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1 Introduction

5.3 Altruistic preferences

Person 1 is indifferent between (1, 4) and (3, 0), and prefers both of these to (2, 1).
The payoff function u defined by u(x, y) = x + 1

2 y, where x is person 1’s income
and y is person 2’s, represents person 1’s preferences. Any function that is an
increasing function of u also represents her preferences. For example, the functions
k(x + 1

2 y) for any positive number k, and (x + 1
2 y)2, do so.

6.1 Alternative representations of preferences

The function v represents the same preferences as does u (because u(a) < u(b) <
u(c) and v(a) < v(b) < v(c)), but the function w does not represent the same
preferences, because w(a) = w(b) while u(a) < u(b).
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2 Nash Equilibrium

16.1 Working on a joint project

The game in Figure 3.2 models this situation (as does any other game with the
same players and actions in which the ordering of the payoffs is the same as the
ordering in Figure 3.2).

Work hard Goof off
Work hard 3, 3 0, 2

Goof off 2, 0 1, 1

Figure 3.2 Working on a joint project (alternative version).

17.1 Games equivalent to the Prisoner’s Dilemma

The game in the left panel differs from the Prisoner’s Dilemma in both players’ pref-
erences. Player 1 prefers (Y, X) to (X, X) to (X, Y) to (Y, Y), for example, which
differs from her preference in the Prisoner’s Dilemma, which is (F, Q) to (Q, Q) to
(F, F) to (Q, F), whether we let X = F or X = Q.

The game in the right panel is equivalent to the Prisoner’s Dilemma. If we let
X = Q and Y = F then player 1 prefers (F, Q) to (Q, Q) to (F, F) to (Q, F) and
player 2 prefers (Q, F) to (Q, Q) to (F, F) to (F, Q), as in the Prisoner’s Dilemma.

18.1 Hermaphroditic fish

A strategic game that models the situation is shown in Figure 3.3.

Either role Preferred role
Either role 1

2 (H + L), 1
2 (H + L) L, H

Preferred role H, L S, S

Figure 3.3 A model of encounters between pairs of hermaphroditic fish whose preferred roles differ.

In order for this game to differ from the Prisoner’s Dilemma only in the names of
the players’ actions, there must be a way to associate each action with an action in
the Prisoner’s Dilemma so that each player’s preferences over the four outcomes are
the same as they are in the Prisoner’s Dilemma. Thus we need L < S < 1

2 (H + L).

3



4 Chapter 2. Nash Equilibrium

That is, the probability of a fish’s encountering a potential partner must be large
enough that S > L, but small enough that S < 1

2 (H + L).

20.1 Games without conflict

Any two-player game in which each player has two actions and the players have
the same preferences may be represented by a table of the form given in Figure 4.1,
where a, b, c, and d are any numbers.

L R
T a, a b, b
B c, c d, d

Figure 4.1 A strategic game in which conflict is absent.

27.1 Variant of Prisoner’s Dilemma with altruistic preferences

a. A game that model the situation is given in Figure 4.2.

Quiet Fink
Quiet 4, 4 3, 3
Fink 3, 3 2, 2

Figure 4.2 The payoffs in a variant of the Prisoner’s Dilemma in which the players are altruistic.

This game is not the Prisoner’s Dilemma because one (in fact both) of the play-
ers’ preferences are not the same as they are in the Prisoner’s Dilemma. Specif-
ically, player 1 prefers (Quiet, Quiet) to (Fink, Quiet), while in the Prisoner’s
Dilemma she prefers (Fink, Quiet) to (Quiet, Quiet). (Alternatively, you may
note that player 1 prefers (Quiet, Fink) to (Fink, Fink), while in the Prisoner’s
Dilemma she prefers (Fink, Fink) to (Quiet, Fink), or that player 2’s preferences
are similarly not the same as they are in the Prisoner’s Dilemma.)

b. For an arbitrary value of α the payoffs are given in Figure 5.1. In order that
the game be the Prisoner’s Dilemma we need 3 > 2(1 + α) (each player prefers
Fink to Quiet when the other player chooses Quiet), 1 + α > 3α (each player
prefers Fink to Quiet when the other player choose Fink), and 2(1 + α) >
1 + α (each player prefers (Quiet, Quiet) to (Fink, Fink)). The last condition
is satisfied for all nonnegative values of α. The first two conditions are both
equivalent to α < 1

2 . Thus the game is the Prisoner’s Dilemma if and only if
α < 1

2 .

If α = 1
2 then all four outcomes (Quiet, Quiet), (Quiet, Fink), (Fink, Quiet), and

(Fink, Fink) are Nash equilibria; if α > 1
2 then only (Quiet, Quiet) is a Nash

equilibrium.
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Quiet Fink
Quiet 2(1 + α), 2(1 + α) 3α, 3
Fink 3, 3α 1 + α, 1 + α

Figure 5.1 The payoffs in a variant of the Prisoner’s Dilemma in which the players are altruistic.

27.2 Selfish and altruistic social behavior

a. A game that model the situation is shown in Figure 5.2.

Sit Stand
Sit 1, 1 2, 0

Stand 0, 2 0, 0

Figure 5.2 Behavior on a bus when the players’ preferences are selfish (Exercise 27.2a).

This game is not the Prisoner’s Dilemma. If we identify Sit with Quiet and
Stand with Fink then, for example, (Stand, Sit) is worse for player 1 than
(Sit, Sit), rather than better. If we identify Sit with Fink and Stand with Quiet
then, for example, (Stand, Stand) is worse for player 1 than (Sit, Sit), rather
than better. The game has a unique Nash equilibrium, (Sit, Sit).

b. A game that models the situation is shown in Figure 5.3.

Sit Stand
Sit 2, 2 0, 3

Stand 3, 0 1, 1

Figure 5.3 Behavior on a bus when the players’ preferences are altruistic (Exercise 27.2b).

This game is the Prisoner’s Dilemma. Its unique Nash equilibrium is the action
pair (Stand, Stand).

c. Both people are more comfortable in the equilibrium that results when they
act according to their selfish preferences.

30.1 Variants of the Stag Hunt

a. The equilibria of the game are the same as those of the original game: (Stag,
. . . , Stag) and (Hare, . . . , Hare). Any player who deviates from the first pro-
file obtains a hare rather than the fraction 1/n of the stag. Any player who
deviates from the second profile obtains nothing, rather than a hare.

An action profile in which at least 1 and at most m − 1 hunters pursue the
stag is not a Nash equilibrium, because any one of them is better off catching
a hare. An action profile in which at least m and at most n− 1 hunters pursue



6 Chapter 2. Nash Equilibrium

the stag is not a Nash equilibrium, because any one of the remaining hunters
is better off joining the pursuit of the stag (thereby earning herself the right
to a share of the stag).

b. The set of Nash equilibria consists of the action profile (Hare, . . . , Hare) in
which all hunters catch hares, together with any action profile in which ex-
actly k hunters pursue the stag and the remaining hunters catch hares. Any
player who deviates from the first profile obtains nothing, rather than a hare.
A player who switches from the pursuit of the stag to catching a hare in the
second type of profile is worse off, since she obtains a hare rather than the
fraction 1/k of the stag; a player who switches from catching a hare to pur-
suing the stag is also worse off since she obtains the fraction 1/(k + 1) of the
stag rather than a hare, and 1/(k + 1) < 1/k.

No other action profile is a Nash equilibrium, by the following argument.

• If some hunters, but fewer than m, pursue the stag then each of them
obtains nothing, and is better off catching a hare.

• If at least m and fewer than k hunters pursue the stag then each one that
pursues a hare is better off switching to the pursuit of the stag.

• If more than k hunters pursue the stag then the fraction of the stag
that each of them obtains is less than 1/k, so each of them is better off
catching a hare.

31.1 Extension of the Stag Hunt

Every profile (e, . . . , e), where e is an integer from 0 to K, is a Nash equilibrium. In
the equilibrium (e, . . . , e), each player’s payoff is e. The profile (e, . . . , e) is a Nash
equilibrium since if player i chooses ei < e then her payoff is 2ei − ei = ei < e, and
if she chooses ei > e then her payoff is 2e− ei < e.

Consider an action profile (e1, . . . , en) in which not all effort levels are the same.
Suppose that ei is the minimum. Consider some player j whose effort level exceeds
ei. Her payoff is 2ei − ej < ei, while if she deviates to the effort level ei her payoff
is 2ei − ei = ei. Thus she can increase her payoff by deviating, so that (e1, . . . , en) is
not a Nash equilibrium.

(This game is studied experimentally by van Huyck, Battalio, and Beil (1990).
See also Ochs (1995, 209–233).)

31.2 Hawk–Dove

A strategic game that models the situation is shown in Figure 7.1. The game has
two Nash equilibria, (Aggressive, Passive) and (Passive, Aggressive).
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Aggressive Passive
Aggressive 0, 0 3, 1

Passive 1, 3 2, 2

Figure 7.1 Hawk–Dove.

33.1 Contributing to a public good

The following game models the situation.

Players The n people.

Actions Each person’s set of actions is {Contribute, Don’t contribute}.

Preferences Each person’s preferences are those given in the problem.

An action profile in which more than k people contribute is not a Nash equi-
librium: any contributor can induce an outcome she prefers by deviating to not
contributing.

An action profile in which k people contribute is a Nash equilibrium: if any
contributor stops contributing then the good is not provided; if any noncontributor
switches to contributing then she is worse off.

An action profile in which fewer than k people contribute is a Nash equilibrium
only if no one contributes: if someone contributes, she can increase her payoff by
switching to noncontribution.

In summary, the set of Nash equilibria is the set of action profiles in which k
people contribute together with the action profile in which no one contributes.

34.1 Guessing two-thirds of the average

If all three players announce the same integer k ≥ 2 then any one of them can devi-
ate to k− 1 and obtain $1 (since her number is now closer to 2

3 of the average than
the other two) rather than $ 1

3 . Thus no such action profile is a Nash equilibrium.
If all three players announce 1, then no player can deviate and increase her payoff;
thus (1, 1, 1) is a Nash equilibrium.

Now consider an action profile in which not all three integers are the same;
denote the highest by k∗.

• Suppose only one player names k∗; denote the other integers named by k1

and k2, with k1 ≥ k2. The average of the three integers is 1
3 (k∗ + k1 + k2),

so that 2
3 of the average is 2

9 (k∗ + k1 + k2). If k1 ≥ 2
9 (k∗ + k1 + k2) then

k∗ is further from 2
3 of the average than is k1, and hence does not win. If

k1 <
2
9 (k∗ + k1 + k2) then the difference between k∗ and 2

3 of the average is
k∗ − 2

9 (k∗ + k1 + k2) = 7
9 k∗ − 2

9 k1 − 2
9 k2, while the difference between k1 and

2
3 of the average is 2

9 (k∗ + k1 + k2) − k1 = 2
9 k∗ − 7

9 k1 + 2
9 k2. The difference

between the former and the latter is 5
9 k∗ + 5

9 k1 − 4
9 k2 > 0, so k1 is closer to 2

3
of the average than is k∗. Hence the player who names k∗ does not win, and
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is better off naming k2, in which case she obtains a share of the prize. Thus
no such action profile is a Nash equilibrium.

• Suppose two players name k∗, and the third player names k < k∗. The
average of the three integers is then 1

3 (2k∗ + k), so that 2
3 of the average is

4
9 k∗ + 2

9 k. We have 4
9 k∗ + 2

9 k < 1
2 (k∗ + k) (since 4

9 <
1
2 and 2

9 <
1
2 ), so that the

player who names k is the sole winner. Thus either of the other players can
switch to naming k and obtain a share of the prize rather obtaining nothing.
Thus no such action profile is a Nash equilibrium.

We conclude that there is only one Nash equilibrium of this game, in which all
three players announce the number 1.

(This game is studied experimentally by Nagel (1995).)

34.2 Voter participation

a. For k = m = 1 the game is shown in Figure 8.1. It is the same, except for the
names of the actions, as the Prisoner’s Dilemma.

