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IN THIS CHAPTER I discuss in detail a few key models that use the notion of Nash
equilibrium to study economic, political, and biological phenomena. The dis-

cussion shows how the notion of Nash equilibrium improves our understanding of
a wide variety of phenomena. It also illustrates some of the many forms strategic
games and their Nash equilibria can take. The models in Sections 3.1 and 3.2 are
related to each other, whereas those in each of the other sections are independent
of each other.

3.1 Cournot’s model of oligopoly

3.1.1 Introduction

How does the outcome of competition among the firms in an industry depend on
the characteristics of the demand for the firms’ output, the nature of the firms’ cost
functions, and the number of firms? Will the benefits of technological improve-
ments be passed on to consumers? Will a reduction in the number of firms gener-
ate a less desirable outcome? To answer these questions we need a model of the
interaction between firms competing for the business of consumers. In this section
and the next I analyze two such models. Economists refer to them as models of
“oligopoly” (competition between a small number of sellers), though they involve
no restriction on the number of firms; the label reflects the strategic interaction
they capture. Both models were studied first in the nineteenth century, before the
notion of Nash equilibrium was formalized for a general strategic game. The first
is due to the economist Cournot (1838).
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54 Chapter 3. Nash Equilibrium: Illustrations

3.1.2 General model

A single good is produced by n firms. The cost to firm i of producing qi units of
the good is Ci(qi), where Ci is an increasing function (more output is more costly
to produce). All the output is sold at a single price, determined by the demand for
the good and the firms’ total output. Specifically, if the firms’ total output is Q then
the market price is P(Q); P is called the “inverse demand function”. Assume that
P is a decreasing function when it is positive: if the firms’ total output increases,
then the price decreases (unless it is already zero). If the output of each firm i is
qi, then the price is P(q1 + · · · + qn), so that firm i’s revenue is qiP(q1 + · · · + qn).
Thus firm i’s profit, equal to its revenue minus its cost, is

πi(q1 , . . . , qn) = qiP(q1 + · · · + qn) − Ci(qi). (54.1)

Cournot suggested that the industry be modeled as the following strategic
game, which I refer to as Cournot’s oligopoly game.

Players The firms.

Actions Each firm’s set of actions is the set of its possible outputs (nonnegative
numbers).

Preferences Each firm’s preferences are represented by its profit, given in (54.1).

3.1.3 Example: duopoly with constant unit cost and linear inverse demand function

For specific forms of the functions Ci and P we can compute a Nash equilibrium
of Cournot’s game. Suppose there are two firms (the industry is a “duopoly”),
each firm’s cost function is the same, given by Ci(qi) = cqi for all qi (“unit cost” is
constant, equal to c), and the inverse demand function is linear where it is positive,
given by

P(Q) =

{
α − Q if Q ≤ α

0 if Q > α,
(54.2)

where α > 0 and c ≥ 0 are constants. This inverse demand function is shown in
Figure 55.1. (Note that the price P(Q) cannot be equal to α − Q for all values of Q,
for then it would be negative for Q > α.) Assume that c < α, so that there is some
value of total output Q for which the market price P(Q) is greater than the firms’
common unit cost c. (If c were to exceed α, there would be no output for the firms
at which they could make any profit, because the market price never exceeds α.)

To find the Nash equilibria in this example, we can use the procedure based on
the firms’ best response functions (Section 2.8.3). First we need to find the firms’
payoffs (profits). If the firms’ outputs are q1 and q2 then the market price P(q1 + q2)

is α − q1 − q2 if q1 + q2 ≤ α and zero if q1 + q2 > α. Thus firm 1’s profit is

π1(q1, q2) = q1(P(q1 + q2) − c)

=

{
q1(α − c − q1 − q2) if q1 + q2 ≤ α

−cq1 if q1 + q2 > α.
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Figure 55.1 The inverse demand function in the example of Cournot’s game studied in Section 3.1.3.

To find firm 1’s best response to any given output q2 of firm 2, we need to study
firm 1’s profit as a function of its output q1 for given values of q2. If q2 = 0 then
firm 1’s profit is π1(q1, 0) = q1(α − c − q1) for q1 ≤ α, a quadratic function that
is zero when q1 = 0 and when q1 = α − c. This function is the black curve in
Figure 56.1. Given the symmetry of quadratic functions (Section 17.3), the output
q1 of firm 1 that maximizes its profit is q1 = 1

2 (α − c). (If you know calculus,
you can reach the same conclusion by setting the derivative of firm 1’s profit with
respect to q1 equal to zero and solving for q1.) Thus firm 1’s best response to an
output of zero for firm 2 is b1(0) = 1

2 (α − c).
As the output q2 of firm 2 increases, the profit firm 1 can obtain at any given

output decreases, because more output of firm 2 means a lower price. The gray
curve in Figure 56.1 is an example of π1(q1, q2) for q2 > 0 and q2 < α − c. Again
this function is a quadratic up to the output q1 = α − q2 that leads to a price of
zero. Specifically, the quadratic is π1(q1, q2) = q1(α − c − q2 − q1), which is zero
when q1 = 0 and when q1 = α − c − q2. From the symmetry of quadratic functions
(or some calculus) we conclude that the output that maximizes π1(q1, q2) is q1 =
1
2 (α− c− q2). (When q2 = 0, this is equal to 1

2 (α− c), the best response to an output
of zero that we found in the previous paragraph.)

When q2 > α − c, the value of α − c − q2 is negative. Thus for such a value of
q2, we have q1(α − c − q2 − q1) < 0 for all positive values of q1: firm 1’s profit is
negative for any positive output, so that its best response is to produce the output
of zero.

We conclude that the best response of firm 1 to the output q2 of firm 2 depends
on the value of q2: if q2 ≤ α− c then firm 1’s best response is 1

2 (α− c− q2), whereas
if q2 > α − c then firm 1’s best response is 0. Or, more compactly,

b1(q2) =

{ 1
2 (α − c − q2) if q2 ≤ α − c

0 if q2 > α − c.

Because firm 2’s cost function is the same as firm 1’s, its best response function
b2 is also the same: for any number q, we have b2(q) = b1(q). Of course, firm 2’s



56 Chapter 3. Nash Equilibrium: Illustrations

0

↑
π1(q1, q2)

q1 →

q2 = 0

q2 > 0

α

α − c

α − c − q2

α−c
2

α−c−q2
2

Figure 56.1 Firm 1’s profit as a function of its output, given firm 2’s output. The black curve shows the
case q2 = 0, whereas the gray curve shows a case in which q2 > 0.

best response function associates a value of firm 2’s output with every output of
firm 1, whereas firm 1’s best response function associates a value of firm 1’s out-
put with every output of firm 2, so we plot them relative to different axes. They
are shown in Figure 56.2 (b1 is black; b2 is gray). As for a general game (see Sec-
tion 2.8.3), b1 associates each point on the vertical axis with a point on the hori-
zontal axis, and b2 associates each point on the horizontal axis with a point on the
vertical axis.
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Figure 56.2 The best response functions in Cournot’s duopoly game when the inverse demand func-
tion is given by (54.2) and the cost function of each firm is cq. The unique Nash equilibrium is
(q∗1, q∗2) = ( 1

3 (α − c), 1
3 (α − c)).
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A Nash equilibrium is a pair (q∗1 , q∗2) of outputs for which q∗1 is a best response
to q∗2, and q∗2 is a best response to q∗1:

q∗1 = b1(q∗2) and q∗2 = b2(q∗1)

(see (34.3)). The set of such pairs is the set of points at which the best response
functions in Figure 56.2 intersect. From the figure we see that there is exactly one
such point, which is given by the solution of the two equations

q1 = 1
2 (α − c − q2)

q2 = 1
2 (α − c − q1).

Solving these two equations (by substituting the second into the first and then
isolating q1, for example) we find that q∗1 = q∗2 = 1

3 (α − c).
In summary, when there are two firms, the inverse demand function is given

by P(Q) = α − Q for Q ≤ α, and the cost function of each firm is Ci(qi) = cqi,
Cournot’s oligopoly game has a unique Nash equilibrium (q∗1, q∗2) = ( 1

3 (α − c),
1
3 (α − c)). The total output in this equilibrium is 2

3 (α− c), so that the price at which
output is sold is P( 2

3 (α − c)) = 1
3 (α + 2c). As α increases (meaning that consumers

are willing to pay more for the good), the equilibrium price and the output of each
firm increases. As c (the unit cost of production) increases, the output of each
firm falls and the price rises; each unit increase in c leads to a two-thirds of a unit
increase in the price.

? EXERCISE 57.1 (Cournot’s duopoly game with linear inverse demand and different
unit costs) Find the Nash equilibrium of Cournot’s game when there are two firms,
the inverse demand function is given by (54.2), the cost function of each firm i is
Ci(qi) = ciqi, where c1 > c2, and c1 < α. (There are two cases, depending on
the size of c1 relative to c2.) Which firm produces more output in an equilibrium?
What is the effect of technical change that lowers firm 2’s unit cost c2 (while not
affecting firm 1’s unit cost c1) on the firms’ equilibrium outputs, the total output,
and the price?

? EXERCISE 57.2 (Cournot’s duopoly game with linear inverse demand and a quadratic
cost function) Find the Nash equilibrium of Cournot’s game when there are two
firms, the inverse demand function is given by (54.2), and the cost function of each
firm i is Ci(qi) = q2

i .

In the next exercise each firm’s cost function has a component that is indepen-
dent of output. You will find in this case that Cournot’s game may have more than
one Nash equilibrium.

? EXERCISE 57.3 (Cournot’s duopoly game with linear inverse demand and a fixed
cost) Find the Nash equilibria of Cournot’s game when there are two firms, the
inverse demand function is given by (54.2), and the cost function of each firm i is
given by

Ci(qi) =

{
0 if qi = 0
f + cqi if qi > 0,
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where c ≥ 0, f > 0, and c < α. (Note that the fixed cost f affects only the firm’s
decision of whether or not to operate; it does not affect the output a firm wishes to
produce if it wishes to operate.)

So far we have assumed that each firm’s objective is to maximize its profit.
The next exercise asks you to consider a case in which one firm’s objective is to
maximize its market share.

? EXERCISE 58.1 (Variant of Cournot’s duopoly game, with market-share maximiz-
ing firms) Find the Nash equilibrium (equilibria?) of a variant of the example of
Cournot’s duopoly game that differs from the one in this section (linear inverse
demand, constant unit cost) only in that one of the two firms chooses its output to
maximize its market share subject to not making a loss, rather than to maximize its
profit. What happens if each firm maximizes its market share?

3.1.4 Properties of Nash equilibrium

Two economically interesting properties of a Nash equilibrium of Cournot’s game
concern the relation between the firms’ equilibrium profits and the profits they
could obtain if they acted collusively, and the character of an equilibrium when
the number of firms is large.

Comparison of Nash equilibrium with collusive outcomes In Cournot’s game with two
firms, is there any pair of outputs at which both firms’ profits exceed their levels in
a Nash equilibrium? The next exercise asks you to show that the answer is “yes”
in the example considered in the previous section. Specifically, both firms can
increase their profits relative to their equilibrium levels by reducing their outputs.

? EXERCISE 58.2 (Nash equilibrium of Cournot’s duopoly game and collusive out-
comes) Find the total output (call it Q∗) that maximizes the firms’ total profit in
Cournot’s game when there are two firms and the inverse demand function and
cost functions take the forms assumed Section 3.1.3. Compare 1

2 Q∗ with each firm’s
output in the Nash equilibrium, and show that each firm’s equilibrium profit is less
than its profit in the “collusive” outcome in which each firm produces 1

2 Q∗. Why
is this collusive outcome not a Nash equilibrium?

The same is true more generally. For nonlinear inverse demand functions and
cost functions, the shapes of the firms’ best response functions differ, in general,
from those in the example studied in the previous section. But for many inverse
demand functions and cost functions the game has a Nash equilibrium and, for
any equilibrium, there are pairs of outputs in which each firm’s output is less than
its equilibrium level and each firm’s profit exceeds its equilibrium level.

To see why, suppose that (q∗1 , q∗2) is a Nash equilibrium and consider the set of
pairs (q1, q2) of outputs at which firm 1’s profit is at least its equilibrium profit.
The assumption that P is decreasing (higher total output leads to a lower price)
implies that if (q1, q2) is in this set and q′2 < q2 then (q1, q′2) is also in the set. (We
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have q1 + q′2 < q1 + q2, and hence P(q1 + q′2) > P(q1 + q2), so that firm 1’s profit at
(q1, q′2) exceeds its profit at (q1, q2).) Thus in Figure 59.1 the set of pairs of outputs
at which firm 1’s profit is at least its equilibrium profit lies on or below the line
q2 = q∗2; an example of such a set is shaded light gray. Similarly, the set of pairs of
outputs at which firm 2’s profit is at least its equilibrium profit lies on or to the left
of the line q1 = q∗1, and an example is shaded light gray.

