
∗,x2))−P(T1(x

∗,x2))≤ 0 for all x2 ∈ X .

The left-hand side of each inequality is 0 for x1 = x2 = x ∗, so equivalently
x ∗ maximizes P(T1(x1,x ∗))−P(T2(x1,x ∗)) and P(T2(x ∗,x2))−P(T1(x ∗,x2)).

Now, from (8.4) we have

P(Tj (x1,x2)) =

∫

Θ

∫ 1
2 [v (x j ,θ )−v (xk ,θ )]

0

g (θ , c )dc dθ ,

so that

P(T1(x1,x ∗))−P(T2(x1,x ∗)) =

∫

Θ

�∫ 1
2 [v (x1,θ )−v (x ∗,θ )]

0

g (θ , c )dc −

∫ 1
2 [v (x ∗,θ )−v (x1,θ )]

0

g (θ , c )dc

�

dθ .

A necessary condition for a position x ∗ interior to X to maximize this ex-
pression is that the derivative of the expression with respect to x1 evaluated
at x ∗ is zero, or
∫

Θ

�
1
2 v ′1(x

∗,θ )g (θ ,0)+ 1
2 v ′1(x

∗,θ )g (θ ,0)
�

dθ =

∫

Θ

v ′1(x
∗,θ )g (θ ,0)dθ = 0,

where v ′1 denotes the derivative of v with respect to its first argument. Now,
given that for any value of its second argument, v is strictly concave in its
first argument, ∫

Θ

v ′1(x
∗,θ )g (θ ,0)dθ = 0

if and only if x ∗ is the (unique) solution of (8.3). So for any equilibrium in
which the positions of the candidates are the same and interior to X , the
common position is the solution of this problem.
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Now, the strategic game between the candidates, given the optimal ac-
tion of each type of citizen for each pair of positions, is strictly competi-
tive, and the candidates are symmetric. The argument in the text before
the result shows that as a consequence the fact that the game has a unique
equilibrium in which the candidates’ positions are the same implies that it
has no equilibrium in which they differ.

When there are many citizens, each of whom knows her own type but not
the other citizens’ types, the analysis is more complicated, because the last stage
of the game is no longer simply a decision problem. However, an informal ar-
gument suggests that the candidates’ equilibrium positions remain the same.
When a candidate deviates slightly from a common position, only a vanishingly
small measure of citizen types—those with very low voting cost—possibly find
voting worthwhile, and their equilibrium actions are plausibly similar to the opti-
mal action of the lone citizen in the model I have presented. Ledyard (1984, The-
orem 1) shows that under some conditions an analog of Proposition 8.7 indeed
holds.

The main qualitative assumption in the result is the strict concavity of the
function v (·,θ ) for each preference type θ ∈ R. This assumption does not have
any particular appeal; the assumption that this function is convex on each side
of its maximizer (the type’s favorite position), rather than concave, for example,
seems equally plausible. As far as I know, no general analysis of the model with-
out the concavity assumption exists, although under the assumptions of the fol-
lowing exercise, which include the symmetry of the citizen’s payoff function and
the uniformity of the probability measure on citizen types, the equilibria can be
characterized.

Exercise 8.4: Electoral competition with costly voting

Consider an electoral competition game with two office-motivated candi-
dates and costly voting 〈X ,Θ, P, v 〉 in which the preferences of each type
of the citizen have the same form, differing only in the favorite position.
Specifically, assume that Θ = R and v (x ,θ ) = ψ(x −θ ) for all x ∈ X and
θ ∈Θ, whereψ :R→R is increasing for negative values of its argument and
decreasing for positive values (so that its maximizer is 0) andψ(z ) =ψ(−z )
for all z ∈ R (so that it is symmetric about 0). Assume also that the mea-
sure P is uniform on Θ× [0, c ] for some c > 0. Show that the game has an
equilibrium in which each candidate chooses the midpoint of X .



8.5 Citizens with preferences over candidates 265

8.5 Citizens with preferences over candidates

The models so far in this chapter assume that each citizen cares about the poli-
cies proposed by the candidates, not about the candidates themselves. I now
present a model in which each citizen cares directly about the candidates, as well
as about the policies they propose. One motivation for the model is that a can-
didate has immutable personal characteristics that determine how energetically
she will implement her proposed policies if she is elected. Another motivation is
that each candidate is unable to credibly change her positions on some issues.

8.5.1 Candidates know citizens’ preferences

Suppose that the preferences of each citizen i are represented by the function
u i : X × {1,2} → R, where X is the set of possible positions and {1,2} is the set
of candidates, so that i prefers candidate 1 with position x1 to candidate 2 with
position x2 if and only if u i (x1,1) > u i (x2, 2). Assume that u i (x ,1) 6= u i (x ,2) for
each citizen i and each position x , so that each citizen cares about the candidate
as well as her position. An implication of this assumption is that a candidate does
not necessarily have the option to tie with the other candidate by choosing the
same position as she does, as was the case in the models discussed previously.

The following example illustrates possible forms for an equilibrium; I know
of no general characterization of equilibria.

Example 8.1: Electoral competition when citizens have preferences over
candidates

Suppose that the set X of possible positions is an interval of numbers
and there are three citizens, with preferences represented by the functions
shown in Figure 8.10. For each citizen there are two curves, a red one in-
dicating the citizen’s payoff as a function of the policy, x , if candidate 1 is
elected, and a blue one indicating her payoff if candidate 2 is elected.

Is the pair (x ∗,x ∗) of positions a Nash equilibrium? For this pair of posi-
tions, candidate 2 wins, because citizens 2 and 3 vote for her; thus she has
no deviation that generates an outcome she prefers. If candidate 1 devi-
ates to a position x < x ∗ then she becomes less desirable for citizens 2 and
3, and hence still loses. If she deviates to a position x > x ∗ then she be-
comes less desirable for citizens 1 and 2 and more desirable for citizen 3.
If for some such position x , citizen 3 prefers (x ,1) to (x ∗,2) and citizen 1
also still has this preference, then candidate 1 has a profitable deviation,
and (x ∗,x ∗) is not a Nash equilibrium. In Figure 8.10, we need x > x ′ for
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x x ′ xx ∗ z z

u 1(x ,1)

u 1(x ,2)

u 2(x ,2) u 2(x ,1)

u 3(x ,1)

u 3(x ,2)

Figure 8.10 The functions u i for the citizens in Example 8.1.

citizen 3 to prefer (x ,1) to (x ∗, 2) and hence vote for candidate 1, and when
x = x ′ citizen 1 is indifferent between (x ,1) and (x ∗,2) if the graph of u 1(x ,2)
is the dashed curve.

Thus if the graph of u 1(x ,2) lies above the dashed curve, for no posi-
tion does candidate 1 attract the votes of citizens 1 and 3: if she moves far
enough right to attract the vote of citizen 3, she loses the vote of citizen 1.
Hence in this case (x ∗,x ∗) is a Nash equilibrium.

If the graph of u 1(x ,2) lies below the dashed curve, then for some posi-
tion x > x ′ with x close to x ′ candidate 1 attracts the votes of both citizen 1
and citizen 3, and hence wins, so that (x ∗,x ∗) is not a Nash equilibrium.

In both cases any pair (x1,x2) with z ≤ x2 ≤ z is a Nash equilibrium: for
any value of x1, citizens 2 and 3 prefer (x2,2) to (x1,1), so that candidate 2
wins and candidate 1 cannot stop her from doing so. (The game has also
other Nash equilibria.)

Exercise 8.5: Electoral competition with an advantaged candidate

Suppose that every citizen prefers candidate 1 to candidate 2, in the sense
that u i (x , 1) > u i (x ,2) for all x ∈ X for every citizen i . Assume specifically
that (i) the set X of possible positions is an interval of numbers and (ii) for
a single-peaked function v :R→R− with v (0) = 0 and v (z )< 0 for all z 6= 0,
a position x̂ i for each citizen i (i ’s favorite position), and a number δ > 0,
we have u i (x ,1) = v (x − x̂ i ) and u i (x ,2) = v (x − x̂ i )−δ for all x ∈ X for each
citizen i .

Assume that the number of citizens is finite and odd and that a citi-
zen i for whom u i (x1,1) = u i (x2,2), where x1 and x2 are the candidates’
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positions, votes for candidate 1. Denote by m the median of the citizens’
favorite positions. Show that if v (x1 −m ) ≥ −δ then (x1,x2) is a Nash
equilibrium for any value of x2. In any such equilibrium, candidate 1 wins.

Now suppose that each candidate’s preferences are lexicographic: be-
tween two pairs of positions for which her probability of winning is the
same, she prefers the one in which the number of votes she receives is
larger. What can you say about the Nash equilibria in this case?

8.5.2 Candidates uncertain of citizens’ preferences

Now suppose that the candidates are not perfectly informed about the citizens’
preferences. Denote the set of possible positions by X and the payoff of any citi-
zen i for the position x implemented by candidate j by u i (x , j ). Assume that for
each citizen i there is a function vi : X →R and numbers θ 1

i and θ 2
i such that

u i (x , j ) = vi (x )+θ
j

i for all (x , j )∈ X ×{1,2},

so that u i (x ,1)≥ u i (y ,2) if and only if θi ≤ vi (x )−vi (y )where θi = θ 2
i −θ

1
i . Assume

that each candidate knows each function vi but not the number θi , which she
believes is drawn from a nonatomic distribution Fi independently of every θi ′ for
i ′ 6= i . Under these assumptions, if candidate 1’s position is x1 and candidate 2’s
is x2 then each candidate believes that for each citizen i , the probability that i
votes for candidate 1 is the probability that θi is at most vi (x )− vi (y ), namely
Fi (vi (x1)− vi (x2)), independently of the other citizens’ votes.

Assume that the number n of citizens is odd. Then if each citizen i votes for
candidate 1 with probability pi , independently of the other citizens, the proba-
bility P(p1, . . . , pn ) that candidate 1 wins is the probability that the members of
some set of more than 1

2 n citizens all vote for candidate 1:

P(p1, . . . , pn ) =
∑

{S⊆I :|S|>n/2}

�∏

i∈S

pi

∏

i∈I \S

(1−pi )

�

, (8.5)

where I is the set of citizens. Thus the probability that candidate 1 wins as a
function of the candidates’ positions is

Pr(1 wins) = P
�

F1(v1(x1)− v1(x2)), . . . , Fn (vn (x1)− vn (x2))
�

.
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Definition 8.9: Electoral competition game with two office-motivated
candidates and uncertain partisanship

An electoral competition game with two office-motivated candidates and
uncertain partisanship 〈I , X , (vi )i∈I , (Fi )i∈I ,{1,2}〉, where

• I is a finite set (of citizens) with an odd number of members

• X is a set (of positions)

and, for each i ∈ I ,

• vi : X →R (i ’s payoff function over positions)

• Fi is a nonatomic probability distribution function on R

is the strategic game with the following components.

Players
{1,2} (candidates).

Actions
The set of actions of each player is X .

Preferences
Letting I = {1, . . . , n}, the preference relation of player 1 over action
profiles (x1,x2) is represented by the function

P
�

F1(v1(x1)− v1(x2)), . . . , Fn (vn (x1)− vn (x2))
�

(the probability that player 1 wins) and the preference relation of
player 2 is represented by the function

1−P
�

F1(v1(x1)− v1(x2)), . . . , Fn (vn (x1)− vn (x2))
�

(the probability that player 2 wins), where P is given by (8.5).

Now assume that the set X of positions is a convex subset of a Euclidean
space, every function vi is differentiable and strictly concave, and all the func-
tions Fi are equal to the same differentiable function. Then the next result shows
that in any Nash equilibrium of the game in which each candidate’s position is in
the interior of X , the candidates’ positions are the same, equal to the maximizer
of the sum of vi (x ) over all citizens.
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Proposition 8.8: Nash equilibrium of electoral competition game with
two office-motivated candidates and uncertain
partisanship

Let 〈I , X , (vi )i∈I , (Fi )i∈I ,{1,2}〉 be an electoral competition game with two
office-motivated candidates and uncertain partisanship. Assume that I =
{1, . . . , n}, X is a convex compact subset of a Euclidean space, each function
vi is differentiable and strictly concave, and each function Fi is differen-
tiable, with F ′i (θ )> 0 for all θ in the interior of its support, and this support
includes [mini∈I ,x∈X ,y∈X (vi (x )−vi (y ))−ε,maxi∈I ,x∈X ,y∈X (vi (x )−vi (y ))+ε] for
some ε> 0 and ε > 0.

a. If (x ∗1,x ∗2) is a Nash equilibrium of the game and x ∗1 and x ∗2 are in the
interior of X then x ∗1 = x ∗2.

b. If Fi is the same for all i then

x ∗1 = x ∗2 = argmax
x∈X

n∑

i=1

vi (x ).

Proof

a. For j = 1, 2, the position x ∗j of candidate j maximizes j ’s probability of
winning, given the other candidate’s position: x ∗1 is a solution of

max
x1∈X

P(F1(v1(x1)− v1(x
∗
2)), . . . , Fn (vn (x1)− vn (x

∗
2))) (8.6)

and x ∗2 is a solution of

max
x2∈X

�
1−P(F1(v1(x

∗
1)− v1(x2)), . . . , Fn (vn (x

∗
1)− vn (x2)))

�
. (8.7)

If x ∗1 is a solution of (8.6) in the interior of X then by Proposition 16.12 it
satisfies the first-order condition

n∑

i=1

P ′i (π(x
∗
1,x ∗2))F

′
i (vi (x

∗
1)− vi (x

∗
2))∇vi (x

∗
1) = 0, (8.8)

where P ′i is the derivative of P with respect to its i th argument,

π(x ∗1,x ∗2) =
�

F1(v1(x
∗
1)− v1(x

∗
2)), . . . , Fn (vn (x

∗
1)− vn (x

∗
2))
�

,

and∇vi is the gradient of vi (the vector of its partial derivatives).
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Define the function W : X →R by

W (x ) =
n∑

i=1

P ′i (π(x
∗
1,x ∗2))F

′
i (vi (x

∗
1)− vi (x

∗
2))vi (x )

for all x ∈ X . Each function vi is strictly concave and all the coefficients of
vi (x ) are positive (P ′i (π(x

∗
1,x ∗2)) is the change in 1’s probability of winning

as citizen i becomes more likely to vote for her), so W is strictly concave.
Thus W has a unique maximizer and, by Proposition 16.13, (8.8) is neces-
sary and sufficient for x ∗1 to be a maximizer in the interior of X . Hence if x ∗1
is in the interior of X then it maximizes W .

A solution x ∗2 of (8.7) that is in the interior of X satisfies the same condi-
tion, (8.8), and hence also is the unique maximizer of W . Thus x ∗1 = x ∗2.

b. Given x ∗1 = x ∗2,

W (x ) =
n∑

i=1

P ′i (F (0), . . . , F (0))F ′(0)vi (x ),

where F is the common distribution. Thus given P ′i (p , . . . , p ) = P ′k (p , . . . , p )
for all p and all i and k , the maximizers of W (x ) are the maximizers of∑n

i=1 vi (x ).

Note that this result does not restrict the set X of positions to be one-dimensional.
If this set is one-dimensional and vi (x ) =−(x − x̂ i )2 for each citizen i then

arg max
x∈X

n∑

i=1

vi (x ) = argmax
x∈X

n∑

i=1

−(x − x̂ i )
2 =

n∑

i=1

x̂ i/n .

That is, in this case the common position chosen by the candidates is the mean
of the citizens’ favorite positions.

Note also that the result does not assert that an equilibrium exists—only that
if an equilibrium exists, it has the claimed properties. I am not aware of a result
that provides sufficient conditions for an equilibrium to exist, but the following
example shows that the result is not vacuous.

Example 8.2: Electoral competition with two office-motivated
candidates and uncertain partisanship

Let 〈I , X , (vi )i∈I , (Fi )i∈I ,{1,2}〉 be a two-candidate electoral competition
game with office-motivated candidates and uncertain partisanship. Sup-
pose that there are three citizens, with I = {1,2,3}, and the set X of possible
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−2 −1 0 1 2 3

v1 = v2 v3

Figure 8.11 The functions vi for the game in Example 8.2.

positions is the interval [−3,3]⊂R. Citizens 1 and 2 have favorite position
x̂1 = x̂2 = −1, citizen 3 has favorite position x̂3 = 2, and vi (x ) = −(x − x̂ i )2

for all x ∈ X for every citizen i . (Refer to Figure 8.11.) The functions F1,
F2, and F3 are all equal to F , which for some number α > 0 is uniform on
[−α,α].

The median favorite position is −1 and the maximizer of
∑n

i=1 vi (x ) is
0, the mean favorite position. By Proposition 8.8, the only possible Nash
equilibrium is (x1,x2) = (0,0). Under what conditions is that pair of posi-
tions in fact a Nash equilibrium? We need each candidate’s probability of
winning to be at most 1

2 for every position, given that the other candidate’s
position is 0. If candidate 2’s position is 0 and candidate 1’s position is x
then

Pr(citizen 1 votes for candidate 1) = Pr(θ < v1(x )− v1(0))

= Pr(θ <−(x − (−1))2+(0− (−1))2)

= Pr(θ <−x (x +2))

= [max(−α,min(α,−x (x +2)))− (−α)]/(2α).

(Refer to Figure 8.12.) The probability that citizen 2 votes for candidate 1
in this case is the same, and a similar calculation yields

Pr(citizen 3 votes for candidate 1)

= [max(−α,min(α,−x (x −4)))− (−α)]/(2α).

Using these expressions, we find that the probability a candidate wins
(which happens if and only if two or three citizens vote for her) is given
by the graphs at the top of Figure 8.13 for various values of α. We see that
(0,0) is a Nash equilibrium if α is large enough (the cutoff is about 2.4); that
is, if there is enough uncertainty.

Proposition 8.8 implies that if α is less than the cutoff, the game has no
Nash equilibrium.
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−α 0 −x (x +2) α θ →

1
2α

Figure 8.12 The values of θ for which citizen 1 votes for candidate 1 when candidate 1’s
position is x and candidate 2’s position is 0 for the game in Example 8.2.

The pair of positions (−1,−1), in which both candidates choose the median
of the citizens’ favorite positions, is a Nash equilibrium in the variant of the ex-
ample in which there is no uncertainty, but not for any α > 0. If the position of
each candidate is −1, in the presence of any uncertainty one candidate can in-
crease her probability of winning by deviating to a position slightly greater than
−1, because the impact of such a deviation on the probability of her getting the
votes of citizens 1 and 2, whose favorite positions are both −1, is almost zero,
given that the functions u 1 and u 2 are differentiable, but the impact on the prob-
ability of her getting the vote of citizen 3, whose favorite position is 2, is bounded
away from zero.

Exercise 8.6: Tent-shaped payoff functions

If the functions vi are not differentiable, Proposition 8.8 does not apply.
Suppose that X is an interval of numbers, the number n of citizens is odd,
and for each citizen i , vi (x ) = −|x − x̂ i | for all x ∈ X . Show that (a) the
position x ∗ that maximizes

∑n
i=1 vi (x ) is the median of the numbers x̂ i for

i ∈ I and (b) if each distribution Fi is the same, equal to F , and the density
of F is symmetric about 0, then (x ∗,x ∗) is a Nash equilibrium of the game.

8.6 Electing a legislature

In the models I have presented so far, a single candidate is elected. I now present
a variant of an electoral competition game with a continuum of citizens and two
office-motivated candidates in which the set of citizens is partitioned into an odd
number of subsets, which may be interpreted as electoral districts. The distribu-
tion of the citizens’ favorite positions may differ among districts. In each district,
one candidate is elected to a legislature. I discuss two versions of the model.
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α= 2

α= 2.4 α= 5
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0

Figure 8.13 The probability of a candidate with position x winning when the other
candidate’s position is 0, for various values of α, for the game in Example 8.2.

8.6.1 Each party chooses one position for all its candidates

Full information Assume that each of two parties fields a candidate in each dis-
trict. Each party chooses a single position. In each district, each citizen votes for
the candidate that represents the party whose position she prefers. Each party’s
objective is to win a majority of districts.

Denote the number of districts by l and the median of the favorite positions
of the citizens in each district k by mk . Order the districts so that m1 ≤m2 ≤ · · · ≤
ml and denote the median of these medians mk by m . That is, m is the median
favorite position among the citizens in the median district.

If the parties choose the same position (x1 = x2), as in the example in Fig-
ure 8.14a, then the outcome is a tie in every district, and hence a tie in the legis-
lature. If the parties’ positions are symmetric around m , as in the example in Fig-
ure 8.14b, then the outcome is a tie in the median district, a win for party 1 in half
of the remaining districts, and a win for party 2 in the remaining half, also result-
ing in a tie in the legislature. Otherwise suppose that xi < x j and 1

2 (x1+x2)<m , as
in the example in Figure 8.14c (for i = 1 and j = 2). Then party i wins in a major-
ity of the districts. Thus for each pair (x1,x2) of the parties’ positions the outcome
is exactly the same as the outcome of (x1,x2) in an electoral competition game
with a continuum of citizens and two office-motivated candidates. Hence that
game models the electoral competition between the parties if we interpret each
player as a party, the distribution F as the distribution of the citizens’ favorite
positions in the median district, and win for j to mean that j wins a majority of
the districts.

We conclude from the analysis of Section 8.2.1 that the electoral competi-
tion between the parties has a unique Nash equilibrium, in which each party’s
position is m , the median favorite position among the citizens in the median
district.
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Figure 8.14 Electoral outcomes in a model in which each of two parties fields a candi-
date in each of several districts. In this example, there are three districts; the density of
the distribution of the favorite positions in district k is f k for k = 1, 2, 3.

Uncertain partisanship Now suppose that as in an electoral competition game
with two office-motivated candidates and uncertain partisanship, each citizen’s
payoff depends not only on the policy implemented but also on the party that
implements it, and when choosing positions the parties are uncertain of the de-
gree of this partisanship (which may depend on events between the time the
party commits to a policy and the election). Specifically, assume that the parties
believe that the payoff for the policy x of a citizen with favorite policy x̂ is

¨
v (x − x̂ )+λ if x is implemented by party 1
v (x − x̂ ) if x is implemented by party 2,

where v is a single-peaked function with its peak at 0 and λ is a random draw
from a distribution F . An example of the density of such a distribution F is shown
in Figure 8.15a. This distribution has a positive mean, so that each citizen, on av-
erage, favors implementation by party 1. One implication of these assumptions
is that if the parties choose the same position then party 1 wins in every district
with probability 1− F (0) and party 2 wins in every district with probability F (0).

Assume also that each party’s payoff is increasing in the fraction of districts it
wins, with an upward jump as this fraction passes 1

2 . That is, each party prefers
to win than to lose overall, but conditional on winning it prefers to win more dis-
tricts, and conditional on losing it also prefers to win more districts. Assume also
that for any fraction less than 1

2 , each party’s payoff is less than half its value for
the fraction 1, so that the party prefers the outcome in which it wins all districts
with probability 1

2 to any outcome in which it wins a minority of districts. An
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function of the proportion of seats it wins.

Figure 8.15

example of such a payoff function is shown in Figure 8.15b. These assumptions
are intended to capture the possibility that the power of a party in a legislature,
which is assumed to be its motivator, increases with its number of seats. The
members of the minority party may receive more legislative committee assign-
ments when their minority is larger, and may value the opportunity to make the
majority exert more effort to implement its agenda.

Adding these two ingredients to the model makes possible an equilibrium in
which the parties’ positions differ. I know of no general results, and present only
an example.

Suppose there are three districts, each containing a continuum of citizens.
Denote the median of the favorite positions of the citizens in district i by mi and
assume that m1 < m2 < m3. Assume also that the median of λ is positive and
that v (z ) = |z | for all z .

I look for conditions under which an equilibrium exists in which party 1’s po-
sition is m2 and party 2’s position is m3. If there were no partisanship, with λ
fixed at 0, this pair of positions would not be an equilibrium, because by deviat-
ing to m2 party 2 could win with probability 1

2 rather than losing. In the presence
of uncertain partisanship, the implications of such a deviation are mixed. The
number of districts won by party 1 for the pair (m2, m3) of positions is







3 if λ>m3−m2: probability 1− F (m3−m2)
2 if −(m3−m2)<λ<m3−m2: probability F (m3−m2)− F (−(m3−m2))
0 if λ<−(m3−m2): probability F (−(m3−m2)).

(Given that v (z ) = |z |, the payoff difference between the parties’ positions is the
same for a citizen with favorite position m1 at it is for a citizen with favorite po-
sition m2, so for no value of λ does party 1 win only district 1.) The probabilities
of these three events are equal to the areas of the three regions shaded in Fig-
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(a) The probabilities for party 1 given that
party 2’s position is m3.
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(b) The probabilities for party 2 given that
party 1’s position is m2.

Figure 8.16 Representations of the probability distributions over the number of seats
won by party 1 (left) and party 2 (right) as a function of the party’s position, given the po-
sition of the other party, for the example discussed in the text, in which m1 =−1, m2 = 0,
and m3 = 1, and the distribution F is normal with mean 0.5 and standard deviation 0.6.
The lengths of the segments of any vertical line in each of the colored regions are the
probabilities that the party wins the indicated numbers of districts.

ure 8.15a, from right to left. In particular, party 2’s probability of winning all three
districts is F (−(m3−m2)), which may be positive, and if it deviates to m2 then its
probability of such a win is F (0), which is less than 1

2 (given that the median of
λ is positive). At the same time, a deviation by party 1 from m2 to a position
x1 ∈ (m2, m3) may be attractive. Such a deviation decreases the cutoff value of
λ for party 1 to win all three districts to 1 − F (m3 − x1) and increases the cutoff
for it to win two districts to F (−(m3−x1)), as indicated by the dashed violet lines
in Figure 8.15a. Depending on the magnitudes of these changes and the value
party 1 attaches to winning two districts rather than three, such a deviation may
increase its payoff.

Here is a specific example. Suppose that m1 = −1, m2 = 0, and m3 = 1, and
the distribution F is normal with mean 0.5 and standard deviation 0.6. The re-
sulting probability distributions over the number of seats won as a function of
a party’s position, given the other party’s position, are illustrated in Figure 8.15.
Consider panel (a). For any position x1 on the horizontal axis, draw a vertical
line through x1. The lengths of the segments of that line in each region are the
probabilities that party 1 wins the indicated number of districts when its position
is x1 and party 2’s position is m2. For example, for x1 =m1, the probability that
party 1 wins no districts is almost zero (it is 0.006), the probability that it wins two
districts is about 0.8, and the probability it wins all three districts is about 0.2.

Denote each party’s payoff when it wins k seats by wk , and let w0 = 0 and
w1 = 1. Figure 8.16b shows that if w1 = 0—if winning one district has no value—
then when party 1’s position is m2, party 2 optimally chooses the same position,
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m2 m3 x1→

0.954

(a) Party 1’s payoff as a function of its po-
sition x1 when party 2’s position is m3.

m2 m3 x2→

0.204

(b) Party 2’s payoff as a function of its po-
sition x2 when party 1’s position is m2.

Figure 8.17 The parties’ payoffs when they deviate from (m2, m3) for the case in which
m1 = −1, m2 = 0, and m3 = 1, the distribution F is normal with mean 0.5 and standard
deviation 0.6, and w0 = 0, w1 = 0.25, w2 = 0.95, and w1 = 1.

which maximizes its probability of winning all three districts. Thus in this case
(m2, m3) is not an equilibrium. But if party 2 derives some payoff from winning
one district, then m3 may be her best response to m2. Specifically, if w1 ≥ 0.25
and w2 ≥ 0.95 then (m2, m3) is an equilibrium. Figure 8.17 shows each party’s
payoff as a function of its position, given the other party’s position, for w1 = 0.25
and w2 = 0.95. (Given the symmetry of the model, the position m1, which is
not included in the figure, is, like m3, optimal for party 2 given party 1’s position
m2, so (m2, m1) is an equilibrium whenever (m2, m3) is an equilibrium.) If w2 is
greater than 0.95 then the decrease in party 1’s payoff as it increases its position
is more than slight, and it w1 is greater than 0.25 then the advantage to party 2
from choosing m3 or m1 over m2 is more significant.

This analysis shows that the addition of two elements to the basic model—
uncertain partisanship and a positive value from a party’s winning an additional
district, even if doing so leaves it with a minority—enriches the set of equilibria
to include, for some parameter values, ones in which the parties’ positions dif-
fer. In these equilibria, one party finds it optimal to cater to the preferences of
the citizens in a peripheral district, giving it a high probability of winning that
district but a low probability of winning a majority of the districts. The alterna-
tive of competing head-to-head with the other party would raise its probability
of winning a majority, but not enough to compensate for the reduction in its
probability of capturing the peripheral district.

Bernhardt et al. (2020), to whom the model is due, study a different example,
in which there is a continuum of districts and F is uniform. To generate non-
trivial equilibria in their example, they need to add an element to the model:
independent of the value of λ, each citizen’s payoff for any given policy depends
on the party implementing the policy, with the difference between the payoffs
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that result when party 1 implements it and when party 2 does so decreasing in
the policy. Under this assumption, party 1 has an advantage in implementing
policies on the left and party 2 has an advantage in implementing ones on the
right. This element is not required in the example I describe.

8.6.2 Each candidate chooses a position independently

Now assume that each candidate chooses a position independently, and each
party’s position is the average of its candidates’ positions. Each citizen votes for
the candidate (in her district) whose party’s position is closest to her favorite
position, and the party that wins a majority of districts and hence acquires a
majority in the legislature implements its position.

Assume that each candidate’s preferences are lexicographic. She is concerned
primarily with whether her party wins a majority of districts, ties, or loses a ma-
jority of districts; among outcomes in which this outcome for her party is the
same, she prefers to win than to tie than to lose in her own district.

Suppose that the set of possible positions for a candidate is the whole real
line. Then for any given positions of the other candidates for her party, a candi-
date can induce any position for the party by choosing an appropriate position
for herself. This fact, combined with the fact that each candidate cares primarily
about her party’s fortunes, means that the analysis of the game is very similar to
the analysis of an electoral competition game with a continuum of citizens and
two office-motivated candidates. In particular, a profile of positions for the can-
didates is a Nash equilibrium if and only if each party’s position is the median
favorite position among the citizens in the median district (as for the game in
the previous section).

Exercise 8.7: Candidates who care about their own electoral fortunes

Consider a variant of the model in this section in which each candidate
cares primarily about her own electoral fortune (rather than her party’s for-
tune). Show that if the median of the citizens’ favorite positions is not the
same in every district then the game has no Nash equilibrium.

8.7 Interpreting Nash equilibrium

Is it reasonable to expect that the candidates in an electoral game will choose
their Nash equilibrium actions? In a Nash equilibrium, each player’s action is
optimal for her, given the other players’ actions. When choosing an action, a
player does not know the other players’ actions, and one way of conceiving her
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decision-making process assumes that she formulates a belief about those ac-
tions. An assumption implicit in the notion of Nash equilibrium is that this belief
is correct.

Where does a player’s belief about the other players’ actions come from? Ac-
cording to the leading interpretation of the notion of Nash equilibrium, this be-
lief is based on the player’s experience playing the game against a variety of op-
ponents. For each player, we imagine a large population of decision-makers;
each time the game is played, one decision-maker is drawn randomly from each
of these populations to take the role of one of the players in the game. Over
time, each decision-maker learns the action chosen by each of the other players,
but does not gather information on the actions chosen by any specific decision-
maker. For example, whenever I have found myself walking straight towards
another pedestrian, she has almost always stepped to right (in the right-driving
country in which I live). I do not know the history of any given pedestrian’s ac-
tions, but my belief that most pedestrians I randomly encounter will step to the
right to avoid a collision is correct.

This interpretation does not fit many elections well. At least, it needs some
stretching. Perhaps the participants in electoral competitions have at least ob-
served many elections, or have advisors who have done so, and this experience
has taught them how their opponents are likely to behave.

The difficulty with interpreting a Nash equilibrium in an electoral game gives
added significance to results concerning stronger notions of equilibrium, like
the ones for a electoral competition game with a continuum of citizens and two
office-motivated candidates that show that the median of the citizens’ favorite
positions weakly dominates all other positions (Proposition 8.4) and is the only
rationalizable position (Exercise 8.2).

Notes

The model in Section 8.1 has its origins in Hotelling (1929), who developed a
model of competition between two spatially-separated firms and suggested (pp. 54–
55) that it applies also to competition between political parties. The idea was
taken up by Downs (1957, Chapter 8), who discusses the model informally. The
version of the model in Definition 8.4 is sometimes called Hotelling’s model or
the Hotelling-Downs model (although neither Hotelling nor Downs formulated
exactly this game).

Proposition 8.1 is a version of Theorem 7.1 (p. 257) in Austen-Smith and Banks
(2005). Proposition 8.5 is due to Calvert (1985, Theorem 4). Section 8.3.2 is based
on Bernhardt et al. (2007, 2009b). The model and results in Section 8.4 are due to
Ledyard (1984). Models like the one in Section 8.5 in which the candidates treat
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the citizens’ actions as probabilistic date back to Hinich et al. (1972). Propo-
sition 8.8 is due to Duggan (2014b, Theorem 10). The full-information mod-
els in Section 8.6 are due to Austen-Smith (1984) and the one with uncertain
partisanship is due to Bernhardt et al. (2020).

Exercise 8.1 is based on Brennan and Hamlin (1998). Exercise 8.3 is Example 1
in Meirowitz and Shotts (2009). The model in Exercise 8.5 is a variant of the ones
studied by Ansolabehere and Snyder (2000) and Aragonès and Palfrey (2002).

Solutions to exercises

Exercise 8.2
Denote the median of the citizens’ favorite positions by m . First suppose that
a single position is furthest from m . Without loss of generality let this posi-
tion be z 1. The following table gives the outcomes of a candidate’s actions
z 1 and m for all the actions possible for the other candidate. We see that m
strictly dominates z 1.

z 1 z 2 . . . z l−1 z l =m z l+1 . . . z k

z 1 tie lose lose lose lose lose lose lose
m win win win win tie win win win

No other position is strictly dominated because every other position leads to
a win for the candidate if the other candidate’s position is more extreme.

Thus every position except the one furthest from m is rational for the candi-
date.

If two positions are furthest from m , at exactly the same distance from it, then
a similar arguments shows that neither of them is rational for the candidate.

Now, the candidate’s assuming that the other candidate is rational means that
she assumes that the other candidate does not choose the position furthest
from m . Under that assumption, the position second-furthest from m (or
the two positions second-furthest from m , if there is a tie for that honor) is
strictly dominated (by m ) for the candidate.

Repeating this argument, we conclude that the only action that is rational
if the candidate assumes that the other candidate is rational, that the other
candidate assumes that she is rational, and so forth, is m .

Exercise 8.1
Denote the distribution function of the citizens’ favorite positions by F and
its density by f . I claim that if F is unimodal then a pair (x1,x2) of positions is
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a Nash equilibrium if and only if x1 = x2 and

F (x ∗)− F (x ∗ −k ) = F (x ∗+k )− F (x ∗), (8.9)

where x ∗ = x1 = x2.

Step 1 Any pair of positions that satisfies (8.9) is a Nash equilibrium.

Proof. If x ∗ satisfies (8.9) then f (x ∗ −k )< f (x ∗) and f (x ∗+k )< f (x ∗). Hence
a candidate who deviates from x ∗ loses. Ã

Step 2 In any Nash equilibrium the candidates tie.

Proof. For a pair of positions at which they do not tie, the losing candidate
can move to the position of the other candidate and tie. Ã

Step 3 In any Nash equilibrium the candidates’ positions are the same.

Proof. Suppose that (x1,x2) is a Nash equilibrium and x1 < x2. By Step 2, the
candidates tie, and given that F is unimodal, either f (x1−k )< f ( 1

2 (x1+x2)) or
f (x2+k )< f ( 1

2 (x1+x2)). The two cases are symmetric; assume the former. The
difference between candidate 1’s share of the votes and candidate 2’s share is

F ( 1
2 (x1+x2))− F (x1−k )− F (x2+k )+ F ( 1

2 (x1+x2))

= 2F ( 1
2 (x1+x2)− F (x1−k )− F (x2+k ).

The derivative of this expression with respect to x1 is

f ( 1
2 (x1+x2)− f (x1−k ),

which is positive. Thus by increasing x1 slightly, candidate 1 wins rather than
ties, contradicting the assumption that (x1,x2) is a Nash equilibrium. Ã

Step 4 In any Nash equilibrium (x ∗,x ∗), the position x ∗ satisfies (8.9).

Proof. If (8.9) is not satisfied, a candidate can win rather than tie by either
decreasing or increasing her position slightly. Ã
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Figure 8.18 A Nash equilibrium of an electoral competition game with alienation in
which the candidates’ positions differ.

Here is an example of Nash equilibrium in which candidates’ positions differ.
Let X = [−1,1] and let f (x ) = 3

2 x 2. For any k ≤ 1, the pair (−1+ k ,1− k ) of
positions is a Nash equilibrium. An example in which k > 1

2 is shown in Fig-
ure 8.18. In this case, if candidate 1 increases her position she loses a large
number of citizens with favorite positions close to −1 and gains a few with fa-
vorite positions close to 0, while candidate 2 loses these citizens with favorite
positions close to 0. If she reduces her position then she loses a few citizens
with favorite positions close to 0 and candidate 2 gains these citizens. If k < 1

2

then citizens with favorite positions close to 0 do not vote. In this case, if
candidate 1 increases her position she loses a large number of citizens with
favorite positions close to −1 and gains a few with favorite positions close to
−1+2k , and if she reduces her position she loses a few citizens with favorite
positions close to −1+2k . In both cases, candidate 2 is unaffected.

Note, however, that this example depends on the symmetry of the distri-
bution f . If f is slightly asymmetric the game appears not to have a Nash
equilibrium.

Exercise 8.3
A citizen whose favorite position is x ∗ must be indifferent between voting for
candidate 1 and for candidate 2 in the first period. If she votes for candidate 1
her payoff is −

�
� 1

2 − x ∗
�
�−
�
� 1

2 x ∗ − x ∗
�
�, and if she votes for candidate 2 her payoff

is −|1−x ∗|−
�
� 1

2 (x ∗+1)−x ∗
�
�. These payoffs are equal for x ∗ = 2

3 .

If there is no second period, the citizen votes for candidate 1 if her favorite
position is less than 3

4 and for candidate 2 if it is greater than 3
4 . Thus if the

citizen’s favorite position is between 2
3 and 3

4 she votes for candidate 1 if there
is only one period but for candidate 2 if there are two periods and her vote is
used as a signal about her favorite position. In this latter case, even though



Solutions to exercises 283

↑
c

θ →
x →

Vote for 1 Vote for 2

AbstainAbstain

v (x ,θ1)
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Figure 8.19 An example of a two-candidate electoral competition game with office-mo-
tivated candidates and costly voting that satisfies the assumptions of Exercise 8.4, with
ψ(z ) = −

p
|z |. For clarity, the vertical scale above the x -axis is exaggerated relative to

the vertical scale below the axis. The set of types (θ , c )who vote for 1 when candidate 1’s
position is x and candidate 2’s is m is shaded red, and the set who vote for 2 is shaded
blue. The subset shaded dark blue is the reflection in the line θ = 1

2 (x +m ) of the set
shaded red, so that the area of the blue set exceeds the area of the red set by the area of
the set shaded light blue.

the citizen prefers candidate 1’s position, she votes for candidate 2 in the first
period to move the candidates’ second-period positions to the left.

Exercise 8.4
Let X = [a ,b ] and m = 1

2 (a + b ). I argue that the game has an equilibrium
in which each candidate’s position is m , and it has no equilibrium in which
either candidate chooses a position different from m .

Suppose that both candidates choose m . Then only types with zero cost vote;
given that the distribution of types is nonatomic, these types have measure
zero. Thus with probability 1 the candidates tie.

Now suppose that candidate 1 deviates to x < m . (Refer to Figure 8.19 for
an example in which the functionψ is convex on each side of its maximizer.)
Then given the symmetry of ψ, the set of types (θ , c ) with θ ∈ [a , 1

2 (x +m )]
who optimally vote for candidate 1 (shaded red in the figure) has the same
measure as the set with θ ∈ [ 1

2 (x +m ),b − (m − x )] who optimally vote for
candidate 2 (shaded dark blue in the figure). Candidate 2 gets, in addition,
the votes of types with θ ∈ [b − (m −x ),b ]who optimally vote (the set shaded
light blue in the figure); this set is nonempty because ψ is never constant, so
that these types are not indifferent between the candidates. Thus candidate 1
wins with probability less than 1

2 , so that her deviation is not profitable.

If candidate 1 deviates to x > m , the same argument applies, so that this
deviation is also not profitable.
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Thus the game has an equilibrium in which each candidate’s position is m .

The same argument shows that the game has no equilibrium in which both
candidates choose a position different from m . If the common position is
x < m , for example, then the candidates tie, and either candidate can win
with probability greater than 1

2 by moving to m .

Finally, the argument in the last paragraph of the proof of Proposition 8.7
shows that the game has no equilibrium in which the candidates’ positions
differ.

Exercise 8.5
Suppose that x1 ≤ m satisfies the condition v (x1 −m ) ≥ −δ. I argue that if
x2 ≤ x1 then all citizens with favorite positions at least m , a majority, vote for
candidate 1, and if x2 > x1 then all citizens with favorite positions at most m ,
a majority, vote for candidate 1.

First suppose that x2 ≤ x1. Then for any citizen i with favorite position x̂ i ≥m
the payoff from x1 is u i (x1,1) = v (x1− x̂ i ) and the payoff from x2 is u i (x2,2) =
v (x2− x̂ i )−δ≤ v (x1− x̂ i )−δ< v (x1− x̂ i ), so i votes for candidate 1.

Now suppose that x2 > x1. Then for any citizen i with favorite position x̂ i for
which x1 ≤ x̂ i ≤m the payoff from x1 is u i (x1,1) = v (x1 − x̂ i ) ≥ v (x1 −m ) ≥
−δ and the payoff from x2 is u i (x2,2) = v (x2 − x̂ i )− δ ≤ −δ, so i votes for
candidate 1. For any citizen i with favorite position x̂ i < x1 the payoff from
x1 is u i (x1,1) = v (x1− x̂ i ) and the payoff from x2 is u i (x2, 2) = v (x2− x̂ i )−δ≤
v (x1− x̂ i )−δ, so i votes for candidate 1.

Thus any pair (x1,x2) with x1 ≤m that satisfies the condition v (x1−m )≥−δ
is a Nash equilibrium. A symmetric argument shows that any pair (x1,x2)with
x1 ≥m that satisfies the condition is a Nash equilibrium.

Now suppose that the candidates’ preferences are lexicographic as described
in the exercise. For any position of candidate 2, candidate 1 can obtain the
vote of every citizen by choosing the same position, so in any best response
to a position of candidate 2, candidate 1 obtains all the votes. Denote by z
the smallest of the citizens’ favorite positions and by z the largest. If there is
a position x1 such that v (x1− z) ≥ −δ and v (x1− z ) ≥ −δ, then for any such
position the pair (x1,x2) is a Nash equilibrium for any position x2. (For such
a pair, candidate 1 gets all the votes and no position of candidate 2 yields
candidate 2 any votes.) Otherwise, the game has no Nash equilibrium: a pair
(x1,x2) in which candidate 1 gets all the votes is not an equilibrium because
for some position of candidate 2, candidate 2 obtains some votes, and a pair
(x1,x2) in which candidate 1 does not get all the votes is not an equilibrium
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because by deviating to x2 candidate 1 can obtain all the votes.

Exercise 8.6 a. Let m be the median of the numbers x̂ i for i ∈ I . Divide I
into three sets: a set M consisting of a single citizen j for whom x̂ j =m ,
a set L consisting of citizens i for whom x̂ i < m , and a set R consisting
of citizens i for whom x̂ i > m , so that the sets L and R have the same
number of members. Then if x <m we have

vi (x )− vi (m )

¨
≤m −x if i ∈ L
=−(m −x ) if i ∈R ∪M ,

so that ∑

i∈I

vi (x )−
∑

i∈I

vi (m )≤−(m −x ).

A symmetric argument shows the same result for x > m . Thus m is the
unique maximizer of

∑
i∈I vi (x ).

b. If the position of each candidate is x ∗, then each candidates wins with
probability 1

2 . Suppose that candidate 1 deviates to a position x1 < x ∗.

The number of citizens who prefer x ∗ to x1 is at least 1
2 (n +1), and for every

such citizen i with x̂ i ≥ x ∗, of which there are 1
2 (n +1), we have vi (x ∗)−

vi (x1) = x ∗ − x1, so that the probability that each such citizen votes for
candidate 2 is F (x ∗ −x1). Denote this probability by p ∗. Given x ∗ > x1 we
have p ∗ > 1

2 .

The number of citizens who prefer x1 to x ∗ is at most 1
2 (n − 1). For each

such citizen i with x̂ i ≤ x1 we have vi (x1)− vi (x ∗) = x ∗ − x1, so that the
probability that each such citizen votes for candidate 1 is F (x ∗ − x1) =
p ∗, and for any of these citizens for whom x1 < x̂ i ≤ x ∗ we have vi (x1)−
vi (x ∗) < x ∗ − x1, so that the probability that she votes for candidate 1 is
less than p ∗.

Thus of the citizens who are more likely to vote for candidate 2, 1
2 (n +1)

vote for her with probability p ∗ and possibly additional citizens (with fa-
vorite positions between x1 and x ∗) vote for her with probability less than
p ∗. Of the citizens who are more likely to vote for candidate 1, who num-
ber at most 1

2 (n − 1), at most 1
2 (n − 1) vote for her with probability p ∗ and

any remaining citizens (with favorite positions between x1 and x ∗) vote
for her with probability less than p ∗. Thus the probability that candidate 2
wins exceeds 1

2 .

Symmetric arguments apply if candidate 1 deviates to a position greater
than x ∗ or if candidate 2 deviates. Thus (x ∗,x ∗) is a Nash equilibrium.

Exercise 8.7
Because any candidate can cause her party’s position to take any value (given
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the positions of the other candidates for the party) by choosing an appro-
priate position, the argument in the proof of Proposition 8.4 applied to a
given district shows that in any Nash equilibrium the parties’ positions are
the same, equal to the median of the favorite positions of the citizens in the
district. Thus if this median favorite position varies across districts, no Nash
equilibrium exists.
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“The peak of the campaign happened in Albuquerque, where a local re-
porter said to me, ‘Dr. Commoner, are you a serious candidate or are you
just running on the issues?’ ” (Barry Commoner, Citizens Party candi-
date in 1980 U.S. Presidential election, in interview in New York Times,
2007.6.19).

Some candidates for political office appear to be motivated by the possibility of
implementing policies they like, rather than the possibility of winning per se,
as the models in the previous chapter assume. We say that such candidates are
policy-motivated.

Synopsis

Consider a variant of an electoral competition game with two office-motivated
candidates in which each candidate cares about the position of the winner of the
election, and not at all about whether she is the winner. Proposition 9.1 shows
that if the underlying collective choice problem has a strict Condorcet winner,
then the action pair in which each candidate chooses that alternative is a Nash
equilibrium of the game. That is, the game has an equilibrium in which the can-
didates’ actions are the same as they are in the unique Nash equilibrium of the
game in which each candidate is office-motivated. The reason is simple: if either
candidate deviates to a position different from the strict Condorcet winner then
she loses, so that the outcome of the game remains the same.

Unlike the case in which the candidates are office-motivated, however, for
some collective choice problems the game has Nash equilibria in which the pol-
icy outcome is not a Condorcet winner of the collective choice problem. For ex-
ample, if every citizen prefers a to b but both candidates prefer b to a , then the

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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action pair in which both candidates choose b is a Nash equilibrium. However,
if the candidates are representative of the citizens in the sense that whenever all
members of a majority of citizens prefer some alternative x to another alternative
y , there is a candidate who prefers x to y , then in any Nash equilibrium in which
the candidates’ positions are the same, their common position is a Condorcet
winner of the underlying collective choice problem (Proposition 9.2). In Nash
equilibria in which the candidates’ positions differ, however, these positions are
not necessarily Condorcet winners.

Section 9.1.2 consider an analogue of an electoral competition game with a
continuum of citizens and two office-motivated candidates in which the candi-
dates are policy-motivated. Proposition 9.3 shows that the action pair in which
each candidate’s position is the median of citizens’ favorite positions is a Nash
equilibrium, and if the candidates are representative, the policy outcome of ev-
ery Nash equilibrium is this position.

Suppose that we modify this model so that the candidates are uncertain about
the median of the citizens’ favorite alternatives. This model, unlike those I have
discussed previously with the exception of the last model in Section 8.6.1, ro-
bustly has equilibria in which the candidates’ positions differ. Suppose that the
candidates’ favorite positions differ, their common position is x , and candidate i ’s
favorite position differs from x . Then if the probability that the median of the
citizens’ favorite positions lies between x and i ’s favorite position is positive, i
can increase her payoff by deviating from x in the direction of her favorite posi-
tion. If she does so, the worst that can happen for her is that the other candidate
wins, in which case the outcome remains x ; on the positive side, with positive
probability she wins, in which case she is better off. Proposition 9.4 gives con-
ditions under which the candidates’ positions differ in every Nash equilibrium,
and Proposition 9.5 gives conditions for the existence of a Nash equilibrium.

Section 9.3 explores models with two candidates and a single citizen in which
the candidates are better informed than the citizen about the desirability of the
policies. In Section 9.3.1 the candidates receive information about the desirabil-
ity of the policies after they are elected. The game in this case may have equilibria
in which each candidate offers an interval of policies, the winner choosing a spe-
cific policy after the uncertainty is resolved. In Section 9.3.2 the candidates are
better informed than the citizen at the time of the election. In this case, the posi-
tion taken by a candidate acts as a signal of her information. The game has equi-
libria in which the candidates choose the same position and this position does
not depend on their information, and may also have equilibria in which the can-
didates choose the same position, equal to the citizen’s favorite position given
the candidates’ information, and equilibria in which the candidates’ positions
differ and depend on their information.
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Section 9.4 studies models of repeated elections. The same pair of policy-
motivated candidates compete in a series of elections, in each period observ-
ing the outcomes in all previous periods. If in each period each candidate is
free to choose any position, the features of the subgame perfect equilibria de-
pend on the nature of the candidates’ payoff functions. If these functions are
concave—each candidate is more sensitive to changes in policies far from her
favorite policy than she is to changes close to that policy—then only a repetition
of the outcome in which both candidates choose the median m of the citizens’
favorite positions is possible in a subgame perfect equilibrium. But if the can-
didates’ payoff functions are convex on each side of their favorite positions and
the discount factor is close enough to 1 then a subgame perfect equilibrium ex-
ists in which the outcome in each period differs from m . The assumption that
each candidate may choose any position, unconstrained by her past positions,
seems unreasonable. If it is replaced by the assumption that an incumbent in
any period t is restricted to choose in period t +1 the policy she implemented in
period t , then even if the candidates’ payoff functions are concave the game has
subgame perfect equilibria in which the winning policy differs from m in every
period, the candidates alternating as winners.

9.1 Basic model

9.1.1 General set of positions

As in the models of the previous chapter, two candidates select positions, which I
also refer to as policies, from a set X , then each member of a set of citizens votes
for the candidate whose position she prefers, and the candidate who receives
the most votes wins. As before, the election is decided by the citizens who have
a strict preference between the candidates; if the number of citizens who prefer
the position x1 of candidate 1 to the position x2 of candidate 2 is the same as the
number who prefer x2 to x1, then the outcome of the election is a tie. (A citizen
who is indifferent between the candidates’ positions does not vote, or splits her
vote, casting half a vote for each candidate.)

Each candidate has preferences over electoral outcomes. For any position x ∈
X , denote the outcome in which either a candidate with position x wins outright
or x is the position of both candidates by {x }, and the outcome in which the
candidates’ positions are x and y 6= x and the candidates tie by {x , y }. How do
the candidates evaluate ties? I assume that (i) if a candidate likes the outcome
{x } at least as much as {y } then she likes {x } at least as much as {x , y } and likes
{x , y } at least as much as {y }, and (ii) if she prefers {x } to {z } and likes {y } at least
as much as {z } then she prefers {x , y } to {z }. That is, the preference relation ¼∗j
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over electoral outcomes of each candidate j satisfies

{x }¼∗j {y } ⇒ {x }¼∗j {x , y }¼∗j {y }

{x } �∗j {z } and {y }¼∗j {z } ⇒ {x , y } �∗j {z }.
(9.1)

These assumptions are consistent with the outcome of a tie {x , y } being the lot-
tery in which x and y each occur with probability 1

2 and the candidates’ prefer-
ence relations over lotteries are vNM preference relations.

Definition 9.1: Electoral competition game with two policy-motivated
candidates

An electoral competition game with two policy-motivated candidates
〈{1,2}, 〈I , X ,¼〉, (¼∗1,¼∗2)〉, where 〈I , X ,¼〉 is a collective choice problem in
which the set I (of citizens) is finite and ¼∗j for j = 1, 2 is a preference rela-
tion over subsets of X containing one or two alternatives that satisfies (9.1),
is the strategic game with the following components.

Players
{1,2} (candidates).

Actions
The set of actions of each player is X (the set of possible positions).

Preferences
The preference relation Äj of each player j over pairs of positions satis-
fies

(x1,x2)Äj (y1, y2) ⇔ W (x1,x2)¼
∗
j W (y1, y2),

where for each pair of positions (x1,x2) ∈ X × X , W (x1,x2) is the set of
members of {x1,x2} preferred by a majority of citizens:

W (x1,x2) =







{x1} if |{i ∈ I : x1 �i x2}|> |{i ∈ I : x2 �i x1}|
{x1,x2} if |{i ∈ I : x1 �i x2}|= |{i ∈ I : x2 �i x1}|
{x2} if |{i ∈ I : x1 �i x2}|< |{i ∈ I : x2 �i x1}|.

Suppose that the collective choice problem 〈I , X ,¼〉 has a strict Condorcet
winner, x ∗. If both candidates in the electoral competition game choose this
position, it is the policy outcome. If either candidate deviates from x ∗, she loses,
so that x ∗ remains the policy outcome. Hence (x ∗,x ∗) is a Nash equilibrium of
the game, as it is when the candidates are office-motivated (Proposition 8.1).
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Proposition 9.1: Nash equilibrium of electoral competition game with
two policy-motivated candidates

Let 〈{1,2}, 〈I , X ,¼〉, (¼∗1,¼∗2)〉 be an electoral competition game with two
policy-motivated candidates. If 〈I , X ,¼〉 has a strict Condorcet winner, x ∗,
then (x ∗,x ∗) is a Nash equilibrium of the game.

Proof

We have W (x ∗,x ∗) = {x ∗} and W (x ,x ∗) = {x ∗} for any x 6= x ∗, because x ∗ is
a strict Condorcet winner of the collective choice problem. Thus neither
candidate can profitably deviate from x ∗.

If the number of citizens is odd and their preferences are single-peaked or
single-crossing then the collective choice problem has a strict Condorcet winner
and this position is the median of the citizens’ favorite positions if the prefer-
ences are single-peaked (Proposition 1.4) and the favorite position of the median
citizen if the preferences are single-crossing (Proposition 1.5), so the following
result follows from Proposition 9.1. Note that this result is weaker than the cor-
responding result (Corollary 8.2) for the game with office-motivated candidates:
it says only that a certain action pair is a Nash equilibrium, not that it is the only
Nash equilibrium.

Corollary 9.1: Median voter theorem for electoral competition with two
policy-motivated candidates

Let 〈{1,2}, 〈I , X ,¼〉, (¼∗1,¼∗2)〉 be an electoral competition game with two
policy-motivated candidates for which the number of citizens (members
of I ) is odd.

• If 〈I , X ,¼〉 has single-peaked preferences with respect to a linear order
Ä on X , then the action pair (m , m ) in which m is the median with
respect to Ä of the citizens’ favorite positions is a Nash equilibrium of
the game.

• If 〈I , X ,¼〉 has single-crossing preferences with respect to a linear or-
der ≥ on I and the median individual with respect to ≥ has a unique
favorite position, m , then the action pair (m , m ) is a Nash equilibrium
of the game.

When the candidates are office-motivated, a pair (x1,x2) is a Nash equilib-
rium if and only if both x1 and x2 are Condorcet winners (Proposition 8.1). The
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same is not true when the candidates are policy-motivated. If x ∗ is a Condorcet
winner that is not strict then another alternative, say x , ties with x ∗, so that a can-
didate who deviates from x ∗ to x induces a tie between x ∗ and x . If she prefers
x to x ∗, then by (9.1) she prefers a tie to x ∗ . So if at least one of the candidates
prefers x to x ∗, the action pair (x ∗,x ∗) is not a Nash equilibrium.

Further, if (x1,x2) is a Nash equilibrium, x1 and x2 are not necessarily Con-
dorcet winners, even if x1 = x2. Consider a collective choice problem in which
there are two alternatives, a and b , and all individuals prefer a to b , so that a
is the strict Condorcet winner. If each candidate prefers b to a , then (b ,b ) is a
Nash equilibrium of the associated electoral competition game with two policy-
motivated candidate. Another example is based on the Condorcet cycle in Exam-
ple 1.5, which has no Condorcet winner. Suppose that the preference relation ¼∗j
of each candidate j in the electoral competition game satisfies {a } �∗j {b} �

∗
j {c }.

Then (a , a ) is a Nash equilibrium: if either candidate deviates to b , she loses, so
that the outcome remains {a }, and if either candidate deviates to c , she wins, so
that the outcome changes to {c }, which is worse for her than {a }.

In these examples, the preferences of some sets of citizens containing a ma-
jority of individuals are not shared by any candidate: in the first case, all citizens
prefer a to b but both candidates prefer b to a , and in the second example a
majority of the citizens prefer c to a but both candidates prefer a to c . If for ev-
ery majority of citizens who prefer some alternative x to some other alternative
y there is a candidate with the same preference between x and y , I say that the
candidates are representative.

Definition 9.2: Representative candidates in electoral competition
game with two policy-motivated candidates

The candidates in an electoral competition game with two policy-
motivated candidates are representative if, for all alternatives x and y ,
whenever every citizen in some set containing a majority of citizens prefers
x to y , at least one candidate prefers {x } to {y }.

For games in which the candidates are representative, their common position
in any Nash equilibrium in which their positions are the same is a Condorcet
winner of the collective choice problem.



9.1 Basic model 293

Proposition 9.2: Nash equilibrium of electoral competition game with
two representative policy-motivated candidates

Let 〈{1,2}, 〈I , X ,¼〉, (¼∗1,¼∗2)〉 be an electoral competition game with two
policy-motivated candidates in which the candidates are representative.
In any Nash equilibrium in which the candidates’ positions are the same,
the common position is a Condorcet winner of 〈I , X ,¼〉.

Proof

Let x ∈ X and consider the action pair (x ,x ). If x is not a Condorcet win-
ner of 〈I , X ,¼〉 then for some position, say x ′, a majority of citizens prefer
x ′ to x . Given that the candidates are representative, at least one candi-
date thus prefers x ′ to x . If that candidate deviates to x ′, she wins, so that
the outcome is {x ′}, which she prefers to {x }. Hence (x ,x ) is not a Nash
equilibrium.

What about Nash equilibria in which the candidates’ positions differ? The
game can have such equilibria in which neither candidate’s positions is a Con-
dorcet winner. Consider again the Condorcet cycle in Example 1.5. Suppose
that candidate 1’s preferences satisfy {b} �∗1 {a } �

∗
1 {c } and candidate 2’s satisfy

{c } �∗2 {a } �
∗
2 {b}. The action pair (b , a ), for which neither action is a Condorcet

winner, is a Nash equilibrium by the following argument. Candidate 2 wins (a
beats b ), so that the outcome is {a }. If candidate 1 deviates to a , the outcome re-
mains {a }; if she deviates to c , she wins and the outcome changes to {c }, which
is worse for her than {a }. If candidate 2 deviates to b , the outcome changes to
{b}, which is worse for her than {a }; if she deviates to c , candidate 1 wins and the
outcome again changes to {b}.

A small change in the candidates’ preferences eliminates this equilibrium.
Assume that each candidate cares mainly about the policy outcome, but slightly
about winning. Precisely, for any position x , among action pairs that generate
the outcome {x }, each candidate prefers those in which she wins to those in
which she ties to those in which she loses. That is, her preferences are lexico-
graphic: if two action pairs have different policy outcomes, candidate i (= 1, 2)
prefers the one that is better according to ¼∗i , while if they have the same pol-
icy outcome, she prefers winning to tieing to losing. Under this assumption, the
game has no Nash equilibrium in which one candidate loses, because if the los-
ing candidate deviates to the position of the winning candidate then the policy
outcome remains the same and the deviating candidate ties rather than loses.

However, even if the candidates are representative and their preferences put
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some weight on winning, an electoral competition game may have equilibria in
which the outcome is a tie and one of the possible outcomes is not a Condorcet
winner, as you are asked to show in the following exercise.

Exercise 9.1: Nash equilibrium with policy-motivated candidates

Consider the collective choice problem with four individuals in which
three have the preferences of the individuals in the Condorcet cycle in Ex-
ample 1.5 and the fourth prefers b to c to a . Show that a is not a Con-
dorcet winner of the collective choice problem but for some preferences of
the candidates the action pair (a ,b ) is a Nash equilibrium of the associated
electoral competition game with two policy-motivated candidates, even if
the candidates are representative and their preferences lexicographically
value winning.

If the number of citizens is odd and their preferences are strict, a tie when
the candidates choose different positions is not possible. So if in this case the
candidates are representative and their preferences lexicographically value win-
ning, then in any Nash equilibrium the candidates choose the same position,
and hence, by Proposition 9.2, this position is a Condorcet winner.

9.1.2 One-dimensional positions

Consider a variant of an electoral competition game with two policy-motivated
candidates in which, as in an electoral competition game with a continuum of
citizens and two office-motivated candidates, the set of positions is an interval
of numbers and the set of citizens is a continuum. This variant does not include
an explicit specification of the set of citizens, but like its cousin includes an out-
come function that may be rationalized by an assumption about the citizens’
preferences. The outcome relevant to policy-motivated candidates is the posi-
tion of the winner, so the outcome function in this case specifies that position
(or those positions, in the case of a tie), rather than the identity of the winner.

Assume specifically that the preference relation ¼i of each citizen i is single-
peaked with respect to ≥ and symmetric about i ’s favorite position x ∗i (x ∗i −δ ∼i

x ∗i +δ for every δ> 0), and the distribution F of the citizens’ favorite positions is
nonatomic, with support an interval. Under these assumptions, F has a unique
median, say m , and the policy outcome of the pair (x1,x2) of the candidates’
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positions is

YF (x1,x2) =







{x } if x1 = x2 = x
{x1,x2} if x1 6= x2 and 1

2 (x1+x2) =m

{x j } if

¨
either xk < x j and 1

2 (x1+x2)<m
or xk > x j and 1

2 (x1+x2)>m ,

(9.2)

where j ∈ {1,2} and k is the other candidate. (The function YF is the analog of
the function OF defined in (8.1) for the model with office-motivated candidates.)

Regarding the candidates, we assume that each candidate j has a preference
relation ¼∗j over policy outcomes (one- or two-member subsets of the set X of
positions) that is single-peaked in the sense that

for some x̂ j ∈ X : x < y < x̂ j or x̂ j < y < x ⇒ {x̂ j } �
∗
j {y }¼

∗
j {x }. (9.3)

The position x̂ j is the favorite position of candidate j .

Definition 9.3: Electoral competition game with continuum of citizens
and two policy-motivated candidates

An electoral competition game with a continuum of citizens and two policy-
motivated candidates 〈{1,2}, X , F, (¼∗1,¼∗2)〉, where X is a closed interval of
real numbers, F is a nonatomic distribution with support X , and ¼∗1 and
¼∗2 are preference relations over subsets of X containing one or two posi-
tions that satisfy (9.1) and (9.3), is the strategic game with the following
components.

Players
{1,2} (candidates).

Actions
The set of actions of each player is X (the set of possible positions).

Preferences
The preference relation Äj of each player j over X ×X satisfies

(x1,x2)Äj (y1, y2) ⇔ YF (x1,x2)¼
∗
j YF (y1, y2),

where YF is given by (9.2).

For the model with a finite number of citizens, the candidates are represen-
tative if whenever a majority of citizens prefer one position to another, so does at
least one candidate (Definition 9.2). The analog of this definition for the model
with a continuum of citizens is that the candidates’ preferences are symmetric
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about their favorite positions, with one candidate’s favorite position on each side
of the median of the citizens’ favorite positions.

Definition 9.4: Representative candidates in electoral competition
game with continuum of citizens and two
policy-motivated candidates

The candidates in an electoral competition game with a continuum of citi-
zens and two policy-motivated candidates 〈{1,2}, X , F, (¼∗1,¼∗2)〉 are repre-
sentative if the preference relation ¼∗i of each candidate i is symmetric
about her favorite position (she is indifferent between positions equidis-
tant from her favorite position), the favorite position of one candidate
is at most m , and the favorite position of the other candidate is at least
m , where m is the median of the distribution F of the citizens’ favorite
positions.

The action pair in which each candidate’s position is the median of the cit-
izens’ favorite positions is a Nash equilibrium, an analogue of Corollary 9.1. In
addition, if the candidates are representative then the outcome of every Nash
equilibrium is this position.

Proposition 9.3: Nash equilibrium of electoral competition game with
continuum of citizens and two policy-motivated
candidates

Let 〈{1,2}, X , F, (¼∗1,¼∗2)〉 be an electoral competition game with a contin-
uum of citizens and two policy-motivated candidates. Denote the candi-
dates’ favorite positions, defined by (9.3), by x̂1 and x̂2. The action pair
in which each candidate’s position is the median m of the distribution
F of the citizens’ favorite positions is a Nash equilibrium of the game. If
the candidates are representative then the outcome of every Nash equilib-
rium is {m }, and if in addition x̂1 < m < x̂2 then (m , m ) is the only Nash
equilibrium.

Proof

The fact that the support of F is an interval means that it has a unique me-
dian m . The outcome of the action pair (m , m ) is YF (m , m ) = {m }. If either
candidate deviates from m , she loses, and the outcome remains {m }. Thus
(m , m ) is a Nash equilibrium.

Now assume that the candidates are representative, and let (x1,x2) be a
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x1 x2 m

(a) x1 ≤ x2 <m

x1 x2m

(b) x1 <m < x2 and
1
2 (x1+x2) =m

x1 x2m

(c) x1 <m < x2 and
1
2 (x1+x2)>m

x2x1 =m

(d) x1 =m < x2

Figure 9.1 The four cases in the proof of Proposition 9.3.

Nash equilibrium. Assume without loss of generality that x1 ≤ x2. Given
that the candidates are representative, x̂1 ≤m ≤ x̂2.

First suppose that x̂1 <m < x̂2. Refer to Figure 9.1 for illustrations of the
following four cases.

• If x1 ≤ x2 < m then YF (x1,x2) = {x2}. If candidate 2 deviates to m ,
the outcome changes to {m }, which she prefers to {x2}. A symmetric
argument applies if m < x1 ≤ x2.

• If x1 < m < x2 and 1
2 (x1 + x2) = m then YF (x1,x2) = {x1,x2}. If candi-

date 1 deviates to x1 + ε with 0 < ε < x2 − x1 then she wins and the
outcome changes to {x1+ε}, which she prefers if ε is sufficiently small.
(Candidate 2 has an analogous profitable deviation.)

• If x1 <m < x2 and 1
2 (x1+ x2) >m then YF (x1,x2) = {x1}. If candidate 2

deviates to m , the outcome changes to {m }, which she prefers to {x1}.
A symmetric argument applies if 1

2 (x1+x2)<m .

• If x1 =m < x2 then YF (x1,x2) = {x1}. If candidate 1 deviates to m − ε
with 0< ε < x2−m then she wins and the outcome changes to {m − ε},
which she prefers if ε is sufficiently small. A symmetric argument
applies if x1 <m = x2.

Thus no pair (x1,x2) other than (m , m ) is a Nash equilibrium.
Now suppose that x̂1 = m ≤ x̂2. If the outcome of (x1,x2) is not {m },

then x1 6= m and candidate 1 can induce the outcome {m }, her favorite
outcome, by deviating to m . Thus in any Nash equilibrium the outcome is
{m }. A symmetric argument applies if x̂1 ≤m = x̂2.

Note that for the case that the candidates are representative, the result says
only that the outcome of every Nash equilibrium is {m }, not that the only Nash
equilibrium is (m , m ). If, for example, candidate 1’s favorite position is m and
candidate 2’s is greater than m , then the action pair (m , x̂2) is also a Nash equi-
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x̂1 x ∗1 x̂2m

v (x −m )
δ

Figure 9.2 The policy x ∗1 in the model in Exercise 9.3.

librium (for all positions of candidate 2, the outcome is {m }). If we modify each
candidate’s preferences so that they lexicographically value winning in the way
discussed at the end of Section 9.1.1, then (m , m ) is the only Nash equilibrium.

Exercise 9.2: Candidates’ favorite positions both less than the median

Find the Nash equilibria of an electoral competition game with a contin-
uum of citizens and two policy-motivated candidates in which both can-
didates’ favorite positions are less than the median of the citizens’ favorite
positions (so that in particular the candidates are not representative).

For the case in which the candidates are office-motivated, Section 8.5.1 presents
a model in which the citizens have preferences over both candidates and poli-
cies. The next exercise asks you to study an analogue of this model for the case
in which the candidates are policy-motivated.

Exercise 9.3: Electoral competition with an advantaged candidate

Suppose that the citizens have preferences over the candidates indepen-
dently of the candidates’ positions, as in Section 8.5.1. Specifically, con-
sider the model that differs from the one in Exercise 8.5 only in that each
candidate is policy-motivated rather than office-motivated, with prefer-
ences that satisfy (9.1) and (9.3). Denote the favorite position of each cit-
izen i by ẑ i , the median of these favorite positions by m , and the can-
didates’ favorite positions by x̂1 and x̂2. Assume that x̂1 < m < x̂2 and
v (x̂1−m )<−δ. Let x ∗1 be the position for which x ∗1 <m and v (x ∗1−m ) =−δ,
so that a citizen whose favorite position is m is indifferent between the
candidates when candidate 1’s position is x ∗1 and candidate 2’s is m , and
hence votes for candidate 1 in this case, given the tie-breaking assump-
tion. (Refer to Figure 9.2.) Show that (x ∗1, m ) is a Nash equilibrium of the
game.

The models in this section, like those in the previous chapter, assume that af-
ter a candidate is elected, she implements the policy she chose as her platform in
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the election. The need to periodically face re-election may provide office-holders
with an incentive not to deviate from their stated policies, and the existence of
parties may reinforce this incentive. But a candidate may be unable to fully com-
mit that, if she wins, she will implement the policy she chose in the election.
One way to model this inability to commit is to assume that if a candidate j who
chooses a position x j wins, then the outcome is x j with some probability p j < 1
and j ’s favorite policy with probability 1−p j . Suppose specifically that the num-
ber of citizens is odd, the citizen’s favorite positions are distinct, and each cit-
izen i has preferences on the set of lotteries over positions represented by the
expected value of a function u i : X → R defined by u i (x ) = v (x − ẑ i ), where v
is a single-peaked function v with maximizer 0. Suppose also that there are two
candidates, with favorite positions x̂1 and x̂2 that satisfy x̂1 < m < x̂2, where m
is the median of the citizens’ favorite positions. Finally, suppose that given p1

and p2, the citizen with favorite position m prefers candidate 1 when the pair of
positions chosen by the candidates is (m , m ) and candidate 2 when this pair is
(x̂1, m ), and votes for candidate 1 when indifferent between the candidates. This
model is closely related to the one in Exercise 9.3, and similar arguments lead
to the conclusion that (x ∗1, m ) is a Nash equilibrium, where x ∗1 is the position in
(x̂1, m ) for which the citizen with favorite position m is indifferent between the
candidates:

p1v (x ∗1−m )+ (1−p1)v (x̂1−m ) = p2v (0)+ (1−p2)v (x̂2−m ).

