
Manual for egameps.sty
Version 1.12, June 2020

by
Martin J. Osborne

martin.j.osborne@gmail.com
Revised 2020-6-15

1. Introduction

egameps.sty is a LATEX2e style file for drawing extensive games. It is intended to
have the capability of drawing any extensive game. The latest version is available
at http://www.economics.utoronto.ca/osborne/latex/.

The style requires the PSTricks package (available on CTAN; documented in
The LATEX Graphics Companion). For this reason it is incompatible with pdftex.
By far the easiest editor to use to edit files using the package is BaKoMa TeX Word.
Not only does that editor allow you to view the code and output simultaneously
(vastly reducing the amount of time it takes to create a game), but it also makes
the creation of a pdf file trivial: you simply choose File → Export→ PDF. If you
use some other editor, you will need to create a dvi, then use dvips to create a
Postscript file, and finally use Ghostscript to create a pdf file from the Postscript.1

Another alternative is to use the pdftricks package to finesse the limitation of
pdftex; see Section 14.

2. Installation

• Put egameps.sty in a directory from which TEX reads input files. (Maybe
a subdirectory of \localtexmf\tex\latex, or something similar.)

• Let your TEX processor know that egameps has arrived. (In BaKoMa, Op-
tions → Common Settings → Directories, then select directory and “Re-
build” it. In MiKTeX, “refresh the filename database”.)

• If your editor doesn’t get missing packages automatically from CTAN, get
PSTricks manually.

1If you put each figure in a separate document, you can make an encapsulated pdf file of
each figure (taking the dvi→ ps→ pdf route) and include these files in your master document
using the includegraphics command of the graphicx package. Your master document can
then be processed using pdftex. For details, see https://www.economics.utoronto.ca/
osborne/latex/FIGURES.HTM .

1

https://www.economics.utoronto.ca/osborne/latex/FIGURES.HTM
https://www.economics.utoronto.ca/osborne/latex/FIGURES.HTM
http://www.economics.utoronto.ca/osborne/latex/


• To use the package in a document, put the line
\usepackage{egameps}
in the preamble.

The package loads the packages pst-3d (used for the macro \ctmbarc)
and pst-arrow (which you may wish to use to put arrows on branches—
see Section 7).

3. Using the style

To draw a game using the style, first break the game into components, each con-
sisting of a node together with the branches that emanate from it, the names
with which the actions are labeled, and the players’ payoffs if the nodes at the
end of the branches are terminal. To draw each component, calls to two macros
are needed. First \putbranch is called, which sets the position of the node and
the slope and length of the branch(es), then either \ib, \iib, or \iiib. The
macro \ib draws a single branch, \iib draws two branches, and \iiib draws
three branches. If the node has more than three branches, calls to a combination
of these macros are needed.

A game is begun by a call of the type
\begin{egame}(400,500)

which starts a pspicture with dimensions (400,500) and the unitlength equal
to the default of 0.1mm, or

\begin{egame}(400,500)[1mm]
which starts a pspicture, with dimensions (400,500) and sets the unitlength at
1mm.

The next section gives examples that illustrate many of the features of the
package. Precise descriptions of the macros are given in Section 5.

4. Examples

The game in Figure 1 is produced by the following code.

\begin{figure}[htb]
\hspace*{\fill}
\begin{egame}(600,280)
%
% put the initial branch at (300,240), with (x,y) direction
% (2,1), and horizontal length 200
\putbranch(300,240)(2,1){200}

2



%
% give the branch two actions, label it for player 1,
% and label the actions \(L\) and \(R\)
\iib{1}{\(L\)}{\(R\)}
%
% put a branch at (100,140), with (x,y) direction
% (1,1) and horizontal length 100
\putbranch(100,140)(1,1){100}
%
% improve the placement of the action labels
\egalhshift=20
% give the branch two actions, omit a player label,
% label the actions \(a\) and \(b\), and assign the payoffs
% \(1,0\) and \(2,3\) to these actions
\iib{}{\(a\)}{\(b\)}[\(1,0\)][\(2,3\)]
%
% put a branch at (500,140), with (x,y) direction (1,1)
% and horizontal length 100
\putbranch(500,140)(1,1){100}
%
% improve the placement of the action labels
\egalhshift=20
% give the branch two actions, omit a player label,
% label the actions \(c\) and \(d\), and assign the payoffs
% \(0,1\) and \(-1,0\) to these actions
\iib{}{\(c\)}{\(\)d\)}[\(0,1\)][\(-1,0\)]
%
% draw an information set between the nodes at (100,140)
% and (500,140)
\infoset(100,140){400}{2}
%
\end{egame}
\hspace*{\fill}
\caption[]{An extensive game}\label{f:one}
\end{figure}

Another example, illustrating more features, is produced by the following
code, and is shown in Figure 2.

\begin{figure}[htb]

3



RL

1

b

2,3

a

1,0

d

−1,0

c

0,1

2

Figure 1. An extensive game

\hspace*{\fill}
%
% fill boxes containing payoffs with a solid red color
\renewcommand{\egpayboxfillstyle}{solid}
\renewcommand{\egpayboxfillcolor}{red}
% add a bit of separation around the payoffs
\egpayoffboxsep=1mm
%
% fill boxes containing action labels with a solid blue color
\renewcommand{\egalboxfillstyle}{solid}
\renewcommand{\egalboxfillcolor}{yellow}
\egactionboxsep=1mm
%
% put player labels in green circles
\renewcommand{\egplbox}{c}
\renewcommand{\egplboxlinestyle}{solid}
\renewcommand{\egplboxlinecolor}{green}
\egplayerboxsep=1mm
%
\begin{egame}(500,280)
%
% put the initial branch at (300,240), with (x,y) direction
% (2,1), and horizontal length 200
\putbranch(300,240)(2,1){200}
%
% give the branch three actions, label it for player 1,
% label the actions \(L\), \(M\), and \(R\), and make the middle
% and right actions terminal, with payoffs \(1,2\) and \(0,1\)
\iiib{1}{\(L\)}{\(M\)}{\(R\)}[][\(1,2\)][\(0,1\)]
%
% put a branch at (100,140), with (x,y) direction