A supporter

B supporter
abstain vote

abstain 1, 1 0, 2− c
vote 2− c, 0 1− c, 1− c

Figure 8.1 The game of voter participation in Exercise 34.2.

b. For k = m, denote the number of citizens voting for A by nA and the number
voting for B by nB. The cases in which nA ≤ nB are symmetric with those in
which nA ≥ nB; I restrict attention to the latter.

nA = nB = k (all citizens vote): A citizen who switches from voting to ab-
staining causes the candidate she supports to lose rather than tie, re-
ducing her payoff from 1− c to 0. Since c < 1, this situation is a Nash
equilibrium.

nA = nB < k (not all citizens vote; the candidates tie): A citizen who
switches from abstaining to voting causes the candidate she supports
to win rather than tie, increasing her payoff from 1 to 2 − c. Thus this
situation is not a Nash equilibrium.

nA = nB + 1 or nB = nA + 1 (a candidate wins by one vote): A supporter
of the losing candidate who switches from abstaining to voting causes
the candidate she supports to tie rather than lose, increasing her payoff
from 0 to 1− c. Thus this situation is not a Nash equilibrium.

nA ≥ nB + 2 or nB ≥ nA + 2 (a candidate wins by two or more votes): A
supporter of the winning candidate who switches from voting to ab-
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staining does not affect the outcome, but saves the cost c, so such a
situation is not a Nash equilibrium.

We conclude that the game has a unique Nash equilibrium, in which all
citizens vote.

c. If 0 < k < m then a similar logic shows that there is no Nash equilibrium.

nA = nB ≤ k: A supporter of B who switches from abstaining to voting
causes B to win rather than tie, increasing her payoff from 1 to 2 − c.
Thus this situation is not a Nash equilibrium.

nA = nB + 1, or nB = nA + 1 and nA < k: A supporter of the losing candi-
date who switches from abstaining to voting causes the candidates to
tie, increasing her payoff from 0 to 1 − c. Thus this situation is not a
Nash equilibrium.

nA = k and nB = k + 1: A supporter of the losing candidate (namely A) who
switches from voting to abstaining does not affect the outcome but saves
the cost c. Thus this situation is not a Nash equilibrium.

nA ≥ nB + 2 or nB ≥ nA + 2: A supporter of the winning candidate who
switches from voting to abstaining does not affect the outcome but saves
the cost c, so such a situation is not a Nash equilibrium.

If k = 0 < m then the set of Nash equilibria of the game is the set of action
profiles in which exactly one citizen votes for B.

34.3 Choosing a route

A strategic game that models this situation is:

Players The four people.

Actions The set of actions of each person is {X, Y} (the route via X and the route
via Y).

Preferences Each player’s payoff is the negative of her travel time.

In every Nash equilibrium, two people take each route. (In any other case, a
person taking the more popular route is better off switching to the other route.)
For any such action profile, each person’s travel time is either 29.9 or 30 minutes
(depending on the route she takes). If a person taking the route via X switches to
the route via Y her travel time becomes 22 + 12 = 34 minutes; if a person taking
the route via Y switches to the route via X her travel time becomes 12 + 21.8 =
33.8 minutes. For any other allocation of people to routes, at least one person can
decrease her travel time by switching routes. Thus the set of Nash equilibria is the
set of action profiles in which two people take the route via X and two people take
the route via Y.
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Now consider the situation after the road from X to Y is built. There is no equi-
librium in which the new road is not used, by the following argument. Because the
only equilibrium before the new road is built has two people taking each route, the
only possibility for an equilibrium in which no one uses the new road is for two
people to take the route A–X–B and two to take A–Y–B, resulting in a total travel
time for each person of either 29.9 or 30 minutes. However, if a person taking A–
X–B switches to the new road at X and then takes Y–B her total travel time becomes
9 + 7 + 12 = 28 minutes.

I claim that in any Nash equilibrium, one person takes A–X–B, two people take
A–X–Y–B, and one person takes A–Y–B. For this assignment, each person’s travel
time is 32 minutes. No person can change her route and decrease her travel time,
by the following argument.

• If the person taking A–X–B switches to A–X–Y–B, her travel time increases to
12 + 9 + 15 = 36 minutes; if she switches to A–Y–B her travel time increases
to 21 + 15 = 36 minutes.

• If one of the people taking A–X–Y–B switches to A–X–B, her travel time in-
creases to 12 + 20.9 = 32.9 minutes; if she switches to A–Y–B her travel time
increases to 21 + 12 = 33 minutes.

• If the person taking A–Y–B switches to A–X–B, her travel time increases
to 15 + 20.9 = 35.9 minutes; if she switches to A–X–Y–B, her travel time
increases to 15 + 9 + 12 = 36 minutes.

For every other allocation of people to routes at least one person can switch
routes and reduce her travel time. For example, if one person takes A–X–B, one
person takes A–X–Y–B, and two people take A–Y–B, then the travel time of those
taking A–Y–B is 21 + 12 = 33 minutes; if one of them switches to A–X–B then her
travel time falls to 12 + 20.9 = 32.9 minutes. Or if one person takes A–Y–B, one
person takes A–X–Y–B, and two people take A–X–B, then the travel time of those
taking A–X–B is 12 + 20.9 = 32.9 minutes; if one of them switches to A–X–Y–B then
her travel time falls to 12 + 8 + 12 = 32 minutes.

Thus in the equilibrium with the new road every person’s travel time increases,
from either 29.9 or 30 minutes to 32 minutes.

37.1 Finding Nash equilibria using best response functions

a. The Prisoner’s Dilemma and BoS are shown in Figure 11.1; Matching Pennies
and the two-player Stag Hunt are shown in Figure 11.2.

b. The best response functions are indicated in Figure 11.3. The Nash equilibria
are (T, C), (M, L), and (B, R).
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Quiet Fink
Quiet 2 , 2 0 , 3∗

Fink 3∗, 0 1∗, 1∗

Prisoner’s Dilemma

Bach Stravinsky
Bach 2∗, 1∗ 0 , 0

Stravinsky 0 , 0 1∗, 2∗

BoS

Figure 11.1 The best response functions in the Prisoner’s Dilemma (left) and in BoS (right).

Head Tail
Head 1∗,−1 −1 , 1∗

Tail −1 , 1∗ 1∗,−1

Matching Pennies

Stag Hare
Stag 2∗, 2∗ 0 , 1
Hare 1 , 0 1∗, 1∗

Stag Hunt

Figure 11.2 The best response functions in Matching Pennies (left) and the Stag Hunt (right).

38.1 Constructing best response functions

The analogue of Figure 38.2 in the book is given in Figure 12.1.

38.2 Dividing money

For each amount named by one of the players, the other player’s best responses
are given in the following table.

Other player’s action Sets of best responses
0 {10}
1 {9, 10}
2 {8, 9, 10}
3 {7, 8, 9, 10}
4 {6, 7, 8, 9, 10}
5 {5, 6, 7, 8, 9, 10}
6 {5, 6}
7 {6}
8 {7}
9 {8}

10 {9}

L C R
T 2 , 2 1∗, 3∗ 0∗, 1

M 3∗, 1∗ 0 , 0 0∗, 0
B 1 , 0∗ 0 , 0∗ 0∗, 0∗

Figure 11.3 The game in Exercise 37.1.
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A1

︸ ︷︷ ︸T M B

A2





L

C

R

Figure 12.1 The players’ best response functions for the game in Exercise 38.1b. Player 1’s best re-
sponses are indicated by circles, and player 2’s by dots. The action pairs for which there is both a circle
and a dot are the Nash equilibria.

The best response functions are illustrated in Figure 12.2 (circles for player 1,
dots for player 2). From this figure we see that the game has four Nash equilibria:
(5, 5), (5, 6), (6, 5), and (6, 6).

A1

︸ ︷︷ ︸0 1 2 3 4 5 6 7 8 9 10

A2




0

1

2

3

4

5

6

7

8

9

10

Figure 12.2 The players’ best response functions for the game in Exercise 38.2.

41.1 Strict and nonstrict Nash equilibria

Only the Nash equilibrium (a∗1, a∗2) is strict. For each of the other equilibria, player
2’s action a2 satisfies a∗∗∗2 ≤ a2 ≤ a∗∗2 , and for each such action player 1 has multi-
ple best responses, so that her payoff is the same for a range of actions, only one of
which is such that (a1, a2) is a Nash equilibrium.
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41.2 Finding Nash equilibria using best response functions

First find the best response function of player 1. For any fixed value of a2, player 1’s
payoff function a1(a2− a1) is a quadratic in a1. The coefficient of a2

1 is negative and
the function is zero at a1 = 0 and at a1 = a2. Thus, using the symmetry of quadratic
functions, b1(a2) = 1

2 a2.
Now find the best response function of player 2. For any fixed value of a1,

player 2’s payoff function a2(1− a1 − a2) is a quadratic in a2. The coefficient on a2
2

is negative and the function is zero at a2 = 0 and at a2 = 1− a1. Thus if a1 ≤ 1 we
have b2(a1) = 1

2 (1− a1) and if a1 > 1 we have b2(a1) = 0.
The best response functions are shown in Figure 13.1.

0 a1 →

↑
a2

1a∗1

1
2

a∗2

b1(a2)

b2(a1)

Figure 13.1 The best response functions for the game in Exercise 41.2.

A Nash equilibrium is a pair (a∗1, a∗2) such that a∗1 = b1(a∗2) and a∗2 = b2(a∗1).
From the figure we see that there is a unique Nash equilibrium, with a∗1 < 1. Thus
in this equilibrium a∗1 = 1

2 a∗2 and a∗2 = 1
2 (1− a∗1). Hence a∗1 = 1

4 (1− a∗1), or 5a∗1 = 1,
or a∗1 = 1

5 . Hence a∗2 = 2
5 . Thus the game has a unique Nash equilibrium, ( 1

5 , 2
5 ).

42.1 A joint project

A strategic game that models this situation is:

Players The two people.

Actions The set of actions of each person i is the set of effort levels (the set of
numbers xi with 0 ≤ xi ≤ 1).

Preferences Person i’s payoff to the action pair (x1, x2) is 1
2 f (x1, x2)− c(xi).

a. Assume that f (x1, x2) = 3x1x2 and c(xi) = x2
i . To find the Nash equilibria of

the game, first find the players’ best response functions. Player 1’s best response
to x2 is the action x1 that maximizes 3

2 x1x2 − x2
1, or x1( 3

2 x2 − x1). This function is
a quadratic that is zero when x1 = 0 and when x1 = 3

2 x2. The coefficient of x2
1 is
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negative, so the maximum of the function occurs at x1 = 3
4 x2. Thus player 1’s best

response function is
b1(x2) = 3

4 x2.

Similarly, player 2’s best response function is

b2(x1) = 3
4 x1.

The best response functions are shown in Figure 14.1.

0 x1 →

↑
x2

1

1

b1(x2)

b2(x1)

Figure 14.1 The best response functions for the game in Exercise 42.1a.

In a Nash equilibrium (x∗1 , x∗2) we have x∗1 = b1(x∗2) and x∗2 = b2(x∗1), or x∗1 =
3
4 x∗2 and x∗2 = 3

4 x∗1 . Substituting x∗2 in the first equation we obtain x∗1 = 9
16 x∗1, so

that x∗1 = 0. Thus x∗2 = 0.
We conclude that the game has a unique Nash equilibrium, (x∗1 , x∗2) = (0, 0). In

this equilibrium, both players’ payoffs are zero.
If each player i chooses xi = 1 then the total output is 3, and each player’s

payoff is 3
2 − 1 = 1

2 , rather than 0 as in the Nash equilibrium.
b. When f (x1, x2) = 4x1x2 and c(xi) = xi, player 1’s payoff function is

2x1x2 − x1 = x1(2x2 − 1).

Thus if x2 < 1
2 her best response is x1 = 0, if x2 = 1

2 then all values of x1 are
best responses, and if x2 >

1
2 her best response is x1 = 1. That is, player 1’s best

response function is

b1(x2) =






0 if x2 <
1
2

{x1 : 0 ≤ x1 ≤ 1} if x2 = 1
2

1 if x2 >
1
2 .

Player 2’s best response function is the same. (That is, b2(x) = b1(x) for all x.) The
best response functions are shown in Figure 15.1.

We see that the game has three Nash equilibria, (0, 0), ( 1
2 , 1

2 ), and (1, 1).
The players’ payoffs at these equilibria are (0, 0), (0, 0), and (1, 1). There is no

pair of effort levels that yields both players payoffs higher than 1, but there are
pairs of effort levels that yield both players payoffs higher than 0, for example
(1, 1), which yields the payoffs (1, 1).
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0 x1 →

↑
x2

1

1

b2(x1)

b1(x2)

Figure 15.1 The best response functions for the game in Exercise 42.1b.