The conclusion of Proposition 9.3 that the outcome of any equilibrium is
the citizens’ median favorite position when the candidates are representative,
policy-motivated, viewed as interchangeable by the citizens, and committed to
the policies they announce, even if their favorite positions are extreme, may
seem surprising. The incentive for office-motivated candidates to cater to the
median voter is clear, but you might think that a policy-motivated candidate
faces a tradeoff: moving from her favorite position towards her rival’s position
increases her probability of winning, but results in a less desirable position if she
wins. The models I have defined do not capture this tradeoff because they are de-
terministic: a candidate’s probability of winning is either 0 or 1, or the outcome
is a tie. I now specify and analyze a model that does capture the tradeoff.

9.2 Uncertain median

Suppose that the candidates are uncertain about the citizens’ preferences. Specif-
ically, consider a variant of the game in Section 8.3.1 in which the candidates are
policy-motivated rather than office-motivated. Each candidate believes that the
median of the citizens’ favorite positions has the distribution function G , which
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1
2 (x1+x2) x →x1 x2

Density of G , the
distribution function
of the median of the

citizens’ favorite
positions

Probability
candidate 2 winsProbability

candidate 1 wins

u 1(x ) u 2(x )

x̂1 x̂2

Figure 9.3 An illustration of the components of an electoral competition game with two
policy-motivated candidates and uncertain median.

is nonatomic, with support an interval. Suppose that the candidates’ positions
are x1 and x2, with x1 < x2. Then if the median of the citizens’ favorite positions
is less than 1

2 (x1 + x2), an event with probability G ( 1
2 (x1 + x2)), candidate 1 wins

and the policy outcome is x1; if the median is greater than 1
2 (x1 + x2), an event

with probability 1−G ( 1
2 (x1+x2)), candidate 2 wins and the policy outcome is x2.

Thus each candidate faces a lottery in which the outcome is x1 with probability
G ( 1

2 (x1+x2)) and x2 with probability 1−G ( 1
2 (x1+x2)).

Suppose that the preferences of candidate j (= 1, 2) regarding probability
distributions over positions are represented by the expected value of a single-
peaked function u j , with favorite position x̂ j . (Refer to Figure 9.3.) If x1 < x2

then candidate j ’s expected payoff is

G ( 1
2 (x1+x2))u j (x1)+

�
1−G ( 1

2 (x1+x2))
�

u j (x2).

If x1 > x2 then u j (x1) and u j (x2) are interchanged in this expression, and if x1 =
x2 = x then j ’s payoff is u j (x ).

Definition 9.5: Electoral competition game with two policy-motivated
candidates and uncertain median

An electoral competition game with two policy-motivated candidates and
uncertain median 〈{1, 2}, X ,G , (u 1, u 2)〉, where X is a closed interval of real
numbers, G is a nonatomic distribution with a density and support X (so
that it has a unique median), and u j : X →R for j = 1, 2 is a single-peaked
function, is the strategic game with the following components.
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Players
{1,2} (candidates).

Actions
The set of actions of each player is X (the set of possible positions).

Preferences
The preferences of each player j are represented by the function vj :
X ×X →R defined by

vj (x1,x2) =G ( 1
2 (x1+x2))u j (min{x1,x2})

+
�

1−G ( 1
2 (x1+x2))

�
u j (max{x1,x2}).

If the candidates’ positions in such a game are the same, equal to x , then
the outcome is x . If the candidates’ favorite positions differ, x is not the fa-
vorite position of at least one candidate, and that candidate’s deviating from x to
her favorite position causes the outcome to change to one in which her favorite
position occurs with positive probability and x occurs with the complementary
probability, which she prefers to x . Thus in any Nash equilibrium of the game
the candidates’ positions differ. The next result shows also that these positions lie
between the candidates’ favorite positions, and each candidate’s equilibrium po-
sition is closer to her favorite position than is the other candidate’s equilibrium
position.

Proposition 9.4: Nash equilibrium of electoral competition game with
two policy-motivated candidates and uncertain
median

Consider an electoral competition game with two policy-motivated can-
didates and uncertain median 〈{1,2}, X ,G , (u 1, u 2)〉. Denote the candi-
dates’ favorite positions, the maximizers of u 1 and u 2, by x̂1 and x̂2, and
suppose that x̂1 < x̂2. Then in every Nash equilibrium (x ∗1,x ∗2) we have
x̂1 ≤ x ∗1 < x ∗2 ≤ x̂2. If G is differentiable, the density of G is positive on the
interior of X , u 1 and u 2 are differentiable, and x̂1 and x̂2 are in the interior
of X , then x̂1 < x ∗1 < x ∗2 < x̂2.

To prove this result, I first establish the following lemma, which is used also
in the proof of a later result.
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Lemma 9.1: Best responses in electoral competition game with two
policy-motivated candidates and uncertain median

Consider an electoral competition game with two policy-motivated can-
didates and uncertain median 〈{1,2}, X ,G , (u 1, u 2)〉. For any x2 ∈ X , every
best response of candidate 1 to x2 is in (x2, x̂1] if x2 < x̂1 and in [x̂1,x2) if
x2 > x̂1, where x̂1 is candidate 1’s favorite position.

Proof

First suppose that x2 < x̂1.

a. If x1 ≤ x2 then candidate 1’s payoff is at most u 1(x2). If she deviates
to x̂1 then the outcome is x2 with positive probability less than 1 and
x̂1 with the complementary probability. Given that u 1(x̂1)> u 1(x2), the
position x1 is thus not a best response to x2.

b. If x1 > x̂1 then candidate 1’s payoff is

G ( 1
2 (x1+x2))u 1(x2)+

�
1−G ( 1

2 (x1+x2))
�

u 1(x1). (9.4)

A deviation by candidate 1 to x̂1 changes her payoff to

G ( 1
2 (x̂1+x2))u 1(x2)+

�
1−G ( 1

2 (x̂1+x2))
�

u 1(x̂1).

The difference between this payoff and (9.4) is

�
G ( 1

2 (x1+x2))−G ( 1
2 (x̂1+x2))

�
(u 1(x̂1)−u 1(x2))

+
�

1−G ( 1
2 (x1+x2))

�
(u 1(x̂1)−u 1(x1)),

which is positive because G ( 1
2 (x1+x2))>G ( 1

2 (x̂1+x2)), u 1(x̂1)> u 1(x1),
and u 1(x̂1)> u 1(x2). Thus x1 is not a best response to x2.

We conclude that if x2 < x̂1 then every best response of candidate 1 to
x2 is in (x2, x̂1].

Now suppose that x2 > x̂1. If x1 < x̂1 or x1 ≥ x2 then a deviation by can-
didate 1 to x̂1 increases her payoff; the argument for x1 < x̂1 is symmetric
with that for case b for x2 < x̂1, and the argument for x1 ≥ x2 is symmetric
with that for case a.
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Proof of Proposition 9.4

Lemma 9.1 implies that in every Nash equilibrium (x ∗1,x ∗2) we have x̂1 ≤
x ∗1 < x ∗2 ≤ x̂2. Now assume that G is differentiable, the density of G is posi-
tive on the interior of X , u 1 and u 2 are differentiable, and x̂1 and x̂2 are in
the interior of X . We need to prove that x ∗1 6= x̂1 and x ∗2 6= x̂2. Given that u 1

is differentiable and x̂1 is in the interior of X , u ′1(x̂1) = 0, so the derivative
of candidate 1’s payoff with respect to x1 at (x̂1,x2) for x2 > x̂1 is

1
2G ′( 1

2 (x̂1+x2))(u 1(x̂1)−u 1(x2)).

This expression is positive given that the density G ′ of G is positive on the
interior of X . Thus candidate 1’s best response to any position x2 > x̂1 is
greater than x̂1 and hence x ∗1 > x̂1 in any Nash equilibrium. A symmetric
argument applies to x ∗2.

If the candidates’ payoff functions are not differentiable at their favorite po-
sitions then the game may have an equilibrium in which the candidates choose
these positions.

Exercise 9.4: Nash equilibrium with policy-motivated candidates and
uncertainty

Consider an electoral competition game with two policy-motivated candi-
dates and uncertain median 〈{1,2}, X ,G , (u 1, u 2)〉 in which X = [−k , k ] for
some k > 0, G is uniform on X , and for some positions x̂1 ∈ X and x̂2 ∈ X
with x̂1 < x̂2 we have u j (x ) = −|x − x̂ j | for j = 1, 2 for all x ∈ X . Show that
this game has a Nash equilibrium in which the position of each candidate j
is x̂ j , her favorite position.

Proposition 9.4 does not assert that the game necessarily has a Nash equi-
librium. The next result gives sufficient conditions for the existence of a Nash
equilibrium when G and the payoff functions u 1 and u 2 are differentiable.

Proposition 9.5: Existence of Nash equilibrium for electoral
competition game with two policy-motivated
candidates and uncertainty

Consider an electoral competition game with two policy-motivated can-
didates and uncertain median 〈{1,2}, X ,G , (u 1, u 2)〉 for which G is differ-
entiable and the candidates’ favorite positions, the maximizers x̂1 and x̂2
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of u 1 and u 2, differ and are in the interior of X . If logG is concave and
u 1 and u 2 are concave and twice-differentiable then the game has a Nash
equilibrium.

Proof

Assume without loss of generality that x̂1 < x̂2 and denote the players’
payoff functions by v1 and v2, as in Definition 9.5.

Step 1 For any x2 ∈ [x̂1, x̂2], candidate 1 has a unique best response to x 2,
which is in [x̂1, x̂2].

Proof. First suppose that x2 = x̂1. If candidate 1 chooses the same position,
then the outcome is x̂1 with certainty. If she chooses any other position
x1, then given that the support of G is X , the outcome is x1 with positive
probability and x̂1 with the complementary probability. Thus her unique
best response to x2 is x̂1.

Now suppose that x2 ∈ (x̂1, x̂2]. By Lemma 9.1, every best response of
candidate 1 to x2 is in [x̂1,x2). Her payoff to a pair (x1,x2)with x1 < x2 is

G ( 1
2 (x1+x2))u 1(x1)+

�
1−G ( 1

2 (x1+x2))
�

u 1(x2).

This function is differentiable in x1, so a best response of candidate 1 to x2,
which is in the interior of X by Lemma 9.1 and the assumption that x̂1 is in
the interior of X , satisfies

1
2G ′( 1

2 (x1+x2))u 1(x1)+G ( 1
2 (x1+x2))u ′1(x1)− 1

2G ′( 1
2 (x1+x2))u 1(x2) = 0

or
1
2G ′( 1

2 (x1+x2))(u 1(x1)−u 1(x2))+G ( 1
2 (x1+x2))u ′1(x1) = 0,

which implies
G ′( 1

2 (x1+x2))

2G ( 1
2 (x1+x2))

=
−u ′1(x1)

u 1(x1)−u 1(x2)
.

The left-hand side of this equation is the derivative of log G ( 1
2 (x1 + x2)),

which is positive and nonincreasing in x1 by the assumption that logG is
concave. The right-hand side of the equation is 0 for x1 = x̂1 and the sign
of its derivative with respect to x1 is the sign of

(u 1(x1)−u 1(x2))(−u ′′1 (x1))+ (u
′
1(x1))

2,

which is positive for x̂1 < x1 < x2 because u 1(x1) > u 1(x2), u ′′1 (x1) ≤ 0 by
the concavity of u 1, and u ′1(x1)< 0. Thus candidate 1’s best response to x2,
which is less than x2 by Lemma 9.1, is unique and greater than x̂1. Ã
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Step 2 The game has a Nash equilibrium.

Proof. By Step 1 and the analogous result for candidate 2, each candi-
date has a unique best response to each position of the other candidate
in [x̂1, x̂2]. So the continuity of the payoffs implies that the best response
of each candidate is continuous in the other candidate’s action. By Propo-
sition 9.4, any Nash equilibrium of the game is a Nash equilibrium of the
game that differs only in that each candidate’s set of actions is [x̂1, x̂2]. De-
note candidate i ’s best response function in this game by Bi : [x̂1, x̂2] →
[x̂1, x̂2]. The action pair (x1,x2) is a Nash equilibrium of the game if and
only if x1 = B1(x1,x2) and x2 = B2(x1,x2). Given the convexity and com-
pactness of [x̂1, x̂2] and the continuity of B1 and B2, Brouwer’s fixed point
theorem implies that these equations have a solution, so that the game has
a Nash equilibrium. Ã

The model nicely captures the tradeoff a candidate faces when choosing a po-
sition: moving her position away from her favorite position, towards that of her
rival, makes her worse off if she wins, but increases her probability of winning. If
the model has an equilibrium, then the candidates’ positions differ. A limitation
of the model is that the conditions under which an equilibrium is known to exist
are relatively restrictive.

9.3 Candidates privately informed about policies

Suppose that the candidates are privately informed about the appropriateness of
the possible policies. We can model the private information by assuming that the
candidates’ preferences over policies depend on an unknown state of the world,
and that each candidate gets a signal that depends probabilistically on the state.
In this section I discuss informally two models that differ in the timing of the
information.

In each model, two candidates, 1 and 2, simultaneously choose positions and
then a single citizen votes for one of the candidates. The set of possible positions
is denoted X and the set of states Θ. The preferences of each candidate j regard-
ing probability distributions over X are represented by the expected value of a
function u j : X ×Θ→R and the preferences of the citizen are represented by the
expected value of a function v : X ×Θ→R.



306 Chapter 9. Electoral competition: two policy-motivated candidates

9.3.1 Candidates privately informed after choosing positions

Suppose that the winning candidate receives information about the desirability
of the possible policies after she is elected. Specifically, suppose that the desir-
ability of each policy depends on the state, which is observed only by the win-
ning candidate. Then one possibility is that rather than committing to a fixed
policy, each candidate specifies a mapping between states and policies and com-
mits to carry out the policy specified by the mapping after she learns the state,
in the event she wins. But I assume that such a commitment is not possible. In-
stead, each candidate chooses a subset of X and commits to select a policy in this
subset in the event she wins. That is, the model I analyze is the extensive game
in which the candidates simultaneously choose subsets of X (platforms), rather
than single positions, the citizen votes for a candidate, and then the winning
candidate observes the state and chooses a policy in her platform.

To start with an extreme example, suppose that the preferences of the can-
didates and the citizens are identical. Then the game has a subgame perfect
equilibrium in which each candidate’s platform is the set X of all positions. The
citizen votes for either of the candidates and the winning candidate chooses the
policy that is best for her given the state. Given that the candidates’ and citi-
zen’s preferences are the same, neither candidate can do better by deviating to
a subset of X . Following such a deviation, voting for the other (non-deviating)
candidate remains optimal for the citizen. By the same logic, in every equilib-
rium the winning candidate’s platform contains all the policies that are optimal
for some state.

If the candidates’ and citizen’s preferences differ, whether the candidates’
equilibrium platforms contain one policy or many depends on the nature of the
preferences and the distribution of the state. To get an idea of the factors in-
volved, suppose that the set X of available policies is a compact interval [x,x ]
that contains 0, the set Θ of states coincides with X , and there is a single-peaked
function u : R→ R with maximizer 0 and numbers b1 and b2 such that for each
candidate j we have u j (x ,θ ) = u (x −b j −θ ) for all (x ,θ )∈ X ×Θ and for the citi-
zen we have v (x ,θ ) = u (x −θ ) for all (x ,θ )∈ X ×Θ. Under these assumptions, in
state θ the policy optimal for the citizen is θ whereas the policies optimal for the
candidates are θ +b1 and θ +b2.

Suppose that both candidates choose the platform {x } consisting of the single
policy x . Then the outcome is x regardless of the state. The difference between
this outcome and the one best for the citizen, namely θ in each state θ , is indi-
cated by the area shaded gray in Figure 9.4. Suppose that b2 > 0 and for some
x ′ ∈ X with x ′ > x candidate 2 deviates to the platform [x,x ′]. Then if candidate 2
wins she chooses the policy θ +b2 if θ ∈ [x,x ′ −b2] and x ′ if θ ∈ [x ′ −b2,x ], in-
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x x ′ −b2 x
x

x

state θ →

x+b2

x
x ′

↑
policy

Figure 9.4 Policies as a function of the state in the model in Section 9.3.1. The policy
optimal for the citizen in each state is given by the green line, and the policy induced
when candidate 2 wins with the platform [x,x ′] is given by the red line.

dicated by the solid red line in the figure. The difference between this outcome
and one best for the citizen is indicated by the area shaded pink. We see that the
outcome when the winner is candidate 2 with the platform [x,x ′] is better for the
citizen than the constant outcome x when the state is small or large, and is worse
when the state takes intermediate values. Thus depending on the distribution of
the state and the citizen’s payoff function v , the citizen may prefer the outcome
induced by candidate 2’s deviation to the constant policy x . If she does, then she
optimally votes for candidate 2, who prefers the resulting outcome in every state.

This argument suggests that for some specifications of the distribution of the
state and the candidates’ and citizen’s preferences in which these preferences
differ from each other, the game may have an equilibrium in which each candi-
date’s platform is an interval of policies. Kartik et al. (2017) study an example in
which such equilibria exist.

9.3.2 Candidates privately informed before choosing positions

Now assume that both candidates receive information about the desirability of
the possible policies before they choose positions. Specifically, consider the ex-
tensive game with imperfect information in which chance determines the state,
each candidate observes chance’s move, the candidates simultaneously choose
positions, and then the citizen observes the candidates’ positions, but not the
move of chance, and votes for one of the candidates. To make the structure of
the game clear, an example for the case in which there are two states and two
possible policies is given in Figure 9.5. In this figure, the initial move of chance
is not shown explicitly; instead, the small circles at the top and bottom indicate
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Figure 9.5 An example of the game in Section 9.3.2, in which the state is observed by the
candidates before they choose positions. In this example, there are two possible policies,
x and y , and two possible states. Candidate 1’s actions are red, candidate 2’s blue, and
the citizen’s green. The payoffs are not shown.

the two possible results of this move. (Payoffs are not shown in the figure.)
For the rest of the section I consider an example of the game in which, as in

Figure 9.5, there are two states, but the set X of possible positions is the set of
all real numbers. The states are −1 and 1: Θ = {−1,1}. The prior probability of
state −1 is p ∈ (0,1). For each candidate j ∈ {1,2}, the function u j : X ×Θ→ R
whose expected value represents j ’s preferences is single-peaked in its first argu-
ment for each θ ∈ Θ. The favorite position of each candidate j in each state θ
(i.e. the position x that maximizes u j (x ,θ )) is denoted x̂ j (θ ). Assume that

x̂1(θ )<θ < x̂2(θ ) for each state θ ∈Θ.

The function v : X ×Θ→R whose expected value represents the citizen’s prefer-
ences is also single-peaked in its first argument for each θ ∈ Θ; in each state θ ,
the citizen’s favorite position is θ . For any positions x1 and x2, denote by I (x1,x2)
the citizen’s information set that is reached when candidate 1’s position is x1 and
candidate 2’s is x2.

Equilibria with full convergence

I first consider the possibility that the game has equilibria in which the positions
chosen by the candidates are the same, and do not depend on the state, so that
the citizen can make no inference regarding the state from those positions.
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For any position x ∗ ∈ [−1,1], the game has weak sequential equilibria in which
each candidate’s position in each state is x ∗. In one such equilibrium, the belief
system assigns probability p to state −1 at I (x ∗,x ∗) (as required by weak con-
sistency of the strategies and beliefs, given that this information set is reached
with probability 1 regardless of the state), and the citizen’s strategy selects candi-
date 1. At every information set reached when one candidate deviates from her
strategy to some position x , the belief system assigns probability 1 to the state
in which the citizen prefers x ∗ to x , and the citizen votes for the non-deviating
candidate, so that the deviation does not affect the outcome. The beliefs and
citizen’s actions at the remaining information sets, in which both candidates’
positions differ from the ones prescribed by their strategies, do not affect the
equilibrium status of the assessment as long as the citizen’s action at each such
information set is optimal given the belief at the information set, because none
of these information sets is reached when a single candidate deviates.

The next exercise asks you to show that if candidate 2’s favorite position in
state 1 is at least −1 and candidate 1’s favorite position in state −1 is at most 1
then the game has no equilibrium in which the candidates’ common position
in each state is outside [−1,1]. Thus under this assumption, equilibria with full
convergence are limited to [−1,1].

Exercise 9.5: Weak sequential equilibria with full convergence when
candidates are privately informed

Show that if x̂2(1) ≥ −1 and x̂1(−1) ≤ 1 then for any position x ∗ with x ∗ <
−1 or x ∗ > 1 the game has no weak sequential equilibrium in which each
candidate’s position in each state is x ∗.

Equilibria with partial convergence

The game also has equilibria in which the candidates’ positions depend on the
state. Given the equilibria of the games with perfect information studied in Sec-
tion 9.1, it is reasonable to consider the possibility of a weak sequential equi-
librium in which each candidate’s strategy selects the citizen’s favorite position
in each state: −1 in state −1 and 1 in state 1. To do so, we need to consider
whether there is a belief system and a strategy for the citizen such that the belief
system is weakly consistent with the players’ strategies and each player’s strategy
is optimal given the belief system and the other players’ strategies.

Weak consistency requires that at each of candidate 2’s information sets, the
belief system assigns probability 1 to the action specified by candidate 1’s strat-
egy. In all the assessments I discuss, I take as given that the belief system has
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# Information set Prob. of state −1 Cand. chosen

1 I (−1,−1) 1 1
2 I (1,1) 0 1
3 I (−1,x ) for any x 6∈ {−1,1} 1 1
4 I (x ,−1) for any x 6∈ {−1,1} 1 2
5 I (1,x ) for any x 6∈ {−1,1} 0 1
6 I (x ,1) for any x 6∈ {−1,1} 0 2
7 I (−1,1) 0 2
8 I (1,−1) 0 1
9 I (x , y ) for x 6∈ {−1,1} and y 6∈ {−1,1} 1 c (x , y )

Table 9.1 The probabilities assigned by the belief system to the citizen’s information sets
and the citizen’s strategy in a weak sequential equilibrium of the game in Section 9.3.2.
The candidate c (x , y ) is 1 if v (x ,−1)≥ v (y ,−1) and 2 if v (x ,−1)< v (y ,−1). The numbers
in the first column are for reference.

this property. The more significant features of an assessment concern the be-
liefs and actions at the citizen’s information sets. Consider the assessment in
which each candidate selects position −1 in state −1 and position 1 in state 1
and the belief system and citizen’s strategy are given in Table 9.1. I argue that if
u 2(−1,−1)≥ u 2(1,−1), a condition illustrated in Figure 9.6, then this assessment
is a weak sequential equilibrium of the game. The beliefs at information sets of
types 1–6 are specified so that deviations by either candidate to a position other
than −1 and 1 are not profitable. For example, if candidate 1 deviates in state −1
(information set type 4) then the citizen continues to believe that the state is −1
and switches her vote to candidate 2, so that the policy outcome remains −1. The
information set I (−1,1) (type 7) is reached both if candidate 1 deviates to the po-
sition−1 in state 1 and if candidate 2 deviates to 1 in state −1. As a consequence,
the belief at that information set cannot be specified in such a way that regardless
of the candidates’ payoff functions no deviation is profitable. The same is true
for the information set I (1,−1) (type 8), and checking that deviations that lead
to these two information sets are not profitable is the most significant part of the
argument. (No deviation by a single player leads to an information set of type 9,
so the citizen’s behavior at such an information set is not significant except that
it must be optimal given the belief system.)

Weak consistency of beliefs with strategies
Information sets 1 and 2 in Table 9.1 are reached if the players follow their
strategies, and the probabilities of state −1 are implied by Bayes’ rule.

None of the remaining information sets are reached if the players follow their
strategies, so weak consistency imposes no restriction on the beliefs at these
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−1 1

x →

x̂2(−1)x̂1(−1) x̂1(1) x̂2(1)

u 2(−1,−1)

u 2(1,−1)

u 1(x ,−1)

u 2(x ,−1)

v (x ,1)

v (x ,−1)

Figure 9.6 An illustration of the conditions for a weak sequential equilibrium of the
game in Section 9.3.2. In state −1 each candidate’s position is −1 and in state 1 it is
1. The candidates’ payoff functions in state −1 are indicated in red for candidate 1 and
in blue for candidate 2. The citizen’s payoff function in each state is indicated in green.

sets.

Sequential rationality for citizen
At information sets 1 and 2 the candidates’ positions are the same, so voting
for candidate 1 is optimal for the citizen.

At information sets of types 3–8 the position of the candidate for whom the
citizen votes is the citizen’s favorite position in the state to which the be-
lief system assigns probability 1, so the citizen’s voting for that candidate is
optimal for her.

At an information set of type 9 the citizen believes the state is −1 and votes
for the candidate whose position is best for her in that state.

Sequential rationality for candidates
If candidate 1 deviates in state −1 to a position different from 1, an informa-
tion set of type 4 of the citizen is reached, and the citizen votes for candi-
date 2, so that the outcome does not change.

Similarly, a deviation by candidate 1 in state 1 to a position different from
−1 (and from 1) and deviations by candidate 2 in either state to positions
different from −1 and 1 have no effect on the outcome.

If candidate 1 deviates in state −1 to the position 1 then information set 8
is reached and the citizen votes for candidate 1, changing candidate 1’s pay-
off from u 1(−1,−1) to u 1(1,−1), and hence making her worse off given that
x̂1(−1)<−1 and her payoff function is single-peaked.

If candidate 1 deviates in state 1 to the position −1 then information set 7 is
reached and the citizen votes for candidate 2, so that the outcome remains
policy 1.

If candidate 2 deviates in state −1 to the position 1 then information set 7 is
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reached and the citizen votes for candidate 2, changing candidate 2’s payoff
from u 2(−1,−1) to u 2(1,−1), and hence making her no better off given the
assumption that u 2(−1,−1)≥ u 2(1,−1).

If candidate 2 deviates in state 1 to the position −1 then information set 8 is
reached and the citizen votes for candidate 1, so that the outcome remains
policy 1.

This equilibrium is not the only one in which both candidates choose the
position −1 in state −1 and the position 1 in state 1. In other such equilibria the
belief system assigns a positive probability to state −1 at information sets 7 and
8; the conditions on the payoff functions for such equilibria differ from those for
the equilibrium I have discussed.

Under some conditions the game has related equilibria in which in each state
the candidates choose the same position, but these positions differ from the cit-
izens’ favorite positions −1 and 1. In the equilibrium I have presented, the fact
that each candidate’s position in each state is the citizen’s favorite position in
that state makes deviations by candidates easy to deter. In an equilibrium in
which the candidates’ common position in each state differs from the citizen’s
favorite position in that state, the beliefs need to be designed carefully to deter
deviations.

Suppose, for example, that the candidates’ common position is x− in state−1
and x+ in state 1, with −1< x− < x+ < 1. If candidate 1 deviates to −1 in state −1
and the citizen continues to believe that the state is −1 then the citizen opti-
mally votes for candidate 1, leading to the policy outcome −1, which candidate 1
prefers to x−. To deter the deviation, the citizen must believe at her information
set I (−1,x−) that the state is 1, so that she optimally votes for candidate 2. This
belief is weakly consistent with the strategy profile because the information set
I (−1,x−) is not reached if the candidates follow their strategies.

Exercise 9.6: Weak sequential equilibrium with partial convergence in
game with privately-informed candidates

For positions x− and x+ with −1 < x− < x+ < 1, find a belief system and a
strategy for the citizen that combined with the strategy for each candidate
that selects x− in state−1 and x+ in state 1 is a weak sequential equilibrium
of the game in this section if u 2(x−,−1)≥ u 2(x+,−1).

The citizen’s belief at her information set I (−1,x−) that the state is 1, though
weakly consistent with the strategy profile, does not seem plausible. If I (−1,x−)
is reached then the citizen knows that candidate 1, who prefers −1 to x− in state−1,
has deviated to −1. If this deviation induces the citizen to vote for candidate 1
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−1 0 1

x →

x̂2(−1)x−2x−1 x̂1(1) x+1 x+2

v (x , 1)v (x ,−1)

Figure 9.7 The candidates’ positions in a weak sequential equilibrium of the game in
Section 9.3.2. Candidate 1 chooses x−1 in state −1 and x+1 in state 1 and candidate 2
chooses x−2 in state −1 and x+2 in state 1.

then both candidate 1 and the citizen are better off, whereas if it induces the cit-
izen to believe that the state is 1 and vote for candidate 2 then it does not affect
candidate 1’s payoff. So why the deviation should lead the citizen to believe that
the state is 1 is unclear. Notions of equilibrium that impose conditions on the
belief system that are stronger than the conditions imposed by weak sequential
equilibrium and rule out beliefs that, like this one, seem implausible, have been
proposed, but none has unqualified appeal, and I do not discuss them.

Equilibria with dispersed positions

Does the game have an equilibrium in which the candidates’ positions depend
on the state and differ from each other in each state? Suppose that, as shown in
Figure 9.7, candidate 1 chooses x−1 in state −1 and x+1 in state 1, and candidate 2
chooses x−2 in state −1 and x+2 in state 1, where x−1 < −1 < x−2 ≤ x̂2(−1), x̂1(1) ≤
x+1 < 1 < x+2 , and the citizen is indifferent between x−1 and x−2 in state −1 and
between x+1 and x+2 in state 1.

To determine whether an equilibrium exists in which the candidates choose
such positions, we need to determine whether for some weakly consistent belief
system the citizen’s optimal response to any deviation by a candidate deters the
deviation. Weak consistency requires that when the candidates’ positions are x−1
and x−2 the citizen believes that the state is −1. I first argue that in an equilibrium
the citizen votes for candidate 2 in this case. Suppose instead that she votes for
candidate 1. If candidate 2 deviates in state −1 to a position x2 ∈ [−1,x−2 ), then
given that the citizen prefers x2 to x−1 in both states, regardless of her belief she
optimally switches her vote to candidate 2, making candidate 2 better off. Does
a belief system exist for which the citizen optimally votes for candidate 2 when
the candidates’ positions are x−1 and x−2 ? Suppose that candidate 1 in state −1
deviates to a position x1 ∈ (x

−
1 ,−1]. If the citizen responds by switching her vote

to candidate 1 then candidate 1 is better off, so for an equilibrium the citizen
must continue to vote for candidate 2. For her to optimally do so, her belief fol-
lowing the deviation must assign sufficiently high probability to state 1, in which
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she prefers x−2 to x1. That is, the deviation by candidate 1 to x1, which the citizen
prefers to x−2 in state −1, must induce the citizen to switch from assigning prob-
ability 1 to state −1 to assigning a significant probability to state 1. This change
in beliefs is consistent with the requirements of a weak sequential equilibrium,
but its intuitive rationale is unclear, to say the least.

The conclusion of this argument is that a weak sequential equilibrium in
which the candidates’ positions are those indicated in Figure 9.7 may exist, but
the belief system that such an equilibrium entails, like the belief system for an
equilibrium in which the candidates’ common position is x− in state −1 and x+

in state 1, with−1< x− < x+ < 1, is at best difficult to interpret. The next exercise
invites you to fill in the details of an equilibrium.

Exercise 9.7: Weak sequential equilibrium with dispersed positions in
game with privately-informed candidates

Find a belief system and a strategy for the citizen that combined with
the strategies for the candidates that select the positions illustrated in in
Figure 9.7 is a weak sequential equilibrium of the game in this section if
u 2(x

−
2 ,−1)≥ u 2(x

+
2 ,−1).

9.4 Repeated elections

Suppose that two policy-motivated candidates contest a sequence of elections.
In each period t = 1, 2, . . . , they choose positions in a strategic game G that is
closely related to an electoral competition game with a continuum of citizens
and two policy-motivated candidates. The players in G are the candidates, 1 and
2, the set of actions of each candidate is X ⊂R, a compact interval, and the payoff
of each candidate j to the pair (x1,x2) of positions is

vj (x1,x2) =







u j (x1) if F ( 1
2 (x1+x2))> 1

2

1
2 (u j (x1)+u j (x2)) if F ( 1

2 (x1+x2)) = 1
2

u j (x2) if F ( 1
2 (x1+x2))< 1

2 ,

where F is a nonatomic probability distribution function with a density and sup-
port X , m is the median of F , and u j : X →R is a single-peaked function. Denote
by x̂ j the maximizer of u j and assume that x̂1 <m < x̂2.

I model the sequence of elections as an infinitely repeated game. In every
period t = 1, 2, . . . , the candidates choose positions in the game G after observing
the positions chosen in every previous period. The payoff of each candidate j in
the repeated game is the discounted average of her payoffs in the sequence of
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x̂1

u 1

x̂2

u 2

m

(a) Concave.

x̂1

u 1

x̂2

u 2

m

(b) Convex on each side of maximizer.

Figure 9.8 Payoff functions for policy-motivated candidates.

games, with discount factor δ ∈ (0,1): that is, (1− δ)
∑∞

t=1δ
t−1vj (x t

1 ,x t
2), where

(x t
1 ,x t

2) is the pair of positions chosen in period t .
If candidate j chooses the position m in any given period t then for any posi-

tion of the other candidate in period t her payoff is at least u j (m ) in that period.
Thus in every Nash equilibrium of the infinitely repeated game her (discounted
average) payoff is at least u j (m ) (for any value of δ).

The character of the equilibria of the repeated game depend on whether the
functions u j are concave, as in Figure 9.8a, or convex on each side of their maxi-
mizers, as in Figure 9.8b.

The set P of payoff pairs possible in G is the union of {(u 1(x ), u 2(x )) : x ∈ X },
attainable when one candidate wins outright, and

{( 1
2 (u 1(x )+u 1(x

′)), 1
2 (u 2(x )+u 2(x

′))) : x ∈ X and x ′ ∈ X },

attainable when the candidates tie. The former set is the black curve in each
panel of Figure 9.9 and the latter set is the green curve. Every sequence z 1, z 2, . . .
of winning positions in G generates a sequence w 1, w 2, . . . of points in P . The
resulting pair of payoffs in the repeated game is (1− δ)

∑∞
t=1δ

t−1w t
j . This pair

of payoffs is a weighted average of w 1, w 2, . . . and hence lies in the area shaded
blue in each panel.

Thus if each function u j is concave (Figure 9.9a) then (for any value of δ) no
sequence of positions yields a pair of payoffs in the repeated game for which each
component j is larger than u j (m ). Hence in every Nash equilibrium of the re-
peated game the outcome in every period is m and the payoff of each candidate j
is u j (m ).

If each function u j is convex on each side of x̂ j , so that j is more sensi-
tive to changes in the position around x̂ j than she is to changes of the same
size around positions distant from x̂ j , the story is different. Suppose that w =
(1−δ)

∑∞
t=1δ

t−1w t lies in the area shaded dark blue in Figure 9.9b, with w j >

u j (m ) for j = 1, 2. For each t = 1, 2, . . . let x t be a pair of positions for the can-
didates for which (v1(x t ), v2(x t )) =w t . Consider the strategy pair in the repeated
game in which each candidate j chooses x 1

j in period 1 and, in each period t ≥ 2,
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u 2(x̂2)

u 1(x̂2)

u 2(x̂1)

u 1(x̂1)

u 2(m )

u 1(m )

(a) Candidates with concave payoff func-
tions.

u 1(x̂1)u 1(x̂2) u 1(m )

u 2(x̂2)

u 2(x̂1)

u 2(m )

(b) Candidates with payoff functions con-
vex on each side of their maximizers.

Figure 9.9 Possible payoffs in an infinitely repeated game with policy-motivated
candidates.

chooses x t
j after the history (x 1,x 2, . . . ,x t−1) and m after every other history. If

the discount factor δ is close enough to 1, this strategy pair is a subgame perfect
equilibrium of the repeated game. The game satisfies the condition in Proposi-
tion 16.9, so it suffices to show that the strategy profile satisfies the one-deviation
property. If in any period t following a history in which each candidate has ad-
hered to her strategy, a candidate j chooses a position other than x t

j and sub-
sequently adheres to her strategy then, given the other candidate’s strategy, the
outcome in every subsequent period is (m , m ), so that in each period after t her
payoff is less than w j , and hence for δ sufficiently close to 1 her payoff in the
repeated game is less than w j . In any period following any other history, both
candidates choose m , and no deviation by either candidate affects the policy
outcome in any future period, given the other candidate’s strategy.

Thus if each function u j is convex on each side of x̂ j and the candidates’ dis-
count factor is close to 1, the repeated game has subgame perfect equilibria in
which the outcome in each period differs from m . In some of these equilibria
the outcome in every period is either x̂1 or x̂2. Such an outcome arises if, for
example, in some periods candidate 1 chooses the position x̂1 and candidate 2
chooses a position more extreme than 2m−x̂1, and in the remaining periods can-
didate 1 chooses a position more extreme than 2m − x̂2 and candidate 2 chooses
the position x̂2.

The model of a repeated game assumes that a candidate can change her po-
sition arbitrarily from period to period. Even a candidate who implements the
policy x while in office in period t can commit to a position radically different
from x in the election in period t + 1. Such a metamorphosis is implausible:
would citizens believe that a candidate who had previously espoused one policy



9.4 Repeated elections 317

x̂1 m x̂2

x →

z 1

2m − z 1

z 2

u 1(x )

u 1(x )+δu 1(2m −x )

u 2(x )

u 2(x )+δu 2(2m −x )

Figure 9.10 The positions relevant in a repeated election with persistent policies.

is now committed to a wildly different one?
If we assume that candidates can change their positions only when they are

out of office, equilibria in which the winning policy in each period differs from
the favorite position of the median voter are possible even if the candidates’
payoff functions are strictly concave (as in Figure 9.8a).

Consider an extensive game that differs from the repeated game specified
earlier in two respects. First, in each period, only one of the candidates is free
to choose a position. In period 1, candidate 2’s position is fixed; the idea is that
she was the incumbent in the previous, unmodeled, period. In every subsequent
period, only the challenger is free to choose a position. The winner in any period
is constrained to adopt the same policy in the next period: the set of actions
available to a candidate i in any period t following a period in which she won
is {x t−1

i }, where x t−1
i is her policy in period t −1. Second, if the vote is tied in

period 1 then candidate 1 is the winner, and if it is tied in any subsequent period
then the challenger in that period is the winner.

Denote the game starting with candidate 2’s position fixed at x 1
2 by Γ(x 1

2). As-
sume that each payoff function u j is strictly concave, and for simplicity assume
that the set of positions from which candidate 1 can choose is [x̂1, m ] and the set
from which candidate 2 can choose is [m , x̂2]. Let z 1 be the maximizer of u 1(x1)+
δu 1(2m−x1) for x1 ∈ [x̂1, m ] and let z 2 be the maximizer of u 2(x2)+δu 2(2m−x2)
for x2 ∈ [m , x̂1]. Given that δ < 1, we have z 1 < m and z 2 > m . Assume that
z 1 ≥ 2m − z 2. (Figure 9.10 shows an example.)

Let x ∗2 ∈ [m ,2m − z 1] and x ∗1 = 2m − x ∗2, so that x ∗1 ∈ [z 1, m ]. I claim that
the game Γ(x ∗2) has a subgame perfect equilibrium in which the policy alternates
between x ∗1, implemented by candidate 1, and x ∗2, implemented by candidate 2.
If in any period the challenger deviates to a position x closer to m , the challenger
in the next period reciprocates, choosing the position 2m −x , and subsequently
the outcome alternates between these two positions. Each candidate prefers an
alternation between x ∗1 and x ∗2 = 2m − x ∗1 to one between x and 2m − x , so such
a deviation is not advantageous.

Specifically, the following strategy pair is a subgame perfect equilibrium of
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Γ(x ∗2): candidate 1 chooses x ∗1 in period 1 and max{2m −x t−1
2 , z 1} in each subse-

quent period t in which she is the challenger, and candidate 2 chooses min{2m −x t−1
1 , z 2}

in each period t in which she is the challenger. You are invited to verify this claim
in the next exercise.

Exercise 9.8: Repeated elections with persistent policies

Show that strategy pair specified in the text is a subgame perfect equilib-
rium of the variant of a repeated game with persistent policies defined in
the text.

Notes

Austen-Smith and Banks (2005, Section 7.7) study a variant of the model in Sec-
tion 9.1 in which each candidate cares slightly about winning and the set of al-
ternatives is convex and compact. Versions of Proposition 9.3 are established
by Wittman (1977, Proposition 5), Calvert (1985, Theorems 1 and 2), and Roe-
mer (1994, Theorem 2.1). The model in Section 9.2 is due to Wittman (1983) and
Calvert (1985, Section 4); Proposition 9.4 is based on Duggan (2014b, Theorem
22). Proposition 9.5 is due to Roemer (1997, Theorem 3.2) and Duggan (2014b,
Theorem 22), who credits unpublished joint work with Mark Fey. Section 9.3.1
is based on Kartik et al. (2017) and Section 9.3.2 is based on Schultz (1996) and
Martinelli and Matsui (2002). The game with persistent policies discussed at the
end of Section 9.4 is a variant of the one studied by Forand (2014).

The model with imperfect commitment discussed after Exercise 9.3 is due to
Jean Guillaume Forand.

Solutions to exercises

Exercise 9.1
Alternative a is not a Condorcet winner because a majority of individuals
prefer c to a .

Suppose that candidate 1 prefers {a } to {b} to {c } and candidate 2 prefers {b}
to {c } to {a }, and also {a ,b} to {c }. These candidates are representative. Then
(a ,b ) is a Nash equilibrium of the game by the following argument.

• The outcome of (a ,b ) is a tie, {a ,b}.

• If candidate 1 deviates to b , then she ties and the outcome is {b}, which
she likes less than the outcome {a ,b} by the second part of (9.1).
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• If candidate 1 deviates to c , then she loses and the outcome is {b}, which
she likes less than {a ,b} by the second part of (9.1).

• If candidate 2 deviates to a , then she ties and the outcome is {a }, which
she likes less than the outcome {a ,b} by the second part of (9.1).

• If candidate 2 deviates to c , then she wins and the outcome is {c }, which
she likes less than the outcome {a ,b}.

All of the deviations lead to outcomes different from the equilibrium out-
come, so none of the arguments change if each candidate lexicographically
favors winning.

Exercise 9.2
Assume without loss of generality that x̂1 ≤ x̂2.

Denote the candidates’ positions by x1 and x2. I first argue that x2 ≥ x̂2. If
x2 < x̂2 then

• x1 < x̂2⇒ outcome is {max{x1,x2}}; by moving to x̂2, candidate 2 changes
the outcome to {x̂2}, which she prefers

• x1 = x̂2 ⇒ outcome is {x̂2}; by moving to x̂1, candidate 1 changes the
outcome to {x2}, which she prefers

• x1 > x̂2 and candidate 1 wins⇒ outcome is {x1}; by moving to x̂2, candi-
date 1 changes the outcome to {x̂2}, which she prefers

• x1 > x̂2 and candidate 1 loses or ties for first place ⇒ outcome is {x2} or
{x1,x2}; by moving to x̂2, candidate 2 changes the outcome to {x̂2}, which
she prefers.

I now argue that x2 ≤m . If x2 >m then

• x1 < x̂2 ⇒ outcome is {x1}, {x2}, or {x1,x2}; by moving to x̂2, candidate 2
changes the outcome to {x̂2}, which she prefers

• x1 ≥ x̂2 and candidate 1 wins ⇒ outcome is {x1}; by reducing x1 slightly,
candidate 1 reduces the value of the winning position, which she prefers

• x̂2 ≤ x1 < x2 and candidate 2 wins or ties⇒ outcome is {x2} or {x1,x2}; by
moving to x1, candidate 2 changes the outcome to {x1}, which she prefers

• x1 ≥ x2 ⇒ candidate 2 wins or ties and outcome is {x2}; by moving to m ,
candidate 2 changes the outcome to {m }, which she prefers.

Thus x̂2 ≤ x2 ≤m .



320 Chapter 9. Electoral competition: two policy-motivated candidates

Suppose that x2 > x̂2. Then x1 = x2, otherwise the winning candidate, if one
candidate wins outright, or else the rightmost candidate who ties for first
place, can increase her payoff by moving slightly to the left.

Now suppose that x2 = x̂2. Then x1 ≤ x2, otherwise candidate 1 can increase
her payoff by moving to x̂2

Finally, any pair (x1,x2) for which x̂2 ≤ x1 = x2 ≤ m or x1 ≤ x2 = x̂2 is an
equilibrium.

Thus for x̂1 ≤ x̂2 the set of Nash equilibria is the set of pairs (x1,x2) such that
x̂2 ≤ x1 = x2 ≤m or x1 ≤ x2 = x̂2; in all of the equilibria the outcome is {x2}.

Exercise 9.3
Every citizen i with favorite position at most m prefers x ∗1 implemented by
candidate 1 to m implemented by candidate 2, so the outcome of the pair
(x ∗1, m ) of positions is that candidate 1 wins and implements x ∗1. (The payoff
for a citizen i with favorite position ẑ i ∈ [x ∗1, m ] is v (x ∗1− ẑ i )≥ v (x ∗1−m ) =−δ
for candidate 1’s position x ∗1 and v (m − ẑ i )−δ≤−δ for candidate 2’s position
m .)

Consider a deviation by candidate 1. If she deviates to a position less than x ∗1
then for some ε > 0 every citizen with favorite position at least m − ε votes
for candidate 2, so that candidate 2 wins. Candidate 1 prefers x ∗1 to m , so the
deviation makes her worse off. If she deviates to a position greater than x ∗1
then she either wins, in which case she is no better off, or she loses and the
position of the winner, candidate 2, is m , so she is also no better off.

Now consider a deviation by candidate 2. If she deviates to a position at most
x ∗1 then all citizens with favorite positions at least x ∗1 vote for candidate 1, so
that candidate 1 continues to win. If she deviates to a position greater than
x ∗1 then all citizens with favorite positions at most m vote for candidate 1,
so that candidate 1 continues to win. Thus no deviation makes candidate 2
better off.

We conclude that (x ∗1, m ) is a Nash equilibrium of the game.

Exercise 9.4
By Proposition 9.4 in any Nash equilibrium (x ∗1,x ∗2)we have x̂1 ≤ x ∗1 < x ∗2 ≤ x̂2.

Suppose that x̂1 < x1 ≤ x̂2. We have G (z ) = (z + k )/2k for z ∈ [−k , k ], so
candidate 1’s payoff is

−(x1− x̂1)(( 1
2 (x1+x2)+k )/2k )− (x2− x̂1)(1− ( 1

2 (x1+x2)+k )/2k )

=−(1/2k )
�
(x1− x̂1)( 1

2 (x1+x2)+k )+ (x2− x̂1)(k − 1
2 (x1+x2))

�

=−(1/2k )
�

1
2 x 2

1 +k x1+C
�

,
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Information set Prob. of state −1 Cand. chosen

I (x−,x−) 1 1
I (x+,x+) 0 1

I (x−,x ) for x < x− 0 1
I (x−,x ) for x > x−, x 6= x+ 1 1

I (x ,x−) for x < x− 0 2
I (x ,x−) for x > x−, x 6= x+ 1 2
I (x+,x ) for x < x+, x 6= x− 0 1

I (x+,x ) for x > x+ 1 1
I (x ,x+) for x < x+, x 6= x− 0 2

I (x ,x+) for x > x+ 1 2
I (x−,x+) 0 2
I (x+,x−) 0 1

I (x , y ) for x 6∈ {x−,x+} and y 6∈ {x−,x+} 1 c (x , y )

Table 9.2 The probabilities assigned by the belief system to the citizen’s information sets
and the citizen’s strategy in a weak sequential equilibrium of the game in Section 9.3.2 in
which the candidates’ strategies are the ones given in Exercise 9.6. The candidate c (x , y )
is 1 if v (x ,−1)≥ v (y ,−1) and 2 if v (x ,−1)< v (y ,−1).

where C is a constant (independent of x1). This payoff is decreasing in x1.

Thus candidate 1’s best response to x̂2 is x̂1. The same argument with the
roles of candidates 1 and 2 interchanged shows that x̂1 is a best response to
x̂2. Thus (x̂1, x̂2) is a Nash equilibrium.

Exercise 9.5
Suppose that x ∗ < −1 and each candidate in each state chooses x ∗. Then if
candidate 2 deviates to the position −1 the citizen votes for her regardless of
her belief about the state, in which case she is elected. She prefers the posi-
tion −1 to x ∗, given that x̂2(1) ≥ −1 and her preferences are single-peaked,
so she benefits from the deviation. Similarly, candidate 1 benefits from a
deviation from x ∗ to 1 if x ∗ > 1.

Exercise 9.6
The assessment in which each candidate chooses the position x− in state −1
and the position x+ in state 1 and the belief system and strategy for the cit-
izen are given in Table 9.2 is a weak sequential equilibrium of the game if
u 2(x−,−1) ≥ u 2(x+,−1). This condition on candidate 2’s payoffs is required
so that in state −1 she does not benefit from deviating to x+.

Exercise 9.7
The assessment in which the belief system and strategy for the citizen are
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Information set Prob. of state −1 Cand. chosen

I (x−1 ,x−2 ) 1 2
I (x+1 ,x+2 ) 0 1

I (x−1 ,x ) for x < x−2 0 2
I (x−1 ,x ) for x > x−2 , x 6= x+2 1 1

I (x ,x−2 ) for x ≤ x−2 0 2
I (x ,x−2 ) for x > x−2 , x 6= x+1 1 2
I (x+1 ,x ) for x < x+1 , x 6= x−2 0 1

I (x+1 ,x ) for x ≥ x+1 1 1
I (x ,x+2 ) for x < x+1 , x 6= x−1 0 2

I (x ,x+2 ) for x > x+1 1 1
I (x−1 ,x+2 ) 0 2
I (x+1 ,x−2 ) 0 1

I (x , y ) for x 6∈ {x−1 ,x+2 } and y 6∈ {x−1 ,x+2 } 1 c (x , y )

Table 9.3 The probabilities assigned by the belief system to the citizen’s information sets
and the citizen’s strategy in a weak sequential equilibrium of the game in Section 9.3.2 in
which the candidates’ strategies are the ones given in Exercise 9.7. The candidate c (x , y )
is 1 if v (x ,−1)≥ v (y ,−1) and 2 if v (x ,−1)< v (y ,−1).

given in Table 9.3 is a weak sequential equilibrium of the game if u 2(x
−
2 ,−1)≥

u 2(x
+
2 ,−1). This condition is required so that in state −1 candidate 2 does

not benefit from deviating to x+2 . (Other belief systems and strategies for the
citizen are consistent with equilibrium.)

The belief system is weakly consistent with the strategy profile because at the
two information sets of the citizen that are reached with positive probability
given the strategies, I (x−1 ,x−2 ) and I (x+1 ,x+2 ), it assigns probabilities derived
from the prior via Bayes’ rule.

The citizen’s strategy is sequentially rational because at her information sets
I (x−1 ,x−2 ) and I (x+1 ,x+2 ) she is indifferent between the candidates’ positions
and at every other information set she votes for the candidate she prefers,
given the belief system.

The candidates’ strategies are sequentially rational given this belief system
and strategy for the citizen by the following arguments.

If candidate 1 changes her position in state −1 from x−1 to a position other
than x+1 , the citizen votes for candidate 2, so that the outcome does not change.

Similarly, if candidate 2 changes her position in state 1 from x+2 to a position
other than x−2 , the citizen votes for candidate 1, so that the outcome does not
change.
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If candidate 1 changes her position in state 1 from x+1 to a position less than
x+1 other than x−1 , the citizen votes for candidate 2, so that the outcome does
not change. If she changes her position in state 1 from x+1 to a position greater
than x+1 , the citizen votes for her, so that she is worse off given that x+1 ≥ x̂1(1).

Similarly, if candidate 2 changes her position in state −1 from x−2 to a position
greater than x−2 other than x+2 , the citizen votes for candidate 1, so that the
outcome does not change. If she changes her position in state −1 from x−2 to
a position less than x−2 , the citizen votes for her, so that she is worse off given
that x−2 ≤ x̂2(−1).

If candidate 1 deviates in state −1 to the position x+1 then the citizen votes for
her, so that she is worse off, given that x̂1(−1) < −1. If she deviates in state 1
to the position x−1 then the citizen votes for candidate 2, so the outcome does
not change.

If candidate 2 deviates in state −1 to the position x+2 then the citizen votes for
her, so that she is not better off, given that if u 2(x

−
2 ,−1) ≥ u 2(x

+
2 ,−1). If she

deviates in state 1 to the position x−2 then the citizen votes for candidate 1, so
the outcome does not change.

Exercise 9.8
The game satisfies the condition in Proposition 16.9, so a strategy pair is
a subgame perfect equilibrium if and only if it satisfies the one-deviation
property.

First consider deviations by candidate 1 (in periods in which she is the chal-
lenger). For each of the following cases, the table gives the outcomes induced
by candidate 1’s adhering to her strategy and deviating from it in the first
period of the subgame, given candidate 2’s strategy.

Note that the function u 1(x1) +δu 1(2m − x1) is concave in x1, increasing up
to z 1 and decreasing thereafter.

Subgame following history ending with x2 ∈ [m ,2m − z 1]

period 1
period 1+ t

t ≥ 1 odd
period 1+ t
t ≥ 2 even

adheres 2m −x2 x2 2m −x2

deviates to x1 ∈ [x̂1,2m −x2) x2 2m −x2 x2

deviates to x1 ∈ (2m −x2, m ] x1 2m −x1 x1

She prefers 2m − x2 to x2, so the first deviation makes her worse off. The
second deviation makes her worse off because u 1(x )+δu 1(2m −x ) is de-
creasing in x for x > z 1.
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The case x2 = 2m − x ∗1 covers the subgame following the empty history
(the start of the game).

Subgame following history ending with x2 ∈ (2m − z 1, x̂2]

period 1 period 2
period 1+ t
t ≥ 2 even

period 2+ t
t ≥ 2 even

adheres z 1 2m − z 1 z 1 2m − z 1

deviates to x1 ∈ [x̂1,2m −x2) x2 z 1 2m − z 1 z 1

deviates to x1 ∈ [2m −x2, z 1) x1 2m −x1 z 1 2m − z 1

deviates to x1 ∈ (z 1, m ] x1 2m −x1 x1 2m −x1

The first deviation makes her worse off because she prefers both z 1 and
2m − z 1 to x2, the second one does so because she prefers z 1 to x1 and
2m−z 1 to 2m−x1, and the third one does so because u 1(x1)+δu 1(2m −x1)
is decreasing in x1 for x1 ≥ z 1.

Now consider deviations by candidate 2.

Subgame following history ending with x1 ∈ [z 1, m ]

period 1
period 1+ t

t ≥ 1 odd
period 1+ t
t ≥ 2 even

adheres 2m −x1 x1 2m −x1

deviates to x2 ∈ (2m −x1, x̂1] x1 2m −x1 x1

deviates to x2 ∈ [m ,2m −x1) x2 2m −x2 x2

She prefers 2m − x1 to x1, so the first deviation makes her worse off. The
second deviation makes her worse off because x2 < 2m − x1 < z 2 and
u 2(x )+δu 2(2m −x ) is increasing in x for x < z 2.

Subgame following history ending with x1 ∈ [2m − z 2, z 1)

period 1 period 2
period 1+ t
t ≥ 2 even

period 2+ t
t ≥ 2 even

adheres 2m −x1 z 1 2m − z 1 z 1

deviates to x2 ∈ (2m −x1, x̂2] x1 2m −x1 z 1 2m − z 1

deviates to x2 ∈ (2m − z 1,2m −x1) x2 z 1 2m − z 1 z 1

deviates to x2 ∈ [m ,2m − z 1] x2 2m −x2 x2 2m −x2

The first deviation makes her worse off because she prefers both 2m −x1

and z 1 to x1, the second one does so because she prefers 2m − x1 to x2

(given x2 < 2m − x1 ≤ z 2), and the third one does so because she prefers
2m −x1 to x2 and u 2(x )+δu 2(2m −x ) is increasing in x for x < z 2.

Subgame following history ending with x1 ∈ [x̂1,2m − z 2)
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period 1 period 2
period 1+ t
t ≥ 2 even

period 2+ t
t ≥ 2 even

adheres z 2 z 1 2m − z 1 z 1

deviates to x2 ∈ (2m −x1, x̂2] x1 z 2 z 1 2m − z 1

deviates to x2 ∈ (z 2,2m −x1] x2 z 1 2m − z 1 z 1

deviates to x2 ∈ [2m − z 1, z 2) x2 z 1 2m − z 1 z 1

deviates to x2 ∈ [m ,2m − z 1) x2 2m −x2 x2 2m −x2

The first deviation makes her worse off because she prefers z 2, z 1, and
2m − z 1 to x1, the second and third ones do so because she prefers z 2 to
x2, and the fourth one does so because she prefers z 2 to x2 and u 2(x ) +
δu 2(2m −x ) is increasing in x for x < z 2.
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In the models in the previous two chapters, the number of candidates is fixed,
equal to two. In this chapter I present models in which each individual from a
given set decides whether to become a candidate; the number of candidates is
determined as part of an equilibrium.

Synopsis

Section 10.1 presents a straightforward extension to many candidates of an elec-
toral competition game with a continuum of citizens and two office-motivated
candidates. There are three or more office-seekers rather than two, each of whom
has the option of running as a candidate, and each office-seeker prefers to stay
out of the competition than to enter and lose. I argue that for almost any distri-
bution of the citizens’ favorite positions, the resulting model has no Nash equi-
librium, so that it is not a useful vehicle to study multicandidate electoral com-
petition.

In this model, when a set S of two or more candidates choose the same po-
sition, the votes of the citizens who prefer that position to the position of every
other candidate are split equally among the members of S. Section 10.2 explores
a variant of the model in which the candidate for whom each citizen votes is
specified as part of an equilibrium. (That is, voting is “strategic”.) The model is
an extensive game in which the candidates first simultaneously choose positions
and then the citizens simultaneously cast their votes. Proposition 10.1 shows that
in every subgame perfect equilibrium in which each citizen’s vote is weakly un-
dominated, the position chosen by every office-seeker who becomes a candidate
is the median m of the citizens’ favorite positions. If one of these candidates de-
viates to a position x different from m , all the citizens who prefer m to x vote for

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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one of the remaining candidates, who consequently wins outright. In the model
in Section 10.1, such a deviation splits the votes of the citizens who prefer m to x
among the candidates remaining at m , but in this model the deviation can lead
these citizens to rally around one of these remaining candidates.

Section 10.3 presents a variant of the model in Section 10.1 in which the
office-seekers move sequentially rather than simultaneously. Proposition 10.4
shows that when there are three office-seekers, in the unique subgame perfect
equilibrium the first one to move chooses the median m of the citizens’ favorite
positions, the second one stays out of the competition, and the third one, like
the first one, chooses m . The reason the second office-seeker to move stays out
is that for every position x2 at which she enters, there is a position x3 at which the
third office-seeker can win outright. If x2 = m , then a position x3 close to m is
winning—the votes of the citizens who prefer m to x3 are split between the first
two entrants—and if x2 differs from m then a position x3 closer to m on the other
side is winning. For the case of an arbitrary number n of office-seekers, you may
find yourself conjecturing that in the unique subgame perfect equilibrium the
first office-seeker enters at m , the next n − 2 stay out, and the last one enters at
m . The veracity of this conjecture is not known.

The model in Section 10.4 differs more significantly from the one in Sec-
tion 10.1. There is no set of candidates distinct from the set of citizens. Rather,
any citizen can choose to become a candidate. A citizen who does so imple-
ments her favorite position if she is elected; she cannot commit to a different
position. Each citizen cares about the position implemented by the winner of
the election. In addition, if she becomes a candidate she incurs a cost and, if she
wins, she receives a benefit. I present two versions of the model, one in which
voting is modeled as sincere (each citizen votes for the candidate whose favorite
position she likes best) and one in which it is modeled as strategic. Both models
have various types of equilibria that differ qualitatively from the equilibria of the
models I have discussed previously. In one type of equilibrium, the candidates
are two citizens with favorite positions symmetric about the median, m , of all
citizens’ favorite positions (Proposition 10.7). In another type of equilibrium, a
single citizen becomes a candidate; her favorite position is either m or close to
m (Proposition 10.5). Depending on the benefit and cost of running as a candi-
date, the model with strategic voting also has equilibria in which many citizens
with favorite position m enter as candidates, for much the same reason that the
model in Section 10.2 has such equilibria (Proposition 10.6c). And for certain
ranges of the parameter values, both models have equilibria in which three or
more citizens run as candidates (Exercises 10.7 and 10.8).
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10.1 Simultaneous entry with sincere voting

I begin by arguing that a straightforward extension to many candidates of an
electoral competition game with a continuum of citizens and two office-motivated
candidates is not a useful vehicle for exploring multicandidate elections because
for most distributions of the citizens’ favorite positions it has no Nash equilib-
rium.

Suppose that each of many office-seekers chooses whether to run as a can-
didate and, if she runs, the position to take. As in the two-candidate model, as-
sume that the set of possible positions is the real line and the distribution F of
the citizens’ favorite positions is nonatomic, with support an interval. I refer to
an office-seeker who chooses a position as a candidate. Each citizen votes for a
candidate whose position is closest to her favorite position; if a position is oc-
cupied by several candidates, then these candidates share equally the votes for
that position. Each office-seeker is motivated by the possibility of winning; she
prefers to stay out of the election than to enter and lose, to win outright than to
tie for first place, and to tie for first place with one other candidate than to stay
out of the election.

Suppose that the number of office-seekers is at least three. Any Nash equilib-
rium has the following properties.

1. At least two office-seekers become candidates. If none do so, any one of them
can enter and win outright, and if one does so, another one can enter at the
same position and tie for first place.

2. All candidates tie. If not, one of them loses and is better off withdrawing.

3. At most two office-seekers choose each occupied position. If more than two
choose the same position then they all tie for first place, by property 2, and
any one of them can deviate slightly, obtaining at least almost half the votes
for the position and hence winning outright.

4. Exactly two office-seekers choose the smallest occupied position. By prop-
erty 3, the only other possibility is that one office-seeker chooses this posi-
tion, in which case she can increase her vote share and hence win rather than
tie by increasing her position slightly. Similarly exactly two office-seekers
choose the largest occupied position.

5. The number of candidates is at least four. This conclusion follows from prop-
erty 4.

6. For any position y chosen by two office-seekers, the fraction of votes the po-
sition attracts from citizens with favorite positions less than y is equal to the
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(a) If one candidate chooses y2 then the
mass of voters she attracts is the sum of
the areas shaded dark and light pink.

Density of F

1

r

1

r

1

r

1

r

1

r

1

r

y1 y2 y3

(b) An example of a distribution F for
which there is an equilibrium with six can-
didates.

Figure 10.1 The conditions required for an equilibrium with r candidates in a model
with simultaneous entry and sincere voting. At most two office-seekers choose each
occupied position, and exactly two choose the leftmost occupied position, y1.

fraction it attracts from citizens with favorite positions greater than y , and
the common fraction is 1/r , where r is the total number of candidates. By
property 2, the candidates at y tie for first place. If the fractions differ then
either of the candidates with position y can deviate slightly in the direction
of the larger fraction and win outright rather than tying.

7. Exactly two office-seekers choose each occupied position. Denote by y1 the
smallest occupied position. By properties 4 and 6, we have y1 = F−1(1/r ), as
in Figure 10.1a. The value y2 of the next smallest occupied position is de-
termined by the condition that y1 attracts the fraction 2/r of the votes: the
midpoint of [y1, y2]must be F−1(2/r ). By property 3, at most two candidates
occupy y2. Suppose that one does so. Then she attracts the votes of all cit-
izens with favorite positions between the midpoint of [y1, y2] and the mid-
point of [y2, y3], the mass of which is the sum of the areas shaded dark and
light pink in the figure. But if she deviates to a position y1+ ε for some small
number ε > 0, she attracts the votes of all citizens with favorite positions be-
tween y1+ 1

2ε and the midpoint of [y1+ ε, y3], the mass of which exceeds the
area shaded green, and hence exceeds 1/r , so that the configuration is not an
equilibrium. Thus two candidates occupy y2. Repeating the argument leads
to the conclusion that two candidates occupy every occupied position.

Properties 6 and 7 applied to y2 imply that the area shaded dark pink in Fig-
ure 10.1a is 1/r . That is, y2 = F−1(2/r ) + (F−1(2/r ) − F−1(1/r )) = F−1(3/r ), or
F−1(2/r )− F−1(1/r ) = F−1(3/r )− F−1(2/r ). Applying the same argument to each
occupied position, we conclude that an equilibrium with r candidates exists only
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if
F−1((k +1)/r )− F−1(k/r ) = F−1((k +2)/r )− F−1((k +1)/r )

for every odd number k with 1≤ k ≤ r −3.
(10.1)

An example of a distribution F for which these conditions are satisfied for r = 6 is
given in Figure 10.1b. (The conditions are not sufficient for an equilibrium, but
the configuration of positions shown in this figure is an equilibrium.)

If you try to construct a distribution that satisfies (10.1) for some integer r ≥ 4,
I think you will conclude that such distributions are few and far between. An
implication of such a conclusion is that for most distributions the game has no
Nash equilibrium.

A variant of the game in which the winner is determined by plurality rule
with a runoff does have Nash equilibria, which you are invited to study in the
next exercise.

Exercise 10.1: Nash equilibria of electoral competition game under
plurality rule with runoff

Consider a variant of the game studied in this section in which the win-
ner is determined by plurality rule with a runoff. In this system, there may
be one or two rounds of voting. Assume that in each round, each citizen
votes for the candidate whose position she likes best. If one candidate ob-
tains the votes of more than half the citizens in the first round, she wins
and there is no second round. Otherwise, the two candidates who ob-
tain the most votes in the first round compete in a second round; the one
who obtains the most votes in the second round wins. All ties are broken
equi-probably. Assume that each candidate’s payoff is her probability of
winning. (Note that each candidate chooses a single position; she is not
allowed to change her position between the rounds of voting.)

Denote the number of candidates by n and the median of the citizens’
favorite positions, which is assumed to be unique, by m . Are there values
of k such that the game has a Nash equilibrium in which k candidates
choose the position m and the remainder do not enter? If n ≥ 4, are there
values of k andδ> 0 such that the game has a Nash equilibrium in which k
candidates choose the position m −δ, k choose m +δ, and the remainder
do not enter?

10.2 Simultaneous entry with strategic voting

The model in the previous section assumes that if two or more candidates oc-
cupy the same position, the votes for that position are split equally among them.
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Each citizen is indifferent among candidates with the same position, so the opti-
mality of the action of a citizen who prefers that position to every other occupied
position requires only that she vote for one of these candidates. The conclu-
sion that the candidates share the votes for the position equally follows, at least
approximately, from the additional assumptions that the number of citizens is
large and each citizen chooses the candidate for whom she votes randomly from
those among whom she is indifferent, independently of all the other citizens. An
alternative formulation, explored in this section, assumes that the candidate for
whom each citizen votes is determined as part of the equilibrium. The electoral
competition is modeled as a two-stage game, in which first each office-seeker
chooses whether to become a candidate, and if so the position to take, and then
each citizen selects the candidate for whom to vote. Each candidate who receives
the highest number of votes wins with the same probability. In an equilibrium,
the action of each office-seeker is optimal for her given the citizens’ strategies,
and the vote of each citizen is optimal for her given the candidates’ positions.

The set of possible positions is the set of real numbers. There are a finite
number of office-seekers and a finite number of citizens. Each office-seeker in-
curs a cost if she becomes a candidate and receives a benefit if she wins. Each
citizen receives a payoff that depends on the position of the candidate who wins;
her payoff function over positions is single-peaked. If no office-seeker becomes
a candidate, each citizen gets a fixed negative payoff.

Definition 10.1: Electoral competition game with office-motivated
candidates and strategic voting

An electoral competition game with office-motivated candidates and strate-
gic voting 〈n , h, (u 1, . . . , u h),b , c , L〉, where

• n ≥ 2 is an integer (the number of office-seekers)

• h ≥ 3 is an odd integer (the number of citizens)

• u i :R→R− for i = 1, . . . , h is a single-peaked function (citizen i ’s payoff
function over positions)

• b > 0 (each candidate’s benefit from winning)

• c > 0 (each office-seeker’s cost of running as a candidate)

• L ∈R (each citizen’s loss if no office-seeker runs as a candidate)

is an extensive game with perfect information and simultaneous moves
with the following components.
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Players
The set N ∪ I , where N = {1, . . . , n} (office-seekers) and I = {1, . . . , h}
(citizens).

Terminal histories
The set of sequences (x , v ), where x = (x1, . . . ,xn ) and v = (v1, . . . , vh)
with x j ∈ R∪ {Out} for j = 1, . . . , n and vi ∈ {j ∈ N : x j ∈ R} ∪ {Abstain}
for i = 1, . . . , h. (The value of x j for x j ∈ R is j ’s position; vi ∈ N is the
candidate for whom i votes.)

Player function
The function P with P(∅) =N (every office-seeker moves at the start of
the game) and P(x1, . . . , xn ) = I for all (x1, . . . ,xn ) ∈ (R ∪ {Out})n (every
citizen moves after the office-seekers have moved).

Preferences
For any terminal history (x , v ), define W (x , v ) to be the set of winning
candidates:

W (x , v ) = {j ∈N : x j ∈R and

|{i ∈ I : vi = j }| ≥ |{i ∈ I : vi = j ′}| for all j ′ 6∈N \ {j }}.

The preference relation of each office-seeker j ∈N over terminal histo-
ries (x , v ) is represented by the payoff function







0 if x j =Out
−c if x j ∈R and j 6∈W (x , v )
b/|W (x , v )| − c if x j ∈R and j ∈W (x , v ).

The preference relation of each citizen i ∈ I over terminal histories
(x , v ) is represented by the payoff function

¨
−L if {j ∈N : x j ∈R}=∅∑

j∈W (x ,v )u i (x j )/|W (x , v )| if {j ∈N : x j ∈R} 6=∅.

In this game, a strategy for each office-seeker is a position or Out, and a strat-
egy for a citizen is a function that assigns to each possible profile of actions for
the office-seekers either one of the candidates (an office-seeker whose action is a
position) or Abstain. I argue that if the citizens’ payoff functions are strictly con-
cave and b > c then in every subgame perfect equilibrium in which the citizens’
actions in every subgame are weakly undominated, the number k of candidates



334 Chapter 10. Electoral competition: endogenous candidates

satisfies 1≤ k ≤ b/c , every candidate’s position is the median of the citizens’ fa-
vorite positions, and the outcome of the election is a tie among the candidates.
Conversely, for any number k ≤ n with 1≤ k ≤b/c the game has a subgame per-
fect equilibrium in which k office-seekers become candidates, each candidate
chooses the median of the citizens’ favorite positions, the candidates tie for first
place, and the citizens’ actions in every subgame are undominated.

In these equilibria, no candidate can benefit from deviating to a slightly dif-
ferent position because the citizens’ strategies specify that after such a history,
every citizen who prefers the median to the deviator’s position votes for the same
candidate. That is, after a history in which the position of every candidate but
one is the median of the citizens’ favorite position, the citizens who prefer the
median to the position of the remaining candidate coordinate their votes on one
of the candidates whose position is the median. By contrast, the model in the
previous section assumes that such a configuration of positions leads these cit-
izens to divide their votes equally among the candidates whose position is the
median, so that the candidate whose position differs from the median wins if
her position is close enough to the median.

The condition k ≤ b/c is required because for a strategy profile in which
k office-seekers become candidates and choose the median of the citizens’ fa-
vorite positions, the payoff of each candidate is b/k − c , whereas the payoff of a
candidate who choose Out is 0.