4



% (1,1) and horizontal length 100
\putbranch(100,140)(1,1){100}
%
% give the branch two actions, make the left-hand one dashed,
% label the branch for player 2, putting
% the player label to the top left of the node,
% label the actions \(a\) and \(b\), and assign the payoffs
% \(1,0\) and \(2,3\) to these actions
\iib[linestyle=dashed][]{2}[l]{\(a\)}{\(b\)}[\(1,0\)][\)2,3\(]
%
\end{egame}
\hspace*{\fill}
\caption[]{Another extensive game}\label{f:two}
\end{figure}

R

0,1

L
M

1,2

1

b

2,3

a

1,0

2

Figure 2. Another extensive game

Yet another example, illustrating still more features, is produced by the fol-
lowing code, and is shown in Figure 3.

\begin{figure}[htb]
\hspace*{\fill}
%
\begin{egame}(600,480)
%
% put the initial branch at (300,240), with (x,y) direction
% (1,0), and horizontal length 200
\putbranch(300,240)(1,0){200}
%
% give the branch two actions, label it for player \(c\),
% and label the actions \(\frac{1}{2}\) and \(\frac{1}{2}\)
\iib{\(c\)}{\(\frac{1}{2}\)}{\(\frac{1}{2}\)}

5



%
% put a branch at (100,240), with (x,y) direction
% (0,1), going right, and vertical length 100. (Notes: If the
% branch were specified as going left, it would look the same,
% but the player label would be in the wrong place. The
% third mandatory argument of \putbranch is the horizontal
% distance unless the branch is vertical, in which case it is
% the vertical distance.)
\putbranch(100,240)(0,1)[r]{100}
%
% give the branch two actions, label it for player 1,
% and label the actions \(a\) and \(b\)
\iib{1}{\(a\)}{\(b\)}
%
% put a branch at (500,240), with (x,y) direction
% (0,1), going left, and vertical length 100.
\putbranch(500,240)(0,1)[l]{100}
%
% give the branch two actions, label it for player 1,
% and label the actions \(b\) and \(a\)
\iib{1}{\(b\)}{\(a\)}
%
% put an information set at (100,340), of length 400,
% assigned to player 2
\infoset(100,340){400}{2}
%
% put an information set at (100,140), of length 400,
% assigned to player 2
\infoset(100,140){400}{2}
%
% put a branch at (100,340), with (x,y) direction
% (1,1), going up, and horizontal length 100.
\putbranch(100,340)(1,1)[u]{100}
%
% specify a positive horizontal shift for the action labels,
% which slides the ones on the right-hand branches to the
% right along the branches and the ones on the left to the
% left, improving the label positions
\egalhshift=20
%

6



% give the branch two actions, give it no player label,
% label the actions \(L\) and \(R\), and put payoffs of
% \(-1,0\) and \(0,-1\).
\iib{}{\(L\)}{\(R\)}[\(-1,0\)][\(0,-1\)]
%
% put a branch at (500,340), with (x,y) direction
% (1,1), going up, and horizontal length 100.
\putbranch(500,340)(1,1)[u]{100}
%
\egalhshift=20
%
% give the branch two actions, give it no player label,
% label the actions \(L\) and \(R\), and put payoffs of
% \(1,0\) and \(0,1\).
\iib{}{\(L\)}{\(R\)}[\(1,0\)][\(0,1\)]
%
% put a branch at (100,140), with (x,y) direction
% (1,1), going down, and horizontal length 100.
\putbranch(100,140)(1,1)[d]{100}
%
\egalhshift=20
%
% give the branch two actions, give it no player label,
% label the actions \(L\) and \(R\), and put payoffs of
% \(2,0\) and \(0,2\).
\iib{}{\(L\)}{\(R\)}[\(1,0\)][\(0,1\)]
%
% put a branch at (500,140), with (x,y) direction
% (1,1), going down, and horizontal length 100.
\putbranch(500,140)(1,1)[d]{100}
%
\egalhshift=20
%
% give the branch two actions, give it no player label,
% label the actions \(L\) and \(R\), and put payoffs of
% \(3,0\) and \(0,3\).
\iib{}{\(L\)}{\(R\)}[\(1,0\)][\(0,1\)]
%
\end{egame}
\hspace*{\fill}

7



\caption[]{Yet another extensive game}\label{f:three}
\end{figure}

1
2

1
2 c

b

a

1
a

b
1

2

2

R

0,−1

L

−1,0

R

0,1

L

1,0

R

0,2

L

2,0

R

0,3

L

3,0

Figure 3. Yet another extensive game

The next example, shown in Figure 4, shows how to combine calls to \iib to
draw nodes followed by four branches.

\begin{figure}[htb]
\hspace*{\fill}
\begin{egame}(1200,380)
%
% put an initial node at (700,340), with (x,y) direction
% (3,1), and horizontal length 600
\putbranch(700,340)(3,1){600}
%
% give the branch two actions, label it for player \(1\),
% label the actions \(A\) and \(D\), and make the right-
% hand node terminal, with payoffs \(0,1\).
\iib[linecolor=red][]{\(1\)}{\(A\)}{\(D\)}[][\(0,1\)]
%
% to add two more branches to the initial node, force
% the branch to be initial
\initialtrue
% and specify the direction (1,1) and the horizontal length 200
\putbranch(700,340)(1,1){200}
%
% tighten the spacing between labels and branches, to improve

8



% appearance (given the other branches)
\egactionlabelsep=0.5mm
% give the branch two actions and label the actions \(B\) and \(C\)
% \iib{}{\(B\)}{\(C\)}
%
% reset default spacing
\egactionlabelsep=1mm
% put a branch at (100,140), with direction (1,1)
% and horizontal length 100.
\putbranch(100,140)(1,1){100}
%
% give the branch two actions, omit a player label,
% label the actions \(a\) and \(b\), and put payoffs
\iib[][linecolor=red]{}{\(a\)}{\(b\)}[\(2,1\)][\(4,0\)]
%
% put a branch at (500,140), with direction (1,1)
% and horizontal length 100.
\putbranch(500,140)(1,1){100}
%
% give the branch two actions, omit a player label,
% label the actions \(a\) and \(b\), and put payoffs
\iib[][linecolor=red]{}{\(a\)}{\(b\)}[\(1,3\)][\(-1,0\)]
%
% put a branch at (900,140), with direction (1,1)
% and horizontal length 100.
\putbranch(900,140)(1,1){100}
%
% give the branch two actions, omit a player label,
% label the actions \(a\) and \(b\), and put payoffs
\iib[][linecolor=red]{}{\(a\)}{\(b\)}[\(-1,0\)][\(2,1\)]
%
% put an information set at (100,140), of length 800,
% assigned to player 2
\infoset(100,140){800}{2}
%
\end{egame}
\hspace*{\fill}
\caption[]{Yet another extensive game}\label{f:four}
\end{figure}