44.1 Contributing to a public good

The best response of player 1 to the contribution c2 of player 2 is the value of c1 that
maximizes player 1’s payoff w + c2 + (w− c1)(c1 + c2). This function is a quadratic
in c1 (remember that w + c2 is a constant). The coefficient of c2

1 is negative, and the
value of the function is equal to w + c2 when c1 = w and when c1 = −c2. Thus the
function attains a maximum at c1 = 1

2 (w − c2). We conclude that player 1’s best
response function is

b1(c2) = 1
2 (w− c2).

Player 2’s best response function is similarly

b2(c1) = 1
2 (w− c1).

A Nash equilibrium is a pair (c∗1, c∗2) such that c∗1 = b1(c∗2) and c∗2 = b2(c∗1), so
that

c∗1 = 1
2 (w− c∗2) = 1

2 (w− 1
2 (w− c∗1)) = 1

4 w + 1
4 c∗1

and hence c∗1 = 1
3 w. Substituting this value into player 2’s best response function

we get c∗2 = 1
3 w.

We conclude that the game has a unique Nash equilibrium (c∗1, c∗2) = ( 1
3 w, 1

3 w),
in which each person contributes one third of her wealth to the public good.

In this equilibrium each player’s payoff is 4
3 w + 4

9 w2. If each player contributes
1
2 w to the public good then her payoff is 3

2 w + 1
2 w2, which exceeds 4

3 w + 4
9 w2 for

all w (since 3
2 >

4
3 and 1

2 >
4
9 ).

When there are n players the payoff function of player 1 is

w− c1 + c1 + c2 + · · ·+ cn + (w− c1)(c1 + c2 + · · ·+ cn) =

w + c2 + · · ·+ cn + (w− c1)(c1 + c2 + · · ·+ cn).

This function is a quadratic in c1. The coefficient of c2
1 is negative, and the value of

the function is equal to w + c2 + · · ·+ cn when c1 = w and when c1 = −c2 − c3 −
· · · − cn. Thus the function attains a maximum at c1 = 1

2 (w− c2 − c3 − · · · − cn).
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We conclude that player 1’s best response function is

b1(c−1) = 1
2 (w− c2 − c3 − · · · − cn)

where c−1 is the list of the contributions of the players other than 1. Similarly, any
player i’s best response function is

bi(c−i) = 1
2 (w− (c1 + c2 + · · ·+ cn) + ci).

A Nash equilibrium is an action profile (c∗1, . . . , c∗n) such that c∗i = bi(c∗−i) for
all i. We can write the condition c∗1 = b1(c∗−1) as

2c∗1 = w− c∗2 − c∗3 − · · · − c∗n,

or

w = 2c∗1 + c∗2 + c∗3 + · · ·+ c∗n.

Writing the other conditions c∗i = bi(c∗−i) similarly, we obtain the system of equa-
tions

w = 2c∗1 + c∗2 + c∗3 + · · ·+ c∗n
w = c∗1 + 2c∗2 + c∗3 + · · ·+ c∗n

...

w = c∗1 + c∗2 + c∗3 + · · ·+ 2c∗n

Subtracting the second equation from the first we conclude that c∗1 = c∗2. Similarly
subtracting each equation from the next we deduce that c∗i is the same for all i.
Denote the common value by c∗. From any of the equations we deduce that w =
(n + 1)c∗. Hence c∗ = w/(n + 1).

In conclusion, when there are n players the game has a unique Nash equilib-
rium (c∗1, . . . , c∗n) = (w/(n + 1), . . . , w/(n + 1)). The total amount contributed in
this equilibrium is nw/(n + 1), which increases as n increases, approaching w as n
increases without bound.

Player 1’s payoff in the equilibrium is w + (n− 1)w/(n + 1)+(nw/(n + 1))2.
As n increases without bound, this payoff increases, approaching 2w + w2. If each
player contributes 1

2 w to the public good, each player’s payoff is w + 1
2 (n− 1)w +

n(w/2)2, which increases without bound as n increases without bound.

47.1 Strict equilibria and dominated actions

For player 1, T is weakly dominated by M, and strictly dominated by B. For
player 2, no action is weakly or strictly dominated. The game has a unique Nash
equilibrium, (M, L). This equilibrium is not strict. (When player 2 choose L, B
yields player 1 the same payoff as does M.)
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47.2 Nash equilibrium and weakly dominated actions

The only Nash equilibrium of the game in Figure 17.1 is (T, L). The action T is
weakly dominated by M and the action L is weakly dominated by C. (There are of
course many other games that satisfy the conditions.)

L C R
T 1, 1 0, 1 0, 0

M 1, 0 2, 1 1, 2
B 0, 0 1, 1 2, 0

Figure 17.1 A game with a unique Nash equilibrium, in which both players’ equilibrium actions are
weakly dominated. (The unique Nash equilibrium is (T, L).)

48.1 Voting

First consider an action profile in which the winner receives one more vote than
the loser and at least one citizen who votes for the winner prefers the loser to the
winner. Any citizen who votes for the winner and prefers the loser to the winner
can, by switching her vote, cause her favorite candidate to win rather than lose.
Thus no such action profile is a Nash equilibrium.

Next consider an action profile in which the winner receives one more vote
than the loser and all citizens who vote for the winner prefer the winner to the
loser. Because a majority of citizens prefer A to B, the winner in any such case must
be A. No citizen who prefers A to B can induce a better outcome by changing her
vote, since her favorite candidate wins. Now consider a citizen who prefers B to A.
By assumption, every such citizen votes for B; a change in her vote has no effect on
the outcome (A still wins). Thus every such action profile is a Nash equilibrium.

Finally consider an action profile in which the winner receives at least three
more votes than the loser. In this case no change in any citizen’s vote has any effect
on the outcome. Thus every such profile is a Nash equilibrium.

In summary, the Nash equilibria are: any action profile in which A receives one
more vote than B and all the citizens who vote for A prefer A to B, and any action
profile in which the winner receives at least three more votes than the loser.

The only equilibrium in which no citizen uses a weakly dominated action is
that in which every citizen votes for her favorite candidate.

49.1 Voting between three candidates

Fix some citizen, say i; suppose she prefers A to B to C. By the argument in the
text, citizen i’s voting for C is weakly dominated by her voting for A (and by her
voting for B). Her voting for B is clearly not weakly dominated by her voting for
C. I now argue that her voting for B is not weakly dominated by her voting for
A. Suppose that the other citizens’ votes are equally divided between B and C; no
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one votes for A. Then if citizen i votes for A the outcome is a tie between B and C,
while if she votes for B the outcome is that B wins. Thus for this configuration of
the other citizens’ votes, citizen i is better off voting for B than she is voting for A.
Thus her voting for B is not weakly dominated by her voting for A.

Now fix some citizen, say i, and consider the candidate she ranks in the mid-
dle, say candidate B. The action profile in which all citizens vote for B is a Nash
equilibrium. (No citizen’s changing her vote affects the outcome.) In this equilib-
rium, citizen i does not vote for her favorite candidate, but the action she takes is
not weakly dominated. (Other Nash equilibria also satisfy the conditions in the
exercise.)

49.2 Approval voting

First I argue that any action ai of player i that includes a vote for i’s least preferred
candidate, say candidate k, is weakly dominated by the action a′i that differs from
ai only in that candidate k does not receive a vote in a′i. For any list a−i of the
other players’ actions, the outcome of (a′i, a−i) differs from that of (ai, a−i) only
in that the total number of votes received by candidate k is one less in (a′i, a−i)
than it is in (ai, a−i). There are two possible implications for the winners of the
election, depending on a−i: either the set of winners is the same in (ai, a−i) as it
is in (a′i, a−i), or candidate k is a winner in (ai, a−i) but not in (a′i, a−i). Because
candidate k is player i’s least preferred candidate, a′i thus weakly dominates ai.

I now argue that any action ai of player i that excludes a vote for i’s most pre-
ferred candidate, say candidate 1, is weakly dominated by the action a′i that differs
from ai only in that candidate 1 receives a vote in a′i. The argument is symmet-
ric with the one in the previous paragraph. For any list a−i of the other players’
actions, the outcome of (a′i, a−i) differs from that of (ai, a−i) only in that the to-
tal number of votes received by candidate 1 is one more in (a′i, a−i) than it is in
(ai, a−i). There are two possible implications for the winners of the election, de-
pending on a−i: either the set of winners is the same in (ai, a−i) as it is in (a′i, a−i),
or candidate 1 is a winner in (a′i, a−i) but not in (ai, a−i). Because candidate 1 is
player i’s most preferred candidate, a′i thus weakly dominates ai.

Finally I argue that if citizen i prefers candidate 1 to candidate 2 to . . . to can-
didate k then the action ai that consists of votes for candidates 1 and k − 1 is not
weakly dominated.

• The action ai is not weakly dominated by any action that excludes votes for
either candidate 1 or candidate k − 1 (or both). Suppose a′i excludes a vote
for candidate 1. Then if the numbers of votes by the other citizens for candi-
dates 1 and 2 are both equal to m ≥ 2, and the total votes for all other candi-
dates are at most m− 2 (which is possible given that the number of citizens
is at least three), then citizen i’s taking the action ai leads candidate 1 to win,
while the action a′i leads at best (from the point of view of citizen i) to a tie
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between candidates 1 and 2. Thus a′i does not weakly dominate ai. Similarly,
suppose that a′i excludes a vote for candidate k − 1. Then if the numbers of
votes by the other citizens for candidates k− 1 and k are both equal to m ≥ 2,
while the total votes for all other candidates are at most m− 2, then citizen i’s
taking the action ai leads candidate k− 1 to win, while the action a′i leads at
best (from the point of view of citizen i) to a tie between candidates k− 1 and
k.

• Now let a′i be an action that includes votes for both candidate 1 and candi-
date k− 1, and also for at least one other candidate, say candidate j. Suppose
that the total votes by the other citizens for candidates 1 and j are both equal
to m ≥ 2, and the total votes for all other candidates are at most m− 2. Then
citizen i’s taking the action ai leads candidate 1 to win, while the action a′i
leads at best (from the point of view of citizen i) to a tie between candidates 1
and j. Thus a′i does not weakly dominate ai.

50.1 Other Nash equilibria of the game modeling collective decision-making

Denote by i the player whose favorite policy is the median favorite policy. The
set of Nash equilibria includes every action profile in which (i) i’s action is her
favorite policy x∗i , (ii) every player whose favorite policy is less than x∗i names a
policy equal to at most x∗i , and (iii) every player whose favorite policy is greater
than x∗i names a policy equal to at least x∗i .

To show this, first note that the outcome is x∗i , so player i cannot induce a bet-
ter outcome for herself by changing her action. Now, if a player whose favorite
position is less than x∗i changes her action to some x < x∗i , the outcome does not
change; if such a player changes her action to some x > x∗i then the outcome either
remains the same (if some player whose favorite position exceeds x∗i names x∗i ) or
increases, so that the player is not better off. A similar argument applies to a player
whose favorite position is greater than x∗i .

The set of Nash equilibria also includes, for any positive integer k ≤ n, every
action profile in which k players name the median favorite policy x∗i , at most 1

2 (n−
3) players name policies less than x∗i , and at most 1

2 (n− 3) players name policies
greater than x∗i . (In these equilibria, the favorite policy of a player who names a
policy less than x∗i may be greater than x∗i , and vice versa. The conditions on the
numbers of players who name policies less than x∗i and greater than x∗i ensure that
no such player can, by naming instead her favorite policy, move the median policy
closer to her favorite policy.)

Any action profile in which all players name the same, arbitrary, policy is also
a Nash equilibrium; the outcome is the common policy named.

More generally, any profile in which at least three players name the same, ar-
bitrary, policy x, at most (n− 3)/2 players name a policy less than x, and at most
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(n − 3)/2 players name a policy greater than x is a Nash equilibrium. (In both
cases, no change in any player’s action has any effect on the outcome.)

50.2 Another mechanism for collective decision-making

When the policy chosen is the mean of the announced policies, player i’s announc-
ing her favorite policy does not weakly dominate all her other actions. For exam-
ple, if there are three players, the favorite policy of player 1 is 0.3, and the other
players both announce the policy 0, then player 1 should announce the policy 0.9,
which leads to the policy 0.3 (= (0 + 0 + 0.9)/3) being chosen, rather than 0.3,
which leads to the policy 0.1.