Nash equilibrium

q1 →

↑
q2

q∗10

q∗2

Firm 1’s profit exceeds
its equilibrium level

Firm 2’s profit
exceeds its

equilibrium
level

Figure 59.1 The pair (q∗1, q∗2) is a Nash equilibrium; along each gray curve one of the firm’s profits is
constant, equal to its profit at the equilibrium. The area shaded dark gray is the set of pairs of outputs
at which both firms’ profits exceed their equilibrium levels.

We see that if the parts of the boundaries of these sets indicated by the gray
lines in the figure are smooth then the two sets must intersect; in the figure the
intersection is shaded dark gray. At every pair of outputs in this area each firm’s
output is less than its equilibrium level (qi < q∗i for i = 1, 2) and each firm’s profit
is higher than its equilibrium profit. That is, both firms are better off by restricting
their outputs.

Dependence of Nash equilibrium on number of firms How does the equilibrium out-
come in Cournot’s game depend on the number of firms? If each firm’s cost func-
tion has the same constant unit cost c, the best outcome for consumers compatible
with no firm’s making a loss has a price of c and a total output of α− c. The next ex-
ercise asks you to show that if, for this cost function, the inverse demand function
is linear (as in Section 3.1.3), then the price in the Nash equilibrium of Cournot’s
game decreases as the number of firms increases, approaching c. That is, from
the viewpoint of consumers, the outcome is better the larger the number of firms,
and when the number of firms is very large, the outcome is close to the best one
compatible with nonnegative profits for the firms.

? EXERCISE 59.1 (Cournot’s game with many firms) Consider Cournot’s game in
the case of an arbitrary number n of firms; retain the assumptions that the in-
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verse demand function takes the form (54.2) and the cost function of each firm i is
Ci(qi) = cqi for all qi, with c < α. Find the best response function of each firm and
set up the conditions for (q∗1, . . . , q∗n) to be a Nash equilibrium (see (34.3)), assum-
ing that there is a Nash equilibrium in which all firms’ outputs are positive. Solve
these equations to find the Nash equilibrium. (For n = 2 your answer should be
( 1

3 (α − c), 1
3 (α − c)), the equilibrium found in the previous section. First show that

in an equilibrium all firms produce the same output, then solve for that output. If
you cannot show that all firms produce the same output, simply assume that they
do.) Find the price at which output is sold in a Nash equilibrium and show that
this price decreases as n increases, approaching c as the number of firms increases
without bound.

The main idea behind this result does not depend on the assumptions on the
inverse demand function and the firms’ cost functions. Suppose, more generally,
that the inverse demand function is any decreasing function, that each firm’s cost
function is the same, denoted by C, and that there is a single output, say q, at which
the average cost of production C(q)/q is minimal. In this case, any given total
output is produced most efficiently by each firm’s producing q, and the lowest
price compatible with the firms’ not making losses is the minimal value of the
average cost. The next exercise asks you to show that in a Nash equilibrium of
Cournot’s game in which the firms’ total output is large relative to q, this is the
price at which the output is sold.

?? EXERCISE 60.1 (Nash equilibrium of Cournot’s game with small firms) Suppose
that there are infinitely many firms, all of which have the same cost function C.
Assume that C(0) = 0, and for q > 0 the function C(q)/q has a unique minimizer
q; denote the minimum of C(q)/q by p. Assume that the inverse demand function
P is decreasing. Show that in any Nash equilibrium the firms’ total output Q∗

satisfies
P(Q∗ + q) ≤ p ≤ P(Q∗).

(That is, the price is at least the minimal value p of the average cost, but is close
enough to this minimum that increasing the total output of the firms by q would re-
duce the price to at most p.) To establish these inequalities, show that if P(Q∗) < p

or P(Q∗ + q) > p then Q∗ is not the total output of the firms in a Nash equilibrium,
because in each case at least one firm can deviate and increase its profit.

3.1.5 A generalization of Cournot’s game: using common property

In Cournot’s game, the payoff function of each firm i is qiP(q1 + · · · + qn) − Ci(qi).
In particular, each firm’s payoff depends only on its output and the sum of all
the firm’s outputs, not on the distribution of the total output among the firms,
and decreases when this sum increases (given that P is decreasing). That is, the
payoff of each firm i may be written as fi(qi, q1 + · · ·+ qn), where the function fi is
decreasing in its second argument (given the value of its first argument, qi).
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This general payoff function captures many situations in which players com-
pete in using a piece of common property whose value to any one player dimin-
ishes as total use increases. The property might be a village green, for example; the
higher the total number of sheep grazed there, the less valuable the green is to any
given farmer.

The first property of a Nash equilibrium in Cournot’s model discussed in the
previous section applies to this general model: common property is “overused” in
a Nash equilibrium in the sense that every player’s payoff increases when every
player reduces her use of the property from its equilibrium level. For example, all
farmers’ payoffs increase if each farmer reduces her use of the village green from
its equilibrium level: in an equilibrium the green is “overgrazed”. The argument is
the same as the one illustrated in Figure 59.1 in the case of two players, because this
argument depends only on the fact that each player’s payoff function is smooth
and is decreasing in the other player’s action. (In Cournot’s model, the “common
property” that is overused is the demand for the good.)

? EXERCISE 61.1 (Interaction among resource-users) A group of n firms uses a com-
mon resource (a river or a forest, for example) to produce output. As more of the
resource is used, any given firm can produce less output. Denote by xi the amount
of the resource used by firm i (= 1, . . . , n). Assume specifically that firm i’s out-
put is xi(1 − (x1 + · · · + xn)) if x1 + · · · + xn ≤ 1, and zero otherwise. Each firm i

chooses xi to maximize its output. Formulate this situation as a strategic game.
Find values of α and c such that the game is the same as the one studied in Exer-
cise 59.1, and hence find its Nash equilibria. Find an action profile (x1, . . . , xn) at
which each firm’s output is higher than it is at the Nash equilibrium.

3.2 Bertrand’s model of oligopoly

3.2.1 General model

In Cournot’s game, each firm chooses an output; the price is determined by the
demand for the good in relation to the total output produced. In an alternative
model of oligopoly, associated with a review of Cournot’s book by Bertrand (1883),
each firm chooses a price, and produces enough output to meet the demand it
faces, given the prices chosen by all the firms. The model is designed to shed light
on the same questions that Cournot’s game addresses; as we shall see, some of the
answers it gives are different.

The economic setting for the model is similar to that for Cournot’s game. A
single good is produced by n firms; each firm can produce qi units of the good at
a cost of Ci(qi). It is convenient to specify demand by giving a “demand function”
D, rather than an inverse demand function as we did for Cournot’s game. The in-
terpretation of D is that if the good is available at the price p then the total amount
demanded is D(p).

Assume that if the firms set different prices then all consumers purchase the
good from the firm with the lowest price, which produces enough output to meet
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this demand. If more than one firm sets the lowest price, all the firms doing so
share the demand at that price equally. A firm whose price is not the lowest price
receives no demand and produces no output. (Note that a firm does not choose its
output strategically; it simply produces enough to satisfy all the demand it faces,
given the prices, even if its price is below its unit cost, in which case it makes a
loss. This assumption can be modified at the price of complicating the model.)

In summary, Bertrand’s oligopoly game is the following strategic game.

Players The firms.

Actions Each firm’s set of actions is the set of possible prices (nonnegative
numbers).

Preferences Firm i’s preferences are represented by its profit, equal to piD(pi)/m−
Ci(D(pi)/m) if firm i is one of m firms setting the lowest price (m = 1 if
firm i’s price pi is lower than every other price), and equal to zero if some
firm’s price is lower than pi.

3.2.2 Example: duopoly with constant unit cost and linear demand function

Suppose, as in Section 3.1.3, that there are two firms, each of whose cost functions
has constant unit cost c (that is, Ci(qi) = cqi for i = 1, 2). Assume that the demand
function is D(p) = α − p for p ≤ α and D(p) = 0 for p > α, and that c < α.

Because the cost of producing each unit is the same, equal to c, firm i makes the
profit of pi − c on every unit it sells. Thus its profit is

πi(p1, p2) =







(pi − c)(α − pi) if pi < pj
1
2 (pi − c)(α − pi) if pi = pj

0 if pi > pj,

where j is the other firm (j = 2 if i = 1, and j = 1 if i = 2).
As before, we can find the Nash equilibria of the game by finding the firms’

best response functions. If firm j charges pj, what is the best price for firm i to
charge? We can reason informally as follows. If firm i charges p j, it shares the
market with firm j; if it charges slightly less, it sells to the entire market. Thus if p j

exceeds c, so that firm i makes a positive profit selling the good at a price slightly
below pj, firm i is definitely better off serving all the market at such a price than
serving half of the market at the price pj. If pj is very high, however, firm i may be
able to do even better: by reducing its price significantly below p j it may increase
its profit, because the extra demand engendered by the lower price may more than
compensate for the lower revenue per unit sold. Finally, if p j is less than c, then
firm i’s profit is negative if it charges a price less than or equal to p j, whereas this
profit is zero if it charges a higher price. Thus in this case firm i would like to charge
any price greater than pj, to make sure that it gets no customers. (Remember that
if customers arrive at its door it is obliged to serve them, whether or not it makes
a profit by so doing.)
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We can make these arguments precise by studying firm i’s payoff as a function
of its price pi for various values of the price pj of firm j. Denote by pm the value
of p (price) that maximizes (p − c)(α − p). This price would be charged by a firm
with a monopoly of the market (because (p − c)(α − p) is the profit of such a firm).
Three cross-sections of firm i’s payoff function, for different values of p j, are shown
in black in Figure 63.1. (The gray dashed line is the function (pi − c)(α − pi).)

• If pj < c (firm j’s price is below the unit cost) then firm i’s profit is negative
if pi ≤ pj and zero if pi > pj (see the left panel of Figure 63.1). Thus any

price greater than pj is a best response to pj. That is, the set of firm i’s best
responses is Bi(pj) = {pi: pi > pj}.

• If pj = c then the analysis is similar to that of the previous case except that
pj, as well as any price greater than pj, yields a profit of zero, and hence is a
best response to pj: Bi(pj) = {pi: pi ≥ pj}.

• If c < pj ≤ pm then firm i’s profit increases as pi increases to pj, then drops
abruptly at pj (see the middle panel of Figure 63.1). Thus there is no best
response: firm i wants to choose a price less than p j, but is better off the
closer that price is to pj. For any price less than pj there is a higher price that
is also less than pj, so there is no best price. (I have assumed that a firm can
choose any number as its price; in particular, it is not restricted to charge an
integral number of cents.) Thus Bi(pj) is empty (has no members).

• If pj > pm then pm is the unique best response of firm i (see the right panel of
Figure 63.1): Bi(pj) = {pm}.

0

↑
πi

pi →
pj < c

c

pj

pm α
0

↑
πi

pi →
c < pj ≤ pm

c pj pm α
0

↑
πi

pi →
pj > pm

c pjpm α

Figure 63.1 Three cross-sections (in black) of firm i’s payoff function in Bertrand’s duopoly game.
Where the payoff function jumps, its value is given by the small disk; the small circles indicate points
that are excluded as values of the functions.

In summary, firm i’s best response function is given by

Bi(pj) =







{pi: pi > pj} if pj < c

{pi: pi ≥ pj} if pj = c

∅ if c < pj ≤ pm

{pm} if pm < pj,
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where ∅ denotes the set with no members (the “empty set”). Note the respects in
which this best response function differs qualitatively from a firm’s best response
function in Cournot’s game: for some actions of its opponent, a firm has no best
response, and for some actions it has multiple best responses.

The fact that firm i has no best response when c < p j < pm is an artifact of
modeling price as a continuous variable (a firm can choose its price to be any non-
negative number). If instead we assume that each firm’s price must be a multiple of
some indivisible unit ε (e.g. price must be an integral number of cents) then firm i’s
optimal response to a price pj with c < pj < pm is pj − ε. I model price as a con-
tinuous variable because doing so simplifies some of the analysis; in Exercise 65.2
you are asked to study the case of discrete prices.