9



D

0,1

A

1

CB

b

4,0

a

2,1

b

−1,0

a

1,3

b

2,1

a

−1,0

2

Figure 4. Yet another extensive game

5. Description of macros

\begin{egame}(width,height)[unitlength]
begins an extensive game of width width and height height and optionally sets
the unitlength to be unitlength (default 0.1mm). In the game, all distances are
given as integers, which are interpreted as multiples of the unitlength. These
integers should (probably) be divisible by two, so that the integer arithmetic em-
ployed by TEX doesn’t lose accuracy when numbers are divided by two. I have
tested the macros thoroughly only with the default unitlength of 0.1mm; unless
there is a compelling reason to use some different unitlength, I suggest sticking
to 0.1mm. (\begin{egame}(w,h) starts a pspicture environment (defined by
PSTricks) of width w and height h.)

Permissible values:

width, height Any pair of integers. (You need to calculate these numbers.)

unitlength Any dimension. Default: 0.1mm.

\end{egame}
ends an extensive game.

\putbranch(x-coord,y-coord)(h-incr,v-incr)[direction]{length}
sets up the parameters for a branch at the point (x-coord,y-coord), with direction
parameter (h-incr,v-incr), optional direction direction, and length length. Note
that this macro merely sets up the parameters for a call to \ib (one branch), \iib
(two branches), \iiib (three branches), or \ctmb (continuum of branches); it
does not draw anything. The way in which the direction parameter (h-incr,v-
incr) is interpreted depends on whether \ib, \iib, or \iiib is used to draw
the branches. The length is the horizontal distance between the ends of one of

10



the branches to be drawn, unless h-incr is 0, in which case length is the vertical
distance between the ends of one of the branches.

Permissible values:

(x-coord,y-coord) Any pair of integers.

(h-incr,v-incr) Any pair of integers except (0,0).

direction d (down), u (up), r (right), or l (left); default d. (The direction can be
changed also globally, by specifying \egdirection{direction} before the
call to \putbranch.)

length Any positive integer.

\ib[branchstyle]{player-name}[player-label-position]{action-label}
[action-label-position][payoffs]
puts a single branch with the parameters of the preceding call to \putbranch,
optionally using the PSTricks style branchstyle, assigns it the player name player-
name, optionally positions the player label relative to the node according to
player-label-position, labels the action action-label, optionally positions the la-
bel according to player-label-position, and optionally adds the payoffs payoffs.
A single optional argument at the end is interpreted as follows: if its value is o
(outside), i (inside), or c (centered), it determines the position of the action la-
bel; otherwise, it is a payoff label. If there are two optional arguments, the first
must be o (outside), i (inside), or c (centered), determining the position of the
action label, and the second is a payoff label. (If you do not want an optional
positioning argument and you want your payoff label to be “o”, “i”, or “c”, here’s
a workaround: put the label in an hbox, as in \hbox{o}. (Note that you do not
need to do this if your payoff label is \(o\), etc.—only if it is just “o”.)

The first branch in any egame is taken to be the initial branch of the game;
its beginning node is indicated by \eginode, the default of which is a small
circle. Subsequent branches are taken to be noninitial, and are indicated by
\egnode, the default value of which is a small disk. To force a node to be ini-
tial, specify \initialtrue before it; to force a node to be noninitial, specify
\initialfalse before it. To change the appearance of nodes, see Section 8.

Permissible values:

branchstyle Any PSTricks linestyle (e.g. linecolor=red, linestyle=dashed,
linewidth=2pt, doubleline=true).

Default: linecolor=black, linestyle=solid, linewidth=0.8pt.

11



player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection
or by an optional argument of \putbranch) is d or u, either l
(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right and
up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

action-label Any character string.

action-label-position o (outside), i (inside), or c (centered on branch).

Default: o. (For more on action label positioning, see Section 6.)

payoffs Any character string.

Examples:

\putbranch(0,100)(2,-1){200}
\ib{1}{\(x\)}

x

1

200

Note that in the following example the 1 in the direction pair (0,1) is inter-
preted as sending the branch down, given that the \egdirection is d. (That is,
once you specify the \egdirection (or leave it at the default d) you do not need
to worry about getting the sign of the v-incr correct (if the direction is d or u) or
the sign of the h-incr correct (if the direction is l or r).

\putbranch(0,100)(0,1){100}
\ib[linecolor=gray]{1}[l]{\(x\)}[c]

x

1

100

12



\initialfalse
\putbranch(0,40)(1,1)[u]{100}
\ib{1}{\(x\)}[\(0,2\)]

x

0,2

1

Notice that the optional direction specifier u in \putbranch affects not only
the direction of the branch (which is determined by the argument (1,1)), but
also the placement of the player label relative to the starting node.

\initialfalse
\putbranch(0,100)(1,1){100}
\ib{1}[l]{\(x\)}[i][\(0,2\)]

x

0,2

1

\iib[style1][style2]{player-name}[player-label-position]{action-label1}
{action-label2}[action-label-position][payoffs1][payoffs2]
puts two branches with the parameters of the preceding call to \putbranch, op-
tionally using the PSTricks style branchstyle1 for the left or upper branch and
the style branchstyle2 for the other branch (or branchstyle1 for both branches, if
there is only one optional argument), assigns it the player name player-name, op-
tionally positions the player label relative to the node according to player-label-
position, labels the left/upper action with action-label1 and the right/lower ac-
tion with action-label2, optionally using the position action-label-position, and
optionally adds payoffs payoffs1 and payoffs2. The signs of the direction parame-
ters (h-incr,v-incr) in the preceding \putbranch call are ignored; the directions
of the branches is determined by the direction of the branch (as specified either
by \egdirection or by the optional argument of \putbranch). If, for example,
the direction is d, then one branch goes down and to the left and the other goes
down and to the right.