51.2 Symmetric strategic games

The games in Exercise 31.2, Example 39.1, and Figure 47.2 (both games) are sym-
metric. The game in Exercise 41.2 is not symmetric. The game in Section 2.8.4 is
symmetric if and only if u1 = u2.

52.2 Equilibrium for pairwise interactions in a single population

The Nash equilibria are (A, A), (A, C), and (C, A). Only the equilibrium (A, A) is
relevant if the game is played between the members of a single population—this
equilibrium is the only symmetric equilibrium.



3 Nash Equilibrium: Illustrations

58.1 Cournot’s duopoly game with linear inverse demand and different unit costs

Following the analysis in the text, the best response function of firm 1 is

b1(q2) =
{

1
2 (α− c1 − q2) if q2 ≤ α− c1

0 otherwise

while that of firm 2 is

b2(q1) =
{

1
2 (α− c2 − q1) if q1 ≤ α− c2

0 otherwise.

To find the Nash equilibrium, first plot these two functions. Each function has
the same general form as the best response function of either firm in the case stud-
ied in the text. However, the fact that c1 6= c2 leads to two qualitatively different
cases when we combine the two functions to find a Nash equilibrium. If c1 and c2

do not differ very much then the functions in the analogue of Figure 59.1 intersect
at a pair of outputs that are both positive. If c1 and c2 differ a lot, however, the
functions intersect at a pair of outputs in which q1 = 0.

Precisely, if c1 ≤ 1
2 (α + c2) then the downward-sloping parts of the best re-

sponse functions intersect (as in Figure 59.1), and the game has a unique Nash
equilibrium, given by the solution of the two equations

q1 = 1
2 (α− c1 − q2)

q2 = 1
2 (α− c2 − q1).

This solution is

(q∗1, q∗2) =
(

1
3 (α− 2c1 + c2), 1

3 (α− 2c2 + c1)
)

.

If c1 > 1
2 (α + c2) then the downward-sloping part of firm 1’s best response

function lies below the downward-sloping part of firm 2’s best response func-
tion (as in Figure 22.1), and the game has a unique Nash equilibrium, (q∗1, q∗2) =
(0, 1

2 (α− c2)).
In summary, the game always has a unique Nash equilibrium, defined as fol-

lows: 




(
1
3 (α− 2c1 + c2), 1

3 (α− 2c2 + c1)
)

if c1 ≤ 1
2 (α + c2)

(
0, 1

2 (α− c2)
)

if c1 >
1
2 (α + c2).

The output of firm 2 exceeds that of firm 1 in every equilibrium.

21
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0 α−c1
2

α− c2

α−c2
2

α− c1

↑
q2

q1 →

b1(q2)
b2(q1)

(q∗1, q∗2)

Figure 22.1 The best response functions in Cournot’s duopoly game under the assumptions of Exer-
cise 58.1 when α− c1 <

1
2 (α− c2). The unique Nash equilibrium in this case is (q∗1 , q∗2) = (0, 1

2 (α− c2)).

If c2 decreases then firm 2’s output increases and firm 1’s output either falls, if
c1 ≤ 1

2 (α + c2), or remains equal to 0, if c1 >
1
2 (α + c2). The total output increases

and the price falls.

59.1 Cournot’s duopoly game with linear inverse demand and a quadratic cost function

Firm 1’s profit is

π1(q1, q2) =
{

q1(α− q1 − q2)− q2
1 if q1 + q2 ≤ α

−q2
1 if q1 + q2 > α

or

π1(q1, q2) =
{

q1(α− 2q1 − q2) if q1 + q2 ≤ α

−q2
1 if q1 + q2 > α.

When it is positive, this function is a quadratic in q1 that is zero at q1 = 0 and
at q1 = (α− q2)/2. Thus firm 1’s best response function is

b1(q2) =
{

1
4 (α− q2) if q2 ≤ α

0 if q2 > α.

Since the firms’ cost functions are the same, firm 2’s best response function is the
same as firm 1’s: b2(q) = b1(q) for all q. The firms’ best response functions are
shown in Figure 23.1.

Solving the two equations q∗1 = b1(q∗2) and q∗2 = b2(q∗1) we find that there is a
unique Nash equilibrium, in which the output of firm i (i = 1, 2) is q∗i = 1

5 α.

59.2 Cournot’s duopoly game with linear inverse demand and a fixed cost

Firm i’s payoff function is
{

0 if qi = 0
qi(P(q1 + q2)− c)− f if qi > 0.
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0 1
4 α

1
4 α

α

α

↑
q2

q1 →

b1(q2)

b2(q1)

(q∗1, q∗2)

Figure 23.1 The best response functions in Cournot’s duopoly game with linear inverse demand and a
quadratic cost function, as in Exercise 59.1. The unique Nash equilibrium is (q∗1 , q∗2) = ( 1

5 α, 1
5 α).

As before firm 1’s best response to q2 is (α− c− q2)/2 if firm 1’s profit is non-
negative for this output; otherwise its best response is the output of zero. Firm 1’s
profit when it produces (α− c− q2)/2 and firm 2 produces q2 is

α− c− q2

2

(

α− c−
α− c− q2

2
− q2

)

− f =
(

α− c− q2

2

)2

− f ,

which is nonnegative if
(

α− c− q2

2

)2

> f ,

or if q2 ≤ α− c− 2
√

f . Let q = α− c− 2
√

f . Then firm 1’s best response function
is

b1(q2) =






1
2 (α− c− q2) if q2 < q
{0, 1

2 (α− c− q2)} if q2 = q
0 if q2 > q.

(If q2 = q then firm 1’s profit is zero whether it produces the output 1
2 (α− c− q2)

or the output 0; both outputs are optimal.)
Thus firm 1’s best response function has a “jump”: for outputs of firm 2 slightly

less than q firm 1 wants to produce a positive output (and earn a small profit),
while for outputs of firm 2 slightly greater than q it wants to produce an output of
zero.

Firm 2’s cost function is the same as firm 1’s, so its best response function is the
same.

Because of the jumps in the best response functions, there are four qualitatively
different cases, depending on the value of f . If f is small enough that q > 1

2 (α− c)
(or, equivalently, f < (α− c)2/16) then the best response functions take the form
given in Figure 24.1. In this case the existence of the fixed cost has no impact on
the equilibrium, which remains (q∗1, q∗2) = ( 1

3 (α− c), 1
3 (α− c)).
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0 α−c
3

α−c
2

q α− c

α−c
3

α−c
2

q

α− c

↑
q2

q1 →

b1(q2)

b2(q1)

(q∗1, q∗2)

Figure 24.1 The best response functions in Cournot’s duopoly game when the inverse demand func-
tion is P(Q) = α − Q (where this is positive) and the cost function of each firm is f + cq, with
f < (α − c)2/16. The unique Nash equilibrium is (q∗1 , q∗2) = ( 1

3 (α − c), 1
3 (α − c)) (as in the case in

which f = 0).

As f increases, the point at which the best response functions jump moves
closer to the origin. Eventually q enters the range from 1

3 (α− c) to 1
2 (α− c) (which

implies that (α− c)2/16 < f < (α− c)2/9), in which case the best response func-
tions take the forms shown in the left panel of Figure 24.2. In this case there are
three Nash equilibria: (0, 1

2 (α− c)), ((α− c)/3, (α− c)/3), and ( 1
2 (α− c), 0).

0 α−c
3

α−c
2

q

α−c
3

α−c
2

q

↑
q2

q1 →

b1(q2)

b2(q1)

( 1
3 (α− c), 1

3 (α− c))

(0, 1
2 (α− c))

( 1
2 (α− c), 0)

0 α−c
3

α−c
2

q

α−c
3

α−c
2

q

↑
q2

q1 →

b1(q2)

b2(q1)

(0, 1
2 (α− c))

( 1
2 (α− c), 0)

Figure 24.2 The best response functions in Cournot’s duopoly game when the inverse demand func-
tion is P(Q) = α − Q (where this is positive) and the cost function of each firm is f + cq, with
(α − c)2/16 < f < (α − c)2/9 (left panel) and f > (α − c)2/9 (right panel). In the first case the
game has three Nash equilibria: (0, 1

2 (α− c)), ( 1
3 (α− c), 1

3 (α− c)), and ( 1
2 (α− c), 0). In the second case

it has two Nash equilibria: (0, 1
2 (α− c)) and ( 1

2 (α− c), 0).
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As f increases further, there is a point at which q becomes less than 1
3 (α − c)

but is still positive (implying that (α − c)2/9 < f < (α − c)2/4), so that the best
response functions take the forms shown in the right panel of Figure 24.2. In this
case there are two Nash equilibria: (0, 1

2 (α− c)) and ( 1
2 (α− c), 0).

Finally, if f is extremely large then a firm does not want to produce any output
even if the other firm produces no output. This occurs when f > (α− c)2/4; the
unique Nash equilibrium in this case is (0, 0).

60.1 Variant of Cournot’s duopoly game with market-share maximizing firms

Let firm 1 be the market-share maximizing firm. If q2 > α− c, there is no output of
firm 1 for which its profit is nonnegative. Thus its best response to such an output
of firm 2 is q1 = 0. If q2 ≤ α − c then firm 1 wants to choose its output q1 large
enough that the price is c (and hence its profit is zero). Thus firm 1’s best response
to such a value of q2 is q1 = α − c − q2. We conclude that firm 1’s best response
function is

b1(q2) =
{

α− c− q2 if q2 ≤ α− c
0 if q2 > α− c.

Firm 2’s best response function is the same as in Section 3.1.3, namely

b2(q1) =
{

(α− c− q2)/2 if q2 ≤ α− c
0 if q2 > α− c.

These best response functions are shown in Figure 26.1. The game has a unique
Nash equilibrium, (q∗1, q∗2) = (α − c, 0), in which firm 2 does not operate. (The
price is c, and firm 1’s profit is zero.)

If both firms maximize their market shares, then the downward-sloping parts
of their best response functions coincide in the analogue of Figure 26.1. Thus every
pair (q1, q2) with q1 + q2 = α− c is a Nash equilibrium.

60.2 Nash equilibrium of Cournot’s duopoly game and the collusive outcome

The firms’ total profit is (q1 + q2)(α− c− q1 − q2), or Q(α− c− Q), where Q de-
notes total output. This function is a quadratic in Q that is zero when Q = 0 and
when Q = α− c, so that its maximizer is Q∗ = 1

2 (α− c).
If each firm produces 1

4 (α − c) then its profit is 1
8 (α − c)2. This profit exceeds

its Nash equilibrium profit of 1
9 (α− c)2.

If one firm produces Q∗/2, the other firm’s best response is bi(Q∗/2) = 1
2 (α−

c− 1
4 (α− c)) = 3

8 (α− c). That is, if one firm produces Q∗/2, the other firm wants
to produce more than Q∗/2.
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0 α− c

α−c
2

α− c

↑
q2

q1 →

b1(q2)

b2(q1)

Figure 26.1 The best response functions in a variant of Cournot’s duopoly game in which in which the
inverse demand function is P(Q) = α − Q (where this is positive) and the cost function of each firm
is cq, and firm 1 maximizes its market share, rather than its profit. The unique Nash equilibrium is
(q∗1 , q∗2) = (α− c, 0).

61.1 Cournot’s game with many firms

Firm 1’s payoff function is
{

q1(α− c− q1 − q2 − · · · − qn) if q1 + q2 + · · ·+ qn ≤ α

−cq1 if q1 + q2 + · · ·+ qn > α.

As in the case of two firms, this function is a quadratic in q1 where it is positive,
and is zero when q1 = 0 and when q1 = α− c− q2 − · · · − qn. Thus firm 1’s best
response function is

b1(q−1) =
{

(α− c− q2 − · · · − qn) /2 if q2 + · · ·+ qn ≤ α− c
0 if q2 + · · ·+ qn > α− c.

(Recall that q−1 stands for the list of the outputs of all the firms except firm 1.)
The best response functions of every other firm is the same.
The conditions for (q∗1, . . . , q∗n) to be a Nash equilibrium are

q∗1 = b1(q∗−1)

q∗2 = b2(q∗−2)
...

q∗n = b2(q∗−n)

or, in an equilibrium in which all the firms’ outputs are positive,

q∗1 = 1
2 (α− c− q∗2 − q∗3 − · · · − q∗n)
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q∗2 = 1
2 (α− c− q∗1 − q∗3 − · · · − q∗n)

...

q∗n = 1
2 (α− c− q∗1 − q∗2 − · · · − q∗n−1).