When pj < c, firm i’s set of best responses is the set of all prices greater than
pj. In particular, prices between pj and c are best responses. You may object that
setting a price less than c is not very sensible. Such a price exposes firm i to the
risk of making a loss (if firm j chooses a higher price) and has no advantage over
the price of c, regardless of firm j’s price. That is, such a price is weakly dominated

(Definition 45.1) by the price c. Nevertheless, such a price is a best response! That
is, it is optimal for firm i to choose such a price, given firm j’s price: there is no price
that yields firm i a higher profit, given firm j’s price. The point is that when asking
if a player’s action is a best response to her opponent’s action, we do not consider
the “risk” that the opponent will take some other action.

Figure 64.1 shows the firms’ best response functions (firm 1’s on the left, firm 2’s
on the right). The shaded gray area in the left panel indicates that for a price p2 less
than c, any price greater than p2 is a best response for firm 1. The absence of a black
line along the sloping left boundary of this area indicates that only prices p1 greater

than (not equal to) p2 are included. The black line along the top of the area indicates
that for p2 = c any price greater than or equal to c is a best response. As before, the
dot indicates a point that is included, whereas the small circle indicates a point that
is excluded. Firm 2’s best response function has a similar interpretation.

c pm

c

pm

0

↑
p2

p1 →

B1(p2)

c pm

c

pm

0

↑
p2

p1 →

B2(p1)

Figure 64.1 The firms’ best response functions in Bertrand’s duopoly game. Firm 1’s best response
function is in the left panel; firm 2’s is in the right panel.
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A Nash equilibrium is a pair (p∗
1, p∗2) of prices such that p∗1 is a best response to

p∗2, and p∗2 is a best response to p∗1—that is, p∗1 is in B1(p∗2) and p∗2 is in B2(p∗1) (see
(34.2)). If we superimpose the two best response functions, any such pair is in the
intersection of their graphs. If you do so, you will see that the graphs have a single
point of intersection, namely (p∗

1, p∗2) = (c, c). That is, the game has a single Nash
equilibrium, in which each firm charges the price c.

The method of finding the Nash equilibria of a game by constructing the play-
ers’ best response functions is systematic. So long as these functions may be com-
puted, the method straightforwardly leads to the set of Nash equilibria. However,
in some games we can make a direct argument that avoids the need to construct
the entire best response functions. Using a combination of intuition and trial and
error we find the action profiles that seem to be equilibria, then we show precisely
that any such profile is an equilibrium and every other profile is not an equilib-
rium. To show that a pair of actions is not a Nash equilibrium we need only find a
better response for one of the players—not necessarily the best response.

In Bertrand’s game we can argue as follows. (i) First we show that (p1, p2) =

(c, c) is a Nash equilibrium. If one firm charges the price c then the other firm can
do no better than charge the price c also, because if it raises its price it sells no
output, and if it lowers its price it makes a loss. (ii) Next we show that no other
pair (p1, p2) is a Nash equilibrium, as follows.

• If pi < c for either i = 1 or i = 2 then the profit of the firm whose price is
lowest (or the profit of both firms, if the prices are the same) is negative, and
this firm can increase its profit (to zero) by raising its price to c.

• If pi = c and pj > c then firm i is better off increasing its price slightly,
making its profit positive rather than zero.

• If pi > c and pj > c, suppose that pi ≥ pj. Then firm i can increase its profit
by lowering pi to slightly below pj if D(pj) > 0 (i.e. if pj < α) and to pm if
D(pj) = 0 (i.e. if pj ≥ α).

In conclusion, both arguments show that when the unit cost of production is a
constant c, the same for both firms, and demand is linear, Bertrand’s game has a
unique Nash equilibrium, in which each firm’s price is equal to c.

? EXERCISE 65.1 (Bertrand’s duopoly game with constant unit cost) Consider the
extent to which the analysis depends upon the demand function D taking the spe-
cific form D(p) = α − p. Suppose that D is any function for which D(p) ≥ 0 for
all p and there exists p > c such that D(p) > 0 for all p ≤ p. Is (c, c) still a Nash
equilibrium? Is it still the only Nash equilibrium?

? EXERCISE 65.2 (Bertrand’s duopoly game with discrete prices) Consider the vari-
ant of the example of Bertrand’s duopoly game in this section in which each firm is
restricted to choose a price that is an integral number of cents. Take the monetary
unit to be a cent, and assume that c is an integer and α > c + 1. Is (c, c) a Nash
equilibrium of this game? Is there any other Nash equilibrium?
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3.2.3 Discussion

For a duopoly in which both firms have the same constant unit cost and the de-
mand function is linear, the Nash equilibria of Cournot’s and Bertrand’s games
generate different economic outcomes. The equilibrium price in Bertrand’s game
is equal to the common unit cost c, whereas the price associated with the equilib-
rium of Cournot’s game is 1

3 (α + 2c), which exceeds c because c < α. In particular,
the equilibrium price in Bertrand’s game is the lowest price compatible with the
firms’ not making losses, whereas the price at the equilibrium of Cournot’s game
is higher. In Cournot’s game, the price decreases towards c as the number of firms
increases (Exercise 59.1), whereas in Bertrand’s game it is c even if there are only
two firms. In the next exercise you are asked to show that as the number of firms
increases in Bertrand’s game, the price remains c.

? EXERCISE 66.1 (Bertrand’s oligopoly game) Consider Bertrand’s oligopoly game
when the cost and demand functions satisfy the conditions in Section 3.2.2 and
there are n firms, with n ≥ 3. Show that the set of Nash equilibria is the set of
profiles (p1, . . . , pn) of prices for which pi ≥ c for all i and at least two prices are
equal to c. (Show that any such profile is a Nash equilibrium, and that every other
profile is not a Nash equilibrium.)

What accounts for the difference between the Nash equilibria of Cournot’s and
Bertrand’s games? The key point is that different strategic variables (output in
Cournot’s game, price in Bertrand’s game) imply different strategic reasoning by
the firms. In Cournot’s game a firm changes its behavior if it can increase its profit
by changing its output, on the assumption that the other firms’ outputs will re-
main the same and the price will adjust to clear the market. In Bertrand’s game
a firm changes its behavior if it can increase its profit by changing its price, on
the assumption that the other firms’ prices will remain the same and their outputs
will adjust to clear the market. Which assumption makes more sense depends on
the context. For example, the wholesale market for agricultural produce may fit
Cournot’s game better, whereas the retail market for food may fit Bertrand’s game
better.

Under some variants of the assumptions in the previous section, Bertrand’s
game has no Nash equilibrium. In one case the firms’ cost functions have constant
unit costs, and these costs are different; in another case the cost functions have a
fixed component. In both these cases, as well as in some other cases, an equilib-
rium is restored if we modify the way in which consumers are divided between
the firms when the prices are the same, as the following exercises show. (We can
think of the division of consumers between firms charging the same price as being
determined as part of the equilibrium. Note that we retain the assumption that if
the firms charge different prices then the one charging the lower price receives all
the demand.)

? EXERCISE 66.2 (Bertrand’s duopoly game with different unit costs) Consider Ber-
trand’s duopoly game under a variant of the assumptions of Section 3.2.2 in which
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the firms’ unit costs are different, equal to c1 and c2, where c1 < c2. Denote by pm
1

the price that maximizes (p − c1)(α − p), and assume that c2 < pm
1 and that the

function (p − c1)(α − p) is increasing in p up to pm
1 .

a. Suppose that the rule for splitting up consumers when the prices are equal
assigns all consumers to firm 1 when both firms charge the price c2. Show
that (p1, p2) = (c2, c2) is a Nash equilibrium and that no other pair of prices
is a Nash equilibrium.

b. Show that no Nash equilibrium exists if the rule for splitting up consumers
when the prices are equal assigns some consumers to firm 2 when both firms
charge c2.

?? EXERCISE 67.1 (Bertrand’s duopoly game with fixed costs) Consider Bertrand’s
game under a variant of the assumptions of Section 3.2.2 in which the cost function
of each firm i is given by Ci(qi) = f + cqi for qi > 0, and Ci(0) = 0, where f is
positive and less than the maximum of (p − c)(α − p) with respect to p. Denote
by p the price p that satisfies (p − c)(α − p) = f and is less than the maximizer of
(p − c)(α − p) (see Figure 67.1). Show that if firm 1 gets all the demand when both
firms charge the same price then (p, p) is a Nash equilibrium. Show also that no
other pair of prices is a Nash equilibrium. (First consider cases in which the firms
charge the same price, then cases in which they charge different prices.)

0 p →

(p − c)(α − p)
f

αc p

Figure 67.1 The determination of the price p in Exercise 67.1.

COURNOT, BERTRAND, AND NASH: SOME HISTORICAL NOTES

Associating the names of Cournot and Bertrand with the strategic games in Sec-
tions 3.1 and 3.2 invites two conclusions. First, that Cournot, writing in the first
half of the nineteenth century, developed the concept of Nash equilibrium in the
context of a model of oligopoly. Second, that Bertrand, dissatisfied with Cournot’s
game, proposed an alternative model in which price rather than output is the
strategic variable. On both points the history is much less straightforward.

Cournot presented his “equilibrium” as the outcome of a dynamic adjustment
process in which, in the case of two firms, the firms alternately choose best re-
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sponses to each other’s outputs. During such an adjustment process, each firm,
when choosing an output, acts on the assumption that the other firm’s output will
remain the same, an assumption shown to be incorrect when the other firm subse-
quently adjusts its output. The fact that the adjustment process rests on the firms’
acting on assumptions constantly shown to be false was the subject of criticism in a
leading presentation of Cournot’s model (Fellner 1949) available at the time Nash
was developing his idea.

Certainly Nash did not literally generalize Cournot’s idea: the evidence sug-
gests that he was completely unaware of Cournot’s work when developing the
notion of Nash equilibrium (Leonard 1994, 502–503). In fact, only gradually,
as Nash’s work was absorbed into mainstream economic theory, was Cournot’s
solution interpreted as a Nash equilibrium (Leonard 1994, 507–509).

The association of the price-setting model with Bertrand (a mathematician)
rests on a paragraph in a review of Cournot’s book written by Bertrand in 1883.
(Cournot’s book, published in 1838, had previously been largely ignored.) The re-
view is confused. Bertrand is under the impression that in Cournot’s model the
firms compete in prices, undercutting each other to attract more business! He ar-
gues that there is “no solution” because there is no limit to the fall in prices, a
result he says that Cournot’s formulation conceals (Bertrand 1883, 503). In brief,
Bertrand’s understanding of Cournot’s work is flawed; he sees that price competi-
tion leads each firm to undercut the other, but his conclusion about the outcome is
incorrect.

Through the lens of modern game theory we see that the models associated
with Cournot and Bertrand are strategic games that differ only in the strategic
variable, the solution in both cases being a Nash equilibrium. Until Nash’s work,
the picture was much murkier.

3.3 Electoral competition

What factors determine the number of political parties and the policies they pro-
pose? How is the outcome of an election affected by the electoral system and the
voters’ preferences among policies? A model that is the foundation for many the-
ories of political phenomena addresses these questions. In the model, each of sev-
eral candidates chooses a policy; each citizen has preferences over policies and
votes for one of the candidates.

A simple version of this model is a strategic game in which the players are the
candidates and a policy is a number, referred to as a “position”. (The compression
of all policy differences into one dimension is a major abstraction, though politi-
cal positions are often categorized on a left–right axis.) After the candidates have
chosen positions, each of a set of citizens votes (nonstrategically) for the candidate
whose position she likes best. The candidate who obtains the most votes wins.
Each candidate cares only about winning; no candidate has an ideological attach-
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ment to any position. Specifically, each candidate prefers to win than to tie for first
place (in which case perhaps the winner is determined randomly) than to lose,
and if she ties for first place she prefers to do so with as few other candidates as
possible.

There is a continuum of voters, each with a favorite position. The distribution
of these favorite positions over the set of all possible positions is arbitrary. In par-
ticular, this distribution may not be uniform: a large fraction of the voters may
have favorite positions close to one point, while few voters have favorite positions
close to some other point. A position that turns out to have special significance is
the median favorite position: the position m with the property that exactly half of
the voters’ favorite positions are at most m, and half of the voters’ favorite positions
are at least m. (I assume that there is only one such position.)

Each voter’s distaste for any position is given by the distance between that
position and her favorite position. In particular, for any value of k, a voter whose
favorite position is x∗ is indifferent between the positions x∗ − k and x∗ + k. (Refer
to Figure 69.1.)

x∗x∗ − k x∗ + k

x →

Figure 69.1 The payoff of a voter whose favorite position is x∗, as a function of the winning position, x.