The citizens’ behavior in some of the equilibria with k = 1 is plausible: ev-
ery citizen votes for the single candidate; if an office-seeker deviates to become a
candidate at the same position, no citizen changes her vote (she has no positive
incentive to do so), whereas if an office-seeker deviates to become a candidate
at a different position, each citizen votes for the candidate whose position she
prefers. The citizens’ behavior in equilibria with k ≥ 2 is less plausible: the cit-
izens’ votes are split equally among the candidates, but if an office-seeker devi-
ates to become a candidate at a different position, the citizens rally around one
of candidates at the median. How such coordination could occur is unclear.

If the citizens’ payoff functions are strictly concave, why does the game have
no equilibria in which the candidates’ positions are dispersed? Here are the key
points of the argument.

• In an equilibrium, all candidates tie, otherwise one of them loses and can
increase her payoff by deviating to Out. Consequently every citizen’s vote is
pivotal: any change in any citizen’s vote changes the set of winners.

• Thus by Lemma 4.1 each citizen either votes for a candidate whose posi-
tion she likes best among all the candidates’ positions or abstains, and if she
abstains, she is indifferent among all the candidates’ positions.
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• The strict concavity of the citizens’ payoff functions means that by the argu-
ment in the proof of Proposition 4.3a at most two positions are occupied by
candidates.

• In any equilibrium with two occupied positions, say y and y ′, only one can-
didate occupies each position: if j and j ′ both occupy y , a citizen who is
voting for j can, by switching her vote to j ′, change the outcome from a tie
among the candidates to an outright win for j ′, an outcome she prefers un-
less she is indifferent between y and y ′. If all citizens who vote for a candi-
date with the position y are indifferent between y and y ′ then they all prefer
positions between y and y ′ to both y and y ′, and any candidate who deviates
from y or y ′ to a position in the interval (y , y ′) attracts all their votes and thus
wins.

• If two positions are occupied, each by one candidate, each citizen who is not
indifferent between the positions must vote for the position she prefers and
the candidates must tie. But then either candidate can deviate to the median
of the citizens’ favorite positions and win, because in an equilibrium of the
resulting subgame each citizen votes for the candidate whose position she
prefers, and a majority prefer the median to any other position.

Proposition 10.1: SPE of electoral competition game with office-
motivated candidates and strategic voting

Let 〈n , h, (u 1, . . . , u h),b , c , L〉 be an electoral competition game with office-
motivated candidates and strategic voting in which b > c and each func-
tion u i is strictly concave and has a maximizer (i ’s favorite position). Then
(x1, . . . , xn ) is the list of the office-seekers’ strategies in a subgame perfect
equilibrium of 〈n , h, (u 1, . . . , u h),b , c , L〉 in which every citizen’s action in
each subgame is weakly undominated if and only if for an integer k ≤ n
with 1 ≤ k ≤ b/c the number of candidates (|{j ∈ N : x j ∈ R}|) is k and
the position x j of every candidate j is the median of the citizens’ favorite
positions.

In an equilibrium, all candidates occupy the same position, so that every cit-
izen is indifferent between voting for any of them and abstaining. For equilib-
rium, the candidates must tie, so that the same number of citizens must vote for
each of them. If the number of citizens is not divisible by the number of candi-
dates, the number of votes for each candidate cannot be the same unless some
citizens abstain. One possibility is that they all abstain; I use this equilibrium in
the proof because it is easy to specify.
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Proof

I first show the “if” direction. Let k ≤ n be an integer with 1 ≤ k ≤ b/c , let
K be a set of office-seekers with k members, and denote the median of the
citizens’ favorite positions by m (which is unique, because the number of
citizens is odd).

Consider a strategy profile in which the strategy x j of each office-
seeker j ∈ K is m , the strategy of each remaining office-seeker is Out, and
the citizens’ actions after each history are given as follows, where j ∗ ∈ K
and, if k ≥ 2, γ(j )∈ K \ {j } for each j ∈ K .

• History x . Every citizen chooses Abstain.

• History that differs from x only in that x j = Out for some j ∈ K . If
k = 1, each citizen choose Abstain, her only option. If k ≥ 2, every
citizen votes for γ(j ).

• History that differs from x only in that x j ∈ R with x j 6= m for some
j ∈ K . If k = 1, each citizen votes for j . If k ≥ 2, every citizen who
prefers m to x j votes for γ(j ) and every remaining citizen votes for j .

• History that differs from x only in that x j =m for some j 6∈ K . Every
citizen votes for j ∗.

• History that differs from x only in that x j ∈Rwith x j 6=m for some j 6∈
K . Every citizen who prefers m to x j votes for j ∗ and every remaining
citizen votes for j .

• History that differs from x in the actions of two or more office-seekers.
By Proposition 4.2 the subgame that follows such a history has a Nash
equilibrium in which each citizen’s action is weakly undominated. Se-
lect one of these equilibria arbitrarily.

I claim that this strategy profile is a subgame perfect equilibrium in
which every citizen’s action in every subgame is weakly undominated.

In each case, the citizens’ actions in each subgame constitute a Nash
equilibrium. In the first, second, and fourth cases, the outcome is m re-
gardless of the citizens’ actions, so no citizen’s action is weakly dominated.
In the third and fifth cases, every citizen votes for a candidate whose po-
sition she likes best, so that her action is weakly undominated (Proposi-
tion 3.1).
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To complete the proof, I argue that for these strategies of the citizens,
no office-seeker can increase her payoff by deviating. If all office-seekers
follow their strategies, the k who become candidates tie, each receiving the
payoff b/k − c , while each remaining office-seeker receives the payoff 0. If
j ∈ K deviates to Out, then her payoff changes from b/k − c to 0, so she is
not better off. If j ∈ K deviates to a position z 6=m , then if k = 1 she con-
tinues to be the winner, and is not better off, and if k ≥ 2 then all citizens
who prefer m to z , a majority, vote for γ(j ), one of j ’s ex-companions at m ,
so that she loses and her payoff changes to −c . If j 6∈ K deviates to enter
at m , then all citizens vote for the same member j ∗ of K , so that j loses
and her payoff changes from 0 to −c . Finally, if j 6∈ K deviates to enter at
a position z 6=m , all citizens who prefer m to z , a majority, vote for j ∗, so
that j loses and her payoff changes to −c .

I now show the “only if” direction. Let (x , v ) be the terminal history
generated by a subgame perfect equilibrium in which every citizen’s action
in every subgame is weakly undominated. Denote by I the set of citizens
and by C (x ) the set of office-seekers who choose to become candidates for
this terminal history: C (x ) = {j ∈N : x j ∈R}.

Step 1 At least one office-seeker becomes a candidate (|C (x )| ≥ 1).

Proof. If no office-seeker becomes a candidate, each office-seeker’s payoff
is 0. Any office-seeker can increase her payoff by deviating to run as a can-
didate at any position, in which case she wins (regardless of the citizens’
strategies) and obtains the payoff b − c > 0. Ã

Step 2 Every candidate receives the same number of votes.

Proof. If not, then at least one candidate loses, obtaining the payoff −c .
Such a candidate can increase her payoff to 0 by deviating to Out. Ã

Step 3 In the subgame following x , a citizen who abstains is indifferent
among all the candidates. The payoff of a citizen who votes for a candidate
is at least her payoff from any of the other candidates’ positions.

Proof. The subgame following x is the plurality rule voting game 〈I ,C (x ),
(Vi )i∈I 〉 where for each i ∈ I the function Vi : C (x )→R is defined by Vi (j ) =
u i (x j ) for all j ∈C (x ). Given that by Step 2 every candidate is a winner, the
result follows from Lemma 4.1 applied to this game. Ã

Step 4 The number of distinct values of x j for j ∈C (x ) is at most two.
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Proof. By Step 2, the set of winners of the voting subgame following x is
the set C (x ) of candidates. The result follows from an argument like that in
the proof of Proposition 4.3a. (That result does not apply directly because
it assumes that the alternatives are distinct. Here, several candidates may
choose the same position.) Ã

Step 5 If two positions are occupied in x , exactly one candidate occupies
each position.

Proof. Suppose that the positions y and y ′ are occupied in x and two or
more candidates occupy y . By Step 2 every candidate gets the same num-
ber of votes and hence is one of the winning candidates. Let i be a citizen
who votes for a candidate at y . By Step 3, she either prefers y to y ′ or is
indifferent between them.

If i prefers y to y ′ then her deviating to vote for another candidate at
y induces the outcome in which that candidate wins outright. She prefers
y to the outcome of (x , v ), which includes y ′ with positive probability, so
(x , v ) is not a subgame perfect equilibrium.

Thus every citizen who votes for a candidate at y is indifferent between
y and y ′. By Step 3, every citizen who abstains is also indifferent between
these positions. Now, by the strict concavity of each citizen’s payoff func-
tion, positions between y and y ′ are better than y for every citizen who is
indifferent between y and y ′. Suppose that one of the candidates whose
position is y deviates to a position y ′′ between y and y ′.

y y ′′ y ′

u i (z )

z →

By Proposition 4.1a, voting for the candidate at y ′′ is the only weakly un-
dominated action of any citizen who is indifferent between y and y ′, so
in the subgame following the candidate’s deviation, every citizen who was
voting for a candidate at y or abstaining votes for the candidate at y ′′. If
one candidate occupies y ′, the candidate at y ′′ consequently wins outright.
If more than one candidate occupies y ′, then by the same argument as for
y , every citizen who votes for a candidate at y ′ is indifferent between y and
y ′, and hence, like the citizens who were voting for a candidate at y , votes
for the candidate at y ′′, so that in this case also the candidate at y ′′ wins
outright. Hence (x , v ) is not a subgame perfect equilibrium. Ã
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Step 6 The position of every candidate is the same, equal to the median m
of the citizens’ favorite positions.

Proof. By Steps 4 and 5, the only other possibility is that the number of
candidates is 2 and they choose different positions. In this case, by Step 2
the candidates tie and by Step 3 each citizen either votes for her favorite
candidate or, if she is indifferent between the candidates, abstains. Thus
neither candidate’s position is m . Suppose that one of the candidates, say
j , deviates to m . Then the only weakly undominated action of every citizen
who prefers m to the position of the other candidate is to vote for j , so that
j wins outright. Thus the game has no subgame perfect equilibrium in
which two office-seekers become candidates.

If the position of every candidate is x 6= m , a candidate who deviates
to m wins outright because by Proposition 4.1a the only weakly undomi-
nated action of every citizen who prefers m to x is to vote for her, and these
citizens constitute a majority. Ã

Step 7 The number of candidates is at most b /c .

Proof. If the number of candidates exceeds b/c then each candidate’s pay-
off is negative, so she is better off deviating to Out. Ã

Steps 1, 6, and 7 imply that in any subgame perfect equilibrium in which
every citizen’s action in every subgame is weakly undominated there is at
least one and at most b/c candidates, and each candidate’s position is m .

Exercise 10.2: Policy-motivated candidates and strategic voting

Consider a game that differs from an electoral competition game with
office-motivated candidates and strategic voting 〈n , h, (u 1, . . . , u h),b , c , L〉
only in the payoff functions of the office-seekers, who value both policies
and winning. Specifically, the payoff of each office-seeker j to the strat-
egy profile (x , v ) is −D < 0 if no office-seeker becomes a candidate and
otherwise is her payoff in the game with office-motivated candidates plus∑

l ∈W (x ,v )Uj (xl )/|W (x , v )|, where Uj : R → R is a single-peaked function.
Study the subgame perfect equilibria of this game in which every citizen’s
action in every subgame is weakly undominated.
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10.3 Sequential entry

In Section 8.1.2 I present a model of electoral competition in which two candi-
dates act sequentially. I now present a model that differs in two main respects.
First, there is an arbitrary finite number of players, rather than two. Second, each
player, referred to as an office-seeker, chooses whether to become a candidate or
to stay out of the election; if she chooses to become a candidate, she selects a po-
sition. The office-seekers move one at a time, and when choosing an action, each
office-seeker observes the actions chosen by her predecessors. In one environ-
ment that the model fits, the opportunity to act arises randomly for each indi-
vidual in a finite set; the individual selected in period i becomes office-seeker i .
The significant assumptions are that each individual gets one opportunity to act,
and when it occurs she knows the actions of the individuals who moved before
her.

As in the model in Section 10.1, the set of possible positions is the real line,
and in the background is a continuum of citizens, whose votes determine the
winning candidate(s). Each citizen has single-peaked preferences and votes for
a candidate whose position is closest to her favorite position; if a position is occu-
pied by several candidates, these candidates share equally the votes for that posi-
tion. The winning candidates are the ones who tie for the most votes. Each can-
didate prefers to tie with k − 1 than with k other candidates, for any k = 2, . . . , n ,
prefers to tie with all the other candidates than to stay out of the competition,
and prefers to stay out of the competition than to lose.

Definition 10.2: Sequential electoral competition game with a
continuum of citizens and office-motivated candidates

A sequential electoral competition game with a continuum of citizens and
office-motivated candidates 〈F, n ,Ä〉, where

• n is a positive integer (the number of office-seekers)

• F is a nonatomic distribution with support an interval of real numbers
(the distribution of the citizens’ favorite positions)

• Ä is a preference profile over (R ∪ {Out})n (the profile of the office-
seekers’ preferences over action profiles)

is the following extensive game with perfect information.

Players
The set N = {1, . . . , n} (of office-seekers).
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Terminal histories
The set of sequences (x1, . . . ,xn )where xi ∈R∪{Out} for each i ∈N .

Player function
The function P given by P(∅) = 1 and P(x1, . . . ,xk ) = k + 1 for k =
1, . . . , n −1 and any history (x1, . . . ,xk ).

Preferences
For each player j and terminal history x , let w j (x ) be the number of
candidates (including j ) with whom j ties for first place, with a value of
0 meaning that j is not one of the candidates tied for first place. The
preference relation Äj of each player j over terminal histories satisfies
x Âj y if any of the following conditions holds:

a. 1≤w j (x )<w j (y ) (tying with fewer candidates is preferred)

b. w j (x ) = n and yj = Out (tying with all the other candidates is pre-
ferred to staying out of the competition)

c. x j = Out and w j (y ) = 0 (staying out of the competition is preferred
to entering and losing).

Proposition 10.2: Existence of SPE of sequential electoral competition
game

Every sequential electoral competition game with a continuum of citizens
and office-motivated candidates has a subgame perfect equilibrium.

Proof

Denote the number of players by n . Each player’s preferences are repre-
sented by a payoff function that takes at most n+2 values (for winning out-
right, tying with k of the other players for k = 1, . . . , n − 1, losing, and stay-
ing out of the competition). Thus the result follows from Proposition 16.8.

If there are two office-seekers then the game has a unique subgame perfect
equilibrium outcome, in which both office-seekers enter at the median of the
distribution of the citizens’ favorite positions. Thus the outcome is the same as
the outcome of the unique Nash equilibrium of the game in which the office-
seekers move simultaneously (Proposition 8.4). (This result is closely related to
Proposition 8.3, given Proposition 1.4.)
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Proposition 10.3: SPE of sequential electoral competition game with
two office-seekers

Every subgame perfect equilibrium of a sequential electoral competition
game with a continuum of citizens and two office-motivated candidates
〈F,2,Ä〉 generates the terminal history in which each office-seeker is a
candidate with position equal to the median of F .

Proof

Denote the median of F by m . If player 1 chooses m then player 2’s only
optimal response is m , because she loses if she enters at any other posi-
tion. If player 1 chooses a position other than m , then player 2 wins out-
right by entering at m . Thus all of player 2’s optimal actions lead her to
win outright, and hence player 1 to lose. So player 1’s only optimal action
in a subgame perfect equilibrium is to enter at m , leading player 2 to do
the same.

Note that although the two-player game has only one subgame perfect equi-
librium outcome, it has many subgame perfect equilibria. In the subgame fol-
lowing player 1’s entry at any position x different from m , any position closer to
m than x results in player 2’s winning, and hence is an optimal action for her.
Thus any strategy pair in which player 1 chooses m and player 2’s strategy s2 sat-
isfies s2(m ) = m and |s2(x )−m | < |m − x | for all x 6= m is a subgame perfect
equilibrium.

Exercise 10.3: Sequential electoral competition with two policy-
motivated candidates

Consider a variant of a sequential electoral competition game with a con-
tinuum of citizens and office-motivated candidates in which the players
are policy-motivated. Specifically, for each player i there is a single-peaked
function Ui :R→R, and i ’s payoff to a terminal history in which the posi-
tions x 1, . . . , x l are tied for first place is the expected value of Ui when each
x j occurs with the same probability, 1/l . Assume that if no player enters
then the outcome is an arbitrary position x0. Denote by m the median
of the distribution F of the citizens’ favorite positions. Assume that the fa-
vorite position of at least one player is less than m and the favorite position
of at least one player is greater than m . Consider the game for n = 2. Some
subgames of this game do not have (exact) subgame perfect equilibria. For



10.3 Sequential entry 343

any small ε > 0, find a strategy profile for which player 1’s strategy is op-
timal and player 2 cannot increase her payoff by more than ε by changing
her action after any history.

For a game with three office-seekers, the equilibrium outcome is more inter-
esting: the first and last player to move enter at the median of the distribution
of the citizens’ favorite positions and the second player stays out. Thus the out-
come is consistent with a much-studied claim, often called “Duverger’s Law”,
that plurality rule tends to lead to there being two candidates (or two parties if
you are willing to equate a candidate in the model with a political party).

Proposition 10.4: SPE of sequential electoral competition game with
three office-seekers

Every subgame perfect equilibrium of a sequential electoral competition
game with a continuum of citizens and three office-motivated candidates
〈F,3,Ä〉 generates the terminal history in which the first and third office-
seekers become candidates at the median of F and the second office-
seeker chooses Out.

Proof

Denote the median of F by m .
First consider the subgame following player 1’s entry at m . In this sub-

game, for every position of player 2 there is a position of player 3 such that
player 3 wins outright:

• if player 2 enters at m , player 3 wins outright at any position suffi-
ciently close to m

• if player 2 enters at a position different from m , player 3 wins at a
position closer to m on the opposite side of m .

So in every subgame perfect equilibrium of the subgame, player 2 stays out
and player 3 enters at m , and hence player 1 ties for first place.

Now consider the subgame following player 1’s entry at a position dif-
ferent from m .

• The subgame has no subgame perfect equilibrium in which player 1
wins outright. In such an equilibrium players 2 and 3 must stay out
(because entering and losing is worse than staying out), in which case
player 3 can deviate to entering at m and win outright.
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• The subgame has no subgame perfect equilibrium in which player 1
ties only with player 3. In such an equilibrium, the positions of play-
ers 1 and 3 are either the same, in which case player 3 can deviate to m
and win, or symmetric around m , in which case player 3 can deviate
slightly closer to m and win.

• The subgame has no subgame perfect equilibrium in which player 1
ties only with player 2. In such an equilibrium, the positions of play-
ers 1 and 2 are either the same, in which case player 3 can enter at
m and win outright, or symmetric about m . If they are symmetric
about m , with say x1 = m − δ and x2 = m + δ, then player 3 loses if
she enters at any position that is at most x1 or at least x2, and δ has to
be small enough that player 3 does not win or tie with the other two
candidates if she enters at any point in (x1,x2). (Such values of δ ex-
ist.) Now suppose that player 2 deviates to x2− ε for some small ε > 0.
Then player 3 still cannot win or tie at any position, and player 2 wins
outright if player 3 does not enter, so that player 1 loses.

• The subgame has no subgame perfect equilibrium in which all three
players tie. In such an equilibrium either every player’s position is the
same, in which case player 3 can deviate slightly and win outright, or
at least one player’s position is occupied only by her, in which case she
can deviate to a position slightly closer to the other players and win
outright.

We conclude that in every subgame perfect equilibrium of the subgame
player 1 loses.

Player 1 prefers to tie with one other player than to lose or to stay out of
the competition, so in every subgame perfect equilibrium of game, player 1
enters at m , player 2 stays out, and player 3 enters at m .

Exercise 10.4: Sequential electoral competition with three policy-
motivated candidates

Consider the variant with policy-motivated candidates of a sequential
electoral competition game with a continuum of citizens and office-
motivated candidates in Exercise 10.3 in which there are three players. De-
note the favorite position of player i by x̂ i and assume that x̂1 <m < x̂2 =
x̂3 and F (x̂2) < 2

3 . What are the subgame perfect equilibrium outcomes of
the game?
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What if the number of office-seekers exceeds three? Based on partial analy-
ses of games with four or more players in collaboration with Amoz Kats, I conjec-
tured in the mid-1980s that for any finite number n of players the game 〈F, n ,Ä〉
has a unique subgame perfect equilibrium outcome, in which the first player en-
ters at the median of the citizens’ favorite positions, the next n−2 players choose
Out, and the last player joins the first one at the median. This conjecture remains
unproved and uncontradicted.

A variant of the model has a unique subgame perfect equilibrium for any
number of office-seekers. Suppose that if two or more candidates are tied for first
place, the one who entered first wins outright, rather than each of the tied can-
didates winning with the same probability. Then given the assumption that each
candidate prefers to stay out than to enter and lose, in any equilibrium at most
one office-seeker enters. The following exercise asks you to determine which one
does so.

Exercise 10.5: Sequential electoral competition game with priority for
early entrants

Consider a variant of a sequential electoral competition game with a con-
tinuum of citizens and office-motivated candidates in which each player’s
preferences are represented by a function that assigns 1 to every termi-
nal history in which she is the player with the smallest index among those
tied for the highest number of votes, −1 to every other terminal history in
which she enters, and 0 to every terminal history in which she chooses Out.
Find the subgame perfect equilibrium outcome (outcomes?) of this game.

The next exercise invites you to study the subgame perfect equilibrium out-
comes of a game with three office-seekers in which the winner is determined by
plurality rule with a runoff, rather than ordinary plurality rule.

Exercise 10.6: Sequential electoral competition with three office-
motivated candidates and a runoff

Consider the variant of a sequential electoral competition game with a
continuum of citizens and three office-motivated candidates in which the
winner of the election is determined by plurality rule with a runoff, as de-
scribed in Exercise 10.1. Show that in every subgame perfect equilibrium
of the game all three players enter as candidates.
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10.4 Citizen-candidates

The models I present in this section differ in two main respects from those in the
previous sections. First, each office-seeker chooses only whether to run for elec-
tion; she does not choose a position. If she runs and is elected, she implements
her favorite policy, which the voters know. One motivation for this assumption is
that each office-seeker is self-interested and there is no mechanism by which she
can commit to a policy different from her favorite policy. Second, office-seekers
care both about policy and about winning.

The set of office-seekers is assumed to coincide with the set of citizens: any
citizen can run as a candidate. Each citizen first chooses whether to run as a
candidate and then votes for a candidate (one of the citizens who chose to run).
The candidate receiving the most votes wins and implements her favorite policy.
If several candidates are tied for the most votes, each of them is selected with the
same probability to be the winner.

Regarding the citizens’ voting behavior, one option is to assume that each cit-
izen votes (“sincerely”) for the candidate whose position she likes best, as in Sec-
tion 10.1. The resulting model is a strategic game in which each citizen chooses
only whether to run as a candidate. Another option is to assume that voting is
“strategic”. If the citizens are perfectly informed, the resulting model is an exten-
sive game with perfect information and simultaneous moves in which each citi-
zen first chooses whether to run as a candidate, then chooses the candidate for
whom to vote, as for the model in Section 10.2. Whether the model with sincere
voting or the one with strategic voting under perfect information better captures
the reality of imperfectly informed citizens who choose how to cast their votes is
unclear.

In both models, the set of positions is the set of real numbers and the set of
players is the set N = {1, . . . , n} of citizens. The preferences of each citizen i ∈
N regarding lotteries over positions are represented by the expected value of a
Bernoulli payoff function u i . I assume that the payoff u i (z ) of each citizen i for
any position z depends only on the distance between z and i ’s favorite position,
and the form of the relationship is the same for all individuals. Specifically, for
some decreasing function u :R+→R− with u (0) = 0, for each citizen i the func-
tion u i : R→ R− is defined by u i (z ) = u (|x̂ i − z |) for all z , where x̂ i is i ’s favorite
position, as illustrated in Figure 10.2.

A candidate is one of the winners if she obtains at least as many votes as every
other candidate. In the model with sincere voting, a strategic game, each citizen
votes for a candidate whose position is closest to her favorite position. If the po-
sitions of several candidates are equally close, the citizen’s vote is divided equally
among those candidates. (For simplicity, I allow fractional votes. You can alter-
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0

u (z )

z →
x̂ i

u i (z ) = u (|x̂ i − z |)

z →

Figure 10.2 The Bernoulli payoff function of citizen i over positions in the citizen-can-
didate models in Section 10.4.

natively imagine that a large number of citizens have any given favorite position
z , and their votes are divided equally among the candidates whose positions are
closest to z . This alternative model is silent about how such coordination could
be achieved.) The actions available to each citizen are Run (become a candidate)
and Out. Let a = (a 1, . . . , a n ) be an action profile for which a j = Run for at least
one citizen j ∈ N . For any citizen i ∈ N , the set of candidates whose positions
are closest to i ’s favorite position is

C (i , a ) = {j ∈N : a j = Run and |x̂ j − x̂ i | ≤ |x̂ l − x̂ i | for all l ∈N }

and the fraction of i ’s vote that goes to any citizen j for whom a j = Run is

vi (j , a ) =

¨
1/|C (i , a )| if j ∈C (i , a )
0 otherwise,

so that the total number of votes obtained by citizen j is

Vj (a ) =
∑

i∈N

vi (j , a )

and the set of winners of the election is

W (a ) = {i ∈N : a i = Run and Vi (a )≥ Vj (a ) for all j with a j = Run}. (10.2)

If a i =Out for all i ∈N (no citizen runs as a candidate), let W (a ) =∅.
In the model with strategic voting, an extensive game with perfect informa-

tion and simultaneous moves, the citizens’ strategies determine the number of
votes for each candidate. The set of terminal histories consists of the action pro-
file (Out, . . . , Out), in which no citizen runs as a candidate, and every sequence
((a 1, . . . , a n ), (v1, . . . , vn )) for which a j ∈ {Run, Out} for each j ∈N , a j = Run for at
least one j ∈ N , and vj is a citizen i ∈ N for whom a i = Run (the candidate for
whom j votes). For a terminal history (a , v ), the set of winners of the election is
the set of citizens who run as candidates and obtain at least as many votes as any
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other candidate:

W (a , v ) ={i ∈N : a i = Run and

|{j ∈N : vj = i }| ≥ |{j ∈N : vj = l }| for all l ∈N }.
(10.3)

For the terminal history a = (Out, . . . , Out), let W (a ) =∅.
In both models, each citizen values the policy of the winner of the election.

In addition, if she runs as a candidate she incurs a cost c > 0, and, if she wins
election, obtains a benefit b ≥ 0. These amounts appear as linear terms in her
payoff. For example, it citizen i runs as a candidate and wins outright, her payoff
is u i (x̂ i ) +b − c (which is equal to b − c given that u i (x̂ i ) = u (0) = 0). I assume
that if no citizen runs as a candidate then a fixed position x0 is realized.

Precisely, for any setW ⊆N of winning candidates, the payoff of any citizen i
is

V O
i (W ) =

¨
u i (x0) ifW =∅∑

j∈W u i (x̂ j )/|W | ifW 6=∅
(10.4)

if she does not run as a candidate and

V R
i (W ) =

¨∑
j∈W u i (x̂ j )/|W |− c if i 6∈ W

�∑
j∈W u i (x̂ j )+b

�
/|W |− c if i ∈W

(10.5)

if she does run (in which caseW 6=∅).

Definition 10.3: Electoral competition game with citizen-candidates
who vote sincerely

An electoral competition game with citizen-candidates and sincere voting
〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉, where

• n is an odd positive integer (the number of citizens)

• x̂ i ∈R for i = 1, . . . , n (the favorite position of citizen i )

• u :R+→R− is a decreasing function with u (0) = 0

• b is a nonnegative number (the benefit from winning)

• c is a positive number (the cost of running as a candidate)

• x0 ∈R (the policy realized if no citizen runs as a candidate)

is a strategic game with the following components.

Players
The set N = {1, . . . , n} (citizens).
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Actions
The set of actions of each citizen is {Run, Out}.

Preferences
The preferences of each citizen i ∈ N over action profiles a are rep-
resented by the payoff function that assigns the payoff V O

i (W (a )) if
a i = Out and the payoff V R

i (W (a )) if a i = Run, where W (a ) is given by
(10.2), V O

i is given by (10.4), V R
i is given by (10.5), and u i (z ) = u (|x̂ i −z |)

for all z .

Definition 10.4: Electoral competition game with citizen-candidates
who vote strategically

An electoral competition game with citizen-candidates and strategic vot-
ing 〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉, where the variables have the same meanings
as in Definition 10.3, is an extensive game with perfect information and
simultaneous moves with the following components.

Players
The set N = {1, . . . , n} (citizens).

Terminal histories
The action profile (Out, . . . , Out) plus all sequences ((a 1, . . . , a n ),
(v1, . . . , vn )) with a i ∈ {Run, Out} for i = 1, . . . , n , a j = Run for some
j ∈ N , and vi ∈ {j ∈ N : a j = Run} for i = 1, . . . , n (vi is the citizen-
candidate for whom i votes).

Player function
The function P with P(∅) =N and P(a 1, . . . , a n ) =N for all (a 1, . . . , a n ) ∈
{Run, Out}n with {j ∈ N : a j = Run} 6= ∅ (all citizens move simultane-
ously at the start of the game and again, as voters, after any profile of
initial actions for which at least one citizen chooses to run).

Preferences
The preferences of each citizen i ∈ N over terminal histories are rep-
resented by the payoff function that assigns to the terminal history
(Out, . . . , Out) the payoff V O

i (∅), and to any terminal history (a , v ) with
a j = Run for some j ∈ N , the payoffs V O

i (W (a , v )) if a i = Out and
V R

i (W (a , v )) if a i = Run, where W (a , v ) is given by (10.3), V O
i is given

by (10.4), V R
i is given by (10.5), and u i (z ) = u (|x̂ i − z |) for all z .

In the game with strategic voting, each voting subgame has many Nash equi-
libria (see Section 3.1). I restrict to equilibria in which each citizen’s action in
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every voting subgame is weakly undominated.

Definition 10.5: Equilibrium of electoral competition game with
citizen-candidates

In an electoral competition game with citizen-candidates in which voting
is sincere, an equilibrium is a Nash equilibrium. In a game in which voting
is strategic, an equilibrium is a subgame perfect equilibrium in which each
citizen’s vote in every subgame following the citizens’ decisions to run as
candidates is weakly undominated.

Suppose that no citizen enters as a candidate. Then the payoff of each citi-
zen i is u i (x0). If citizen i deviates to become a candidate, in both games she wins
and obtains the payoff b − c . Thus an equilibrium in which no citizen enters as
a candidate exists if and only if b − c ≤ u i (x0) for the citizen i whose favorite
position is furthest from x0. I now consider some more interesting equilibria.

One-candidate equilibria

For some ranges of the parameter values, both games have equilibria in which
exactly one citizen runs as a candidate. In such equilibria, that citizen has to be
no better off deviating to Out, and every other citizen has to be no better off de-
viating to Run. If the candidate’s favorite position differs from m then a citizen
with favorite position m wins if she deviates to Run. (For the game with strate-
gic voting, this conclusion follows from Corollary 3.1.) The entrant receives the
payoff b − c , so in a one-candidate equilibrium the candidate’s favorite position
x satisfies b −c ≤ u (|m −x |), or equivalently |m −x | ≤ u −1(b −c ). In particular, if
b ≥ c then no equilibrium with x 6=m exists, because u (z )< 0 for every z > 0.

Under what conditions does a one-candidate equilibrium exist in which the
candidate’s position is m ? The answers for the two games differ. Suppose that
voting is sincere and another citizen’s favorite position is m . If that citizen devi-
ates to Run then she ties with the existing candidate and hence obtains the payoff
1
2b − c rather than 0. Consequently in this case a one-candidate equilibrium in
which the candidate’s position is m exists only if b ≤ 2c . But if voting is strategic,
the voting subgame following the entry of another citizen with favorite position
m has an equilibrium in which the original candidate wins, because all citizens
are indifferent between the her and the entrant. An entrant whose favorite posi-
tion differs from m loses, so in this case a one-candidate equilibrium exists even
if b is large; the only condition required is u (|m −x0|)≤b −c , so that the existing
candidate does not prefer to deviate to Out.
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Proposition 10.5: One-candidate equilibria of electoral competition
game with citizen-candidates

Let 〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉 be an electoral competition game with
citizen-candidates and denote by m the median of the citizens’ favorite
positions.

a. Whether voting is sincere or strategic, in every equilibrium in which
one citizen runs as a candidate, her position x is m if b ≥ c and satisfies
|m −x | ≤ u −1(b − c ) if b < c .

b. If either voting is sincere and only one citizen has favorite position m
or voting is strategic, the game has a one-candidate equilibrium in
which the candidate’s favorite position is m if and only if u (|m −x0|)≤
b − c . If voting is sincere and more than one citizen has favorite posi-
tion m , the game has such an equilibrium if and only if u (|m − x0|) ≤
b − c and b ≤ 2c .

Proof

Part a is proved in the text. To prove part b, first suppose that voting is
sincere. Consider the action profile in which a citizen, say i , with favorite
position m chooses Run and every other citizen chooses Out. Citizen i ’s
payoff is b−c , and if she deviates to Out her payoff changes to u (|m−x0|). If
a citizen whose favorite position differs from m deviates to Run, she loses,
and hence is worse off. If another citizen with favorite position m deviates
to Run, her payoff changes from 0 to 1

2b − c . Thus if i is the only citizen
with favorite position m , the action profile is an equilibrium if and only if
u (|m −x0|)≤b − c , and if another citizen has favorite position m then it is
an equilibrium if and only if u (|m −x0|)≤b − c and b ≤ 2c .

Now suppose that voting is strategic. Let s be a strategy profile in which
a citizen, say i , with favorite position m runs as a candidate, every other
citizen chooses Out, and the citizens vote as follows. In the subgame
reached if the citizens adhere to s and in any subgame following the en-
try of i and another citizen with favorite position m , all citizens vote for i .
In every other subgame, the citizens’ vote profile is any Nash equilibrium
of the subgame in which each citizen’s action is weakly undominated, the
existence of which is ensured by Proposition 4.2. (In particular, in any sub-
game in which two citizens run as candidates, by Corollary 3.1 each citi-
zen who is not indifferent between the candidates votes for the candidate
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whose favorite position she prefers.) The outcome of s is a win for i , whose
payoff is b − c .

The citizens’ action profile in the subgame following the entry of i alone
is the only one available to them. Their action profile in the subgame in
which i and another citizen with favorite position m run as candidates is
a Nash equilibrium in which each citizen’s action is weakly undominated
because no change in any citizen’s vote affects the outcome. Their action
profile in every other subgame is a Nash equilibrium by construction.

Now consider changes in the citizens’ actions at the start of the game. If
i deviates to Out, her payoff changes from b − c to u (|m −x0|), so she is no
better off if u (|m −x0|)≤ b − c . If another citizen with favorite position m
deviates to Run, she loses (because all the citizens continue to vote for i ),
and is thus worse off, and if a citizen with a favorite position different from
m deviates to Run she also loses. Thus s is an equilibrium if u (|m −x0|)≤
b − c .

Now let s be a subgame perfect equilibrium in which each citizen’s
action in every voting subgame is weakly undominated, exactly one cit-
izen, say i , runs as a candidate, and i ’s favorite position is m . Then i
is no better off deviating from si to Out at the start of the game, so that
u (|m −x0|)≤b − c .

One-candidate equilibria of the game with strategic voting in which b > 2c
and the candidate’s favorite position is m are vulnerable to uncertainty regard-
ing the outcome of the election. In these equilibria, the deviation of another
citizen to Run results in that candidate’s losing. If the deviator’s favorite position
is m , then all citizens are indifferent between the candidates and in the equilib-
rium a majority of them continue to vote for the original candidate. If the devia-
tor’s favorite position x differs from m , then every citizen votes for the candidate
whose position she prefers (given the assumption that citizens’ voting strategies
are weakly undominated), and hence the original candidate wins, because a ma-
jority of citizens prefer m to x . However, if x is close to m , the margin of victory
of the original candidate is small. In fact, if only one citizen has favorite position
m and x is the closest favorite position to m , this margin of victory is exactly one
vote.

Now suppose that with positive probability each citizen fails to vote, inde-
pendently of every other citizen, and this probability is the same for every citi-
zen. Then a deviator with favorite position x 6=m wins with positive probability.
Suppose specifically that only one citizen has favorite position m and x is the
closest favorite position to m . Then the deviator wins if the number of citizens
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who vote among the 1
2 (n − 1) who prefer x to m exceeds the number who do so

among the 1
2 (n + 1) who prefer m to x (where n is the number of citizens). The

probability of this event is less than 1
2 , but if n is large it is close to 1

2 (Eguia 2007,
Theorem 1). Thus in this case if b > 2c , one-candidate equilibria do not exist in
the model with strategic voting when the number of citizens is large, just as by
part b of the result they do not exist when voting is sincere.

Agglomerated equilibria

Do the games have multi-candidate equilibria in which all the candidates’ po-
sitions are the same? Neither game has such equilibria in which the common
position differs from the median of the citizens’ favorite positions. The reason
is that such configurations are vulnerable to entry: an entrant whose favorite
position is the median, for example, wins whether voting is sincere or strate-
gic, because optimal strategic voting between two distinct alternatives is sincere
(Corollary 3.1). But the conclusions regarding equilibria in which the favorite
position of every candidate is the median of the citizens’ favorite positions differ
between the games. Under sincere voting, if fewer than a third of the citizens’
favorite positions are equal to the median then either an entrant whose favorite
position is slightly less than the median or one whose favorite position is slightly
greater than the median wins, because after her entry the votes of the citizens
who prefer the median are split equally among the existing candidates. However,
under strategic voting, the subgame following such entry has an equilibrium in
which the votes of all the citizens who prefer the median go to one specific can-
didate among those whose favorite position is the median, so that the entrant
loses. Thus if voting is strategic the game has an equilibrium in which two or
more citizens run as candidates and all of their favorite positions are the median,
but if voting is sincere and fewer than a third of the citizens’ favorite positions are
equal to the median then it has no such equilibrium.

Proposition 10.6: Agglomerated equilibria in electoral competition
game with citizen-candidates

Let 〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉 be an electoral competition game with
citizen-candidates and denote by m the median of the citizens’ favorite
positions.

a. The game has no equilibrium in which two or more citizens run as
candidates and all of their favorite positions are the same, different
from m .
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b. If voting is sincere and fewer than a third of the citizens have favorite
positions of m then the game has no equilibrium in which two or more
citizens run as candidates and all of their favorite positions are m .

c. For any k ≥ 2, if voting is strategic, b ≥ k c , and at least k citizens
have favorite position m , then the game has an equilibrium in which
k citizens run as candidates and all of their favorite positions are m .

Proof

Consider an action profile in which k ≥ 2 citizens with favorite position z
run as candidates and every other citizen chooses Out. If voting is sincere,
the candidates tie. If voting is strategic, the action profile is consistent with
equilibrium only if the candidates tie, because a candidate who loses is
better off deviating to Out. In both cases each candidate’s payoff is b/k−c .
If a candidate deviates to Out, her payoff becomes 0, so for equilibrium we
need b ≥ k c .

a. If z 6= m then whether voting is sincere or strategic, a citizen with fa-
vorite position m wins if she deviates to Run. (If voting is strategic, this
conclusion follows from Corollary 3.1.) Her payoff is thus b −c rather than
u (|m − z |) < 0, so that for equilibrium we need b < c . This condition is
inconsistent with b ≥ k c , so no equilibrium exists in which k ≥ 2 citi-
zens with favorite position z 6=m run as candidates and every other citizen
chooses Out.

b. Now suppose that z =m and voting is sincere. If fewer than a third of
the citizens have favorite positions of m , then either more than a third of
them have favorite positions less than m or more than a third have favorite
positions greater than m (or both). The two cases are symmetric; suppose
the former. Let j be a citizen whose favorite position is largest among the
citizens with favorite positions less than m . If j deviates to Run, she ob-
tains the votes of all citizens with favorite positions less than m , whereas
each of the k ≥ 2 original candidates gets an equal share of the votes of the
remaining citizens. Thus j wins and obtains the payoff b − c rather than
u (|m − x̂ j |) < 0. So for the original action profile with k candidates to be
an equilibrium we need b < c , which is inconsistent with the requirement
b ≥ k c .

c. If z =m and voting is strategic, the subgame following the deviation of
any citizen j from Out to Run has an equilibrium in weakly undominated
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strategies in which all of the citizens who prefer m to j ’s position vote for
the same candidate with position m , so that j loses. Thus if b ≥ k c and at
least k citizens have favorite position m , the game has an equilibrium in
which k citizens with favorite position m are candidates.

The equilibria of the game with strategic voting in part c are vulnerable to
uncertainty for the same reason that the one-candidate equilibria for b > 2c in
the previous result are vulnerable. Suppose as before that each citizen indepen-
dently fails to vote with the same probability. Then if a citizen with favorite posi-
tion x close to m deviates to Run, she wins with positive probability, making her
deviation worthwhile if b is large enough.

Dispersed equilibria

Equilibria in which the candidates’ positions are dispersed are possible in both
models. In such an equilibrium with two candidates, the outcome must be a tie,
because otherwise the loser can deviate to Out without affecting the outcome,
saving the cost c . In a two-alternative voting subgame of the game with strate-
gic voting, the only weakly undominated action of a citizen who is not indiffer-
ent between the alternatives is to vote sincerely, for her preferred candidate, so
whether voting is sincere or strategic the candidates’ equilibrium positions must
be symmetric about the median m of the citizens’ favorite positions, say m −δ
and m + δ for some δ > 0. If one of the candidates deviates to Out, the other
candidate wins, so for each value of the entry cost c there is a lower bound on δ
for which an equilibrium of this type may exist.

To investigate the possibility of such an equilibrium further, consider devi-
ations by citizens from Out to Run. First suppose that a citizen whose favorite
position is outside (m−δ, m+δ) deviates to Run. If voting is sincere, she loses. If
voting is strategic, the resulting voting subgame has a Nash equilibrium in which
every citizen votes as she would in the absence of the entrant, so that the entrant
loses. In this equilibrium no citizen votes for her least preferred candidate, so if
the number of citizens is at least five then by Proposition 4.1b no citizen’s action
is weakly dominated.

Now consider the deviation to Run for a citizen whose favorite position is in
(m −δ, m+δ). If voting is sincere, then if δ is large enough such an entrant surely
wins, and if she wins she may be better off. Part b of the next result gives a condi-
tion for such an entrant not to win, so that the configuration is an equilibrium. If
voting is strategic, then no matter how large is δ, as long as the number of citizens
with favorite position m is not too large the voting subgame following the entry
of a candidate between m−δ and m+δ has an equilibrium in which the entrant
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loses. In this equilibrium, the citizens whose favorite positions are m vote for
the entrant and every other citizen votes for the remaining candidate whom she
prefers; no citizen votes for her least preferred candidate, so no citizen’s action
is weakly dominated. Thus in this case the model with strategic voting, unlike
the one with sincere voting, has equilibria in which the separation between the
candidates’ positions is arbitrarily large.

Proposition 10.7: Two-candidate equilibria of electoral competition
game with citizen-candidates

Let 〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉 be an electoral competition game with
citizen-candidates and denote the median of the citizens’ favorite posi-
tions by m .

a. Whether voting is sincere or strategic, in any two-candidate equilib-
rium in which the candidates’ positions differ, these positions are
m − δ and m + δ for some δ > 0 and either (i) b > 2c or (ii) b ≤ 2c
and δ≥ 1

2 u −1(b −2c ).

b. Suppose that voting is sincere and the citizens’ favorite positions are
equally-spaced: for some ∆> 0 we have x̂ i − x̂ i−1 =∆ for i = 2, . . . , n . If
p is a positive integer such that (i) the conditions in part a are satisfied
for δ = p∆ and (ii) fewer than a third of the citizens’ favorite posi-
tions are in [m − 1

2 p∆, m + 1
2 p∆], then the game has a two-candidate

equilibrium in which the candidates’ positions are m−p∆ and m+p∆.

c. If voting is strategic and fewer than 1
3 (n−4) of the citizens’ favorite po-

sitions are m (which requires n ≥ 7), then for every value of δ satisfying
the conditions in part a for which there exist citizens with favorite po-
sitions m −δ and m +δ, the game has a two-candidate equilibrium in
which the candidates’ positions are m −δ and m +δ.

Proof

a. The argument in the text shows that the candidates’ positions in such
an equilibrium are m −δ and m +δ. (Note that while such positions are
necessary for a tie, they are not sufficient if voting is sincere and m is the
favorite position of more than one citizen.) The payoff of each candidate
is 1

2 b − c + 1
2 u (2δ). If she deviates to Out, her payoff becomes u (2δ), so her

entry is optimal if and only if 1
2b − c + 1

2 u (2δ) ≥ u (2δ), or b − 2c ≥ u (2δ),
establishing part a.
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b. Under condition (i), neither candidate is better off deviating to Out. Un-
der condition (ii), any citizen who deviates from Out to Run loses and her
entry either does not affect the outcome or changes it from a tie between
the two existing candidates to a win for the one she likes less. Thus she is
worse off.

c. Let s be a strategy profile in which two citizens, i with favorite position
m −δ and j with favorite position m +δ, run as candidates, every other
citizen chooses Out, and the citizens vote as follows. In each case I argue
that the profile of votes is a Nash equilibrium of the subgame in which no
citizen’s action is weakly dominated.

Subgame that results if citizens adhere to s
Citizens with favorite positions less than m vote for i , citizens with fa-
vorite positions greater than m vote for j , and the votes of citizens with
favorite position m (who are indifferent between the candidates) are
split between i and j in such a way that the candidates tie.

This action profile is a Nash equilibrium in which every citizen with
favorite position different from m votes for the candidate she prefers.
Thus by Corollary 3.1 every citizen’s action is weakly undominated.

Subgame in which one citizen runs as a candidate
Every citizen votes for the candidate (she has no choice).

Subgame in which candidates are i , j , and a citizen l with favorite position
in (m −δ, m +δ)
Every citizen whose favorite position is m votes for l and every other
citizen votes for i if her favorite position is less than m and for j if her
favorite position is greater than m .

Denote by n m the number of citizens with favorite position m . Then
l receives n m votes, and i and j each receives 1

2 (n − n m ) votes. Thus
given that n m <

1
3 (n − 4), i and j tie for first place and each receives at

least two more votes than does l . Hence no change in any citizen’s vote
causes l to win; every change in a citizen’s vote either does not affect the
outcome or causes it to deteriorate for the citizen. No citizen is voting
for her least preferred candidate, so by Proposition 4.1b every citizen’s
action is weakly undominated.

Subgame in which candidates are i , j , and a citizen l with favorite position
outside (m −δ, m +δ)
Every citizen votes for i if her favorite position is less than m and for j
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if her favorite position is greater than m . The votes of citizens whose
favorite positions are m are split equally between i and j .

Any change in the vote of a citizen with favorite position m does not af-
fect her payoff, while any change in the vote of any other citizen causes
the winner to become her less preferred member of {i , j }. No citizen
is voting for her least preferred candidate, so by Proposition 4.1b every
citizen’s action is weakly undominated.

Other subgames
Every citizen votes according to an arbitrary Nash equilibrium of the
subgame in which every citizen’s vote is weakly undominated. (Such a
Nash equilibrium exists by Proposition 4.2.)

I now argue that no citizen can increase her payoff by deviating at the
start of the game. By the argument for part a, neither candidate can in-
crease her payoff by deviating to Out. Suppose that a citizen who is not a
candidate deviates to Run. Given the equilibrium of the resulting voting
subgame, such an entrant loses, so that the deviation makes her worse off.

Note that if δ is large the equilibrium in part c is vulnerable to deviations
by groups of moderate citizens to vote for an entrant whose favorite position is
between m −δ and m +δ.

In the model with sincere voting, equilibria with many dispersed candidates
are also possible.

Exercise 10.7: Multi-candidate dispersed equilibria of electoral
competition game with citizen-candidates and sincere
voting

Let 〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉 be an electoral electoral competition game
with citizen-candidates and sincere voting. Under the assumption in
part b of Proposition 10.7 that the citizens’ favorite positions are equally-
spaced, show that for any integer k with 3≤ k ≤ n , if b/k−c is large enough
the game has a Nash equilibrium in which k citizens run as candidates.

If voting is strategic, Proposition 4.3 implies that equilibria in which winning
candidates occupy more than two distinct positions are not possible if the payoff
function is strictly concave. However, if the cost c of running as a candidate is
sufficiently small, equilibria with any number of candidates, two of whom win,
exist. In these equilibria, no losing candidate is better off exiting because if she
does so all citizens vote for the winner she likes least, causing that candidate to
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win outright. The citizens have no positive incentive to switch their votes in this
way, but doing so is consistent with equilibrium and no citizen’s action is weakly
dominated. The next exercise invites you to establish this result.

Exercise 10.8: Multi-candidate dispersed equilibria of electoral
competition game with citizen-candidates and strategic
voting

Let 〈n , (x̂1, . . . , x̂n ), u ,b , c ,x0〉 be an electoral electoral competition game
with citizen-candidates and strategic voting. Denote by m the median of
the citizens’ favorite positions. Show that for any integer k ≥ 4, any num-
ber δ > 0, and any positions x1, x2, . . . , xk with x1 = m − δ, x2 = m + δ,
xi < x1 for some i ≥ 3, xi > x2 for some i ≥ 3, and u i (x1) 6= u i (x2) for
i = 1, . . . , k , there exists c such that if c ≤ c then the game has an equilib-
rium in which k citizens, with positions x1, x2, . . . , xk , run as candidates,
candidates 1 and 2 tie for first place, and all other candidates lose.

Comments

The character of the equilibria appears to survive if the set of positions is multi-
dimensional rather than one-dimensional. For example, if voting is sincere then
a two-candidate equilibrium in which the candidates’ positions differ exists if
the candidates’ positions differ enough that neither of them prefers to withdraw
but not so much that an entrant can win. If voting is strategic, such an equilib-
rium exists if the first of these two conditions holds, with the entry of a candidate
leading all the citizens to vote for the existing candidate the entrant likes least.

The citizen-candidate model has the merit of yielding tractable multi-candidate
equilibria. The price is the assumption that each citizen is limited to running on
her favorite position or not becoming a candidate—she cannot choose her posi-
tion. One environment in which that restriction may be inappropriate is that in
which candidates face a sequence of elections. Such a candidate may be able to
credibly select a position different from her favorite position, knowing that vot-
ers can punish her in future elections if she deviates from that position while in
office.

Notes

Section 10.1 is based on Osborne (1993). The model and results in Section 10.2
are due to Feddersen et al. (1990). The model in Section 10.4 was developed
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independently by Osborne and Slivinski (1996) (sincere voting) and Besley and
Coate (1997) (strategic voting).

The much-discussed claim mentioned before Proposition 10.4 that plurality
rule tends to lead to two-candidate electoral competitions appears to have been
first stated explicitly in print by Droop (1881, 164) (see Riker 1982, 756). Riker
writes (p. 754) “It is customary to call the law by Duverger’s name, not because
he had much to do with developing it but rather because he was the first to dare
to claim it was a law.” It appears in Duverger (1951, 247) (and in translation in
Duverger 1964, 217).

Exercise 10.1 is based on Haan and Volkerink (2001) and Brusco et al. (2012).
The model and result in Exercise 10.5 are due to Jeffrey S. Rosenthal and Phillip
Morenz (personal communication, 1992).

Solutions to exercises

Exercise 10.1
Denote the option of not running as a candidate by Out.

If all n candidates choose the position m , each of them wins with probabil-
ity 1/n . If one of them deviates to Out she wins with probability 0, and if she
deviates to a position different from m then either her probability of getting
to the second round is 0 or this probability is positive, and if it is positive then
whenever she gets to the second round she loses (her opponent’s position is
m ). Thus no deviation makes her better off, so that the strategy profile is a
Nash equilibrium.

If k candidates choose the position m , with k < n , and the remainder choose
Out, then any candidate who deviates from Out to the position m changes
her probability of winning from 0 to 1/(k +1). Thus this strategy profile is not
a Nash equilibrium.

Now suppose that k candidates choose the position m −δ, k choose m +δ,
and the remainder choose Out. Then each candidate who chooses a position
wins with probability 1/(2k ).

If k = 1 then either candidate can deviate to m and win with probability 1, so
the strategy profile is not a Nash equilibrium.

Now suppose that k ≥ 2.

• First consider deviations by one of the candidates who is choosing a posi-
tion. If such a candidate deviates to Out then she wins with probability 0
and if she deviates to a position less than m − δ or greater than m + δ
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then she either does not make it to the second round or, if she does, loses
in the second round. If she deviates to a position between m−δ and m+δ
then if δ is sufficiently large she obtains the most votes on the first round
and subsequently wins the second round. A sufficient condition for such
a beneficial deviation not to exist is that δ is small enough that the vote
share of a candidate at each position between m −δ and m +δ is at most
1/(2k ).

• Now consider deviations by a candidate who is choosing Out. Under the
assumption on δ in the previous point, no position for such a candidate
generates a positive probability of her winning.

We conclude that if δ is small enough that the vote share of a candidate at
each position between m − δ and m + δ is less than 1/(2k ) then a strategy
profile in which k candidates choose the position m −δ and k choose m +δ,
with k ≥ 2, and the remaining candidates choose Out, is a Nash equilibrium.

Exercise 10.2
Denote by m the median of the citizens’ favorite positions. If an office-seeker j
has favorite position m and Uj (m ) + b − c ≥ −D then the game has a sub-
game perfect equilibrium in which j is a candidate with position m , every
other office-seeker chooses Out, all citizens vote for j in every subgame in
which she is the only candidate or every candidate’s position is m , each cit-
izen votes for the candidate she prefers in every subgame in which there are
two candidates, and in any other subgame the profile of the citizens’ actions
is any Nash equilibrium in which the citizens’ actions are weakly undomi-
nated (the existence of which is ensured by Proposition 4.2). For this strategy
profile, j ’s payoff is Uj (m )+b − c and the payoff of every other office-seeker
l is Ul (m ). The strategy profile is a subgame perfect equilibrium because if
j deviates to another position she still wins, and is worse off; if she deviates
to Out she gets the payoff −D ; if another office-seeker enters at m , she loses
(all citizens continue to vote for j ); and if another office-seeker enters at a
position other than m she loses.

If the favorite position of at least one office-seeker is less than m , the favorite
position of at least one office-seeker is greater than m , and b ≥ c , then the
game has no subgame equilibrium with one candidate in which the candi-
date’s position differs from m . To see why, let (x , v ) be a strategy profile in
which x j < m and xi = Out for all i 6= j . If an office-seeker l with favorite
position greater than m deviates to enter at m , she wins (because the only
undominated action of each citizen in the resulting subgame is to vote for the
candidate she prefers) and obtains the payoff Ul (m ) +b − c , which exceeds
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Ul (x j ).

The subgame perfect equilibria with two or more candidates who choose the
position m are the same as the equilibria in the model with office-motivated
candidates, and exist under the same conditions. In such an equilibrium with
k candidates, the payoff of candidate j is Uj (m ) +b/k − c ; if she deviates to
Out, her payoff becomes Uj (m ), so that for equilibrium we need k ≤ b/c .
The payoff of an office-seeker, say l , who is not a candidate is Ul (m ); if she
deviates to become a candidate at m then the citizens all vote for one of the
existing candidates and l loses, so that her payoff becomes Ul (m )− c .

Like the game with purely office-motivated candidates, the game appears to
have no equilibrium with more than one position occupied. The logic in the
proof of Proposition 10.1 rules out equilibria in which the candidates tie, and
equilibria in which they do not tie are not possible because a citizen voting
for a losing candidate benefits by shifting her vote to the winning candidate
whom she likes best, so that losing candidates attract no votes and hence do
not affect the outcome.

Exercise 10.3
For each player j , denote by x̂ j her favorite position.

In the subgame following player 1’s choice of Out, if x0 6= x̂2 then the optimal
action of player 2 is to choose x̂2 (and win), and if x0 = x̂2 then x̂2 and Out are
both optimal choices for her. In each case the outcome is x̂2.

Now consider the subgame following the entry of player 1 at m . If player 2
enters at m , the outcome is m . If player 2 enters at another position, the
outcome is also m , because player 2 loses. Thus entering at m and Out are
both optimal actions for player 2.

Now consider the subgame following the entry of player 1 at some position
x1 <m .

First suppose that player 1’s favorite position, x̂1, is less than m . Then by
assumption player 2’s favorite position, x̂2, is greater than m .

• If x̂2 −m < m − x1 then by entering at x̂2 player 2 wins and makes the
policy outcome x̂2; she can do no better than that, so it is her optimal
action.

• If x̂2 −m ≥ m − x1 then if player 2 enters at any position x2 with x1 <

x2 < 2m − x1 she wins and induces the outcome x2, which she likes bet-
ter the closer x2 is to 2m − x1. If she enters at 2m − x1 itself, she ties
with player 1, which is worse for her than the outcome 2m − x1, and if
she enters at a position greater than 2m − x1 she loses. Thus she has no
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optimal action, but for any ε > 0 there exists δ > 0 such that no action
yields her a payoff greater by more than ε than her payoff for any action
in [2m −x1−δ,2m −x1].

Thus for any value of x̂2, player 2’s optimal or approximately optimal action in
response to player 1’s entry at x1 generates an outcome min{x̂2,2m −x1−δ}
for some small δ> 0, which player 1 likes less than m .

Now suppose that x̂1 > m , so that x̂2 < m . If x̂2 ≤ x1 then every position
x2 ≤ x1 is optimal for player 2; in each case, the policy outcome is x1, and
no position for player 2 generates a policy outcome closer to x̂2, because any
position less than x1 leads player 1 to win. If x̂2 > x1 then player 2’s optimal
position is x̂2, which leads her to win, so that the policy outcome is x̂2.

We conclude that the action Out and every position x1 < m for player 1
causes every optimal or approximately optimal action of player 2 to generate
an outcome that is worse for player 1 than m . A symmetric argument applies
if x1 > m . Thus player 1’s optimal action is m ; player 2 responds optimally
by either also choosing m or by choosing Out. Hence every approximate sub-
game perfect equilibrium generates either the outcome in which both players
choose m or the outcome in which player 1 chooses m and player 2 chooses
Out.

Exercise 10.4
Suppose that player 1 enters at a position x1 < x̂2. If player 2 enters at the
same position then player 3 wins outright if she enters at x̂2 (she gets more
than a third of the vote and players 1 and 2 split the remainder equally), gen-
erating the best possible outcome for both her and player 2. (Other positions
for player 2 may have the same implications.) Thus every subgame perfect
equilibrium of the subgame following x1 generates the policy outcome x̂2.

If player 1 enters at the position x̂2 then players 2 and 3 can do no better than
stay out, and if player 1 enters at a position x1 > x̂2 then by entering at x̂2

player 2 ensures that the policy outcome is x̂2 (player 3 optimally either stays
out or, if entering at x̂2 causes her to tie for first place with player 2, enters at
that position).

If player 1 stays out, then by entering at x̂2 player 2 ensures that the policy
outcome is x̂2 (again player 3 either enters at the same position or stays out).

Thus the policy outcome of every subgame perfect equilibrium is x̂2. In an
equilibrium, player 1 either stays out or enters. If she enters, player 3 enters
at x̂2 and if player 3 would not win outright unless player 2 entered, then
player 2 enters at a position that causes player 3 to win outright.
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Exercise 10.5
I begin by establishing that a player does not enter if, in the event no subse-
quent player enters, she would lose.

Claim For any nonterminal history h, in any subgame perfect equilibrium of
the subgame following h, the player who moves first chooses a position (rather
than Out) only if she wins in the event that every subsequent player (if any)
chooses Out.

Proof. I prove the claim by induction on the length of a history.

The claim is true for any history of length n − 1, because after n moves the
game ends, and n prefers Out to losing.

Now suppose that the claim is true for every history of length at least r , where
1 ≤ r ≤ n − 2. Consider a history h of length r − 1. Suppose, contrary to the
claim, that the subgame following h has a subgame perfect equilibrium in
which player r chooses a position such that she loses if every subsequent
player chooses Out. Then in this equilibrium, at least one subsequent player
must enter (otherwise player r ’s entry is not optimal for her). Take the last
player to do so, say player t . By the claim for histories of length t −1, player t
wins. But then player r loses, so that the strategy profile is not a subgame
perfect equilibrium. Thus the claim is true for every history of length r − 1,
and hence by induction for every history of any length. Ã

Now, if player 1 enters at m , no subsequent player can enter and win if no
further players enter, because no position garners more votes than m . So by
the claim, no subsequent player enters and hence player 1 wins. Thus the
game has a subgame perfect equilibrium with the outcome in which player 1
enters at m and every other player chooses Out.

If player 1 enters at a position different from m then by entering at m player 2
ensures, by the claim, that no subsequent player enters, so that player 2 wins
and player 1 loses.

Thus the game has a unique subgame perfect equilibrium outcome, in which
player 1 enters at m and every other player chooses Out.

Exercise 10.6
I break the argument into steps.

Step 1 In every subgame perfect equilibrium of the subgame following the en-
try of player 1 at m , players 2 and 3 enter at m .
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Proof. Suppose that player 1 enters at m . Then if player 2 enters at m , player 3’s
best action is to enter at m also, because her entry at another position ei-
ther does not get her into a runoff or gets her into a runoff that she loses.
Thus if player 2 enters at m then she wins with probability 1

3 , so that in ev-
ery subgame perfect equilibrium of the subgame following player 1’s entry at
m , player 2 enters. Suppose that she enters at a position x2 <m . If her vote
share in the event that player 3 does not enter is positive (that is, her position
is not extreme), then for some ε > 0 player 3 gets into the runoff by entering
at m + ε and wins outright. If player 2’s vote share in the event that player 3
does not enter is zero, then player 3’s best action is to enter at m , in which
case players 1 and 3 each win with probability 1

2 and player 2 does not win.
Thus for every position at which player 2 enters other than m , she ultimately
loses.

Hence player 2’s best action in the subgame following player 1’s entry at m is
to enter at m , in which case player 3 optimally enters at m and each of the
three players wins with probability 1

3 . Ã

Step 2 In every subgame perfect equilibrium of the game, player 1 enters and
wins with probability at least 1

3 .

Proof. By Step 1, if player 1 enters at m she wins with probability 1
3 , so in every

subgame perfect equilibrium of the game she wins with probability at least 1
3 ,

and hence enters. Ã

Step 3 In every subgame perfect equilibrium of the game, player 2 enters.

Proof. Let s ∗ be a subgame perfect equilibrium strategy profile in which player 2
does not enter in the subgame following player 1’s action s ∗1. By Step 2, s ∗1 is
entry at some position, so player 3’s optimal action in the subgame following
the history in which players 1 and 2 follow their strategies in s ∗ (and hence
player 2 does not enter) is to enter: if player 1 enters at m then player 3’s op-
timal action is to enter at m (at any other position she loses), and if player 1
enters at a position different from m then all of player 3’s optimal actions,
among which is entry at m , cause her to win outright. By Step 2, in any sub-
game perfect equilibrium player 1 wins with positive probability, so in s ∗ she
must enter at m . If she does so, player 2 optimally enters at m , because
then player 3 optimally enters at m and player 2 wins with positive proba-
bility, whereas if player 2 enters at another position she loses given player 3’s
optimal action. Ã
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Step 4 In every subgame perfect equilibrium of the game, player 3 enters.

Proof. By Step 3, in any subgame perfect equilibrium player 2 enters. By en-
tering at the same position as player 2, player 3 ultimately wins with positive
probability: she ties with player 2 in the first round and thus gets into the
runoff with positive probability, and in the runoff she wins with the same
probability as does player 2, which is positive because player 2 optimally
enters. Thus in every subgame perfect equilibrium player 3 enters. Ã

Exercise 10.7
Let K be a set of k citizens whose vote shares are equal when the set of can-
didates is K . If any citizen j deviates from Out to Run then her vote share
becomes less than 1/k because the fraction of citizens with favorite positions
between any two candidates is less than 2/k . At least one other candidate’s
vote share remains 1/k , so j loses. Her entry causes the vote shares of the
candidate closest to her on the left (if any) and the one closest on the right (if
any) to fall, so that they lose. Thus j ’s entry makes her worse off.

Now suppose that a candidate, citizen i , deviates from Run to Out. Then
the outcome changes to either a tie between the two candidates adjacent to
her or an outright win for one of them. Thus i ’s payoff changes from b/k +∑

j∈K u i (x̂ j )/k − c to at most maxj∈K \{i }u i (x̂ j ). Hence a sufficient condition
for no candidate to be better off deviating to Out is

b/k − c ≥max
i∈K

�

max
j∈K \{i }

u i (x̂ j )−
∑

j∈K

u i (x̂ j )/k

�

.

Exercise 10.8
Suppose that in the subgame following x , a citizen votes for candidate 1 if
her favorite position is less than m and for candidate 2 if her favorite posi-
tion is greater than m , and the votes of citizens with favorite position m are
split between candidates 1 and 2 in such a way that these candidate tie. This
action profile is a Nash equilibrium and every citizen votes for her favorite
between candidates 1 and 2, so her action is weakly undominated. In a sub-
game following the entry of a new candidate, assume that the citizens’ votes
remain the same, so that the entrant loses and her deviation thus makes her
worse off. Assume that in the subgame following the deviation to Out by any
candidate with position less than m , all citizens vote for candidate 2, and
in the subgame following the deviation to Out by any candidate with posi-
tion greater than m , all citizens vote for candidate 1. Neither candidate 1 nor
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candidate 2 is any citizen’s least favorite candidate, because candidates ex-
ist whose positions are less than x1 and greater than x2, so that in each case
the action profile is a Nash equilibrium of the subgame in which no citizen’s
action is weakly dominated. None of the other subgames are reached by a
deviation from x , so in any such subgame the action profile can be any Nash
equilibrium in which the citizens’ actions are weakly undominated, at least
one of which exists by Proposition 4.2.

Given this voting behavior, if a citizen, say i , who is running as a candidate
with a position less than m and losing deviates to Out, the outcome changes
from a tie between candidates 1 and 2 to a win for candidate 2. Thus i ’s
payoff changes from 1

2 u i (x1) + 1
2 u i (x2)− c to u i (x2), so she is no better off if

c ≤ 1
2 (u i (x1)− u i (x2)). Similarly, a citizen i who is running as a candidate

with a position of at least m and losing is no better off deviating to Out if
c ≤ 1

2 (u i (x2)− u i (x1)). Finally, the payoff of the citizen, say i , with favorite
position x1 who runs as a candidate is 1

2b + 1
2 u i (x2)− c . If she deviates to Out,

this payoff becomes u i (x2), so Run is optimal for her if c ≤ 1
2 (b −u i (x2)). Sim-

ilarly, Run is optimal for the citizen with favorite position x2 who runs as a
candidate if c ≤ 1

2 (b −u i (x1)).
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How does political power affect the distribution of material resources among the
members of a society? This chapter analyzes models that address this question
for the political system of majority rule.

Synopsis

One starting point is a collective choice problem in which the set of alternatives
is the set of all distributions of a fixed amount of a material resource and each
individual cares only about the amount she is assigned. This problem has no
Condorcet winner. For every distribution, every member of the bare majority
consisting of the individuals assigned the smallest amounts prefers the distri-
bution in which her amount is increased by an equal share of the total amount
assigned to the complementary minority, each member of which is assigned
zero. For example, in a society consisting of three individuals, for any distri-
bution (c1, c2, c3) with 0 ≤ c1 ≤ c2 ≤ c3, where ci is the amount of the resource
assigned to individual i , individuals 1 and 2, a majority, prefer the distribution
(c1+ 1

2 c3, c2+ 1
2 c3,0).

An implication of this observation is that a two-candidate electoral competi-
tion game with majority rule in which the set of positions is the set of all distribu-
tions of the resource has no Nash equilibrium: for any distribution proposed by
one candidate, the other candidate can propose a distribution that is preferred
by a majority of individuals.

One way to escape this conclusion is to assume that the individuals care also
about other (exogenous) features of the candidates’ platforms, and the candi-
dates are uncertain about these preferences. If the uncertainty is great enough,

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).

369



370 Chapter 11. Distributive politics

there may exist a distribution of the resource with the property that each can-
didate believes that no other distribution increases her probability of winning,
because the amount by which every other distribution raises the payoffs of a ma-
jority of citizens is not likely to outweigh the preference of these citizens for the
other features of the other candidate’s platform. A model of this type is ana-
lyzed in Section 11.1. Proposition 11.1 characterizes a Nash equilibrium, if one
exists, and the rest of the section explores properties of an equilibrium in some
examples.

Another approach considers a collective choice problem in which the set of
alternatives is the set of the individuals’ favorite distributions rather than the set
of all possible distributions. The model in Section 11.2 assumes that individu-
als differ in their earning power and that a tax-subsidy system specifies trans-
fers as a function of income (individuals with the same income pay/receive the
same tax/subsidy). The fact that an individual with high earning power can, by
choosing her hours of work appropriately, obtain the same income and hence
pay/receive the same tax/subsidy as one with low earning power, limits the taxes
that the favorite system of an individual with low earning power can extract from
one with high earning power. In a simple version of the model, an individual’s
favorite system imposes a 100% tax on individuals with lower earning power and
equalizes the post-tax income of individuals with higher earning power. The fa-
vorite system of the individual with median earning power is not a Condorcet
winner of the associated collective choice problem, but it comes close. Each in-
dividual is indifferent between the favorite systems of all individuals with higher
earning power, because they all give her zero consumption. A richer version
of the model generates, for some parameters, favorite systems that assign pos-
itive consumptions to individuals with lower earning power, with the amount
assigned by the favorite system of an individual with earning power w to an in-
dividual with any given lower earning power decreasing in w . In this case, the
favorite system of an individual with median earning power is a strict Condorcet
winner of the associated collective choice problem.

Section 11.3 returns to a collective choice problem in which the set of alterna-
tives is the set of all possible tax-subsidy systems, but restricts “possible” to mean
linear in income. Proposition 11.2 gives conditions under which for any finite set
of linear transfer systems the associated collective choice problem has single-
crossing preferences with respect to the ordering of the individuals by their pre-
tax income. As a result, the favorite transfer system of the individual with the
median pre-tax income is a Condorcet winner, and hence, by Proposition 8.1,
the outcome of a Nash equilibrium of an electoral competition game with two
office-motivated candidates.

Section 11.4 takes a different approach, modeling the tax system as the out-
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come of society-wide bargaining. The distribution of income that emerges in this
model is a compromise influenced by the possibility of any majority threaten-
ing to expropriate the remaining individuals, and these individuals, in response,
threatening to destroy their endowments. In an equilibrium, these threats are
not carried out, but the possibility that they could be carried out shapes the out-
come. Two solution concepts based on different principles, the Shapley value
and the core, yield the same conclusion: each individual’s income is taxed at the
rate of 50% and the revenue is divided equally among all individuals (Proposi-
tions 11.3 and 11.4).