We can write these equations as

0 = α− c− 2q∗1 − q∗2 − · · · − q∗n−1 − q∗n
0 = α− c− q∗1 − 2q∗2 − · · · − q∗n−1 − q∗n

...

0 = α− c− q∗1 − q∗2 − · · · − q∗n−1 − 2q∗n.

If we subtract the second equation from the first we obtain 0 = −q∗1 + q∗2, or q∗1 =
q∗2. Similarly subtracting the third equation from the second we conclude that q∗2 =
q∗3, and continuing with all pairs of equations we deduce that q∗1 = q∗2 = · · · = q∗n.
Let the common value of the firms’ outputs be q∗. Then each equation is 0 =
α− c− (n + 1)q∗, so that q∗ = (α− c)/(n + 1).

In summary, the game has a unique Nash equilibrium, in which the output of
every firm i is (α− c)/(n + 1).

The price at this equilibrium is α− n(α− c)/(n + 1), or (α + nc)/(n + 1). As n
increases this price decreases, approaching c as n increases without bound: α/(n +
1) decreases to 0 and nc/(n + 1) decreases to c.

62.1 Nash equilibrium of Cournot’s game with small firms

• If P(Q∗) < p then every firm producing a positive output makes a negative
profit, and can increase its profit (to 0) by deviating and producing zero.

• If P(Q∗ + q) > p, take a firm that is either producing no output, or an ar-
bitrarily small output. (Such a firm exists, since demand is finite.) Such a
firm earns a profit of either zero or arbitrarily close to zero. If it deviates
and chooses the output q then total output changes to at most Q∗ + q, so that
the price still exceeds p (since P(Q∗ + q) > p). Hence the deviant makes a
positive profit.

63.1 Interaction among resource-users

The game is given as follows.

Players The firms.

Actions Each firm’s set of actions is the set of all nonnegative numbers (repre-
senting the amount of input it uses).
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Preferences The payoff of each firm i is

{
xi(1− (x1 + · · ·+ xn)) if x1 + · · ·+ xn ≤ 1
0 if x1 + · · ·+ xn > 1.

Up to the 6th printing of the book, this exercise asked the reader to find values
of α and c such that the game is the same as the one in Exercise 61.1. If c = 0
is allowed, the answer is c = 0 and α = 1. However, when c = 0 the example
in Section 3.1.3 and the game in Exercise 61.1 have multiple equilibria; in the 7th
printing and subsequently, Section 3.1.3 assumes c > 0.

The Nash equilibria of the game consist of the action profile (x1, . . . , xn) =
(1/(n + 1), . . . , 1/(n + 1)) and any action profile (x1, . . . , xn) in which the sum of
the actions of every set of n− 1 players is at least 1.

In the first Nash equilibrium, each firm’s output is (1/(n + 1))(1 − n/(n +
1)) = 1/(n + 1)2; in the other equilibria, each firm’s output is 0. If xi = 1/(2n) for
i = 1, . . . , n then each firm’s output is 1/(4n), which exceeds 1/(n + 1)2 for n ≥ 2.
(We have 1/(4n)− 1/(n + 1)2 = (n− 1)2/(4n(n + 1)2) > 0 for n ≥ 2.)

67.1 Bertrand’s duopoly game with constant unit cost

The pair (c, c) of prices remains a Nash equilibrium; the argument is the same
as before. Further, as before, there is no other Nash equilibrium. The argument
needs only very minor modification. For an arbitrary function D there may exist
no monopoly price pm; in this case, if pi > c, pj > c, pi ≥ pj, and D(pj) = 0 then
firm i can increase its profit by reducing its price slightly below p (for example).

67.2 Bertrand’s duopoly game with discrete prices

Yes, (c, c) is still a Nash equilibrium, by the same argument as before.
In addition, (c + 1, c + 1) is a Nash equilibrium (where c is given in cents). In

this equilibrium both firms’ profits are positive. If either firm raises its price or
lowers it to c, its profit becomes zero. If either firm lowers its price below c, its
profit becomes negative.

No other pair of prices is a Nash equilibrium, by the following argument, simi-
lar to the argument in the text for the case in which a price can be any nonnegative
number.

• If pi < c then the firm whose price is lowest (or either firm, if the prices are
the same) can increase its profit (to zero) by raising its price to c.

• If pi = c and pj ≥ c + 1 then firm i can increase its profit from zero to a
positive amount by increasing its price to c + 1.

• If pi > pj ≥ c + 1 then firm i can increase its profit (from zero) by lowering
its price to c + 1.
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• If pi = pj ≥ c + 2 and pj < α then either firm can increase its profit by
lowering its price by one cent. (If firm i does so, its profit changes from
1
2 (pi− c)(α− pi) to (pi− 1− c)(α− pi + 1) = (pi− 1− c)(α− pi) + pi− 1− c.
We have pi − 1− c ≥ 1

2 (pi − c) and pi − 1− c > 0, since pi ≥ c + 2.)

• If pi = pj ≥ c + 2 and pj ≥ α then either firm can increase its profit by
lowering its price to pm.

68.1 Bertrand’s oligopoly game

Consider a profile (p1, . . . , pn) of prices in which pi ≥ c for all i and at least two
prices are equal to c. Every firm’s profit is zero. If any firm raises its price its profit
remains zero. If a firm charging more than c lowers its price, but not below c, its
profit also remains zero. If a firm lowers its price below c then its profit is negative.
Thus any such profile is a Nash equilibrium.

To show that no other profile is a Nash equilibrium, we can argue as follows.

• If some price is less than c then the firm charging the lowest price can increase
its profit (to zero) by increasing its price to c.

• If exactly one firm’s price is equal to c then that firm can increase its profit by
raising its price a little (keeping it less than the next highest price).

• If all firms’ prices exceed c then the firm charging the highest price can in-
crease its profit by lowering its price to some price between c and the lowest
price being charged.

68.2 Bertrand’s duopoly game with different unit costs

a. If all consumers buy from firm 1 when both firms charge the price c2, then
(p1, p2) = (c2, c2) is a Nash equilibrium by the following argument. Firm 1’s profit
is positive, while firm 2’s profit is zero (since it serves no customers).

• If firm 1 increases its price, its profit falls to zero.

• If firm 1 reduces its price, say to p, then its profit changes from (c2 − c1)(α−
c2) to (p− c1)(α− p). Since c2 is less than the maximizer of (p− c1)(α− p),
firm 1’s profit falls.

• If firm 2 increases its price, its profit remains zero.

• If firm 2 decreases its price, its profit becomes negative (since its price is less
than its unit cost).

Under this rule no other pair of prices is a Nash equilibrium, by the following
argument.
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• If pi < c1 for i = 1, 2 then the firm with the lower price (or either firm, if the
prices are the same) can increase its profit (to zero) by raising its price above
that of the other firm.

• If p1 > p2 ≥ c2 then firm 2 can increase its profit by raising its price a little.

• If p2 > p1 ≥ c1 then firm 1 can increase its profit by raising its price a little.

• If p2 ≤ p1 and p2 < c2 then firm 2’s profit is negative, so that it can increase
its profit by raising its price.

• If p1 = p2 > c2 then firm 2 can increase its profit by lowering its price a little.

b. Now suppose that the rule for splitting up the customers when the prices are
equal specifies that firm 2 receives some customers when both prices are c2. By the
argument for part a, the only possible Nash equilibrium is (p1, p2) = (c2, c2). (The
argument in part a that every other pair of prices is not a Nash equilibrium does
not use the fact that customers are split equally when (p1, p2) = (c2, c2).) But if
(p1, p2) = (c2, c2) and firm 2 receives some customers, firm 1 can increase its profit
by reducing its price a little and capturing the entire market.

69.1 Bertrand’s duopoly game with fixed costs

At the pair of prices (p, p), both firms’ profits are zero. (Firm 1 receives all the
demand and obtains the profit (p − c)(α − p) − f = 0, and firm 2 receives no
demand.) This pair of prices is a Nash equilibrium by the following argument.

• If either firm raises its price its profit remains zero (it receives no customers).

• If either firm lowers its price then it receives all the demand and earns a
negative profit (since f is less than the maximum of (p− c)(α− p)).

No other pair of prices (p1, p2) is a Nash equilibrium, by the following argu-
ment.

• If p1 = p2 < p then firm 1’s profit is negative; firm 1 can increase its profit by
raising its price.

• If p1 = p2 > p then firm 2’s profit is zero; firm 2 can obtain a positive profit
by lowering its price a little.

• If pi < pj and firm i’s profit is positive then firm j can increase its profit from
zero to almost the current level of i’s profit by changing its price to be slightly
less than pi.

• If pi < pj and firm i’s profit is zero then firm i can earn a positive profit by
raising its price a little.

• If pi < pj and firm i’s profit is negative then firm i can increase its profit to
zero by raising its price above pj.
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74.1 Electoral competition with asymmetric voters’ preferences

The unique Nash equilibrium remains (m, m); the direct argument is exactly the
same as before. (The dividing line between the supporters of two candidates with
different positions changes. If xi < xj, for example, the dividing line is 1

3 xi + 2
3 xj

rather than 1
2 (xi + xj). The resulting change in the best response functions does

not affect the Nash equilibrium.)

74.2 Electoral competition with three candidates

Note regarding statement of exercise up to third printing of book: The exercise requires
the additional assumption that less than one-third of the citizens’ favorite positions
are equal to the median favorite position. (This assumption is satisfied, for exam-
ple, if the density of favorite position is nonatomic (i.e. the distribution function of
favorite positions is continuous).)

If a single candidate enters, then either remaining candidate can enter at the
same position and tie for first place, which she regards as better than staying out
of the race. Thus there is no Nash equilibrium in which a single candidate enters.

If more than one candidate enters and not all these candidates tie for first place,
then at least one of them loses and would be better off staying out of the race. Thus
in any Nash equilibrium, all the candidates who enter tie for first place.

If two candidates enter, then by the argument in the text for the case in which
there are only two candidates, each takes the position m in an equilibrium. But
then by the assumption that less than a third of the citizens’ favorite positions are
equal to m, the third candidate can enter, capture the votes of more than a third of
the citizens, and hence win outright. Thus there is no Nash equilibrium in which
two candidates enter.

If all three candidates enter and choose the same position, each candidate re-
ceives one third of the votes. If the common position is equal to m, then by the
assumption about the dispersion of the citizens’ favorite positions, any candidate
can win outright by moving either slightly to the left or slightly to the right of m
(by doing so she obtains more than a third of the votes). If the common position
is different from m then any candidate can win outright (obtaining more than one-
half of the votes) by moving to m. Thus there is no Nash equilibrium in which all
three candidates enter and choose the same position.

Finally, suppose that all three candidates enter and do not all choose the same
position. By the second argument, they all tie for first place. First suppose that
their positions are all different, say x < y < z. If x < m < y < z then the candidate
at x can move to m and win outright and if x < y < m < z then the candidate
at z can move to m and win outright. If y = m then either the candidate at x or
the candidate at y can move close to m can win outright (by the assumption on the
dispersion in the citizens’ favorite positions). Now suppose that two candidates’
positions are the same. If the common position is m, then the remaining candidate
can move close to m and win outright (by the assumption on the dispersion in
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the citizens’ favorite positions). If the common position differs from m, then the
remaining candidate can move to m and win outright.

We conclude that the game has no Nash equilibrium.

75.1 U.S. presidential election

The game has a unique equilibrium, in which the both candidates choose the po-
sition m1 (the median favorite position in the state with the most electoral college
votes). The outcome is a tie.

The following argument shows that this pair of positions is a Nash equilibrium.
If a candidate deviates to a position less than m1, she loses in state 1 and wins in
state 2, and thus loses overall. If a candidate deviates to a position greater than m1,
she loses in both states.

To see that there is no other Nash equilibrium, first consider a pair of positions
for which candidate 1 loses in state 1, and hence loses overall. By deviating to m1,
she either wins in state 1, and hence wins overall, or, if candidate 2’s position is
m1, ties in state 1, and ties overall. Thus her deviation induces an outcome she
prefers. The same argument applies to candidate 2, so that in any equilibrium the
candidates tie in state 1. Now, if the candidates’ positions are either different, or
the same and different from m1, either candidate can win outright rather than tying
for first place by moving to m1. Thus there is a single equilibrium, in which both
candidates’ positions are m1.