The first branch in any egame is taken to be the initial branch of the game;
its beginning node is indicated by \eginode. Subsequent branches are taken

13



to be non-initial, and are indicated by \egnode. To force a node to be ini-
tial, specify \initialtrue before it; to force a node to be noninitial, specify
\initialfalse before it.

Permissible values:

style1, style2 Any PSTricks line styles; see \ib. If there is only one style present,
it is applied to both branches. If there are two styles, the first is applied to
the right hand branch and the second to the left hand branch if the game
direction is up or down, and the first is applied to the lower branch and the
second to the upper branch if the game direction is left or right.

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection
or by an optional argument of \putbranch) is d or u, either l
(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right and
up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

action-label1 and action-label2 Any character strings.

action-label-position o (outside), i (inside), or c (centered). Default: o.

payoffs1 and payoffs2 Any character strings.

Examples:
Action labels “outside” (default):

\putbranch(100,140)(1,1){100}
\iib[linestyle=dashed]{1}{\(L\)}{\(R\)}

RL

1

100

Action labels “inside”:

14



\putbranch(100,140)(1,1){100}
\iib[linestyle=dashed]{1}{\(L\)}{\(R\)}[i]

RL

1

Action labels “centered”:

\renewcommand{\egarrowstyle}{e}
\putbranch(0,140)(2,1)[r]{200}
\iib{1}{\(L\)}{\(R\)}[c]

R

L
1

200

\renewcommand{\egarrowstyle}{e}
\putbranch(0,100)(1,1)[r]{100}
\iib[linecolor=gray][doubleline=true]{1}{\(L\)}{\(R\)}[\(1,2\)][\(0,-1\)]

R
0,−1

L

1,2

1

\renewcommand{\egarrowstyle}{m}
\psset{arrowscale=2}
\putbranch(200,40)(1,0)[d]{200}
\iib{1}{\(L\)}{\(R\)}[\(1,2\)][\(0,-1\)]

R

0,−1

L

1,2

1

\iiib[style1]{player-name}[player-label-position]{action-label1}
{action-label2}{action-label3}[action-label-position][payoffs1][payoffs2]

15



[payoffs3]
puts three branches with the parameters of the preceding call to \putbranch,
optionally all in the PSTricks style style, assigns it the player name player-name,
optionally positions the player label relative to the node according to player-
label-position, and labels the left/top action with action-label1, the middle ac-
tion with action-label3, and the right/bottom action with action-label2, option-
ally positioning the labels according to action-label-position and putting the pay-
offs1, payoffs2, and payoffs3. The signs of the direction parameters (h-incr,v-incr)
in the preceding \putbranch call are ignored; the directions of the branches are
determined by the direction of the branch (as specified either by \egdirection
or by the optional argument of \putbranch). If, for example, the direction is d,
then one branch goes down and to the left, one goes straight down, and one goes
down and to the right.

The first branch in any egame is taken to be the initial branch of the game;
its beginning node is indicated by a small circle. Subsequent branches are taken
to be non-initial, and are indicated by \egnode, the default value of which is a
small disk. To force a node to be initial, specify \initialtrue before it; to force
a node to be noninitial, specify \initialfalse before it.

Permissible values:

style Any PSTricks line style. [Note that only one style is allowed, which applies
to all three branches. If you want the branches to have different styles, you
need to use a combination of \ib and \iib.]

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection
or by an optional argument of \putbranch) is d or u, either l
(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right and
up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

action-label1, action-label2, and action-label3 Any character strings.

action-label-position o (outside), i (inside), or c (centered). Default: o.

16



payoffs1, payoffs1, and payoffs3 Any character strings.

Examples:

\putbranch(200,240)(1,1){200}
\iiib{1}{\(L\)}{\(M\)}{\(R\)}

RL
M

1

200

\putbranch(30,210)(1,1)[r]{200}
\iiib[linecolor=gray]{1}{\(B\)}{\(M\)}{\(T\)}[c][\(1,2\)][\(0,-1\)][\(7,1\)]

T

7,1

B

1,2

M 0,−11

200

\ctmb[style]{player-name}[player-label-position](h-incr,v-incr)
{action-label}[action-label-position][payoffs]
draws a continuum of branches starting with the parameters of the previous call
to \putbranch, with a single branch drawn as a line with PSTricks style style,
player player, with the label optionally positioned according to player-label-
position, and slope h-incr,v-incr, labeled with action-label, which is optionally
positioned according to action-label-position, and optionally with payoffs pay-
offs.

The color of the triangle representing the continuum of branches is
\ctmfillcolor (default verylightgray (defined in the style)).

Permissible values:

17



style Any PSTricks line style. [Note that this is the style of the single branch, not
of the triangle.]

player-name Any character string.

player-label-position Either o (centered over the node), or

• If the direction of the branch (as specified either by \egdirection
or by an optional argument of \putbranch) is d or u, either l
(above/below and to the left) and r (above/below and to the right).

• If the direction of the branch is r or l, either u (to the left/right and
up) and d (to the left/right and down).

Default: is to center the label above for \egdirection=d, below for
\egdirection=u, to the left of the node for \egdirection=r, or to the
right of the node for \egdirection=l.

(h-incr,v-incr) Any pair of integers.

action-label Any character string.

action-label-position o (outside), i (inside), or c (centered). Default: o.

payoffs Any character strings.

Examples:

\putbranch(50,240)(2,-1)[d]{200}
\ctmb{1}(0,1){\(A\)}[i][\(2,2\)]:

A

2,2

1

\renewcommand{\ctmfillcolor}{red}
\renewcommand{\egarrowstyle}{e}
\putbranch(50,240)(2,-1)[d]{200}
\ctmb[linecolor=blue]{1}(-1,1){\(A\)}[i][\(2,2\)]:

18



A

2,2

1

\putbranch(50,0)(2,1)[u]{200}
\ctmb{1}(1,1){\(A\)}[i][\(2,2\)]:

A

2,2

1

\ctmbarc[style]{player-name}[player-label-position](h-incr,v-incr)
{action-label}[action-label-position][payoffs]
represents a continuum of branches by an arc. The branches start with the pa-
rameters of the previous call to \putbranch, with a single branch and the arc
drawn using the PSTricks style style, player player, the label optionally positioned
according to player-label-position, the line with slope h-incr,v-incr, labeled with
action-label optionally positioned according to action-label-position, and op-
tionally with payoffs payoffs.