Under this assumption, each candidate attracts the votes of all citizens whose
favorite positions are closer to her position than to the position of any other can-
didate. An example is shown in Figure 69.2. In this example there are three candi-
dates, with positions x1, x2, and x3. Candidate 1 attracts the votes of every citizen
whose favorite position is in the interval, labeled “votes for 1”, up to the midpoint
1
2 (x1 + x2) of the line segment from x1 to x2; candidate 2 attracts the votes of ev-
ery citizen whose favorite position is in the interval from 1

2 (x1 + x2) to 1
2 (x2 + x3);

and candidate 3 attracts the remaining votes. I assume that citizens whose favorite
position is 1

2 (x1 + x2) divide their votes equally between candidates 1 and 2, and
those whose favorite position is 1

2 (x2 + x3) divide their votes equally between can-
didates 2 and 3. If two or more candidates take the same position then they share
equally the votes that the position attracts.

x1 x2 x3
1
2 (x1 + x2) 1

2 (x2 + x3)

votes for 1 votes for 2 votes for 3

Figure 69.2 The allocation of votes between three candidates, with positions x1, x2, and x3.
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In summary, I consider the following strategic game, which, in honor of its
originator, I call Hotelling’s model of electoral competition.

Players The candidates.

Actions Each candidate’s set of actions is the set of positions (numbers).

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every action profile in which she wins outright, k to every
action profile in which she ties for first place with n − k other candidates
(for 1 ≤ k ≤ n − 1), and 0 to every action profile in which she loses, where
positions attract votes in the way described in the previous paragraph.

Suppose there are two candidates. We can find a Nash equilibrium of the game
by studying the players’ best response functions. Fix the position x2 of candidate 2
and consider the best position for candidate 1. First suppose that x2 < m. If
candidate 1 takes a position to the left of x2 then candidate 2 attracts the votes of
all citizens whose favorite positions are to the right of 1

2 (x1 + x2), a set that includes
the 50% of citizens whose favorite positions are to the right of m, and more. Thus
candidate 2 wins, and candidate 1 loses. If candidate 1 takes a position to the right
of x2 then she wins so long as the dividing line between her supporters and those
of candidate 2 is less than m (see Figure 70.1). If she is so far to the right that this
dividing line lies to the right of m then she loses. She prefers to win than to lose,
and is indifferent between all the outcomes in which she wins, so her set of best
responses to x2 is the set of positions that causes the midpoint 1

2 (x1 + x2) of the
line segment from x2 to x1 to be less than m. (If this midpoint is equal to m then the
candidates tie.) The condition 1

2 (x1 + x2) < m is equivalent to x1 < 2m − x2, so
candidate 1’s set of best responses to x2 is the set of all positions between x2 and
2m − x2 (excluding the points x2 and 2m − x2).

x2 x1
1
2 (x1 + x2) m

votes for 2 votes for 1

Figure 70.1 An action profile (x1, x2) for which candidate 1 wins.

A symmetric argument applies to the case in which x2 > m. In this case candi-
date 1’s set of best responses to x2 is the set of all positions between 2m − x2 and
x2.

Finally consider the case in which x2 = m. In this case candidate 1’s unique
best response is to choose the same position, m! If she chooses any other position
then she loses, whereas if she chooses m then she ties for first place.

In summary, candidate 1’s best response function is defined by

B1(x2) =







{x1: x2 < x1 < 2m − x2} if x2 < m

{m} if x2 = m

{x1: 2m − x2 < x1 < x2} if x2 > m.
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Candidate 2 faces exactly the same incentives as candidate 1, and hence has the
same best response function. The candidates’ best response functions are shown
in Figure 71.1.

↑
x2

x1 →m

m

B1(x2)

↑
x2

x1 →m

m B2(x1)

Figure 71.1 The candidates’ best response functions in Hotelling’s model of electoral competition with
two candidates. Candidate 1’s best response function is in the left panel; candidate 2’s is in the right
panel. (The edges of the shaded areas are excluded.)

If you superimpose the two best response functions, you see that the game has
a unique Nash equilibrium, in which both candidates choose the position m, the
voters’ median favorite position. (Remember that the edges of the shaded area,
which correspond to pairs of positions that result in ties, are excluded from the
best response functions.) The outcome is that the election is a tie.

As in the case of Bertrand’s duopoly game in the previous section, we can make
a direct argument that (m, m) is the unique Nash equilibrium of the game, with-
out constructing the best response functions. First, (m, m) is an equilibrium: it
results in a tie, and if either candidate chooses a position different from m then she
loses. Second, no other pair of positions is a Nash equilibrium, by the following
argument.

• If one candidate loses then she can do better by moving to m, where she
either wins outright (if her opponent’s position is different from m) or ties
for first place (if her opponent’s position is m).

• If the candidates tie (because their positions are either the same or symmetric
about m), then either candidate can do better by moving to m, where she wins
outright.

Our conclusion is that the competition between the candidates to secure a ma-
jority of the votes drives them to select the same position, equal to the median of
the citizens’ favorite positions. Hotelling (1929, 54), the originator of the model,
writes that this outcome is “strikingly exemplified.” He continues, “The compe-
tition for votes between the Republican and Democratic parties [in the USA] does
not lead to a clear drawing of issues, an adoption of two strongly contrasted posi-
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tions between which the voter may choose. Instead, each party strives to make its
platform as much like the other’s as possible.”

? EXERCISE 72.1 (Electoral competition with asymmetric voters’ preferences) Con-
sider a variant of Hotelling’s model in which voters’s preferences are asymmetric.
Specifically, suppose that each voter cares twice as much about policy differences
to the left of her favorite position than about policy differences to the right of her
favorite position. How does this affect the Nash equilibrium?

In the model considered so far, no candidate has the option of staying out of the
race. Suppose that we give each candidate this option; assume that it is better than
losing and worse than tying for first place. Then the Nash equilibrium remains as
before: both players enter the race and choose the position m. The direct argument
differs from the one before only in that in addition we need to check that there is
no equilibrium in which one or both of the candidates stays out of the race. If one
candidate stays out then, given the other candidate’s position, she can enter and
either win outright or tie for first place. If both candidates stay out, then either
candidate can enter and win outright.

The next exercise asks you to consider the Nash equilibria of this variant of the
model when there are three candidates.

? EXERCISE 72.2 (Electoral competition with three candidates) Consider a variant of
Hotelling’s model in which there are three candidates and each candidate has the
option of staying out of the race, which she regards as better than losing and worse
than tying for first place. Use the following arguments to show that the game has
no Nash equilibrium. First, show that there is no Nash equilibrium in which a
single candidate enters the race. Second, show that in any Nash equilibrium in
which more than one candidate enters, all candidates that enter tie for first place.
Third, show that there is no Nash equilibrium in which two candidates enter the
race. Fourth, show that there is no Nash equilibrium in which all three candidates
enter the race and choose the same position. Finally, show that there is no Nash
equilibrium in which all three candidates enter the race, and do not all choose the
same position.

?? EXERCISE 72.3 (Electoral competition in two districts) Consider a variant of Hotelling’s
model that captures features of a US presidential election. Voters are divided be-
tween two districts. District 1 is worth more electoral college votes than is dis-
trict 2. The winner is the candidate who obtains the most electoral college votes.
Denote by mi the median favorite position among the citizens of district i, for i = 1,
2; assume that m2 < m1. Each of two candidates chooses a single position. Each
citizen votes (nonstrategically) for the candidate whose position in closest to her
favorite position. The candidate who wins a majority of the votes in a district ob-
tains all the electoral college votes of that district; if the candidates obtain the same
number of votes in a district, they each obtain half of the electoral college votes
of that district. Find the Nash equilibrium (equilibria?) of the strategic game that
models this situation.
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So far we have assumed that the candidates care only about winning; they are
not at all concerned with the winner’s position. The next exercise asks you to
consider the case in which each candidate cares only about the winner’s position,
and not at all about winning. (You may be surprised by the equilibrium.)

?? EXERCISE 73.1 (Electoral competition between candidates who care only about the
winning position) Consider the variant of Hotelling’s model in which the can-
didates (like the citizens) care about the winner’s position, and not at all about
winning per se. There are two candidates. Each candidate has a favorite position;
her dislike for other positions increases with their distance from her favorite po-
sition. Assume that the favorite position of one candidate is less than m and the
favorite position of the other candidate is greater than m. Assume also that if the
candidates tie when they take the positions x1 and x2 then the outcome is the com-
promise policy 1

2 (x1 + x2). Find the set of Nash equilibria of the strategic game
that models this situation. (First consider pairs (x1, x2) of positions for which ei-
ther x1 < m and x2 < m, or x1 > m and x2 > m. Next consider pairs (x1, x2) for
which either x1 < m < x2, or x2 < m < x1, then those for which x1 = m and
x2 6= m, or x1 6= m and x2 = m. Finally consider the pair (m, m).)

The set of candidates in Hotelling’s model is given. The next exercise asks
you to analyze a model in which the set of candidates is generated as part of an
equilibrium.

?? EXERCISE 73.2 (Citizen-candidates) Consider a game in which the players are the
citizens. Any citizen may, at some cost c > 0, become a candidate. Assume that
the only position a citizen can espouse is her favorite position, so that a citizen’s
only decision is whether to stand as a candidate. After all citizens have (simulta-
neously) decided whether to become candidates, each citizen votes for her favorite
candidate, as in Hotelling’s model. Citizens care about the position of the winning
candidate; a citizen whose favorite position is x loses |x − x∗| if the winning candi-
date’s position is x∗. (For any number z, |z| denotes the absolute value of z: |z| = z

if z > 0 and |z| = −z if z < 0.) Winning confers the benefit b. Thus a citizen who
becomes a candidate and ties with k − 1 other candidates for first place obtains the
payoff b/k − c; a citizen with favorite position x who becomes a candidate and is
not one of the candidates tied for first place obtains the payoff −|x − x∗| − c, where
x∗ is the winner’s position; and a citizen with favorite position x who does not
become a candidate obtains the payoff −|x − x∗|, where x∗ is the winner’s posi-
tion. Assume that for every position x there is a citizen for whom x is the favorite
position. Show that if b ≤ 2c then the game has a Nash equilibrium in which one
citizen becomes a candidate. Is there an equilibrium (for any values of b and c) in
which two citizens, each with favorite position m, become candidates? Is there an
equilibrium in which two citizens with favorite positions different from m become
candidates?

Hotelling’s model assumes a basic agreement among the voters about the or-
dering of the positions. For example, if one voter prefers x to y to z and another
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voter prefers y to z to x, no voter prefers z to x to y. The next exercise asks you to
study a model that does not so restrict the voters’ preferences.

? EXERCISE 74.1 (Electoral competition for more general preferences) There is a fi-
nite number of positions and a finite, odd, number of voters. For any positions x

and y, each voter either prefers x to y or prefers y to x. (No voter regards any two
positions as equally desirable.) We say that a position x∗ is a Condorcet winner if for
every position y different from x∗, a majority of voters prefer x∗ to y.

a. Show that for any configuration of preferences there is at most one Condorcet
winner.

b. Give an example in which no Condorcet winner exists. (Suppose there are
three positions (x, y, and z) and three voters. Assume that voter 1 prefers x

to y to z. Construct preferences for the other two voters such that one voter
prefers x to y and the other prefers y to x, one prefers x to z and the other
prefers z to x, and one prefers y to z and the other prefers z to y. The pref-
erences you construct must, of course, satisfy the condition that a voter who
prefers a to b and b to c also prefers a to c, where a, b, and c are any positions.)

c. Consider the strategic game in which two candidates simultaneously choose
positions, as in Hotelling’s model. If the candidates choose different posi-
tions, each voter endorses the candidate whose position she prefers, and the
candidate who receives the most votes wins. If the candidates choose the
same position, they tie. Show that this game has a unique Nash equilibrium
if the voters’ preferences are such that there is a Condorcet winner, and has no
Nash equilibrium if the voters’ preferences are such that there is no Condorcet
winner.

A variant of Hotelling’s model of electoral competition can be used to analyze
the choices of product characteristics by competing firms in situations in which
price is not a significant variable. (Think of radio stations that offer different styles
of music, for example.) The set of positions is the range of possible characteristics
for the product, and the citizens are consumers rather than voters. Consumers’
tastes differ; each consumer buys (at a fixed price, possibly zero) one unit of the
product she likes best. The model differs substantially from Hotelling’s model of
electoral competition in that each firm’s objective is to maximize its market share,
rather than to obtain a market share larger than that of any other firm. In the
next exercise you are asked to show that the Nash equilibria of this game in the
case of two or three firms are the same as those in Hotelling’s model of electoral
competition.