75.2 Electoral competition between candidates who care only about the winning posi-
tion

First consider a pair (x1, x2) of positions for which either x1 < m and x2 < m, or
x1 > m and x2 > m.

• If x1 6= x2 and the winner’s position is different from her favorite position
then the winner can move slightly closer to her favorite position and still
win.

• If x1 6= x2 and the winner’s position is equal to her favorite position then the
other candidate can move to m, which is closer to her favorite position than
the winner’s position, and win.

• If x1 = x2 < m then the candidate whose favorite position exceeds m can
move to m and cause the winning position to be m rather than x1 = x2.

• If x1 = x2 > m then the candidate whose favorite position is less than m can
move to m and cause the winning position to be m rather than x1 = x2.

Now suppose the candidates’ positions are on opposite sides of m: either x1 <
m < x2, or x2 < m < x1.
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• If each candidate’s position is on the same side of m as her favorite position
and one candidate wins outright, then the loser can win outright by moving
to m, which she prefers to the position of the other candidate.

• If each candidate’s position is on the same side of m as her favorite position
and the candidates tie for first place, then by moving slightly closer to m
either candidate can win. If her movement is small enough she prefers her
new position to the previous compromise 1

2 (x1 + x2) (= m).

• If each candidate’s position is on the opposite side of m to her favorite po-
sition then the winner, or either player in the case of a tie, can move to her
favorite position and either win outright or cause the winning position to be
the other candidate’s position, in both cases improving the outcome from her
point of view.

Now suppose that x1 = m and x2 < m. If x∗1 < m then candidate 1 is better
off choosing a slightly smaller value of x1 (in which case she still wins). If x∗1 > m
then candidate 1 is better off choosing a slightly larger value of x1 (in which case
she still wins). Thus (x1, x2) is not a Nash equilibrium. A similar argument applies
to pairs (x1, x2) for which x1 = m and x2 > m, and for which x1 6= m and x2 = m.

Finally, if (x1, x2) = (m, m), then the candidates tie. If either candidate changes
her position then she loses, and the winning position does not change. Thus this
pair of positions is a Nash equilibrium.

76.1 Citizen-candidates

If b ≤ 2c then the game has a Nash equilibrium in which a single citizen, with
favorite position m, stands as a candidate. In this equilibrium, the candidate’s
payoff is b− c and the payoff of every other citizen i is −|xi − m|, where xi is i’s
favorite position. The argument is as follows.

• If the citizen who stands as a candidate withdraws she obtains the payoff
K < b− c.

• If another citizen with the favorite position m stands, she obtains the payoff
1
2 b− c ≥ 0 (given b ≤ 2c), as opposed to the payoff of 0 if she does not stand.

• If a citizen with favorite position xi 6= m stands, she loses, and obtains the
payoff −|xi −m| − c < −|xi −m|.

If two citizens with favorite position m become candidates, each candidate’s
payoff is 1

2 b− c. If one withdraws then she obtains the payoff of 0, so for equilib-
rium we require b ≥ 2c. Now consider a citizen whose favorite position is close
to m. If she enters she wins outright, obtaining the payoff b− c. Since b ≥ 2c, this
payoff is positive, and hence exceeds her payoff if she does not stand (which is
negative, since the winner’s position is then different from her favorite position).
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Thus there is no equilibrium in which two citizens with favorite position m stand
as candidates.

Now consider the possibility of an equilibrium in which two citizens with fa-
vorite positions different from m stand as candidates. For an equilibrium the can-
didates must tie, otherwise one loses, and can do better by withdrawing. Thus the
positions, say x1 and x2, must satisfy 1

2 (x1 + x2) = m. If x1 and x2 are close enough
to m then any other citizen loses if she becomes a candidate. Thus there are equilib-
ria in which two citizens with positions symmetric about m, and sufficiently close
to m, become candidates.

76.2 Electoral competition for more general preferences

a. If x∗ is a Condorcet winner then for any y 6= x∗ a majority of voters prefer
x∗ to y, so y is not a Condorcet winner. Thus there is no more than one
Condorcet winner.

b. Suppose that one of the remaining voters prefers y to z to x, and the other
prefers z to x to y. For each position there is another position preferred by a
majority of voters, so no position is a Condorcet winner.

c. Now suppose that x∗ is a Condorcet winner. Then the strategic game de-
scribed the exercise has a unique Nash equilibrium in which both candidates
choose x∗. This pair of actions is a Nash equilibrium because if either can-
didate chooses a different position she loses. For any other pair of actions
either one candidate loses, in which case that candidate can deviate to the
position x∗ and at least tie, or the candidates tie at a position different from
x∗, in which case either of them can deviate to x∗ and win.

If there is no Condorcet winner then for every position there is another posi-
tion preferred by a majority of voters. Thus for every pair of distinct positions
the loser can deviate and win, and for every pair of identical positions either
candidate can deviate and win. Thus there is no Nash equilibrium.

77.1 Competition in product characteristics

Suppose there are two firms. If the products are different, then either firm increases
its market share by making its product more similar to that of its rival. Thus in
every possible equilibrium the products are the same. But if x1 = x2 6= m then each
firm’s market share is 50%, while if it changes its product to be closer to m then its
market share rises above 50%. Thus the only possible equilibrium is (x1, x2) =
(m, m). This pair of positions is an equilibrium, since each firm’s market share is
50%, and if either firm changes its product its market share falls below 50%.

Now suppose there are three firms. If all firms’ products are the same, each
obtains one-third of the market. If x1 = x2 = x3 = m then any firm, by changing
its product a little, can obtain close to one-half of the market. If x1 = x2 = x3 6= m
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then any firm, by changing its product a little, can obtain more than one-half of the
market. If the firms’ products are not all the same, then at least one of the extreme
products is different from the other two products, and the firm that produces it can
increase its market share by making it more similar to the other products. Thus
when there are three firms there is no Nash equilibrium.

80.1 Direct argument for Nash equilibria of War of Attrition

• If t1 = t2 then either player can increase her payoff by conceding slightly
later (in which case she obtains the object for sure, rather than getting it with
probability 1

2 ).

• If 0 < ti < tj then player i can increase her payoff by conceding at 0.

• If 0 = ti < tj < vi then player i can increase her payoff (from 0 to almost
vi − tj > 0) by conceding slightly after tj.

Thus there is no Nash equilibrium in which t1 = t2, 0 < ti < tj, or 0 = ti <
tj < vi (for i = 1 and j = 2, or i = 2 and j = 1). The remaining possibility is that
0 = ti < tj and tj ≥ vi for i = 1 and j = 2, or i = 2 and j = 1. In this case player i’s
payoff is 0, while if she concedes later her payoff is negative; player j’s payoff is vj,
her highest possible payoff in the game.

80.2 Variant of War of Attrition

The game is

Players The two parties to the dispute.

Actions Each player’s set of actions is the set of possible concession times (non-
negative numbers).

Preferences Player i’s preferences are represented by the payoff function

ui(t1, t2) =






0 if ti < tj
1
2 (vi − ti) if ti = tj

vi − tj if ti > tj.

where j is the other player.

Three representative cross-sections of player i’s payoff function are shown in
Figure 36.1.

From this figure we deduce that the best response function of player i is

Bi(tj) =






{ti: ti > tj} if tj < vi

{ti: ti ≥ 0} if tj = vi

{ti: 0 ≤ ti < tj} if tj > vi.
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tj vi
0
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ti →
tj = vi

tj = vi
0

↑
ui

ti →
tj > vi

tjvi

Figure 36.1 Three cross-sections of player i’s payoff function in the variant of the War of Attrition in
Exercise 80.2.
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t1 →

v1

v1

B1(t2)

0

↑
t2

t1 →v2

v2

B2(t1)

0

Figure 36.2 The players’ best response functions in the variant of the War of Attrition in Exercise 80.2
for v1 > v2. Player 1’s best response function is in the left panel; player 2’s is in the right panel. (The
sloping edges are excluded.)

The best response functions are shown in Figure 36.2 for a case in which v1 > v2.
Superimposing the two best response functions, we see that if v1 > v2 then

the set of Nash equilibrium action pairs is the union of the shaded regions in
Figure 37.1, namely the set of all pairs (t1, t2) such that either

t1 ≤ v2 and t2 ≥ v1,

or
t1 ≥ v2, t1 > t2, and t2 ≤ v1.

81.1 Timing product release

A strategic game that models this situation is:

Players The two firms

Actions The set of actions of each player is the set of possible release times,
which we can take to be the set of numbers t for which 0 ≤ t ≤ T.
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↑
t2

t1 →

v1

v1

v2

v20

Figure 37.1 The set of Nash equilibria of the variant of the War of Attrition in Exercise 80.2 when v1 > v2.

Preferences Each firm’s preferences are represented by its market share; the
market share of firm i when it releases its product at time ti and its rival
releases its product at time tj is






h(ti) if ti < tj
1
2 if ti = tj

1− h(tj) if ti > tj.

Three representative cross-sections of firm i’s payoff function are shown in
Figure 37.2.
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1
2

tj

1
2

0

↑
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h(tj) = 1
2

1
2

tj 0

↑
ui

ti →

h(tj) >
1
2

1
2

tj

Figure 37.2 Three cross-sections of firm i’s payoff function in the game in Exercise 81.1.

From the payoff function we see that if tj is such that h(tj) <
1
2 then the set of

firm i’s best responses is the set of release times after tj. If tj is such that h(tj) = 1
2

then the set of firm i’s best responses is the set of release times greater than or equal
to tj. If tj is such that h(tj) >

1
2 then firm i wants to release its product just before

tj. Since there is no latest time before tj, firm i has no best response in this case. (It

has good responses, but none is optimal.) Denoting the time t for which h(t) = 1
2

by t∗, the firms’ best response functions are shown in Figure 38.1.
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t∗

t∗

0
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t1 →

B1(t2)

t∗

t∗

0

↑
t2

t1 →

B2(t1)

Figure 38.1 The firms’ best response functions in the game in Exercise 81.1. Firm 1’s best response
function is in the left panel; firm 2’s is in the right panel.

Combining the best response functions we see that the game has a unique
Nash equilibrium, in which both firms release their products at the time t∗ (where
h(t∗) = 1

2 ).

81.2 A fight

The game is defined as follows.

Players The two people.

Actions The set of actions of each player i is the set of amounts of the resource
that player i can devote to fighting (the set of numbers yi with 0 ≤ yi ≤ 1).

Preferences The preferences of player i are represented by the payoff function

ui(y1, y2) =






f (y1, y2) if yi > yj
1
2 f (y1, y2) if y1 = y2

0 if yi < yj.

If yi < yj then player j can increase her payoff by reducing yj a little, keeping it
greater than yi (output increases, and she still wins). So no action profile in which
y1 6= y2 is a Nash equilibrium.

If y1 = y2 < 1 then either player i can increase her payoff by increasing yi to
slightly above yj (output falls a little, but i’s share of it increases from 1

2 to 1). So
no action profile in which y1 = y2 < 1 is a Nash equilibrium.

The only action profile that remains is (y1, y2) = (1, 1). This profile is a Nash
equilibrium: each player’s payoff is 0, and remains 0 if she reduces the amount of
the resource she devotes to fighting (given the other player’s action).

85.1 Nash equilibrium of second-price sealed-bid auction

The set of Nash equilibria of a second-price sealed-bid auction in which player n
wins the object is

{(b1, . . . , bn) : bi ≤ vn for i = 1, . . . , n− 1 and bn ≥ v1}.



Chapter 3. Nash Equilibrium: Illustrations 39

(One member of this set is (0, . . . , 0, v1). The question asks only for one equilib-
rium; this answer describes all equilibria.)

Any member of the set is a Nash equilibrium by the following argument.

• Player n wins and obtains the payoff vn −max1≤i≤n−1 bi ≥ 0; the payoff of
every other player is 0.

• If any player i = 1, . . . , n− 1 changes her bid, either the outcome remains the
same or she wins and pays v1, which yields her a payoff of at most 0.

• If player n changes her bid, either the outcome remains the same or she loses
and obtains the payoff 0.

No other action profile is a Nash equilibrium in which player n wins because
if any player i with 1 ≤ i ≤ n− 1 bids more than vn then the payoff of player n is
negative if she wins, and if player n bids less than v1 player 1 can deviate to a bid
above player n’s bid and obtain a positive payoff.