11.1 Two-candidate competition with exogenous incomes under
uncertainty

Consider a model of a society in which the citizens’ incomes are given (they do
not depend on the citizens’ actions) and two political candidates propose tax-
subsidy schemes. Each citizen cares about both her post-tax income and the
candidates’ policies on issues other than redistribution, which are fixed. The
candidates know the citizens’ incomes but may be uncertain about their prefer-
ences regarding other policies. Suppose, for example, that the society consists
of three citizens with total income 1, and candidate 1 proposes a tax-subsidy
scheme that generates the distribution of income ( 1

3 , 1
3 , 1

3 ). If candidate 2 proposes
a scheme that generates the distribution ( 1

2 , 1
2 ,0) and each citizen is indifferent

between the candidates’ positions on other issues, then in the absence of uncer-
tainty candidate 2 knows that she will obtain the votes of citizens 1 and 2, and
hence win. But if the citizens are not neutral regarding the candidates’ positions
on other issues and candidate 2 is uncertain of their leanings, she may believe
that the probability that the distribution ( 1

2 , 1
2 , 0) earns her the votes of citizens 1

and 2 is less than 1: with positive probability citizens 1 and 2 may like the non-
distributional policies of candidate 1 enough to vote for candidate 1 even though
candidate 2 offers them more post-tax income. In fact, candidate 2 may believe
that the probability of her winning when she proposes the distribution ( 1

2 , 1
2 ,0)

is less than her probability of winning when she proposes ( 1
3 , 1

3 , 1
3 ). For example,

the former may result in only a slightly higher probability that citizens 1 and 2
vote for her and a sharply lower probability that citizen 3 does so. As a result, the
action pair in which each candidate proposes the policy ( 1

3 , 1
3 , 1

3 ) may be a Nash
equilibrium of the game.

I explore this idea using the two-candidate model of electoral competition in
Section 8.5.2, in which the citizens care about both the policy chosen and the
identity of the winning candidate, with the latter dependence reflecting char-
acteristics of the candidate assumed to be fixed, like her competence or posi-
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tions on issues other than distribution. Specifically, the model is an electoral
competition game with two office-motivated candidates and uncertain partisan-
ship in which the set of positions for each candidate is the set of distributions of
consumption (post-transfer income) among the citizens and each citizen’s pay-
off for a candidate’s position depends only on the amount of consumption the
distribution assigns to her.

In this game, two candidates simultaneously propose distributions of con-
sumption among the citizens 1, . . . , n , where, for convenience, n is odd. (You
can equivalently think of the candidates proposing tax-subsidy schemes, given
that the citizens’ incomes are exogenous.) Each citizen i prefers the distribution
(c 1

1 , . . . , c 1
n ) proposed by candidate 1 to the distribution (c 2

1 , . . . , c 2
n ) proposed by

candidate 2 if and only if g i (c 1
i ) > g i (c 2

i ) + θi , where g i is an increasing function
and θi is a number reflecting candidate 2’s advantage (positive or negative) over
candidate 1 on non-distributional policies. The candidates know how the citi-
zens evaluate consumption but not how they evaluate other aspects of the can-
didates’ policies: they know the functions g i but are uncertain about the values
of the numbers θi . Each candidate believes that θ1, . . . ,θn are independent draws
from nonatomic distributions F1, . . . , Fn , so that each citizen i votes for candi-
date 1 if θi < g i (c 1

i )− g i (c 2
i ), independently of the votes of the other citizens, an

event with probability Fi (g i (c 1
i )−g i (c 2

i )). Under this assumption, each candidate
believes that candidate 1’s probability of winning, which is the probability that
at least (n +1)/2 citizens vote for candidate 1 (given that n is odd), is

P
�

F1(g 1(c
1
1)− g 1(c

2
1)), . . . , Fn (g n (c

1
n )− g n (c

2
n ))
�

,

where P is the function defined in (8.5). Similarly, each candidate believes that
candidate 2’s probability of winning is

1−P
�

F1(g 1(c
1
1)− g 1(c

2
1)), . . . , Fn (g n (c

1
n )− g n (c

2
n ))
�

.

Definition 11.1: Two-candidate electoral competition game of
redistribution with uncertain partisanship

A two-candidate electoral competition game of redistribution with uncer-
tain partisanship 〈I , (g i )i∈I , (yi )i∈I , (Fi )i∈I ,{1,2}〉, where

• I = {1, . . . , n} for an odd integer n (the set of citizens)

and for each i ∈ I

• g i : R+ → R is increasing (the component of i ’s payoff function that
relates to consumption (post-tax income))
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• yi ≥ 0 (i ’s pre-tax income)

• Fi is a nonatomic probability distribution over R

is an electoral competition game with two office-motivated candidates
and uncertain partisanship 〈I , X , (vi )i∈I , (Fi )i∈I ,{1, 2}〉 in which

X =
�
(c1, . . . , cn )∈R

n :
∑n

i=1 ci =
∑n

i=1 yi and ci ≥ 0 for i = 1, . . . , n
	

and
vi (c1, . . . , cn ) = g i (ci ) for all (c1, . . . , cn )∈ X and i = 1, . . . , n .

Proposition 8.8 gives conditions under which the candidates’ positions are
the same in an interior Nash equilibrium of an electoral competition game with
two office-motivated candidates and uncertain partisanship, if one exists. This
result is not applicable to the game defined here because no member of X ⊂ Rn

is interior and the functions vi are not strictly concave (each such function is
constant in c j for j 6= i ). However, the following closely related result holds. Its
proof runs parallel to that of Proposition 8.8.

Proposition 11.1: Nash equilibrium of two-candidate electoral
competition game of redistribution with uncertain
partisanship

Let 〈I , (g i )i∈I , (yi )i∈I , (Fi )i∈I ,{1,2}〉 be a two-candidate electoral competi-
tion game of redistribution with uncertain partisanship. Assume that
I = {1, . . . , n}, the payoff function g i of each citizen i for consumption is
continuously differentiable and strictly concave, and each function Fi is
continuously differentiable, with F ′i (θ ) > 0 for all θ ∈ R. If the game has a
Nash equilibrium (c 1∗, c 2∗) with c j ∗

i > 0 for j = 1, 2 and i = 1, . . . , n then this
equilibrium has the following properties.

a. The candidates’ plans are the same (c 1∗ = c 2∗) and for some number λ

P ′i (F1(0), . . . , Fn (0))F
′

i (0)g
′
i (c
∗
i ) = λ for citizens i = 1, . . . , n , (11.1)

where c ∗ = c 1∗ = c 2∗, P is given by (8.5), and P ′i is the derivative of P
with respect to its i th argument.

b. If Fi is the same for all i ∈ I then the common value of c 1∗ and c 2∗ is the
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solution of

max
c∈Rn

n∑

i=1

g i (ci ) subject to
n∑

i=1

ci =
n∑

i=1

yi and ci ≥ 0 for i = 1, . . . , n .

Proof

a. By the definition of Nash equilibrium, for j = 1, 2 the action c j ∗ of can-
didate j maximizes j ’s probability of winning, given the other candidate’s
plan: c 1∗ = (c 1∗

1 , . . . , c 1∗
n ) is a solution of

max
(c 1

1 ,...,c 1
n )

P
�

F1(g 1(c
1
1)− g 1(c

2∗
1 )), . . . , Fn (g n (c

1
n )− g n (c

2∗
n ))
�

subject to
n∑

i=1

c 1
i =

n∑

i=1

yi and c 1
i ≥ 0 for i = 1, . . . , n ,

(11.2)

and c 2∗ = (c 2∗
1 , . . . , c 2∗

n ) is a solution of

max
(c 2

1 ,...,c 2
n )

�
1−P

�
F1(g 1(c

1∗
1 )− g 1(c

2
1)), . . . , Fn (g n (c

∗1
n )− g n (c

2
n ))
��

subject to
n∑

i=1

c 2
i =

n∑

i=1

yi and c 2
i ≥ 0 for i = 1, . . . , n .

(11.3)

The derivatives of the equality constraint function in (11.2) with respect
to the variables are all 1, and in particular are not all 0, so by Proposi-
tion 16.14 if c 1∗ is a solution of (11.2) with c 1∗

i > 0 for i = 1, . . . , n then there
is a unique number λ such that

P ′i (π(c
1∗, c 2∗))F ′i (g i (c

1∗
i )− g i (c

2∗
i ))g

′
i (c

1∗
i ) = λ for i = 1, . . . , n , (11.4)

where the function π :Rn
+×R

n
+→R

n
+ is defined by

π(c 1, c 2) =
�

F1(g 1(c
1
1)− g 1(c

2
1)), . . . , Fn (g n (c

1
n )− g n (c

2
n ))
�

for all (c 1, c 2).

Now define the function W :Rn
+→R by

W (c ) =
n∑

i=1

P ′i (π(c
1∗, c 2∗))F ′i (g i (c

1∗
i )− g i (c

2∗
i ))g i (ci ). (11.5)

Each function g i is strictly concave and all the coefficients of g i (ci ) in the
definition of W are positive, so W is strictly concave. Consider the problem

max
c

W (c ) subject to
n∑

i=1

ci =
n∑

i=1

yi and ci ≥ 0 for i = 1, . . . , n . (11.6)
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Given that W is strictly concave, this problem has a unique solution, say ĉ .
By Proposition 16.14, if ĉ i > 0 for i = 1, . . . , n then there is a unique number
λ such that (11.4) is satisfied by c 1∗ = ĉ , and by Proposition 16.15, if there is
a number λ and a vector c ∗1 with c ∗1i > 0 for i = 1, . . . , n that satisfies (11.4)
then, given the concavity of W and the linearity of the constraint in (11.6),
c ∗1 = ĉ . Thus (11.2) has a unique solution, which is the solution of (11.6).

Now, if c 2∗
i > 0 for i = 1, . . . , n then the fact that c 2∗ is a solution of (11.3)

means that there is a unique number λ such that c 2∗ satisfies the same
condition, (11.4). Hence c 2∗ is also the unique solution of (11.6) and thus
c 1∗ = c 2∗, so that (11.4) reduces to (11.1).

b. Given c 1∗ = c 2∗,

W (c ) =
n∑

i=1

P ′i (F1(0), . . . , Fn (0))F
′

i (0)g i (ci ) for all c ∈Rn .

Thus if every distribution Fi is the same, then, given P ′i (p , . . . , p ) =
P ′k (p , . . . , p ) for all p and all i and k , c ∗ is a solution of (11.6) if and only
if it is a maximizer of

∑n
i=1 g i (ci ) subject to the same constraints.

Like Proposition 8.8, this result does not assert that the game has an equi-
librium; it only gives properties of an equilibrium if one exists. In the absence
or near-absence of uncertainty, the game does not have an equilibrium, because
for any distribution c proposed by one candidate, the other candidate can en-
sure that it wins with high probability by selecting the bare majority who are as-
signed the lowest total consumption in c and proposing to add to each of their
allocations under c an equal share of the total consumption of the complemen-
tary minority. I know of no result that gives conditions under which the game
necessarily has a Nash equilibrium, but some games do. Suppose, for example,
that n = 3,

∑3
i=1 yi = 1, and for i = 1, 2, 3 we have g i (z ) =

p
z for all z and Fi is

a normal distribution with mean 0 and standard deviation σ. My computations
suggest that ( 1

3 , 1
3 , 1

3 ) is a Nash equilibrium of this game if σ exceeds 0.24.

Character of equilibrium

Proposition 11.1b says if Fi is the same for every citizen then in any Nash equi-
librium both candidates propose the distribution (c ∗1, . . . , c ∗n ) that maximizes the
sum of g i (ci ) across all citizens. Given the differentiability and concavity of each
function g i , g ′i (c

∗
i ) is thus the same for all citizens. The derivative of g i is a

measure of the significance for i of consumption relative to a candidate’s non-
distributional policy. The smaller is the derivative, the larger is the increase in
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consumption needed to offset a given reduction in the appeal of the non-distributional
policy. More loosely, the smaller is the derivative, the more the individual values
non-distributional policy relative to consumption. Thus if, for every consump-
tion level, citizen i attaches greater marginal value to non-distributional policy
(in terms of consumption) than does citizen i ′, then in any equilibrium (if one
exists), i is assigned less consumption than is i ′.

Now suppose that g i is the same for every citizen, equal to g , but Fi differs
among them. First suppose that every Fi is symmetric about 0, with Fi (x ) = 1−
Fi (−x ), and hence Fi (0) = 1

2 , and has a density f i , so that f i (x ) = f i (−x ). Then
(11.1) is

P ′i (
1
2 , . . . , 1

2 ) f i (0)g ′(c ∗i ) = λ for i = 1, . . . , n .

The function P is symmetric in its arguments, so P ′i (
1
2 , . . . , 1

2 ) is the same for all i
and hence f i (0)g ′(c ∗i ) is the same for all i . Given the strict concavity of g , c ∗i is
thus large when f i (0) is large. That is, an individual for whom a small difference
between the candidates’ policies results in a large difference in the probability of
voting for each candidate receives a larger amount of consumption than does an
individual who is unlikely to be swayed by a small difference in the candidates’
policies. Roughly speaking, individuals who are influenced more by policy than
by the candidates’ characteristics receive larger amounts of consumption in an
equilibrium (if one exists).

Now consider an example with three citizens in which the densities of the dis-
tributions F1, F2, and F3 are the ones shown in Figure 11.1a. Citizen 1 is a partisan
of candidate 1 in the sense that θ1 is more likely to be negative than positive, so
that if the amounts of consumption proposed for citizen 1 by the candidates are
the same, citizen 1 is more likely to favor candidate 1. Similarly, citizen 3 is a par-
tisan of candidate 2, and citizen 2 is neutral (she is equally likely to vote for each
candidate if the candidates propose the same amount of consumption for her).
To find the implications of (11.1) for this example, first note that for each citizen i
we have P ′i (p1, p2, p3) = p j (1−pk )+pk (1−p j ), where j and k are the citizens other
than i . (The function P is defined in (8.5).) Now, F1(0) (the area shaded red in Fig-
ure 11.1a) is equal to 1− F3(0) (the area shaded blue), so denoting their common
value by p we have

P ′2(F1(0), F2(0), F3(0)) = p 2+(1−p )2

P ′1(F1(0), F2(0), F3(0)) = P ′3(F1(0), F2(0), F3(0)) = 1
2 p + 1

2 (1−p ) = 1
2 .

By Proposition 11.1a, if (c ∗1, c ∗2, c ∗3) is an equilibrium then P ′i (F1(0), F2(0), F3(0)) f i (0)g ′(c ∗i )
is the same for every citizen. Now, f 1(0) = f 3(0) < f 2(0) and, given p > 1

2 , p 2 +
(1−p )2 > 1

2 , so g ′(c ∗1) = g ′(c ∗3) > g ′(c ∗2) and hence c ∗1 = c ∗3 < c ∗2. That is, citizens
1 and 3 are assigned the same amount of consumption, and this amount is less
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0 θ →

f 1(θ )

f 2(θ )

f 3(θ )

(a) Citizen 1 is a partisan of candidate 1, citizen 2 is neutral, and citizen 3 is a partisan of
candidate 2.

0 θ →

f 1(θ ) f 2(θ ) f 3(θ )

(b) Citizens 1 and 2 are partisans of candidate 1 and citizen 3 is a partisan of candidate 2.

Figure 11.1 Examples of densities for the distributions F1, F2, and F3 in a two-candi-
date electoral competition game of redistribution with uncertain partisanship with three
citizens.

than the amount assigned to citizen 2. Intuitively, the fact that citizen 2 is equally
likely to vote for each candidate if they both offer her the same amount of con-
sumption, whereas the other citizens have partisan leanings, means that a can-
didate’s redistributing consumption from citizens 1 and 3 to citizen 2 increases
the candidate’s probability of winning.

Finally consider an example with three citizens in which the distributions F1,
F2, and F3 have the densities shown in Figure 11.1b. Denoting F1(0) = F2(0) =
1− F3(0) by p , we have

P ′1(F1(0), F2(0), F3(0)) = P ′2(F1(0), F2(0), F3(0)) = p 2+(1−p )2

P ′3(F1(0), F2(0), F3(0)) = 2p (1−p ).

Given p > 1
2 , we have p 2+(1−p )2 > 2p (1−p ), so that since f 1(0) = f 2(0) = f 3(0),

g ′(c ∗1) = g ′(c ∗2) > g ′(c ∗3) and hence c ∗1 = c ∗2 > c ∗3. That is, citizens 1 and 2 are as-
signed the same amount of consumption, and this amount is greater than the
amount assigned to citizen 3. A citizen’s vote is pivotal only if the other two cit-
izens vote for different candidates. Thus the votes of citizen 1 and citizen 2 are
both likely to be pivotal, but that of citizen 3 is not. Hence the candidates find it
advantageous to direct more consumption to citizens 1 and 2.

To summarize roughly, in the equilibria in these examples (if one exists) a
citizen receives a larger amount of consumption the more sensitive is her payoff



378 Chapter 11. Distributive politics

to her own consumption relative to the candidates’ non-distributional policies,
the less partisan she is, and the more likely her vote is to be pivotal.

11.2 Voting over transfer systems when income is endogenous

11.2.1 Main idea

Suppose that every individual’s income is fixed independently of her actions.
Then an individual who cares only about her own consumption and can impose
arbitrary taxes on the other individuals optimally expropriates all the income of
these individuals. If the tax she can impose on an individual may depend only
on the individual’s income, she is slightly constrained: she has to share the tax
revenue with the individuals whose incomes are the same as hers. If the indi-
viduals’ incomes are not fixed, but depend on the individuals’ actions—like their
choices of hours of work—then she is more constrained. In this case, the amount
of tax she can extract from the other individuals is limited by the fact that some
of these individuals may, by choosing appropriate hours of work, be able to earn
the same income as she does, and hence pay the same tax or receive the same
subsidy as she does. It is this case that I consider now.

The main model in this section assumes that each individual i has a given
earning power wi and chooses her hours (or intensity) of work hi ∈ [0,1], gen-
erating an income of wi hi ∈ [0, wi ]; she cares about both her hours of work and
her consumption, which is equal to her post-transfer income. The number of
individuals is finite, equal to n . I assume for convenience that n is odd and
no two individuals have the same earning power; I index the individuals so that
w1 <w2 < · · ·<wn .

As a prelude, first assume that each individual i cares only about her con-
sumption; assume also that if two different values of her hours of work hi gen-
erate the same amount of consumption, she chooses the larger value. A transfer
system T :R+→R is a function that assigns to each possible income y a transfer
T (y ) , so that the consumption of an individual with income y is y −T (y ). Thus
if T (y )> 0 the transfer is a tax and if T (y )< 0 it is a subsidy. Under these assump-
tions, for any transfer system T and any number w , any individual with earning
power at least w has the option of consuming w −T (w ) (by choosing her hours
of work so that she earns the income w ). Thus no transfer system can reduce the
consumption of an individual j below the maximum of w −T (w ) for w ≤w j .

Among transfer systems that balance the budget, which one is best for indi-
vidual i ? She wants her consumption to be as large as possible, which, given the
need to balance the budget, limits everyone else’s consumption. The value she
chooses for her own consumption can be achieved by any individual with higher
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y1 y2 y3 y4 y5

(a) Individual 1

y1 y2 y3 y4 y5

(b) Individual 2

y1 y2 y3 y4 y5

(c) Individual 3

y1 y2 y3 y4 y5

(d) Individual 4

y1 y2 y3 y4 y5

(e) Individual 5

Figure 11.2 The levels of consumption assigned to the various income levels by the fa-
vorite transfer systems of the individuals in a model in which each individual can con-
trol her income. The society contains five individuals, who are ordered by their earning
power, smallest to largest.

earning power, so her best plan reduces to zero the consumptions of the indi-
viduals with earning power smaller than hers and equalizes the consumptions of
the individuals with higher earning power. An example with five individuals is
shown in Figure 11.2.

Consider the collective choice problem for which the set of alternatives is the
set of these favorite transfer systems (not the set of all feasible transfer systems).
(I discuss an interpretation of this model at the end of the section.) For n ≥ 5
this problem has no Condorcet winner: each individual’s favorite transfer system
is beaten by the favorite transfer system of another individual, as the following
argument shows. Denote by T ∗i the favorite transfer system of each individual i
and by i ∗ the individual with the median earning power. For any i < i ∗, every
individual j with j ≥ i ∗ prefers T ∗i ∗ to T ∗i , so that T ∗i is beaten by T ∗i ∗ . For any i > i ∗,
every individual j with j ≤ i ∗ prefers T ∗1 to T ∗i , so that T ∗i is beaten by T ∗1 . And
every individual j with j > i ∗ prefers T ∗i ∗+1 to T ∗i ∗ , i ∗ has the reverse preference, and
every individual j with j < i ∗ is indifferent between these systems, so that if n ≥ 5
then T ∗i ∗ is beaten by T ∗i ∗+1. (If you have done Exercise 1.10, you will recognize the
preference profile.)

However, a variant of the problem has a strict Condorcet winner. In this vari-
ant, each individual i > i ∗ gives the individuals j < i ∗ a small positive amount of
consumption, with the amount declining in the value of i for each value of j , as
in Figure 11.3. Each individual j < i ∗ is then no longer indifferent between the
favorite transfer systems of the individuals with high earning power. Instead, she
prefers T ∗i ∗ , the favorite system of the individual with the median earning power,
to T ∗i for i > i ∗. As a consequence, T ∗i ∗ is a strict Condorcet winner.

Such a variant of the problem is generated by a model in which each indi-
vidual cares about her hours of work as well as her income. In this model, an
individual with earning power w who chooses to work at an intensity h < 1 can
be imitated by any individual with earning power at least w h. Thus her optimal
transfer scheme may need to assign positive consumption to individuals with
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y1 y2 y3 y4 y5

(a) Individual 1

y1 y2 y3 y4 y5

(b) Individual 2

y1 y2 y3 y4 y5

(c) Individual 3

y1 y2 y3 y4 y5

(d) Individual 4

y1 y2 y3 y4 y5

(e) Individual 5

Figure 11.3 The payoffs assigned to the various income levels by the favorite transfer
systems of the individuals in a model in which each individual can control her income.

earning power less than hers, otherwise they will choose a work intensity large
enough that they earn the same income as she does, and hence be assigned the
same transfer as she is.

The impact on the individuals’ favorite systems of this alternative assump-
tion is greatest when the dispersion of the individuals’ earning powers is small:
an individual can imitate only others whose incomes she can obtain by working
at a sufficiently high intensity, which requires their earning power to be not too
much greater than hers. No general result is available, but I now briefly present a
model and give a complete example.

11.2.2 Model and example

A society consists of a finite number of individuals, each endowed with one unit
of time, which she divides between work and leisure. Individuals may differ in
their earning power; if individual i devotes the amount of time h to work, she
obtains the income wi h. Each individual uses her income to purchase a con-
sumption good with price 1, and cares about the amount of her consumption
and the amount of time she works. When an individual works for h units of time,
her payoff is u i (wi h,1−h).

Definition 11.2: Society

A society 〈N , (u i )i∈N , (wi )i∈N 〉 consists of

• a finite set N (of individuals, each endowed with one unit of time)

and for each i ∈N

• a differentiable function u i : R+× [0,1]→ R that is increasing in each
of its arguments (u i (c , l ) is i ’s payoff when her consumption is c and
her amount of leisure is l )

• a number wi > 0 (i ’s earning power).

A transfer system assigns to each possible income a number that is at most
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equal to the income. If the number is positive it is a tax, and if it is negative
it is a subsidy. Note that the definition of a transfer system does not include a
feasibility requirement: the net amount of income disbursed is not restricted by
any budget. A feasibility condition is imposed later.

Definition 11.3: Transfer system

A transfer system is a function T : R+ → R with T (y ) ≤ y for all y . For
pre-transfer income y , post-transfer income is y −T (y ).

Consider a society 〈N , (u i )i∈N , (wi )i∈N 〉 in which each individual i chooses
how to allocate her endowment of one unit of time between work and leisure,
generating (pre-transfer) income wi h when she works for h units of time. For
a transfer system T , this income results in consumption of wi h − T (wi h), so i
chooses h to solve the problem

max
h

u i (wi h −T (wi h),1−h) subject to 0≤ h ≤ 1. (11.7)

Reformulating this problem facilitates its analysis. For each individual i ∈ N ,
define the function vi : [0, wi ]×R+→R by

vi (y , c ) = u i (c ,1− y /wi ) for all (y , c ), (11.8)

so that vi (y , c ) is i ’s payoff when she works enough hours to generate the (pre-
transfer) income y and consumes c . Then individual i ’s optimization problem
(11.7) may be formulated as

max
(y ,c )

vi (y , c ) subject to c = y −T (y ) and 0≤ y ≤wi . (11.9)

Figure 11.4 illustrates the solution of an example of this problem. The orange
curve gives the amount of consumption that each amount of pre-transfer income
yields, given the transfer system. The transfer system assigns subsidies to values
of y for which this curve is above the 45◦ line and taxes to values of y for which
it is below the 45◦ line. The blue curve is a set of pairs (y , c ) that yield i the same
payoff—in economic jargon, an indifference set or indifference curve. The slope
of the indifference curve of vi through (y , c ) at (y , c ) is

−
v ′i ,1(y , c )

v ′i ,2(y , c )
=

1

wi

u ′2(c ,1− y /wi )

u ′1(c ,1− y /wi )
> 0,

where the subscripts 1 and 2 denote the index of the variable with respect to
which the derivative is taken. The economic reason that the slope is positive is
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Indifference
curve of vi :

vi (y , c ) = const.

(yi , ci )

ci − yi =−T (yi )

c = y −T (y )

yi wi y →

ci

↑
c

Figure 11.4 The pair (yi , ci ) that solves individual i ’s optimization problem (11.9), given
the transfer system T .

that an individual obtains more income only by working longer, so that if y ′ > y
then we need c ′ > c for (y , c ) and (y ′, c ′) to yield the same payoff.

The pair (yi , ci ) in Figure 11.4 is the solution of (11.9)—the pair chosen by the
individual, given the transfer system. The length of the green line segment is the
subsidy she receives, −T (yi ).

Individual’s favorite transfer system

To be feasible, a transfer system must collect in taxes at least as much as it dis-
tributes in subsidies. Among feasible systems, the best one for any given indi-
vidual is the one for which her payoff is highest, given that every individual (in-
cluding her) chooses her hours of work optimally. I now present a convenient
formulation of the problem of finding such a selfishly-optimal system.

Fix a transfer system T , and for each i ∈ N let (yi , ci ) be a solution of (11.9).
Then in particular no individual i is better off choosing the pair (yj , c j ) chosen by
any other individual j for whom yj ≤ wi . She is also no better off choosing the
pair (0,−T (0)), achieved if she does not work, and thus is no better off choosing
(0,0), given that T (0)≤ 0. That is, for any individual i ∈N we have

vi (yi , ci )≥ vi (yj , c j ) for all j ∈N with yj ≤wi

vi (yi , ci )≥ vi (0,0).
(11.10)

Figure 11.5a illustrates these conditions for an example of a society containing
three individuals.

Conversely, let ((yi , ci ))i∈N be a profile satisfying (11.10) with y1 < y2 < · · ·< yn .
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I1 I2 I3

c = y −T (y )

0 w1 w2 w3y →

(y1, c1)
(y2, c2)

(y2, c2)

↑
c

(a) The pairs (yi , ci ) optimal for three indi-
viduals given the transfer system T . The
curves labeled I1, I2, and I3 are indiffer-
ence curves of the individuals.

I1 I2 I3

c = y −T (y )

0 w1 w2 w3 y →

(y1, c1)

(y2, c2)

(y2, c2)

↑
c

(b) A transfer system T for which for each
individual i , each member of the profile
((yi , ci ))i∈N , which satisfies (11.10), is opti-
mal.

Figure 11.5

Define the (discontinuous) transfer system T by

T (y ) =







y if y < y1

y − ci if yi ≤ y < yi+1 for i = 1, . . . , n −1
y − cn if yn ≤ y .

(An example for three individuals is given in Figure 11.5b.) I claim that for this
transfer system, for each individual i ∈ N the pair (yi , ci ) is a solution of (11.9).
The reason is that for any profile ((yi , ci ))i∈N satisfying (11.10) we have c j < ck

whenever yj < yk , otherwise k prefers (yj , c j ) to (yk , ck ).
In summary, ((yi , ci ))i∈N satisfies (11.10) if and only if for some transfer system

T , for each i ∈ N the pair (yi , ci ) is a solution of (11.9) Thus rather than working
with transfer systems we can work with transfer plans, defined as follows.

Definition 11.4: Transfer plan

A transfer plan is a profile ((yi , ci ))i∈N with (yi , ci )∈R+×R+ for all i ∈N .

A selfishly-optimal transfer plan for any individual k maximizes k ’s payoff
among the plans that satisfy (11.10) and raise at least as much in taxes as they
distribute in subsidies.
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Definition 11.5: Selfishly-optimal transfer plan for an individual

Let 〈N , (u i )i∈N , (wi )i∈N 〉be a society, for each i ∈N let vi be the function de-
fined in (11.8), and let k ∈N . A transfer plan ((yi , ci ))i∈N is selfishly-optimal
for individual k if it is a solution of the problem

max
((yi ,ci ))i∈N

vk (yk , ck ) subject to

vi (yi , ci )≥ vi (yj , c j ) for all i ∈N and all j ∈N for which yj ≤wi ,

vi (yi , ci )≥ vi (0,0) for all i ∈N ,

0≤ yi ≤wi and ci ≥ 0 for all i ∈N , and
∑

i∈N (yi − ci )≥ 0.

(11.11)

In the remainder of this section, I provide a diagrammatic analysis of the indi-
viduals’ selfishly-optimal plans and an example of a society with three individu-
als in which the selfishly-optimal plan of the individual with the median earning
power is a strict Condorcet winner of the collective choice problem in which the
set of alternatives is the set of the individuals’ selfishly-optimal plans.

My analysis is restricted to societies in which every individual’s payoff func-
tion u i is the same and has the property that the optimal amount of consump-
tion for each individual in the absence of transfers is increasing in her earning
power. That is, the value of c that maximizes u i (c , 1− c/w ) is increasing in w .
This condition is equivalent to the slope −v ′i ,1(y , c )/v ′i ,2(y , c ) of the indifference
curve of vi through (y , c ) at (y , c ) being smaller for larger values of wi , for each
value of (y , c ). (This equivalence is demonstrated in Mirrlees 1971, footnote 1,
for example.) An interpretation of the condition is that the amount of additional
consumption required to compensate for the extra work necessary to earn an
additional unit of income is smaller for individuals with greater earning power.

Consider the transfer plan of individual 2 for the society with three individu-
als shown in Figure 11.6a. This plan satisfies the constraints in (11.11) for k = 2:
each individual i likes (yi , ci ) better than (yj , c j ) for j 6= i and better than (0,0),
and the total tax paid (by individual 3), the length of the vertical red line segment,
exceeds the total subsidy paid out (to individuals 1 and 2), the sum of the lengths
of the green line segments. But this plan is not optimal for individual 2. First, the
total tax exceeds the total subsidy, so that c2 can be increased, making individ-
ual 2 better off, without violating the budget constraint or any other constraint.
Second, individual 1 likes (y1, c1) better than (y2, c2), so that c1 can be reduced
while keeping (y1, c1) the best of the three pairs for her, which relaxes the budget
constraint and allows c2 to be increased. Similarly, c3 can be reduced, increas-
ing the tax on individual 3. Finally, the slope of individual 1’s indifference curve
through (y1, c1) and the slope of individual 3’s indifference curve through (y3, c3)
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(a) A suboptimal plan.
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(b) A plan without suboptimal features of
the plan in Figure 11.6a.

Figure 11.6 Transfer plans for individual 2 in a society with three individuals.

are both different from 1, so the pairs (y1, c1) and (y3, c3) can be moved along the
indifference curves to increase the tax or reduce the subsidy for each individual
without affecting her payoff. Figure 11.6b shows a plan that cannot be improved
by any such changes (although it might be improved by other changes). Similar
considerations apply to the selfishly-optimal plans of the other individuals.

Figure 11.7 shows two examples of transfer plans for individual 2 in a society
with three individuals that illustrate other possibilities for an optimal plan. In
Figure 11.7a, the plan pushes individual 1 down to her lowest possible payoff: she
is indifferent between (y1, c1) and (0,0). Although she is not indifferent between
(y1, c1) and (y2, c2), the plan may still be optimal for individual 2. In Figure 11.7b,
(y2, c2) is unattainable by individual 1 because y2 > w1. In this case, an optimal
plan for individual 2 may not exist: plans in which y2 is closer to w1 may be better
for her, but a plan in which y2 = w1 may be significantly worse, because (y2, c2)
is then attainable for individual 1, who consequently has the option of receiving
the same transfer as individual 2.

For a society with five individuals in which the values of wi are large enough
not to constrain individual 3’s selfishly-optimal plan, Figure 11.8 shows a plan
that satisfies the analogues of the necessary conditions for optimality for the plan
of individual 2 in a society with three individuals illustrated in Figure 11.6b. The
diagram suggests that, under the assumptions on preferences that I am making,
an individual has more leverage in raising taxes from individuals whose earn-
ing powers are further from hers. As a consequence, under some conditions the
payoffs in the individuals’ selfishly-optimal plans plausibly take the form given
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(b) Individual 1’s earning power is insuffi-
cient to allow her to obtain (y2, c2).

Figure 11.7 Transfer plans for individual 2 for a society with three individuals.

in Figure 11.3, so that the plan of the individual with the median earning power
is a strict Condorcet winner of the collective choice problem in which the set of
alternatives is the set of the individuals’ selfishly-optimal plans.

A computed example for a society with three individuals is given in Figure 11.9.
Each individual’s preferences over the three selfishly-optimal plans are single-
peaked with respect to the ordering p ∗1 < p ∗2 < p ∗3, where p ∗i denotes the selfishly-
optimal plan of individual i , so that p ∗2 is a strict Condorcet winner of the collec-
tive choice problem. No general result is available; see the Notes section at the
end of the chapter for information about published results.

I close the section with an interpretation of the collective choice problem in
which the set of alternatives is the set of the individuals’ selfishly-optimal plans.
Suppose that each individual chooses whether to become a candidate, and if she
does so and is elected she implements her favorite plan (along the lines of the
electoral competition game with citizen-candidates considered in Section 10.4).
If one of the candidates is the individual with the median earning power, then
that individual is elected by any voting method that elects the candidate whose
favorite policy is the strict Condorcet winner of the collective choice problem.
(Proposition 5.3 shows that every binary agenda has this property.)

11.3 Voting over linear transfer systems

The model I now discuss differs in two main respects from the one in the pre-
vious section. First, the transfer system is restricted to be linear (more properly,
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y →

↑
c

1 2 3 4 5

(y1, c1)

(y2, c2)

(y3, c3)

(y4, c4)

(y5, c5)

Figure 11.8 A transfer plan of individual 3 for a society with five individuals.

affine): income is taxed at the constant rate t and every individual receives a
fixed subsidy r . Second, the set of alternatives in the collective choice problem is
the set of all linear transfer systems, not only the ones that are selfishly-optimal
for some individual.

Definition 11.6: Linear transfer system

For any (t , r ) ∈ [0,1] × R+ the linear transfer system (t , r ) is the transfer
system T for which T (y ) = t y − r .

11.3.1 Exogenous incomes

First suppose that the individuals’ incomes are given; no individual makes a
choice that affects her income. For budget balance we need t y = r , where y is
the individuals’ average income. Then the after-tax income of an individual with
income y is y − t (y − y ). This payoff is increasing in t if y < y and decreasing in
t if y > y , so that for y 6= y the individual’s preferences over t are single-peaked
with respect to the ordering ≥ of t , with the favorite tax rate of an individual
with income y equal to 1 if y < y and to 0 if y > y . Suppose that the number
of individuals is finite and none of them has an income of exactly y . Consider a
collective choice problem in which the set of alternatives is a finite set of feasible
linear transfer systems that includes (0,0) (no redistribution) and (1, y ) (complete
equalization of incomes). Proposition 1.4 implies that the Condorcet winner of
this problem is (1, y ) if the individuals’ median income is less than the mean and
(0,0) if it is greater than the mean. Hence the Condorcet winner entails the full
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3’s favorite plan

Individual 1

Individual 2

Individual 3

Figure 11.9 The selfishly-optimal transfer plans of the individuals in the society 〈{1,2,3},
(u , u , u ), (w1, w2, w3)〉 where w1 = 2, w2 = 2.2, w3 = 2.4, and u (c , l ) = c − 4(1− l )2 for all
(c , l ), so that vi (y , c ) = c −4(y /wi )2 for i = 1, 2, 3.

equalization of income in a society in which the median income is less than the
mean and no redistribution in a society in which the median income is greater
than the mean. An example of a distribution for which the median is less than
the mean is shown in Figure 11.10.

11.3.2 Endogenous incomes and incentive effects

If the income an individual earns depends on the amount of time she works, an
increase in the tax rate may cause her to devote less time to work, reducing the
revenue from the tax. Thus an increase in the tax rate may not be desirable. In
particular, a tax rate of 1 may no longer be preferred by a majority of individuals
to any other rate, even if the distribution of earning power is skewed to the left.

Consider a society 〈N , (u i )i∈N , (wi )i∈N 〉. Suppose that the individuals’ earn-
ings are subject to a linear transfer system (t , r ). If individual i chooses to work
for h units of time then her payoff is u i ((1− t )wi h + r,1−h). She chooses h to
maximize this payoff. Assume that the maximizer, denoted h∗i (t , r ), is unique,
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mean income→median

Figure 11.10 A distribution of income for which the median is less than the mean. (The
distribution shown is a lognormal.)

and denote her maximal payoff by Vi (t , r ):

Vi (t , r ) = max
h∈[0,1]

u i ((1−t )wi h+r,1−h) = u i ((1−t )wi h∗i (t , r )+r,1−h∗i (t , r )). (11.12)

The result in this section applies to societies in which the individuals can be
ordered by their pre-tax incomes independently of the transfer system: that is,
for any two individuals i and j , either wi h∗i (t , r ) > w j h∗j (t , r ) for every linear
transfer system (t , r ) or wi h∗i (t , r )<w j h∗j (t , r ) for every such system.

Definition 11.7: Society with individuals ordered by pre-tax income

The individuals in a society 〈N , (u i )i∈N , (wi )i∈N 〉 can be ordered by pre-tax
income if for every linear transfer system (t , r ) and every individual i ∈ N
the problem

max
h∈[0,1]

u i ((1− t )wi h + r, 1−h)

has a unique solution h∗i (t , r ), and for some linear order ≥ on N

j < i ⇔ w j h∗j (t , r )>wi h∗i (t , r )

for all (t , r )∈ [0,1]×R+ with h∗i (t , r )> 0.
(11.13)

This condition is strong. Intuition suggests that in a diverse society the pre-
tax incomes of some individuals are higher than those of other individuals un-
der some transfer systems but lower under other transfer systems. Here are two
examples.

Example 11.1: Cobb-Douglas payoff functions

Consider a society 〈N , (u i )i∈N , (wi )i∈N 〉 for which for each i ∈ N we have
u i (y ,1−h) = y βi (1−h)1−βi for all y and h, where βi ∈ (0,1). Then

wi h∗i (t , r ) =wi max

�

0,βi −
(1−βi )r

(1− t )wi

�

.
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wi = 1, βi = 0.4

wi = 1, βi = 0.5
wi = 1, βi = 0.6

0 0.5 1
0

0.5

1

t →

↑
r

Figure 11.11 Indifference sets for the preferences over linear transfer systems of indi-
viduals with the payoff function specified in Example 11.1 for wi = 1 and various values
of βi . The indifference sets for βi = 0.6 are blue, those for βi = 0.5 are green, and those
for βi = 0.4 are red; sets corresponding to higher payoffs are darker.

Thus if wi is the same for all i ∈ N , then wi h∗i (t , r ) is increasing in βi

when it is positive, so that the ordering of the individuals defined by j < i
if and only if βj > βi satisfies (11.13). Some indifference curves for wi = 1
and various values of βi are shown in Figure 11.11. The function wi h∗i (t , r )
is not differentiable at any (t , r ) for which βi = (1−βi )r /((1− t )wi ), so that
the payoff function Vi is not differentiable at any such point. However,
although the next result, Proposition 11.2, assume differentiability, it holds
also if wi h∗i (t , r ) is piecewise differentiable, as it is in this example.

Alternatively, if βi is the same for all i ∈N , then wi h∗i (t , r ) is increasing
in wi when it is positive, so that again (11.13) is satisfied.

If the individuals differ in both wi and βi , (11.13) may be violated. For
example, the pre-tax income of an individual with wi = 16 and βi = 0.2 is
greater for the transfer system (0.45,0.25) than it is for the transfer system
(0.8,0.8), but is less for an individual with wi = 2, and βi = 0.9.

Example 11.2: Quasilinear payoffs

Consider a society 〈N , (u i )i∈N , (wi )i∈N 〉 for which for each i ∈ N we have
u i (y ,1−h) = y + v (1−h) for all y and h, where v is an increasing concave
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differentiable function. Then

wi h∗i (t , r ) =wi max
�

0,1− (v ′)−1((1− t )wi )
	

.

Given the concavity of v , this expression is increasing in wi when it is pos-
itive. Thus (11.13) is satisfied by the ordering ≥ of the individuals defined
by j < i if and only if w j >wi .

Now consider a collective choice problem in which the alternatives are finitely
many linear transfer systems. If (t , r ) and (t ′, r ′) are alternatives with t ′ > t and
r ′ < r , then every individual prefers (t , r ) to (t ′, r ′), so (t ′, r ′) can be eliminated
from consideration. Thus we can assume that if (t , r ) and (t ′, r ′) are alternatives
with t ′ > t then r ′ ≥ r . For convenience, I make the stronger assumption that
t ′ > t if and only if r ′ > r .

The next result says that for a society in which the individuals can be or-
dered by pre-tax income, the collective choice problem has single-crossing pref-
erences with respect to the ordering of the individuals by pre-tax income. Hence
by Proposition 1.5, if each median individual according to the ordering has a
unique favorite linear transfer system then the favorite linear transfer system of a
median individual is a Condorcet winner of the problem. The key point in the ar-
gument is that the slope at any point (t , r ) of i ’s indifference curve for her payoff
function Vi through (t , r ) is her pre-tax income wi h∗i (t , r ), so that the assumption
that the individuals can be ordered by pre-tax income implies that the slopes of
their indifference curves are ordered independently of the transfer system.

Proposition 11.2: Single-crossing preferences over linear transfer
systems

Let 〈N , (u i )i∈N , (wi )i∈N 〉 be a society in which the individuals can be or-
dered by pre-tax income. For each i ∈N denote by ¼i the preference rela-
tion represented by the function Vi defined in (11.12): (t , r )¼i (t ′, r ′) if and
only if Vi (t , r )≥ Vi (t ′, r ′). Assume that Vi is continuously differentiable and
V ′i ,2(t , r ) 6= 0 for all (t , r )∈ [0,1]×R+.

Let T be a finite set of linear transfer systems such that if (t , r ) ∈T and
(t ′, r ′) ∈T then t ′ < t if and only if r ′ < r . Then the collective choice prob-
lem 〈N ,T ,¼〉 has single-crossing preferences with respect to the ordering
of the individuals by pre-tax income.

As a consequence, if each median individual according to this ordering
has a unique favorite alternative in T then

• if the number of individuals is even then each of these favorite alter-
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natives is a Condorcet winner of 〈N ,T ,¼〉

• if the number of individuals is odd then the favorite alternative of the
(unique) median individual is the strict Condorcet winner of 〈N ,T ,¼〉.

Proof

Let (t 1, r 1) be a linear transfer system, let i ∈ N , and consider i ’s indiffer-
ence set that contains (t 1, r 1):

{(t , r )∈ [0,1]×R+ : Vi (t , r ) = Vi (t
1, r 1)}.

By the implicit function theorem, the function g on (0,1) defined by
Vi (t , g (t )) = Vi (t 1, r 1) (i ’s indifference curve through (t 1, r 1)) is continu-
ously differentiable and g ′(t 1) = −V ′i ,1(t

1, r 1)/V ′i ,2(t
1, r 1). By the envelope

theorem

V ′i ,1(t , r ) =−wi h∗i (t , r )u ′i 1((1− t )wi h∗i (t , r )+ r,1−h∗i (t , r ))

V ′i ,2(t , r ) = u ′i ,1((1− t )wi h∗i (t , r )+ r,1−h∗i (t , r )),

so that

−
V ′i ,1(t , r )

V ′i ,2(t , r )
=wi h∗i (t , r ). (11.14)

That is, for any linear transfer system (t , r ), the slope at (t , r ) of i ’s indif-
ference curve through (t , r ) is her pre-tax income when she chooses her
hours of work optimally, given (t , r ).

I argue that the collective choice problem 〈N ,T ,¼〉 has single-crossing
preferences with respect to the ordering ≥ of the individuals by pre-tax in-
come. For any individual i and linear transfer system (t , r )with h∗i (t , r )> 0,
if j < i then by (11.13) and (11.14) the slope of j ’s indifference curve
through (t , r ) at (t , r ) is greater than the slope of i ’s indifference curve
through (t , r ) at (t , r ), as for (t 1, r 1) in Figure 11.12. Thus j ’s indifference
curve through (t , r ) lies above i ’s for all tax rates greater than t and below
it for all tax rates less than t .

Now suppose that for (t 1, r 1)∈T and (t 2, r 2)∈T we have t 1 < t 2, so that
r 1 < r 2, and (t 1, r 1)¼i (t 2, r 2). Then given r 2 > r 1, the slope at (t 1, r 1) of i ’s
indifference curve through (t 1, r 1) is positive, so h∗i (t

1, r 1) > 0 by (11.14).
Thus given the property of the indifference curves in the previous para-
graph, (t 1, r 1) �j (t 2, r 2), as in Figure 11.12. Similarly, if t 1 < t 2, (t 2, r 2) ¼i
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Vj (t , r ) = const.

Vi (t , r ) =
const.

t →

↑
r

= direction
of increase

(t 1, r 1)

(t 2, r 2)

Figure 11.12 An illustration of the argument in the proof of Proposition 11.2. Individ-
ual i prefers (t 1, r 1) to (t 2, r 2), and so does any individual j whose indifference curves
are more steeply sloped.

(t 1, r 1), and j > i then w j h∗j (t , r ) < wi h∗i (t , r ), so that (t 2, r 2) �j (t 1, r 1).
Thus the conditions for single-crossing are satisfied.

The claims about the Condorcet winners follow from Proposition 1.5.

Suppose that (11.13) is satisfied by an ordering of the individuals by earning
power (wi ) (as in Example 11.1 when the individuals’ preferences over income
and leisure are the same, and in Example 11.2), and that the political system gen-
erates a transfer system that is a Condorcet winner among the alternatives. Then
by Proposition 11.2 the linear transfer system that the political system generates
is the favorite, among the alternatives, of the individual with median earning
power. The slope of an individual’s indifference curve is her pre-tax income (see
(11.14)), so if individuals with different pre-tax incomes disagree on the ordering
of transfer systems, the individual with the lower pre-tax income prefers the sys-
tem with a higher tax rate (and higher fixed component). Thus if, in a given soci-
ety, the voting franchise is expanded among individuals with low earning power,
so that the median individual’s earning power decreases, the tax rate generated
by the political system does not decrease, and may increase.

Recall that Proposition 8.1 says that in a Nash equilibrium of an electoral
competition game with two office-motivated candidates, the policy chosen by
each candidate is a Condorcet winner of the underlying collective choice prob-
lem. Thus Proposition 11.2 implies that in such a Nash equilibrium each candi-
date selects the favorite tax system of the individual with median pre-tax income
if the number of individuals is odd, and the favorite tax system of an individual
whose pre-tax income is one of the medians if the number of individuals is even.
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11.4 Coalitional bargaining over redistribution

The ideas underlying the analysis in this section are that the size and wealth of
each group in society determine its power, and the distribution of power shapes
the factors that determine the transfer system, like the electoral system, the rules
under which it operates (e.g. the rules on campaign spending), and the mecha-
nisms by which a government makes decisions. However, the electoral system
and the mechanisms of government decision-making are not modeled explicitly.
Instead, the model aims to deduce directly from the distribution of power the
distribution of payoffs that emerges.

The setting for the model is a society in which each individual is endowed
with an amount of a consumption good; she does not have to work to obtain this
good. Each individual’s payoff is the amount of the good she ultimately obtains,
after she pays the tax or receives the subsidy specified by the transfer system. For
convenience, the number of individuals in the economy is assumed to be odd.

Definition 11.8: Endowed society

An endowed society 〈N , (ei )i∈S〉 consists of

• a finite set N (of individuals) with an odd number of members that is
at least 3

• a number ei ≥ 0 for each i ∈ N (the amount of a consumption good
with which i is endowed).

A nonempty subset of N is a coalition. For any coalition S, e (S) =
∑

i∈S ei ,
the total endowment of S. The payoff of each individual is the amount of
the consumption good that she ultimately obtains.

The power of each coalition is delimited by two central assumptions:

• any majority has the option to expropriate any amount of the endowment of
the complementary minority

• any minority has the option to destroy its endowment.

The following definition includes the assumption that such actions exist, and
also the assumption that for any distribution of the total endowment e (N ) and
any coalition S, actions for S and its complement N \ S exist that achieve that
distribution.
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Definition 11.9: Coalitional redistribution game

A coalitional redistribution game 〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 consists of an
endowed society 〈N , (ei )i∈N 〉 and, for each coalition S, a set AS of actions
and a payoff function hS : AS ×AN \S→R+ such that

a. for every distribution of the total endowment e (N ) of the society there
are actions in AS and AN \S that achieve the distribution:

{(hS(σS ,σN \S), hN \S(σS ,σN \S)) : (σS ,σN \S)∈ AS ×AN \S}

= {(πS ,πN \S)∈R
2
+ :πS +πN \S ≤ e (N )}

b. if S is a majority (has more than 1
2 |N |members) then there exists bσS ∈

AS such that

hS(bσS ,σN \S)≥ e (S) and hN \S(bσS ,σN \S) = 0 for all σN \S ∈ AN \S (11.15)

and bσN \S ∈ AN \S such that

hS(σS , bσN \S)≤ e (S) and hN \S(σS , bσN \S) = 0 for all σS ∈ AS. (11.16)

(The action bσS may be interpreted at the expropriation of any endow-
ment of N \S that N \S does not destroy, and bσN \S may be interpreted
as the destruction of N \S’s endowment.)

In the solution concept I use for a coalitional redistribution game, the pos-
sibility of each group’s using its extreme actions (expropriation, destruction of
endowment) determines the distribution of payoffs. No group takes those ex-
treme actions; indeed, no coalition is singled out as the one that forms. But the
compromise is shaped by the existence of these actions.

First we derive an index of the strength of each coalition S by analyzing two-
player games in which the players are S and N \S. For reasons that will become
apparent, I refer to these games as “threat games”. Then we derive a distribution
of payoffs that balances these strengths—a compromise. I now describe each of
these components in detail.

Threat games

Fix a coalition S and consider a two-player strategic game in which the players
are S and its complement N \S. The action chosen in this game by each player
is interpreted as the action the player will take if negotiations break down—a
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payoff of S→

↑
payoff

of N \S

hS(σS ,σN \S)

hN \S(σS ,σN \S)

Threat payoffs

Negotiated payoffs:
�

hS(σS ,σN \S)+
1
2

�
e (N )−hS(σS ,σN \S)−hN \S(σS ,σN \S)

�
,

hN \S(σS ,σN \S)+
1
2

�
e (N )−hS(σS ,σN \S)−hN \S(σS ,σN \S)

��

Figure 11.13

threat. The sum of the payoffs of S and N \S when these threats are carried out
is typically less than the total payoff available, e (N ). The model assumes that
bargaining results in S and N \S splitting equally the difference between e (N )
and this sum. Each player knows that her negotiated payoff is determined in this
way, and chooses her threat to maximize her negotiated payoff, given the threat
chosen by the other player.

More precisely, suppose that the players choose the actions (threats) σS and
σN \S . If they carry out these threats, their payoffs are hS(σS ,σN \S) and hN \S(σS ,σN \S),
and hence the surplus they forego is e (N )− (hS(σS ,σN \S) + hN \S(σS ,σN \S)). In
the negotiated outcome, this surplus is split equally between them, so that their
negotiated payoffs are

uS(σS ,σN \S) = hS(σS ,σN \S)+ 1
2

�
e (N )−hS(σS ,σN \S)−hN \S(σS ,σN \S)

�

u N \S(σS ,σN \S) = hN \S(σS ,σN \S)+ 1
2

�
e (N )−hS(σS ,σN \S)−hN \S(σS ,σN \S)

�
.

These payoffs are illustrated in Figure 11.13.

Definition 11.10: Threat game between S and N \S

Given a coalitional redistribution game 〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 and
a coalition S ⊂ N with more than 1

2 |N | members, the threat game
〈N , (ei )i∈N , AS , AN \S , hS , hN \S〉 between S and N \S is the following two-player
strategic game.

Players
S and N \S.

Actions
The sets of actions of S and N \S are AS and AN \S .
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Payoffs
The payoff functions uS : AS ×AN \S →R of S and u N \S : AS ×AN \S →R of
N \S are defined by

uS(σS ,σN \S) = 1
2

�
e (N )+hS(σS ,σN \S)−hN \S(σS ,σN \S)

�

u N \S(σS ,σN \S) = 1
2

�
e (N )−hS(σS ,σN \S)+hN \S(σS ,σN \S)

�

for all (σS ,σN \S).

I assume that each player chooses her action (threat) in this game to maxi-
mize her payoff, given the other player’s action. That is, the pair of actions is a
Nash equilibrium; we may aptly characterize it as a pair of optimal threats. For
every pair (σS ,σN \S) of actions in the game, the sum of the players’ payoffs is
the same, equal to e (N ), so that the game is strictly competitive and hence every
Nash equilibrium yields the same pair of payoffs (Proposition 16.5). The next re-
sult shows that the pair (bσS , bσN \S) of extreme actions given in Definition 11.9b is
a pair of optimal threats, and calculates the resulting negotiated payoffs.

Lemma 11.1: Nash equilibrium of threat game

Let 〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 be a coalitional redistribution game and let
S ⊂ N be a coalition with more than 1

2 |N |members. The pair (bσS , bσN \S) of
actions given in Definition 11.9b is a Nash equilibrium of the threat game
〈N , (ei )i∈N , AS , AN \S , uS , u N \S〉, and in every Nash equilibrium the payoff of
S is 1

2

�
e (N )+ e (S)

�
and that of N \S is 1

2

�
e (N )− e (S)

�
= 1

2 e (N \S).

Proof

We have hS(bσS , bσN \S) = e (S) and hN \S(bσS , bσN \S) = 0, so

uS(bσS , bσN \S) = 1
2

�
e (N )+ e (S)

�

u N \S(bσS , bσN \S) = 1
2

�
e (N )− e (S)

�
.

Now, by (11.16), for any σS ∈ AS we have

uS(σS , bσN \S) = 1
2

�
e (N )+hS(σS , bσN \S)−hN \S(σS , bσN \S)

�
≤ 1

2

�
e (N )+ e (S)

�
,

and by (11.15), for any σN \S ∈ AN \S we have

uS(bσS ,σN \S) = 1
2

�
e (N )−hS(bσS ,σN \S)+hN \S(bσS ,σN \S)

�
≤ 1

2

�
e (N )− e (S)

�
.

Thus (bσS , bσN \S) is a Nash equilibrium of the game.
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For every (σS ,σN \S) ∈ AS ×AN \S we have uS(σS ,σN \S)+u N \S(σS ,σN \S) =
e (N ), so the threat game is strictly competitive. Hence it has a unique Nash
equilibrium payoff pair (Proposition 16.5).

Compromise

The model uses the Nash equilibrium payoffs in the threat game between S and
N \S as measures of the strengths of S and N \S, for each coalition S. The coali-
tional game in which the worth of each coalition is its equilibrium payoff in the
threat game is called the Harsanyi coalitional form of the redistribution game
(after John C. Harsanyi, 1920–2000).

Definition 11.11: Harsanyi coalitional form of coalitional redistribution
game

The Harsanyi coalitional form of the coalitional redistribution game
〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 is the coalitional game with transferable pay-
off 〈N , v 〉 in which the worth v (S) of each coalition S is the payoff of S in a
Nash equilibrium of the threat game 〈N , (ei )i∈N , AS , AN \S , hS , hN \S〉 between
S and N \S.

The Harsanyi coalitional form of a coalitional redistribution game is given in
the following result, which follows immediately from Lemma 11.1.

Lemma 11.2: Harsanyi coalitional form of coalitional redistribution
game

Let 〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 be a coalitional redistribution game. The
Harsanyi coalitional form of this game is the coalitional game 〈N , v 〉 for
which

v (S) =

(
1
2

�
e (N )+ e (S)

�
if |S|> 1

2 |N |
1
2 e (S) if |S|< 1

2 |N |
(11.17)

for each S ⊆N .

Giving every coalition S its worth v (S) in the Harsanyi coalitional form is not
feasible: no distribution of the total endowment yields these payoffs. To see why,
consider a distribution of the total endowment in which each individual i ∈ N
receives xi , so that

∑
i∈N xi = e (N ). For the total payoff of every coalition S to

be its worth v (S) in the Harsanyi coalitional form, we need
∑

i∈S xi = v (S) for
every coalition S. Denote byS the set of coalitions that are bare majorities, with
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k = 1
2 (n+1)members, and by l the number of such coalitions. For each coalition

S ∈ S we have v (S) = 1
2 (e (N ) + e (S)) by (11.17), so for the equality

∑
i∈S xi = v (S)

to hold for all S ∈S we need
∑

S∈S

∑

i∈S

xi = 1
2

∑

S∈S

(e (N )+ e (S)) = 1
2 l e (N )+ 1

2

∑

S∈S

∑

i∈S

ei .

Reversing the order of each of the double summations and using the fact that
each individual belongs to k l /n of the coalitions in S , the left-hand side is

∑

i∈N

∑

{S∈S :i∈S}

xi = (k l /n )
∑

i∈N

xi = (k l /n )e (N )

and the right-hand side is

1
2 l e (N )+ 1

2

∑

i∈N

∑

{S∈S :i∈S}

ei = 1
2 l e (N )+ 1

2 (k l /n )
∑

i∈N

ei = 1
2 l e (N )+ 1

2 (k l /n )e (N ).

Thus the two sides are equal if and only if k = n , which is not satisfied for any
value of n ≥ 3. Hence the distribution on which the individuals agree cannot
give each coalition S its worth v (S); it must entail compromise.

I present two models of compromise. One is the Shapley value, which assigns
a payoff to each individual based on the impact her membership of a coalition
has on the coalition’s worth. Suppose that the individuals arrive in a given or-
der. Let i be an individual, and let S be the set of individuals who arrive before
i . Then i ’s arrival increases the worth of the set of individuals who have arrived
by v (S ∪{i })−v (S). We can think of this amount as i ’s contribution for this order
of arrival. The Shapley value assigns to each individual the average of her contri-
butions over all orders. A property that imparts to it the flavor of a compromise
is that the amount by which the payoff it assigns to any individual j decreases
when any another individual i is excluded from the game is the same for all i
and j (Proposition 16.11); no other solution concept has this property.

The next result says that the Shapley value of the Harsanyi coalitional form
of a coalitional redistribution game involves a fixed subsidy equal to half of the
total endowment and a 50% tax rate.

Proposition 11.3: Shapley value of coalitional redistribution game

Let 〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 be a coalitional redistribution game and let
〈N , v 〉 be its Harsanyi coalitional form. The Shapley value of 〈N , v 〉 assigns
the payoff

1
2 (e + ei )

to each individual i ∈N , where e = e (N )/|N |, the average endowment.
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Proof

Let i ∈N and n = |N |.

Step 1 The Shapley value of 〈N , v 〉 is the same as the Shapley value of the
coalitional game 〈N ,q 〉 for which

q (S) =

(
e (S) if |S|> 1

2 n

0 if |S|< 1
2 n.

Proof. By Lemma 16.1 the Shapley value of 〈N ,q 〉 is equal to the Shapley
value of the game 〈N ,q #〉where q #(S) = q (N )−q (N \S) for each coalition S,
or

q #(S) =

(
e (N ) if |S|> 1

2 n

e (S) if |S|< 1
2 n .

By Lemma 11.2 we have v (S) = 1
2q (S) + 1

2q #(S) for each coalition S, so the
additivity of the Shapley value implies the result. Ã

Step 2 The Shapley value of 〈N ,q 〉 assigns to each individual i ∈ N the
payoff 1

2 (e + ei ).

Proof. The payoff of individual i in the Shapley value of 〈N ,q 〉 is the aver-
age, over all orderings R of N , of i ’s marginal contribution q (SR

i ∪{i })−q (SR
i )

in the ordering R , where SR
i is the set of individuals who precede i in R (see

(16.3)).

• If i ’s position in R is 1
2 (n − 1) or less, her marginal contribution is 0,

because q (S) = 0 if |S|< 1
2 n .

• If i ’s position in R is 1
2 (n + 1) (the middle position), her marginal con-

tribution is e (SR
i ∪ {i }), because q (SR

i ) = 0 and q (SR
i ∪ {i }) = e (SR

i ∪ {i }).
There are (n − 1)! orderings in which i is in this position, and each
other individual comes before i in half of these orderings and after i
in the other half, so the sum of i ’s marginal contributions over all the
orderings is

(n −1)!
�

1
2 e (N \ {i })+ ei

�
.

• If i ’s position in R is 1
2 (n + 1) + 1 or greater, her marginal contribution

is ei , because q (SR
i ) = e (SR

i ) and q (SR
N ∪ {i }) = e (SR

i ∪ {i }) = e (SR
i ) + ei .

Thus the sum of i ’s marginal contributions over all the orderings in
which she has a given position of 1

2 (n + 1) + 1 or greater is (n − 1)!ei .
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There are 1
2 (n − 1) such positions for her, so the sum of her marginal

contributions over all orderings in which her position is 1
2 (n +1)+1 or

greater is
1
2 (n −1)(n −1)! ei .

The average of these marginal contributions is

1

n !

�
1
2 (n −1)!e (N \ {i })+ (1+ 1

2 (n −1))(n −1)! ei

�

=
1

2n
e (N \ {i })+

n +1

2n
ei = 1

2 e + 1
2 ei ,

where e is the average endowment, e (N )/n . Ã

Another approach to modeling compromise is related to the solution con-
cept of the core. The core of a coalitional game with transferable payoff 〈N , v 〉
is the set of distributions of payoff among the players with the property that the
total payoff of every coalition S is at least v (S). I have argued that for the Harsanyi
coalitional form 〈N , v 〉 of a coalitional redistribution game no payoff distribution
satisfies this property, so the core of such a game is empty. For any payoff distri-
bution y , we can view v (S)− y (S), where y (S) =

∑
i∈S yi , as the extent of S’s dis-

satisfaction with y . Suppose that, in the absence of a distribution in which every
coalition is satisfied, we look for a distribution that minimizes the dissatisfaction.
Precisely, we look for a distribution for which the maximal dissatisfaction across
all coalitions is minimal. It turns out that the only distribution with this property
is the one for which yi = 1

2 (e + ei ) for all i ∈N , the same as the Shapley value.

Proposition 11.4: Dissatisfaction-minimizing payoff distribution of
coalitional redistribution game

Let 〈N , (ei )i∈N , (AS)S⊆N , (hS)S⊆N 〉 be a coalitional redistribution game and
let 〈N , v 〉 be its Harsanyi coalitional form. Exactly one payoff distribu-
tion (yi )i∈N minimizes maxS⊆N (v (S)−y (S)), namely the one that assigns the
payoff

1
2 (e + ei )

to each individual i ∈N , where e = e (N )/|N |, the average endowment.
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Proof

Let n = |N | and z i = 1
2 (e + ei ) for each i ∈ N . I first argue that the payoff

distribution (yi )i∈N = (z i )i∈N minimizes maxS⊆N (v (S)− y (S)).
Using Lemma 11.2 we have

v (S)− z (S) =

(
1
2

�
e (N )+ e (S)− e (N )|S|/n − e (S)

�
if |S|> 1

2 n
1
2

�
e (S)− e (N )|S|/n − e (S)

�
if |S|< 1

2 n

=

(
1
2 e (N )(1− |S|/n ) if |S|> 1

2 n

− 1
2 e (N )|S|/n if |S|< 1

2 n ,

so that the solutions of maxS⊆N (v (S) − z (S)) are the coalitions of size
1
2 (n + 1) (a bare majority), and the maximum is 1

2 e (N )(1− 1
2 (n +1)/n ) =

1
4 (n −1)e (N )/n .

Now suppose, contrary to the claim, that there is a payoff distribution
(yi )i∈N for which v (S)− y (S) < 1

4 (n − 1)e (N )/n for every coalition S. For a
coalition with 1

2 (n +1) members, this inequality is 1
2 e (N ) + 1

2 e (S)− y (S) <
1
4 (n −1)e (N )/n , so that we need

y (S)> 1
2 e (S)+ 1

4 (n +1)e (N )/n for every coalition S with |S|= 1
2 (n +1).

Denote by k the number of coalitions with 1
2 (n + 1) members. Each indi-

vidual is a member of 1
2 (n + 1)k/n of these coalitions, so that adding the

inequalities over all coalitions with 1
2 (n +1)members we get

1
2 (n +1)k y (N )/n > 1

4 (n +1)k e (N )/n + 1
4 (n +1)k e (N )/n

= 1
2 (n +1)k e (N )/n ,

which violates y (N ) = e (N ), as required by the feasibility of (yi )i∈N .
Thus the payoff distribution (yi )i∈N = (z i )i∈N is a minimizer of

maxS⊆N (v (S)− y (S)). It is the only minimizer because if (xi )i∈N is a payoff
distribution that differs from (z i )i∈N then z (S) > x (S) for some bare ma-
jority S, so that v (S) − x (S) > v (S) − z (S) = 1

4 (n − 1)e (N )/n , the value of
maxS⊆N (v (S)− z (S)).

Comments

• The analysis is limited to individuals with linear payoff functions, so that
transferring endowment among individuals is equivalent to transferring pay-
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off, which allows us to use the solution concepts of the Shapley value and the
dissatisfaction-minimizing payoff distribution. If payoff is not transferable,
designing appealing solution concepts that model compromise is challenging.

• The solution concept of the dissatisfaction-minimizing payoff distribution is
closely related to that of the nucleolus, a standard solution concept for coali-
tional games with transferable payoff. The nucleolus consists of the payoff
distributions (yi )i∈N that minimize the largest dissatisfaction v (S)−y (S) and,
subject to doing so, minimize the second largest dissatisfaction, and so forth.
(See, for example, Moulin 1988, Section 5.4 and Osborne and Rubinstein
1994, Section 14.3.3.)

• Every possible coalition is treated in the same way by both solution concepts.
However, coalitions may differ in the likelihood that they exercise their bar-
gaining power. For example, a coalition of poor (low endowment) individuals
may be more likely than one consisting of a mix of rich and poor to do so be-
cause of a shared identify or a more easily defined common purpose. In such
cases, a different analysis may be appropriate.

• If we modify a coalitional redistribution game so that a minority cannot de-
stroy its endowment, then every majority coalition can obtain the entire en-
dowment of society, and an individual with a large endowment is no longer
any more powerful than one with a small endowment. In this case, both so-
lution concepts assign every individual the same payoff, equal to the average
endowment.

• In an endowed society, incentive effects are absent: no individual chooses
how much to work, so that taxation does not affect the total amount of payoff
available.

Exercise 11.1: Variant of coalitional redistribution game in which
wealth conveys power

Consider a variant of a coalitional redistribution game in which a coalition
can expropriate its complement if it has a majority of the wealth rather
than a majority of the votes. That is, the condition in part b of Defini-
tion 11.9 that S has more than 1

2 |N |members is replaced by the condition
that e (S)> 1

2 e (N ) (or equivalently e (S)> e (N \S)). Assume that no coalition
has exactly half of the total endowment e (N ) (to avoid having to specify
the actions available to such a coalition). Arguments parallel to those in
Step 1 of Proposition 11.3 to the conclusion that the Shapley value of the
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Harsanyi coalitional form 〈N , v 〉 of this game is the Shapley value of the
variant of the coalitional game 〈N ,q 〉 in that step in which the conditions
|S|> 1

2 n and |S|< 1
2 n are replaced by e (S)> 1

2 e (N ) and e (S)< 1
2 e (N ). For an

endowed society 〈N , (ei )i∈N 〉 in which one individual has more than half of
the total endowment, what is the Shapley value of this game? Which payoff
distributions (yi )i∈N minimize maxS⊆N (v (S)− y (S))?

Notes

The model in Section 11.1 is due Coughlin (1986) and Lindbeck and Weibull
(1987). (Much of the analysis in these papers concerns a model in which each
candidate’s objective is to maximize her expected vote share rather than her prob-
ability of winning. For the reasons discussed in the comment on page 234, I do
not consider this model.)

The model and analysis in Section 11.2 are based on Röell (2012) (a revised
version of a paper from 1996); my exposition draws also on Brett and Weymark
(2017, 2020).1

The model in Section 11.3.2 was first studied by Itsumi (1974) and Romer
(1975), who consider whether individuals’ preferences over linear tax systems
are single-peaked. The single-crossing condition was developed by Rothstein
(1990, 1991) (under the name order restricted preferences) and Gans and Smart
(1996). Proposition 11.2 is based on Roberts (1977, Theorem 2) and Gans and
Smart (1996, Proposition 1).

The model in Section 11.4 is a variant with finitely may individuals and trans-
ferable payoff of the model in Aumann and Kurz (1977); Proposition 11.3 is a
version of their main result.

1These papers state results that may appear to be stronger than the ones that I discuss. Note,
however, the following points. 1. Röell’s results rest on her Theorem 6, the proof of which is in-
complete because it does not show that the variable Γ defined in equation (31) of the paper is
nonzero. 2. The model in Brett and Weymark (2020) does not impose an upper bound on hours
of work, so that some of the issues I discuss do not arise. 3. Both Röell (2012) and Brett and Wey-
mark (2020) show only that the individuals’ preferences satisfy a variant of single-peakedness in
which the preference inequalities in (1.3) are weak (Theorem 7 in Röell 2012, Theorem 4 in Brett
and Weymark 2020). This property, which is satisfied by the payoffs in Figure 11.2 for the model
in which the individuals care only about their consumption, is not sufficient for the existence
of a Condorcet winner (see Exercise 1.10), so that Theorem 5 in Brett and Weymark (2020) does
not follow from Theorem 4. In personal correspondence, Weymark argues that the proof of The-
orem 4 may be modified to show that each individual’s preferences have a single plateau, with
strict preferences on each side of the plateau, in which case at least one of the favorite alterna-
tives of an individual with median earning power is a Condorcet winner (see the text preceding
Exercise 1.9).
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Solutions to exercises

Exercise 11.1
First consider the Shapley value. The variant of the coalitional game 〈N ,q 〉 in
Step 1 of Proposition 11.3 is the coalitional game 〈N ,q ′〉where

q ′(S) =

(
e (S) if e (S)> 1

2 e (N )

0 if e (S)< 1
2 e (N ).

Let individual 1 be the one who has more than half of the total endowment
e (N ). The marginal contribution q ′(SR

i ∪ {i })−q ′(SR
i ) of any individual i 6= 1

in an ordering R is 0 if she precedes individual 1 (q ′(SR
i ∪ {i }) = q ′(SR

i ) = 0)
and her endowment ei if she follows individual 1 (q ′(SR

i ∪ {i }) = e (SR
i ) + ei

and q ′(SR
i ) = e (SR

i )). Every individual i 6= 1 precedes individual 1 in half of
the orderings and follows her in the other half, so the average of her marginal
contributions, and hence the payoff she is assigned by the Shapley value, is
1
2 ei . Thus the payoff assigned to individual 1 by the Shapley value is the re-
maining endowment, e (N )− 1

2

∑
i∈N \{1} ei . That is, every individual i 6= 1 is

taxed at the rate of 50% and the proceeds go to individual 1.

Now consider the dissatisfaction-minimizing payoff distributions. The Harsanyi
coalitional form of the game is given by

v (S) =

(
1
2

�
e (N )+ e (S)

�
if 1 ∈S

1
2 e (S) if 1 6∈S.

Denote by (z i )i∈N the Shapley value payoff distribution: for each i ∈ N let
z i = 1

2 ei for i 6= 1 and z 1 = e (N )− 1
2

∑
i∈N \{1} ei . Notice that

v (S)− z (S) = 0 for all S ⊆N .