? EXERCISE 74.2 (Competition in product characteristics) In the variant of Hotelling’s
model that captures competing firms’ choices of product characteristics, show that
when there are two firms the unique Nash equilibrium is (m, m) (both firms offer
the consumers’ median favorite product) and when there are three firms there is no
Nash equilibrium. (Start by arguing that when there are two firms whose products
differ, either firm is better off making its product more similar to that of its rival.)
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3.4 The War of Attrition

The game known as the War of Attrition elaborates on the ideas captured by the
game Hawk–Dove (Exercise 29.2). It was originally posed as a model of a conflict
between two animals fighting over prey. Each animal chooses the time at which
it intends to give up. When an animal gives up, its opponent obtains all the prey
(and the time at which the winner intended to give up is irrelevant). If both animals
give up at the same time then they each have an equal chance of obtaining the prey.
Fighting is costly: each animal prefers as short a fight as possible.

The game models not only such a conflict between animals, but also many other
disputes. The “prey” can be any indivisible object, and “fighting” can be any costly
activity—for example, simply waiting.

To define the game precisely, let time be a continuous variable that starts at
0 and runs indefinitely. Assume that the value party i attaches to the object in
dispute is vi > 0 and the value it attaches to a 50% chance of obtaining the object
is vi/2. Each unit of time that passes before the dispute is settled (i.e. one of the
parties concedes) costs each party one unit of payoff. Thus if player i concedes
first, at time ti, her payoff is −ti (she spends ti units of time and does not obtain
the object). If the other player concedes first, at time t j, player i’s payoff is vi − tj

(she obtains the object after tj units of time). If both players concede at the same
time, player i’s payoff is 1

2 vi − ti, where ti is the common concession time. The War

of Attrition is the following strategic game.

Players The two parties to a dispute.

Actions Each player’s set of actions is the set of possible concession times (non-
negative numbers).

Preferences Player i’s preferences are represented by the payoff function

ui(t1, t2) =







−ti if ti < tj
1
2 vi − ti if ti = tj

vi − tj if ti > tj,

where j is the other player.

To find the Nash equilibria of this game, we start, as before, by finding the
players’ best response functions. Intuitively, if player j’s intended concession time
is early enough (tj is small) then it is optimal for player i to wait for player j to
concede. That is, in this case player i should choose a concession time later than
tj; any such time is equally good. By contrast, if player j intends to hold out for a
long time (tj is large) then player i should concede immediately. Because player i

values the object at vi, the length of time it is worth her waiting is vi.
To make these ideas precise, we can study player i’s payoff function for various

fixed values of tj, the concession time of player j. The three cases that the intuitive
argument suggests are qualitatively different are shown in Figure 76.1: t j < vi in
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the left panel, tj = vi in the middle panel, and tj > vi in the right panel. Player i’s
best responses in each case are her actions for which her payoff is highest: the set
of times after tj if tj < vi, 0 and the set of times after tj if tj = vi, and 0 if tj > vi.

0

↑
ui

ti →

tj < vi

tj vi 0

↑
ui

ti →

tj = vi

tj = vi 0

↑
ui

ti →

tj > vi

tjvi

Figure 76.1 Three cross-sections of player i’s payoff function in the War of Attrition.

In summary, player i’s best response function is given by

Bi(tj) =







{ti: ti > tj} if tj < vi

{ti: ti = 0 or ti > tj} if tj = vi

{0} if tj > vi.

For a case in which v1 > v2, this function is shown in the left panel of Figure 76.2
for i = 1 and j = 2 (player 1’s best response function), and in the right panel for
i = 2 and j = 1 (player 2’s best response function).

↑
t2

t1 →

v1

v1

B1(p2)

0

↑
t2

t1 →v2

v2 B2(p1)

0

Figure 76.2 The players’ best response functions in the War of Attrition (for a case in which v1 > v2).
Player 1’s best response function is in the left panel; player 2’s is in the right panel. (The sloping edges
are excluded.)

Superimposing the players’ best response functions, we see that there are two
areas of intersection: the vertical axis at and above v1 and the horizontal axis at
and to the right of v2. Thus (t1, t2) is a Nash equilibrium of the game if and only if
either

t1 = 0 and t2 ≥ v1
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or
t2 = 0 and t1 ≥ v2.

In words, in every equilibrium either player 1 concedes immediately and player 2
concedes at time v1 or later, or player 2 concedes immediately and player 1 con-
cedes at time v2 or later.

? EXERCISE 77.1 (Direct argument for Nash equilibria of War of Attrition) Give a
direct argument, not using information about the entire best response functions,
for the set of Nash equilibria of the War of Attrition. (Argue that if t1 = t2, 0 <

ti < tj, or 0 = ti < tj < vi (for i = 1 and j = 2, or i = 2 and j = 1) then the pair
(t1, t2) is not a Nash equilibrium. Then argue that any remaining pair is a Nash
equilibrium.)

Three features of the equilibria are notable. First, in no equilibrium is there any
fight: one player always concedes immediately. Second, either player may concede
first, regardless of the players’ valuations. In particular, there are always equilibria
in which the player who values the object more highly concedes first. Third, the
equilibria are asymmetric (the players’ actions are different), even when v1 = v2,
in which case the game is symmetric—the players’ sets of actions are the same
and player 1’s payoff to (t1, t2) is the same as player 2’s payoff to (t2, t1) (Defini-
tion 49.3). Given this asymmetry, the populations from which the two players are
drawn must be distinct in order to interpret the Nash equilibria as action profiles
compatible with steady states. One player might be the current owner of the object
in dispute, and the other a challenger, for example. In this case the equilibria corre-
spond to the two conventions that a challenger always gives up immediately, and
that an owner always does so. (Some evidence is discussed in the box on page 412.)
If all players—those in the role of player 1 as well as those in the role of player 2—
are drawn from a single population, then only symmetric equilibria are relevant
(see Section 2.10). The War of Attrition has no such equilibria, so the notion of Nash
equilibrium makes no prediction about the outcome in such a situation.

? EXERCISE 77.2 (Variant of War of Attrition) Consider the variant of the War of Attri-

tion in which each player attaches no value to the time spent waiting for the other
player to concede, but the object in dispute loses value as time passes. (Think of a
rotting animal carcass or a melting ice cream cone.) Assume that the value of the
object to each player i after t units of time is vi − t (and the value of a 50% chance
of obtaining the object is 1

2 (vi − t)). Specify the strategic game that models this sit-
uation (take care with the payoff functions). Construct the analogue of Figure 76.1,
find the players’ best response functions, and hence find the Nash equilibria of the
game.

The War of Attrition is an example of a “game of timing”, in which each player’s
action is a number and each player’s payoff depends sensitively on whether her
action is greater or less than the other player’s action. In many such games, each
player’s strategic variable is the time at which to act, hence the name “game of
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timing”. The next two exercises are further examples of such games. (In the first
the strategic variable is time, whereas in the second it is not.)

? EXERCISE 78.1 (Timing product release) Two firms are developing competing prod-
ucts for a market of fixed size. The longer a firm spends on development, the better
its product. But the first firm to release its product has an advantage: the customers
it obtains will not subsequently switch to its rival. (Once a person starts using a
product, the cost of switching to an alternative, even one significantly better, is too
high to make a switch worthwhile.) A firm that releases its product first, at time t,
captures the share h(t) of the market, where h is a function that increases from
time 0 to time T, with h(0) = 0 and h(T) = 1. The remaining market share is left
for the other firm. If the firms release their products at the same time, each obtains
half of the market. Each firm wishes to obtain the highest possible market share.
Model this situation as a strategic game and find its Nash equilibrium (equilibria?).
(When finding firm i’s best response to firm j’s release time t j, there are three cases:
that in which h(tj) < 1

2 (firm j gets less than half of the market if it is the first to
release its product), that in which h(tj) = 1

2 , and that in which h(tj) > 1
2 .)

? EXERCISE 78.2 (A fight) Each of two people has one unit of a resource. Each person
chooses how much of the resource to use in fighting the other individual and how
much to use productively. If each person i devotes yi to fighting then the total
output is f (y1, y2) ≥ 0 and person i obtains the fraction pi(y1, y2) of the output,
where

pi(y1, y2) =







1 if yi > yj
1
2 if yi = yj

0 if yi < yj.

The function f is continuous (small changes in y1 and y2 cause small changes in
f (y1, y2)), is decreasing in both y1 and y2 (the more each player devotes to fighting,
the less output is produced), and satisfies f (1, 1) = 0 (if each player devotes all her
resource to fighting then no output is produced). (If you prefer to deal with a
specific function f , take f (y1, y2) = 2 − y1 − y2.) Each person cares only about the
amount of output she receives, and prefers to receive as much as possible. Specify
this situation as a strategic game and find its Nash equilibrium (equilibria?). (Use
a direct argument: first consider pairs (y1, y2) with y1 6= y2, then those with y1 =

y2 < 1, then those with y1 = y2 = 1.)

3.5 Auctions

3.5.1 Introduction

In an “auction”, a good is sold to the party who submits the highest bid. Auctions,
broadly defined, are used to allocate significant economic resources, from works of
art to short-term government bonds to offshore tracts for oil and gas exploration
to the radio spectrum. They take many forms. For example, bids may be called
out sequentially (as in auctions for works of art) or may be submitted in sealed
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envelopes; the price paid may be the highest bid, or some other price; if more than
one unit of a good is being sold, bids may be taken on all units simultaneously,
or the units may be sold sequentially. A game-theoretic analysis helps us to un-
derstand the consequences of various auction designs; it suggests, for example,
the design likely to be the most effective at allocating resources, and the one likely
to raise the most revenue. In this section I discuss auctions in which every buyer
knows her own valuation and every other buyer’s valuation of the item being sold.
Chapter 9 develops tools that allow us to study, in Section 9.6, auctions in which
buyers are not perfectly informed of each other’s valuations.

AUCTIONS FROM BABYLONIA TO EBAY

Auctioning has a very long history. Herodotus, a Greek writer of the fifth cen-
tury BC who, together with Thucydides, created the intellectual field of history,
describes auctions in Babylonia. He writes that the Babylonians’ “most sensible”
custom was an annual auction in each village of the women of marriageable age.
The women most attractive to the men were sold first; they commanded positive
prices, whereas men were paid to be matched with the least desirable women. In
each auction, bids appear to have been called out sequentially, the man who bid
the most winning and paying the price he bid.

Auctions were also used in Athens in the fifth and fourth centuries BC to sell
the rights to collect taxes, to dispose of confiscated property, and to lease land and
mines. The evidence on the nature of the auctions is slim, but some interesting
accounts survive. For example, the Athenian politician Andocides (c. 440–391 BC)
reports collusive behavior in an auction of tax-collection rights (see Langdon 1994,
260).

Auctions were frequent in ancient Rome, and continued to be used in medieval
Europe after the end of the Roman empire (tax-collection rights were annually auc-
tioned by the towns of the medieval and early modern Low Countries, for exam-
ple). The earliest use of the English word “auction” given by the Oxford English

Dictionary dates from 1595, and concerns an auction “when will be sold Slaves,
household goods, etc.”. Rules surviving from the auctions of this era show that in
some cases, at least, bids were called out sequentially, with the bidder remaining
at the end obtaining the object at the price she bid (Cassady 1967, 30–31). A variant
of this mechanism, in which a time limit is imposed on the bids, is reported by the
English diarist and naval administrator Samuel Pepys (1633–1703). The auction-
eer lit a short candle, and bids were valid only if made before the flame went out.
Pepys reports that a flurry of bidding occurred at the last moment. At an auction
on September 3, 1662, a bidder “cunninger than the rest” told him that just as the
flame goes out, “the smoke descends”, signaling the moment at which one should
bid, an observation Pepys found “very pretty” (Pepys 1970, 185–186).

The auction houses of Sotheby’s and Christie’s were founded in the mid-18th
century. At the beginning of the twenty-first century, they are being eclipsed, at
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least in the value of the goods they sell, by online auction companies. For example,
eBay, founded in September 1995, sold US$1.3 billion of merchandise in 62 million
auctions during the second quarter of 2000, roughly double the numbers for the
second quarter of the previous year; Sotheby’s and Christie’s together sell around
US$1 billion of art and antiques each quarter.

The mechanism used by eBay shares a feature with the ones Pepys observed:
all bids must be received before some fixed time. The way in which the price is
determined differs. In an eBay auction, a bidder submits a “proxy bid” that is not
revealed; the prevailing price is a small increment above the second-highest proxy
bid. As in the 17th century auctions Pepys observed, many bidders on eBay act at
the last moment—a practice known as “sniping” in the argot of cyberspace. Other
online auction houses use different termination rules. For example, Amazon waits
ten minutes after a bid before closing an auction. The fact that last-minute bidding
is much less common in Amazon auctions than it is in eBay auctions has attracted
the attention of game theorists, who have begun to explore models that explain
it in terms of the difference in the auctions’ termination rules (see, for example,
Ockenfels and Roth 2002).