86.1 Second-price sealed-bid auction with two bidders

If player 2’s bid b2 is less than v1 then any bid of b2 or more is a best response of
player 1 (she wins and pays the price b2). If player 2’s bid is equal to v1 then every
bid of player 1 yields her the payoff zero (either she wins and pays v1, or she loses),
so every bid is a best response. If player 2’s bid b2 exceeds v1 then any bid of less
than b2 is a best response of player 1. (If she bids b2 or more she wins, but pays the
price b2 > v1, and hence obtains a negative payoff.) In summary, player 1’s best
response function is

B1(b2) =






{b1: b1 ≥ b2} if b2 < v1

{b1 : b1 ≥ 0} if b2 = v1

{b1: 0 ≤ b1 < b2} if b2 > v1.

By similar arguments, player 2’s best response function is

B2(b1) =






{b2: b2 > b1} if b1 < v2

{b2: b2 ≥ 0} if b1 = v2.
{b2: 0 ≤ b2 ≤ b1} if b1 > v2.

These best response functions are shown in Figure 40.1.
Superimposing the best response functions, we see that the set of Nash equi-

libria is the shaded set in Figure 40.2, namely the set of pairs (b1, b2) such that
either

b1 ≤ v2 and b2 ≥ v1

or
b1 ≥ v2, b1 ≥ b2, and b2 ≤ v1.
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Figure 40.1 The players’ best response functions in a two-player second-price sealed-bid auction (Ex-
ercise 86.1). Player 1’s best response function is in the left panel; player 2’s is in the right panel. (Only
the edges marked by a black line are included.)
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Figure 40.2 The set of Nash equilibria of a two-player second-price sealed-bid auction (Exercise 86.1).

87.1 Auctioning the right to choose

Denote the favorite action of player i by a∗i for i = 1, 2. I claim that the bid b∗i =
ui(a∗i ) − ui(a∗j ) for player i, where j is the other player, weakly dominates all of
player i’s other bids.

Suppose that bj < b∗i . Then the bid b∗i yields player i the payoff ui(a∗i ) − bj,
any other bid greater than bj yields the same payoff, any bid less than bj yields the
payoff ui(a∗j ) (player j chooses the action in this case), and the bid bj yields one or

other of these payoffs (depending whether i = 1 or i = 2). We have ui(a∗i )− bj >
ui(a∗j ) because bj < b∗i = ui(a∗i )− ui(a∗j ), so the bid b∗i yields a payoff at least as
large as every other bid.

A symmetric argument shows that the bid b∗i is optimal if bj > b∗i ; the case
bj = b∗i is similar.
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87.2 Nash equilibrium of first-price sealed-bid auction

The profile (b1, . . . , bn) = (v2, v2, v3, . . . , vn) is a Nash equilibrium by the following
argument.

• If player 1 raises her bid she still wins, but pays a higher price and hence
obtains a lower payoff. If player 1 lowers her bid then she loses, and obtains
the payoff of 0.

• If any other player changes her bid to any price at most equal to v2 the out-
come does not change. If she raises her bid above v2 she wins, but obtains a
negative payoff.

88.1 First-price sealed-bid auction

A profile of bids in which the two highest bids are not the same is not a Nash
equilibrium because the player naming the highest bid can reduce her bid slightly,
continue to win, and pay a lower price.

By the argument in the text, in any equilibrium player 1 wins the object. Thus
she submits one of the highest bids.

If the highest bid is less than v2, then player 2 can increase her bid to a value
between the highest bid and v2, win, and obtain a positive payoff. Thus in an
equilibrium the highest bid is at least v2.

If the highest bid exceeds v1, player 1’s payoff is negative, and she can in-
crease this payoff by reducing her bid. Thus in an equilibrium the highest bid
is at most v1.

Finally, any profile (b1, . . . , bn) of bids that satisfies the conditions in the exer-
cise is a Nash equilibrium by the following argument.

• If player 1 increases her bid she continues to win, and reduces her payoff.
If player 1 decreases her bid she loses and obtains the payoff 0, which is at
most her payoff at (b1, . . . , bn).

• If any other player increases her bid she either does not affect the outcome,
or wins and obtains a negative payoff. If any other player decreases her bid
she does not affect the outcome.

89.1 Third-price auction

a. The argument that a bid of vi weakly dominates any lower bid is the same as
for a second-price auction.

Now compare bids of bi > vi and vi. Suppose that one of the other players’
bids is between vi and bi and all the remaining bids are less than vi. If player i
bids vi she loses, and obtains the payoff of 0. If she bids bi she wins, and pays
the third highest bid, which is less than vi. Thus she is better off bidding bi

than she is bidding vi.
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b. Each player’s bidding her valuation is not a Nash equilibrium because player
2 can deviate and bid more than v1 and obtain the object at the price v3

instead of not obtaining the object.

c. Any action profile in which every player bids b, where v2 ≤ b ≤ v1 is a Nash
equilibrium. (If player 1’s raises her bid, the outcome does not change. If she
lowers her bid, her payoff becomes zero, which is no higher than her payoff
in the action profile. If any other player raises her bid then she wins and
pays b, obtaining a nonpositive payoff; if any other player lowers her bid the
outcome does not change.)

The set of all Nash equilibria is given as follows. (Note that the question
asks only for one equilibrium, not all equilibria.) A profile of bids is a Nash
equilibrium if and only if it satisfies one of the following two conditions.

• Player 1 wins, at least two players bid at least v2, and the third highest
bid is at least vk, where k is the player who submits the second highest
bid.

• Player k wins for some k with 2 ≤ k ≤ n− 1, at least two players bid at
least v1, the third highest bid is at most vk, and the index of the player
submitting the second highest bid is greater than k.

(The “second highest bid” is the winning bid among the bids that remain
when the winning bid is removed, and the “third highest bid” is the winning
bid when the winning bid and second highest bid are removed.)

90.1 All-pay auctions

Second-price all-pay auction with two bidders: The payoff function of bidder i is

ui(b1, b2) =
{
−bi if bi < bj

vi − bj if bi > bj,

with u1(b, b) = v1− b and u2(b, b) = −b for all b. This payoff function differs from
that of player i in the War of Attrition only in the payoffs when the bids are equal.
The set of Nash equilibria of the game is the same as that for the War of Attrition:
the set of all pairs (0, b2) where b2 ≥ v1 and (b1, 0) where b1 ≥ v2. (The pair (b, b)
of actions is not a Nash equilibrium for any value of b because player 2 can increase
her payoff by either increasing her bid slightly or by reducing it to 0.)

First-price all-pay auction with two bidders: In any Nash equilibrium the two
highest bids are equal, otherwise the player with the higher bid can increase her
payoff by reducing her bid a little (keeping it larger than the other player’s bid).
But no profile of bids in which the two highest bids are equal is a Nash equilibrium,
because the player with the higher index who submits this bid can increase her
payoff by slightly increasing her bid, so that she wins rather than loses.
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91.1 Multiunit auctions

Discriminatory auction To show that the action of bidding vi and wi is not domi-
nant for player i, we need only find actions for the other players and alterna-
tive bids for player i such that player i’s payoff is higher under the alternative
bids than it is under the vi and wi, given the other players’ actions. Suppose
that each of the other players submits two bids of 0. Then if player i submits
one bid between 0 and vi and one bid between 0 and wi she still wins two
units, and pays less than when she bids vi and wi.

Uniform-price auction Suppose that some bidder other than i submits one bid
between wi and vi and one bid of 0, and all the remaining bidders submit
two bids of 0. Then bidder i wins one unit, and pays the price wi. If she
replaces her bid of wi with a bid between 0 and wi then she pays a lower
price, and hence is better off.

Vickrey auction Suppose that player i bids vi and wi. Consider separately the
cases in which the bids of the players other than i are such that player i wins
0, 1, and 2 units.

Player i wins 0 units: In this case the second highest of the other players’
bids is at least vi, so that if player i changes her bids so that she wins
one or more units, for any unit she wins she pays at least vi. Thus no
change in her bids increases her payoff from its current value of 0 (and
some changes lower her payoff).

Player i wins 1 unit: If player i raises her bid of vi then she still wins one unit
and the price remains the same. If she lowers this bid then either she still
wins and pays the same price, or she does not win any units. If she raises
her bid of wi then either the outcome does not change, or she wins a sec-
ond unit. In the latter case the price she pays is the previously-winning
bid she beat, which is at least wi, so that her payoff either remains zero
or becomes negative.

Player i wins 2 units: Player i’s raising either of her bids has no effect on the
outcome; her lowering a bid either has no effect on the outcome or leads
her to lose rather than to win, leading her to obtain the payoff of zero.

91.2 Waiting in line

The situation is modeled by a variant of a discriminatory multiunit auction in
which 100 units are available, and each person attaches a positive value only to
one unit and submits a bid for only one unit.

We can argue along the lines of Exercise 88.1.

• The first 100 people to arrive must do so at the same time. If not, at least one
of them could arrive a little later and still be in the first 100.
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• The first 100 people to arrive must be persons 1 through 100. Suppose, to the
contrary, that one of these people is person i with i ≥ 101, and person j with
j ≤ 100 is not in the group that arrives first. Then the common waiting time
of the first 100 must be at most v101, otherwise person i obtains a negative
payoff. But then person j can deviate and arrive slightly earlier than the
group of 100, and obtain a positive payoff.

• The common waiting time of the first 100 people must be at least v101. If not,
then person 101 could arrive slightly before the first 100 and obtain a positive
payoff.

• The common waiting time of the first 100 people must be at most v100. If not,
then person 100 obtains a negative payoff, while by arriving later her payoff
is zero.

• At least one person i with i ≥ 101 arrives at the same time as the first 100
people. If not, then any person i with i ≤ 100 can arrive slightly later and
still be one of the first 100 to arrive.

This argument shows that in a Nash equilibrium persons 1 through 100 choose
the same waiting time t∗ with v101 ≤ t∗ ≤ v100, all the remaining people choose
waiting times of at most t∗, and at least one of the remaining people chooses a
waiting time equal to t∗. Any such action profile is a Nash equilibrium: any per-
son i with i ≤ 100 obtains a smaller payoff if she arrives earlier and a payoff of
zero if she arrives later. Any person i with i ≥ 101 obtains a negative payoff if she
arrives before the first 100 people and a payoff of zero if she arrives at or after the
first 100 people.

Thus the set of Nash equilibria is the set of action profiles (t1, . . . , t200) in which
t1 = · · · = t100, this common waiting time, say t∗, satisfies v101 ≤ t∗ ≤ v100, ti ≥ t∗

for all i ≥ 101, and tj = t∗ for some j ≥ 101.
When goods are rationed by line-ups in the world, people in general do not all

arrive at the same time. The feature missing from the model that seems to explain
the dispersion in arrival times is uncertainty on the part of each player about the
other players’ valuations.

91.3 Internet pricing

The situation may be modeled as a multiunit auction in which k units are available,
and each player attaches a positive value to only one unit and submits a bid for
only one unit. The k highest bids win, and each winner pays the (k + 1)st highest
bid.

By a variant of the argument for a second-price auction, in which “highest of
the other players’ bids” is replaced by “highest rejected bid”, each player’s action
of bidding her value is weakly dominates all her other actions.
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92.1 Lobbying as an auction

First-price auction In the action pair, each interest group’s payoff is −100. Con-
sider group A. If it raises the price it will pay for y, then the government
still chooses y, and A is worse off. If it lowers the price it will pay for y,
then the government chooses z and A’s payoff remains −100. Now suppose
it changes its bid from y to x and bids p. If p < 103, then the government
chooses z and A’s payoff remains −100. If p ≥ 103, then the government
chooses x and A’s payoff is at most −103. Group A cannot increase its pay-
off by changing its bid from y to z, for similar reasons. A similar argument
applies to group B’s bid.

Menu auction In the action pair, each group’s payoff is −3. Consider group A. If
it changes its bids then either the outcome remains x and it pays at least 3, so
that its payoff is at most −3, or the outcome becomes y and it pays at least 6,
in which case its payoff is at most −3, or the outcome becomes z and it pays
at least 0, in which case its payoff is at most −100. (Note that if it reduces its
bids for both x and y then z is chosen.) Thus no change in its bids increases
its payoff. Similar considerations apply to group B’s bid.