Thus (z i )i∈N minimizes maxS⊆N (v (S)−y (S)) and is the only payoff distribution
that does so.
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The models of electoral competition in the previous chapters have a glaring omis-
sion: money. In a mass election, a candidate may spend significant resources in-
forming potential voters of her position and persuading them to cast their votes
for her. She may try to make voting easier for her supporters and more difficult
for those of her opponents; she may trumpet her accomplishments and impugn
her opponents. Interested outside organizations may spend resources to engage
in similar activities. Everyone may have a vote, but how they cast that vote may
be affected by the campaign efforts of the candidates and outside organizations.
A mass election may be less about the aggregation of the citizens’ preferences
and more about the manipulation of their votes by the wealthy members of soci-
ety. And the policies adopted by the elected representatives may have less to do
with the ones on which they campaigned and more to do with the preferences of
wealthy lobbyists. In short, omitting money from the analysis of elections may
be a critical flaw.

In fact, one perspective is that studying elections is the wrong place to start
an investigation of the determinants of the policies societies adopt. In this view,
these policies are determined by the distributions of wealth and power; the exis-
tence of elections and interest groups should not be treated as exogenous, but as
an implication of the distributions of wealth and power. In some societies, elec-
tions act as one medium through which power is exercised, while in others the
wealthy wield power more directly. Such a perspective underlies the model in
Section 11.4, but the models I present in this chapter treat elections and interest
groups as given. Even under this assumption, analyzing the issues is challeng-
ing. Much work in the field responds to the challenge by studying models in
which the payoff functions and distributions involved have specific functional
forms, making the generality of the conclusions hard to assess. I take a different
approach, presenting some simple but relatively general models.

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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Synopsis

In the models I present there are two candidates and a single interest group. In
Section 12.1 the set of positions is an interval of real numbers and there is a con-
tinuum of citizens, some of whom (informed) know the candidates’ positions,
and some of whom (uninformed) do not. Uninformed citizens vote only if prod-
ded to do so by the interest group. The group’s options, given its budget and
technology, are characterized by a collection of sets of uninformed citizens; it can
induce all the citizens in any one of these sets to vote. If its technology allows it to
target citizens according to their preferences, for example, it may be able to mo-
bilize all citizens with favorite positions in some interval. First the interest group
selects a set of uninformed citizens to mobilize to vote, then the two candidates,
who are office-motivated, simultaneously select positions, and finally each cit-
izen who is either (i) informed or (ii) uninformed and mobilized votes for the
candidate whose position she prefers. By Proposition 8.4, the subgame following
the interest group’s move has a unique subgame perfect equilibrium, in which
the position of each candidate is the median of the voters’ favorite positions. By
judiciously selecting the set of citizens to mobilize, the interest group can move
this median to a position it favors. Parts c and d of Proposition 12.1 specify the
limits of this manipulation for an interest group that is unable to target its mobi-
lization efforts and for one that can perfectly target the efforts according to the
citizens’ preferences.

Section 12.2 analyzes a model in which an interest group may provide cit-
izens with verifiable information about the candidates’ qualities. For the sake
of tractability, there are only two possible policies, 0 and 1, two candidates, and
a single citizen. Candidate 2’s quality is known, whereas candidate 1 has two
possible qualities, one better than candidate 2’s and one worse. For any given
candidate quality, the citizen prefers policy 0 to policy 1, but she prefers policy 1
implemented by a high-quality candidate 1 to policy 0 implemented by candi-
date 2. The interest group, by contrast, prefers policy 1 to policy 0. It observes
candidate 1’s quality and decides whether to offer to reveal this quality in ex-
change for candidate 1’s choosing policy 1. If it makes this offer, candidate 1
decides whether to accept it. Candidate 2 is assumed to choose policy 0, because
there is no advantage to her choosing policy 1, given the citizen’s preferences.
The citizen observes the policies chosen by the candidates, but not candidate 1’s
quality unless the interest group reveals it. Proposition 12.3 shows that this game
has a weak sequential equilibrium in which if candidate 1’s quality is high, the
interest group offers to reveal it in exchange for candidate 1’s choosing policy 1,
and candidate 1 accepts this offer, but if candidate 1’s quality is low, the interest
group does not offer to reveal it. The outcome is that if candidate 1’s quality is
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high she chooses policy 1 and is elected and if her quality is low candidate 2, who
chooses policy 0, is elected. This outcome is better for the citizen than the best
outcome in the absence of the interest group if and only if candidate 1’s qual-
ity is sufficiently unlikely to be high. The interest group identifies the quality of
candidate 1, but the cost of its doing so is that candidate 1 chooses policy 1, so if
candidate 1’s quality is likely to be high, the presence of the interest group makes
the citizen worse off.

12.1 Mobilizing citizens to vote

Model

In the model in this section, some citizens vote only if mobilized by an interest
group. I refer to these citizens as uninformed, although the reason they need to
be prodded to vote may not be lack of information. The setting for the model is
a society defined as follows.

Definition 12.1: Society with informed and uninformed citizens

A society with informed and uninformed citizens 〈X , I , N ,U , F ,G N 〉 consists
of

• X , a closed interval of real numbers (the set of possible positions)

• I , a compact interval of real numbers (the set of citizens), N ⊂ I (the
set of informed citizens), and U ⊂ I (the set of uninformed citizens),
where N ∪U = I and N ∩U =∅ (each point in I is a citizen’s name)

• F : X → [0,1], a continuous and increasing function with F (x) = 0 and
F (x ) = 1 (for each x ∈ X , F (x ) is the fraction of citizens with favorite
positions at most x )

• G N : X → [0,1], a continuous and increasing function with G N (x) = 0
and G N (x ) < F (x ) for all x ∈ X (for each x ∈ X , G N (x ) is the fraction of
citizens who are informed and have favorite positions at most x ).

Figure 12.1 illustrates an example of such a society, with X = [x,x ]. The den-
sity of the favorite positions of the informed citizens is shown in green and that
of the uninformed citizens in orange. The sum of the two, represented by the
upper boundary of the orange area, is the density of F , the distribution of all cit-
izens’ favorite positions. The median of all citizens favorite positions, which I
denote by m , is the median of F . The median of the informed citizens’ favorite
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m Nmx x
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Density of F

Figure 12.1 An illustration of a society with informed and uninformed citizens. The dis-
tribution of the favorite positions of informed citizens is shown in green and that of the
uninformed citizens is shown in orange. The median of the informed citizens’ favorite
positions is m N and that of all citizens’ favorite positions is m .

positions, which I denote by m N , is defined by the condition G N (m N ) = 1
2G N (x ).

If only informed citizens vote, then by Proposition 8.4 the two-candidate elec-
toral competition game with a continuum of citizens and office-motivated can-
didates in which two office-motivated candidates choose positions simultane-
ously has a unique Nash equilibrium, in which both candidates choose m N .

Now suppose that before the candidates commit to positions, an interest
group with preferences over positions can mobilize some of the uninformed cit-
izens to vote. (Perhaps it does so by helping them to register to vote or by per-
suading them that the issues at stake are important enough to make their voting
worthwhile.) Assume that the interest group’s action affects only whether a cit-
izen votes, not how she casts her vote; a citizen who is mobilized votes for the
candidate she prefers. The group may be able to direct its efforts precisely to cit-
izens with certain preferences, or may be able only to increase participation by
uninformed citizens across the board. The model captures the limits the group
faces by specifying a collection of sets of uninformed citizens, with the interpre-
tation that, given the group’s technology, its budget, and the citizens’ charac-
teristics, it is capable of mobilizing all the members of any one of the sets. For
example, if the group knows the citizens’ preferences and can precisely target its
mobilization efforts, the collection may consist of all sets of uninformed citizens
of at most a certain size with certain preferences.

After the group selects the set of uninformed citizens to mobilize, two candi-
dates simultaneously choose positions and each citizen who is either informed
or mobilized votes for her favorite candidate. The interest group cares about the
position of the winner of the election, while each candidate is office-motivated,
caring only about winning the election, not about the position of the winner.

Denote the collection of all the sets of uninformed citizens (subsets of U )
that the interest group is capable of mobilizing by S , and the favorite position of
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each citizen i ∈ I by x̂ i . If the group mobilizes S ∈ S , for any position x ∈ X the
fraction of citizens who vote and have favorite positions at most x is

GS(x ) =G N (x )+φ({i ∈S : x̂ i ≤ x }),

where for any set Z ⊆ I of citizens φ(Z ) is the fraction of citizens in Z . Thus the
distribution function of the voters’ favorite positions is the function FS defined
by FS(x ) = GS(x )/GS(x ). If the candidates choose the positions x1 and x2, the
outcome O(S, (x1,x2)) of the game is the winner of the election for the electorate
N ∪S:

O(S, (x1,x2)) =OFS (x1,x2), (12.1)

where OFS is the function defined in (8.1). Each candidate prefers to win than to
tie than to lose, as in the game without the interest group.

Definition 12.2: Two-candidate electoral competition game with vote
mobilization by an interest group

A two-candidate electoral competition game with vote mobilization by an
interest group 〈〈X , I , N ,U , F ,G N 〉,S , u g 〉, where 〈X , I , N ,U , F ,G N 〉 is a so-
ciety with informed and uninformed citizens and

• S is a collection of subsets of U that includes ∅ (S is the collection
of all sets of citizens the interest group is able to mobilize, taking into
account both its technological and budgetary constraints; one such set
is the empty set)

• u g : X → R is a single-peaked function (which represents the interest
group’s preferences)

is an extensive game with perfect information and simultaneous moves
with the following components.

Players
The set of players is {1,2, g } (1 and 2 are candidates and g is an interest
group).

Terminal histories
A terminal history is a sequence (S, (x1,x2)) where S ∈ S and (x1,x2) ∈
X ×X .

Player function
The player function P is defined by

• P(∅) = g (the interest group moves at the start of the game)
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• P(S) = {1,2} for every S ∈ S (the candidates move simultaneously
after the interest group).

Actions
The set Ai (h) of actions of each player i after the history h is given by
A g (∅) =S and A1(S) = A2(S) = X .

Preferences
Each candidate prefers a terminal history (S, (x1,x2)) for which
O(S, (x1,x2)), given in (12.1), is a win for her to one in which it is a tie
to one in which it is a win for the other candidate.

The interest group’s preferences are represented by the payoff function
defined by

¨
u g (x j ) if O(S, (x1,x2)) =win for j (= 1, 2)
1
2 u g (x1)+ 1

2 u g (x2) if O(S, (x1,x2)) = tie.

How much can the interest group affect the equilibrium?

How does the outcome of a subgame perfect equilibrium of this game depend
on the collection S of sets of uninformed citizens that the interest group is ca-
pable of mobilizing? If the interest group mobilizes the set S then the set of vot-
ers is N ∪S, so that by Proposition 8.4 the subgame following the interest group’s
choice of S has a unique Nash equilibrium, in which each candidate chooses
the median of the voters’ favorite positions. As S varies, how does this median
change? What are its smallest and largest possible values? That is, how far left
and right is it possible for the interest group to move the equilibrium outcome?
The next proposition, 12.1, answers these questions.

First suppose that the interest group is unable to target its efforts to citizens
with specific preferences: every set it can mobilize is a random sample of unin-
formed citizens. If it can mobilize only small sets, the winning position it can
induce is close to m N , the median of the favorite positions of the informed indi-
viduals. As the size of the sets it can mobilize increases, the winning position it
can induce moves towards m , the median of all the citizens’ favorite positions.
An example in which it can mobilize 30% of the uninformed citizens is shown in
Figure 12.2.

Now suppose that it can target its mobilization efforts to citizens with specific
preferences, and is in fact capable of mobilizing any set of uninformed citizens.
Suppose that it starts mobilizing citizens with favorite positions on the far right,
close to x , and then gradually expands its efforts to citizens on the right with less
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Figure 12.2 An example of distributions of informed and uninformed citizens in a two–
candidate electoral competition game with vote mobilization by an interest group. In
this example, the interest group can mobilize 30% of the uninformed citizens, generat-
ing the density of voters indicated by the black line, with median m V . (The areas with
blue hatching are equal.)

extreme preferences. Then the median of the voters’ favorite positions gradually
moves to the right from m N . It continues to do so until it reaches the value m for
which the uninformed citizens who are mobilized are exactly those with favorite
positions at least m . At this point the density of the distribution of the voters’
favorite positions is indicated by the black line in Figure 12.3 and G N (m ) = 1−
F (m ). As more citizens, with favorite positions less than m , are mobilized, the
median of the voters’ favorite positions decreases. Thus the largest possible value
for the median of the voters’ favorite positions is m .

A symmetric argument shows that the smallest possible value of the me-
dian of the voters’ favorite positions is achieved when the interest group mo-
bilizes all uninformed citizens with favorite positions at most m, where F (m) =
G N (x )−G N (m).

The next result states these conclusions precisely and shows that for every
position z ∈ [m, m ] there is a set of uninformed citizens that, if mobilized, causes
the median of the voters’ favorite positions to be z .

Lemma 12.1: Properties of median of favorite positions of set of
informed and mobilized citizens

Let 〈〈X , I , N ,U , F ,G N 〉,S , u g 〉 be a two-candidate electoral competition
game with vote mobilization by an interest group, with X = [x,x ]. Denote
by m the median of F (the distribution of all citizens’ favorite positions)
and by m N the position for which G N (m N ) = 1

2G N (x ) (the median of the
distribution of the informed citizens’ favorite positions).

a. Suppose that mobilization cannot be targeted: let λ ∈ [0,1] and sup-
pose that S consists of every subset S of the set U of uninformed cit-
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Figure 12.3 An example of distributions of informed and uninformed citizens in a two–
candidate electoral competition game with vote mobilization by an interest group. If
the interest group can mobilize arbitrary sets of uninformed citizens, the furthest to
the right that it can move the median of the voters’ favorite positions is m defined
by G N (m ) = 1 − F (m ), and the furthest to the left it can move it is m defined by
F (m) =G N (x )−G N (m).

izens that contains the fraction λ of U and for which the median of
the favorite positions of its members is the median of the favorite po-
sitions of the members of U . Then for every S ∈ S the median of the
favorite positions of the citizens in N ∪S is the same; denote it m V (λ).
The function m V is continuous, with m V (0) =m N and m V (1) =m . If
m <m N it is decreasing, and if m >m N it is increasing.

b. There is a unique position m such that G N (m ) = 1−F (m ) and a unique
position m such that F (m) = G N (x )−G N (m), and m < m < m and
m <m N <m .

c. For any set S ⊂U , the median of the distribution of the favorite posi-
tions of the citizens in N ∪S is in [m, m ].

d. For any position z , let S(z ) be the set of citizens in U with favorite po-
sitions at least z . For every position x ∈ [m N , m ] there exists a posi-
tion z (x ) ∈ [m ,x ] such that the median of the favorite positions of the
citizens in N ∪S(z (x )) is x . We have z (m N ) = x and z (m ) =m .

e. For any position z , let S (z ) be the set of citizens in U with favorite po-
sitions at most z . For every position x ∈ [m, m N ] there exists a posi-
tion z (x ) ∈ [x, m] such that the median of the favorite positions of the
citizens in N ∪S (z (x )) is x . We have z (m) =m and z (m N ) = x.
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Proof

a. For S ∈ S , the median m V (λ) of the favorite positions of the citizens in
N ∪S satisfies G N (m V (λ))+λG U (m V (λ)) = 1

2 (G N (x )+λG U (x )), where G U is
the distribution function of the uninformed citizens, defined by G U (x ) =
F (x )−G N (x ) for all x . Thus m V (λ) is independent of S and m V is contin-
uous, given that F and G N are continuous. We have 1

2 (G N (x ) +λG U (x )) =
G N (m N )+λG U (m U ), so G N (m N )−G N (m V (λ)) = λ(G U (m V (λ))−G U (m U )).
(That is, the areas of the regions with blue hatching in Figure 12.2 are
equal.) Thus m V (0) =m N and m V (1) =m ; if m <m N then m V (λ) ≤m N

for all λ and m V is decreasing, and if m >m N then m V (λ) ≥m N for all λ
and m V is increasing.

b. The functions G N and F are both continuous, with G N (x) = F (x) = 0,
F (x ) = 1, and 0<G N (x )< 1, so the equations F (x )+G N (x ) = 1 and F (x )+
G N (x ) = G N (x ) have solutions by the Intermediate Value Theorem. The
solutions are unique because G N and F are increasing, and m <m because
G N (x )< 1.

If z ≤ m then 1− F (z ) ≥ 1
2 and G N (z ) < F (z ) ≤ 1

2 , and if z ≥ m then
F (z )≥ 1

2 and G N (x )−G N (z )< 1− F (z )≤ 1
2 , so m <m <m .

If z ≤m N then 1− F (z )>G N (x )−G N (z )≥ 1
2G N (x ) and G N (z )≤ 1

2G N (x ),
and if z ≥ m N then F (z ) > 1

2G N (x ) and G N (x )−G N (z ) ≤ 1
2G N (x ), so m <

m N <m .

c. Let x V be the median of the favorite positions of the citizens in N ∪S.
If S does not include all the citizens with favorite positions greater than
x V then adding such citizens to S increases the median, and if S includes
citizens with favorite positions less than x V then removing such citizens
from S also increases the median. Thus a subset S of U for which the me-
dian x V of the favorite positions of the citizens in N ∪S is maximal con-
sists of all members of U whose favorite positions are at least x V . That is,
G N (x V ) = 1− F (x V ), and hence x V =m .

A symmetric argument shows that any set S for which the median of the
favorite positions of the citizens in N∪S is minimal consists of all members
of U whose favorite positions are at most m.

d. For any position z ∈ [m ,x ], let µ(z ) be the median of the favorite po-
sitions of the citizens in N ∪S(z ). We have µ(m ) =m by the definition of
m and µ(x ) =m N because no citizen has a favorite position larger than x .
The result follows from the continuity of µ, which is a consequence of the
continuity of F and G N .
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e. The argument is analogous to the argument for part d.

This result implies that in any subgame perfect equilibrium of the vote-mobilization
game, the candidates’ common position lies between m and m . If the interest
group is unable to target its mobilization efforts to citizens with specific preferences—
if it can mobilize only random samples of uninformed citizens—then the win-
ning positions it can induce lie between m and m N and depend on the size of
the set of citizens it can mobilize. If it has enough resources to mobilize all unin-
formed citizens then it can induce the position m , whereas if its resources allow
the mobilization of only a small (random) subset of uninformed citizens then it
can induce only positions close to m N . If it can mobilize any set of citizens and
can target its mobilization efforts precisely, then it can induce any position in
between m and m .

Proposition 12.1: Subgame perfect equilibrium of electoral competition
game with vote mobilization by an interest group

Let 〈〈X , I , N ,U , F ,G N 〉,S , u g 〉 be a two-candidate electoral competition
game with vote mobilization by an interest group, with X = [x,x ]. Denote
by m the median of F (the distribution of all citizens’ favorite positions),
by m N the position for which G N (m N ) = 1

2G N (x ) (the median of the distri-
bution of the informed citizens’ favorite positions), and by x̂ g the interest
group’s favorite position. Let m be the unique (by Lemma 12.1b) position
for which F (m) = G N (x )−G N (m) and m the unique position for which
G N (m ) = 1− F (m ).

a. In every subgame perfect equilibrium of the game the candidates
choose the same position, the median of the favorite positions of the
citizens in N ∪S, where S is the set chosen by the interest group at the
start of the game. This position lies in [m, m ].

b. (No mobilization possible) If S = {∅}, the game has a unique sub-
game perfect equilibrium, in which each candidate’s position is m N .

c. (Mobilization cannot be targeted) Let λ ∈ [0,1] and suppose that S
consists of every subset S of the set U of uninformed citizens that con-
tains at most the fraction λ of U and for which the median of the fa-
vorite positions of its members is the median of the favorite positions
of the members of U . By Lemma 12.1a the median of the favorite posi-
tions of the members of N ∪S for every S ∈S that contains exactly the
fraction λ of U is independent of S; denote it m V (λ). If m <m N then



12.1 Mobilizing citizens to vote 417

in every subgame perfect equilibrium each candidate’s position is







m V (λ) if x̂ g ≤m V (λ)
x̂ g if m V (λ)< x̂ g <m N

m N if x̂ g ≥m N .

If m N <m then the common position satisfies conditions symmetric
with these ones.

d. (Mobilization can be perfectly targeted) Suppose that for every x ∈ X
the subsets of U consisting of the citizens with favorite positions at
least x and the citizens with favorite positions at most x are both inS .
Then in every subgame perfect equilibrium each candidate’s position
is 





m if x̂ g ≤m
x̂ g if m < x̂ g <m
m if x̂ g ≥m.

Proof

a. Let Γ be a two-candidate electoral competition game with a continuum
of citizens and office-motivated candidates in which the set of citizens is
N ∪S. The subgame of the game here following any action S of the interest
group is equivalent to a variant of Γ in which the interest group is a third
player, with no actions, and its analysis parallels that of Γ. In particular, by
the arguments in the proof of Proposition 8.4, Γ has a unique Nash equi-
librium, in which each candidate’s position is the median of the favorite
positions of the citizens in N ∪S.

By Lemma 12.1c, for every S ⊂U the median of the favorite positions of
the citizens in N ∪S is in [m, m ], so in every outcome of a subgame perfect
equilibrium the candidates’ common position is in this interval.

b. The result follows from part a for S =∅.

c. The result follows from part a and Lemma 12.1a.

d. First suppose that x̂ g ≤ m. By Lemma 12.1c, the median of N ∪ S
is at least m for every set S, so by part a the interest group can achieve
no outcome better than the one in which both candidates choose m. By
Lemma 12.1e, the interest group can achieve this outcome (by choosing S
to be the set of all uninformed citizens with favorite positions at most m).
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maximum group
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m m m V (λ) m N m x̂ g →
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m V (λ)

m N

m

Figure 12.4 The electoral outcomes in a two-candidate electoral competition game with
vote mobilization by an interest group as a function of the favorite position x̂ g of the
interest group and the group’s ability to target citizens with specific preferences, for an
example in which m <m N . (See Proposition 12.1c and d.)

Now suppose that m < x̂ g ≤m N . By Lemma 12.1e there is a position z ∈
[x, m] such that when the interest group mobilizes the set S of uninformed
citizens with favorite positions at most z , the median of the voter’s favorite
positions is x̂ g . Thus by part a, when the interest group mobilizes S, both
candidates choose the position x̂ g . No outcome is better for the interest
group, so it is the outcome of every subgame perfect equilibrium.

Similar analyses, using Lemma 12.1d, apply when m N ≤ x̂ g ≤ m and
x̂ g ≥m .

Parts c and d of the result are illustrated in Figure 12.4. The result is a for-
malization of the idea that an interest group with resources available to mobilize
citizens to vote can bend the outcome of an election in its favor. If it is unable to
target citizens with specific preferences then it can move the electoral outcome
only closer to the median m of all the citizens’ favorite positions, while if it is able
to target citizens with specific preferences and its targeting ability is sufficiently
precise it can move the electoral outcome away from m .

Comments

Interest group cares about size of mobilized set In the game I have defined, the
interest group cares only about the position of the winner of the election, not
about the size of the set of citizens it mobilizes. If it cares about the size of
the set, because, for example, it incurs a cost that increases in this size, it opti-
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mally balances the benefit of mobilizing more citizens (to change the candidates’
common equilibrium position) with the cost of doing so.

Two interest groups Suppose that there are two interest groups rather than one,
with favorite positions on opposite sides of m , and for some position p between
their favorite positions each group is able to mobilize all of the uninformed citi-
zens with favorite positions on the same side of p as theirs (and is insensitive to
the cost of doing so). Then the game in which the interest groups choose their
mobilization sets simultaneously before the candidates choose positions has a
subgame perfect equilibrium in which each group mobilizes all the citizens it
can, so that every uninformed citizen is mobilized, and the outcome is that both
candidates choose m .

If the groups care about the sizes of the sets they mobilize, preferring small
sets to large (because of the cost of mobilization), and differ sufficiently in these
preferences, the game has an equilibrium in which the winning position differs
from m . (By Lemma 12.1c it is between m and m .)

Interest group and candidates move simultaneously Consider the strategic game
in which the interest group and the candidates move simultaneously: no player
can commit to an action before the others move.

If the interest group cares only about the winning position, not about the
size of the set it mobilizes, then every action profile (S,x1,x2) in which x1 and x2

are both equal to the median favorite position of the citizens in N ∪S is a Nash
equilibrium of this game. Given that the candidates’ positions are the same, the
set the interest group mobilizes has no effect on the winning position, and given
this set, the only pair of mutually optimal positions for the candidates is the one
in which both candidates choose the median favorite position of the citizens in
N ∪S, by the arguments for the game without an interest group.

If the interest group cares about the size of the set of citizens it mobilizes
and, for any given outcome, prefers to mobilize a small set than a large one, then
the simultaneous move game has a single Nash equilibrium, in which the in-
terest group mobilizes no one and the candidates’ positions are both the me-
dian favorite position of the informed citizens. That is, the interest group has no
effect.

Thus if no player can commit to an action before the others move, the model
has no interesting equilibrium.

Interest group moves after candidates The subgame perfect outcome of the game
survives in the variant in which the interest group moves after the candidates
rather than before them, as you are asked to show in the next exercise.
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Exercise 12.1: Mobilization game in which interest group moves after
candidates

Let (S∗, (x ∗1,x ∗2)) be the outcome of a subgame perfect equilibrium of the
game in which the interest group moves first, as described in Proposi-
tion 12.1. Consider the extensive game in which the candidates move
(simultaneously) first, before the interest group. Show that if the inter-
est group has an optimal action for every pair of the candidates’ positions
then this game has a subgame perfect equilibrium in which the candidates’
positions are x ∗1 and x ∗2 and the interest group mobilizes S∗ after this history.

Unlike the equilibria described in Proposition 12.1, however, such an equilib-
rium is sensitive to the assumption that the interest group cares only about the
winning position, not about the size of the set of citizens it mobilizes. Suppose
that the interest group incurs a cost c (S) that increases with the size of the set S
of citizens it mobilizes, and that its preferences are represented by u g (xi )− c (S),
where xi is the winning position. (The cost of mobilizing citizens to vote may
also reasonably depend on the candidates’ positions—mobilizing citizens to vote
when the positions are similar may require more effort than when they are far
apart. Such a dependence reinforces the following argument.) Consider an equi-
librium of the game in which the interest group moves first that has the form
described in Proposition 12.1d with m N < x ∗1 = x ∗2 ≤ x̂ g . If in the game in which
the candidates move first they choose the positions x ∗1 and x ∗2 then the only op-
timal action of the interest group in the subsequent subgame is to mobilize no
one, so that the median of the voters’ favorite positions is m N . Suppose that
candidate 1 deviates to x1 slightly less than x ∗1. Then if the interest group con-
tinues to mobilize no one, the outcome changes from x ∗1 to x1, which is worse
for the interest group. To deter this deviation, in the subgame following (x1,x ∗2)
the interest group needs to mobilize enough citizens to move the median of the
voters’ favorite positions from m N to a position greater than 1

2 (x1+x ∗2). The cost
of doing so may be significant, so that depending on the size of u g (x1) relative
to u g (x ∗1) = u g (x ∗2) the interest group might optimally continue to mobilize no
one. In this case, in no subgame perfect equilibrium is the pair of the candidates’
positions (x ∗1,x ∗2).

The significance of the interest group’s moving first is that it commits to a
budget for mobilization before the candidates commit to positions. If it is better
off in the equilibrium of the game in which it does so than in the one in which it
does not commit to a budget before the candidates commit to positions, it has
an interest in committing and may be able to do so by raising money early in the
election campaign. That is, the interest group may be able to take actions that
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make it a first-mover and may have an interest in so doing.

Interest group commits to position-contingent mobilization Another possible
assumption about the timing of the players’ actions is that the interest group
first selects a candidate and a function that specifies the set of citizens the group
will mobilize for each position the candidate chooses, and then the candidates
choose positions. Let (S∗, (x ∗1,x ∗2)) be the outcome of a subgame perfect equilib-
rium of the game in which the interest group moves first, as described in Proposi-
tion 12.1. Then the game with position-contingent mobilization has a subgame
perfect equilibrium in which the interest group proposes to candidate 1 that it
will mobilize S∗ regardless of the position the candidate chooses, and the candi-
dates subsequently choose x ∗1 and x ∗2. The game has no subgame perfect equilib-
rium with a better outcome for the interest group by the argument for the original
game that S∗ is optimal. (It has other subgame perfect equilibria with the same
outcome, in which it proposes to mobilize S∗ if candidate 1 chooses x ∗1 and other
sets if candidate 1 chooses a different position.)

Policy-motivated candidates If the candidates are policy-motivated and the dis-
tribution of the citizens’ favorite positions is uncertain, as in a two-candidate
electoral competition game with policy-motivated candidates and uncertain me-
dian, then in the absence of the interest group the candidates’ equilibrium posi-
tions differ (Proposition 9.4). I conjecture that the addition of an interest group
with mobilization options that moves either before or after the candidates shifts
the candidates’ equilibrium positions towards the interest group’s favorite posi-
tion, but I know of no formal results for this model.

12.2 Informing citizens of candidates’ qualities

Suppose that interest groups can provide verifiable information about candi-
dates that the candidates themselves are unable to provide. If the interest groups’
preferences differ from those of the majority of citizens and they provide infor-
mation in exchange for the candidates committing to positions that the interest
groups favor, are the citizens better off or worse off than in their absence? The
model in this section is intended to examine this question. The analysis of a suit-
able model rapidly increases in complexity and opacity as the number of players
and the number of their possible actions increase. The model I present is one of
the simplest that can address the issues.

There are two possible policies, 0 and 1, two candidates, and a single citizen.
Each candidate chooses a policy and the citizen votes for one of the candidates.
Candidate 1 has two possible qualities, l and h; in line with standard terminol-
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ogy, I refer to l and h as the two possible types of candidate 1. Candidate 2’s
quality is known to be 0, which is between l and h. Candidate 1 knows her qual-
ity, but the citizen does not; the citizen believes that it is l with probability p and
h with probability 1− p . Each candidate is office-motivated: she prefers to win
(that is, to obtain the citizen’s vote), in which case her payoff is 1, than to lose, in
which case her payoff is 0.

The citizen’s payoff from policy x carried out by a candidate with quality q is
u (x ,q ). For each candidate quality, the citizen prefers policy 0 to policy 1:

u (0,q )> u (1,q ) for q ∈ {l ,0, h}.

For each policy, the citizen prefers a candidate of quality h to one of quality 0 to
one of quality l :

u (x , h)> u (x ,0)> u (x , l ) for x ∈ {0,1}.

Finally, to make it possible for candidate 1 to attract the citizen’s vote if she chooses
policy 1 and the interest group informs the citizen that her quality is h, the citi-
zen prefers policy 1 carried out by a candidate of quality h to policy 0 carried out
by a candidate of quality 0:

u (1, h)> u (0,0).

Given that candidate 2’s quality is known and the citizen prefers policy 0 to
policy 1 conditional on the quality of the candidate offering the policy, there is
no advantage to candidate 2’s selecting policy 1. Thus I assume that she selects
policy 0. She has no other decisions to make, so she does not appear as a player
in the games I analyze, although her existence affects the citizen’s options.

In the main model, an interest group that prefers policy 1 to policy 0, in con-
trast to the citizen, can reveal candidate 1’s quality in exchange for her commit-
ting to policy 1. To assess the interest group’s impact, I first find the equilibrium
outcomes in its absence and then analyze a model in which it is present.

12.2.1 Model without interest group

Consider the extensive game in Figure 12.5, in which no interest group is present.
The game begins in the center, with a move of chance (c ) that determines the
quality of candidate 1. This quality is l with probability p and h with proba-
bility 1− p . Candidate 1 observes this move—that is, she knows her quality—
and then chooses a policy, 0 or 1. The citizen observes the policy chosen by the
candidate but not the candidate’s quality, and then selects (votes for) one of the
candidates.
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Figure 12.5 A policy game with a candidate of uncertain quality. The players are a citizen
and candidate 1. The game begins with a move of chance (in the center of the figure),
which determines the quality of candidate 1, either l or h. Candidate 1 observes this
move and then chooses policy 0 or policy 1. The citizen does not observe candidate 1’s
quality. At each information set, the citizen selects (votes for) candidate 1 or candidate 2.
For each terminal history, candidate 1’s payoff is listed first and the citizen’s second.

Definition 12.3: Policy game with a candidate of uncertain quality

A policy game with a candidate of uncertain quality 〈l , h, p , u 〉, in which
the players are a citizen and candidate 1, where

• l and h are possible qualities for candidate 1

• p ∈ (0,1) (the probability that candidate 1’s quality is l )

• u : {0,1}×{l , h}→Rwith u (0,q )> u (1,q ) for q = l and q = h, u (x , h)>
u (x ,0) > u (x , l ) for x = 0 and x = 1, and u (1, h) > u (0,0) (the citizen’s
payoff function),

is the extensive game with imperfect information shown in Figure 12.5,
where for each terminal history candidate 1’s payoff is listed first and the
citizen’s second.

I claim that in every weak sequential equilibrium of any such game 〈l , h, p , u 〉
both types of candidate 1 (quality l and quality h) choose the same policy. Con-
sider an assessment in which they choose different policies. Suppose that type h
chooses policy 0 and type l chooses policy 1. Then if the citizen’s beliefs are
consistent with the candidate’s strategy, they assign probability 1 to the history
(h,0) at her information set following the policy 0 (the lower of the two sets in Fig-
ure 12.5) and probability 1 to the history (l , 1) in her information set following the
policy 1. Consequently the citizen optimally votes for candidate 1 if candidate 1
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chooses policy 0 and for candidate 2 if candidate 1 chooses policy 1. But then
if type l of candidate 1 deviates and chooses policy 0, pretending to be type h,
the citizen votes for her and she is better off, so the assessment is not a weak
sequential equilibrium. A similar argument applies to an assessment in which
type h chooses policy 1 and type l chooses policy 0.

Every game 〈l , h, p , u 〉 has weak sequential equilibria in which both types of
candidate 1 choose policy 0, and also ones in which both types of candidate 1
choose policy 1. For some games, candidate 1 loses in some of these equilib-
ria. In these cases the citizen’s belief leads her to vote for candidate 2 not only if
candidate 1 adheres to her strategy but also if she deviates from it.

Proposition 12.2: Weak sequential equilibria of policy game with a
candidate of uncertain quality

Let 〈l , h, p , u 〉 be a policy game with a candidate of uncertain quality.

a. In every weak sequential equilibrium of the game both types of candi-
date 1 choose the same policy.

b. The game has weak sequential equilibria in which both types of candi-
date 1 choose policy 0 and ones in which both types choose policy 1.

c. Let x ∈ {0,1}. In the weak sequential equilibria in which both types
of candidate 1 choose policy x , the citizen votes for candidate 1 if
p u (x , l ) + (1−p )u (x , h) > u (0,0) and for candidate 2 if p u (x , l ) +
(1−p )u (x , h)< u (0,0). If p u (x , l ) + (1−p )u (x , h) = u (0,0) then equi-
libria exist in which the citizen votes for candidate 1 and in which she
votes for candidate 2. In each of these equilibria the citizen’s payoff is
max{u (0,0), p u (x , l )+ (1−p )u (x , h)}.

Proof

A proof of part a is given in the text preceding the proposition.
To prove parts b and c, suppose that both types of candidate 1 choose

policy 0. For the citizen’s beliefs to be consistent with this strategy, at her
lower information set the citizen assigns probability p to the history (l ,0)
and probability 1−p to the history (h,0). Thus at this information set she
optimally votes for candidate 1 if p u (0, l )+(1−p )u (0, h)> u (0,0), for can-
didate 2 if the reverse inequality holds, and for either candidate in the case
of equality. Her payoff is thus max{u (0,0), p u (0, l ) + (1−p )u (0, h)}. If she
votes for candidate 1 then candidate 1’s strategy of choosing policy 0 is op-
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timal for her regardless of the beliefs of the citizen at her upper information
set and her consequent optimal action. If she votes for candidate 2 then for
each type of candidate 1 to be no better off deviating to policy 1, the citi-
zen’s belief at her upper information set must assign sufficient probability
to the history (l , 1) to make a vote for candidate 2 optimal for her. Given
that u (1, l )< u (1,0)< u (0,0), such a belief exists, and given that this infor-
mation set is not reached if the players follow their strategies, such a belief
is consistent with equilibrium.

A similar argument applies if both types of candidate 1 choose policy 1.

12.2.2 Model with interest group

Now add an interest group to the model. The resulting game is shown in Fig-
ure 12.6, where the pair (x ,q ) attached to each terminal history consists of the
position x of the chosen candidate and her quality q , not the players’ payoffs as
in Figure 12.5. As before, chance (c ) first determines the quality of candidate 1.
The interest group observes this quality and can offer to (convincingly) reveal it
(action A, for “advertise”) in exchange for candidate 1’s selecting policy 1, which
the interest group prefers to policy 0. Candidate 1 can accept this offer, in which
case she selects policy 1 and the citizen is informed of her quality, or reject it, in
which case she selects policy 0 and the citizen is not informed of her quality. If
the interest group does not make an offer (action 0) then candidate 1 chooses
policy 0 or policy 1 as before. The citizen observes the policy chosen by candi-
date 1 but does not observe her quality unless the interest group offers to reveal it
and candidate 1 accepts this offer. Also, the citizen does not observe whether the
interest group offered to reveal candidate 1’s quality unless the interest group
makes an offer and candidate 1 accepts it. That is, the four histories (l , A,0),
(h, A,0), (l ,0,0), and (h, 0,0) are in the same information set, indicated by the
dotted rectangle in Figure 12.6.

The preferences of the citizen and the candidates are the same as in the game
without the interest group. In particular, for any given candidate quality, the citi-
zen prefers policy 0 to policy 1. The interest group, by contrast, prefers policy 1 to
policy 0, and does not care about the quality of the candidate. (Perhaps the qual-
ity represents the candidate’s policies on issues about which the interest group is
not interested.) Specifically, if the policy of the winner of the election is x then
the interest group’s payoff is x if it does not advertise candidate 1’s quality and
x − c if it does, where 0≤ c ≤ 1.
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Figure 12.6 A policy game with a candidate of uncertain quality and interest group. The
pair (x ,q ) attached to each terminal history consists of the position x of the chosen can-
didate and her quality q (not the players’ payoffs). The arrows indicate the strategy profile
and the numbers in red the belief system in one weak sequential equilibrium.

Definition 12.4: Policy game with a candidate of uncertain quality and
interest group

A policy game with a candidate of uncertain quality and an interest group
〈l , h, p , u , A, c 〉, in which the players are a citizen, candidate 1, and an
interest group, where

• l and h are possible qualities for candidate 1

• p ∈ (0,1) (the probability that candidate 1’s quality is l )

• u : {0,1}×{l , h}→Rwith u (0,q )> u (1,q ) for q = l and q = h, u (x , h)>
u (x ,0) > u (x , l ) for x = 0 and x = 1, and u (1, h) > u (0,0) (the citizen’s
payoff function),

• A is the action of the interest group to advertise candidate 1’s quality
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• c ∈ [0,1] (the interest group’s advertising cost),

is an extensive game with imperfect information with the terminal his-
tories, player function, chance probabilities, and information partitions
shown in Figure 12.6. The players’ preferences are represented by pay-
off functions that assign the following payoffs to each terminal history
(q , z ,x , v ), where q ∈ {l , h} (the quality of candidate 1), z ∈ {A,0} (the ac-
tion of the interest group, to offer to reveal candidate 1’s quality or not),
x ∈ {0,1} (the policy chosen by candidate 1, where 0 entails the rejection
of the interest group’s offer, if it made one, and 1 entails the acceptance of
such an offer), and v ∈ {1,2} (the candidate elected):

Citizen

¨
u (x ,q ) if v = 1
u (0,0) if v = 2

Candidate 1

¨
1 if v = 1
0 if v = 2

Interest group

¨
x−c if z = A and x = 1
x otherwise.

If the citizen’s expected payoff from policy 0 carried out by candidate 1, eval-
uated according to the prior probabilities p and 1−p , is at least her payoff u (0,0)
from choosing candidate 2, then this game has weak sequential equilibria that
correspond to the equilibria of the game in which the interest group is absent:
the interest group does not offer to reveal the quality of either type of candi-
date 1. Both types of candidate 1 choose policy 0 whether or not the interest
group offers to reveal their types; at the information set reached when candi-
date 1 chooses policy 0, the belief assigns probability p to the history (l ,0,0) and
probability 1−p to the history (h,0,0) (as required by the consistency condition)
and the citizen votes for candidate 1. The citizen votes for candidate 2 after the
history (l , A,1) and for candidate 1 after the history (h, A,1). The belief at the in-
formation set {(l ,0,1), (h,0,1)} is arbitrary; the citizen’s action at this set is the
one that is optimal given her belief.

More interestingly, every policy game with a candidate of uncertain quality
and an interest group has a weak sequential equilibrium in which if candidate 1’s
quality is h, the interest group offers to reveal this quality in exchange for candi-
date 1’s selecting policy 1, and candidate 1 accepts this offer, but if candidate 1’s
quality is l then the interest group does not offer to reveal it. In this equilibrium
the outcome is policy 0 implemented by candidate 2 (with quality 0) if candi-
date 1’s quality is l and policy 1 implemented by candidate 1 if her quality if h.
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The arrows and beliefs (the red numbers) in Figure 12.6 indicate this equilibrium.

Proposition 12.3: Weak sequential equilibrium of policy game with
candidate of uncertain quality and interest group

A policy game with a candidate of uncertain quality and an interest group
〈l , h, p , u , A, c 〉 has a weak sequential equilibrium in which

• the interest group offers to reveal candidate 1’s quality if it is h but not
if it is l

• if the interest group offers to reveal candidate 1’s quality, the candi-
date accepts the offer and chooses policy 1 if her quality is h, and
rejects the offer and chooses policy 0 if her quality is l ; if the inter-
est group does not offer to reveal her quality, she chooses policy 0
regardless of her quality

• the citizen votes for candidate 1 if the interest group reveals that the
candidate’s quality is h and the candidate chooses policy 1, and other-
wise votes for candidate 2

• at the information set reached after the interest group does not offer to
reveal candidate 1’s type and candidate 1 chooses policy 1, the citizen
believes that the candidate’s quality is l

• at the information set reached after candidate 1 chooses policy 0, the
citizen believes that the candidate’s quality is l and the interest group
did not offer to reveal the candidate’s quality.

The outcome is that (a) if candidate 1’s quality is h, the interest group ad-
vertises this quality, candidate 1 chooses policy 1, and the citizen votes for
candidate 1, and (b) if candidate 1’s quality is l , the interest group does not
offer to advertise this quality, candidate 1 chooses policy 0, and the citizen
votes for candidate 2. The citizen’s expected payoff in the equilibrium is
p u (0, l )+ (1−p )u (1, h).

Proof

Strategy of interest group
After the history l , actions A and 0 both lead to the election of candi-
date 2 and hence policy 0, so that in particular the action 0 is optimal.
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After the history h, the action A leads to the election of candidate 1, who
chooses policy 1, and the action 0 leads to the election of candidate 2,
who chooses policy 0. Given c ≤ 1, the latter outcome is no better for
the interest group than the former, so that the former is optimal.

Strategy of candidate 1
After each of the histories (l , A), (l ,0), and (h,0), the choice of either
policy 0 or policy 1 leads to the election of candidate 2, so choosing
policy 0 after each of these histories is optimal.

After the history (h, A), the choice of policy 1 leads to the election of can-
didate 1 and the choice of policy 0 leads to the election of candidate 2,
so the former action is optimal.

Strategy of citizen
After the history (l , A,1), electing candidate 1 yields the payoff u (1, l )
whereas electing candidate 2 yields the payoff u (0,0), so given u (0,0)>
u (0, l )> u (1, l ), the citizen’s electing candidate 2 is optimal.

After the history (h, A,1), electing candidate 1 yields the payoff u (1, h)
whereas electing candidate 2 yields the payoff u (0,0), so given u (1, h)>
u (0,0), the citizen’s electing candidate 1 is optimal.

At the information set {(l ,0, 1), (h,0,1)}, the citizen’s belief assigns prob-
ability 1 to the history (l ,0,1), so that she believes that electing candi-
date 1 will yield the payoff u (1, l )whereas electing candidate 2 will yield
the payoff u (0,0), and hence given u (0,0)> u (0, l )> u (1, l ), her electing
candidate 2 is optimal.

At the information set {(l , A,0), (l , 0,0), (h, A,0), (h,0,0)} (the rectangle
in Figure 12.6), the citizen’s belief assigns probability 1 to the history
(l ,0,0), so that she believes that electing candidate 1 will yield the pay-
off u (0, l ) whereas electing candidate 2 will yield the payoff u (0,0), and
hence given u (0,0)> u (0, l ), her electing candidate 2 is optimal.

Beliefs
Given the strategy profile, the probability of reaching the information
set {(l ,0,1), (h,0,1)} is 0, so any belief at this information set is con-
sistent with the strategy profile. The probability of the history (l , 0,0)
conditional on reaching the information set {(l , A,0), (l ,0,0), (h, A,0),
(h,0,0)} is 1, so the belief at this information set is consistent with the
strategy profile.

Figure 12.7 shows the citizen’s expected payoffs in the equilibria of the game



430 Chapter 12. Money in electoral competition

equilibria in
Proposition 12.3,

with interest group

u (1, l )

u (0, l )

u (0, 0)

u (1, h)

u (0, h)

0 1p p →

perfect information

equilibria in Proposition 12.2,

candidate 1 chooses
without interest group;

policy 0
policy 1

Figure 12.7 The citizen’s expected payoffs in equilibria of policy games with a candi-
date of uncertain quality with and without an interest group, as a function of p , the
probability that candidate 1’s quality is l .

without the interest group given in Proposition 12.2 and in the equilibrium of the
game with the interest group given in Proposition 12.3. In the latter equilibrium,
the interest group identifies the type of candidate 1, but the price of its doing
so is that if candidate 1’s type is h then she chooses policy 1, which is worse for
the citizen than policy 0. As a consequence, if the probability that candidate 1’s
quality is h is sufficiently large—if the probability that her type is l is less than
p in the figure—the citizen is better off in the equilibrium without the interest
group in which both types of candidate 1 choose policy 0.

This analysis of the citizen’s payoff ignores the cost of advertising. If this
cost is ultimately borne by the citizen then the changes in her payoff need to
be adjusted appropriately.

Notes

Section 12.1 is not closely based on any published model, but draws elements
from the models of Baron (1994), Grossman and Helpman (1996), and Herrera
et al. (2008).

Section 12.2 is based on Prat (2006), which takes elements from Coate (2004)
and Ashworth (2006).

Solutions to exercises

Exercise 12.1
By Proposition 12.1a, x ∗1 and x ∗2 are both equal to the median of the favorite
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positions of the citizens in N ∪S∗. Given that x ∗1 = x ∗2, the interest group is
indifferent among all the sets of citizens it can mobilize, so that in particular
S∗ is optimal for it after the history (x ∗1,x ∗2). Now consider a history (x1,x ∗2)
with x1 6= x ∗1. If the interest group continues to choose S∗, then candidate 1
loses and the outcome remains x ∗1 = x ∗2. The interest group benefits from
changing the set of citizens it mobilizes only if doing so causes candidate 1
to win and x1 is between x̂ g and x ∗1 = x ∗2. To cause candidate 1 to win, the
interest group must mobilize a set S for which the median favorite position
m V of the set of voters is closer to x1 than to x ∗2. However, in that case in
the game in which it moves first it could achieve the outcome m V , which it
prefers to x ∗1 = x ∗2, by mobilizing S, contradicting the fact that (S∗, (x ∗1,x ∗2)) is
the outcome of a subgame perfect equilibrium of the game in which it moves
first. So for no value of x1 can the interest group profitably deviate from S∗.
The same argument applies to histories (x ∗1,x2)with x2 6= x ∗2.

If the interest group chooses S∗ after all such histories, as well as after (x ∗1,x ∗2),
then each candidate i faces the same electorate whether she chooses x ∗i or
deviates from it, so that by the arguments in the proof of Proposition 8.4 for
the strategic game in which the interest group is absent, neither candidate i
can increase her payoff by deviating from x ∗i , given the position of the other
candidate and the interest group’s strategy.

We conclude that if the interest group has an optimal action for every pair
(x1,x2) with x1 6= x ∗1 and x2 6= x ∗2 then the game in which the candidates move
first has a subgame perfect equilibrium with the outcome ((x ∗1,x ∗2),S

∗).
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Suppose that after serving a term in office, an incumbent politician stands for
reelection. How does the possibility that she is reelected affect the policy she
chooses in her first term? In particular, does this possibility induce her to choose
a policy well aligned with the citizens’ preferences?

Synopsis

The models I present have two periods. In the first period, an incumbent chooses
a policy. The citizens observe this policy, but not the incumbent’s preferences,
and decide whether to reelect her or to elect a challenger, who is assumed to be a
randomly-chosen citizen. In the second period, the elected candidate chooses a
policy. The model ends in the second period, and a candidate cannot commit in
advance to a policy, so the elected candidate chooses her favorite policy in that
period. The interest lies in the policy chosen by the incumbent in the first period.

The citizens have diverse preferences. Each citizen knows her own prefer-
ences, but not the preferences of any other citizen. The players in the games I
present are an incumbent, who is one of the citizens, and a single voter, whose
favorite policy is the median of the citizens’ favorite policies. The assumption
of a single voter with this favorite policy makes sense only if a majority of citi-
zens prefer one lottery over policies to another if and only if the voter does so.
Lemma 13.1 gives a sufficient condition on preferences for this property to hold,
and I subsequently assume that the citizens’ preferences take this form.

Proposition 13.1 shows that if for some policy x ∗ all types of incumbent—
that is, all citizens—prefer to hold office and implement x ∗ than to endure the
favorite policy of a randomly-chosen citizen, then the model has equilibria in
which all types of the incumbent choose the policy x ∗ and the voter reelects an
incumbent if and only if she chooses that policy. The voter does not reelect an
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2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
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incumbent who chooses a policy different from x ∗ because she believes that such
an incumbent, if reelected, would choose a policy the voter does not like.

Proposition 13.2 gives conditions under which a different type of equilibrium
exists, in which for some policies x ∗ and x, incumbents whose favorite policies
are greater than x choose x ∗ and get reelected whereas those with favorite poli-
cies less than x choose their favorite policies and do not get reelected. Under
some conditions the model also has equilibria in which incumbents are reelected
only if the policy they choose lies in a certain interval. One common feature of
these equilibria is that some types of incumbent choose a policy that the voter
prefers to the incumbent’s favorite policy, so that the voter is better off than she
would be if there were a one-term limit on office-holders, in which case every
incumbent would choose her favorite policy.

In the model in Section 13.2, the voter is uncertain not only about the in-
cumbent’s preferences but also about the policy that is best for her: this policy
depends on a state that is known to the incumbent but not to the voter. Proposi-
tion 13.3 shows that in this case a simple model in which there are two possible
policies and two states has a unique equilibrium, in which some incumbents
choose the policy that the voter believes is most likely to be best for her, even if
the incumbent knows that another policy is in fact best. As a consequence, un-
der some conditions the mechanism in which a policy is chosen by a randomly
selected citizen rather than an elected representative is better for the citizens.

13.1 Unobserved candidate preferences

Model

An electoral competition game lasts two periods. The set of citizens is partitioned
into n subsets; all citizens in a given subset have the same preferences. I refer to
the citizens in subset t as having type t . Each citizen knows her own type, but
not the type of any other citizen; for t = 1, . . . , n , she believes that the type of any
other citizen i is t with probability pt , independently of the types of the citizens
other than i .

Candidates are drawn from the set of citizens. In period 1, one of the citizens
is the incumbent. She chooses a policy, which all citizens observe, and then a cit-
izen is chosen randomly to challenge her in an election in period 2. The winner
of the election chooses a policy for period 2.

No candidate can commit to a policy, so in period 2 the elected citizen chooses
her favorite policy. The strategic calculations are made in the first period, in
which the incumbent selects a policy, and in the election, in which the voters
needs to assess whether the incumbent, whose first-period policy they have ob-
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served, or the challenger, who they know has been randomly selected from the
set of all citizens, has preferences more closely aligned with theirs. The incum-
bent understands the citizens’ reasoning process, and chooses her first-period
policy accordingly.

The model I present has a single voter, whose favorite policy is the median
of all the citizens’ favorite policies and who selects (votes for) the candidate she
prefers. I motivate this formulation as follows. First, all citizens except the one
who is the incumbent have the same information about the incumbent, so if we
assume that the number of citizens is large, we can reasonably ignore the slight
asymmetry of information (or assume that the incumbent does not vote). Sec-
ond, assume that each citizen votes sincerely, for the candidate for whom her ex-
pected payoff is higher. Third, assume that the form of the citizens’ preferences
is such that a majority of citizens prefer one lottery over policies to another if
and only if a citizen of type m does so, where m is the type of the citizen whose
favorite policy is the median of all the citizens’ favorite policies. Under these as-
sumptions we can model the election as being decided by a single voter, a citizen
of type m .

The third assumption requires elaboration. For an election in which the al-
ternatives are deterministic, the assumption that the citizens’ preference profile
satisfies the single-crossing condition or is single-peaked is sufficient to ensure
that a majority of individuals prefer one alternative to another if and only if a
suitably-defined median voter does so. But for an election like the one here, in
which from the point of view of the citizens the outcomes are lotteries, more
structure on the preference profile is necessary to reach this conclusion, as the
following exercise asks you to demonstrate.

Exercise 13.1: Example in which no individual is decisive over lotteries

Let X = [−2,2] and suppose there are three individuals. Assume that the
preferences over lotteries of each individual i are represented by the ex-
pected value of a Bernoulli function u i and the values of these functions
are consistent with the numbers in the following table.

alternatives (a )
−2 −1 0 1 2

u 1(a ) 0 −1 −4 −8 −12
u 2(a ) −4 −3 0 −3 −4
u 3(a ) −12 −8 −4 −1 0

Show that for no individual i is it the case that a majority of individuals
prefer one lottery to another if and only if i has this preference. (One pair
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of lotteries to consider consists of x , which assigns probability 1
3

to each of
the alternatives −2, 0, and 2, and y , which assigns probability 1

2
to each of

the alternatives −1 and 1.)

The following result gives a sufficient condition on the form of the citizens’
preferences for a majority of citizens to prefer one lottery over policies to an-
other if and only if a citizen whose favorite policy is the median of all the citizens’
favorite policies does so. The condition is fairly strong: it requires that every citi-
zen’s preference relation is represented by the expected value of a function of the
form θt v (x )− c (x )+αt , where only θt and αt depend on the citizen’s type.

Lemma 13.1: Conditions under which median citizen is decisive over
lotteries

Let X , the set of policies, be a closed interval of real numbers, and let n ,
the number of types of citizens, be a positive integer. Assume that there
are functions v : X → R and c : X → R and numbers θ1 < θ2 < · · · < θn and
α1, . . . , αn such that for each t = 1, . . . , n the preference relation of each
citizen of type t regarding lotteries over X is represented by the expected
value of the function u t : X →R defined by

u t (x ) = θt v (x )− c (x )+αt for each x ∈ X .

Then if for some t ∗ ∈ {1, . . . , n} citizens of type t ∗ prefer one lottery over X
to another, either all citizens of any type t < t ∗ or all citizens of any type
t > t ∗ do so too. Thus if m is the type of the citizen whose favorite policy is
the median of all the citizens’ favorite policies, a majority of citizens prefer
one lottery over X to another if and only if a citizen of type m does so.

Proof

Let t ∈ {1. . . , n} and suppose that citizens of type t prefer the lottery
p1 ·x1⊕p2 · x2⊕ · · · ⊕ pk · xk , in which each policy xi for i = 1, . . . , k occurs
with probability pi , to the lottery q1 ·x1⊕q2 ·x2⊕ · · ·⊕qk ·xk . Then

k∑

i=1

pi u t (xi )>
k∑

i=1

qi u t (xi ) ⇔
k∑

i=1

(pi −qi )(θt v (xi )− c (xi )+αt )> 0

⇔ θt

k∑

i=1

(pi −qi )v (xi )>
k∑

i=1

(pi −qi )c (xi ).
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x̂1 x̂2 x̂3 x̂4 x̂5
u 5(x )

u 4(x )

u 1(x )
u 2(x )

u 3(x )

Figure 13.1 An example of payoff functions with the form given in Lemma 13.1, with
θ1 < θ2 < θ3 < θ4 < θ5. For this example, the function v is increasing and concave and
the function c is increasing and convex.

(The number αt drops out because
∑k

i=1 pi =
∑k

i=1 qi (= 1).) If the last
inequality is satisfied for t = t ∗, then given θ1 < θ2 < · · · < θn it is satisfied
also either for all t > t ∗ (if the sum on the left is positive) or for all t < t ∗ (if
the sum on the left is negative).

If the function v is increasing, concave, and differentiable and the function c
is increasing, convex, and differentiable, as I assume in the model I present,
the individuals’ favorite alternatives x̂1, . . . , x̂n are ordered by the values of θt : if
θ1 < θ2 < · · · < θn then x̂1 < x̂2 < · · · < x̂n . (Without the assumption of differen-
tiability on v and c , the inequalities would not be strict.) An example is given in
Figure 13.1.

The model that I present is an extensive game with imperfect information.
The set of policies is assumed to be a closed interval of numbers, but a version of
the game in which there are only two possible policies, x and y , and two types of
citizen, illustrated in Figure 13.2, is helpful in understanding its structure. There
are three players: an incumbent (B ), a challenger (C ), and a voter (V ). The game
begins (in the middle of the figure) with a move of chance (c ) that determines
the type of the incumbent. The incumbent observes this move—she knows her
type—but the voter and the challenger do not. Then the incumbent chooses a
policy (x or y in the figure), which the voter and challenger observe, and chance
determines the type of the challenger, which the challenger but not the incum-
bent or the voter observe. The voter then selects (votes for) the incumbent or
the challenger and the selected candidate chooses a policy. (The move of chance
that determines the challenger’s type could be put before incumbent’s choice of
a policy, with the incumbent not observing this move. Doing so would not affect
the analysis of the game, but would complicate its presentation.)

The payoff of a citizen of type t who is not the incumbent or the winner of the
election is u t (x 1)+u t (x 2), where u t has the form assumed in Lemma 13.1 and x 1

and x 2 are the policies in the two periods. The incumbent obtains an additional
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c

BC

yx yx

CB

yx yx

voter
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B
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Figure 13.2 A two-period electoral competition game with unobserved types with two
types and two possible policies, x and y . Player B is the incumbent and player C is the
challenger.

payoff of b (for her service as leader in the first period) and the winner of the
election also obtains an additional payoff of b (so that if the incumbent wins the
election she obtains an additional payoff of 2b ).

Definition 13.1: Two-period electoral competition game with
unobserved types

A two-period electoral competition game with unobserved types 〈{B ,C , V },
n , T, (pt )t∈T , (θt )t∈T , (αt )t∈T , m , X , v, c , (u t )t∈T , (x̂ t )t∈T ,b 〉, where

• n is a positive integer, with n ≥ 2 (the number of types of citizens)

• T = {1, . . . , n} (the set of types of citizens)

• pt ∈ [0,1] for each t ∈ T with
∑n

t=1 pt = 1 (pt is the proportion of
citizens of type t )

• θt ∈R and αt ∈R for each t ∈ T , with θ1 <θ2 < · · ·<θn

• m ∈ T and p1, . . . , pn satisfy







∑n
t=2 pt <

1
2

if m = 1
∑m−1

t=1 pt <
1
2

and
∑n

t=m+1 pt <
1
2

if 2≤m ≤ n −1
∑n−1

t=1 pt <
1
2

if m = n
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(m is the type of the median citizen when the citizens, of which there
are assumed to be an odd number, are ordered by θt )

• X is a closed interval of real numbers (the set of possible policies)

• v : X →R is increasing, concave, and differentiable

• c : X →R is increasing, strictly convex, and differentiable

• for each t ∈ T , u t : X →R is defined by u t (x ) = θt v (x )−c (x )+αt for all
x ∈ X and x̂ t is its (unique) maximizer

• b ∈R+ (the benefit that accrues to a citizen who is elected to office),

is an extensive game with imperfect information with the following com-
ponents.

Players
The set of players is {B ,C , V } (an incumbent B , a challenger C , and a
voter V )

Terminal histories
The terminal histories are the sequences (t 1,x 1, t 2, D,x 2) for t k ∈ T and
x k ∈ X for k = 1, 2 and D ∈ {B ,C }.

Player function
The player function P is defined by

• P(∅) = c (chance determines the incumbent’s type at the start of the
game)

• P(t 1) = B for every t 1 ∈ T (the incumbent chooses a first-period
policy after chance determines her type)

• P(t 1,x 1) = c for every (t 1,x 1) ∈ T ×X (chance determines the chal-
lenger’s type)

• P(t 1,x 1, t 2) = V for every (t 1,x 1, t 2) ∈ T ×X ×T (the voter selects a
candidate)

• P(t 1,x 1, t 2, D) = D for every (t 1,x 1, t 2, D) ∈ T × X × T × {B ,C } (the
elected candidate selects a policy).

Chance probabilities
At the initial history ∅ and after any history (t 1,x 1) chance selects each
type t ∈ T with probability pt .
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Information partitions
Player V ’s information partition consists of all sets {(t 1,x 1, t 2) : (t 1, t 2) ∈
T ×T } for x 1 ∈ X (the voter observes the incumbent’s first-period policy
but not the incumbent’s type or the challenger’s type).

Payer B ’s information partition consists of all sets {(t 1,x 1, t 2, B ) : t 2 ∈ T }
for (t 1,x 1) ∈ T × X (the incumbent observes her type and first-period
policy but not the challenger’s type).

Player C ’s information partition consists of all sets {(t 1,x 1, t 2,C ) :
t 1 ∈ T } for (t 2,x 1) ∈ T × X (the challenger observes her type and the
incumbent’s first-period policy but not the incumbent’s type).

Preferences
The preferences of the incumbent and challenger regarding the set of
lotteries over terminal histories are represented by the expected value
of a payoff function that assigns the following payoffs.

Player B

¨
u t 1(x 1)+u t 1(x 2)+2b terminal history (t 1,x 1, t 2, B ,x 2)
u t 1(x 1)+u t 1(x 2)+b terminal history (t 1,x 1, t 2,C ,x 2)

Player C

¨
u t 2(x 1)+u t 2(x 2)+b terminal history (t 1,x 1, t 2,C ,x 2)
u t 2(x 2)+u t 2(x 2) terminal history (t 1,x 1, t 2, B ,x 2)

The voter’s preferences are lexicographic: if the expected value of
u m (x 1)+u m (x 2) given her beliefs about the types of the incumbent and
challenger for the lottery over terminal histories when she votes for the
incumbent differs from the expected value of this function for the lot-
tery over terminal histories when she votes for the challenger then she
prefers the candidate for whom the expected value is higher, but if these
expected values are the same then she prefers the incumbent.

Equilibrium

Each player’s (behavioral) strategy is a function that assigns to each of her infor-
mation sets an action available at that set. Thus a strategy of an incumbent of
any type consists of a first-period policy x 1 ∈ X and a function that assigns a pol-
icy (to be carried out in the second period if the incumbent is reelected) to every
first-period policy, a strategy of a challenger of any type is a function that assigns
a policy (to be carried out if the challenger is elected in the second period) to
each possible first-period policy of the incumbent, and a strategy of the voter is a
function specifying a candidate for each possible first-period policy. A belief sys-
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tem is a function that assigns to each information set a probability distribution
over the histories in the set.

An assessment, consisting of a strategy profile and a belief system, is a weak
sequential equilibrium of the game if each player’s strategy is optimal for her,
given the other players’ strategies and the belief system, and the belief system is
consistent with the strategy profile in the sense that the probabilities it assigns to
histories that occur with positive probability given the strategy profile are derived
from the strategy profile using Bayes’ rule.

One feature of any weak sequential equilibrium is clear: an office-holder in
the second period chooses her favorite policy. What remains to be determined
are the policy chosen by each type of incumbent in the first period and the voter’s
strategy. Denote by A the set of first-period policies for which the voter selects the
incumbent, and assume this set is closed. Then in the first period the incumbent
either chooses the policy in A that yields her the highest payoff and is reelected,
or chooses her favorite policy and is not reelected.

The voter’s strategy determines the set A. Given that every office-holder chooses
her favorite policy in the second period, the expected payoff of a citizen of any
type t from a randomly-chosen challenger is

V C
t =

∑

k∈T

pk u t (x̂k ). (13.1)

The voter’s type is m , so her expected payoff from selecting the challenger is V C
m .

Her expected payoff from selecting an incumbent who chose x 1 in the first period
depends on her belief regarding the type of such an incumbent. It is

V B (x 1) =
∑

k∈T

µk (x
1)u m (x̂k ),

where µk (x 1) is the probability the voter assigns to the type of an incumbent
who chooses x 1 being k . (The condition that the beliefs be consistent with the
strategy profile requires that if the incumbent’s strategy chooses x 1 with positive
probability then the probability assigned by the voter is correct, given the in-
cumbent’s strategy.) Given the assumption that the voter prefers the incumbent
whenever her expected payoffs from the incumbent and the challenger are the
same, she reelects an incumbent who chooses x 1 in the first period if and only if
V B (x 1)≥ V C

m , so that in an equilibrium A = {x 1 ∈ X : V B (x 1)≥ V C
m }.

Suppose that an incumbent of type t gets reelected if she chooses x and not
if she chooses y . Then her payoff from choosing x is u t (x )+u t (x̂ t )+ 2b and her
payoff from choosing y is u t (y )+b +V C

t . The largest value of this latter payoff is
u t (x̂ t )+b +V C

t , so she prefers to choose x than to choose a policy that does not
get her reelected if and only if u t (x )+u t (x̂ t )+2b > u t (x̂ t )+b+V C

t , or equivalently
u t (x )−V C

t +b > 0.
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The next result is used in the analysis of pooling equilibria, in which every
type of the incumbent chooses the same policy. Part a shows that for types i , j ,
and k with i < j < k , for all x ∈ X the value of u j (x )−V C

j is a convex combination
of u i (x )−V C

i and u k (x )−V C
k , so that if type j of the incumbent prefers to choose

x and get reelected (u j (x )−V C
j +b > 0) then so does either type i or type k , or

both. Now, u m (x̂m ) +b ≥ V C
m because b ≥ 0, so part a of the result implies that

either u 1(x̂m ) + b ≥ V C
1 or u n (x̂m ) + b ≥ V C

n , or both, as stated in part b of the
result. Thus if the voter reelects an incumbent who chooses x̂m then at least one
of the extreme types is at least as well off choosing x̂m as choosing a policy that
does not get her reelected.

Lemma 13.2: Property of payoffs

Let 〈{B ,C , V }, n , T, (pt )t∈T , (θt )t∈T , (αt )t∈T , m , X , v, c , (u t )t∈T , (x̂ t )t∈T ,b 〉 be a
two-period electoral competition game with unobserved types.

a. Let V C
t be given by (13.1) for each t ∈ T . If i < j < k then

u j (x )−V C
j = β (i , j , k )

�
u i (x )−V C

i

�
+
�

1−β (i , j , k )
��

u k (x )−V C
k

�

for all x ∈ X , where β (i , j , k ) = (θk −θj )/(θk −θi )∈ (0,1).

b. Either u 1(x̂m ) +b ≥ V C
1 or u n (x̂m ) +b ≥ V C

n , or both, and if both then
u t (x̂m )+b ≥ V C

t for all t ∈ T .

Proof

a. For any t ∈ T and x ∈ X we have

u t (x )−V C
t = θt v (x )− c (x )−

∑

r∈T

pr (θt v (x̂r )− c (x̂r ))

= θt

�

v (x )−
∑

r∈T

pr v (x̂r )

�

−

�

c (x )−
∑

r∈T

pr c (x̂r )

�

.

Denote the first expression in large parentheses by F (x ) and the second
one by C (x ). (Note that both of these expressions are independent of t .)
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Then

u j (x )−V C
j = θj F (x )−C (x )

=
1

θk −θi

�
(θk −θj )(θi F (x )−C (x ))+ (θj −θi )(θk F (x )−C (x ))

�

=

�
θk −θj

θk −θi

�

(θi F (x )−C (x ))+

�

1−
θk −θj

θk −θi

�

(θk F (x )−C (x ))

=

�
θk −θj

θk −θi

�

(u i (x )−V C
i )+

�

1−
θk −θj

θk −θi

�

(u k (x )−V C
k ).

b. By definition we have u m (x̂m )≥ u m (x ) for all x ∈ X , so that u m (x̂m )≥ V C
m

and hence u m (x̂m )+b ≥ V C
m because b ≥ 0. The result follows from a.

Pooling equilibrium

What policies are chosen in equilibrium by incumbents in the first period? The
game has many weak sequential equilibria. First consider the possibility of an
equilibrium in which every type of incumbent chooses the same policy, say x ∗,
in the first period. Suppose that both extreme types, 1 and n , like holding office
and implementing x ∗ at least as much as being out of office and enduring the
policy chosen by a randomly-selected challenger:

u 1(x
∗)+b ≥ V C

1 and u n (x
∗)+b ≥ V C

n , (13.2)

where V C
1 and V C

n are given by (13.1). Then by Lemma 13.2b the same is true
for every type, and I claim that the game has an equilibrium in which every type
of incumbent chooses the policy x ∗ in the first period and is reelected. In the
equilibrium I describe, the voter does not reelect an incumbent who chooses a
policy different from x ∗ because she believes that the type of such an incumbent
is the one whose favorite policy is worst for her, and hence worse than the ran-
dom draw induced by selecting the challenger. Given this behavior of the voter,
an incumbent can choose x ∗ in the first period, get reelected, and choose her
favorite policy in the second period, or choose a policy different from x ∗ in the
first period, not get reelected, and endure the favorite policy of a random chal-
lenger in the second period. In the latter case, the best policy for her to choose
in the first period is her favorite policy. Given (13.2), every incumbent prefers to
choose x ∗ in the first period. The voter’s belief is compatible with equilibrium
because every incumbent’s equilibrium strategy chooses x ∗, so the weak consis-
tency condition does not constrain her belief about the incumbent’s type after a
policy different from x ∗ is chosen. The voter’s strategy of reelecting an incumbent
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V C
n

V C
1

V C
n

V C
1

x̂1 x̂2 x̂m x̂4 x̂5
u n (x )u 1(x )

Figure 13.3 An example of the citizens’ payoff functions in a two-period electoral com-
petition game with unobserved types in which there are five types of citizen. If the types
are equally likely, the values of V C

1 and V C
n are the ones shown in dark colors, and the

policies x ∗ that satisfy (13.2) for b = 0 are the ones in the dark green interval. If the prob-
abilities of the types are 0.05, 0.1, 0.4, 0.05, and 0.4 the corresponding items are shown in
light colors.

who chooses x ∗ is optimal because every type of incumbent chooses x ∗, so that
the voter’s belief about the incumbent’s type following the incumbent’s choice of
x ∗ is the same as her prior belief, and hence her expected payoff from reelecting
the incumbent is the same as her expected payoff from electing the challenger.

The concavity of u 1 and u n imply that for any value of b (≥ 0) the set of poli-
cies x ∗ that satisfy (13.2) is an interval that contains

∑
k∈T pk x̂k , the expected

value of a challenger’s favorite policy. The length of the interval is an increas-
ing function of b . Figure 13.3 shows an example with five types and b = 0. The
sets of policies satisfying the conditions are shown for two probability distribu-
tions of the types. In one case, shown with dark colors, the interval of policies x ∗

that satisfy (13.2) contains the median of the citizens’ favorite policies, x̂m , and
in the other case, shown in light colors, it does not.