This macro requires the package pst-3d to be loaded after pstricks. In the
preamble to your document, include the line \include{pst-3d}. (\pstricks
itself includes the needed macro, but its definition appears to differ from the one
in pst-3d, which is the definition \ctmbarc needs.)

The line drawn by the macro is the intersection of (i) a circle centered at the
start of the branch with radius equal to a half of the distance to the following node
and (ii) the triangle defined by the starting node and the two following nodes. For
some parameter values, this line is not a full arc—see the last example.

The options are the same as those for \ctmb. The style of the arc is controlled
by the parameters \egarclinestyle (possible values solid, dashed, dotted,
and none; default solid), \egarclinewidth (any dimension; default 0.6pt),
\egarclinecolor (any color; default black).

Examples:

\putbranch(50,240)(2,2)[d]{200}
\ctmbarc{1}(1,-2){\(A\)}[i][\(2,2\)]:

19



A

2,2

1

\def\egarclinestyle{dashed}
\def\egarclinewidth{2pt}
\def\egarclinecolor{blue}
\putbranch(0,150)(2,2)[r]{150}
\ctmbarc[linewidth=0.3pt,linecolor=red]{1}(1,0){\(A\)}[\(2,2\)]:

A 2,21

In the next example part of the arc extends beyond the triangle defined by the
three nodes, and consequently does not appear.

\putbranch(50,0)(2,1)[u]{200}
\ctmbarc{1}(1,1){\(A\)}[i][\(2,2\)]:

A

2,2

1

\infoset(x-coord,y-coord)[direction]{length}{player-name}
[player-label-position]
draws an information set starting at (x-coord,y-coord), optionally with direction
direction, of length length, with player label player-name. If the direction of the
game is either down or up, the information set is horizontal; if the direction of
the game is either right or left, the information set is vertical. The player label is

20



positioned at the middle of the information set, either above, below, to the left,
or to the right of it, depending on the direction of the game. (Its position can be
adjusted by adding some space before or after the player name. For example,
\infoset(100,200){400}{1\hspace{10mm}}
centers the box containing 1\hspace{10mm} relative to the information set, thus
moving the label by about 5mm.

The dot character used in the information set is given by \infosetdot, the
default value of which is \pscircle*{2.5}; the spacing between the dots is set
by \infosetdotsep, the default value of which is 20. (See Section 8.)

Permissible values:

(x-coord,y-coord) Any pair of integers.

direction h (horizontal) or v (vertical). If none is specified, it is assumed to be h
if the game direction is d or u, and v if the game direction is r or l.

length Any nonnegative integer.

player-name Any character string.

player-label-position o (over), u (up), or d (down) if direction is h, o (over), l
(left), or r (right) if direction is v.

Examples:

\egdirection{d}
\infoset(0,0){300}{1}

1

\egdirection{d}
\infoset(0,0){300}{1}[o]

1

\egdirection{d}
\infoset(0,0)[v]{200}{1}

1

For curved information sets, see Section 10. To change the style of the dots
(e.g. their color), redefine \infosetdot (see Section 8).

21



6. Positioning action labels

The following algorithm is used to position an action label. The “reference
point” for a branch is its midpoint. An action label is surrounded by a box
(which may be colored and bordered by a line), from which it is separated by
\egactionboxsep, then this box is surrounded by another box, from which it
is separated by \egactionlabelsep. Then, for example, for a label positioned
above a downward-sloping branch, the bottom left-hand corner of the outer box
is placed at the reference point, as in Figure 5. For a label positioned above a
horizontal branch, the bottom center of the outer box is placed at the reference
point.

o

x
y

y = \

x = \

Figure 5. The position of an action label above a downward-sloping branch.

This algorithm is not perfect. (Note that it is not continuous in the slope of the
branch.) The positions of labels may need fine tuning, which may be achieved
by setting either \egalhshift or \egalvshift or both to be nonzero (each is
an integer, interpreted as a multiple of the unitlength).

\egalhshift and \egalvshiftmust be set between \putbranch and \ib,
\iib, \iiib, or \ctmb. (They are set to zero by \putbranch.)

If \egalhshift is nonzero and \egalvshift is not, the reference point for
the action label on the single branch in \ib, of the right-hand branch for di-
rections d and u and of both branches for directions r and l in \iib, and for the
outer branches of \iiib, is moved horizontally by this amount and is moved ver-
tically to maintain the same separation from the branch. (That is, the action label
slides parallel to the branch; it moves horizontally by the amount \egalhshift.)
The reference point of the label on the symmetric branch is moved symmetri-
cally. (Note that the label on the middle branch of \iiib is not moved. If you
want to move it, you need to write separate calls to \iib and \ib.)

Similarly, if \egalvshift is nonzero and \egalhshift is not, the reference
point for the action label is moved vertically by this amount and is moved hor-

22



izontally to maintain the same separation from the branch. After a branch is
drawn, \egalhshift and \egalvshift are reset to zero.

Note that the same effect can be acheived with either \egalhshift or
\egalvshift. The two methods are provided simply because in some cases a
vertical shift might be more natural to specify, whereas in other cases a horizon-
tal shift might be more natural to specify.

If both \egalhshift and \egalvshift are nonzero, the reference point is
moved horizontally by \egalhshift and vertically by \egalvshift.

Examples:
\egdirection{d} \egalhshift=40

B

2,2

A

1,1

1

\egalhshift=-40

B

2,2

A

1,1

1

\egalhshift=40\egalvshift=40

B

2,2

A

1,1

1

\egdirection{u}\egalhshift=60

B 2,2

A 1,1

1

7. Arrows

To add arrows to branches, you have two options: you can use either macros in
the package or macros in the pst-arrows package (which egameps loads).