In recent years, many countries have auctioned the rights to the radio spec-
trum, used for wireless communication. These auctions have been much studied
by game theorists; they are discussed in the box on page 300.

3.5.2 Second-price sealed-bid auctions

In a common form of auction, people sequentially submit increasing bids for an
object. (The word “auction” comes from the Latin augere, meaning “to increase”.)
When no one wishes to submit a bid higher than the current bid, the person mak-
ing the current bid obtains the object at the price she bid.

Given that every person is certain of her valuation of the object before the bid-
ding begins, during the bidding no one can learn anything relevant to her actions.
Thus we can model the auction by assuming that each person decides, before bid-
ding begins, the most she is willing to bid—her “maximal bid”. When the players
carry out their plans, the winner is the person whose maximal bid is highest. How
much does she need to bid? Eventually only she and the person with the second
highest maximal bid will be left competing against each other. In order to win,
she therefore needs to bid slightly more than the second highest maximal bid. If the
bidding increment is small, we can take the price the winner pays to be equal to the
second highest maximal bid.

Thus we can model such an auction as a strategic game in which each player
chooses an amount of money, interpreted as the maximal amount she is willing to
bid, and the player who chooses the highest amount obtains the object and pays a
price equal to the second highest amount.

This game models also a situation in which the people simultaneously put bids
in sealed envelopes, and the person who submits the highest bid wins and pays a
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price equal to the second highest bid. For this reason the game is called a second-price

sealed-bid auction.
To define the game precisely, denote by vi the value player i attaches to the

object; if she obtains the object at the price p her payoff is vi − p. Assume that
the players’ valuations of the object are all different and all positive; number the
players 1 through n in such a way that v1 > v2 > · · · > vn > 0. Each player i

submits a (sealed) bid bi. If player i’s bid is higher than every other bid, she obtains
the object at a price equal to the second-highest bid, say bj, and hence receives the
payoff vi − bj. If some other bid is higher than player i’s bid, player i does not
obtain the object, and receives the payoff of zero. If player i is in a tie for the highest
bid, her payoff depends on the way in which ties are broken. A simple (though
arbitrary) assumption is that the winner is the player among those submitting the
highest bid whose number is smallest (i.e. whose valuation of the object is highest).
(If the highest bid is submitted by players 2, 5, and 7, for example, the winner is
player 2.) Under this assumption, player i’s payoff when she bids bi and is in a tie
for the highest bid is vi − bi if her number is lower than that of any other player
submitting the bid bi, and 0 otherwise.

In summary, a second-price sealed-bid auction (with complete information) is
the following strategic game.

Players The n bidders, where n ≥ 2.

Actions The set of actions of each player is the set of possible bids (nonnegative
numbers).

Preferences The payoff of any player i is vi − bj, where bj is the highest bid
submitted by a player other than i if either bi is higher than every other bid,
or bi is at least as high as every other bid and the number of every other
player who bids bi is greater than i. Otherwise player i’s payoff is 0.

This game has many Nash equilibria. One equilibrium is (b1, . . . , bn) = (v1, . . . ,
vn): each player’s bid is equal to her valuation of the object. Because v1 > v2 >

· · · > vn, the outcome is that player 1 obtains the object at the price b2; her payoff is
v1 − b2 and every other player’s payoff is zero. This profile is a Nash equilibrium
by the following argument.

• If player 1 changes her bid to some other price at least equal to b2 then the
outcome does not change (recall that she pays the second highest bid, not the
highest bid). If she changes her bid to a price less than b2 then she loses and
obtains the payoff of zero.

• If some other player lowers her bid or raises it to some price at most equal to
b1 then she remains a loser; if she raises her bid above b1 then she wins but,
in paying the price b1, makes a loss (because her valuation is less than b1).

Another equilibrium is (b1, . . . , bn) = (v1, 0, . . . , 0). In this equilibrium, player 1
obtains the object and pays the price of zero. The profile is an equilibrium because
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if player 1 changes her bid then the outcome remains the same, and if any of the
remaining players raises her bid then either the outcome remains the same (if her
new bid is at most v1) or causes her to obtain the object at a price that exceeds her
valuation (if her bid exceeds v1). (The auctioneer obviously has an incentive for
the price to be bid up, but she is not a player in the game!)

In both of these equilibria, player 1 obtains the object. But there are also equilib-
ria in which player 1 does not obtain the object. Consider, for example, the action
profile (v2, v1, 0, . . . , 0), in which player 2 obtains the object at the price v2 and ev-
ery player (including player 2) receives the payoff of zero. This action profile is a
Nash equilibrium by the following argument.

• If player 1 raises her bid to v1 or more, she wins the object but her payoff
remains zero (she pays the price v1, bid by player 2). Any other change in
her bid has no effect on the outcome.

• If player 2 changes her bid to some other price greater than v2, the outcome
does not change. If she changes her bid to v2 or less she loses, and her payoff
remains zero.

• If any other player raises her bid to at most v1, the outcome does not change.
If she raises her bid above v1 then she wins, but in paying the price v1 (bid
by player 2) she obtains a negative payoff.

? EXERCISE 82.1 (Nash equilibrium of second-price sealed-bid auction) Find a Nash
equilibrium of a second-price sealed-bid auction in which player n obtains the
object.

Player 2’s bid in this equilibrium exceeds her valuation, and thus may seem a
little rash: if player 1 were to increase her bid to any value less than v1, player 2’s
payoff would be negative (she would obtain the object at a price greater than
her valuation). This property of the action profile does not affect its status as an
equilibrium, because in a Nash equilibrium a player does not consider the “risk”
that another player will take an action different from her equilibrium action; each
player simply chooses an action that is optimal, given the other players’ actions.
But the property does suggest that the equilibrium is less plausible as the outcome
of the auction than the equilibrium in which every player bids her valuation.

The same point takes a different form when we interpret the strategic game as a
model of events that unfold over time. Under this interpretation, player 2’s action
v1 means that she will continue bidding until the price reaches v1. If player 1 is sure

that player 2 will continue bidding until the price is v1, then player 1 rationally
stops bidding when the price reaches v2 (or, indeed, when it reaches any other
level at most equal to v1). But there is little reason for player 1 to believe that
player 2 will in fact stay in the bidding if the price exceeds v2: player 2’s action is
not credible, because if the bidding were to go above v2, player 2 would rationally
withdraw.
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The weakness of the equilibrium is reflected in the fact that player 2’s bid v1 is
weakly dominated by the bid v2. More generally,

in a second-price sealed-bid auction (with complete information), a player’s

bid equal to her valuation weakly dominates all her other bids.

That is, for any bid bi 6= vi, player i’s bid vi is at least as good as bi, no matter what

the other players bid, and is better than bi for some actions of the other players. (See
Definition 45.1.) A player who bids less than her valuation stands not to win in
some cases in which she could profit by winning (when the highest of the other
bids is between her bid and her valuation), and never stands to gain relative to
the situation in which she bids her valuation; a player who bids more than her
valuation stands to win in some cases in which she obtains a negative payoff by
doing so (when the highest of the remaining bids is between her valuation and
her bid), and never stands to gain relative to the situation in which she bids her
valuation. The key point is that in a second-price auction, a player who changes
her bid does not lower the price she pays, but only possibly changes her status
from that of a winner into that of a loser, or vice versa.

A precise argument is shown in Figure 83.1, which compares player i’s payoffs
to the bid vi with her payoffs to a bid bi < vi (top table), and to a bid bi > vi

(bottom table), as a function of the highest of the other players’ bids, denoted b.
In each case, for all bids of the other players, player i’s payoffs to vi are at least as
large as her payoffs to the other bid, and for bids of the other players such that b

is in the middle column of each table, player i’s payoffs to vi are greater than her
payoffs to the other bid. Thus player i’s bid vi weakly dominates all her other bids.

i’s bid

Highest of other players’ bids, b

b < bi or
b = bi & bi wins

bi < b < vi or
b = bi & bi loses

b > vi

bi < vi vi − b 0 0

vi vi − b vi − b 0

i’s bid

b ≤ vi
vi < b < bi or

b = bi & bi wins
b > bi or

b = bi & bi loses
vi vi − b 0 0

bi > vi vi − b vi − b (< 0) 0

Figure 83.1 Player i’s payoffs in a second-price sealed-bid auction, as a function of the highest of the
other player’s bids, denoted b. The top table gives her payoffs to the bids bi < vi and vi, and the bottom
table gives her payoffs to the bids vi and bi > vi.

In summary, a second-price auction has many Nash equilibria, but the equilib-
rium (b1, . . . , bn) = (v1, . . . , vn) in which every player’s bid is equal to her valu-
ation of the object is distinguished by the fact that every player’s action weakly
dominates all her other actions.
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? EXERCISE 84.1 (Second-price sealed-bid auction with two bidders) Find all the
Nash equilibria of a second-price sealed-bid auction with two bidders. (Construct
the players’ best response functions. Apart from a difference in the tie-breaking
rule, the game is the same as the one in Exercise 77.2.)

? EXERCISE 84.2 (Auctioning the right to choose) An action affects each of two peo-
ple. The right to choose the action is sold in a second-price auction. That is, the
two people simultaneously submit bids, and the one who submits the higher bid
chooses her favorite action and pays (to a third party) the amount bid by the other

person, who pays nothing. (Assume that if the bids are the same, person 1 is the
winner.) For i = 1, 2, the payoff of person i when the action is a and person i

pays m is ui(a) − m. In the game that models this situation, find for each player a
bid that weakly dominates all the player’s other bids (and thus find a Nash equi-
librium in which each player’s equilibrium action weakly dominates all her other
actions).

3.5.3 First-price sealed-bid auctions

A first-price auction differs from a second-price auction only in that the winner
pays the price she bids, not the second highest bid. Precisely, a first-price sealed-

bid auction (with complete information) is defined as follows.

Players The n bidders, where n ≥ 2.

Actions The set of actions of each player is the set of possible bids (nonnegative
numbers).

Preferences The payoff of any player i is vi − bi if either bi is higher than every
other bid, or bi is at least as high as every other bid and the number of every
other player who bids bi is greater than i. Otherwise player i’s payoff is 0.

This game models an auction in which people submit sealed bids and the high-
est bid wins. (You conduct such an auction when you solicit offers for a car you
wish to sell, or, as a buyer, get estimates from contractors to fix your leaky base-
ment, assuming in both cases that you do not inform potential bidders of existing
bids.) The game models also a dynamic auction in which the auctioneer begins by
announcing a high price, which she gradually lowers until someone indicates her
willingness to buy the object. (Flowers in the Netherlands are sold in this way.) A
bid in the strategic game is interpreted as the price at which the bidder will indicate
her willingness to buy the object in the dynamic auction.

One Nash equilibrium of a first-price sealed-bid auction is (b1, . . . , bn) = (v2,
v2, v3, . . . , vn), in which player 1’s bid is player 2’s valuation v2 and every other
player’s bid is her own valuation. The outcome of this equilibrium is that player 1
obtains the object at the price v2.

? EXERCISE 84.3 (Nash equilibrium of first-price sealed-bid auction) Show that (b1,
. . . , bn) = (v2, v2, v3, . . . , vn) is a Nash equilibrium of a first-price sealed-bid auc-
tion.
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A first-price sealed-bid auction has many other equilibria, but in all equilibria
the winner is the player who values the object most highly (player 1), by the fol-
lowing argument. In any action profile (b1, . . . , bn) in which some player i 6= 1
wins, we have bi > b1. If bi > v2 then i’s payoff is negative, so that she can do
better by reducing her bid to 0; if bi ≤ v2 then player 1 can increase her payoff
from 0 to v1 − bi by bidding bi, in which case she wins. Thus no such action profile
is a Nash equilibrium.

? EXERCISE 85.1 (First-price sealed-bid auction) Show that in a Nash equilibrium of
a first-price sealed-bid auction the two highest bids are the same, one of these bids
is submitted by player 1, and the highest bid is at least v2 and at most v1. Show
also that any action profile satisfying these conditions is a Nash equilibrium.

In any equilibrium in which the winning bid exceeds v2, at least one player’s
bid exceeds her valuation. As in a second-price sealed-bid auction, such a bid
seems “risky”, because it would yield the bidder a negative payoff if it were to win.
In the equilibrium there is no risk, because the bid does not win; but, as before, the
fact that the bid has this property reduces the plausibility of the equilibrium.