Proposition 13.1: Equilibrium of two-period electoral competition
game with unobserved types in which every
incumbent chooses the same policy

Let 〈{B ,C , V }, n , T, (pt )t∈T , (θt )t∈T , (αt )t∈T , m , X , v, c , (u t )t∈T , (x̂ t )t∈T ,b 〉 be a
two-period electoral competition game with unobserved types. Suppose
that (13.2) is satisfied by x ∗ ∈ X . An assessment satisfying the following
conditions is a weak sequential equilibrium of the game.

Strategy of incumbent of type t
First period: choose x ∗. Second period: choose x̂ t at every information
set.
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Strategy of challenger of type t
Choose x̂ t at every information set.

Strategy of voter
Choose B if the incumbent’s policy is x ∗ and choose C otherwise.

Belief system
For each x ∈ X , denote by I V (x ) the (voter’s) information set consisting
of all histories of the form (t 1,x , t 2) for t 1 ∈ T and t 2 ∈ T .

At the information set I V (x ∗) the belief system assigns probability pt 1 pt 2

to each history (t 1,x ∗, t 2).

For any x 6= x ∗, at the information set I V (x ) the belief system assigns
probability pt 2 to each history (t ∗,x , t 2), where t ∗ is the type for which
u m (x̂ t ∗) is smallest, and probability 0 to every other history.

For each pair (t 1,x )∈ T ×X , denote by I B (t 1,x ) the (incumbent’s) infor-
mation set consisting of all histories of the form (t 1,x , t 2, B ) for t 2 ∈ T ,
and for each pair (t 2,x ) ∈ T × X , denote by I C (t 2,x ) the (challenger’s)
information set consisting of all histories of the form (t 1,x , t 2,C ) for
t 1 ∈ T .

For each t 2 ∈ T , at each information set I B (t 1,x ) the belief system as-
signs probability pt 2 to the history (t 1,x , t 2, B ), and for each t 1 ∈ T , at
each information set I C (t 2,x ) it assigns probability pt 1 to the history
(t 1,x , t 2,C ).

Proof

I verify that the assessment given in the result is sequentially rational and
weakly consistent.

Sequential rationality of strategy of incumbent of type t
The optimal policy in the second period (following a history in which
she is reelected) is x̂ t , her favorite policy, because the policy she chooses
affects only the outcome in the second period.

If she chooses x ∗ in the first period then she is reelected and gets the
payoff u t (x ∗) +u t (x̂ t ) + 2b . If she deviates to another policy she is not
reelected; her highest payoff is u t (x̂ t )+b+V C

t . By Lemma 13.2a, condi-
tion (13.2) implies that u t (x ∗)+b ≥ V C

t for all t ∈ T , so that every type of
incumbent optimally chooses the policy x ∗ in the first period and gets
reelected.
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Sequential rationality of strategy of challenger of type t
As for an incumbent of type t who is reelected, the optimal policy for a
challenger of type t is her favorite policy, x̂ t .

Sequential rationality of strategy of voter
At the voter’s information set I V (x ∗) the probability the voter’s belief as-
signs to the incumbent’s type being t is pt for each t ∈ T , so her second-
period expected payoff if she selects the incumbent is V C

m , the same as
her second-period expected payoff if she selects the challenger. So in
particular her selecting the incumbent is optimal.

At any of the voter’s other information sets her belief assigns probabil-
ity 1 to the incumbent’s type being t ∗, for which u m (x̂ t ) is smallest, so
that her second-period expected payoff from selecting the incumbent
is mint∈T u m (x̂ t ). Her second-period expected payoff from selecting the
challenger is V C

m (see (13.1)), which is larger than mint∈T u m (x̂ t ), so that
her selecting the challenger is optimal.

Weak consistency of beliefs with strategies
Given the strategy profile, the probability of the history (t 1,x ∗, t 2) condi-
tional on reaching the (voter’s) information set I V (x ∗) is pt 1 pt 2 , as given
by the belief system. For any policy x 6= x ∗, the probability of any history
(t 1,x , t 2) is 0 given the strategy profile, so that the beliefs following such
a history are not constrained by the weak consistency condition.

For any pair (t 1,x ), the probability of the history (t 1,x , t 2, B ) conditional
on reaching the incumbent’s information set I B (t 1,x ) is pt 2 , and for
any pair (t 2,x ), the probability of the history (t 1,x , t 2,C ) conditional
on reaching the challenger’s information set I C (t 2,x ) is pt 1 , so the be-
liefs specified by the belief system at these information sets are weakly
consistent with the strategy profile.

Separating equilibrium

Suppose that x ∗ is a policy for which u t (x ∗) + b < V C
t if and only if t ≤ k and

the voter reelects an incumbent only if she chooses x ∗ in the first period. Then
an incumbent of any type t ≤ k prefers to choose her favorite policy in the first
period and endure a random challenger in the second period than to choose x ∗

in the first period and be reelected, whereas an incumbent of any type t ≥ k + 1
has the opposite preferences. If incumbents behave in this way then the require-
ment of weak sequential equilibrium that the voter’s beliefs be consistent with
the incumbent’s strategy means that if the voter observes the policy x ∗ then she
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Figure 13.4 An illustration of the sufficient conditions (13.3) and (13.4) in Proposi-
tion 13.2 for a two-period electoral competition game with unobserved types to have
a weak sequential equilibrium in which incumbents of type t ≥ k + 1 choose the policy
x ∗ and those of type t ≤ k choose their favorite policies.

believes that the incumbent’s type is t with probability pt /
∑n

j=k+1 p j for each
t ∈ {k +1, . . . , n} and with probability 0 for each t ∈ {1, . . . , k }, and if she observes
the policy x̂ t for some t ∈ {1, . . . , k } then she believes that the incumbent’s type
is t with probability 1. If she observes some other policy, her beliefs are not con-
strained by the equilibrium condition. If, for some belief system satisfying these
conditions, an optimal policy for an incumbent is x̂ t if her type is t ≤ k and x ∗

otherwise, and reelecting an incumbent is optimal for the voter if and only if the
incumbent’s policy is x ∗, then the pattern of behavior is an equilibrium. It turns
out that given u t (x ∗) + b < V C

t if and only if t ≤ k , as I have assumed, a suffi-
cient condition for the strategies to be optimal is that u m (x̂ t ) ≤ V C

m if t ≤ k : the
favorite policies of the types of incumbent who choose these policies rather than
x ∗ are all worse for the voter than the favorite policy of a randomly drawn citizen.
These conditions are illustrated in Figure 13.4. The first-period policy chosen by
an incumbent in such an equilibrium, as a function of the incumbent’s type, is
illustrated in Figure 13.5a.

Proposition 13.2: Equilibrium of two-period electoral competition
game with unobserved types in which not all
incumbents choose the same policy

Let 〈{B ,C , V }, n , T, (pt )t∈T , (θt )t∈T , (αt )t∈T , m , X , v, c , (u t )t∈T , (x̂ t )t∈T ,b 〉 be a
two-period electoral competition game with unobserved types. Suppose
that for x ∗ ∈ X and k ∈ T we have

u t (x
∗)+b < V C

t if and only if t ≤ k , (13.3)

where V C
t is given by (13.1), and

u m (x̂ t )≤ V C
m if t ≤ k . (13.4)
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x ∗

x̂k x ∗

↑
B ’s

policy

B ’s fav. policy→

Reelect

Do not reelect

(a) The incumbent’s first-period policy in
the weak sequential equilibria described
in Proposition 13.2. The voter reelects the
incumbent if and only if her policy is x ∗.

x ∗

x

x ∗

↑
B ’s

policy

B ’s fav. policy→

Reelect

Do not reelect

(b) The incumbent’s first-period policy in
another weak sequential equilibrium. The
voter reelects the incumbent if and only if
her policy is in [x,x ∗].

Figure 13.5 The first-period policy chosen by an incumbent, as a function of her type, in
two types of weak sequential equilibria of a two-period electoral competition game with
unobserved types.

Then the following assessment is a weak sequential equilibrium of the
game.

Strategy of incumbent of type t
First period: if t ≤ k choose x̂ t and if t ≥ k+1 choose x ∗. Second period:
choose x̂ t .

Strategy of challenger of type t
Choose x̂ t .

Strategy of voter
Choose B if the incumbent’s policy is x ∗ and otherwise choose C .

Belief system
For each x ∈ X , denote by I (x ) the (voter’s) information set consisting
of all histories of the form (t 1,x , t 2) for t 1 ∈ T and t 2 ∈ T .

At the information set I (x ∗) the belief system assigns probability






0 if t 1 ∈ {1, . . . , k }
pt 1 pt 2

∑n
j=k+1 p j

if t 1 ∈ {k +1, . . . , n}

to each history (t 1,x ∗, t 2).

For any t ≤ k , at the information set I (x̂ t ) the belief system assigns
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probability pt 2 to each history (t , x̂ t , t 2) and probability 0 to every other
history.

For any x 6∈ {x ∗, x̂1, . . . , x̂k }, at the information set I (x ) the belief system
assigns probability pt 2 to each history (t ∗,x , t 2), where t ∗ is the type for
which u m (x̂ t ∗) is smallest, and probability 0 to every other history.

The beliefs at each of the incumbent’s and challenger’s information sets
are the same as the ones in Proposition 13.1.

Proof

I verify that the assessment given in the result is sequentially rational and
weakly consistent.

Sequential rationality of strategy of incumbent of type t
The optimal policy in the second period (following a history in which
she is reelected) is x̂ t , her favorite policy, because the policy she chooses
affects only the outcome in the second period.

If she chooses x ∗ in the first period then she is reelected and gets the
payoff u t (x ∗)+u t (x̂ t )+2b . If she deviates to another policy she is not re-
elected; her highest payoff is u t (x̂ t )+b+V C

t , obtained when she chooses
x̂ t . So by (13.3) she optimally chooses x̂ t if t ≤ k and x ∗ if t ≥ k +1.

Sequential rationality of strategy of challenger of type t
As for an incumbent of type t who is reelected, the optimal policy for a
challenger of type t is her favorite policy, x̂ t .

Sequential rationality of strategy of voter
At the voter’s information set I (x ∗) the probability the voter’s belief as-
signs to the incumbent’s type being t is pt /

∑n
j=k+1 p j for t = k +1, . . . , n

and 0 otherwise, so her second-period expected payoff from selecting
the incumbent is ∑n

t=k+1 pt u m (x̂ t )
∑n

t=k+1 pt
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and her second-period expected payoff from selecting the challenger is
V C

m . Now,

V C
m =

n∑

t=1

pt u m (x̂ t )

=
k∑

t=1

pt u m (x̂ t )+
n∑

t=k+1

pt u m (x̂ t )

≤ V C
m

k∑

t=1

pt +
n∑

t=k+1

pt u m (x̂ t )

given (13.4). Thus

V C
m

�

1−
k∑

t=1

pt

�

= V C
m

n∑

t=k+1

pt ≤
n∑

t=k+1

pt u m (x̂ t )

and hence

V C
m ≤

∑n
t=k+1 pt u m (x̂ t )
∑n

t=k+1 pt

Thus the voter optimally reelects the incumbent if the incumbent
chooses the policy x ∗.

At the voter’s information set I (x̂ t ) for some t ≤ k , her belief assigns
probability 1 to the incumbent’s type being t , so that her second-period
expected payoff from selecting the incumbent is u m (x̂ t ). Her second-
period expected payoff if she selects the challenger is V C

m , so by (13.4)
she optimally selects the challenger.

Finally, at any information set I (x ) of the voter for x 6∈ {x ∗, x̂1, . . . , x̂k },
her belief assigns probability 1 to the incumbent’s type being t ∗, so
that her second-period expected payoff from selecting the incumbent
is mint∈T u m (x̂ t ). Her second-period expected payoff from selecting the
challenger is V C

m , which is larger than mint∈T u m (x̂ t ), so that selecting
the challenger is optimal for her.

Weak consistency of beliefs with strategies
Given the strategy profile, the probability of the history (t 1,x ∗, t 2) con-
ditional on reaching the information set I (x ∗) is pt 1 pt 2/

∑n
j=k+1 p j if t 1 ≥

k + 1 and 0 otherwise, and the probability of the history (t , x̂ t , t 2) con-
ditional on reaching the information set I (x̂ t ) is pt 2 if t ≤ k and 0 oth-
erwise, as given by the belief system. For any policy x 6∈ {x̂1, . . . , x̂k ,x ∗},
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the information set I (x ) has probability 0 given the strategy profile, and
hence the beliefs are not constrained by the weak consistency condi-
tion.

The argument that the beliefs at the incumbent’s and challenger’s in-
formation sets are consistent with the strategy profile is the same as the
one in the proof of Proposition 13.1.

Note that given Lemma 13.2a, condition (13.3) is equivalent to the conditions
u k (x ∗)+b < V C and u k+1(x ∗)+b ≥ V C .

As the policy x ∗ increases, the value of k has to increase for (13.3) to be sat-
isfied, and at some point (13.4) may be violated: the voter prefers to reelect an
incumbent who chooses x̂k than endure a random challenger, so that the as-
sessment is no longer an equilibrium. Depending on the parameters and payoff
functions, other assessments may be equilibria. One possible form for such an
equilibrium is shown in Figure 13.5b.

In all of these equilibria, at least some types of incumbent do not choose their
favorite policies in the first period. For these types, it is worthwhile to choose
a different policy (like x ∗ in the propositions) that results in the voter reelect-
ing them, and for the voter it is optimal to reelect such types and not ones that
choose other policies. For some parameters and payoff functions, equilibria exist
in which some, or even all, types of incumbent choose the voter’s favorite policy
in the first period.

An implication of the results is that a one-term limit on incumbents would
make the voter worse off, because in a variant of the model with such a limit
every incumbent would choose her favorite policy in the first period.

The idea that the two-period model captures, that an incumbent may adjust
her policy to increase her chance of being reelected, may be expressed also in
a many-period model. A model with infinitely many periods, for example, may
have equilibria in which every type of incumbent chooses the voter’s favorite pol-
icy in every period because if she deviates to a different policy in any period the
voter believes that she will continue to choose such a policy in future periods,
and hence does not reelect her. Thus an incumbent who deviates from the voter’s
favorite policy foregoes the benefit b of winning in each subsequent period, so
that if the gain from choosing her own favorite policy in a single period is worth
less than the loss of b in every subsequent period she prefers not to deviate.
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Exercise 13.2: Two-period electoral competition with parties

Consider a variant of a two-period electoral competition game with unob-
served types in which each citizen is associated with a party. Citizens with
types less than m are associated with party L and those with types greater
than m are associated with party R ; for convenience, suppose that citizens
with type m are associated with both parties. Assume that the voter knows
the incumbent’s party and the challenger is drawn randomly from the cit-
izens associated with the other party, not the set of all citizens. How are
Propositions 13.1 and 13.2 affected?

13.2 Unobserved candidate preferences and unobserved state

Now consider a model in which the voter does not know the candidates’ types,
as in the previous section, but in addition she is uncertain of the policy that is
best for her: this policy depends on the state, which she does not know. The can-
didates know the state, but their preferences may differ from those of the voter.
In this environment, electing a representative who chooses a policy may not be
optimal for the voter. On the one hand, given that the candidates are better in-
formed than the voter, having an elected representative choose a policy opens
up the possibility that the chosen policy will be better than the one the voter
would choose. On the other hand, the competition to be elected may induce a
candidate to select a policy that she knows the voter believes is most likely to be
optimal, even though, as the candidates know, this policy is not best for the voter.

Model

As in the previous section, there are two periods and the participants are an in-
cumbent, a challenger, and a (decisive) voter. In the first period, the incumbent
chooses a policy. The voter observes this policy and either reelects the incum-
bent or elects the challenger. In the second period, the office-holder chooses a
policy.

To make the analysis manageable, there are only two possible policies, x and
y , and two states, also called x and y . The policy best for the voter depends on
the state: policy x is best in state x and policy y is best in state y . The incum-
bent knows the state, and hence the policy that is best for the voter, but the voter
does not; she believes that the state is x with probability p and y with probabil-
ity 1−p . With probability π, a candidate (the incumbent or the challenger) has
preferences that are consonant with the voter’s—she prefers x in state x and y in
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Figure 13.6 The structure of a two-period game of electoral competition in which the
candidates, but not the voter, know the best policy for the voter. The game begins with
the move of chance indicated by the small circle in the center. Red elements belong to
the incumbent, blue elements to the challenger, green elements to the voter, and gray
elements to chance.

state y —and with probability 1−π she has preferences that are dissonant from
the voter’s—she prefers y in state x and x in state y .

The structure of an extensive game with imperfect information that reflects
these assumptions is shown in Figure 13.6. Play begins with the move of chance
indicated by the small circle in the center of the figure. Chance independently
determines the state (x with probability p , y with probability 1−p ) and the in-
cumbent’s preferences (consonant with the voter’s with probability π, dissonant
from the voter’s with probability 1−π). The branch labeled x , c , for example, cor-
responds to state x and preferences for the incumbent that are consonant with
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the voter’s, an event with probability πp . The incumbent (red) observes the move
of chance and chooses a policy (x or y ) for period 1. The voter (green) observes
the policy, but not the incumbent’s type or the state, and thus has two informa-
tion sets, indicated by the dotted squares. The inner information set is reached if
the incumbent chooses policy x , and the outer one is reached if the incumbent
chooses policy y . At each information set, the voter selects the incumbent (B ) or
the challenger (C ). In both cases, chance then determines the challenger’s type
(c (consonant) with probability π and d (dissonant) with probability 1−π) and
the candidate the voter selected chooses a policy (x or y ) for period 2.

The voter’s payoff is the number of periods (0, 1, or 2) in which the policy
matches the state. She does not receive this payoff until the game ends, and in
particular cannot use the part due to the policy in period 1 to infer the state.
(If we were to assume that the state is chosen independently in each period, we
could allow the voter to observe her first-period payoff before period 2. The game
would then be more complicated, but the results would be the same.)

A candidate (incumbent or challenger) receives the amount v ′ in each pe-
riod in which the policy is the one she prefers and v in each period in which it
is the other policy, with v ′ > v > 0. In addition, if she is in office in the sec-
ond period then she receives an amount b ≥ 0 that reflects her degree of office-
motivation. At the moment I assume that all candidates have the same degree of
office-motivation; later I assume that candidates may differ in this degree. Thus,
for example, if the state is x , the incumbent’s type is c , the incumbent chooses
policy x in the first period, is reelected, and chooses policy x again in the second
period, then her payoff is 2v ′+b . For a history that differs only in that the chal-
lenger is elected in the second period and chooses the policy y , the incumbent’s
payoff is v ′+ v .

(An alternative and perhaps more natural specification of the game assumes
that the challenger’s type, like the incumbent’s, is chosen by chance initially,
rather than after the voter selects a candidate. This specification is more com-
plicated to depict, but its analysis is the same. The important point is that the
voter does not know the challenger’s type when she selects a candidate, which is
true in both formulations.)

In any weak sequential equilibrium of the game, the policy-maker in period
2 chooses her favorite action, as indicated by the arrows in Figure 13.6. Thus we
may find the weak sequential equilibria of the game by finding the weak sequen-
tial equilibria of the game in Figure 13.7, in which the players are the incumbent
and the voter (in addition to chance) and the part of each terminal history in
period 2 in Figure 13.6 is replaced by the payoffs of the incumbent and the voter
when the second-period policy-maker chooses her favorite action. Subsequently
I work with a variant of this reduced game.
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Figure 13.7 The game in Figure 13.6 with the second period replaced by the payoffs to
the players’ unique optimal actions in that period. The game begins with the move of
chance indicated by the small circle in the center. The players are an incumbent (red)
and a voter (green).

In the variant, the incumbent has many possible degrees of office-motivation.
For an incumbent to be willing to implement her less-preferred policy in order
to get reelected, her office-motivation has to be sufficient that she prefers to be
in office and endure her less-preferred policy than to put up with the policy cho-
sen by a random challenger. But if the office-motivation of every incumbent has
such a magnitude, then in an equilibrium all incumbents choose the same pol-
icy, which has the unfortunate implication that the voter’s information set cor-
responding to the other policy is not reached. Consequently any belief regard-
ing the history that led to this information set is consistent with the equilibrium
strategy profile, leading to a multiplicity of equilibria. The model I specify avoids
this problem by allowing the incumbent’s degree of office-motivation to take any
value in a finite setB . Thus in this model, the incumbent’s type is a pair (h,b ),
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where h is the concordance of her preferences with those of the voter (consonant
or dissonant) and b is her degree of office-motivation. The subsequent result
(Proposition 13.3) assumes that B contains two values, one high and one low.
The optimal behavior of the incumbents with low office-motivation imposes dis-
cipline on the voter’s belief at the information set following the policy that is not
chosen by any high-office-motivation incumbent.

In the model, chance starts by determining a state (x or y ), the concordance
of the incumbent’s preferences with those of the voters (consonant or dissonant),
and the incumbent’s degree of office-motivation (a member of B). The incum-
bent observes these values and chooses a policy (x or y ). Then the voter, who
observes the incumbent’s policy but not the move of chance, selects either the
incumbent or the challenger. If she selects the incumbent, the policy is the one
the incumbent chose; if she selects the challenger, it is a random draw from the
set of policies. (The challenger is not a player in the game.) An example in which
B = {0,b} is given in Figure 13.8.

Definition 13.2: Two-period electoral competition game with well-
informed candidates with uncertain motivations

A two-period electoral competition game with well-informed candidates
with uncertain motivations 〈{B , V,C },{x , y }, p ,π, v ′, v,B ,ρ〉, where

• B , V , and C are labels (B and V are the names of an incumbent and
a voter, and C represents the voter’s action of selecting a challenger
rather than the incumbent)

• x and y are labels (the names both of two policies and two states)

• p ∈ (0,1) (the probability the state is x )

• π ∈ (0,1) (the probability that a candidate’s preferences are the same as
(consonant with) the voter’s preferences)

• v ′ ≥ 0 (the component of the incumbent’s payoff attributable to the
policy in a period in which the policy is her favorite policy)

• v ≥ 0 with v < v ′ (the component of the incumbent’s payoff at-
tributable to the policy in a period in which the policy is not her fa-
vorite policy)

• B is a finite set of nonnegative numbers (the possible values for the
component of the incumbent’s payoff attributable to her holding of-
fice)
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Figure 13.8 A two-period electoral competition game with well-informed candidates
with uncertain motivations with incumbents with two degrees of office-motivation, 0
(lower half of figure) and b (upper half of figure). Red elements belong to the incumbent,
green elements to the voter, and gray elements to chance; probabilities are indicated in
blue. The incumbent’s payoff is listed first; v = πv ′ + (1−π)v and v = (1−π)v ′ +πv .
The arrows indicate the actions chosen in any weak sequential equilibrium when p > 1

2
and v +b >max{v, v }, as given in Proposition 13.1. The cases in which the incumbent
chooses y are highlighted.
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• ρ is a probability distribution overB (the probabilities of the various
degrees of office-motivation)

is an extensive game with imperfect information with the following com-
ponents.

Players
B (an incumbent) and V (a voter).

Terminal histories
The terminal histories are the sequences ((s , h,β ), z , D) for (s , h,β ) ∈
{x , y }× {c , d }×B , z ∈ {x , y }, and D ∈ {B ,C }

Player function
The player function P is defined by

• P(∅) = chance (the game begins with a move of chance)

• P(s , h,β ) = B for each (s , h,β ) ∈ {x , y }× {c , d }×B (the incumbent
moves after chance determines the state and the incumbent’s type)

• P((s , h,β ), z ) = V for every (s , h,β , z ) ∈ {x , y } × {c , d } ×B × {x , y }
(the voter moves after the incumbent chooses a policy).

Chance probabilities
At the initial history ∅ chance selects the state s ∈ {x , y } (the best pol-
icy for the voter), the concordance of the incumbent’s preferences with
the voter’s preferences (consonant (c ) or dissonant (d )), and the incum-
bent’s degree of office-motivation β ∈B , independently. The state s is
x with probability p and y with probability 1−p , the incumbent’s pref-
erences are consonant (c ) with the voter’s with probability π and disso-
nant (d ) from them with probability 1−π, and the incumbent’s degree
of office-motivation is β with probability ρ(β ).

Information partitions
Player B ’s information partition consists of one set for each move of
chance. Player V ’s information partition consists of the following two
sets:

{(s , h,β ,x ) : s ∈ {x , y }, h ∈ {c , d },β ∈B}

{(s , h,β , y ) : s ∈ {x , y }, h ∈ {c , d },β ∈B}.

Preferences
The preferences of each player over the set of lotteries over terminal
histories are represented by the expected value of the following payoffs.
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For the terminal history ((s , h,β ), z , D), the payoff of player B is the sum
of two components: an amount attributable to the first-period policy,

¨
v ′ if h = c and s = z , or h = d and s 6= z
v if h = c and s 6= z , or h = d and s = z ,

and an amount attributable to the second-period policy,







v ′+β if D = B (voter selects incumbent)
πv ′+(1−π)v if D =C and h = c (voter selects challenger,

incumbent is consonant)
(1−π)v ′+πv if D =C and h = d (voter selects challenger,

incumbent is dissonant).

If player V , the voter, selects the incumbent (D = B ) her payoff is







0 if z 6= s and h = d
1 if z = s and h = d , or z 6= s and h = c
2 if z = s and h = c

and if she selects the challenger (D =C ) it is

¨
π if z 6= s
1+π if z = s .

A strategy for the incumbent is a policy for each state and each of her types
(h,β ) (that is, for each move of chance). A strategy for the voter is a function that
assigns to each policy (x and y ) that the incumbent can choose either B (reelect
incumbent) or C (elect challenger). A belief system assigns to each of the voter’s
information sets a probability distribution over the histories in the set.

I now study the weak sequential equilibria of the game in which the incum-
bent has two possible degrees of office-motivation, 0 and b , with v+b >max{v, v },
where

v =πv ′+(1−π)v and v= (1−π)v ′+πv. (13.5)

First consider an incumbent whose degree of office-motivation is 0 (types
(c ,0) and (d , 0)); her actions appear in the bottom two panels of Figure 13.8. For
such an incumbent, choosing her favorite policy is unambiguously optimal. If
she chooses the other policy, she sacrifices the payoff v ′ − v in the first period
and gains at most v ′ −max{v, v } in the second period. She gains nothing from
holding office per se, so there is no advantage in her choosing her less-favored
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policy in the first period in order to be reelected, because if she is not reelected
then with positive probability the challenger will choose her favorite policy in
the second period. Thus in any weak sequential equilibrium, every incumbent
whose degree of office-motivation is 0 chooses her favorite policy.

Now consider incumbents whose degree of office-motivation is b . Given that
v +b >max{v, v }, such an incumbent optimally chooses her less-favored policy
in the first period if doing so gets her reelected, because the amount she thereby
loses in the first period, v ′ − v , is less than the amount she gains in the second
period, which is v ′ +b − v if her type is (c ,b ) and v ′ +b − v if her type is (d ,b ).
Thus if, for example, the voter reelects only incumbents who choose x , then an
incumbent whose preferences are the same as the voter’s optimally chooses x
even if she knows that the state is y . Incumbents who behave in this way are
sometimes said to “pander” to the voter, although the everyday meaning of that
word has negative connotations that seem unwarranted in this context.

The next result shows that in every weak sequential equilibrium of the game
all office-motivated incumbents choose the policy more likely to be best for the
voter, given the voter’s information, rather than the policy they know is best for
the voter given their knowledge of the state. The equilibrium is shown in Fig-
ure 13.8 for the case in which the policy more likely to be best for the voter is x .
The policy x is chosen by both incumbents with positive office-motivation and
ones with no office-motivation who prefer x , given the state (that is, type (c ,0) in
state x and type (d ,0) in state y ). If only the former chose x , then the voter would
be indifferent between reelecting the incumbent and electing the challenger, be-
cause the probability that the incumbent shares her preferences is the same as
the probability that the challenger does so. The fact that the latter also choose
x tips the balance in favor of reelecting the incumbent, given that x is the more
likely state.

Proposition 13.3: Equilibrium of two-period electoral competition
game with well-informed candidates with uncertain
motivations

Let 〈{B , V,C },{x , y }, p ,π, v ′, v,B ,ρ〉 be a two-period electoral competition
game with well-informed candidates with uncertain motivations in which
B = {0,b} for b > 0, and ρ(0) = r and ρ(b ) = 1− r , with r ∈ (0,1]. If p > 1

2

(x is more likely than y to be the policy favored by the voter) and v +b >
max{v, v } (the incumbent’s office-motivation is sufficiently high), where
v and v are given in (13.5), then the game has a unique weak sequential
equilibrium. In this equilibrium, each office-motivated incumbent (types
(c ,b ) and (d ,b )) chooses policy x in both state x and state y , and every
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incumbent with no office-motivation chooses her favorite policy.

Proof

Step 1 In every weak sequential equilibrium the incumbent chooses x after
the moves of chance (x , c ,0) and (y , d ,0), and y after the moves of chance
(y , c ,0) and (x , d ,0).

Proof. After the moves of chance (x , c , 0) and (y , d ,0) the incumbent’s
worst payoff if she chooses x , the policy she prefers, exceeds her best pay-
off if she chooses y , and after the moves of chance (y , c ,0) and (x , d ,0)
her worse payoff if she chooses y , the policy she prefers, exceeds her best
payoff if she chooses x . Ã

Step 2 The game has no weak sequential equilibrium in which the voter
chooses the same action at each of her information sets.

Proof. Suppose that the voter chooses the same action at both of her in-
formation sets. Then the incumbent’s first-period policy does not affect
whether she is reelected, so she optimally chooses x after the moves of
chance (x , c ,b ) and (y , d ,b ) and y after the moves of chance (y , c ,b ) and
(x , d ,b ). Given Step 1, the only belief that is consistent with the incum-
bent’s strategy is given as follows. The probability that chance chooses
(x , c ,0) or (x , c ,b ) is pπ, so at the voter’s inner information set (following
the policy x ) the belief assigns probability pπ/Π to the incumbent’s being
consonant and probability (1−p )(1−π)/Π to her being dissonant, where
Π is the sum of the numerators of these expressions. At her outer informa-
tion set (following the policy y ) it assigns the probability (1− p )π/(1−Π)
to the incumbent’s being consonant and probability p (1−π)/(1−Π) to her
being dissonant.

Given this belief and the incumbent’s strategy, the voter’s payoffs to her
actions at her inner information set are

B : 2pπ/Π

C : [pπ(1+π)+ (1−p )(1−π)π]/Π.

The difference between these payoffs is (2p−1)π(1−π)/Π, which is positive
given p > 1

2
and π ∈ (0,1). Thus the voter’s unique optimal action at her
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inner information set is B . The voter’s payoffs to her actions at her outer
information set are

B : 2(1−p )π/(1−Π)

C : [(1−p )π(1+π)+p (1−π)π]/(1−Π).

The difference between these payoffs is (1− 2p )π(1−π)/(1−Π), which is
negative. Thus the voter’s unique optimal action at her outer information
set is C .

We conclude that the game has no weak sequential equilibrium in
which the voter chooses the same action at each of her information sets. Ã

Step 3 In every weak sequential equilibrium the incumbent chooses the
same policy after every move of chance (s , h,β ) with β = b (the ones in the
top half of Figure 13.8).

Proof. By Step 2, in every weak sequential equilibrium the voter chooses B
at one of her information sets and C at the other one. If she chooses B at
her outer information set (following policy y ) and C at her inner informa-
tion set (following policy x ), then given v +b >max{v, v }, the incumbent
optimally chooses y after every move of chance (s , h,β ) with β = b . If the
voter chooses C at her outer information set and B at her inner informa-
tion set, then the incumbent optimally chooses x after every such move of
chance. Ã

Step 4 In every weak sequential equilibrium the incumbent chooses x after
every move of chance (s , h,β )with β =b .

Proof. By Step 3 the only other possibility is that the incumbent chooses
y after every move of chance (s , h,β ) with β = b . Then if the voter’s in-
ner information set is reached, by Step 1 the voter believes that the move
of chance was (x , c ,0) with probability pπr /Λ and (y , d ,0) with probabil-
ity (1− p )(1− π)r /Λ, where Λ is the sum of the numerators. The differ-
ence between the voter’s expected payoffs to B and C at her inner infor-
mation set is thus proportional to pπr (2− (1+π)) + (1−p )(1−π)r (−π) =
rπ(1−π)(2p −1)> 0, so that the voter optimally chooses B at the informa-
tion set. But then after the move of chance (x , c ,b ) the incumbent is better
off deviating from y to x , regardless of whether the voter chooses B or C at
her outer information set. Ã
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Step 5 The game has a unique weak sequential equilibrium, and in this
equilibrium types (c ,b ) and (d ,b ) of the incumbent choose x in both states,
type (c ,0) chooses x in state x and y in state y , and type (d , 0) chooses y in
state x and x in state y .

Proof. By Steps 1 and 4 the incumbent’s strategy has this form in every
weak sequential equilibrium. Consider the assessment in which the in-
cumbent’s strategy takes this form, the voter chooses B (reelect the incum-
bent) if the incumbent’s policy is x and C if the incumbent’s policy is y , and
the belief system assigns to each history in each of the voter’s information
sets the probability of the history occurring given the incumbent’s strategy,
conditional on the information set’s being reached. This strategy profile is
indicated by the arrows in Figure 13.8.

I argue that the assessment is a weak sequential equilibrium, the belief
system is the only one that is consistent with the incumbent’s strategy, and
the voter’s strategy is the only one that is optimal given the belief system.

We have v ∈ (v, v ′), v ∈ (v, v ′), and v +b >max{v, v }, so that the strategy
of each type of incumbent is optimal given the voter’s strategy.

At the voter’s inner information set, following the incumbent’s choice
of policy x , the voter’s expected payoff from choosing B , given the incum-
bent’s strategy, is [2pπ(1− r ) + (1−p )π(1− r ) + p (1−π)(1− r )+2pπr ]/∆
and her expected payoff from choosing C is [(1− r )(π+p ) + pπr (1+π) +
(1−p )(1−π)rπ]/∆, where ∆ is the sum of the probability that chance se-
lects (s , h,b ) for some pair (s , h), (x , c ,0), or (y , d ,0). The difference be-
tween the numerators of these expressions is (1−π)rπ(2p − 1), which is
positive given p > 1

2
. Thus selecting B is the only optimal action for the

voter at her inner information set.
At the voter’s outer information set, following the incumbent’s choice

of policy y , the voter’s expected payoff from choosing B , given the incum-
bent’s strategy, is (1−p )πr /(1−∆) and her expected payoff from choosing
C is [(1−p )πr (1+π)+p (1−π)rπ]/(1−∆). The difference between the nu-
merators of these expressions is (1−π)rπ(1− 2p ), which is negative given
p > 1

2
. Thus selecting C is the only optimal action for the voter at her outer

information set.
Both information sets are reached with positive probability, and the be-

liefs at each information set are derived from the strategy profile using
Bayes’ rule, so they are the only ones weakly consistent with the strategy
profile. Ã
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The voter’s expected payoff in the equilibrium in this result is

(1− r )(p +π)+ rπ[1+π+2p (1−π)]. (13.6)

If, instead of selecting a representative to choose a policy for her, the voter chooses
one herself, she optimally selects x , the policy more likely to be best for her, and
consequently obtains the expected payoff 2p . By doing so she does not benefit
from the candidates’ superior information, but at the same time is not subject to
the risk that a candidate’s preferences differ from hers. The voter’s payoff when
she chooses a policy herself exceeds her payoff (13.6) if the probability p that
the best policy is x exceeds π(1+πr )/[1+ r − 2πr (1−π)], which is less than 1 if
π< 1. Thus however likely it is that a candidate’s preferences are consonant with
the voter’s preferences, for p sufficiently high the voter is better off choosing the
policy herself than electing a representative to do it for her under the rules of the
game we are considering. When p is less than this bound, so that the best pol-
icy is relatively uncertain, handing the decision to a representative is better even
though the representative’s preferences may differ from the voter’s and she may
choose the policy the voter believes is best, rather than the policy that is in fact
best, in order to get reelected.

Another option for the voter is to select a candidate randomly in each period,
without the possibility of reelection. The voter’s expected payoff in this case is
2π. This payoff exceeds her payoff (13.6) if the probability p that the best policy
is x is less thanπ(1−πr )/[1−r+2πr (1−π)]. This number is greater than 1

2
, as p is

assumed to be in Proposition 13.3, if π< 1
2

. Thus when a candidate’s preferences
are more likely to be discordant from than consonant with the voter’s preferences
and the identity of the best policy is sufficiently uncertain, the outcome for the
voter is better when the incumbent has no possibility of reelection than it is in the
equilibrium of the game we are considering. In this case, the reelection incentive
leads the incumbent to choose policies that are worse for the voter, on average,
than the favorite policy of a randomly chosen candidate.

Notes

Section 13.1 is based on Section 3 of Duggan and Martinelli (2015) (of which Dug-
gan and Martinelli 2017 is a shortened version). Lemma 13.1 to taken from Dug-
gan (2014a, Proposition 1). Section 13.2 is based on Maskin and Tirole (2004).
Duggan and Martinelli (2020) study a general model.

Exercise 13.1 is based on Banks and Duggan (2006, 292). Bernhardt et al.
(2009a) study a model related to the one in Exercise 13.2.
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Solutions to exercises

Exercise 13.1
Individual 1 is not such an individual because she prefers the lottery that
assigns probability 1 to −2 to the lottery that assigns probability 1 to 0 but
the other two individuals have the opposite preferences. Similarly, individ-
ual 3 is not such an individual. Finally, individual 2 is not such an individ-
ual because she prefers lottery x to lottery y ( 1

3
(−4) + 1

3
(0) + 1

3
(−4) = − 8

3
and

1
2
(−3)+ 1

2
(−3) =−3) whereas individuals 1 and 3 have the opposite preference

( 1
3
(0)+ 1

3
(−4)+ 1

3
(−12) =− 16

3
and 1

2
(−1)+ 1

2
(−8) =− 9

2
).

Exercise 13.2
First consider Proposition 13.1. Let x ∗ be a policy and suppose that the in-
cumbent is from party L. Are there beliefs for the voter such that the assess-
ment in which the strategy profile is the one given in Proposition 13.1 is a
weak sequential equilibrium of the game?

For the voter’s belief following the policy x ∗ to be consistent with the strategy
profile, it must be the same as her initial belief about the types of an incum-
bent from party L and a challenger from party R . Her belief following any
other policy is not constrained by the consistency condition because no in-
cumbent chooses a policy different from x ∗, given the strategy profile. To best
deter a deviation by the incumbent, the voter’s belief in this case should as-
sign probability 1 to the type of incumbent from party L that is worst for the
voter, namely type 1; assume that it assigns probability rt = pt

�∑
j≥m p j to

each type t =m , . . . , k of the challenger, as initially.

Are there conditions under which the assessment in which the voter’s beliefs
take this form and her strategy is the one given in Proposition 13.1 is a weak
sequential equilibrium of the game in which the incumbent is from party L?

Incumbent
The payoff of an incumbent of type t to a randomly-selected challenger
(in party R) is

W C
t =

∑

k≥m

rk u t (x̂k ). (13.7)

Thus for every incumbent from party L, the policy x ∗ in the first period,
which, given the voter’s strategy, results in her reelection, is at least as
good as any other policy, which results in the voter selecting the chal-
lenger (from party R) if and only if

u 1(x
∗)+b ≥W C

1 and u m (x
∗)+b ≥W C

m . (13.8)



466 Chapter 13. Two-period electoral competition with imperfect information

(The sufficiency of these conditions follows from an argument like that in
Lemma 13.2.)

Voter
If the voter observes the policy x ∗, then given her beliefs, her second-
period expected payoff from selecting the incumbent is

∑

k≤m

qk u m (x̂k ),

where qk = pk
�∑

j≤m p j for k = 1, . . . , m , the probability she assigns to the
incumbent’s type being k .

The voter’s expected payoff to selecting the challenger is W C
m , so her strat-

egy of selecting the incumbent is optimal if and only if
∑

k≤m

qk u m (x̂k )≥W C
m . (13.9)

(That is, she likes the favorite policy of a random incumbent at least as
much as the favorite policy of a random challenger.)

If the voter observes a policy x different from x ∗, she believes that the
incumbent’s type is 1, so that her strategy of selecting the challenger in
this case is optimal if and only if

W C
m ≥ u m (x̂1). (13.10)

(That is, she likes the favorite policy of a random challenger at least as
much as the favorite policy of an incumbent of type 1.)

Thus the assessment is a weak sequential equilibrium of the game in which
the incumbent is from party L if (13.8), (13.9), and (13.10) are satisfied.

Counterparts of (13.9) and (13.10) do not appear in Proposition 13.1. The
reason that a counterpart of (13.9) does not appear is that if the challenger
is selected from the same pool of citizens as the incumbent, the voter is in-
different between selecting the incumbent and selecting the challenger if her
beliefs about the probabilities of the types are the same as they were initially,
as is the case following the policy x ∗. If the candidates are chosen from par-
ties, the voter may prefer a random challenger to a random incumbent. (If
that is the case, however, we might wonder how the incumbent came to be
elected.)

The reason that a counterpart of (13.10) does not appear is that if the chal-
lenger is selected from the same pool of citizens as the incumbent, the worst
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V C
n

W C
m

V C
1

W C
1

x̂1 x̂2 x̂m x̂4 x̂5

u n (x )

u m (x )
u 1(x )

Figure 13.9 An example of the set of the incumbent’s first-period policies possible in a
pooling weak sequential equilibrium of a two-period electoral competition game with
unobserved types and the variant of this game in with parties described in Exercise 13.2
in which the incumbent is from party L. In the example, each of the five types is equally
likely and b = 0. The set of policies x ∗ given in Proposition 13.1 is shown in green, and
the corresponding set for the variant of the game with parties is shown in violet.

type of the incumbent is definitely worse for the voter than a random chal-
lenger, whereas if the candidates are chosen from parties, the worst type of
the incumbent may be better than a random challenger from the other party.

Now, W C
1 < V C

1 —an incumbent of type 1 likes the favorite policy of a ran-
dom challenger from party R less than the favorite policy of a challenger
chosen randomly from the set of all the citizens—so supposing that (13.9)
and (13.10) are satisfied, the upper bound on x ∗ in the equilibria I have de-
scribed is greater in the model with parties than it is in the model without
them. An example with b = 0 is shown in Figure 13.9.) That is, an incumbent
from party L is willing to offer a policy further to the right if doing so ensures
reelection.

The policy furthest to the left that can be supported in an equilibrium when
there are parties may, it seems, be greater or less than the analogous policy in
the model without parties (in Figure 13.9 it is less).

Now consider Proposition 13.2. Suppose that the incumbent is from party L.
Let x ∗ be a policy and let k be a type with 1≤ k ≤m −1. Consider the assess-
ment in which every incumbent whose type is at most k chooses her favorite
policy, incumbents with types from k + 1 to m choose x ∗, the voter selects
the incumbent following the policy x ∗ and the challenger otherwise, and the
voter retains her prior belief about the incumbent’s type following the policy
x ∗, believes that the incumbent’s type is t with probability 1 following the pol-
icy x̂ t , and believes that the incumbent’s type is 1 with probability 1 following
any other policy.

I claim that this assessment is a weak sequential equilibrium if the following
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conditions hold. First,

u t (x
∗)+b <W C

t if and only if t ≤ k ,

where W C
t is given in (13.7), which ensures that, given the voter’s strategy, the

policy x ∗ is optimal for an incumbent if and only if her type is at least k + 1.
Second, ∑m

t=k+1 pt u m (x̂ t )
∑m

t=k+1 pt

≥W C
m ,

which ensures that selecting the incumbent following the policy x ∗ is optimal
for the voter, given the voter’s belief. Third,

W C
m ≥ u m (x̂ t ) for t ≤ k ,

which ensures that selecting the challenger following any policy different from
x ∗ is optimal for the voter, given the voter’s belief.
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In one class of collective decision-making processes, individuals sequentially
make and vote on proposals. Processes in this class are typically categorized as
bargaining.

Synopsis

I present two models of bargaining processes. In Section 14.1, an outcome is an
alternative. Negotiations may last many periods, but once agreement is reached,
the game ends. In Section 14.2, an outcome is a sequence of alternatives, one
in each period. The alternative in each period serves as the default in the next
period: if the proposal in period t is not accepted, the alternative implemented
in that period is the one from period t −1.

In both models, the first event is that an individual is selected randomly to
make a proposal, which each individual then votes either for or against. In the
model in Section 14.1, a bargaining game with voting, if a majority of individuals
vote for the proposal, it is implemented and the game ends. Otherwise another
individual is selected randomly to make a proposal, and a vote is again held. The
pattern repeats until a proposal is accepted, when the game ends. In the model
in Section 14.2, the acceptance of a proposal means that the proposal is imple-
mented and its rejection means that the default alternative, from the previous
period, is implemented. In both cases, negotiations remain open: in every future
period a proposal may be made and voted upon.

Both models are extensive games. For a bargaining game with voting, the
solution notion of subgame perfect equilibrium does not restrict the outcome:
for every alternative x , the strategy profile in which every individual always pro-
poses x and votes in favor of x and against any other alternative is a subgame
perfect equilibrium (Proposition 14.1). In this equilibrium, no individual’s vote

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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makes a difference because all votes are unanimous; thus no individual has an
incentive to change her behavior. However, an individual who is (unexpectedly)
confronted with an alternative she prefers to x has nothing to lose by voting for
it rather than against it as her equilibrium strategy mandates, and restricting in-
dividuals’ strategies to not be weakly dominated in this sense holds the promise
that it might eliminate some alternatives as equilibrium outcomes. If the individ-
uals’ votes are observable, however, it has little effect: for the types of sets of alter-
natives and preferences usually assumed, for most alternatives x the game has a
subgame perfect equilibrium with undominated voting in which agreement on
x is reached immediately (Proposition 14.2).

If only the outcome of each vote, not the vote cast by each individual, is ob-
servable, then the outcomes of subgame perfect equilibria in which each indi-
vidual’s voting strategy is not weakly dominated depend on the nature of the set
of alternatives and the individuals’ preferences. If the alternatives are distribu-
tions among the individuals of a fixed amount of a good, there are at least five
individuals, and each individual cares only about the amount she receives and is
sufficiently patient, then for every alternative x the game has a subgame perfect
equilibrium with undominated voting in which agreement on x is reached im-
mediately (Proposition 14.3). If, however, the set of alternatives is an interval of
numbers and each individual’s preferences over this set are single-peaked, then
if the individuals are sufficiently patient, the outcome of any subgame perfect
equilibrium with undominated voting is necessarily close to the median of the
individuals’ favorite positions (Proposition 14.4).

A requirement much stronger than subgame perfect equilibrium with un-
dominated voting is that each player’s strategy is stationary, always making the
same proposal and casting the same vote regarding any given proposal, inde-
pendent of the history. The appeal of this requirement is questionable, but if the
alternatives are distributions among the individuals of a fixed amount of a good,
it leads to a unique equilibrium outcome (Proposition 14.5). In this outcome
the player first selected proposes a particular distribution of the available good
among a minimal majority, the members of this majority vote in favor, and the
game ends.

Section 14.2 studies a game with recurrent bargaining: negotiations are al-
ways open. The alternatives are distributions among the individuals of a fixed
amount of a good. In each period, one of these distributions is the default alter-
native. In the first period, this default is the distribution in which no individual
receives any of the good, and in each subsequent period it is the alternative im-
plemented in the previous period. In each period, an individual is selected ran-
domly. She can either pass, in which case the default alternative is implemented
in the period, or she can propose another alternative. If a majority of individu-
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als vote in favor of her proposal, it is implemented in the period, and if not, the
default alternative from the previous period is implemented.

The section aims to convey the main features of the subgame perfect equilib-
ria of this game by means of an example. Say that a player’s strategy is stationary
if (i) for any given default alternative the strategy always makes the same pro-
posal and (ii) for any given default alternative and proposal it always votes in
the same way. In sharp contrast to a distributive bargaining game with voting, in
which the game ends once agreement is reached, a game with recurrent bargain-
ing has many stationary equilibrium outcomes, and these outcomes may involve
waste and assign a positive amount to more than a bare majority of the players.
In the example I present, for almost any distribution x , including ones in which
some of the good is wasted, the game has an equilibrium in which every player’s
strategy is stationary and x is implemented in every period. The players whose
shares of the good are relatively high in x constitute a minimal majority; none of
them wants to deviate because doing so would reopen negotiations and expose
her to the risk that the outcome in every future period is worse for her than x .

14.1 Bargaining game with voting

A finite set N of individuals faces a collective choice problem in which the set X
of alternatives is a compact convex subset of a Euclidean space. The process by
which they may reach agreement takes place over a sequence of time periods, t =
1,2, . . ., so that we need to specify each individual’s preferences over pairs (x , t )
consisting of an alternative x ∈ X and a time t at which agreement is reached, to-
gether with the outcome in which agreement is never reached. I assume that the
preference relation of each individual i is represented by a function with values
of the form δt−1

i u i (x ) for pairs (x , t ), where δi ∈ (0,1) and u i : X → R+, and the
value 0 for the outcome in which agreement is never reached.

The model of the bargaining procedure is an extensive game with perfect in-
formation, simultaneous moves, and chance moves. The set of players is the set
N of individuals; to avoid dealing with ties in votes, I assume that their number,
n , is odd. First, chance selects one of the players. Each player i is chosen inde-
pendently with probability ρi ∈ (0,1). The selected player proposes a member x
of X , and then all players simultaneously cast votes for or against x ; every player
observes the votes cast. If a majority of the votes ( 1

2
(n + 1) or more) are cast in

favor of x , the game ends with the outcome x . Otherwise, play moves to the next
period, in which again a player chosen by chance makes a proposal and a vote is
held. Play continues in the same manner until a proposal is accepted, or goes on
forever if all proposals are rejected. The first two periods of play are illustrated in
Figure 14.1.
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n (ρn )1 (ρ1)

chance

i (ρi )
. . . . . .

Chance selects proposer

x 1

i

Proposal

...
...

1, . . . , n simultaneously vote

Majority in favor Majority opposed
Vote

x 1Passes⇒ game ends

n (ρn )1 (ρ1)

chance

j (ρj )
. . . . . .

Fails⇒ chance selects new proposer
...

...
x 2

j

Proposal

1, . . . , n simultaneously vote

Majority in favor Majority opposed
Vote

x 2 ...Passes⇒ game ends

Fails⇒ game continues

Figure 14.1 An illustration of the first two periods of a bargaining game with voting.
Only one of the actions of only one of the players in each period is shown.

Definition 14.1: Bargaining game with voting

A bargaining game with voting 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉, where

• N = {1, . . . , n}, where n ≥ 3 is an odd integer (the set of individuals)

• X is a compact convex subset of a Euclidean space (the set of alterna-
tives)

• ρi ∈ (0,1) for each i ∈N , with
∑

i∈N ρi = 1 (the probability that player i
is chosen to make a proposal in any given period, her recognition prob-
ability)

• δi ∈ (0,1) for each i ∈N (player i ’s discount factor)

• u i : X →R+ is continuous, with u i (x )> 0 for all x ∈ int X (u i is player i ’s
payoff function over alternatives)

is the extensive game with perfect information, simultaneous moves, and
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chance moves with the following components, where

V = {(v1, . . . , vn ) : vi ∈ {for, against} for i = 1, . . . , n} (vote profiles)

R = {(v1, . . . , vn )∈ V :
∑n

i=1 vi <
1
2
(n +1)} (vote profiles opposed)

A = {(v1, . . . , vn )∈ V :
∑n

i=1 vi ≥
1
2
(n +1)} (vote profiles in favor).

Players
The set N (of individuals).

Terminal histories
The set of terminal histories consists of

• (i 1,x 1, v 1, i 2,x 2, v 2, . . . , i t ,x t , v t ) for any t ≥ 1, i s ∈ N and x s ∈ X for
s = 1, . . . , t , v s ∈ R for s = 1, . . . , t − 1, and v t ∈ A (proposals through
period t −1 are rejected and the proposal in period t is accepted)

• (i 1,x 1, v 1, i 2,x 2, v 2, . . . , i t ,x t , v t , . . . ) where i s ∈N , x s ∈ X , and v s ∈ R
for s = 1, 2, . . . (all proposals are rejected).

Player function
The player function P is defined as follows.

• P(∅) = chance and P(i 1,x 1, v 1, i 2,x 2, v 2, . . . , i t ,x t , v t ) = chance for
every t ≥ 1 if v t ∈R (chance moves at the start of the game and after
a proposal is rejected).

• P(i 1,x 1, v 1, i 2,x 2, v 2, . . . , i t ) = i t for every t ≥ 1 (the player who
moves (proposes an alternative) after chance is the one selected by
chance)

• P(i 1,x 1, v 1, i 2,x 2, v 2, . . . , i t ,x t ) = N for every t ≥ 1 (all players move
(vote) after a player makes a proposal).

Actions
For any history h, the set Ai (h) of actions of each player i ∈N after h is
X if h ends with i ’s selection as the proposer and {for, against} (a vote)
if h ends with a proposal. The set of actions of chance at the beginning
of the game and after any proposal is rejected is N .

Chance probabilities
For each player i ∈ N , chance selects i with probability ρi whenever it
moves.

Preferences
The preference relation of each player i ∈N over lotteries over the set Z
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of terminal histories is represented by the expected value of the payoff
function U i : Z →R+ given by

U i (ht ) = δt−1
i u i (x

t )

for all t ≥ 1 and all terminal histories ht ending in period t with a pro-
posal x t followed by a vote v t ∈ A to accept x t , and U i (h∞) = 0 for all
terminal histories h∞ in which all proposals are rejected.

A strategy for any player i in this game is a function that associates an alterna-
tive with each history ending in a move of chance that selects i to be the proposer
and either for or against with each history ending in a proposal. An outcome is
a terminal history, which is either a history ending in a vote in which a major-
ity of the players vote for the latest proposal or a history in which no proposal is
approved by a majority of the players.

A variant of the model assumes that while negotiations are taking place, each
player receives a payoff from the status quo, which may or may not be a member
of X . Denoting the status quo by q , in this variant the (discounted average) payoff
of individual i to an agreement on x ∈ X in period t is (1−δt−1

i )u i (q )+δ
t−1
i u i (x )

(assuming that u i is defined for q as well as for every member of X ). A bargaining
game with voting is thus equivalent to this variant if u i (q ) = 0 for every player i
(that is, if each player’s payoff from the status quo is the same as her payoff from
perpetual disagreement).

14.1.1 Subgame perfect equilibrium

A bargaining game with voting is an extension to many players of a (two-player)
bargaining game of alternating offers (as defined, for example, in Section 7.2 of
Osborne and Rubinstein 1994). The two-player game has a unique subgame per-
fect equilibrium. By contrast, a bargaining game with voting has many subgame
perfect equilibria. For example, for every alternative x ∈ X it has a subgame per-
fect equilibrium in which agreement is reached on x immediately. The argument
for this result is simple. Suppose that every player proposes x whenever she is se-
lected and votes for x and against every other alternative regardless of the history.
Then if a player deviates by proposing an alternative different from x , her pro-
posal is voted down and the outcome is x in a future period, which she likes less
than x immediately. If she deviates by voting against x or for another alternative
after some history, the outcome is unaffected, given the other players’ strategies.



14.1 Bargaining game with voting 477

Proposition 14.1: Subgame perfect equilibrium of bargaining game
with voting

Let 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a bargaining game with voting and let
x ∈ X . For each player i ∈ N let s ∗i be the strategy of player i in which
she proposes x after every history that ends with her selection as the pro-
poser and votes in favor of x and against every other proposal after every
history that ends with a vote. Then the strategy profile s ∗ is a subgame
perfect equilibrium. The outcome of s ∗ is that x is proposed and accepted
immediately.

Proof

The strategy profile s ∗ satisfies the one-deviation property, which requires
that no player can increase her payoff in any subgame by changing only
her action at the start of the subgame, given the other players’ strategies.
Consider player i . If, after any history that ends with the selection of i as
the proposer, she adheres to s ∗i and proposes x , then the outcome is x ,
whereas if she deviates from s ∗i and proposes y 6= x , then y is rejected and
the outcome is x in the following period. If, after any history that ends with
a proposal, i changes her vote, the outcome remains the same because ev-
ery other player accepts the proposal if it is x and rejects it otherwise. The
game satisfies the condition in Proposition 16.9, so the fact that s ∗ satisfies
the one-deviation property means that it is a subgame perfect equilibrium.

The strategy profile s ∗ in this result has an unattractive feature. Consider a
history ending in a proposed alternative y that player j (and possibly other play-
ers) prefers to x . Every player’s strategy in s ∗ calls for her to vote against y , and
if the players follow their strategies the outcome is x with one period of delay.
Casting such a vote is optimal for every player, including player j , because no
change in the vote of a single player affects the outcome, given the other play-
ers’ strategies. For the same reason, voting for y also is optimal, given the other
players’ strategies. In fact, voting for y and voting against it are both optimal not
only if the other players vote according to their strategies, but also if they cast
another other votes, unless their votes are equally split between for and against,
in which case j ’s voting for yields the outcome y and her voting against yields
x with one period of delay (assuming that all players adhere to s ∗ in the follow-
ing periods). Table 14.1 shows the outcome as a function of the players’ votes.
Player j prefers y to x , and hence to x with one period of delay, so her voting
against y , as s ∗i specifies, is weakly dominated by her voting for y , given the be-
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number of other players voting against y
0 · · · 1

2
(n −3) 1

2
(n −1) 1

2
(n +1) · · · n −1

j votes against y y · · · y x+1 x+1 · · · x+1

j votes for y y · · · y y x+1 · · · x+1

Table 14.1 The outcome in a bargaining game with voting following a history ending
with the proposal y when all players adhere to the strategy s ∗ in the proof of Proposi-
tion 14.1 following the vote on y . The superscript +1 means that the outcome occurs
with a period of delay.

havior specified by s ∗ in other periods. I refer to a subgame perfect equilibrium
in which no player’s vote in any period is weakly dominated in this sense as a
subgame perfect equilibrium with undominated voting.

Definition 14.2: Subgame perfect equilibrium with undominated voting
in bargaining game with voting

Let Γ = 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a bargaining game with voting.
For each strategy s and history h that ends with a proposal, define the
strategic game G (h, s ) as follows.

Players
The set of players is N .

Actions
The set of actions of each player is {for, against} (the possible votes).

Preferences
The preferences of each player i ∈ N over action profiles are repre-
sented by the function that assigns to the action profile v the payoff
of player i in Γ for the history consisting of h followed by v followed by
the sequence of action profiles generated by s after the history (h, v ).

A strategy profile s in Γ is a subgame perfect equilibrium with undom-
inated voting if it is a subgame perfect equilibrium of Γ and for every
player i ∈N and every history h ending with a proposal, the action si (h) is
not weakly dominated in the game G (h, s ).

Does the restriction to undominated voting reduce the set of equilibrium out-
comes? Roughly speaking, not much. The next result shows that every alterna-
tive in a subset of X that, for some games, consists of almost all members of X ,
is the outcome of a subgame perfect equilibrium with undominated voting. The
idea behind the equilibrium is that if, when the players’ strategies call for them
to propose x , y is proposed and some player j votes in favor of it while every
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number of other players voting against y
0 · · · 1

2
(n −3) 1

2
(n −1) 1

2
(n +1) · · · n −2 n −1

j votes against y y · · · y x+1 x+1 · · · x+1 x+1

j votes for y y · · · y y x+1 · · · x+1 γj (x )+1

Table 14.2 The outcome in a bargaining game with voting following a history ending
with the proposal y when all players’ strategies specify the proposal x 6= y , a vote for x
and against every other alternative, and a switch to the proposal γj (x ) if a single player j
deviates and votes if favor of an alternative different from x . The superscript +1 means
that the outcome occurs with a period of delay.

other player adheres to her strategy and votes against it, the other players react
by switching from proposing x to proposing an alternative γj (x ) that is worse
for j than x and subsequently voting in favor of this alternative. Then even if j
prefers y to x , voting for y does not weakly dominate voting against it, because
if all the other players vote against it then voting for y leads to the outcome γj (x )
in the next period whereas voting against it, which causes no change in the other
players’ behavior, leads to the outcome x in the next period. The outcomes as a
function of the players’ votes are given in Table 14.2.

To construct a subgame perfect equilibrium along these lines, we need to
ensure that the switch to proposing γj (x ) is optimal for every player, given the
strategies of the remaining players. We do so by specifying that, just as a player’s
vote in favor of an alternative that she is supposed to vote against induces a
switch to a regime in which she is punished, so a single player’s deviation from
the new regime by voting for a proposal that she is supposed to vote against
induces a switch to a regime in which she is punished.

These strategies may conveniently be modeled as automata. We specify a set
of states, the actions taken by each strategy in each state, and a rule for transi-
tions between states. The states in this case are members of X . For any σ ∈ X ,
in state σ a player’s strategy proposes σ and votes for σ and against every other
proposal. The state is initially x and remains x unless an alternative different
from x is proposed and exactly one player, j , votes in favor of this proposal, in
which case the state changes to γj (x ), an alternative that is worse for j than x .

The states that can be reached are x , γj (x ) for each j ∈ N , γk (γj (x )) for each
k ∈N and each j ∈N , and so on. For each of these states σ, we need γj (σ) to be
worse thanσ for j . A sufficient condition for the existence of such alternatives is
that x is a member of a subset X ∗ of X with the property

for all i ∈N and all y ∈ X ∗ there exists γi (y )∈ X ∗ with u i (γ
i (y ))< u i (y ). (14.1)

Suppose, for example, that X is the one-dimensional interval [x,x ] and each
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player’s payoff function is single-peaked. For each player j , let x̂ j be j ’s favorite
alternative. Then X ∗ = (x,x ) satisfies (14.1), with

γj (y ) =

(
1
2
(y +x) if y ≤ x̂ j

1
2
(y +x ) if y > x̂ j .

Proposition 14.2: Subgame perfect equilibrium with undominated
voting in bargaining game

Let 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a bargaining game with voting and let
X ∗ be a subset of X that satisfies (14.1). Then for any x ∈ X ∗ the game has
a subgame perfect equilibrium with undominated voting in which at the
start of the game each player proposes x and all players vote in favor of x .

Proof

For each player i ∈ N , let s ∗i be the strategy defined by the automaton in
Figure 14.2. Note that given that x ∈ X ∗, every state that can be reached is
in X ∗. According to the strategy profile s ∗, every player proposes x if she
is selected to make a proposal in the first period and votes in favor of x if
it is proposed in this period, so the outcome of s ∗ is immediate agreement
on x .

I claim that s ∗ is a subgame perfect equilibrium with undominated vot-
ing . The game satisfies the condition in Proposition 16.9, so to show that
s ∗ is a subgame perfect equilibrium it suffices to show that s ∗ satisfies the
one-deviation property.

Proposal in any stateσ
If player i adheres to s ∗i , she proposes σ, which is accepted (all play-
ers vote in favor). If she deviates to propose y 6= σ, then all players
vote against y and the state remains σ, so that the outcome is σ with
one period of delay, which is no better for i than immediate agreement
onσ.

Vote in any stateσ regarding proposal y
First suppose that y =σ. Then all players vote in favor ofσ, and the out-
come isσ. If player i deviates and votes againstσ, the outcome remains
σ, because the state remains σ and the remaining players constitute a
majority. Thus i ’s voting for σ is optimal.

I now argue that her voting forσ is undominated. If 1
2
(n−1) of the other

players vote forσ, her voting forσ leads toσ’s being accepted, whereas
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State x
(initial)

State γj (y )

(j ∈N , y ∈ X ∗)

i proposes x γj (y )

i votes
for x

against any y 6= x

for γj (y )

against any z 6= γj (y )

Transitions If, in any state σ, y 6= σ is proposed and exactly
one player, k , votes for it, go to state γk (σ).

Figure 14.2 The strategy of player i in the proof of Proposition 14.2. For each player j
and each alternative σ ∈ X ∗, γj (σ) is the alternative in X ∗ for which u j (γj (σ)) < u j (σ)
given in (14.1). The state remains the same unless the condition in the transition cell is
satisfied.

her voting against σ leads to its being rejected, in which case the state
remains σ and hence the outcome is σ with one period of delay. Given
thatσ ∈ int X we have u i (σ)> 0, so that δi u i (σ)< u i (σ). Thus for these
votes of the other players, player i ’s payoff from voting against σ is less
than her payoff from voting for σ. Thus her voting for σ is not weakly
dominated.

Now suppose that y 6= σ. Then all players vote against y , the state re-
mainsσ, and the outcome is thusσwith one period of delay. If player i
deviates from s ∗i and votes for y while the other players adhere to s ∗ and
vote against y , the state changes to γi (σ), so that the outcome is γi (σ)
with one period of delay, which is worse for i thanσ with one period of
delay. Thus i ’s voting against y is optimal and undominated.

The equilibrium strategies in the proof of this result depend on each player’s
vote being observable, so that if a single player deviates from her strategy and
votes in favor of a proposal different from the one the equilibrium specifies, given
the history, she can be identified and punished. If only the numbers of votes for
and against a proposal are observable, not each individual’s vote, such punish-
ments cannot be implemented. Under this assumption, the set of equilibrium
outcomes depends on the form of the set of alternatives and the individuals’
preferences over this set. I present two cases.

Bargaining over distribution when individuals’ votes are unobserved

Suppose that the individuals have one unit of a good to distribute among them-
selves, some of which may be wasted, and the payoff of each individual is the
amount of the good that she receives. The model of a bargaining game with vot-



482 Chapter 14. Bargaining

ing was first explored under this assumption, with the interpretation that the
individuals are legislators and the alternatives are bills that distribute benefits
among the legislators’ districts.

Definition 14.3: Distributive bargaining game with voting

A bargaining game with voting 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 is distributive
if

X =
�
(x1, . . . ,xn )∈Rn

+ :
∑n

i=1 xi ≤ 1
	

,

where n = |N |, and u i (x ) = xi for all i ∈N and all x ∈ X .

If in such a game the players number at least five and each player’s discount
factor is close enough to 1, then for any alternative x ∈ X , immediate agreement
on x is the outcome of a subgame perfect equilibrium with undominated vot-
ing in which the strategies do not rely on the observability of the individuals’
votes. That is, the conclusion that any, or almost any, alternative is the outcome
of an equilibrium does not depend on each individual’s vote being observable,
as Proposition 14.2 assumes.

The reason that in such an equilibrium proposing x is optimal for every player—
even those whose shares xi are small—is that any other proposal, say y , is re-
jected, and in the subgame that is reached, the player who proposed y , say j ,
obtains the payoff 0. A subset of the set of all players excluding j that (i) has
1
2
(n + 1) members (a bare majority) and (ii) has the lowest total payoff under y

among all such subsets, gangs up on j . Every member of this set votes against
y , proposes a distribution z in which j ’s payoff is 0 and all of their payoffs are at
least as high as they are under y (accounting for the fact that z is received with
a period of delay), and votes for z and against every other proposal. (The fact
that z is received with a period of delay is the reason the players’ discount factors
need to be sufficiently close to 1.) Why do these players engage in this behavior?
For each of them, voting against y is not weakly dominated by voting in favor
of y because all of them are better off when the outcome is z with a period of
delay than when it is y immediately. Also, if any of them makes a proposal differ-
ent from z , the remaining players gang up on her in the same way, reducing her
payoff to 0.
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M k (y )
M k (y )

↑
yi

(a) The subset M k (y ) of N \ {k } with
1
2 (n +1) members for whom the sum of
the payoffs in y is smallest.

M k (y )↑
ri (y , M k (y ))

(b) The payoffs of the players in the pro-
posal r (y , M k (y )).

Figure 14.3 The payoffs of the players in N \ {k } for some k ∈N , ordered by yi .

Proposition 14.3: Subgame perfect equilibrium with undominated
voting in distributive bargaining game with
unobserved individual votes

Let 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a distributive bargaining game with
voting and let n = |N |. If n ≥ 5 and δi ∈

� 1
2
(n +1)/(n −1),1

�
for all i ∈ N

then for every x ∈ X the game has a subgame perfect equilibrium with
undominated voting in which every player’s action after every history de-
pends only on the sequence of proposals and outcomes of the votes (ma-
jority in favor, majority opposed) and every player proposes x at the start
of the game and votes in favor of this proposal.

Proof

I define a strategy profile s ∗ and argue that it is a subgame perfect equilib-
rium with undominated voting. In s ∗, every player proposes x at the start
of the game and all players vote in favor. If a player deviates to a different
proposal and this proposal is rejected, the other players penalize her. To
specify the penalization, for any proposal y ∈ X and nonempty subset S of
N , let r (y ,S) be the proposal that allocates all the payoff to the players in S,
proportionally to their payoffs in y : for each i ∈N ,

ri (y ,S) =







yi/
∑

j∈S yj if i ∈S and
∑

j∈S yj > 0

1/|S| if i ∈S and
∑

j∈S yj = 0

0 if i ∈N \S.

(14.2)

Now, for each player k ∈N and each proposal y ∈ X , let M k (y ) be a subset
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of N \ {k } with 1
2
(n + 1) members for which the total payoff

∑
i∈M k (y ) yi is

smallest (refer to Figure 14.3a). If player k proposes y 6= x , then the mem-
bers of M k (y ), a majority, vote against y , and the next player to make a pro-
posal chooses r (y , M k (y )) (refer to Figure 14.3b). This behavior penalizes
player k because rk (y , M k (y )) = 0 given that k 6∈M k (y ).

The strategy s ∗i may conveniently be described more precisely as the au-
tomaton shown in Figure 14.4. The states are x and p j (y ) for each j ∈ N
and each y ∈ X . The initial state is x . In this state, s ∗i proposes x and votes
in favor of x . If, in this state, player j proposes y 6= x , then s ∗i votes against
the proposal if i ∈M j (y ) and in favor otherwise, and hence y is rejected.
The state remains x if x is proposed, and changes to p j (y ) if player j pro-
poses y 6= x and this proposal is rejected. In state p j (y ), j is penalized: s ∗i
proposes r (y , M j (y )) and every member of M j (y ) votes in favor of it. If a
different alternative, say z , is proposed by player l , then i votes in favor of
it if and only if i ∈M l (z ). Thus in state p j (y ), r (y , M j (y )) is accepted and
every other proposal is rejected. If, in this state, some player l proposes
z 6= r (y , M j (y )) and z is rejected, the state changes to p l (z ).

The outcome of the strategy profile s ∗ is that the player chosen to move
first proposes x , and all players vote in favor.

I now argue that s ∗ has undominated voting and satisfies the one-
deviation property. The game satisfies the condition in Proposition 16.9,
so the fact that s ∗ satisfies the one-deviation property means that it is a
subgame perfect equilibrium.

Proposal in state x
If player i adheres to her strategy and proposes x then her payoff is xi . If
she proposes y 6= x , then every player in M i (y ), a majority, votes against
the proposal and the state becomes p i (y ), in which r (y , M i (y )) is pro-
posed and accepted (because all members of M i (y ) vote in favor), re-
sulting in a payoff for i of 0. Thus i ’s payoff if she proposes x is at least
her payoff if she makes any other proposal.

Vote in state x regarding proposal y
First suppose that y = x . If every player follows her strategy then x is
accepted and i ’s payoff is xi .

A player’s vote regarding x affects the outcome generated by s ∗ only if
the other players’ votes are split equally between for and against. In this
case, if i votes against, then x is rejected, the state remains x , and x is
accepted with one period of delay, so that i ’s payoff is δi xi . If i votes for,
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then x is accepted immediately and her payoff is xi . The latter payoff is
at least the former, so i ’s voting for x is optimal and undominated. (If
xi = 0, i ’s voting for and against yield her the same payoff regardless of
the other players’ votes.)

Now suppose that y 6= x , and let j be the player who proposes y . If every
player adheres to her strategy, y is rejected, the state changes to p j (y ),
and each player i obtains ri (y , M j (y ))with one period of delay, which is
worth δi ri (y , M j (y )) to her.

As in the previous case, a player’s vote regarding y affects the outcome
generated by s ∗ only if the other players’ votes are split equally between
for and against.