23



Using egameps macros

Branches can have arrows either at the end or in the middle, by setting
\renewcommand{\egarrowstyle}{e}

(for arrows at the end), or
\renewcommand{\egarrowstyle}{m}

(for arrows in the middle). The positioning of arrows in the middle is not ideal:
the tip of the arrow is placed in the middle of the branch, while ideally the middle
of the arrow should be there. I can’t see any easy way to improve the placement.

The style of the arrows can be controlled with PSTricks’ various parameters
(as described, for example, in the LATEX Graphics Companion).

Using pst-arrow macros

If you would like to position arrows on the branches at points other than
those generated by the egameps macros, you can use the ArrowInside and
ArrowInsidePos settings offered by the pst-arrow package. Here is an exam-
ple. Note that if you set ArrowInsidePos=0.5 then, as in the egameps package,
the tip of your arrow, not the middle of it, will be at the midpoint of the branch.
In the example I have set ArrowInsidePos=0.55 so that the center of the arrow
is approximately at the midpoint of the lower branches.

\putbranch(275,260)(7,4){175}
\psset{arrowscale=1.5}
\ib[linecolor=red,ArrowInside=->,ArrowInsideNo=3]{}{}
\initialtrue
\putbranch(275,260)(-7,4){175}
\ib{}{}
\putbranch(100,160)(-1,1){100}
\ib{}{}
\putbranch(100,160)(1,1){100}
\ib[linecolor=red,ArrowInside=->,ArrowInsidePos=0.55]{}{}
\putbranch(450,160)(1,1){100}
\ib{}{}
\putbranch(450,160)(-1,1){100}
\ib[linecolor=red,ArrowInside=->,ArrowInsidePos=0.55]{}{}

24



8. Parameters

\egdirection
Direction of game. Possible values: d (down), u (up), r (right), or l (left). Default:
d. Example: \egdirection{u}.

\initialtrue, \initialfalse
Force a node other than the first one in an egame to be initial, or force the first
node to be noninitial.

\eginode
Object used for initial node. Possible values: any object. Default:
\pscircle [linewidth=0.4pt]{5}. Example: \renewcommand{\eginode}
{\makebox(0,0){\rule{0.5mm}{0.5mm}}} (the \makebox causes the object
to be positioned correctly).

\egnode
Object used for nodes. Possible values: any object. Default: \pscircle*{5}.
Example: \renewcommand{\egnode}{\makebox(0,0){\rule{0.5mm}{0.5mm}}}
(the \makebox causes the object to be positioned correctly).

\infosetdot
Object used for “dots” in information sets. Possible values: any object.
Default: \pscircle*{2.5}. Example: \renewcommand{\infosetdot}
{\pscircle*{5}}.

\infosetdotsep
Spacing between dots in information set, as a multiple of the unit length. Pos-
sible values: any positive integer. Default: 20. Example: \renewcommand
{\infosetdotsep}{40}.

\egplayerlabelsep
Spacing used to position box containing player label relative to center of initial
node, and relative to center of information set. Possible values: any dimension.
Default: 1mm. Example: \egplayerlabelsep=2mm.

\egplayerboxsep
Distance between edge of box around player label and player label. Possible val-
ues: any dimension. Default: 0mm. Example: \egplayerboxsep=1mm.

25



\egactionlabelsep
Spacing used to position box containing action label relative to branch. Possible
values: any dimension. Default: 0.7mm. Example: \egactionlabelsep= 1mm.

\egactionboxsep
Distance between edge of box around action label and action label. Possible val-
ues: any dimension. Default: 0mm. Example: \egactionboxsep=1mm.

\egpayofflabelsep
Spacing used to position box containing action label relative to end of
branch. Possible values: any dimension. Default: 2mm. Example:
\egpayofflabelsep=1mm.

\egpayoffboxsep
Distance between edge of box around payoffs and payoffs. Possible values: any
dimension. Default: 0mm. Example: \egpayoffboxsep=1mm.

\egalpos
Position of action labels. Possible values: o (outside), i (inside), c (center). De-
fault: o. Example: \renewcommand{\egalpos}{c}.

\egalbox
Type of box for action labels. Possible values: f (frame), c (circle). Default: f.
Example: \renewcommand{\egalbox}{c}.

\egalboxlinestyle
Style of lines around boxes containing action labels. Possible values: none,
solid, dashed, dotted. Default: none. Example: \renewcommand
{\egalboxlinestyle}{solid}.

\egalboxlinecolor
Color of lines around boxes containing action labels. Possible values: any de-
fined color. Default: black. Example: \renewcommand{\egalboxlinecolor}
{red}.

\egalboxfillstyle
Style of fill of boxes containing action labels. Possible values: none, solid, vlines,
vlines*, hlines, hlines*, crosshatch, crosshatch*. Default: none. Exam-
ple: \renewcommand{\egalboxfillstyle}{solid}.

\egalboxfillcolor

26



Color of fill of boxes containing action labels. Possible values: any defined color.
Default: white. Example: \renewcommand{\egalboxfillcolor} {blue}.

\egpaybox
Type of box for payoffs. Possible values: f (frame), c (circle). Default: f. Example:
\renewcommand{\egpaybox}{c}.

\egpayboxlinestyle
Style of lines around boxes containing payoffs. Possible values: none,
solid, dashed, dotted. Default: none. Example: \renewcommand
{\egpayboxlinestyle}{solid}.

\egpayboxlinecolor
Color of lines around boxes containing payoffs. Possible values: any defined
color. Default: black. Example: \renewcommand{\egpayboxlinecolor}{gray}.

\egpayboxfillstyle
Style of fill of boxes containing action payoffs. Possible values: none, solid,
vlines, vlines*, hlines, hlines*, crosshatch, crosshatch*. Default: none.
Example: \renewcommand{\egpayboxfillstyle}{solid}.

\egpayboxfillcolor
Color of fill of boxes containing payoffs. Possible values: any defined color. De-
fault: white. Example: \renewcommand{\egpayboxfillcolor}{gray}.

\egplbox
Type of box for player labels. Possible values: f (frame), c (circle). Default: f.
Example: \renewcommand{\egplbox}{c}.