As in a second-price sealed-bid auction, the potential “riskiness” to player i of
a bid bi > vi is reflected in the fact that it is weakly dominated by the bid vi, as
shown by the following argument.

• If the other players’ bids are such that player i loses when she bids bi, then
the outcome is the same whether she bids bi or vi.

• If the other players’ bids are such that player i wins when she bids bi, then
her payoff is negative when she bids bi and zero when she bids vi (whether
or not this bid wins).

However, in a first-price auction, unlike a second-price auction, a bid bi < vi

of player i is not weakly dominated by the bid vi. If fact, such a bid is not weakly
dominated by any bid. It is not weakly dominated by a bid b′i < bi, because if the
other players’ highest bid is between b′i and bi then b′i loses whereas bi wins and
yields player i a positive payoff. And it is not weakly dominated by a bid b′i > bi,
because if the other players’ highest bid is less than bi then both bi and b′i win and
bi yields a lower price.

Further, even though the bid vi weakly dominates higher bids, this bid is itself
weakly dominated, by a lower bid! If player i bids vi her payoff is 0 regardless of
the other players’ bids, whereas if she bids less than vi her payoff is either 0 (if she
loses) or positive (if she wins).

In summary,

in a first-price sealed-bid auction (with complete information), a player’s bid of

at least her valuation is weakly dominated, and a bid of less than her valuation

is not weakly dominated.

An implication of this result is that in every Nash equilibrium of a first-price
sealed-bid auction at least one player’s action is weakly dominated. However,
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this property of the equilibria depends on the assumption that a bid may be any
number. In the variant of the game in which bids and valuations are restricted
to be multiples of some discrete monetary unit ε (e.g. a cent), an action profile
(v2 − ε, v2 − ε, b3, . . . , bn) for any bj ≤ vj − ε for j = 3, . . . , n is a Nash equilib-
rium in which no player’s bid is weakly dominated. Further, every equilibrium
in which no player’s bid is weakly dominated takes this form. When ε is small,
each such equilibrium is close to an equilibrium (v2, v2, b3, . . . , bn) (with bj ≤ vj

for j = 3, . . . , n) of the game with unrestricted bids. On this (somewhat ad hoc)
basis, I select action profiles (v2, v2, b3, . . . , bn) with bj ≤ vj for j = 3, . . . , n as
“distinguished” equilibria of a first-price sealed-bid auction.

One conclusion of this analysis is that while both second-price and first-price
auctions have many Nash equilibria, yielding a variety of outcomes, their distin-
guished equilibria yield the same outcome. (Recall that the distinguished equi-
librium of a second-price sealed-bid auction is the action profile in which every
player bids her valuation.) In every distinguished equilibrium of each game, the
object is sold to player 1 at the price v2. In particular, the auctioneer’s revenue is
the same in both cases. Thus if we restrict attention to the distinguished equilibria,
the two auction forms are “revenue equivalent”. The rules are different, but the
players’ equilibrium bids adjust to the difference and lead to the same outcome:

the single Nash equilibrium in which no player’s bid is weakly dominated in

a second-price auction yields the same outcome as the distinguished equilibria

of a first-price auction.

? EXERCISE 86.1 (Third-price auction) Consider a third-price sealed-bid auction, which
differs from a first- and a second-price auction only in that the winner (the person
who submits the highest bid) pays the third highest price. (Assume that there are
at least three bidders.)

a. Show that for any player i the bid of vi weakly dominates any lower bid, but
does not weakly dominate any higher bid. (To show the latter, for any bid
bi > vi find bids for the other players such that player i is better off bidding
bi than bidding vi.)

b. Show that the action profile in which each player bids her valuation is not a
Nash equilibrium.

c. Find a Nash equilibrium. (There are ones in which every player submits the
same bid.)

3.5.4 Variants

Uncertain valuations One respect in which the models in this section depart from
reality is in the assumption that each bidder is certain of both her own valuation
and every other bidder’s valuation. In most, if not all, actual auctions, informa-
tion is surely less complete. The case in which the players are uncertain about
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each other’s valuations has been thoroughly explored, and is discussed in Sec-
tion 9.6. The result that a player’s bidding her valuation weakly dominates all her
other actions in a second-price auction survives when players are uncertain about
each other’s valuations, as does the revenue-equivalence of first- and second-price
auctions under some conditions on the players’ preferences.

Common valuations In some auctions the main difference between the bidders is
not that the value the object differently but that they have different information
about its value. For example, the bidders for an oil tract may put similar values on
any given amount of oil, but have different information about how much oil is in
the tract. Such auctions involve informational considerations that do not arise in
the model we have studied in this section; they are studied in Section 9.6.3.

Multi-unit auctions In some auctions, like those for Treasury Bills (short-term gov-
ernment bonds) in the USA, many units of an object are available, and each bidder
may value positively more than one unit. In each of the types of auction described
below, each bidder submits a bid for each unit of the good. That is, an action is a
list of bids (b1 , . . . , bk), where b1 is the player’s bid for the first unit of the good, b2

is her bid for the second unit, and so on. The player who submits the highest bid
for any given unit obtains that unit. The auctions differ in the prices paid by the
winners. (The first type of auction generalizes a first-price auction, whereas the
next two generalize a second-price auction.)

Discriminatory auction The price paid for each unit is the winning bid for that
unit.

Uniform-price auction The price paid for each unit is the same, equal to the
highest rejected bid among all the bids for all units.

Vickrey auction A bidder who wins k objects pays the sum of the k highest re-
jected bids submitted by the other bidders.

The next exercise asks you to study these auctions when two units of an object are
available.

?? EXERCISE 87.1 (Multi-unit auctions) Two units of an object are available. There
are n bidders. Bidder i values the first unit that she obtains at vi and the second
unit at wi, where vi > wi > 0. Each bidder submits two bids; the two highest
bids win. Retain the tie-breaking rule in the text. Show that in discriminatory and
uniform-price auctions, player i’s action of bidding vi and wi does not dominate
all her other actions, whereas in a Vickrey auction it does. (In the case of a Vickrey
auction, consider separately the cases in which the other players’ bids are such that
player i wins no units, one unit, and two units when her bids are vi and wi.)

Goods for which the demand exceeds the supply at the going price are some-
times sold to the people who are willing to wait longest in line. We can model such
situations as multi-unit auctions in which each person’s bid is the amount of time
she is willing to wait.
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?? EXERCISE 88.1 (Waiting in line) Two hundred people are willing to wait in line to
see a movie at a theater whose capacity is one hundred. Denote person i’s valu-
ation of the movie in excess of the price of admission, expressed in terms of the
amount of time she is willing to wait, by vi. That is, person i’s payoff if she waits
for ti units of time is vi − ti. Each person attaches no value to a second ticket, and
cannot buy tickets for other people. Assume that v1 > v2 > · · · > v200. Each
person chooses an arrival time. If several people arrive at the same time then their
order in line is determined by their index (lower-numbered people go first). If a
person arrives to find 100 or more people already in line, her payoff is zero. Model
the situation as a variant of a discriminatory multi-unit auction, in which each per-
son submits a bid for only one unit, and find its Nash equilibria. (Look at your
answer to Exercise 85.1 before seeking the Nash equilibria.) Arrival times for peo-
ple at movies do not in general seem to conform with a Nash equilibrium. What
feature missing from the model could explain the pattern of arrivals?

The next exercise is another application of a multi-unit auction. As in the pre-
vious exercise each person wants to buy only one unit, but in this case the price
paid by the winners is the highest losing bid.

? EXERCISE 88.2 (Internet pricing) A proposal to deal with congestion on electronic
message pathways is that each message should include a field stating an amount
of money the sender is willing to pay for the message to be sent. Suppose that
during some time interval, each of n people wants to send one message and the
capacity of the pathway is k messages, with k < n. The k messages whose bids are
highest are the ones sent, and each of the persons sending these messages pays a
price equal to the (k + 1)st highest bid. Model this situation as a multi-unit auction.
(Use the same tie-breaking rule as the one in the text.) Does a person’s action of
bidding the value of her message weakly dominate all her other actions? (Note
that the auction differs from those considered in Exercise 87.1 because each person
submits only one bid. Look at the argument in the text that in a second-price
sealed-bid auction a player’s action of bidding her value weakly dominates all her
other actions.)

Lobbying as an auction Variants of the models in this section can be used to under-
stand some situations that are not explicitly auctions. An example, illustrated in
the next exercise, is the competition between groups pressuring a government to
follow policies they favor. This exercise shows also that the outcome of an auction
may depend significantly (and perhaps counterintuitively) on the form the auction
takes.

? EXERCISE 88.3 (Lobbying as an auction) A government can pursue three poli-
cies, x, y, and z. The monetary values attached to these policies by two interest
groups, A and B, are given in Figure 89.1. The government chooses a policy in
response to the payments the interest groups make to it. Consider the following
two mechanisms.
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First-price auction Each interest group chooses a policy and an amount of money
it is willing to pay. The government chooses the policy proposed by the group
willing to pay the most. This group makes its payment to the government,
and the losing group makes no payment.

Menu auction Each interest group states, for each policy, the amount it is will-
ing to pay to have the government implement that policy. The government
chooses the policy for which the sum of the payments the groups are willing
to make is the highest, and each group pays the government the amount of
money it is willing to pay for that policy.

In each case each interest group’s payoff is the value it attaches to the policy
implemented minus the payment it makes. Assume that a tie is broken by the
government’s choosing the policy, among those tied, whose name is first in the
alphabet.

x y z

Interest group A 0 3 −100
Interest group B 0 −100 3

Figure 89.1 The values of the interest groups for the policies x, y, and z in Exercise 88.3.

Show that the first-price auction has a Nash equilibrium in which lobby A says
it will pay 103 for y, lobby B says it will pay 103 for z, and the government’s rev-
enue is 103. Show that the menu auction has a Nash equilibrium in which lobby A

announces that it will pay 3 for x, 6 for y, and 0 for z, and lobby B announces
that it will pay 3 for x, 0 for y, and 6 for z, and the government chooses x, ob-
taining a revenue of 6. (In each case the pair of actions given is in fact the unique
equilibrium.)

3.6 Accident law

3.6.1 Introduction

In some situations, laws influence the participants’ payoffs and hence their actions.
For example, a law may provide for the victim of an accident to be compensated by
a party who was at fault, and the size of the compensation may affect the care that
each party takes. What laws can we expect to produce socially desirable outcomes?
A game-theoretic analysis is useful in addressing this question.

3.6.2 The game

Consider the interaction between an injurer (player 1) and a victim (player 2). The
victim suffers a loss that depends on the amounts of care taken by both her and
the injurer. (How badly you hurt yourself when you fall down on the sidewalk
in front of my house depends on both how well I have cleared the ice and how
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carefully you tread.) Denote by ai the amount of care player i takes, measured
in monetary terms, and by L(a1 , a2) the loss, also measured in monetary terms,
suffered by the victim, as a function of the amounts of care. (In many cases the
victim does not suffer a loss with certainty, but only with probability less than
one. In such cases we can interpret L(a1, a2) as the expected loss—the average
loss suffered over many occurrences.) Assume that L(a1 , a2) > 0 for all values of
(a1, a2), and that more care taken by either player reduces the loss: L is decreasing
in a1 for any fixed value of a2, and decreasing in a2 for any fixed value of a1.

A legal rule determines the fraction of the loss borne by the injurer, as a function
of the amounts of care taken. Denote this fraction by ρ(a1, a2). If ρ(a1, a2) = 0 for
all (a1, a2), for example, the victim bears the entire loss, regardless of how much
care she takes or how little care the injurer takes. At the other extreme, ρ(a1, a2) = 1
for all (a1, a2) means that the victim is fully compensated by the injurer no matter
how careless she is or how careful the injurer is.

If the amounts of care are (a1, a2) then the injurer bears the cost a1 of taking
care and suffers the loss of L(a1 , a2), of which she bears the fraction ρ(a1, a2). Thus
the injurer’s payoff is

−a1 − ρ(a1, a2)L(a1 , a2).

Similarly, the victim’s payoff is

−a2 − (1 − ρ(a1, a2))L(a1 , a2).

For any given legal rule, embodied in ρ, we can model the interaction between
the injurer and victim as the following strategic game.

Players The injurer and the victim.

Actions The set of actions of each player is the set of possible levels of care
(nonnegative numbers).