Consider a player i 6∈ M j (y ). If she deviates from her strategy and
votes against y , then if the other players’ votes are split equally be-
tween for and against, y is rejected and her payoff changes from yi to
ri (y , M j (y )) = 0. Thus i ’s voting for y is optimal and undominated.

Now consider a player i ∈M j (y ). If she deviates from her strategy and
votes for y , then if the other players’ votes are split equally between for
and against, her payoff changes from δi ri (y , M j (y )) to yi . If yi = 0 then
certainly yi <δi ri (y , M j (y )), so assume that yi > 0. Then, given (14.2),

yi

ri (y , M j (y ))
=
∑

l ∈M j (y )

yl .

This sum, the total payoff of a subset of N \ {j } with 1
2
(n + 1) players

that has the smallest total payoff under y , is at most 1
2
(n + 1)/(n − 1).

(The maximum is achieved when yi = 1/(n − 1) for all i ∈ N \ {j }.) By
assumption, this number is less than δi . Thus yi < δi ri (y , M j (y )), and
hence i ’s voting against y is optimal and undominated.

Proposal in state p j (y )
If i adheres to her strategy and proposes r (y , M j (y )) then the outcome
is r (y , M j (y )) and her payoff is ri (y , M j (y )).

If she proposes z 6= r (y , M j (y )) then this proposal is rejected, the state
changes to p i (z ), and her payoff is ri (z , M i (z )) = 0. So i is not better off
deviating from her strategy than adhering to it.

Vote in state p j (y ) regarding proposal z
First suppose that z = r (y , M j (y )). If every player follows her strategy
then z is accepted and i ’s payoff is ri (y , M j (y )).
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State x (initial) State p j (y ) (j ∈N , y ∈ X )

i proposes x r (y , M j (y ))

i votes

for x

against y 6= x
proposed by j
⇔ i ∈M j (y )

for r (y , M j (y ))⇔ i ∈M j (y )

against z 6= r (y , M j (y ))
proposed by l
⇔ i ∈M l (z )

Transitions
if j proposes y 6= x
and y is rejected,

go to p j (y )

if l proposes z 6= r (y , M j (y ))
and z is rejected,

go to p l (z )

Figure 14.4 The strategy of player i in the proof of Proposition 14.3. The state remains
the same unless the condition in the transition cell is satisfied. The function r is defined
in (14.2) and M j (y ) is a subset S of N \ {j } with 1

2 (n + 1) members for which
∑

i∈S yi is
smallest.

As in state x , a player’s vote affects the outcome only if the other players’
votes are split equally between for and against. In this case, if i votes
against, then z is rejected, the state remains p j (y ), and z is accepted
with one period of delay, so that i ’s payoff is δi ri (y , M j (y )). If i votes
for, then z is accepted immediately and her payoff is ri (y , M j (y )). If
i ∈ M j (y ) then the latter payoff is at least the former and if i 6∈ M j (y )
then both payoffs are zero. So in both cases the action specified by i ’s
strategy is optimal and undominated.

Now suppose that z 6= r (y , M j (y )). If every player follows her strategy
then z is rejected and the state changes to p l (z ), where l is the player
who proposed z , with the outcome r (z , M l (z )).

Again, a player’s vote affects the outcome only if the other players’ votes
are split equally between for and against. In this case, if i votes against,
then z is rejected, the state changes to p l (z ), and r (z , M l (z )) is accepted
with one period of delay, so that i ’s payoff is δi ri (z , M l (z )). If i votes
for, then z is accepted immediately and her payoff is z i . If i 6∈ M l (z )
then ri (z , M l (z )) = 0, so the latter payoff is at least the former. If i ∈
M l (z ) then z i < δi ri (z , M l (z )) by the argument for the vote of a player
in M j (y ) regarding y in state x . So in both cases the action specified by
i ’s strategy is optimal and undominated.
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number of other players voting against x ∗

0 · · · 1
2
(n −3) 1

2
(n −1) 1

2
(n +1) · · · n −1

j votes against x ∗ x ∗ · · · x ∗ α α · · · α

j votes for x ∗ x ∗ · · · x ∗ x ∗ α · · · α

Table 14.3 The outcome in a bargaining game with voting following a history ending
with the proposal x ∗, where α is the lottery (over alternatives in future periods) that
results if x ∗ is voted down.

Exercise 14.1: Distributive bargaining game with three players

Why is the strategy profile in the proof of the result not a subgame perfect
equilibrium for n = 3?

Bargaining over one-dimensional policy when individuals’ votes are unobserved

Now suppose that X is an interval of numbers and each individual’s preferences
over X are single-peaked. In this case, the preferences have a degree of common-
ality absent in a distributive bargaining game, where reducing one individual’s
payoff to 0 allows the payoffs of the remaining individuals to be raised. If X is an
interval of numbers, an alternative that is bad for one individual is bad also for
individuals with similar favorite positions, so that punishing one individual for a
deviation means imposing a low payoff on other individuals, making it difficult
to provide them with an incentive to take part in the punishment.

In fact, when X is an interval of numbers and the individuals’ discount fac-
tors are close to 1, only alternatives close to the median x ∗ of the individuals’
favorite alternatives are outcomes of subgame perfect equilibria with undomi-
nated voting in which every individual’s action after every history depends only
on the sequences of proposals and outcomes of the votes (pass, fail).

A key step in the argument is that if any player proposes x ∗ then a majority of
individuals vote in favor of it. If x ∗ is voted down, the outcome is a lottery over
alternatives in future periods that by assumption does not depend on the margin
by which it loses or the identity of the individuals who voted for or against it.
Denoting this lottery α, each individual j faces the situation in Table 14.3 when
x ∗ is proposed. No alternative is preferred to x ∗ by a majority of individuals, so for
a majority of individuals, voting for x ∗ weakly dominates voting against it—and
hence x ∗ passes.

Now let x and x be the smallest and largest alternatives that are outcomes
of subgame perfect equilibria of the type we are considering, and suppose that
a majority of individuals prefer x to x . I argue that x is close to x ∗, and hence
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so too is x. To pass, x needs the vote of at least one individual whose favorite
position is at most x ∗. The vote of such an individual i makes a difference to the
outcome only if the votes of the remaining individuals are split equally between
for and against. If in this case i votes in favor of x then the outcome is x , whereas
if she votes against x then (a) with positive probability she is selected to be the
proposer and can, by proposing x ∗, obtain the outcome x ∗ with one period of
delay, given the previous argument, and (b) with the remaining probability the
outcome is at worst x with one period of delay. Thus if her discount factor is
close to 1, her voting against x weakly dominates her voting in favor of x unless
x is close enough to x ∗.

Proposition 14.4: Subgame perfect equilibrium with undominated
voting in bargaining game over policy with
unobserved individual votes

Let 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a bargaining game with voting for
which X is a compact interval of numbers. Denote by x ∗ the median of
the player’s favorite alternatives. For any ε > 0 there exists δ < 1 such that
if δi ≥ δ for all i ∈ N then a proposal x passes in a subgame perfect equi-
librium with undominated voting of the game in which every player’s ac-
tion after every history depends only on the sequences of proposals and
outcomes of the votes (pass, fail) only if x ∈ [x ∗ − ε,x ∗+ ε].

Proof

Let s ∗ be a subgame perfect equilibrium with undominated voting in
which every player’s action after every history depends only on the se-
quences of proposals and outcomes of the votes.

Step 1 If, after any history, a player’s strategy in s ∗ proposes x ∗, a majority
of players vote in favor.

Proof. If a majority votes against x ∗, the outcome is a lottery over agree-
ments in later periods (and no agreement at all), independent of the mar-
gin by which x ∗ loses and the identity of the players who vote for and
against it, by the assumption on the form of the strategies. Thus each
player j faces the situation in Table 14.3, where α is the lottery that results
if x ∗ is voted down. Given that x ∗ is the median of the individuals’ favorite
alternatives, it is preferred to α by a majority of players. Thus the require-
ment that each player’s vote in each period be undominated means that a
majority of players vote for x ∗. Ã
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Denote by x the smallest alternative that passes in a subgame perfect
equilibrium of the type described in the result and by x the largest such
alternative. (I assume that such alternatives exist; if they do not, choose
alternatives close to the infimum and supremum of the set of alternatives
that pass.) Given Step 1, we have x ≤ x ∗ ≤ x . Suppose, without loss of
generality, that a majority of players prefer x to x , so that, in particular,
x ∗ < x .

Step 2 For any ε > 0 there exists δ < 1 such that if δi ≥ δ for all i ∈N then
x < x ∗+ ε and x > x ∗ − ε.

Proof. Consider a subgame perfect equilibrium in which x passes. Given
that the set of players who vote for it is a majority, this set includes at least
one player, say i , whose favorite position is at most x ∗, so that u i (x ∗) >
u i (x ). Consider this player’s choice to vote for or against x . Her vote makes
a difference to the outcome only if the other players’ votes are split equally
between for and against, in which case her voting for leads to the outcome
x and her voting against leads to a period of delay followed by an outcome
that is at least as good for her as x ∗ if she is selected to propose, given
Step 1, and is no worse than x otherwise (because no equilibrium outcome
is worse for her than that). Thus if her discount factor is close enough to 1
then unless x is close to x ∗ her action of voting against x weakly dominates
her action of voting for it, so that she optimally votes against it and hence
it is rejected.

Finally, the fact that a majority of players prefer x to x means that a
player with favorite position x ∗ does so, and hence given the continuity of
each payoff function, if x is close to x ∗ then so too is x. Ã

14.1.2 Equilibrium in stationary strategies

A restriction much stronger than the ones I have discussed so far is stationarity,
which requires that each player’s strategy be history-independent. That is, each
player makes the same proposal whenever she is selected to be the proposer and
casts the same vote regarding any given proposal regardless of the history that
preceded the proposal.
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Definition 14.4: Stationary strategy in bargaining game with voting

A strategy σi of a player in a bargaining game with voting 〈N , X , (ρi )i∈N ,
(δi )i∈N , (u i )i∈N 〉 is stationary if the actions it prescribes after any two his-
tories h and h ′ are the same if the subgames following h and h ′ are the
same: for each i ∈ N , σi (h) = σi (h ′) ∈ X if h and h ′ are histories ending
with chance selecting i to be the proposer, and, for each proposal x ∈ X ,
σi (h) = σi (h ′) ∈ {for, against} if h and h ′ are histories ending with the
proposal x .

The results I have presented so far rely on strategies that are not stationary:
their essence is that they react to the players’ past actions. No such reaction
is possible for a player using a stationary strategy. As Austen-Smith and Banks
(2005, 249) write,

stationary strategies rule out much of interest in many political inter-
actions: reciprocity, both positive and negative, is impossible without
strategies being sensitive to the realized decision history.

If we interpret the actions specified by a player’s strategy after a deviation to
be the other players’ beliefs about her future actions, then the stationarity of
a player’s strategy means that the other players’ beliefs do not change when a
deviation occurs. As Rubinstein (1991, 912) writes,

assuming passivity of beliefs eliminates a great deal of what sequential
games are intended to model: namely, the changing pattern in players’
behavior and beliefs, as they accumulate experience.

Despite these assessments, significant effort has been devoted to the analysis
of equilibria in stationary strategies. I close the chapter with a brief discussion of
this analysis.

The result I present characterizes the subgame perfect equilibria with un-
dominated voting of distributive bargaining games with voting in which every
player is identical (same recognition probability and same discount factor) and
every player’s strategy is stationary. The result shows that in every such equilib-
rium the payoff profile is the same and agreement is reached immediately, so that
each player’s expected payoff is 1/n (given that the players are identical). Thus if
a proposal is rejected and then the players adhere to an equilibrium, each player
receives the payoff 1/n with one period of delay, which is worth δ/n to her, where
δ is the common discount factor. Hence for every player i , voting in favor of a
proposal x with xi >δ/n weakly dominates voting against x , and voting against
a proposal x with xi < δ/n weakly dominates voting in favor of x . So to induce
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a majority to vote in favor of a proposal, it is enough for a player to offer δ/n
to each member of a set containing 1

2
(n − 1) of the other players, assembling a

minimal majority (including herself). In a stationary equilibrium, every player i
assembles the same minimal majority Si whenever she is selected to make a pro-
posal. As far as i is concerned, the identity of the members of Si does not matter,
but for all the players’ payoffs to be equal, as is the case in every equilibrium, ev-
ery player j has to be a member of exactly 1

2
(n+1) of these sets. I call a collection

of minimal majorities with this property balanced.

Definition 14.5: Balanced collection of minimal majorities

Let 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a bargaining game with voting and let
n = |N |. A minimal majority is a subset of N with 1

2
(n + 1) members. A

collection {Sj }j∈N of n minimal majorities is balanced if each player is a
member of 1

2
(n +1) of the sets S j .

For every (odd) value of n , a balanced collection of minimal majorities exists.
One such collection is given by

S j = {j , (j +1)(mod n ), . . . , (j + 1
2
(n −1))(mod n )} for all j ∈N ,

so that S1 = {1,2, . . . , 1
2
(n +1)}, S2 = {2,3, . . . , 1

2
(n +3)}, and so forth.

Proposition 14.5: Stationary subgame perfect equilibria of distributive
bargaining game

Let 〈N , X , (ρi )i∈N , (δi )i∈N , (u i )i∈N 〉 be a distributive bargaining game with
voting and let n = |N |. Suppose that ρi = 1/n for all i ∈N and there exists
δ ∈ (0,1) such that δi = δ for all i ∈ N . For every subgame perfect equi-
librium with undominated voting in which every player’s strategy is sta-
tionary there is a balanced collection {S j }j∈N of minimal majorities with
j ∈S j for all j ∈N such that the strategy of each player i always makes the
proposal x for which

x j =







1− 1
2
δ(n −1)/n if j = i

δ/n if j ∈Si \ {i }
0 otherwise

and votes for a proposal y if and only if yi ≥ δ/n . Each player’s expected
payoff in every equilibrium is 1/n .
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Proof

I first argue that a strategy profile satisfying the conditions in the result
is a subgame perfect equilibrium with undominated voting. Let s ∗ satisfy
the conditions in the result. The game satisfies the condition in Proposi-
tion 16.9, so that s ∗ is a subgame perfect equilibrium if and only if it sat-
isfies the one-deviation property. To show that it satisfies this property, I
consider each type of subgame in turn.

Subgame starting with proposal by player i
If i adheres to s ∗i , her proposal is accepted and her payoff is 1 −
1
2
δ(n −1)/n .

If she makes a proposal y with yi > 1− 1
2
δ(n − 1)/n then it is rejected,

because the total payoff to the other players is less than 1
2
δ(n − 1)/n

and hence fewer than 1
2
(n − 1) of the other players receive at least δ/n .

With probability 1/n she is selected to be the proposer again in the next
period, in which case her payoff is 1− 1

2
δ(n − 1)/n (with one period of

delay), and with probability 1/n each of the other players is selected to
be the proposer, in which case her payoff is either δ/n or 0 (with one
period of delay). Given that δ < 1, we have δ/n < 1− 1

2
δ(n − 1)/n , so

that i ’s payoff is less than 1− 1
2
δ(n −1)/n .

If she makes a proposal y with yi < 1− 1
2
δ(n − 1)/n then either it is

accepted, in which case her payoff is yi , or it is rejected, in which case
her payoff is less than 1− 1

2
δ(n −1)/n by the argument for the previous

case.

Subgame starting with vote regarding a proposal y
If y is rejected, the outcome, after one period of delay, is given in the
following table for any player i ∈N .

proposer i ’s payoff probability

i 1− 1
2
δ(n −1)/n 1/n

j with i ∈S j δ/n 1
2
(n −1)/n

j with i 6∈S j 0 1
2
(n −1)/n

Thus every player’s expected payoff if y is rejected is

δ
�
(1/n )

�
1− 1

2
δ(n −1)/n

�
+ 1

2

�
(n −1)/n

�
(δ/n )

�
=δ/n .

Hence voting for y if and only if yi ≥ δ/n , as s ∗i prescribes, is consistent
with s ∗i being undominated and optimal.
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Now let s be a subgame perfect equilibrium with undominated voting
in which each player’s strategy is stationary. I argue that s takes the form
given in the result.

Step 1 For the strategy profile s and each i ∈ N , the expected payoffs of
player i at the start of the game and at the start of each subgame following
the rejection of a proposal are all the same.

Proof. The conclusion follows from the definition of a stationary strategy
and the fact that the game and every such subgame are identical. Ã

Denote by Vi (s ) the expected payoff of player i at the start of the game
(and hence by Step 1 at the start of each subgame beginning with the
selection of a proposer by chance) for the strategy profile s .

Step 2 The proposal that s specifies for each player at the start of any
subgame following her selection as the proposer is accepted and hence∑

i∈N Vi (s ) = 1.

Proof. Suppose that the proposal that s j specifies for player j is rejected.
Then play moves to the next period, at the start of which the expected
payoff of each player i is Vi (s ). Now suppose that j deviates from s j and
proposes that the share of each player i be Vi (s )/

∑n
k=1 Vk (s ). Given that∑n

k=1 Vk (s ) ≤ 1, this share is at least Vi (s ), and hence is greater than δVi (s ).
Thus every player votes for the proposal, yielding j a payoff of at least Vj (s ),
which is more than the payoff δVj (s ) she gets if she makes a proposal that
is rejected.

If
∑

i∈N Vi (s ) < 1 then any player can increase the amount assigned
to herself in her proposal without changing the amounts assigned to the
other players. Ã

Step 3 If x is a proposal for which x j > δVj (s ) then j ’s strategy s j votes in
favor of x , and if x j <δVj (s ) then s j votes against x .

Proof. If x fails then j ’s payoff is δVj (s ), so her voting in favor of x weakly
dominates her voting against it if x j > δVj (s ) and her voting against it
weakly dominates her voting for it if x j <δVj (s ) . Ã

Step 4 For every player i ∈N , Vi (s )> 0.
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Proof. Suppose that i is selected to be the proposer. For some set S con-
taining half of the remaining players,

∑
j∈S Vj (s )≤

1
2

, so that there is a pro-

posal x i with x i
i > 0 and x i

j > Vj (s ) for all j ∈S, and by Step 3 the strategy of
every player j ∈S votes in favor of x i . Ã

Step 5 Let x i be the proposal made by s i whenever i is selected to be the
proposer. If for some player j 6= i we have x i

j = δVj (s ) then j ’s strategy s j

votes in favor of x i .

Proof. Suppose that x i
j = δVj (s ). By Step 4, x i

j > 0 and by Step 2, x i

passes. Suppose that j ’s strategy s j votes against x i . If x i
k < δVk (s ) for

some player k then her voting against x i weakly dominates her voting for
it, so x i

k ≥δVk (s ) for every player k who votes in favor of x i . Then i can in-
crease her payoff by deviating to a proposal y i in which y i

j = 0 and y i
l > x i

l

for every player l 6= j , which passes because, by Step 3, every player who
voted for x i optimally votes for y i . So s j votes in favor of x i . Ã

Step 6 Vi (s ) is the same for every player i ∈N .

Proof. An optimal proposal of any player minimizes the amount allocated
to the other players among the proposals that a majority of players vote in
favor of. By Step 3 and Step 5, every player j votes in favor of a proposal
that gives her at least δVj (s ) and against one that gives her less than δVj (s ),
so every optimal proposal of player i gives δVj (s ) to each member j of a
minimal majority Si for which

∑
j∈Si \{i }Vi (s ) is smallest, and nothing to the

players outside Si .
Suppose that the values of Vj (s ) are not the same for all j ∈N .
If the number of players tied for the smallest value of Vj (s ) is at least

1
2
(n + 1), then none of the remaining players is included in any set Si , so

that every such player obtains a positive payoff only if she is the proposer.
Thus the payoff of every such player k is Vk (s ) = (1/n )

�
1−δ

∑
l 6=k Vl (s )

�
<

1/n . Hence Vj (s )< 1/n for every player, contradicting
∑

j∈N Vj (s ) = 1 (from
Step 2).

If the number of players tied for the smallest value of Vj (s ) is at most
1
2
(n−1), then all of these players are included in every set Si . Thus for every

such player k , we have Vk (s ) = (1/n )
�

1−δ
∑

l 6=k Vl (s )
�
+((n−1)/n )δVk (s ), so

that, given
∑

l 6=k Vl (s ) = 1−Vk (s ), we have Vk (s ) = 1/n . That is, the smallest
value of Vj (s ) is 1/n , and hence Vj (s ) = 1/n for all j ∈N , contradicting the
assumption that the value of Vj (s ) are not the same for all j ∈N . Ã
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Step 7 Vi (s ) = 1/n for all i ∈N .

Proof. By Step 2,
∑

j∈N Vj (s ) = 1, so the result follows from Step 6. Ã

Step 7 and the optimality of si implies that the proposal made by si gives
δ/n to each member of a set of 1

2
(n −1) players and hence 1− 1

2
(n −1)δ/n

to i . Thus the expected payoff of each player j under s is

(1/n )
�

1− 1
2
(n −1)δ/n

�
+(K /n )δ/n ,

where K is the number of players who include j in the set to whose mem-
bers they give δ/n . For this expected payoff to equal 1/n , as it must,
K = 1

2
(n−1). Hence the collection of minimal majorities to which the play-

ers’ proposals assign positive payoffs is balanced, so that s takes the form
in the result.

Comments

Equilibrium outcome The outcome of an equilibrium is that the player selected
to make the first proposal offers δ/n to each member of a set containing 1

2
(n−1)

of the other players, who, together with her, make up a minimal majority (also
called a minimal winning coalition); she takes the remainder of the pie. All mem-
bers of the minimal majority vote in favor of this proposal, and hence the game
ends; the payoff of each player outside the minimal majority is zero.

Payoffs A player’s equilibrium payoff in a subgame that starts with her making a
proposal, 1− 1

2
δ(n−1)/n , exceeds her equilibrium payoff in a subgame that starts

with another player making a proposal, δ/n . If δ is close to 1 then the former
payoff is close to (n+1)/2n , which is close to 1

2
when n is large: the proposer gets

almost half of the pie when the number of players is large.
Each player’s payoff function u i is assumed to be linear a distributive bar-

gaining game with voting. If the payoff functions are not linear, the stationary
equilibrium payoffs may not be unique (Banks and Duggan 2000, Example 4).

Discount factors Differences among the players’ discount factors have two ef-
fects on an equilibrium. On the one hand, a player with a high discount factor
finds it less costly to wait for a chance to be the proposer, which puts her in an ad-
vantageous position. On the other hand, she unattractive as a coalition partner,
because her expected payoff if a proposal is rejected is high, so that she needs
a high payoff to be induced to vote for a proposal. In the next exercise you are
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asked to show that in an example of a three-player distributive bargaining game
with voting in which players 1 and 2 have the same discount factor and player 3
has a higher discount factor, the common equilibrium payoff of players 1 and 2
is greater than the equilibrium payoff of player 3.

Exercise 14.2: More patient players may obtain lower payoffs

Consider a distributive bargaining game with voting with three players in
which the discount factors of players 1 and 2 are both δ and that of player 3
is δ′ > δ, and every player’s recognition probability is 1

3
. In every subgame

perfect equilibrium with undominated voting in which each player’s strat-
egy is stationary, agreement is reached immediately and the payoffs of
players 1 and 2 are the same. When player 3 is selected to be the proposer,
she needs one of the two remaining (identical) players to vote in favor of
her proposal for the proposal to be accepted. In a stationary equilibrium,
she selects each of them with probability 1

2
. (This assumption extends the

definition of a distributive bargaining game with voting, which restricts
voting to be deterministic.) Show that the equilibrium payoff of player 3
is less than the common equilibrium payoffs of players 1 and 2.

Recognition probabilities Suppose that the players’ discount factors are the same
but their recognition probabilities differ. If i ’s recognition probability is at least
as high as j ’s, then i ’s stationary equilibrium payoff is as least as high as j ’s
(Eraslan 2002, Corollary 1). Figure 14.5 shows the limit, as the common dis-
count factor approaches 1, of the stationary equilibrium payoffs of player 1 in a
three-player distributive bargaining game with voting as a function of the recog-
nition probabilities. Note that player 1’s equilibrium payoff is 1

3
whenever all the

recognition probabilities are at most 1
2

, and hence by symmetry the other play-
ers’ equilibrium payoffs are 1

3
in these cases too. Among these cases are ones in

which one player’s recognition probability is close to zero and the other players’
probabilities are both close to 1

2
.

Voting rules The characterization in Proposition 14.5 can be generalized to a
game in which the votes of any number q of the players are needed for a pro-
posal to be accepted, rather than 1

2
(n + 1). If q = n , so that every player’s vote is

needed for acceptance, and every player has the same discount factor and same
recognition probability, then each player’s expected payoff in a stationary sub-
game equilibrium with undominated voting is her recognition probability. Here
is a rough argument for this result. Assume that the game has unique stationary
equilibrium payoffs and that agreement is reached immediately in any stationary
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Figure 14.5 The limit of the payoffs of player 1 in a stationary subgame perfect equi-
librium with undominated voting of a three-player distributive bargaining game with
voting as the players’ common discount factor approaches 1, as a function of the vector
(ρ1,ρ2,ρ3) of recognition probabilities. (Constructed from Table 1 (p. 12) of Imai and
Salonen 2012.)

equilibrium. Denote the equilibrium payoff of each player i by vi . If i is selected
to be the proposer, she offers δvj to every other player j to induce her to vote
in favor of her proposal, leaving 1−δ

∑
j∈N \{i } vj = 1−δ(1− vi ) for herself, and

if another player is selected to be the proposer, that player offers δvi to player i .
Thus player i ’s expected payoff at the start of the game is

vi = pi (1−δ(1− vi ))+ (1−pi )δvi .

Solving this equation for vi we obtain vi = pi . Note that the result implies a
stark difference between a player’s equilibrium payoff under majority rule and
her payoff under unanimity rule for some profiles of recognition probabilities.
For example, if n = 3 and the recognition probabilities are (ε, 1

2
(1−ε), 1

2
(1−ε)) for

some small ε > 0, then for δ close to 1, player 1’s payoff is ε under the unanimity
rule and close to 1

3
under majority rule.

Exercise 14.3: Game with deterministic rotating recognition and voting

Consider a variant of a distributive bargaining game with voting with
three players in which, following a proposal by any player i , the remain-
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ing players vote sequentially. First player (i + 1)(mod 3) votes. If she
votes in favor, the proposal is accepted. Otherwise, player (i + 2)(mod 3)
votes. If she votes in favor, the proposal is accepted, and otherwise player
(i + 1)(mod 3) makes a proposal. Play continues until a proposal is ac-
cepted. Show that the game has a stationary subgame perfect equilibrium
in which each player’s proposal gives her all the pie. (This equilibrium is
the only stationary subgame perfect equilibrium of the game.)

14.2 Recurrent distributive bargaining game with voting

A bargaining game with voting ends when the individuals reach agreement on
an alternative; no player has an opportunity to reopen the negotiations. In this
section I briefly consider a model in which negotiations are always open.

Time is discrete, starting with period 1. In each period, one unit of a good
is available to a finite set N of individuals; it may be distributed in any way
among the individuals, and some of it may be wasted. An outcome is a sequence
(x 1,x 2, . . . ) of distributions of the good among the individuals, where for each
t = 1, 2, . . . we have x t

i ∈ [0,1] for all i ∈N and
∑

i∈N x t
i ≤ 1.

In each period, there is a default distribution of the good. In period 1 this dis-
tribution is x 0 = (0, . . . ,0) and in every subsequent period t it is the distribution
x t−1 from the previous period. At the start of each period t , an individual is se-
lected by chance. She either chooses pass, in which case x t = x t−1 and the period
ends, or proposes a distribution different from x t−1, in which case all individuals
vote simultaneously for or against the proposal. If a majority of the individuals
vote for the proposal, it becomes the distribution x t in period t , and otherwise
the distribution in period t is x t−1.

For each individual i ∈ N , let δi ∈ (0,1) and let u i : [0,1]→ R be an increas-
ing function. The preferences of individual i regarding lotteries over outcomes
(sequences of distributions) are represented by the expected value of the dis-
counted average of the sequence (u i (x 1

i ), u i (x 2
i ), . . . ) for the discount factor δi ,

namely

(1−δi )
∞∑

t=1

δt−1
i u i (x

t
i ).

Note that if x t
i = xi for all t then this discounted average is u i (xi ), because

∑∞
t=1δ

t−1
i =

1/(1−δi ). I refer to a game defined in this way as a recurrent distributive bargain-
ing game with voting.

When an individual makes a proposal in such a game, the default distribution
for the period is relevant, because it will be the distribution in the current period
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if the individual’s proposal is voted down; when an individual casts a vote, both
the default distribution and the proposal are relevant for the same reason. Thus
for this game I define a stationary strategy of any individual i to be a pair (s p

i , s v
i )

of functions, with s p
i : X →{pass}∪X specifying i ’s proposal, as a function of the

default distribution, whenever she is selected to be the proposer, and s v
i : X×X →

{for, against} specifying her vote, as a function of the default distribution and the
proposal, whenever a ballot is held.

Unlike a distributive bargaining game with voting, a recurrent distributive
bargaining game with voting has many subgame perfect equilibria with undom-
inated voting in which every player’s strategy is stationary, and in some of these
equilibria some of the available good is wasted. These features are demonstrated
well by the following three-player example.

Let N = {1,2,3} and suppose that each player has the same recognition prob-
ability (ρi =

1
3

for all i ∈N ) and discount factor (δ1 =δ2 =δ3 =δ), and u i (xi ) = xi

for all i ∈ N and all xi ∈ [0,1]. The strategy profile I define is based on three
distributions,

y 1 = ( 1
3

, 1
3

, 1
6
), y 2 = ( 1

3
, 1

6
, 1

3
), and y 3 = ( 1

6
, 1

3
, 1

3
).

Let Y =
�

y 1, y 2, y 3
	

. Here is the strategy of player i .

Proposal of player i

s p
i (x ) =

¨
pass if x ∈ Y
y i if x 6∈ Y .

Vote of player i

s v
i (x , z ) =







for if x ∈ Y and xi =
1
6

or x 6∈ Y , z ∈ Y , and z i ≥ (1−δ)xi +
5

18
δ

or x 6∈ Y , z 6∈ Y , and z i ≥ xi

against otherwise.

Notice that some of the good is wasted in the distributions y 1, y 2, and y 3: in
each case, only 5

6
of the unit is assigned to the individuals. Notice also that if the

default distribution is y i then a proposal z that gives each player an amount of
the good that is larger than the amount she gets in y i is rejected because the two
players whose share in y i is 1

3
, say i and j , vote against it. Why do they do that?

Because the acceptance of z would reopen negotiations. The player k chosen to
be the proposer in the next period would propose y k , and, if δ is close enough
to 1, this proposal would be accepted, which means that rather than being as-
sured of the share 1

3
in every future period, as they are when z is rejected, i and j

would face a future in which each of their shares is 1
3

in every future period with
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probability 2
3

but only 1
6

in every future period with probability 1
3

. Given that a
proposal that improves upon y i for every player is rejected, a player who makes
such a proposal reaps no benefit from doing so.

In the outcome of this strategy profile, the player chosen in period 1 to be
the proposer, say i , selects y i . This alternative gives her and one of the other
players, say j , the fraction 1

3
of the good. The default amount x 0

k for each player k
in period 1 is 0 and 1

3
> 5

18
, so players i and j vote for y i and thus x 1 = y i . In

every subsequent period the player chosen to be the proposer passes, so that the
distribution remains y i . Thus the outcome of the strategy profile is the lottery in
which the distribution is y 1 in every period, or y 2 in every period, or y 3 in every
period, each with probability 1

3
. I denote this lottery by ξ. The payoff of each

player for ξ is
2
3
· 1

3
+ 1

3
· 1

6
= 5

18
.

I now argue that the strategy profile is a subgame perfect equilibrium with
undominated voting ifδ≥ 12

13
. The game satisfies the condition in Proposition 16.9,

so that the strategy profile is a subgame perfect equilibrium if and only if it satis-
fies the one-deviation property. Here is an argument that it satisfies this property
and that no player’s vote after any history is weakly dominated.

Subgame following selection of player i when default distribution is x
Suppose that x ∈ Y . If i follows her strategy, the distribution is x in every
subsequent period, so that i ’s payoff in the remainder of the game is xi . If i
deviates from her strategy and makes a proposal different from x , then only
the single player for whom xi =

1
6

votes for, so x remains the distribution in
every subsequent period, as it does if she follows her strategy.

Suppose that x 6∈ Y . If i follows her strategy, she proposes y i , which assigns
1
3

to her and to one of the other players. For at least two players j , we have
x j ≤

1
2

, so that (1−δ)x j +
5

18
δ ≤ 1

2
− 4

18
δ ≤ 1

2
− 4

18
12
13
= 23

78
< 1

3
. Thus at least two

players vote for y i , so that it becomes the default distribution and hence, if
all players follow their strategies subsequently, the distribution in every sub-
sequent period. If i deviates from her strategy and proposes a member of Y
different from y i , at least two players vote for it by the same argument, so that
it becomes the distribution in every subsequent period. Thus i does not ben-
efit from the deviation. Finally, if i deviates from her strategy and proposes
a distribution z not in Y , whether or not it is accepted the outcome subse-
quently is the lottery ξ. If she adheres to her strategy she receives 1

3
in every

future period, so regardless of the value of z , she is worse off if she deviates.

Subgame starting with vote on z when default distribution is x
Suppose that x ∈ Y and xi =

1
6

. If i follows her strategy, she votes for z . The
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other two players vote against z , so the distribution in the period is x , and
that distribution persists in every future period. If i deviates from her strategy
and votes against z and the other players’ votes are such that her vote affects
the outcome, i ’s deviation changes the distribution in the period from z to
x , which means that the outcome in subsequent periods changes from the
lottery ξ to the certain distribution in which she receives 1

6
in every period.

Thus i ’s voting for z is optimal and undominated.

Suppose that x ∈ Y and xi =
1
3

. If i follows her strategy, she votes against z ,
as does one of the other players, so the distribution in the period is x , which
persists in every future period. An argument analogous to the one for the case
in which xi =

1
6

shows that i is made worse off by a deviation that affects the
outcome, so that her voting against z is optimal and undominated.

Suppose that x 6∈ Y and z ∈ Y . If z is accepted, the distribution is z in ev-
ery subsequent period, so that i receives the amount z i in every period and
hence the payoff z i . If it is rejected, then i receives xi in the current period
and then the lottery ξ, and hence the payoff (1−δ)xi+

5
18
δ. Thus i ’s voting for

z is optimal and undominated if z i ≥ (1−δ)xi +
5

18
δ and her voting against it

is optimal and undominated if the reverse inequality holds.

Suppose that x 6∈ Y and z 6∈ Y . If z is accepted, the distribution is z in the
current period and then the lottery ξ. If it is rejected, then i receives xi in
the current period and then the lottery ξ. Thus i ’s voting for z is optimal and
undominated if z i ≥ xi and her voting against it is optimal and undominated
if z i ≤ xi .

This equilibrium is a member of a large class of equilibria: the strategy profile
obtained by replacing y 1, y 2, and y 3 with (α1,α2,β3), (α1,β2,α3), and (β1,α2,α3)
for any (α1,α2,α3) and (β1,β2,β3) with αi ∈ [0,1], βi ∈ [0,1], αi > βi for i = 1, 2,
3, and α1 +α2 +β3 ≤ 1, α1 +β2 +α3 ≤ 1, and β1 +α2 +α3 ≤ 1 is an equilibrium
for values of δ sufficiently close to 1. These equilibria differ qualitatively from
the equilibrium of a distributive bargaining game with voting, as characterized
in Proposition 14.5.

• The set of players among whom the pie is shared may be larger than a mini-
mal majority. If βi > 0 for i = 1, 2, 3, the player chosen to be the first proposer
offers a positive amount to every player, and this proposal is accepted.

• Some of the pie may be wasted. In the equilibria in which αi =
1
6

and βi =
1
3

for i = 1, 2, 3, for example, the player chosen to be the first proposer dis-
tributes only 5

6
of the pie.
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• The game has multiple stationary equilibrium outcomes. In fact, for any dis-
tribution (x1,x2,x3)with xi > 0 for i = 1, 2, 3, there is a number δ∗ ∈ (0,1) such
that if δ ≥ δ∗ then the game has a stationary equilibrium in which the first
player selected by chance proposes (x1,x2,x3), which remains the alternative
in every future period.

Anesi and Seidmann (2015) show that the example may be extended to games
with more than three players and to voting rules that require more than a bare
majority of the players to vote in favor for a proposal to be accepted, as long as
the number of votes required is less than the number of players. (They show
also that under unanimity rule, by contrast, the game has a unique stationary
equilibrium payoff, which coincides with the stationary equilibrium payoff of a
distributive bargaining game with voting.)

Notes

The model of a bargaining game with voting is due to Baron and Ferejohn (1989)
and Banks and Duggan (2000). Proposition 14.2 is based on Cho and Duggan
(2015), Propositions 14.3 and 14.5 are based on Baron and Ferejohn (1989), and
Proposition 14.4 is based on Cho and Duggan (2009). My exposition draws also
on Austen-Smith and Banks (2005, Section 6.2) and Eraslan (2002)1. Section 14.2
is based on Anesi and Seidmann (2015).

The example in Exercise 14.2 is due to Colin Stewart. Exercise 14.3 is based
on Ali et al. (2019, Example 3).

Solutions to exercises

Exercise 14.1
If x 6= (1,0,0) and player 3 proposes y = (1,0,0) in state x , then M 3(y ) = {1,2},
and player 1’s strategy calls for her to vote against y . But her doing so is not
optimal: if she votes for y then her payoff is 1 and if she votes against y then
her payoff is at most δ1 < 1. (If there are at least five players, x 6= (1, 0, . . . ,0),
and player k 6= 1 proposes y = (1,0, . . . ,0), then every set M k (y ) contains only
players whose payoffs in y are 0.)

Exercise 14.2
Denote the common equilibrium payoff of players 1 and 2 by v and that of
player 3 by v ′. Suppose that v ≤ v ′, so that δv < δ′v ′. Then when a player is

1Note that Corollary 2 in Eraslan (2002), which is stated also on p. 217 of Austen-Smith and
Banks (2005), is incorrect, as Exercise 14.2 shows.
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the proposer, she offers δv to either player 1 or player 2 and keeps the rest, so
that her payoff is 1−δv . Player 3 is never offered a positive payoff by another
proposer, so her equilibrium payoff is v ′ = 1

3
(1−δv ). Player 1 needs to give δv

to player 2 if she is the proposer, keeping 1−δv for herself, gets δv if player 2
is the proposer, and gets δv with probability 1

2
if player 3 is the proposer. Thus

her equilibrium expected payoff is v = 1
3
(1−δv ) + 1

3
δv + 1

6
δv = 1

3
+ 1

6
δv > 1

3
,

which is inconsistent with v ≤ v ′. Thus v > v ′.

Exercise 14.3
Consider the strategy profile in which every player, whenever she is chosen
to be the proposer, proposes that she get the entire pie, and whenever she
has to vote on a proposal, she votes in favor, regardless of the proposal. By
the following argument, this strategy profile satisfies the one-deviation prop-
erty, so that by Proposition 16.9 it is a subgame perfect equilibrium. Consider
player 1.

Subgame starting with proposal
Player 1 cannot propose that she gets more; a proposal to get less is ac-
cepted, and player 1 is worse off.

Subgame following a proposal x by player 3
If player 1 accepts x then she gets x1. If she rejects x then player 2 accepts
it, and player 1 still gets x1. So player 1 optimally accepts x .

Subgame following rejection by player 3 of proposal x by player 2
If player 1 accepts x then she gets x1. If she rejects x then player 3 pro-
poses (0,0,1), which is accepted, so that player 1 gets 0. Thus player 1
optimally accepts x .

The arguments for players 2 and 3 are the same.
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15.1 Threat of revolt 506
15.2 Coordinating rebellion 513

Some societies are ruled by a dictator or an unchanging group of leaders. This
chapter discusses two models intended to study the effect on a dictator’s behav-
ior of the threat of rebellion by the masses and the circumstances under which
the masses can coordinate their actions and mount a successful rebellion.

Synopsis

Section 15.1 considers the choice of a dictator between carrying out policies that
benefit the masses and handing over control to them. In the model, a wealthy
dictator interacts with a mass of poor individuals over an infinite sequence of
periods. In each period, the dictator decides how much of the wealth available
in that period to give to the poor. In some periods, the environment is conducive
to revolt. In those periods, the dictator has the option to hand over control to the
mass of poor individuals, and if she does not do so those individuals have the op-
tion to revolt. Proposition 15.1 shows that if the probability that the environment
is conducive to revolt is below some threshold then the game has a unique sub-
game perfect equilibrium. In this equilibrium, the dictator democratizes when
the environment is conducive to revolt and gives no wealth to the poor when the
environment is not conducive to revolt. If, when the environment is conducive
to revolt she were not to democratize, the poor would revolt. When the proba-
bility that the environment is conducive to revolt is low, the dictator’s expected
payoff if she follows this strategy is high and is independent of the strategy of
the poor, putting a lower bound on the dictator’s payoff in any subgame perfect
equilibrium. So when the environment is conducive to revolt, the poor optimally
take that opportunity, knowing that if they do not then even if the dictator gives
them all the wealth in that period, their best payoff in every equilibrium of the
remainder of the game is low.

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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Section 15.2 studies the coordination problem the masses face when decid-
ing whether to revolt. In the model, in each period in an infinite sequence a dic-
tator chooses an action and then each member of a large set of citizens decides
whether to rebel. The probability that a rebellion is successful is an increasing
function of the fraction of citizens who rebel. If the citizens observe the dicta-
tor’s action, they can coordinate their actions. In this case, Proposition 15.2 de-
scribes some equilibria and specifies the highest payoff the citizens can achieve
in any equilibrium. If the citizens observe only a noisy signal of the dictator’s
action, then perfect coordination is not possible. Proposition 15.3 specifies the
best equilibria for the citizens in this case, which are worse than the best equi-
libria when the dictator’s action is observed. The remainder of the section ana-
lyzes informally a variant of the model, in which a dictator has the option to call
an election. Her decision to exercise this option may be used by the citizens to
coordinate their actions and in doing so achieve a payoff as high as in the best
equilibrium for them in the model in which they observe the dictator’s action.

15.1 Threat of revolt

Consider a society consisting of a small rich elite and a mass of poor individuals.
Initially, the rich elite rules. Suppose that the poor individuals have the option of
staging a revolution, after which they will have access to the entire wealth of the
society minus an amount that is destroyed during the revolution. Two options
of the elite that may forestall a revolution are to transfer wealth to the poor indi-
viduals and to transfer control of the distribution of wealth to these individuals,
an action I refer to as democratization. Under what circumstances will the elite
follow each of these strategies? The model I present studies the idea that if en-
vironments conducive to revolt are rare, the poor have an incentive to take such
opportunities when they arise, inducing rulers to forestall revolt by preemptively
democratizing.

15.1.1 Model

A society consists of two players, Rich, representing a small group of wealthy
individuals, and Poor, representing a large number of impecunious individuals.
One unit of wealth is available; Rich initially controls the distribution of this unit
between Rich and Poor. Rich can give some wealth to Poor, in which case Poor
may accept the offer or rebel, or can hand over control of the distribution of
wealth to Poor. If Poor rebels, the fraction v of wealth is lost and all of the remain-
der is taken by Poor. If Rich hands over control to Poor, Rich gets the fraction d of
wealth and Poor gets the remainder. (Perhaps Rich owns all the capital, and will
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Democratize

d ,1−d

(z , 1− z )

Rich

Accept

z ,1− z

Revolt

0,1− v

Poor

Accept if z ≤ v

If v > d
propose (v,1− v );

if v < d
democratize

Figure 15.1 An extensive game with perfect information in which Rich initially controls
the distribution of wealth. At the start of the game, its options are to democratize, in
which case it receives the amount d , and to offer some amount to Poor, which may ac-
cept the offer or revolt, in which case some wealth is destroyed and Rich obtains nothing.
(The diagram shows only one of the possible amounts Rich can offer to Poor.) In each
payoff pair, the first number is the payoff of Rich.

not cooperate unless it receives at least the fraction d of wealth, although this
strategic consideration is not part of the model.)

An extensive game with perfect information that models this society is given
in Figure 15.1. If Poor revolts, it obtains the payoff 1 − v , so in any subgame
perfect equilibrium it accepts a proposed distribution (z ,1 − z ) only if z ≤ v .
Thus if v > d then Rich proposes (v,1−v ), which Poor accepts, and if v < d then
Rich democratizes, obtaining the payoff d , which exceeds the best payoff for Rich
that Poor accepts. If v = d , both equilibria exist. Hence in a subgame perfect
equilibrium Rich democratizes only if the payoff of Poor under democracy is at
most its payoff under revolution. However, at least in the case that this inequality
between the payoffs is strict, the model seems to artificially restrict the actions
of Poor. If it is better off under revolution than under democracy, why does it not
have the option to revolt under democracy? If it has this option, it will take it, and
in the only subgame perfect equilibrium of the resulting game, Rich offers Poor
1− v , which it accepts. That is, only in the singular case in which v = d does the
game have an equilibrium in which Rich democratizes; the game fails to capture
the idea that Rich might democratize to stave off revolt.

An extension of the game addresses these shortcomings. In the new model,
play takes place over an infinite sequence of periods, rather than in a single pe-
riod, and sometimes the environment is conducive to revolt while sometimes it
is not. The payoff of Poor after a revolt is assumed to be less than its payoff under
democracy, so it has no incentive to revolt once democracy is established.

The game is illustrated in Figure 15.2. In each period, with probability 1−q
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t = 1

t → t +1 t → t +1

gb
Chance

1−q q
z t

(z t ,1− z t )

Rich
y t

Rich

A

(y t ,1− y t )

R
Poor

D

�
d

1−δ
,

1−d

1−δ

�

�

0,
1− v

1−δ

�

Figure 15.2 A dynamic game of revolt (see Definition 15.1). In each payoff pair, the first
number is the payoff of Rich.

the environment is not conducive to revolt (bad, b ). In this case, Rich chooses
a distribution of wealth in the period and play moves to the next period. With
probability q , the environment is conducive to revolt (good, g ), in which case
Rich has two types of action. One option is to democratize (D), resulting in the
payoff pair (d ,1−d ) in every subsequent period and no further strategic options
for either player. The other option is to propose some distribution (z ,1− z ) of
wealth in the period; Poor can either accept this proposal or revolt. If Poor ac-
cepts the proposal then the payoff pair in the period is (z ,1−z ) and play contin-
ues to the next period. If Poor revolts, then the payoff pair is (0,1− v ) in every
subsequent period and neither player has any further strategic options; we as-
sume v > d . Each player has the same discount factor, δ ∈ (0,1). Here is a precise
definition of the game.

Definition 15.1: Dynamic game of revolt

A dynamic game of revolt 〈{Rich, Poor},q ,δ, v, d 〉, where

• q ∈ (0,1) (the probability that the environment is conducive to revolt)

• δ ∈ (0,1) (the discount factor)

• v ∈ [0,1) (the amount of per-period wealth destroyed by a revolt)

• d ∈ [0, v ) (the amount of wealth obtained by Rich each period under
democracy)

is an extensive game with perfect information and chance moves with the
following components.

Players
Rich and Poor
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Terminal histories
The set of terminal histories is the set of all sequences

• (g , D) and (e 1, e 2, . . . , e t , g , D) for all t ≥ 1

• (g , y , R) for all y ∈ [0,1] and (e 1, e 2, . . . , e t , g , y t+1, R) for all t ≥ 1 and
all y t+1 ∈ [0,1]

• (e 1, e 2, . . . )

where e τ = (b , z τ) or (g , y τ, A) for some z τ ∈ [0,1] and y τ ∈ [0,1], for
every τ≥ 1.

Player function
Chance is assigned to the initial history and to every history ending with
(b , z t ) for some z t ∈ [0,1] or (g , y t , A) for some y t ∈ [0,1]. Rich is as-
signed to every history ending with b or g , and Poor is assigned to every
history ending with (g , y t ) for some y t ∈ [0,1].

Chance probabilities
Chance selects g with probability q and b with probability 1−q , inde-
pendent of history, whenever it moves.

Preferences
The preferences of Rich are represented by the payoff function







∑t
τ=1δ

τ−1x τ+δt
d

1−δ
if h = (e 1, e 2, . . . , e t , g , D) for some t

∑t
τ=1δ

τ−1x τ if h = (e 1, e 2, . . . , e t , g , y t+1, R) for some t
∑∞
τ=1δ

τ−1x τ if h = (e 1, e 2, . . . )

and those of Poor are represented by the payoff function







∑t
τ=1δ

τ−1(1−x τ)+δt
1−d

1−δ
if h = (e 1, e 2, . . . , e t , g , D) for some t

∑t
τ=1δ

τ−1(1−x τ)+δt
1− v

1−δ
if h = (e 1, e 2, . . . , e t , g , y t+1, R) for some t

∑∞
τ=1δ

τ−1(1−x τ) if h = (e 1, e 2, . . . )

where x τ = z τ if e τ = (b , z t ) and x τ = y τ if e τ = (g , y τ, A).
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15.1.2 Subgame perfect equilibrium

When environments conducive to revolt are relatively rare (q is small), the game
has a unique subgame perfect equilibrium, in which Rich democratizes when-
ever the environment is good (for revolt) and takes all the wealth when the envi-
ronment is bad, and Poor revolts whenever Rich does not democratize. The out-
come is that Rich democratizes on the first occurrence of a good environment.

In this equilibrium, unlike in the equilibria of the static model, Rich democ-
ratizes to stave off revolt. Given that Rich gives Poor no wealth when the envi-
ronment is bad, even if Rich offers Poor all the wealth when the environment is
good, Poor optimally revolts, because the expected time before the environment
is good again is large. As a consequence, whenever the environment is good for
revolt, Rich optimally democratizes to avoid being impoverished by revolution.

Here is the argument that the game has no other subgame perfect equilib-
rium. If Rich takes all the wealth when the environment is bad and democratizes
when it is good its payoff is independent of the strategy of Poor, so this payoff is a
lower bound for its payoff in a subgame perfect equilibrium. This payoff is rela-
tively large when the probability q of a good environment is small. Now, in each
period the total wealth available is at most 1, so the lower bound for the equilib-
rium payoff of Rich implies an upper bound for the equilibrium payoff of Poor,
which is relatively small when q is small. As a consequence, if q is small, Poor
revolts regardless of how much wealth Rich offers it in a period in which the en-
vironment is good, because even if Rich offers it all the wealth in such a period its
expected payoff from accepting the offer and then getting the discounted value
of its highest payoff in the game is less than its payoff if it revolts. Finally, given
that Poor revolts, Rich optimally democratizes and, because its payoff is thus in-
dependent of the strategy of Poor, takes all of the wealth when the environment
is bad.

Proposition 15.1: Subgame perfect equilibrium of dynamic game of
revolt with democratization

Let 〈{Rich, Poor},q ,δ, v, d 〉 be a dynamic game of revolt with 0< d < v <δ
and let q ∗ = (1−δ)(δ− v )/(δ(1−δ+ v − d )). If q ≤ q ∗ then the following
strategy pair is a subgame perfect equilibrium and if q < q ∗ then it is the
only subgame perfect equilibrium.

• The strategy of Rich assigns 1 to every history ending in b and D to
every history ending in g . (Rich takes all the wealth whenever the en-
vironment is bad for revolt and democratizes whenever it is good for
revolt.)
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• For every number y ∈ [0,1], the strategy of Poor assigns R to every his-
tory ending in (g , y ). (If, when the environment is good for revolt, Rich
does not democratize, Poor revolts regardless of how much wealth Rich
offers it.)

Proof

The payoffs satisfy the condition in Proposition 16.9, so a strategy pair is
a subgame perfect equilibrium if and only if it satisfies the one-deviation
property.

I first argue that the strategy pair in the result satisfies the one-deviation
property.

Action of Rich after history ending in b
If Rich deviates from 1 to any other number then it obtains less in the
period of its deviation and the same in every subsequent period, so that
it is worse off.

Action of Rich after history ending in g
If Rich deviates from D to any number y then its payoff in the resulting
subgame is 0 rather than d /(1−δ), so it is worse off.

Action of Poor after history ending in (g , y )
If Poor follows its strategy and chooses R , its payoff in the resulting
subgame is (1− v )/(1− δ). If it deviates and chooses A, its payoff is
1− y +δV P , where V P is its payoff from the strategy pair at the start of
the game, so that

V P = (1−q )(0+δV P )+q
1−d

1−δ

and hence

V P =
q (1−d )

(1−δ)(1−δ(1−q ))
.

Thus Poor is no better off deviating than choosing R if and only if

1− y +
δq (1−d )

(1−δ)(1−δ(1−q ))
≤

1− v

1−δ
.

This condition is satisfied for all values of y if and only if q ≤q ∗.

I now argue that the game has no other subgame perfect equilibrium.
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Step 1 The expected payoff of Rich in every subgame perfect equilibrium is
at least

(1−q )(1−δ)+qd

(1−δ)(1−δ(1−q ))
.

Proof. If Rich uses the strategy that chooses z = 1 following every history
ending in b and D after every history ending in g , its expected payoff V R

satisfies

V R = (1−q )(1+δV R )+q
d

1−δ
,

regardless of the strategy of Poor, so that V R is the expression given in the
result. Ã

Step 2 The expected payoff of Poor in every subgame perfect equilibrium is
at most

q (1−d )

(1−δ)(1−δ(1−q ))
.

Proof. The sum of the players’ payoffs in each period is at most 1, so that
the sum of their total payoffs in the game is at most 1/(1−δ). The result
follows from Step 1. Ã

Step 3 If q < q ∗ then in every subgame perfect equilibrium the strategy of
Poor chooses R after every history ending in (g , y ) for any y ∈ [0,1].

Proof. If Poor chooses A after such a history, its payoff in the subgame fol-
lowing the history is at most 1+δV P , where V P is its maximal payoff in the
game. If it chooses R , its payoff is (1−v )/(1−δ). Thus by Step 2 its choosing
A is not optimal if

1− v

1−δ
> 1+δ

q (1−d )

(1−δ)(1−δ(1−q ))
,

which is equivalent to q <q ∗. Ã

Step 4 If q < q ∗ then in every subgame perfect equilibrium the strategy of
Rich chooses D after every history ending in g .

Proof. By Step 3, if Rich chooses any value of y after a history ending in
g its payoff is 0, whereas if it chooses D after such a history its payoff is
d /(1−δ)> 0. Ã
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Step 5 If q < q ∗ then in every subgame perfect equilibrium the strategy of
Rich chooses z = 1 after every history ending in b .

Proof. Suppose that Rich chooses a value of z less than 1 after a history
ending in b . If it deviates to 1, its payoff in the period increases and by
Step 4 its payoff in every future period is unaffected. Thus the deviation
increases its payoff. Ã

If good environments are not rare, the game has a subgame perfect equilib-
rium in which democratization does not occur. In this equilibrium, Rich can
stave off a revolution by redistributing in good environments, even though it
does not do so in bad environments.

Exercise 15.1: Subgame perfect equilibrium of dynamic game of revolt
without democratization

Show that the following strategy pair is a subgame perfect equilibrium of
a dynamic game of revolt 〈{Rich, Poor},q ,δ, v, d 〉 if 0 < d < v < δ < 1 and
q ≥ 1− v /δ, where y ∗ = (v −δ(1−q ))/(1−δ(1−q )).

• The strategy of Rich assigns 1 to every history ending in b and y ∗ to
every history ending in g . (Rich takes all the wealth whenever the
environment is bad for revolt and takes y ∗ whenever it is good for
revolt.)

• The strategy of Poor assigns R to every history ending in (g , y ) with
y ≥ y ∗ and A to every history ending in (g , y ) with y < y ∗. (If, when
the environment is good for revolt, Rich does not democratize, Poor
revolts if Rich takes y ∗ or more and otherwise accepts the amount Rich
offers it.)

15.2 Coordinating rebellion

A dynamic game of revolt models the poor as a unitary actor, who decides whether
to accept a proposal or rebel. In this section I present a model with a large num-
ber of citizens, who face a coordination problem: rebellion is worthwhile for a
citizen only if it is successful, which requires sufficiently many of her compatri-
ots to rebel. In the model, the dictator’s choice of how much wealth to assign
to the masses is the trigger for a rebellion. If the masses observe only a noisy
signal of this choice then their ability to coordinate their actions is limited and
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t = 1, k = 1 (oligarch 1 is dictator)
Dictator chooses y t ∈ [0, w ]

↓
Chance determines each citizen i ’s state x t

i ,
y t with probability α, 0 with probability 1−α

independently for each citizen

↓

Dictator’s action observable: Each citizen i observes her state, x t
i ,

and dictator’s action, y t

Dictator’s action unobservable: Each citizen i observes her state, x t
i

↓
Each citizen chooses Rebel or Acquiesce (simultaneously)

↓
Chance determines outcome in period t :

when the fraction of citizens who Rebel is z ,

rebellion succeeds
with probability G (z )

rebellion fails
with probability 1−G (z )

t → t +1 t → t +1

k → k +1
(oligarch k +1

becomes dictator)

Figure 15.3 The structure of the interaction between the oligarchs and the citizens in an
oligarchic society.

the most they receive in an equilibrium is less than the most they receive when
the dictator’s choice is perfectly observable (Proposition 15.2, Proposition 15.3).
Giving the dictator the option of calling an election, the exercise of which (or lack
thereof) is perfectly observed, facilitates coordination and restores an equilib-
rium in which the masses receive as much as they do when they perfectly observe
the dictator’s choice of how much wealth to assign them (Section 15.2.3).

The structure of the model is depicted in Figure 15.3. In each of an infi-
nite sequence of periods, one of a countably infinite set of oligarchs interacts
with a continuum of citizens. In each period, the ruling oligarch—the current
dictator—chooses how much of a pie of size w to devote to public goods, and
consumes the remainder. (One interpretation of the public good is that it rep-
resents the effort the dictator expends in governing the society.) In each period,
each citizen’s economic fortune depends on her state, which is random. When
the dictator chooses y in some period, each citizen’s state in that period is y with
probability α and 0 with probability 1−α, independently of every other citizen’s
state. Each citizen observes her state in each period; her payoff depends on her
state in a way that I specify subsequently.

In one version of the model, each citizen observes the dictator’s action in
each period, and in another version, she does not. In both cases, having ob-
served her state, she chooses whether to rebel or acquiesce; the citizens make
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Rebel Acquiesce

Rebellion
succeeds

Rebellion
fails

Rebellion
succeeds

Rebellion
fails

z t = 0 z t > 0 z t = 0 z t > 0

x t
i +b − L x t

i − c x t
i − c − L x t

i − L x t
i x t

i − L

Table 15.1 The payoff of citizen i ∈ I in any given period t in an oligarchic society
〈I , K , w ,b , c , L,α,G ,δ〉, where x t

i is the citizen’s state in period t and z t is the fraction
of citizens who choose Rebel in period t .

these choices simultaneously. The more citizens who rebel, the more likely the
rebellion is to succeed. Specifically, when the fraction of citizens who rebel in
period t is z t , the probability that a rebellion succeeds in that period is G (z t ),
where G is an increasing function with G (0) = 0 and G (1) = 1 (rebellion surely
succeeds if every citizen participates). If the rebellion succeeds, the dictator is
ousted and replaced by the next oligarch in line. Otherwise the currently ruling
oligarch continues as dictator. At the end of the period, all oligarchs and citizens
observe the fraction of citizens who rebelled and the outcome of the rebellion
(succeeded, failed).

In any given period t an oligarch obtains the payoff w−y t if she is the dictator
in that period and chooses y t , and the payoff 0 if she is not the dictator in that
period. Her total payoff is the discounted sum of her payoffs in all periods, with
discount factor δ ∈ (0,1). If she is the dictator in every period and chooses y in
every period, for example, her total payoff is (w − y )/(1−δ).

Each citizen’s payoff in any given period depends on her action in the period,
the fraction of citizens who rebel in the period, and the outcome of the rebellion,
as specified in Table 15.1. Suppose that citizen i rebels in period t . Then if the
rebellion succeeds, her payoff in the period is x t

i +b − L, where x t
i is her state in

the period, b > 0 represents the benefit, material or psychological, of participat-
ing in a successful rebellion, and L > 0 represents the loss incurred by all citizens
due to the disruption of the rebellion. If the rebellion fails, her payoff is x t

i −c −L
if a positive fraction of citizens rebel and x t

i − c if the fraction of citizens who
rebel is zero (isolated rebellious actions are costly, but do not cause rebellion),
where c > 0. If citizen i acquiesces in period t , her payoff in the period is x t

i −L if
a positive fraction of citizens rebel (regardless of whether the rebellion succeeds
or fails) and x t

i if the fraction of citizens who rebel is zero.
The model in which each citizen observes only her own state in each period,

not the dictator’s action (the more interesting of the two cases), is captured by
an extensive game with imperfect information with a set of players that is the
union of a countably infinite set (the oligarchs) and a continuum (the citizens).
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Defining this game, and an appropriate solution concept for it, entails technical
challenges. Rather than doing so, I define an oligarchic society as a list of pa-
rameters, without specifying the actions available to the members of the society,
each member’s information when she takes an action, or the members’ payoffs,
and subsequently define a notion of equilibrium for such a society that is mo-
tivated by the structure of interaction shown in Figure 15.3 and the considera-
tions in game-theoretic notions of equilibrium, but is not cast as a specific type
of equilibrium of a specific game.

Definition 15.2: Oligarchic society

An oligarchic society 〈I , K , w ,b , c , L,α,G ,δ〉 consists of

• I , a nonempty interval (the set of citizens, a continuum)

• K = {1,2, . . . } (oligarchs, each of whom is a potential dictator)

• w > 0 (the amount of wealth available in each period)

• b > 0 (the increment to the payoff of a citizen who participates in a
successful rebellion)

• c > 0 (the decrement to the payoff of a citizen who participates in an
unsuccessful rebellion)

• L > 0 (the decrement to the payoff of each citizen if a rebellion occurs)

• α ∈ [0,1] (when the dictator chooses y , any given citizen’s state is y
with probability α and 0 with probability 1−α, independently of the
other citizens’ states)

• G : [0,1]→ [0,1], with G (0) = 0 and G (1) = 1, is increasing on (0,1) (G (z )
is the probability a rebellion succeeds if the fraction of citizens who
participate in it is z )

• δ ∈ (0,1) (the oligarchs’ common discount factor).

The notions of equilibrium that I define are intended to capture the con-
siderations in a stationary equilibrium of a game in which every oligarch uses
the same strategy and every citizen uses the same strategy: the behavior of each
oligarch and each citizen is optimal, given the other players’ actions, is unvary-
ing over time, and for any given period depends only on the events within that
period.
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15.2.1 Dictator’s action observable

I start with the case in which the citizens observe the dictator’s action before
choosing whether to rebel. I define a (stationary) equilibrium as a pair (y ∗,σ∗),
where y ∗ ∈ [0, w ] is the action of each oligarch in every period in which she is
the dictator and σ∗ : [0, w ]→ [0,1] defines the probability σ∗(y ) with which each
citizen rebels in any given period when the ruling oligarch chooses y in that pe-
riod. (I do not include the citizen’s state as an argument of σ∗ because, as I argue
subsequently, a citizen’s optimal action is independent of her state.)

First consider the optimality of y ∗. Given σ∗, the fraction of the (continuum
of) citizens who rebel in a period in which the dictator chooses y isσ∗(y ), so the
probability that rebellion succeeds is p ∗(y ) =G (σ∗(y )). Thus the total payoff V (y )
of the oligarch who rules in period 1 and chooses y in every period, regardless of
history, is equal to w − y +(1−p ∗(y ))δV (y ), so that

V (y ) =
w − y

1−δ(1−p ∗(y ))
.

For the oligarchs’ common action y ∗ to be optimal, we need V (y ∗)≥ V (y ) for all
y ∈ [0, w ].

Now consider the optimality of σ∗. A citizen reasonably bases her decision
on whether to rebel in any given period on her estimate of the probability that a
rebellion will succeed. Suppose that her estimate of this probability is p . Then if
her state is x , her payoff is

¨
p (x +b − L)+ (1−p )(x − c − L) if she rebels
x − L if she acquiesces,

so that, independently of her state, she optimally rebels if p > c/(b + c ), opti-
mally acquiesces if p < c/(b + c ), and is indifferent between the two actions if
p = c/(b + c ). Let p̂ = c/(b + c ). Then the probability she assigns to rebelling is
optimal if and only if it is 0 if p < p̂ and 1 if p > p̂ . (Every probability is optimal
if p = p̂ .) As for standard notions of equilibria in games, I assume that her belief
about the probability p that a rebellion will succeed is correct. (Perhaps she has
inferred this probability from her long experience playing the game or observing
other people play the game or similar games.) That is, she believes that if the
dictator chooses y then the fraction σ(y ) of her compatriots will rebel, so that
her estimate of the probability that a rebellion will succeed is G (σ(y )). (Given
that the set of citizens is a continuum, her participation in the rebellion has no
effect on its success.) These considerations lead to the following definition of an
observable-action equilibrium.
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Definition 15.3: Observable-action equilibrium of oligarchic society

An observable-action equilibrium of a oligarchic society 〈I , K , w ,b , c , L,
α,G ,δ〉 is a pair (y ∗,σ∗), where y ∗ ∈ [0, w ] (each oligarch’s action) and
σ∗ : [0, w ]→ [0,1] (σ∗(y ) is each citizen’s probability of rebelling when the
ruling oligarch chooses y ), such that

V (y ∗)≥ V (y ) for all y ∈ [0, w ] (15.1)

and

σ∗(y ) =

¨
0 if p ∗(y )< p̂
1 if p ∗(y )> p̂

for all y ∈ [0, w ] (15.2)

where

V (y ) =
w − y

1−δ(1−p ∗(y ))
for all y ∈ [0, w ]

(the payoff of an oligarch when she is in power and chooses y ),

p ∗(y ) =G (σ∗(y )) for all y ∈ [0, w ]

(the probability of a successful rebellion when the ruling oligarch chooses
y ), and p̂ = c/(b + c ).

An oligarchic society has an observable-action equilibrium in which the dic-
tator takes all the wealth and the citizens always rebel and also an equilibrium in
which the dictator takes all the wealth and the citizens never rebel. In addition, it
has equilibria in which the dictator always takes some amount y ≤ (1−δ)w and
all citizens rebel if she takes more. I describe these equilibria in more detail and
then state a precise result.

Consider the pair (0,σ1) with σ1(y ) = 1 for all y ∈ [0, w ]. That is, every oli-
garch takes all of w for herself whenever she is the dictator and every citizen
rebels whatever the ruling oligarch does. Given that every citizen rebels, the
rebellion succeeds; any citizen who deviates to acquiescence has no effect on
the success of the rebellion and forgoes the payoff b that accrues to a citizen
who participates in a successful rebellion. Thus the citizens’ actions are opti-
mal given the oligarchs’ actions. Every oligarch rules for one period, and can do
nothing to avoid being ousted from power. Hence (0,σ1) is an observable-action
equilibrium.

Now consider the pair (0,σ0) with σ0(y ) = 0 for all y ∈ [0, w ]. That is, every
oligarch takes all of w for herself whenever she is the dictator and every citizen
always acquiesces. The oligarch who is dictator in period 1 stays in power indef-
initely and obtains w in every period, and no citizen’s switching to rebel for any



15.2 Coordinating rebellion 519

value of y has any effect on the outcome. Hence (0,σ0) is an observable-action
equilibrium.

Observable-action equilibria in which each oligarch chooses a positive value
of y also exist. For example, for any y ∗ ∈ [0,δw ] there is an equilibrium in which
each citizen rebels if and only if y < y ∗ and each oligarch chooses y ∗. In these
equilibria, the citizens’ threat to rebel if the oligarch chooses y < y ∗, which is
credible because all citizens participate in such a rebellion, which thus succeeds,
induces the oligarch to choose y ∗. In no equilibrium does each oligarch choose
y >δw because the payoff of such an oligarch is less than (w −δw )/(1−δ) =w ,
and by choosing y = 0 an oligarch guarantees herself a payoff of w (she is in
power for one period, in which she obtains w ).

Proposition 15.2: Observable-action equilibria of oligarchic society

Let 〈I , K , w ,b , c , L,α,G ,δ〉 be an oligarchic society.

a. Define σ0 : [0, w ] → [0,1] by σ0(y ) = 0 for all y ∈ [0, w ] (each citizen
acquiesces for all values of y ) and σ1 : [0, w ]→ [0,1] by σ1(y ) = 1 for
all y ∈ [0, w ] (each citizen rebels for all values of y ). Both (0,σ0) and
(0,σ1) are observable-action equilibria of the society.

b. Let y ∗ ∈ [0,δw ] and define σ∗ : [0, w ]→ [0,1] by

σ∗(y ) =

¨
0 if y ≥ y ∗

1 if y < y ∗

(each citizen rebels if and only if y < y ∗). Then (y ∗,σ∗) is an
observable-action equilibrium of the society.

c. In every observable-action equilibrium (y ,σ) of the society we have
y ≤δw .

Proof

a. First consider (0,σ0). In the notation of Definition 15.3 we have p ∗(y ) = 0
for all y , so that V (y ) = (w−y )/(1−δ) for all y , and hence (15.1) is satisfied.
Given p̂ > 0, (15.2) is also satisfied. Now consider (0,σ1). We have p ∗(y ) = 1
for all y , so that V (y ) = w − y ≤ V (0) for all y , so that (15.1) is satisfied.
Given p̂ < 1, (15.2) is also satisfied.
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b. We have

p ∗(y ) =G (σ∗(y )) =

¨
G (0) = 0 if y ≥ y ∗

G (1) = 1 if y < y ∗.

Thus

V (y ) =

¨
(w − y )/(1−δ) if y ≥ y ∗

w − y if y < y ∗.

Hence V (y ∗) ≥ V (y ) for all y ∈ [0, w ] if and only if (w − y ∗)/(1−δ) ≥w , or
y ∗ ≤δw . Thus (15.1) is satisfied.

Now, p̂ ∈ (0,1), so if p ∗(y ) < p̂ then y ≥ y ∗, so that σ∗(y ) = 0, and if
p ∗(y )> p̂ then y < y ∗, so that σ∗(y ) = 1. Thus (15.2) is satisfied.

Hence (y ∗,σ∗) is an observable-action equilibrium.

c. We have V (0) =w /(1−δ(1−p ∗(0)))≥w , so by (15.1) for any observable-
action equilibrium (y ,σ)we have V (y )≥w and hence y ≤δw (1−p ∗(y ))≤
δw .

15.2.2 Dictator’s action unobservable

Now consider the more interesting case in which the citizens do not observe the
dictator’s action. When the dictator’s action is y , each citizen’s state is y with
probability α and 0 with probability 1 − α, and each citizen observes only her
state, not the dictator’s action. I now define a (stationary) equilibrium to be a
pair (y ∗,ρ∗), where y ∗ ∈ [0, w ] is the action of each oligarch in every period in
which she is the dictator and ρ∗ : [0, w ]→ [0,1] defines the probability ρ∗(x )with
which each citizen rebels in any given period when her state is x .

The fraction of citizens who rebel when the dictator chooses y is nowαρ∗(y )+
(1−α)ρ∗(0), which I denote q ∗(y ). Thus the probability of a successful rebellion
when the dictator chooses y is G (q ∗(y )) and the total payoff V (y ) of the oligarch
who rules in period 1 and chooses y in every period, regardless of history, is equal
to w − y +(1−q ∗(y ))δV (y ), so that

V (y ) =
w − y

1−δ(1−q ∗(y ))
.

As before, for the oligarchs’ common action y ∗ to be optimal, we need V (y ∗) ≥
V (y ) for all y ∈ [0, w ].