\egplboxlinestyle
Style of lines around boxes containing player labels. Possible values: none,
solid, dashed, dotted. Default: none. Example: \renewcommand
{\egplboxlinestyle}{solid}.

\egplboxlinecolor
Color of lines around boxes containing player labels. Possible values: any de-
fined color. Default: black. Example: \renewcommand{\egplboxlinecolor}
{gray}.

\egplboxfillstyle
Style of fill of boxes containing player labels. Possible values: none, solid, vlines,

27



vlines*, hlines, hlines*, crosshatch, crosshatch*. Default: none. Exam-
ple: \renewcommand{\egplboxfillstyle}{solid}.

\egplboxfillcolor
Color of fill of boxes containing player labels. Possible values: any defined color.
Default: white. Example: \renewcommand{\egplboxfillcolor} {gray}.

\egarrowstyle
Style of arrows on branches. Possible values: n (none), e (end), m (mid). De-
fault: n (none). Example: \renewcommand{\egarrowstyle}{m} (mid). The
size of the arrows can be adjusted by using any of the PSTricks parameters—e.g.
\psset{arrowscale=1.5}.

\ctmfillcolor
Color of triangle used to indicate continuum of branches. Possible values:
any defined color. Default: verylightgray. Example: \renewcommand
{\ctmfillcolor}{red}.

9. Including a strategic game

To include a strategic game in an extensive game, use the package sgamevar
(available on my website). (You cannot use the package sgame.) Change the
line in the preamble to your file from \usepackage{pstricks,egameps} to
\usepackage{pstricks,egameps,sgamevar}. You can now include a strate-
gic game as the payoff argument of \ib, \iib, or iiib. A simple example fol-
lows.

\[%
\begin{egame}(750,340)
\putbranch(380,290)(2,-1)[d]{240}
\iib{1}{\(A\)}{\(B\)}[%
\begin{game}{2}{2}

\>\(X\) \>\(Y\)\\
\(X\) \>\(1,1\) \>\(2,0\)\\
\(Y\) \>\(0,2\) \>\(2,2\)
\end{game}
][%
\begin{game}{2}{2}

\>\(X\) \>\(Y\)\\
\(X\) \>\(3,1\) \>\(2,2\)\\

28



\(Y\) \>\(1,1\) \>\(1,3\)
\end{game}]%
\end{egame}
\]

B

X Y
X 3,1 2,2
Y 1,1 1,3

A

X Y
X 1,1 2,0
Y 0,2 2,2

1

Putting in some ad hoc spaces in the payoff boxes improves the appearance.

\[%
\begin{egame}(740,340)
\putbranch(400,290)(2,-1)[d]{240}
\iib{1}{\(A\)}{\(B\)}[%
\hspace*{-15pt}%
\begin{game}{2}{2}

\>\(X\) \>\(Y\)\\
\(X\) \>\(1,1\) \>\(2,0\)\\
\(Y\) \>\(0,2\) \>\(2,2\)
\end{game}
][
\hspace*{-20pt}%
\begin{game}{2}{2}

\>\(X\) \>\(Y\)\\
\(X\) \>\(3,1\) \>\(2,2\)\\
\(Y\) \>\(1,1\) \>\(1,3\)
\end{game}]
\end{egame}
\]

B

X Y
X 3,1 2,2
Y 1,1 1,3

A

X Y
X 1,1 2,0
Y 0,2 2,2

1

29



You can play around with color and the label placement.

\renewcommand{\egalboxfillstyle}{solid}
\renewcommand{\egalboxfillcolor}{red}
\renewcommand{\egalbox}{f}
\renewcommand{\egpaybox}{f}
\renewcommand{\egplbox}{c}
\renewcommand{\egplboxfillstyle}{solid}
\renewcommand{\egplboxfillcolor}{green}
%\psset{arrowscale=1.5}
\egplayerlabelsep=1mm
\egplayerboxsep=0.5mm
\egactionlabelsep=1mm
\egactionboxsep=0.5mm
%\egpayofflabelsep=1mm
%\egpayoffboxsep=1mm
\renewcommand{\egalpos}{c}
\def\sgtextcolor{blue}%
\def\sglinecolor{orange}%

\[\begin{egame}(740,350)
\putbranch(400,290)(2,-1)[d]{240}
\iib[linewidth=0.8mm,linecolor=pink]{1}{\(A\)}{\(B\)}[%
\hspace*{-15pt}%
\begin{game}{2}{2}

\>\(X\) \>\(Y\)\\
\(X\) \>\(1,1\) \>\(2,0\)\\
\(Y\) \>\(0,2\) \>\(2,2\)
\end{game}
][
\hspace*{-20pt}%
\begin{game}{2}{2}

\>\(X\) \>\(Y\)\\
\(X\) \>\(3,1\) \>\(2,2\)\\
\(Y\) \>\(1,1\) \>\(1,3\)
\end{game}]
\end{egame}\]

30



B

X Y
X 3,1 2,2
Y 1,1 1,3

A

X Y
X 1,1 2,0
Y 0,2 2,2

1

10. Curved information sets

The package contains no special macros for drawing curved information sets.
However, having loaded the pstricks package, you can use any pstricks
macro, and thus easily create any of a huge range of graphic elements. Here’s
an example of a game with curved information sets.