Preferences The injurer’s preferences are represented by the payoff function
−a1 − ρ(a1, a2)L(a1 , a2) and the victim’s preferences are represented by the
payoff function −a2 − (1 − ρ(a1, a2))L(a1 , a2), where a1 is the injurer’s level
of care and a2 is the victim’s level of care.

How do the equilibria of this game depend upon the legal rule? Do any legal
rules lead to socially desirable equilibrium outcomes?

I restrict attention to a class of legal rules known as negligence with contributory

negligence. (This class was established in the USA in the mid-nineteenth century,
and prevailed until the mid-1970s.) Each rule in this class requires the injurer to
compensate the victim for a loss if and only if both the victim is sufficiently careful
and the injurer is sufficiently careless; the required compensation is the total loss.
Rules in the class differ in the standards of care they specify for each party. The
rule that specifies the standards of care X1 for the injurer and X2 for the victim
requires the injurer to pay the victim the entire loss L(a1, a2) when a1 < X1 (the
injurer is insufficiently careful) and a2 ≥ X2 (the victim is sufficiently careful), and
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nothing otherwise. That is, under this rule the fraction ρ(a1, a2) of the loss borne
by the injurer is

ρ(a1, a2) =

{
1 if a1 < X1 and a2 ≥ X2
0 if a1 ≥ X1 or a2 < X2.

Included in this class of rules are those for which X1 is a positive finite number
and X2 = 0 (the injurer has to pay if she is not sufficiently careful, even if the
victim takes no care at all), known as rules of pure negligence, and that for which X1
is infinite and X2 = 0 (the injurer has to pay regardless of how careful she is and
how careless the victim is), known as the rule of strict liability.

3.6.3 Nash equilibrium

Suppose we decide that the pair (â1, â2) of actions is socially desirable. We wish
to answer the question: are there values of X1 and X2 such that the game gen-
erated by the rule of negligence with contributory negligence for (X1, X2) has
(â1, â2) as its unique Nash equilibrium? If the answer is affirmative, then, as-
suming the solution concept of Nash equilibrium is appropriate for the situation
we are considering, we have found a legal rule that induces the socially desirable
outcome.

Specifically, suppose that we select as socially desirable the pair (â1, â2) of
actions that maximizes the sum of the players’ payoffs. That is,

(â1, â2) maximizes −a1 − a2 − L(a1 , a2).

(For some functions L, this pair (â1, â2) may be a reasonable candidate for a socially
desirable outcome; in other cases it may induce a very inequitable distribution of
payoff between the players, and thus be an unlikely candidate.)

I claim that the unique Nash equilibrium of the game induced by the legal rule
of negligence with contributory negligence for (X1, X2) = (â1, â2) is (â1, â2). That
is, if the standards of care are equal to their socially desirable levels, then these are
the levels chosen by an injurer and a victim in the only equilibrium of the game.
The outcome is that the injurer pays no compensation: her level of care is â1, just
high enough that ρ(a1, a2) = 0. At the same time the victim’s level of care is â2,
high enough that if the injurer reduces her level of care even slightly then she has
to pay full compensation.

I first argue that (â1, â2) is a Nash equilibrium of the game, then show that it is
the only equilibrium. To show that (â1, â2) is a Nash equilibrium, I need to show
that the injurer’s action â1 is a best response to the victim’s action â2 and vice versa.

Injurer’s action Given that the victim’s action is â2, the injurer has to pay com-
pensation if and only if a1 < â1. Thus the injurer’s payoff is

u1(a1, â2) =

{
−a1 − L(a1 , â2) if a1 < â1
−a1 if a1 ≥ â1.

(91.1)

For a1 = â1, this payoff is −â1. If she takes more care than â1, she is worse
off, because care is costly and, beyond â1, does not reduce her liability for
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compensation. If she takes less care, then, given the victim’s level of care,
she has to pay compensation, and we need to compare the money saved by
taking less care with the size of the compensation. The argument is a little
tricky. First, by definition,

(â1, â2) maximizes −a1 − a2 − L(a1 , a2).

Hence
â1 maximizes −a1 − â2 − L(a1 , â2)

(given â2). Because â2 is a constant, it follows that

â1 maximizes −a1 − L(a1, â2).

But from (91.1) we see that −a1 − L(a1, â2) is the injurer’s payoff u1(a1, â2)

when her action is a1 < â1 and the victim’s action is â2. We conclude that
the injurer’s payoff takes a form like that in the left panel of Figure 92.1. In
particular, â1 maximizes u1(a1, â2), so that â1 is a best response to â2.

0 â1 a1 →

−â1

u1(a1, â2)

0 â2 a2 →

u2(â1, a2)

Figure 92.1 Left panel: the injurer’s payoff as a function of her level of care a1 when the victim’s level
of care is a2 = â2 (see (91.1)). Right panel: the victim’s payoff as a function of her level of care a2 when
the injurer’s level of care is a1 = â1 (see (92.1)).

Victim’s action Given that the injurer’s action is â1, the victim never receives
compensation. Thus her payoff is

u2(â1, a2) = −a2 − L(â1, a2). (92.1)

We can argue as we did for the injurer. By definition, (â1, â2) maximizes
−a1 − a2 − L(a1, a2), so

â2 maximizes −â1 − a2 − L(â1 , a2)

(given â1). Because â1 is a constant, it follows that

â2 maximizes −a2 − L(â1, a2), (92.2)

which is the victim’s payoff (see (92.1) and the right panel of Figure 92.1).
That is, â2 maximizes u2(â1, a2), so that â2 is a best response to â1.
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We conclude that (â1, â2) is a Nash equilibrium of the game induced by the
legal rule of negligence with contributory negligence when the standards of care
are â1 for the injurer and â2 for the victim.

To show that (â1, â2) is the only Nash equilibrium of the game, first consider
the injurer’s best response function. Her payoff function is

u1(a1, a2) =

{
−a1 − L(a1, a2) if a1 < â1 and a2 ≥ â2
−a1 if a1 ≥ â1 or a2 < â2.

We can split the analysis into three cases, according to the victim’s level of care.

a2 < â2: In this case the injurer does not have to pay any compensation, regard-
less of her level of care; her payoff is −a1, so that her best response is a1 = 0.

a2 = â2: In this case the injurer’s best response is â1, as argued when showing
that (â1, â2) is a Nash equilibrium.

a2 > â2: In this case the injurer’s best response is at most â1, because her payoff
for larger values of a1 is equal to −a1, a decreasing function of a1.

We conclude that the injurer’s best response function takes a form like that shown
in the left panel of Figure 93.1.

0

â2

â1 a1 →

↑
a2 b1(a2)

0

â2

â1 a1 →

↑
a2

?b2(a1)

Figure 93.1 The players’ best response functions under the rule of negligence with contributory neg-
ligence when (X1, X2) = (â1, â2). Left panel: the injurer’s best response function b1. Right panel: the
victim’s best response function b2. (The position of the victim’s best response function for a1 > â1 is
not significant, and is not determined in the text.)

Now, given that the injurer’s best response to any value of a2 is never greater
than â1, in any equilibrium we have a1 ≤ â1: any point (a1, a2) at which the vic-
tim’s best response function crosses the injurer’s best response function must have
a1 ≤ â1. (Draw a few possible best response functions for the victim in the left
panel of Figure 93.1.) We know that the victim’s best response to â1 is â2 (because
(â1, â2) is a Nash equilibrium), so we need to worry only about the victim’s best
responses to values of a1 with a1 < â1 (i.e. for cases in which the injurer takes
insufficient care).

Let a1 < â1. Then if the victim takes insufficient care she bears the loss; other-
wise she is compensated for the loss, and hence bears only the cost a2 of her taking
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care. Thus the victim’s payoff is

u2(a1, a2) =

{
−a2 − L(a1 , a2) if a2 < â2
−a2 if a2 ≥ â2.

(94.1)

Now, by (92.2) the level of care â2 maximizes −a2 − L(â1, a2), so that

−a2 − L(â1, a2) ≤ −â2 − L(â1 , â2) for all a2.

Further, the loss is nonnegative, so −â2 − L(â1 , â2) ≤ −â2. We conclude that

−a2 − L(â1, a2) ≤ −â2 for all a2. (94.2)

Finally, the loss increases as the injurer takes less care, so that given a1 < â1 we
have L(a1, a2) > L(â1, a2) for all a2. Thus −a2 − L(a1 , a2) < −a2 − L(â1 , a2) for all
a2, and hence, using (94.2),

−a2 − L(a1, a2) < −â2 for all a2.

From (94.1) it follows that the victim’s best response to any a1 < â1 is â2, as shown
in the right panel of Figure 93.1.

Combining the two best response functions we see that (â1, â2), the pair of lev-
els of care that maximizes the sum of the players’ payoffs, is the unique Nash equi-
librium of the game. That is, the rule of negligence with contributory negligence
for standards of care equal to â1 and â2 induces the players to choose these levels
of care. If legislators can determine the values of â1 and â2 then by writing these
levels into law they will induce a game that has as its unique Nash equilibrium the
socially optimal actions.

Other standards also induce a pair of levels of care equal to (â1, â2), as you are
asked to show in the following exercise.

?? EXERCISE 94.3 (Alternative standards of care under negligence with contributory
negligence) Show that (â1, â2) is the unique Nash equilibrium for the rule of neg-
ligence with contributory negligence for any value of (X1, X2) for which either

X1 = â1 and X2 ≤ â2 (including the pure negligence case of X2 = 0), or X1 ≥ M

and X2 = â2 for sufficiently large M. (Use the lines of argument in the text.)

? EXERCISE 94.4 (Equilibrium under strict liability) Study the Nash equilibrium (equi-
libria?) of the game studied in the text under the rule of strict liability, in which X1
is infinite and X2 = 0 (i.e. the injurer is liable for the loss no matter how careful
she is and how careless the victim is). How are the equilibrium actions related to
â1 and â2?

Notes

The model in Section 3.1 was developed by Cournot (1838). The model in Sec-
tion 3.2 is widely credited to Bertrand (1883). The box on page 67 is based on
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Leonard (1994) and Magnan de Bornier (1992). The models are discussed in more
detail by Shapiro (1989).

The model in Section 3.3 is due to Hotelling (1929) (though the focus of his
paper is a model in which the players are firms that choose not only locations, but
also prices). Downs (1957, especially Ch. 8) popularized Hotelling’s model, using
it to gain insights about electoral competition. Shepsle (1991) and Osborne (1995)
survey work in the field.

The War of Attrition studied in Section 3.4 is due to Maynard Smith (1974); it is
a variant of the Dollar Auction presented by Shubik (1971) (see Example 173.2).

Vickrey (1961) initiated the formal modeling of auctions, as studied in Sec-
tion 3.5. The literature is surveyed by Wilson (1992). The box on page 79 draws
on Herodotus’ Histories (Book 1, paragraph 196; see, for example, Herodotus 1998,
86), Langdon (1994), Cassady (1967, Ch. 3), Shubik (1983), Andreau (1999, 38–39),
the website www.eBay.com, Ockenfels and Roth (2000), and personal correspon-
dence with Robin G. Osborne (on ancient Greece and Rome) and John H. Munro
(on medieval Europe).

The model of accident law discussed in Section 3.6 originated with Brown (1973)
and Diamond (1974); the result about negligence with contributory negligence is
due to Brown (1973, 340–341). The literature is surveyed by Benoît and Korn-
hauser (2002).

Novshek and Sonnenschein (1978) study, in a general setting, the issue ad-
dressed in Exercise 60.1. A brief summary of the early work on common property
is given in the Notes to Chapter 2. The idea of the tie-breaking rule being deter-
mined by the equilibrium, used in Exercises 66.2 and 67.1, is due to Simon and
Zame (1990). The result in Exercise 73.1 is due to Wittman (1977). Exercise 73.2 is
based on Osborne and Slivinski (1996). The notion of a Condorcet winner defined
in Exercise 74.1 is associated with Marie-Jean-Antoine-Nicolas de Caritat, marquis
de Condorcet (1743–1794), an early student of voting procedures. The game in
Exercise 78.1 is a variant of a game studied by Blackwell and Girschick (1954, Ex-
ample 5 in Ch. 2). It is an example of a noisy duel (which models the situation
of duelists, each of whom chooses when to fire a single bullet, which her oppo-
nent hears, as she gradually approaches her rival). Duels were first modeled as
games in the late 1940s by members of the RAND Corporation in the USA; see Kar-
lin (1959b, Ch. 5). Exercise 88.3 is based on Boylan (1997). The situation considered
in Exercise 88.1, in which people decide when to join a queue, is studied by Holt
and Sherman (1982). Exercise 88.2 is based on MacKie-Mason and Varian (1995).