Now consider the optimality of ρ∗. If a citizen’s state is x ∈ (0, w ], she knows
that the ruling oligarch has chosen x (and, in particular, if x 6= y ∗ she knows that
the ruling oligarch has deviated from y ∗), and hence she knows that the state
is x for the fraction α of citizens and 0 for the fraction 1 − α. Thus given the
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citizens’ common strategy ρ∗, she knows that the fraction of citizens who will
rebel is q ∗(x ) and hence the probability of a successful rebellion is G (q ∗(x )). If a
citizen’s state is 0, she has no information about the ruling oligarch’s action, and
in particular has no reason to believe that the ruling oligarch has deviated from
y ∗. In the spirit of the assumption of the consistency of beliefs with strategies in
the standard solution concepts for extensive games with imperfect information,
I assume that in this case she believes that the fraction of citizens who will rebel
is q (y ∗) and hence the probability of a successful rebellion is G (q (y ∗)). Given that
a citizen optimally rebels if she believes that the probability of success exceeds p̂
(= c/(b+c )), optimally acquiesces if she believes that this probability is less than
p̂ , and is indifferent between the two actions if she believes that this probability
is p̂ , we are led to the following definition of an equilibrium.

Definition 15.4: Unobservable-action equilibrium of oligarchic society

An unobservable-action equilibrium of a oligarchic society 〈I , K , w ,b , c , L,
α,G ,δ〉 is a pair (y ∗,ρ∗), where y ∗ ∈ [0, w ] (each oligarch’s action) and ρ∗ :
[0, w ]→ [0,1] (ρ∗(x ) is each citizen’s probability of rebelling when her state
is x ), such that

V (y ∗)≥ V (y ) for all y ∈ [0, w ], (15.3)

ρ∗(0) =

¨
0 if q ∗(y ∗)< p̂
1 if q ∗(y ∗)> p̂ ,

(15.4)

and

ρ∗(x ) =

¨
0 if q ∗(x )< p̂
1 if q ∗(x )> p̂

for all x ∈ (0, w ], (15.5)

where

V (y ) =
w − y

1−δ(1−q ∗(y ))
for all y ∈ [0, w ] (15.6)

(the payoff of an oligarch when she is in power and chooses y ),

q ∗(y ) =G (αρ∗(y )+ (1−α)ρ∗(0)) for all y ∈ [0, w ]

(the probability of a successful rebellion when the ruling oligarch chooses
y ), and p̂ = c/(b + c ).

Analogues of the patterns of behavior in Proposition 15.2a are unobservable-
action equilibria: if every citizen acquiesces regardless of her state, no rebellion
every occurs and the ruling oligarch optimally chooses 0 and stays in power in-
definitely; if every citizen rebels regardless of her state, a rebellion succeeds in
every period, and the ruling oligarch optimally chooses 0 and remains in power
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for only one period.
The analogue of the pattern of behavior in Proposition 15.2b, however, is not

generally an equilibrium. Suppose that for some number x ∗ every citizen rebels
when her state is less than x ∗ and acquiesces when it is at least x ∗. Then if the
dictator chooses x ∗, the fraction 1−α of citizens, whose state is 0, rebel, so that
rebellion succeeds with probability q ∗(x ∗) =G (1−α). Thus if G (1−α) < p̂ then
rebelling is not optimal for the citizens whose state is 0 ((15.4) is violated) and
if G (1−α) > p̂ then acquiescing is not optimal for the citizens whose state is x ∗

((15.5) is violated). Only if G (1−α) = p̂ is the pattern of behavior an equilibrium.
The fact that citizens whose state is 0 do not know the value of y chosen by

the dictator makes disciplining the dictator with rebellion more difficult. In an
equilibrium in which the dictator chooses a positive value of y , a deviation by
the dictator to y = 0 must increase the probability of rebellion. Such a deviation
causes every citizen’s state to become 0, so the probability of rebellion for an
citizen with state 0 must be positive. As a consequence, rebellion occurs with
positive probability also when the dictator does not deviate, because even then
some citizens’ states are (randomly) 0. Thus the impact of a deviation to 0 on the
dictator’s payoff is less than it is when her action is observable, and hence the
maximum amount of wealth the dictator gives to the citizens in an equilibrium
is also less than it is when her action is observable.

Further, there is a discrete difference between the case in which the dictator’s
action is observable and that in which it is not observable but α is close to 1. The
reason is that for the probability of rebellion for a citizen with state 0 to be pos-
itive, the citizen must be indifferent between rebelling and acquiescing, which
requires that if the dictator adheres to the equilibrium and chooses y = y ∗, the
probability of success of a rebellion must be equal to p̂ , independent of the value
ofα. Whenα is close to 1, that in turn requires that citizens with state 0 rebel with
probability 1 and those with state y ∗ rebel with probability close to the number r
for which G (r ) = p̂ . By contrast, when the dictator’s action is observable, no one
rebels when the dictator adheres to her equilibrium strategy.

This argument leads to the conclusion that the largest value of y possible
in an unobservable-action equilibrium is discretely less than δw , the value that
Proposition 15.2b shows can be achieved in an observable-action equilibrium.
Parts c and d of the next result specify the upper bound. In the equilibria defined
in the result, all oligarchs choose some number y and if G (1−α)< p̂ then every
citizen whose state is less than y rebels and some of those whose state is at least
y do so, while if G (1−α)> p̂ then some of those whose state is 0 rebel, all of those
whose state is between 0 and y do so, and none of those whose state is at least y
do so.
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Proposition 15.3: Unobservable-action equilibria of oligarchic society

Let 〈I , K , w ,b , c , L,α,G ,δ〉 be an oligarchic society and let p̂ = c/(b + c ).

a. Define ρ0 : [0, w ] → [0,1] by ρ0(x ) = 0 for all x ∈ [0, w ], and ρ1 :
[0, w ] → [0,1] by ρ1(x ) = 1 for all x ∈ [0, w ]. Both (0,ρ0) and (0,ρ1)
are unobservable-action equilibria of the society.

b. In every unobservable-action equilibrium (y ∗,ρ∗)with y ∗ > 0,

G (αρ∗(y ∗)+ (1−α)ρ∗(0)) = p̂

(the probability of a successful rebellion is equal to p̂ ) and

y ∗ ≤
δw (G (ρ∗(0))− p̂ )

1−δ(1−G (ρ∗(0)))
. (15.7)

c. Suppose that G (1−α) ≤ p̂ . Let y ∗ ∈ (0,δw (1− p̂ )], let r be the unique
number satisfying G (αr +1−α) = p̂ , and define ρ∗ : [0, w ]→ [0,1] by

ρ∗(x ) =

¨
1 if 0≤ x < y ∗

r if y ∗ ≤ x ≤w .
(15.8)

The pair (y ∗,ρ∗) is an unobservable-action equilibrium of the society,
and in every equilibrium (y ,ρ)we have y ≤δw (1− p̂ ).

d. Suppose that G (1−α)> p̂ . Let

0< y ∗ ≤
δw (G (r )− p̂ )

1−δ(1−G (r ))
, (15.9)

where r is the unique number satisfying G ((1− α)r ) = p̂ , and define
ρ∗ : [0, w ]→ [0,1] by

ρ∗(x ) =







r if x = 0
1 if 0< x < y ∗

0 if y ∗ ≤ x ≤w .
(15.10)

The pair (y ∗,ρ∗) is an unobservable-action equilibrium of the society,
and in every equilibrium (y ,ρ) the value of y is at most the right-hand
side of (15.9).
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Proof

a. First consider (0,ρ0). In the notation of Definition 15.4, we have q ∗(y ) =
G (0) = 0 for all y ∈ [0, w ], so V (y ) = (w − y )/(1−δ) for all y ∈ [0, w ]. Thus
(15.3) is satisfied. Given that q ∗(x ) = 0 for all x ∈ [0, w ], (15.4) and (15.5) are
also satisfied. Hence (0,ρ0) is an unobservable-action equilibrium of the
society.

Now consider (0,ρ1). We have q ∗(y ) = G (1) = 1 for all y ∈ [0, w ], so
V (y ) =w −y for all y ∈ [0, w ]. Thus (15.3) is satisfied, and (15.4) and (15.5)
are also satisfied. Hence (0,ρ1) is an unobservable-action equilibrium of
the society.

b. Let q ∗(y ) =G (αρ∗(y )+ (1−α)ρ∗(0)) for all y ∈ [0, w ], the probability of a
successful rebellion, as given in Definition 15.4. If q ∗(y ∗) < p̂ then ρ∗(0) =
ρ∗(y ∗) = 0 by (15.4) and (15.5), so that q ∗(0) = q ∗(y ∗) = 0. If q ∗(y ∗)> p̂ then
ρ∗(0) = ρ∗(y ∗) = 1 by (15.4) and (15.5), so that q ∗(0) = q ∗(y ∗) = 1. Using
(15.6), given y ∗ > 0, in both cases we thus have V (0)> V (y ∗), contradicting
(15.3). Thus q ∗(y ∗) = p̂ .

Now by (15.6) we have

V (y ∗) =
w − y ∗

1−δ(1− p̂ )
and V (0) =

w

1−δ(1−G (ρ∗(0)))
.

Thus the requirement of (15.3) that V (y ∗)≥ V (0) implies (15.7).

c. I first argue that (y ∗,ρ∗) is an unobservable-action equilibrium. Given
(15.8), we have

q ∗(x ) =

¨
1 if 0≤ x < y ∗

G (αr +1−α) = p̂ if x ≥ y ∗,

so that (15.4) and (15.5) are satisfied. Also

V (y ) =







w − y if 0≤ y < y ∗

w − y ∗

1−δ(1− p̂ )
if y ≥ y ∗,

so that (15.3) is satisfied, given y ∗ ≤δw (1− p̂ ).
The right-hand side of (15.7) is increasing in G (ρ∗(0)), and hence attains

its maximum when G (ρ∗(0)) = 1; this maximum is δw (1− p̂ ), so the last
claim follows from part b.
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d. I first argue that (y ∗,ρ∗) is an unobservable-action equilibrium. We have

q ∗(x ) =







G (r ) if x = 0
G (α+(1−α)r ) if 0< x < y ∗

G ((1−α)r ) = p̂ if x ≥ y ∗,

so that (15.4) and (15.5) are satisfied. Also

V (y ) =







w

1−δ(1−G (r ))
if y = 0

w − y

1−δ(1−G (α+(1−α)r ))
if 0< y < y ∗

w − y

1−δ(1− p̂ )
if y ≥ y ∗.

Now,
w

1−δ(1−G (r ))
>

w − y

1−δ(1−G (α+(1−α)r ))

for y > 0, so that (15.3) is satisfied if

w − y ∗

1−δ(1− p̂ )
≥

w

1−δ(1−G (r ))
,

which is true given (15.9).
The right-hand side of (15.7) is increasing in G (ρ∗(0)), and hence attains

its maximum at the largest value of ρ∗(0) that is consistent with q ∗(y ∗) =
G (αρ∗(y ∗) + (1− α)ρ∗(0)) = p̂ . Given that G (1− α) > p̂ , this value is the
number r such that G ((1−α)r ) = p̂ . Thus the right-hand side of (15.7) is
equal to the right-hand side of (15.9).

If α is close to 0, then by part d the largest value of y in an equilibrium is
close to 0, as one would expect: if almost no one observes the dictator’s action,
rebellion is a blunt tool. The largest value of y in an equilibrium is also close to
0 if the benefit b that citizens receive from participating in a successful rebellion
is small, or the cost c they incur from participating in an unsuccessful rebellion
is large, both of which cause p̂ to be close to 1.

If α is close to, but less than, 1, then by part c the largest equilibrium value
of y is at most δw (1− p̂ ), which if b > 0 is discretely less than its largest equilib-
rium value of δw in an observable-action equilibrium. That is, the presence of
a small amount of imperfect information significantly reduces the largest equi-
librium value of y ; the logic behind this result is discussed informally before the
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statement of the proposition.
In the equilibria in parts c and d of the result, rebellion occurs in every period,

because a positive fraction of citizens rebel. Thus each citizen’s payoff in each
period is αy ∗ − L. In the equilibrium (0,ρ0) in part a, in which rebellion never
occurs, each citizen’s payoff is 0 in each period. Thus each citizen is better off in
an equilibrium (y ∗,ρ∗) as specified in part c or d than in the equilibrium (0,ρ0) if
and only if αy ∗ > L.

15.2.3 Coordinating rebellion

To induce the oligarchs to choose values of y higher than the ones possible in
unobservable-action equilibria, the citizens need to coordinate their rebellious
impulses. One way for them to do so is simply by communicating: if the citizens
who observe the value of y chosen by the dictator inform their compatriots, then
an observable-action equilibrium can be implemented.

Another natural possibility is that the citizens condition their actions not only
on events in the current period, but also on events in previous periods. That is,
we could consider the possibility of an equilibrium in nonstationary strategies.
To do so, we need to formulate a game and a solution concept precisely, which
is challenging. Plausibly such a game has an equilibrium in which each oligarch
chooses a number, say y ∗∗, larger than the largest value of y in an unobservable-
action equilibrium, with some citizens rebelling whenever their state is less than
y ∗∗ and all citizens rebelling if the fraction of citizens who rebelled in the previous
period was large enough to imply that the oligarch deviated and chose a value of
y smaller than y ∗∗ in that period.

An additional possibility is that each citizen has an opportunity to take an ac-
tion before choosing whether to rebel, and the number of citizens choosing the
action is publicly observable. For example, each citizen might have the opportu-
nity to demonstrate or to vote in a referendum. The model I describe adopts the
latter interpretation.

Assume that in each period t , after each citizen i observes her state x t
i , the

ruling oligarch can give the citizens the opportunity to vote (simultaneously) to
allow her to rule for another period. Suppose that the outcome of every vote is
observed by all citizens. If the ruling oligarch does not give the citizens the op-
portunity to vote, or if she does so, a majority favors her resignation, and she does
not resign, the citizens have the option to rebel. The structure of the interaction
is shown in Figure 15.4.

I argue that this model has an equilibrium in which each oligarch chooses δw
in every period, as in the observable-action equilibrium of an oligarchic society
that is best for the citizens. That is, even though the citizens cannot observe
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t = 1, k = 1 (oligarch 1 is dictator)
Dictator chooses y t ∈ [0, w ]

↓
Chance determines each citizen i ’s state x t

i ,
y t with probability α, 0 with probability 1−α

independently for each citizen

↓

Each citizen i observes her state, x t
i (but not y t )

↓
Dictator

referendum no referendum

Each citizen: Rebel or Acquiesce

↓

Chance
success failure

Each citizen: for or against
< 1

2 for ≥ 1
2 for

Dictator
resign stay

Dictator
resign stay

Each citizen: Rebel or Acquiesce
↓

Chance
success failure

t → t +1 t → t +1

k → k +1
(oligarch k +1

becomes dictator)

Figure 15.4 The structure of a dynamic games of rebellion with the option of a referen-
dum. Whenever the citizens move, they do so simultaneously.

the actions of the ruling oligarch, the model has an equilibrium in which their
payoffs are as high as possible in an equilibrium of the model in which they can
observe these actions.

A formal model that captures this interaction, like one that captures the inter-
action in Figure 15.3 when the dictator’s action is unobservable, is an extensive
games with imperfect information. A citizen whose state is 0 does not know the
value of y that the dictator chose, and when deciding the action to take has to
form a belief about this value. A full precise specification of the game is complex,
and as for the earlier model, I do not provide such a specification. In fact, in this
case I do not specify a formal model at all, but merely sketch an informal analysis
of equilibrium.

I argue that the (unformulated) game has an equilibrium in which after every
history in which she is in power, every oligarch

• chooses δw

• holds a referendum
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• resigns if and only if less than half of the citizens vote in her favor

and every citizen i

• rebels after any history that ends with the ruling oligarch’s (i) not holding a
referendum or (ii) holding one, losing the vote, and choosing to stay in power

• whenever her state in any period t is x t
i ,

if α> 1
2

¨
votes against if x t

i <δw
votes for if x t

i ≥δw

if α≤ 1
2







votes against with probability 1
2

if x t
i = 0

votes against if 0< x t
i <δw

votes for if x t
i ≥δw .

Here is my argument.

Oligarchs
If a ruling oligarch adheres to her strategy, she chooses δw in every period,
so that the state is δw for the fraction α of citizens and 0 for the fraction 1−α.
The oligarch holds a referendum, and wins (if α > 1

2
she obtains the fraction

α of the votes, and if α≤ 1
2

she obtains the fraction α+ 1
2
(1−α) = 1

2
+ 1

2
α). The

oligarch remains in power and obtains w −δw in every future period, so her
payoff in the game is (w −δw )/(1−δ) =w .

If a ruling oligarch deviates from her strategy by choosing δw in some period
but then not holding a referendum, all citizens rebel and the oligarch is thus
removed from power. Her payoff in the rest of the game in this case is w−δw ,
which is less than w .

If a ruling oligarch deviates from her strategy by choosing a number greater
than δw in some period, she is worse off in that period and, depending on
her subsequent actions in the period, either remains in power or is removed
from power, so that her payoff in the rest of the game is less than w −δw +
δ(w −δw )/(1−δ) =w .

Suppose that a ruling oligarch deviates from her strategy by choosing y t <

δw in some period t . If she does not hold a referendum, all the citizens
rebel and she is removed from power. If she does hold a referendum, she
loses: if α > 1

2
then all citizens vote against her and if α ≤ 1

2
then the fraction

α+ 1
2
(1−α) = 1

2
+ 1

2
α does so. Having lost, she either resigns or stays and is

removed from power by a rebellion. Thus she obtains the payoff w −y t in the
game. Among such deviations the best one for her is thus y t = 0, which yields
her the payoff w , equal to her payoff if she adheres to her strategy.
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Citizens
If citizen i follows her strategy, she obtains x t

i in every period t .

If citizen i deviates from her strategy by acquiescing rather than rebelling
after a history that ends with the ruling oligarch’s (i) not holding a referendum
or (ii) holding one, losing the vote, and choosing to stay, her payoff in the
period changes from x t

i +b − L to x t
i − L (see Table 15.1), so she is worse off.

If a citizen deviates from her strategy by changing her vote in some period,
the outcome of the vote remains the same, given that there is a continuum of
citizens.

Note that although the fact that no citizen’s vote affects the outcome follows
immediately from the assumption that there is a continuum of citizens, it re-
mains true if the number of citizens is finite and large, because the margin of
victory or loss is positive for all (positive) values of α.

Although the action that the dictator allows the citizens to take before decid-
ing whether to rebel in this model is called voting in a referendum, any binary
action plays the same role. The dictator could allow the citizens to participate
in a demonstration, or prohibit them from doing so, and if she allows them to
do so and more than half of them participate, they could all rebel if she does not
resign. Or the dictator could allow them to take any other specific action, or pro-
hibit them from doing so, and if she allows them to do so and more than half of
them take the action, they could all rebel if she does not resign.

The action the citizens may be allowed to take acts as coordinating device:
the fact that all citizens costlessly observe whether the action is allowed and the
fraction of citizens who take it allows them to coordinate their actions. The origi-
nal game, in which no such action is available, may have a nonstationary equilib-
rium in which a citizen’s rebelling in one period is a costly signal of her state that
is used by the citizens to coordinate rebellion in the following period, although
the analysis of such equilibria seems complex.

Notes

Section 15.1 is based on Acemoglu and Robinson (2000) and Section 15.2 is based
on Fearon (2011).

Solutions to exercises

Exercise 15.1
The payoffs satisfy the condition in Proposition 16.9, so a strategy pair is
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a subgame perfect equilibrium if and only if it satisfies the one-deviation
property.

I now argue that the strategy pair in the result satisfies the one-deviation
property. Note that y ∗ ≥ 0 given that q ≥ 1− v /δ.

Action of Rich after history ending in b
If Rich deviates from 1 to any other number then it obtains less in the
period of its deviation and the same in every subsequent period, so that
it is worse off.

Action of Rich after history ending in g
If Rich deviates from y ∗ to any number y < y ∗ then it obtains less in the
period of its deviation and the same in every subsequent period, so that
it is worse off.

If Rich deviates to a number y > y ∗ then its payoff in the resulting sub-
game is 0, so it is no better off (and is worse off if y ∗ > 0).

If Rich deviates to D then its payoff in the resulting subgame is d /(1−δ),
so for the strategy pair to be a subgame perfect equilibrium we need

d

1−δ
≤ y ∗+δV R ,

where V R is its payoff from the strategy pair at the start of the game, so
that

V R = (1−q )(1+δV R )+q (y ∗+δV R ),

and hence

V R =
1−q +qy ∗

1−δ
.

Thus the condition for equilibrium is

d

1−δ
≤ y ∗+

δ(1−q +qy ∗)

1−δ

or
d ≤δ(1−q )+ (1−δ(1−q ))y ∗ = v,

which is satisfied, given the assumption on d and v .

Action of Poor after history ending in (g , y )
The payoff of Poor from accepting y ∗ is 1−y ∗+δV P , where V P is its payoff
from the strategy pair at the start of the game, so that

V P = (1−q )(0+δV P )+q (1− y ∗+δV P ),
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and hence

V P =
q (1− y ∗)

1−δ
.

Thus its payoff from accepting y ∗ is

1− y ∗+
δq (1− y ∗)

1−δ
=

1− v

1−δ
,

which is its payoff from choosing R . Thus R is an optimal response to any
y ≥ y ∗ and A is an optimal response to any y ≤ y ∗.
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This appendix provides definitions of most of the formal concepts used in the
body of the book. It includes only brief explanations and discussions, and is in-
tended only to remind you of the definitions. For detailed explanations and dis-
cussions using the same terminology and notation as this book see Osborne and
Rubinstein (2020), Osborne (2004), and Osborne and Rubinstein (1994). (The
first and last of these books, and several chapters of the second, are freely avail-
able in electronic form.)

16.1 Preferences and payoffs

A binary relation on a set X indicates, for each ordered pair (x , y ) with x ∈ X and
y ∈ X , whether x and y are related in a certain way. For example, ≥ is a binary
relation on the set of real numbers: for every pair (x , y ) of real numbers, x ≥ y
means that x is at least y . Two other binary relations on the set of real numbers
are > and =. Formally, a binary relation B on X may be defined as a subset of
X ×X , the set of all ordered pairs (x , y )with x ∈ X and y ∈ X ; if (x , y )∈ B then x is
related to y , and if (x , y ) 6∈ B then it is not. However, rather that writing (x , y )∈ B ,
we usually write x B y , and we commonly use a symbol resembling ≥ or >, like
¼, �, Ä, or Â, rather than a letter for a relation.

Draft chapter of Models in political economy by Martin J. Osborne. Version 2024.3.25. c©
2024 Martin J. Osborne. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs license (BY-NC-ND 4.0).
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Definition 16.1: Binary relation

For any set X , a binary relation on X is a subset of X ×X , the set of ordered
pairs (x , y ) with x ∈ X and y ∈ X . If ¼ is a binary relation, we write x ¼ y to
mean (x , y )∈¼.

Here are two key properties that a binary relation may or may not possess.

Definition 16.2: Properties of binary relation

For any set X , a binary relation ¼ on X is

• complete if for every x ∈ X and y ∈ X (with x and y not necessarily
distinct) we have either x ¼ y or y ¼ x (or both)

• transitive if for every x ∈ X , y ∈ X , and z ∈ X with x ¼ y and y ¼ z we
have x ¼ z

The binary relation ≥ is complete, whereas > and = are not; all three are
transitive.

We model an individual’s preferences over a set of alternatives as a complete
transitive binary relation, say ¼, interpreting x ¼ y to mean that the individual
likes x at least as much as y .

Definition 16.3: Preference relation

For any set X , a preference relation on X is a complete transitive binary
relation on X .

Given any preference relation, two associated binary relations are defined as
follows.

Definition 16.4: Binary relations associated with preference relation

Let X be a set and and ¼ a preference relation on X . The strict preference
relation and indifference relation associated with¼ are the binary relations
� and ∼ defined by

x � y ⇔ x ¼ y and not y ¼ x

x ∼ y ⇔ x ¼ y and y ¼ x .

The strict preference relation � and indifference relation ∼ associated with
any preference relation ¼ are transitive, and if x ¼ y and y � z then x � z . If
¼ is the preference relation of an individual then x � y may be interpreted to
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mean that the individual prefers x to y , and x ∼ y may be interpreted to mean
that she regards x and y as equally appealing. Whenever I introduce a preference
relation denoted ¼, I implicitly introduce also the strict preference relation and
indifference relation associated with ¼, which I denote by � and ∼, and when-
ever I introduce a preference relation denoted Ä, I implicitly introduce the strict
preference relation associated with Ä, which I denote Â.

If all the members of a set may be arranged in order, with no distinct mem-
bers at the same position in the ordering, then the associated binary relation is
called a linear order. (“Linear” because we can order the members along a line.)

Definition 16.5: Linear order

For any set X , a linear order on X is a complete transitive binary relation ¼
on X with the property that whenever x ∈ X , y ∈ X , x ¼ y , and y ¼ x we
have x = y .

An example of a linear order on the set of real numbers is ≥ (greater than or
equal to). An example of a linear order on the set of n-vectors is the lexicographic
order, defined as follows. (“Lexicographic” because for languages written using
an alphabet it is the way the words in a dictionary are ordered.)

Definition 16.6: Lexicographic order on Rn

For any positive integer n , the lexicographic order on Rn is the binary
relation ≥L defined by x ≥L y if and only if either x1 > y1 or for some
k ∈ {1, . . . , n−1}we have xi = yi for i = 1, . . . , k and xk+1 > yk+1. This binary
relation is complete and transitive, and is hence a preference relation.

In some models, an individual is assumed to not be indifferent between any
two distinct alternatives. That is, her preference relation is assumed to be a linear
order, so that it coincides with the strict preference relation associated with it.
For convenience, in this case I say that her preference relation is strict.

Definition 16.7: Strict preference relation

For any set X , a preference relation ¼ on X is strict if it is a linear order.

When analyzing an individual’s behavior, it is often convenient to work with
a function that represents her preference relation in the sense that it attaches a
higher number to alternative x than to alternative y if and only if the individual
prefers x to y .
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Definition 16.8: Payoff function that represents preference relation

Let X be a set and let¼ be a preference relation on X . The function u : X →
R represents ¼ if

x ¼ y if and only if u (x )≥ u (y ).

Not every preference relation can be represented by a payoff function. For
example, a lexicographic preference ordering cannot be so represented. A suffi-
cient condition for a preference relation to be represented by a payoff function is
that it is continuous.

Definition 16.9: Continous preference relation

Let X be a subset of a Euclidean space. A preference relation ¼ on X is
continuous if for every sequence (x j , y j )∞j=1 for which x j ∈ X , y j ∈ X , x j ¼ y j

for all j , and limj→∞x j and limj→∞ y j exist, we have limj→∞x j ¼ limj→∞ y j ,
or, equivalently, for every x ∗ ∈ X the sets {x ∈ X : x ¼ x ∗} and {x ∈ X : x ∗ ¼ x }
are closed.

Proposition 16.1: Payoff function that represents preference relation

Let X be a subset of a Euclidean space and let ¼ be a continuous prefer-
ence relation on X . Then there is a continuous function u : X → R that
represents ¼.

For a proof of a more general result see Debreu (1954), and for a proof of a special
case see Mas-Colell et al. (1995).

In models in which a decision-maker has preferences over the numbers in
an interval, a common assumption is that these preferences are represented by
a single-peaked function, defined precisely as follows.

Definition 16.10: Single-peaked function

Let X be a convex subset of R. A function f : X → R is single-peaked if it
is continuous and strictly quasiconcave. Equivalently, f is continuous and
satisfies one of the following conditions.

• f is increasing

• f is decreasing

• there exists a number x ∗ ∈ X such that f is increasing on {x ∈ X :
x ≤ x ∗} and decreasing on {x ∈ X : x ≥ x ∗}.
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Uncertainty

A lottery over a set is a function that assigns a positive probability to each of a
finite number of members of the set and 0 to the remaining members, with the
sum of the probabilities equal to 1.

Definition 16.11: Lottery

For any set Z , a lottery over Z is a function p : Z →R that assigns a positive
number (probability) p (z ) to a finite number of members of Z and 0 to
all other members, with

∑
z∈Z p (z ) = 1. The lottery p with p (z k ) = pk for

k = 1, . . . , K and p (z ) = 0 otherwise is denoted p1 · z 1⊕p2 · z 2⊕ · · · ⊕ pk · z k

and the lottery that assigns probability 1 to a single alternative z ∈ Z is
denoted [z ].

Whenever a preference relation on a set of lotteries over a set is used in this
book, I assume that it may be represented by the expected value of a real-valued
function on the set. Such preference relations were first systematically stud-
ied by von Neumann and Morgenstern (1944); for this reason they are referred
to as vNM preference relations. A preference relation on a set of lotteries over
a set is a vNM preference relation if, and only if, it is continuous and has the
independence property, defined as follows.

Definition 16.12: Continuous preference relation on set of lotteries

For any set Z , a preference relation ¼ on the set of lotteries over Z is con-
tinuous if for any a ∈Z , b ∈Z , and c ∈Z such that [a ]� [b ]� [c ] there is a
number αwith 0<α< 1 such that [b ]∼α ·a ⊕ (1−α) · c .

Definition 16.13: Independence property for preference relation on set
of lotteries

For any set Z , a preference relation ¼ on the set of lotteries over Z satisfies
the independence property if for any lotteries α1 ·z 1⊕· · ·⊕αk ·z k⊕· · ·⊕αK ·z K

and β ·a ⊕ (1−β ) ·b over Z we have

[z k ]¼ β ·a ⊕ (1−β ) ·b

⇔

α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K

¼α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K .
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Proposition 16.2: Representation of preferences on set of lotteries by
expected value of payoff function

Let Z be a finite set. A preference relation¼ on the set L(Z ) of lotteries over
Z is continuous and satisfies the independence property if and only if it is
a vNM preference relation: that is, there is a function u : Z →R such that ¼
is represented by the function U : L(Z )→R defined by

U (p ) =
∑

z∈Z

p (z )u (z ) for all p ∈ L(Z ).

Another function v : Z →Rhas this property if and only if there is a number
α and a positive number β such that v (z ) = α+ βu (z ) for all z ∈ Z . Any
such function is called a Bernoulli function for ¼.

For a proof for the first part this result, see Propositions 3.1 and 3.2 of Osborne
and Rubinstein (2020). For a proof of the second part, see Proposition 6.B.2 of
Mas-Colell et al. (1995).

16.2 Sets of individuals and profiles

In some of the models in this book the set of individuals is identified with an in-
terval of real numbers, to capture situations in which the number of individuals
is large enough that each individual’s behavior is insignificant relative to the to-
tality of all individuals. In these cases, I sometimes need to refer to the size of
a subset of individuals. For a subset of the interval that is a countable union of
disjoint intervals, we can use the sum of the lengths of these intervals for this pur-
pose. But extending this notion of size to all subsets while maintaining appeal-
ing properties for it is impossible. (See, for example, Royden 1968, Chapter 3.) I
follow standard practice and restrict attention to Lebesgue-measurable subsets,
taking the size of such a subset to be its Lebesgue measure (which, roughly, is the
smallest total length of a collection of intervals whose union contains the sub-
set). In particular, whenever I refer to a set of individuals in such a model, I mean
a Lebesgue-measurable subset of the interval.

Given a set of individuals, I use the term profile to refer to a collection of
objects, one for each individual. For example, if each individual i ∈ N has a
preference relation ¼i , then the preference profile for the set of individuals is the
collection of these preference relations; if each individual i ∈ N is associated
with the action a i ∈ Ai , then the action profile for the set of individuals is the
collection of these actions. We can think of any such collection as a function that
associates an object with each individual i ∈N .
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Definition 16.14: Profile

For a set N of individuals and any set S, a profile of members of S is a
function that associates with each i ∈N a member of S.

One way to denote the profile that associates with each i ∈N the mem-
ber si of S is (si )i∈N . For any profile (si )i∈N , (xi , s−i ) denotes the profile that
differs from (si )i∈N only in that the element for individual i is xi rather than
si (so that, in particular, (si , s−i ) = (si )i∈N ).

The notation (si )i∈S is most appealing if N is countable, but I use it also when N
is uncountable (for example, an interval).

16.3 Brouwer’s fixed-point theorem

The following result, due to Luitzen Egbertus Jan Brouwer (1881–1966), is used
in some proofs that models have equilibria. For a proof of the result, see Smart
(1974, Theorem 2.1.11).

Proposition 16.3: Brouwer’s fixed point theorem

Let X be a compact convex subset of a Euclidean space and let f : X → X
be a continuous function. Then f has a fixed point: there exists x ∈ X with
f (x ) = x .

16.4 Strategic games

A strategic game is a model of the interaction among the members of a set of
decision-makers. Each decision-maker, called a player, chooses an action and
cares about the actions chosen by all decision-makers.

Definition 16.15: Strategic game

A strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉 consists of

players
a set N

and for each player i ∈N

actions
a set Ai
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preferences
a preference relation ¼i over the set ×j∈N A j of action profiles.

For any i ∈ N , a function u i : ×j∈N A j → R that represents ¼i is a payoff
function for player i .

A Nash equilibrium of a strategic game is an action profile with the property
that no player is better off choosing a different action, given the actions of the re-
maining players. One interpretation of a Nash equilibrium is that it corresponds
to a steady state in an environment in which each decision-maker plays the game
many times against other decision-makers chosen randomly from populations
of potential players. No decision-maker observes the identity of any particular
player, so no decision-maker can condition her action in any play of the game on
the actions chosen previously by any other particular decision-maker. But every
decision-maker knows, from her long experience playing the game, the actions
that the other players will take in any occurrence of the game.

Definition 16.16: Nash equilibrium of strategic game

For a strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉, a Nash equilibrium is an action
profile (a i )i∈N ∈×i∈N Ai for which for every player i ∈N

(a i , a−i )¼i (xi , a−i ) for all xi ∈ Ai .

The following result gives sufficient conditions for a strategic game to have a
Nash equilibrium. For a proof of the result, see Osborne and Rubinstein (1994,
Proposition 20.3).

Proposition 16.4: Existence of Nash equilibrium in strategic game

The strategic game 〈N , (Ai )i∈N , (¼i )i∈N 〉 in which N is finite has a Nash
equilibrium if for every i ∈N

• the set Ai of actions of player i is a nonempty compact convex subset
of a Euclidean space

and the preference relation ¼i

• may be represented by a continuous payoff function

• is quasiconcave on Ai :

{a i ∈ Ai : (a i , a ∗−i )¼i a ∗} is convex for every a ∗ ∈ ×j∈N A j .
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A strategic game may have more than one Nash equilibrium, but if the game
has two players and their interests are opposed, the players’ payoffs in every Nash
equilibrium are the same.

Definition 16.17: Strictly competitive strategic game

The two-player strategic game 〈{1,2}, (Ai )i∈N , (¼i )i∈N 〉 is strictly competitive
if a ¼1 b if and only if b ¼2 a for all a ∈ A1×A2 and b ∈ A1×A2.

Proposition 16.5: Unique Nash equilibrium payoffs in strictly
competitive strategic game

Every Nash equilibrium of a strictly competitive strategic game yields the
same pair of payoffs.

For a proof of this result, see Osborne and Rubinstein (1994, Proposition 22.2).
The action a ′i of player i in a strategic game weakly dominates the action a i if

for all actions of the other players, i likes the outcome in which she chooses a ′i at
least as much as the outcome when she chooses a i , and for at least one collection
of actions for the other players she prefers the outcome when she chooses a ′i to
the outcome when she chooses a i .

Definition 16.18: Weak domination in strategic game

Let 〈N , (Ai )i∈N , (¼i )i∈N 〉 be a strategic game. The action a ′i ∈ Ai of player i ∈
N weakly dominates her action a i ∈ Ai if

(a ′i ,x−i )¼i (a i ,x−i ) for every action profile x

(a ′i ,x−i )�i (a i ,x−i ) for some action profile x .

A notion of equilibrium closely related to Nash equilibrium models the set
of options of each individual as the set of probability distributions over a set of
actions. The outcome of such an equilibrium is a probability distribution over
action profiles, so that to define it we need to include in the description of the
game the players’ preferences over such probability distributions, not only their
preferences over deterministic action profiles. We assume that these preference
relations are vNM preference relations.

Definition 16.19: Strategic game with vNM preferences

A strategic game with vNM preferences 〈N , (Ai )i∈N , (u i )i∈N 〉 consists of
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players
a set N

and for each player i ∈N

actions
a set Ai

preferences
a function u i :×j∈N A j →R (a Bernoulli function whose expected value
represents individual i ’s preferences over lotteries on the set ×j∈N A j of
action profiles).

To define the notion of mixed strategy equilibrium, it is convenient to first
define the notion of a mixed strategy.

Definition 16.20: Mixed strategy of player in strategic game with vNM
preferences

Let 〈N , (Ai )i∈N , (u i )i∈N 〉 be a strategic game with vNM preferences. For any
player i ∈ N , a mixed strategy of player i in the game is a probability
distribution over Ai .

Definition 16.21: Mixed strategy equilibrium of strategic game with
vNM preferences

Let 〈N , (Ai )i∈N , (u i )i∈N 〉 be a strategic game with vNM preferences for which
N and each set Ai are finite. For each player i define the function Ui by

Ui (x ) =
∑

a∈A

�∏

j∈N

x j (a j )

�

u i (a ) for every profile x of mixed strategies,

where A = ×j∈N A j , the set of action profiles, and x j (a j ) is the probability
that j ’s mixed strategy x j assigns to the action a j . (Thus Ui (x ) is i ’s ex-
pected payoff for x .) A mixed strategy equilibrium of the game is a profile
α of mixed strategies for which

Ui (αi ,α−i )≥U (xi ,α−i ) for every mixed strategy xi of player i .

The next result asserts that every finite strategic game has a mixed strategy
equilibrium.
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Proposition 16.6: Existence of mixed strategy equilibrium in finite
strategic game with vNM preferences

Every strategic game with vNM preferences in which the set of players and
the set of actions of each player are finite has a mixed strategy equilibrium.

For a proof of this result, see Proposition 33.1 of Osborne and Rubinstein (1994).
One interpretation of a mixed strategy equilibrium is an extension of the in-

terpretation of a Nash equilibrium that I mention before Definition 16.16: it cor-
responds to a stochastic steady state in an environment in which each decision-
maker plays the game many times against other decision-makers chosen ran-
domly from populations of potential players. This interpretation and others are
discussed in Section 3.2 of Osborne and Rubinstein (1994).

Consider a mixed strategy equilibrium in which some player’s mixed strategy
assigns positive probabilities to two actions, say a and b . Her expected payoff if
she chooses a must equal her expected payoff if she chooses b , given the equi-
librium mixed strategies of the other players, because if these payoffs differ she
can increase her expected payoff by increasing the probability she assigns to the
action that yields the higher payoff. That is, in the equilibrium she is indifferent
between a and b , and has no positive incentive to choose them with the prob-
abilities required by the equilibrium. The equilibrium probabilities are deter-
mined not by her optimization process, but by the equilibrium requirement that
the other players must be indifferent between the actions to which their mixed
strategies assign positive probability. This property of a mixed strategy equilib-
rium makes it more difficult to interpret than a strict Nash equilibrium, in which
each player’s payoff decreases if she deviates from her equilibrium action.

16.5 Bayesian games

We may model players’ uncertainty about each other’s characteristics by using
the notion of a Bayesian game. The uncertainty is modeled by specifying a set
of states. For each state, each player observes a signal; for any given signal, she
cannot distinguish among the states that generate that signal for her. A player
who observes the same signal for every state, for example, has no information
about the state, and a player who observes a different signal for every state has
perfect information. Each player has a prior belief about the probability of each
state, which she updates, using the rule due to the eponymous Thomas Bayes,
after observing her signal. (This formulation follows Osborne and Rubinstein
(1994) in taking the players’ prior beliefs as primitive, from which the posterior
belief following the observation of a signal may be derived; Osborne (2004) takes
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the latter as primitive.)

Definition 16.22: Bayesian game

A Bayesian game 〈N ,Ω, (Ai )i∈N , (Ti )i∈N , (τi )i∈N , (pi )i∈N , (u i )i∈N 〉 consists of

players
a set N

states
a set Ω

and for each player i ∈N

actions
a set Ai

signals
a set Ti and a function τi : Ω → Ti that associates a signal with every
state

prior beliefs
a probability measure pi on Ωwith pi (τ

−1
i (ti ))> 0 for all ti ∈ Ti

payoffs
a Bernoulli payoff function u i over the set (×i∈N Ai )×Ω of pairs (a ,ω)
consisting of an action profile a and a stateω (with i ’s preferences over
pairs (a ,ω) represented by the expected value of u i ).

The signals that a player may receive are referred to also as her possible
types.

The condition pi (τ
−1
i (ti )) > 0 for all ti ∈ Ti on the prior beliefs says that each

signal of every player is possible: each player assigns positive probability to the
set of states that generate each of her signals. (If a signal of a player is not possi-
ble, we can omit it from the description of the game.)

We define a Nash equilibrium of a Bayesian game as a Nash equilibrium of
an associated strategic game G ∗ that has one player for each type of each player
in the Bayesian game. That is, the set of players in G ∗ is the set of pairs (i , ti ) for
i ∈ N and ti ∈ Ti . The set of actions of each player (i , ti ) is Ai . That is, for all
the types of each player i the set of actions is Ai . To specify the payoffs of the
players in G ∗, consider player (i , ti ). The set of states that generate the signal ti

for player i in the Bayesian game is τ−1
i (ti ), so the probability that (i , ti ) assigns

to each stateω, derived from her prior belief using Bayes’ rule, is

Pr(ω | ti ) =

¨
pi (ω)/pi (τ

−1
i (ti )) ifω ∈ τ−1

i (ti )
0 otherwise.

(16.1)
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Let a ∗ be an action profile in G ∗. That is, a ∗ assigns a member of Ai to each
pair (i , ti ) with i ∈ N and ti ∈ Ti . Denote the action assigned by a ∗ to (i , ti ) by
a ∗(i , ti ) (rather than a ∗(i ,ti )

, for readability). Then the action that player i takes
in the Bayesian game when the state is ω is a ∗(i ,τi (ω)) and hence the expected
payoff of player (i , ti ) in G ∗ for the action profile a ∗ is

u ∗(i ,ti )
(a ∗) =

∑

ω∈Ω

Pr(ω | ti )u i ((a
∗(j ,τj (ω)))j∈N ,ω), (16.2)

where Pr(ω | ti ) is given by (16.1).

Definition 16.23: Nash equilibrium of Bayesian game

A Nash equilibrium of a Bayesian game 〈N ,Ω, (Ai )i∈N , (Ti )i∈N , (τi )i∈N ,
(pi )i∈N , (u i )i∈N 〉 is a Nash equilibrium of the strategic game 〈N ∗, (A∗j )j∈N ∗ ,
(u ∗j )j∈N ∗ 〉 in which

players
N ∗ = {(i , ti ) : i ∈N and ti ∈ Ti }

and for all i ∈N and ti ∈ Ti

actions
A∗(i ,ti )

= Ai

payoffs
u ∗(i ,ti )

is given by (16.2).

Like a Nash equilibrium of a strategic game, a Nash equilibrium of a Bayesian
game may be interpreted as a steady state in an environment in which the decision-
makers interact anonymously. In this interpretation, we assume that from her
long experience playing the game, each decision-maker knows the action of each
type of every other decision-maker.

16.6 Extensive games

An extensive game is a model of interaction among decision-makers that in-
cludes a specification of the sequential structure of the decision-making. At the
start of the game, the members of a subset of the players (consisting possibly of a
single player) simultaneously choose actions. This list of actions determines the
subset of players who move next. Play continues in the same manner until the
game ends. The resulting sequence of lists of actions is called a terminal history.
The structure of the decision-making in the game is specified by the set of possi-
ble terminal histories. (This formulation follows Osborne 2004 in taking terminal
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histories as primitive, from which histories are derived; Osborne and Rubinstein
1994 takes histories as primitive and derives terminal histories from them.)

A sequence of lists of actions is a history. For any finite history h = (a 1, . . . , a k ),
the subhistories of h are ∅ (the empty sequence) and all sequences of the form
(a 1, a 2, . . . , a m ) with 1≤m ≤ k . (Note that h is a subhistory of itself.) A sequence
(a 1, a 2, . . . , a m )with m ≤ k −1 is a proper subhistory of h. For any infinite history
h = (a 1, a 2, . . . ), the subhistories are ∅, all sequences of the form (a 1, a 2, . . . , a m )
with m ≥ 1 (proper subhistories), and h itself.

16.6.1 Extensive game with perfect information

I start with the most general definition of an extensive game with perfect infor-
mation, which allows for both simultaneous moves and chance moves.

Definition 16.24: Extensive game with perfect information,
simultaneous moves, and chance moves

An extensive game with perfect information, simultaneous moves, and
chance moves 〈N ,Z , P, (Ai (h)){(i ,h):i∈P(h)}, (q h){h:c=P(h)}, (¼i )i∈N 〉 consists of

players
a set N

terminal histories
a set Z of sequences with the property that no member of Z is a proper
subhistory of any other member of Z ; the set of all subhistories of mem-
bers of Z , proper or not, is the set H of histories, and H \Z is the set of
nonterminal histories

player function
a function P that assigns either c (chance) or a subset of N to every
nonterminal history

actions
for each nonterminal history h with P(h)⊆N and each player i ∈ P(h),
a set Ai (h) (the set of actions available to player i after the history h)

chance probabilities
for each nonterminal history h for which P(h) = c , a probability mea-
sure q h on {a : (h, a ) ∈ H}, with each such measure independent of
every other such measure (q h gives the probabilities with which chance
selects actions after the history h)
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preferences
for each player i ∈N , a preference relation¼i on the set of lotteries over
the set Z of terminal histories

such that the set H of histories, player function P , and sets (Ai (h)){(i ,h):i∈P(h)}

of actions are consistent in the sense that for every (nonterminal) history
h ∈H \Z for which P(h)⊆N we have {a : (h, a )∈H}=×i∈P(h)Ai (h).

Special cases in which chance moves are absent and/or no players ever move
simultaneously are defined as follows.

Definition 16.25: Special cases of extensive game with perfect
information, simultaneous moves, and chance moves

An extensive game with perfect information, simultaneous moves, and
chance moves 〈N ,Z , P, (Ai (h)){(i ,h):i∈P(h)}, (q h){h:c=P(h)}, (¼i )i∈N 〉 is

• an extensive game with perfect information if P assigns a single player
(member of N ) to every nonterminal history

• an extensive game with perfect information and chance moves if P as-
signs either c (chance) or a single player (member of N ) to every non-
terminal history

• an extensive game with perfect information and simultaneous moves if
P assigns a subset of N to every nonterminal history.

In the first two cases, P(h) is a singleton for all h, and I write P(h) = i rather
than P(h) = {i }. For such games, the set of actions available to each player
when it is her turn to move does not need to be specified explicitly as part
of the description of the game, but instead can be deduced from the set of
terminal histories: if P(h) = {i } (player i moves after the history h) then
the set of actions available to i at h is {a : (h, a )∈H}.

An extensive game with perfect information that has finitely many terminal
histories, each of finite length, may be represented in a diagram. An example is
given in Figure 16.1. In any such diagram, the start of the game is indicated by a
small circle. In this example, the start is located at the top; for some games, it is
conveniently located at another position.

A key concept in the analysis of an extensive game is that of a strategy. The
definition of a strategy is straightforward, but its interpretation is not. For dis-
cussions of the interpretation, see Osborne and Rubinstein (1994, Section 6.1.2),
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BA
1

E

v 3

C

v 1

D

v 2

2
GF

v 4

3

I

v 6

H

v 5

2

Figure 16.1 An example of an extensive game with perfect information. The start of the
game (the empty history) is indicated by the small circle. Each line segment represents
an action. The number near the empty history and the end of each nonterminal history
is the player who moves after that history. The symbols v 1, . . . , v 6 are profiles of payoffs
that represent the players’ preferences over terminal histories.

Osborne (2004, Section 5.2.1), or Osborne and Rubinstein (2020, Section 16.2).

Definition 16.26: Strategy in extensive game with perfect information,
simultaneous moves, and chance moves

Let 〈N ,Z , P, (Ai (h)){(i ,h):i∈P(h)}, (q h){h:c=P(h)}, (¼i )i∈N 〉 be an extensive game
with perfect information, simultaneous moves, and chance moves. For any
i ∈N , a strategy of player i is a function that assigns to each history h ∈H
for which i ∈ P(h) a member of Ai (h).

The definition of a Nash equilibrium of an extensive game is the analogue of
the definition for a strategic game: a strategy profile with the property that no
player prefers the terminal history that results from any change in her strategy,
given the other players’ strategies. This notion of equilibrium does not restrict
the actions of players following histories that are inconsistent with the equilib-
rium. The main solution concept for an extensive game with perfect informa-
tion, subgame perfect equilibrium, does restrict these actions: it requires that
each player’s strategy is optimal in the remainder of the game whenever the player
moves, given the other players’ strategies. To define this solution concept, I first
define the subgame following any history to be the part of the game that remains
after the history has occurred.

Definition 16.27: Subgame of extensive game with perfect information,
simultaneous moves, and chance moves

Let 〈N ,Z , P, (Ai (h)){(i ,h):i∈P(h)}, (q h){h:c=P(h)}, (¼i )i∈N 〉 be an extensive game
with perfect information, simultaneous moves, and chance moves. For
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any nonterminal history h ∈ H , the subgame following h is the extensive
game with perfect information, simultaneous moves, and chance moves
with the following components.

Players
The set N .

Terminal histories
The set of all sequences h ′ such that (h, h ′)∈Z .

Player function
The player assigned to each proper subhistory h ′ of a terminal history
is P(h, h ′).

Actions
For all sequences h ′ such that P(h, h ′) ⊆ N , the set of actions of each
player i ∈ P(h, h ′) is Ai (h, h ′).

Chance probabilities
For all sequences h ′ such that P(h, h ′) = c , the probability measure that
determines the action selected by chance after h ′ is q h,h ′ .

Preferences
Each player i ∈ N prefers the lottery l over sequences h ′ such that
(h, h ′) ∈ Z to the lottery l ′ over such sequences if and only if accord-
ing to ¼i she prefers the lottery over Z generated by h followed by l to
the lottery generated by h followed by l ′.

Definition 16.28: Subgame perfect equilibrium of extensive game with
perfect information, simultaneous moves, and chance
moves

A subgame perfect equilibrium of an extensive game with perfect infor-
mation, simultaneous moves, and chance moves 〈N ,Z , P, (Ai (h)){(i ,h):i∈P(h)},
(q h){h:c=P(h)}, (¼i )i∈N 〉 is a strategy profile s ∗ such that for every player i ∈N
and every history h with i ∈ P(h),

L h(s
∗)¼i L h(ri , s ∗−i ) for every strategy ri of player i ,

where for any strategy profile s , L h(s ) is the lottery over Z that assigns to
each terminal history (h, h ′) the probability assigned to h ′ by the lottery
over the terminal histories of the subgame following h that results when
the players follow the prescriptions of s in the subgame.
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A subgame perfect equilibrium of an extensive game with perfect informa-
tion in which every terminal history is finite may be found by using backward
induction. (See Section 16.3 of Osborne and Rubinstein 2020 for a precise de-
scription of this procedure.)

In a subgame perfect equilibrium, for every subgame no player can generate
an outcome in the subgame that she prefers by changing her strategy in the sub-
game. In particular, for every subgame the player who moves first cannot gen-
erate an outcome in the subgame that she prefers by changing her action at the
start of the subgame. This second property is called the one-deviation property.

Definition 16.29: One-deviation property

A strategy profile in an extensive game with perfect information, simulta-
neous moves, and chance moves satisfies the one-deviation property if, for
each player i and each history h after which i moves, i does not prefer
any lottery over terminal histories generated by changing only her action
at the start of the subgame following h, given the other players’ strategies,
to the lottery over terminal histories generated by the strategy profile in the
subgame.

For a game in which the number of players is finite and every terminal his-
tory is finite, a strategy profile is a subgame perfect equilibrium if and only if it
satisfies this property. This result reduces considerably the complexity of check-
ing that a strategy profile is a subgame perfect equilibrium. For a proof of the
result, see Osborne and Rubinstein (1994, Lemma 98.2, Exercise 102.1, and Exer-
cise 103.3).

Proposition 16.7: Subgame perfect equilibrium of finite horizon
extensive game and the one-deviation property

A strategy profile in an extensive game with perfect information, simulta-
neous moves, and chance moves in which the number of players is finite
and every terminal history is finite is a subgame perfect equilibrium if and
only if it satisfies the one-deviation property.

An implication of this result is that for such a game a subgame perfect equi-
librium may be found (if one exists) by using the procedure of backward induc-
tion. We find a Nash equilibrium of the last subgame in each terminal history,
replace the subgame with the outcome of the Nash equilibrium, and then repeat
the process for the resulting game, working back to the start of the game. (For a
precise description of the procedure for a game without simultaneous or chance
moves, see Osborne and Rubinstein 2020, Section 16.3.)
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For a game without simultaneous or chance moves in which the player who
moves at the start of each subgame has an optimal action, the procedure of back-
ward induction generates at least one strategy profile, so that such a game has a
subgame perfect equilibrium. A sufficient condition for each player to have an
optimal action whenever she moves is that her preferences are represented by
a payoff function that takes finitely many values, implying the next result. (A
stronger condition is that the number of terminal histories is finite.)

Proposition 16.8: Existence of subgame perfect equilibrium for finite
extensive game

Every extensive game with perfect information in which the number of
players is finite, every terminal history is finite, and every player’s prefer-
ence relation is represented by a payoff function that takes finitely many
values has a subgame perfect equilibrium.

A version of Proposition 16.7 holds for games in which the terminal histories
are not finite, but for every player the difference between the payoffs of pairs
of terminal histories whose first t components coincide converges to zero as t
increases without bound. For a proof of this result see Theorem 4.2 of Fudenberg
and Tirole (1991, 110).

Proposition 16.9: Subgame perfect equilibrium of extensive game with
perfect information, simultaneous moves, and chance
moves and the one-deviation property

Let G be an extensive game with perfect information, simultaneous moves,
and chance moves in which the set of players is finite. Denote the set of
terminal histories by Z and suppose that the preferences of each player i
over lotteries over Z are represented by the expected value of a function u i

for which
lim
t→∞

sup
h,h̃∈Z

{|u i (h)−u i (h̃)| : ht = h̃t }= 0,

where for any terminal history h, ht consists of the first t components of
h. A strategy profile in G is a subgame perfect equilibrium if and only if it
satisfies the one-deviation property.

16.6.2 Bayesian extensive game with observable actions

An extensive game with perfect information, simultaneous moves, and chance
moves models a situation in which each player knows the structure of the inter-
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action (who moves when, and which actions they can choose) and all players’
characteristics. A Bayesian extensive game with observable actions models a sit-
uation in which each player knows the structure of the interaction but does not
know the other players’ characteristics. For each player i there is a set Θi of pos-
sible types and a probability measure pi over this set. The probability measures
(pi )i∈N are independent; the profile of the players’ types is drawn according to
these measures. Each player knows her own type, but not the type of any other
individual. The type profile θ ∈×j∈NΘj determines each player’s payoff function
over terminal histories. We can think of the game as one in which chance first
determines a type profile, then the players engage in an extensive game with per-
fect information and simultaneous moves in which the payoffs are determined
by the type profile.

Definition 16.30: Bayesian extensive game with observable actions

A Bayesian extensive game with observable actions 〈N ,Z , P, (Ai (h)){(i ,h):i∈P(h)},
(Θi )i∈N , (pi )i∈N , (u i )i∈N 〉 consists of

players
a set N

terminal histories
a set Z of sequences with the property that no member of Z is a proper
subhistory of any other member of Z ; the set of all subhistories of mem-
bers of Z , proper or not, is the set H of histories, and H \Z is the set of
nonterminal histories

player function
a function P that assigns a subset of N to every nonterminal history

and for each player i ∈N

actions
for each nonterminal history h a set Ai (h) (the set of actions available
to player i after the history h)

types
a set Θi

probabilities
a probability measure pi on Θi with pi (θi ) > 0 for all θi ∈ Θi (pi (θi ) is
the probability that i ’s type is θi )

payoff function
u i :Θ×Z →R, a Bernoulli function over pairs consisting of a profile of
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Figure 16.2 An example of an extensive game with imperfect information. The dotted
line indicates that the histories A and B are in the same information set; when player 2
moves, she does not know whether player 1 chose A or B at the start of the game.

types and a terminal history (the expected value of u i (θ , h) represents
i ’s preferences on the set of lotteries over Θ×Z )

such that the measures (pi )i∈N are independent and the set H of histories,
player function P , and sets (Ai (h)){(i ,h):i∈P(h)} of actions are consistent in the
sense that for every (nonterminal) history h ∈ H \Z we have {a : (h, a ) ∈
H}=×i∈P(h)Ai (h).

A strategy of each player i in a Bayesian extensive game with observable ac-
tions specifies, for each type θi ∈ Θi , a strategy for i in the extensive game with
perfect information and simultaneous moves. That is, a strategy of player i is a
function that associates with each type θi ∈ Θi a function that assigns to each
history h ∈H for which i ∈ P(h) a member of Ai (h). A notion of equilibrium may
be defined for a general Bayesian extensive game with observable actions (see
Definition 232.1 in Osborne and Rubinstein 1994), but for the specific model I
analyze (see Definition 8.7) a simpler notion, which I specify in Definition 8.8,
suffices.

16.6.3 Extensive game with imperfect information

An extensive game with imperfect information allows for the possibility that each
player, when choosing an action, does not know the actions chosen previously
by the other players. This lack of information is modeled by assuming that each
player i , when choosing an action, knows only that the history is a member of
some set Ii , called an information set. We assume that following every history in
a given information set, the set of actions available to the player who moves is
the same, so that the set of actions she faces gives her no information about the
history that has led to the information set. In a diagrammatic representation of a
game, I connect the ends of all the histories in each information set with a dotted
line, as in Figure 16.2.
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Definition 16.31: Extensive game with imperfect information

An extensive game with imperfect information 〈N ,Z , P, (q h){h:c=P(h)}, (Ii )i∈N ,
(¼i )i∈N 〉 consists of

players
a set N

terminal histories
a set Z of sequences with the property that no member of Z is a proper
subhistory of any other member of Z ; the set of all subhistories of mem-
bers of Z , proper or not, is the set H of histories, H \Z is the set of non-
terminal histories, and for any nonterminal history h, the set of actions
available following h is A(h) = {a : (h, a )∈H}

player function
a function P that assigns either c (chance) or a member of N to every
nonterminal history

chance probabilities
for each nonterminal history h for which P(h) = c , a probability mea-
sure q h on Ac (h) = {a : (h, a ) ∈ H}, with each such measure indepen-
dent of every other such measure (q h(a ) is the probability with which
chance selects a after the history h)

information partitions
for each player i ∈ N a partition Ii of {h ∈H : P(h) = i } with the prop-
erty that for any Ii ∈ Ii , A(h) = A(h ′) whenever h ∈ Ii and h ′ ∈ Ii ;
the common value of A(h) for all h ∈ Ii is denoted A(Ii ) (Ii is the in-
formation partition of player i , and a member of Ii is an information
set)

preferences
for each player i ∈N a preference relation ¼i on the set of lotteries over
the set Z of terminal histories.

The solution concept I use for an extensive game with imperfect informa-
tion allows for the possibility that players’ actions are probabilistic. Specifically,
a behavioral strategy assigns to each of a player’s information sets a probabil-
ity distribution over the set of actions available at that information set, with the
probability distribution for each information set independent of the probability
distribution for all of the player’s other information sets.
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Definition 16.32: Behavioral strategy in extensive game with imperfect
information

A behavioral strategy of player i ∈ N in an extensive game with imperfect
information 〈N ,Z , P, (q h){h:c=P(h)}, (Ii )i∈N , (¼i )i∈N 〉 is a function that assigns
to each of i ’s information sets Ii ∈ Ii a probability distribution over the
actions in A(Ii ), with the property that the probability distribution for any
given information set Ii of player i is independent of the distributions for
all her other information sets.

We assume that each player’s choice at each of her information sets is based
on her belief about the history in the information set that has occurred. For an
information set reached with positive probability given the strategy profile, this
belief may be derived from the strategy profile via Bayes’ law, but the same is not
true for an information set reached with probability zero given the strategy pro-
file. We finesse this issue by making each player’s belief part of the equilibrium,
with the requirement that for information sets reached with positive probability
given the strategy profile, the probability assigned by the belief to each history in
the information set is the one derived from the strategy profile using Bayes’ law.

Definition 16.33: Belief system

A belief system in an extensive game with imperfect information is a func-
tion that assigns to each information set a probability distribution over the
histories in that information set.

Definition 16.34: Assessment

An assessment in an extensive game with imperfect information is a pair
consisting of a profile of behavioral strategies and a belief system.

The solution concept that I use imposes two conditions on an assessment.
First, for each information set of each player, the player’s strategy is required to
be optimal in the part of the game that follows the information set, given the
strategy profile and the player’s belief regarding the history that has occurred.
Second, for each information set reached with positive probability given the strat-
egy profile, the belief system is required to assign to each history in the informa-
tion set the probability that the history occurs conditional on the information
set’s being reached, given the strategy profile. This requirement is called weak
consistency of beliefs with strategies; the word “weak” honors the fact that the re-
quirement puts no restriction on the probabilities assigned by the belief system
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to histories in information sets that are not reached if the players adhere to the
strategy profile. The solution concept is called weak sequential equilibrium; the
concept of sequential equilibrium, which I do not use in this book, imposes an
additional condition on an assessment. (The notion of weak sequential equilib-
rium is sometimes called weak perfect Bayesian equilibrium, although no related
notion of perfect Bayesian equilibrium is defined for the class of all extensive
games with imperfect information.)

Definition 16.35: Weak sequential equilibrium

An assessment (β ,µ) in an extensive game with imperfect information
〈N ,Z , P, (q h){h:c=P(h)}, (Ii )i∈N , (¼i )i∈N 〉, where β is a behavioral strategy pro-
file and µ is a belief system, is a weak sequential equilibrium if it satisfies
the following two conditions.

Sequential rationality
For each player i ∈N and each information set Ii ∈Ii ,

OIi (β ,µ)¼i OIi ((γi ,β−i ),µ) for each behavioral strategy γi of player i ,

where for any profileσ of behavioral strategies OIi (σ,µ) is the probabil-
ity distribution over terminal histories conditional on play reaching Ii ,
givenσ and µ.

Weak consistency of beliefs with strategies
For each player i ∈ N and every information set Ii ∈ Ii reached with
positive probability given the strategy profile β , the probability as-
signed by the belief system µ to each history h∗ ∈ Ii is

Pr(h∗ according to β )
∑

h∈Ii
Pr(h according to β )

.

16.7 Coalitional games

A coalitional game with transferable payoff models a situation in which each
group of players can obtain a certain total payoff, independently of the behav-
ior of the remaining players, and payoff may be distributed in any way among
the players. A subset of the set of players is called a coalition, and the total payoff
available to it is called its worth. I restrict attention to games in which the set of
players is finite.
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Definition 16.36: Coalitional game with transferable payoff

A coalitional game with transferable payoff 〈N , v 〉 consists of a finite set
N (of players) and a function v that assigns a real number v (S) (the worth
of S) to every nonempty subset S of N (coalition). A payoff profile for the
game is a profile (xi )i∈N of real numbers; it is feasible if

∑
i∈N xi = v (N ).

16.7.1 Core

One solution concept for coalitional games with transferable payoff is the core,
the set of feasible payoff profiles with the property that no coalition can by itself
make all its members better off.

Definition 16.37: Core of coalitional game with transferable payoff

Let 〈N , v 〉 be a coalitional game with transferable payoff. A coalition S can
improve upon the payoff profile (xi )i∈N if

∑
i∈S xi < v (S). The core of 〈N , v 〉

is the set of feasible payoff profiles upon which no coalition can improve.

The core of a coalitional game with transferable payoff may be empty. For
example, the game 〈N , v 〉 with N = {1,2,3}, v ({1, 2,3}) = v ({1,2}) = v ({1, 3}) =
v ({2,3}) = 1, and v ({1}) = v ({2}) = v ({3}) = 0 (in which a majority rules) has an
empty core: for each player i ∈ N , the coalition N \ {i } can improve upon any
feasible payoff profile (xi )i∈N with xi > 0.

16.7.2 Shapley value

Another solution concept for coalitional games with transferable payoff is the
Shapley value (due to Lloyd S. Shapley, 1923–2016). Unlike the core, the Shapley
value assigns a single payoff profile to every game. I first define a value to be a
solution of this type.

Definition 16.38: Value of coalitional game with transferable payoff

A value for coalitional games with transferable payoff is a function that
associates with every such game a unique feasible payoff profile.

The Shapley value assigns to each player the average of the amount by which
the player’s presence increases the worth of the coalition that precedes her in a
random ordering of the players.
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Definition 16.39: Shapley value of coalitional game with transferable
payoff

Let 〈N , v 〉 be a coalitional game with transferable payoff and let n be the
number of members of N . The Shapley value assigns to 〈N , v 〉 the payoff
profile (xi )i∈N for which

xi =
1

n !

∑

R∈R

(v (SR
i ∪{i })− v (SR

i )) for each i ∈N , (16.3)

where R is the set of all n ! orderings of N , SR
i is the set of players who

precede i in the ordering R , and v (∅) = 0.

The Shapley value satisfies the following properties, and is the only value that
does so.

Definition 16.40: Properties of value of coalitional game with
transferable payoff

A valueψ for coalitional games with transferable payoff is

symmetric
if for every game 〈N , v 〉 and players i ∈ N and j ∈ N for which
v (S ∪{i }) = v (S ∪{j }) for every coalition S that includes neither i nor
j we haveψi (N , v ) =ψj (N , v )

null-consistent
if for every game 〈N , v 〉 and player i ∈ N for which v (S ∪ {i }) = v (S) for
every coalition S of which i is not a member we haveψi (N , v ) = 0

additive
if for all games 〈N , v 〉 and 〈N , v ′〉,ψi (N , w ) =ψi (N , v )+ψi (N , v ′) for all
i ∈N , where 〈N , w 〉 is the game defined by w (S) = v (S)+ v ′(S) for every
coalition S.

Proposition 16.10: Axiomatic characterization of Shapley value

Let N be a finite set. The Shapley value is the only value for coalitional
games with transferable payoff with player set N that is symmetric, null-
consistent, and additive.

For a proof of this result, see Osborne and Rubinstein (1994, Proposition 293.1).
Suppose that the players’ payoffs in a coalitional game with transferable pay-

off 〈N , v 〉 are determined by the value ψ. If player i leaves the game, the pay-



16.7 Coalitional games 561

off of any player j 6= i changes from ψj (N , v ) to ψj (N \ {i }, v N \{i }), where v N \{i }

is the restriction of v to coalitions in N \ {i }: v N \{i }(S) = v (S) for all nonempty
S ⊆ N \ {i }. That is, ψj (N , v )−ψj (N \ {i }, v N \{i }) is the amount j loses when i
departs. The Shapley value has the property that this amount is the same for
all players i and j , and is the only value with this property. One motivation
for the property is that for every objection of a certain type by one player to the
payoff profile there is a valid counterobjection by another player (Osborne and
Rubinstein 1994, 290–291).

Proposition 16.11: Characterization of Shapley value in terms of
balanced contributions

The Shapley value is the only value for coalitional games with transferable
payoff that satisfies the condition

ψi (N , v )−ψi (N \ {j }, v N \{j }) =ψj (N , v )−ψj (N \ {i }, v N \{i })

for every coalitional game 〈N , v 〉 and all i ∈N and j ∈N .

For a proof of this result, see Osborne and Rubinstein (1994, Proposition 291.3).
The following result is used in the proof of Proposition 11.3.

Lemma 16.1: Shapley value of dual of coalitional game with
transferable payoff

Let 〈N , v 〉 be a coalitional game with transferable payoff and let v #(S) =
v (N )−v (N \S) for each subset S of N . The Shapley value assigns the same
payoff profile to 〈N , v #〉 as it does to 〈N , v 〉.

Proof

Let R be an ordering of N , let R ′ be the reverse ordering, and let i ∈ N .
Then the set of individuals who come before i in R ′ is the set of individuals
who come after i in R : SR ′

i =N \ (SR
i ∪{i }). Thus

v #(SR ′

i ∪{i })− v #(SR ′

i ) = (v (N )− v (N \ (SR
i ∪{i })))− (v (N )− v (N \SR

i ))

= v (N \SR
i )− v (N \ (SR

i ∪{i }))

= v (SR
i ∪{i })− v (SR

i ).

Hence by (16.3) i ’s payoff in the Shapley value of 〈N , v #〉 is equal to her
payoff in the Shapley value of 〈N , v 〉.
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16.8 Optimization

The results in this section are used in Propositions 8.8 and 11.1.

Proposition 16.12: Necessary conditions for solution of unconstrained
optimization problem

Let S ⊆ Rn and let f : S → R. If the point x ∗ in the interior of S is a local
maximizer or minimizer of f and the partial derivative of f with respect to
its j th argument exists at x then f ′j (x

∗) = 0. In particular, if all the partial
derivatives of f exist at x ∗ then

f ′i (x
∗) = 0 for i = 1, . . . , n .

For a proof, see Sydsæter (1981, Theorem 5.7).

Proposition 16.13: Conditions under which first-order conditions are
necessary and sufficient for solution of
unconstrained optimization problem

Let S ⊆Rn be convex and let f : S→R be differentiable.

• If f is concave then a point x ∗ in the interior of S is a (global) maximizer
of f in S if and only if it is a stationary point of f (i.e. f ′i (x

∗) = 0 for
i = 1, . . . , n).

• If f is convex then a point x ∗ in the interior of S is a (global) minimizer
of f in S if and only if it is a stationary point of f (i.e. f ′i (x

∗) = 0 for
i = 1, . . . , n).

For a proof, see Sydsæter (1981, Theorem 5.18). (Sydsæter’s result assumes
that f is continuously differentiable, but that assumption is unnecessary be-
cause every differentiable concave or convex function is continuously differen-
tiable by Rockafellar 1970, Corollary 25.5.1.)

Proposition 16.14: Necessary conditions for solution of optimization
problem with equality constraint

Let S ⊆ Rn , let f : S → R and g : S → R be continuously differentiable, let
c ∈R, and let x ∗ be an interior point of S that solves the problem

max
x∈S

f (x ) subject to g (x ) = c
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or the problem
min

x∈S
f (x ) subject to g (x ) = c

or is a local maximizer or minimizer of f (x ) subject to g (x ) = c . Suppose
also that g ′i (x

∗) 6= 0 for some i ∈ {1, . . . , n}.
Then there is a unique number λ such that

f ′i (x
∗)−λg ′i (x

∗) = 0 for i = 1, . . . , n .

In addition, g (x ∗) = c .

For a proof of a more general result (for problems with many constraints), see
Sydsæter (1981, Theorem 5.20).

Proposition 16.15: Conditions under which first-order conditions are
sufficient for solution of optimization problem with
equality constraint

Let S ⊆Rn be open and convex, let f : S→R and g : S→R be differentiable,
and let c ∈ R. Suppose that there exists a number λ and an interior point
x ∗ of S such that

f ′i (x
∗)−λg ′i (x

∗) = 0 for i = 1, . . . , n .

Suppose further that g (x ∗) = c .
Define the functionL : S→R by

L (x ) = f (x )−λ(g (x )− c ) for all x ∈S.

• IfL is concave—in particular if f is concave and λg is convex—then
x ∗ solves the problem maxx∈S f (x ) subject to g (x ) = c .

• IfL is convex—in particular if f is convex and λg is concave—then x ∗

solves the problem minx∈S f (x ) subject to g (x ) = c .

For a proof of a more general result (for problems with many constraints), see
Sydsæter (1981, Theorem 5.21).
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