\egactionlabelsep=0.05mm

\begin{figure}[htb]
\hspace*{\fill}
\begin{egame}(600,380)
\putbranch(300,340)(2,1){200}
\iib{1}{\(L\)}{\(R\)}
\putbranch(100,240)(1,1){100}
\iib{2}{\(a\)}{\(b\)}%[\(1,0\)][\(2,3\)]
\putbranch(500,240)(1,1){100}
\iib{2}{\(c\)}{\(d\)}%[\(0,1\)][\(-1,0\)]
\pscurve[linestyle=dotted,dotsep=20,linewidth=0.5mm]%

(0,140)(200,110)(400,140)
\pscurve[linestyle=dotted,dotsep=20,linewidth=0.5mm]%

(200,140)(400,110)(600,140)
\rput(200,80){1}
\rput(400,80){1}
\putbranch(0,140)(1,2){50}
\egalhshift=15
\iib{}{\(m\)}{\(n\)}[\(1,0\)][\(2,3\)]
\putbranch(200,140)(1,2){50}
\egalhshift=15
\iib{}{\(s\)}{\(t\)}[\(0,1\)][\(-1,0\)]

31



\putbranch(400,140)(1,2){50}
\egalhshift=15
\iib{}{\(m\)}{\(n\)}[\(1,0\)][\(2,3\)]
\putbranch(600,140)(1,2){50}
\egalhshift=15
\iib{}{\(s\)}{\(t\)}[\(0,1\)][\(-1,0\)]
\end{egame}
\hspace*{\fill}
\caption[]{An extensive game with curved information sets.}%
\label{f:curvedInfo}
\end{figure}

RL

1

ba

2

dc

2

1 1n

2,3

m

1,0

t

−1,0

s

0,1

n

2,3

m

1,0

t

−1,0

s

0,1

Figure 6. An extensive game with curved information sets.

11. Suggestions

It seems hard to proceed without first drawing the game on a piece of paper, at
least roughly. Be sure to allow enough space under (in the case of a downward-
pointing game) the terminal nodes—put the nodes that precede the terminal
nodes high enough that the bottom of the payoffs will be at height 0. Similarly,
specify the height of the game so that the label for the initial player does not poke
out the top. If parts of your game poke out of the frame defined by the size you
specify for your egame, TEX will not warn you, but the spacing above and/or be-
low your game will not be right. (If you specify the height to be too small, for
example, the top of your game may overlap the text above it.)

You can float your game in a figure (as I do in the examples above), or
you can put it in the text. (For example, you may use \[\begin{egame}...
\end{egame}\]). Putting it in the text has the disadvantage that if it’s big and

32



happens to start at the bottom of a page then you may get a lot of white space if
it doesn’t fit on the page.

12. Enhancements

It would be nice if the macros could calculate the dimensions of the whole game,
so the the user does not have to specify them in the \begin{game} call. To make
this change looks like a tough project to me.

The label-positioning algorithm could be enhanced, as discussed in Section 6.

13. History

2001-4-9 Version 1.0 (based on egame.sty, 1997-10-16)

2004-6-19 Version 1.1 (\egctmarc added, following suggestion of Paul
Schweinzer).

2010-11-7 Documentation expanded to include section on strategic games
within extensive games and curved information sets.

2018-3-18 Version 1.11. Added \RequirePackage{pstricks} to obviate need
to load pstricks explicitly.

2020-6-15 Version 1.12. Added \RequirePackage{pst-3d}, to avoid need
to load package in document to use the \ctmbarc macro, and
\RequirePackage{pst-arrow}, to allow the use of the macros in the
pst-arrow package. Section 7 of this document expanded to give exam-
ples of the use of the pst-arrow package.

14. Appendix: using pdftricks with pdftex to create a pdf file

If you want to create a pdf file from your LATEX file and do not want to take the dvi
→ ps→ pdf route, you may use pdftricks. Eric Gartzke reports that the follow-
ing input produces the expected output. (See his comments for the limitations
of this method.) If you find a better solution, please let me know.

\documentclass[12pt]{article}
\usepackage[shell]{pdftricks}

\begin{psinputs}
\usepackage{pstricks}

33



\usepackage{color}
\usepackage{pstcol}
\usepackage{pst-plot}
\usepackage{pst-tree}
\usepackage{pst-eps}
\usepackage{multido}
\usepackage{pst-node}
\usepackage{pst-eps}
\usepackage{egameps}
\end{psinputs}

\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{setspace}
\usepackage{fullpage}
\usepackage{harvard}
\usepackage{threeparttable}
\usepackage{amssymb}

\newtheorem{hypothesis}{Hypothesis}

Postscript commands need to be separated from other commands.
pdftricks literally stops the compiling of the TeX file to run
postscript/dvi in the background, generating separate small
TeX files and pdf files of each figure. Notice that egameps
is called last. This seems to make a considerable
difference. Here is an example of a simple egame tree.

\begin{pdfpic}
\begin{figure}[htb]
\hspace*{\fill}
\begin{egame}(600,1250)
\renewcommand{\egarrowstyle}{e}
\renewcommand{\egnode}{\pscircle*{8}}
\putbranch(200,1200)(0,1){150} \ib{\(N\)}[r]{\(~k_{i},~k_{j}\)}
\renewcommand{\egarrowstyle}{}
\putbranch(200,1050)(1,1){200} \egdirection{d}
\iib{\(i\)}[l]{\(\begin{array}{c}Status\\Quo\end{array}\)}{\(Challenge\)}%
[\(b_{i},~1+b_{j}\)][]

34



\putbranch(400,850)(1,1){200}
\iib{\(~j\)}[r]{\(Reject\)}{\(Accept\)}[][\(\begin{array}{c}1-
d+b_{i},\\d+b_{j}\end{array}\)]
\putbranch(200,650)(1,1){200}
\iib{\(i\)}[l]{\(\begin{array}{c}Back\\Down\end{array}\)}{\(Persist\)}%
[\(\begin{array}{c}-a_{i},\\1\end{array}\)][]
\putbranch(400,450)(1,1){200}
\iib{\(j\)}[r]{\(Fight\)}{\(Acquiesce\)}[\(\begin{array}{c}p-k_{i},\\1-p-
k_{j}\end{array}\)][\(\begin{array}{c}1-d,\\d\end{array}\)]
\end{egame}
\setcounter{figure}{1}
\hspace*{\fill} \caption[]{Selection Game
\label{figure:selection}}
\end{figure}
\end{pdfpic}

Again, the figure is isolated from the rest of the TeX file by
pdftricks commands. Also, the regular LaTeX numbering of
figures is interfered with, so I adjust with a \setcounter
command. Finally, the \label and \reference commands do not
work, so one must simply number the figures in the text.

35


	1 Introduction
	2 Installation
	3 Using the style
	4 Examples
	5 Description of macros
	6 Positioning action labels
	7 Arrows
	8 Parameters
	9 Including a strategic game
	10 Curved information sets
	11 Suggestions
	12 Enhancements
	13 History
	14 Appendix: using pdftricks with pdftex to create a pdf file