97.2 Alternative standards of care under negligence with contributory negligence

First consider the case in which X1 = â1 and X2 ≤ â2. The pair (â1, â2) is a Nash
equilibrium by the following argument.

If a2 = â2 then the victim’s level of care is sufficient (at least X2), so that the
injurer’s payoff is given by (95.1) in the text. Thus the argument that the injurer’s
action â1 is a best response to â2 is exactly the same as the argument for the case
X2 = â2 in the text.

Since X1 is the same as before, the victim’s payoff is the same also, so that by
the argument in the text the victim’s best response to â1 is â2. Thus (â1, â2) is a
Nash equilibrium.

To show that (â1, â2) is the only Nash equilibrium of the game, we study the
players’ best response functions. First consider the injurer’s best response func-
tion. As in the text, we split the analysis into three cases.

a2 < X2: In this case the injurer does not have to pay any compensation, re-
gardless of her level of care; her payoff is −a1, so that her best response is
a1 = 0.

a2 = X2: In this case the injurer’s best response is â1, as argued when showing
that (â1, â2) is a Nash equilibrium.

a2 > X2: In this case the injurer’s best response is at most â1, since her payoff
is equal to −a1 for larger values of a1.
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Thus the injurer’s best response takes a form like that shown in the left panel
of Figure 46.1. (In fact, b1(a2) = â1 for X2 ≤ a2 ≤ â2, but the analysis depends only
on the fact that b1(a2) ≤ â1 for a2 > X2.)

0

â2

X2

â1 a1 →

↑
a2 b1(a2)

0

X2

â1 a1 →

↑
a2

?b2(a1)

Figure 46.1 The players’ best response functions under the rule of negligence with contributory negli-
gence when X1 = â1 and X2 = â2. Left panel: the injurer’s best response function b1. Right panel: the
victim’s best response function b2. (The position of the victim’s best response function for a1 > â1 is
not significant, and is not determined in the solution.)

Now consider the victim’s best response function. The victim’s payoff function
is

u2(a1, a2) =
{
−a2 if a1 < â1 and a2 ≥ X2

−a2 − L(a1, a2) if a1 ≥ â1 or a2 < X2.

As before, for a1 < â1 we have −a2 − L(a1, a2) < −â2 for all a2, so that the victim’s
best response is X2. As in the text, the nature of the victim’s best responses to levels
of care a1 for which a1 > â1 are not significant.

Combining the two best response functions we see that (â1, â2) is the unique
Nash equilibrium of the game.

Now consider the case in which X1 = M and a2 = â2, where M ≥ â1. The
injurer’s payoff is

u1(a1, a2) =
{
−a1 − L(a1, a2) if a1 < M and a2 ≥ â2

−a1 if a1 ≥ M or a2 < â2.

Now, the maximizer of −a1 − L(a1, â2) is â1 (see the argument following (95.1) in
the text), so that if M is large enough then the injurer’s best response to â2 is â1.
As before, if a2 < â2 then the injurer’s best response is 0, and if a2 > â2 then the
injurer’s payoff decreases for a1 > M, so that her best response is less than M. The
injurer’s best response function is shown in the left panel of Figure 47.1.

The victim’s payoff is

u2(a1, a2) =
{
−a2 if a1 < M and a2 ≥ â2

−a2 − L(a1, a2) if a1 ≥ M or a2 < â2.

If a1 ≤ â1 then the victim’s best response is â2 by the same argument as the one in
the text. If a1 is such that â1 < a1 < M then the victim’s best response is at most
â2 (since her payoff is decreasing for larger values of a2). This information about
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0

â2

â1 M a1 →

↑
a2 b1(a2)

0

â2

â1 M a1 →

↑
a2

?b2(a1)

Figure 47.1 The players’ best response functions under the rule of negligence with contributory negli-
gence when (X1, X2) = (M, â2), with M ≥ â1. Left panel: the injurer’s best response function b1. Right
panel: the victim’s best response function b2. (The position of the victim’s best response function for
a1 > M is not significant, and is not determined in the text.)

the victim’s best response function is recorded in the right panel of Figure 47.1; it
is sufficient to deduce that (â1, â2) is the unique Nash equilibrium of the game.

97.3 Equilibrium under strict liability

In this case the injurer’s payoff is −a1 − L(a1, a2) and the victim’s is −a2 for all
(a1, a2). Thus the victim’s optimal action is 0, regardless of the injurer’s action.
(The victim takes no care, given that, regardless of her level of care, the injurer is
obliged to compensate her for any loss.) Thus in a Nash equilibrium the injurer
chooses the level of care that maximizes −a1 − L(a1, 0) and the victim chooses
a2 = 0.

If the function −a1 − L(a1, 0) has a unique maximizer then the game has a
unique Nash equilibrium; if there are multiple maximizers then the game has
many Nash equilibria, though the players’ payoffs are the same in all the equi-
libria. The relation between â1 and the equilibrium value of a1 depends on the
character of L(a1, a2). If, for example, L decreases more sharply as a1 increases
when a2 = 0 than when a2 is positive, the equilibrium value of a1 exceeds â1.





4 Mixed Strategy Equilibrium

101.1 Variant of Matching Pennies

The analysis is the same as for Matching Pennies. There is a unique steady state, in
which each player chooses each action with probability 1

2 .

106.2 Extensions of BoS with vNM preferences

In the first case, when player 1 is indifferent between going to her less preferred
concert in the company of player 2 and the lottery in which with probability 1

2 she
and player 2 go to different concerts and with probability 1

2 they both go to her
more preferred concert, the Bernoulli payoffs that represent her preferences satisfy
the condition

u1(S, S) = 1
2 u1(S, B) + 1

2 u1(B, B).

If we choose u1(S, B) = 0 and u1(B, B) = 2, then u1(S, S) = 1. Similarly, for
player 2 we can set u2(B, S) = 0, u2(S, S) = 2, and u2(B, B) = 1. Thus the Bernoulli
payoffs in the left panel of Figure 49.1 are consistent with the players’ preferences.

In the second case, when player 1 is indifferent between going to her less pre-
ferred concert in the company of player 2 and the lottery in which with probabil-
ity 3

4 she and player 2 go to different concerts and with probability 1
4 they both go

to her more preferred concert, the Bernoulli payoffs that represent her preferences
satisfy the condition

u1(S, S) = 3
4 u1(S, B) + 1

4 u1(B, B).

If we choose u1(S, B) = 0 and u1(B, B) = 2 (as before), then u1(S, S) = 1
2 . Similarly,

for player 2 we can set u2(B, S) = 0, u2(S, S) = 2, and u2(B, B) = 1
2 . Thus the

Bernoulli payoffs in the right panel of Figure 49.1 are consistent with the players’
preferences.

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Bach Stravinsky
Bach 2, 1

2 0, 0
Stravinsky 0, 0 1

2 , 2

Figure 49.1 The Bernoulli payoffs for two extensions of BoS.

49
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↑
Player 1’s

expected payoff
2

q = 1

1
2

1
q = 1

2

1

q = 0

0 1p→

Figure 50.1 Player 1’s expected payoff as a function of the probability p that she assigns to B in BoS,
when the probability q that player 2 assigns to B is 0, 1

2 , and 1.

110.1 Expected payoffs

For BoS, player 1’s expected payoff is shown in Figure 50.1.
For the game in the right panel of Figure 21.1 in the book, player 1’s expected

payoff is shown in Figure 50.2.

↑
Player 1’s

expected payoff
3

2
q = 1

3
2

q = 1
21

q = 0

0 1p→

Figure 50.2 Player 1’s expected payoff as a function of the probability p that she assigns to Refrain in
the game in the right panel of Figure 21.1 in the book, when the probability q that player 2 assigns to
Refrain is 0, 1

2 , and 1.

111.1 Examples of best responses

For BoS: for q = 0 player 1’s unique best response is p = 0 and for q = 1
2 and q = 1

her unique best response is p = 1. For the game in the right panel of Figure 21.1:
for q = 0 player 1’s unique best response is p = 0, for q = 1

2 her set of best
responses is the set of all her mixed strategies (all values of p), and for q = 1 her
unique best response is p = 1.
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114.1 Mixed strategy equilibrium of Hawk–Dove

Denote by ui a payoff function whose expected value represents player i’s prefer-
ences. The conditions in the problem imply that for player 1 we have

u1(Passive, Passive) = 1
2 u1(Aggressive, Aggressive) + 1

2 u1(Aggressive, Passive)

and

u1(Passive, Aggressive) = 2
3 u1(Aggressive, Aggressive) + 1

3 u1(Passive, Passive).

Given u1(Aggressive, Aggressive) = 0 and u1(Passive, Aggressive = 1, we have

u1(Passive, Passive) = 1
2 u1(Aggressive, Passive)

and

1 = 1
3 u1(Passive, Passive),

so that

u1(Passive, Passive) = 3 and u1(Aggressive, Passive) = 6.

Similarly,

u2(Passive, Passive) = 3 and u2(Passive, Aggressive) = 6.

Thus the game is given in the left panel of Figure 51.1. The players’ best re-
sponse functions are shown in the right panel. The game has three mixed strategy
Nash equilibria: ((0, 1), (1, 0)), (( 3

4 , 1
4 ), ( 3

4 , 1
4 )), and ((1, 0), (0, 1)).

Aggressive Passive
Aggressive 0, 0 6, 1

Passive 1, 6 3, 3

0 3
4

1
p→

3
4

1↑
q

B1

B2

Figure 51.1 An extension of Hawk–Dove (left panel) and the players’ best response functions when
randomization is allowed in this game (right panel). The probability that player 1 assigns to Aggressive
is p and the probability that player 2 assigns to Aggressive is q. The disks indicate the Nash equilibria
(two pure, one mixed).
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114.2 Games with mixed strategy equilibria

The best response functions for the left game are shown in the left panel of Fig-
ure 52.1. We see that the game has a unique mixed strategy Nash equilibrium
(( 1

4 , 3
4 ), ( 2

3 , 1
3 )). The best response functions for the right game are shown in the

right panel of Figure 52.1. We see that the mixed strategy Nash equilibria are
((0, 1), (1, 0)) and any ((p, 1− p), (0, 1)) with 1

2 ≤ p ≤ 1.

0 1
4

1
p→

2
3

1↑
q

B1

B2

0 1
2

1
p→

1↑
q

B1 B2

Figure 52.1 The players’ best response functions in the left game (left panel) and right game (right
panel) in Exercise 114.2. The probability that player 1 assigns to T is p and the probability that player 2
assigns to L is q. The disks and the heavy line indicate Nash equilibria.

114.3 A coordination game

The best response functions are shown in Figure 53.1. From the figure we see that
the game has three mixed strategy Nash equilibria, ((1, 0), (1, 0)) (the pure strat-
egy equilibrium (No effort, No effort)), ((0, 1), (0, 1)) (the pure strategy equilibrium
(Effort, Effort)), and ((1− c, c), (1− c, c)).

An increase in c has no effect on the pure strategy equilibria, and increases the
probability that each player chooses to exert effort in the mixed strategy equilib-
rium (because this probability is precisely c).

The pure Nash equilibria are not affected by the cost of effort because a change
in c has no effect on the players’ rankings of the four outcomes. An increase in c
reduces a player’s payoff to the action Effort, given the other player’s mixed strat-
egy; the probability the other player assigns to Effort must increase in order to keep
the player indifferent between No effort and Effort, as required in an equilibrium.

114.4 Swimming with sharks

As argued in the question, if you swim today, your expected payoff is −πc + 2(1−
π), regardless of your friend’s action. If you do not swim today and your friend
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0 1− c 1
p→

1− c

1↑
q

B1

B2

Figure 53.1 The players’ best response functions in the coordination game in Exercise 115.1. The prob-
ability that player 1 assigns to No effort is p and the probability that player 2 assigns to No effort is q. The
disks indicate the Nash equilibria (two pure, one mixed).

does, then with probability π your friend is attacked and you do not swim tomor-
row, and with probability 1 − π your friend is not attacked and you do swim to-
morrow. Thus your expected payoff in this case is π · 0 + (1−π) · 1 = 1−π. If nei-
ther of you swims today then your expected payoff is max{−πc + 1− π, 0}, as ar-
gued in the problem. Hence player 1’s payoffs in the game are given in Figure 53.2.
(Player 2’s payoffs are symmetric with player 1’s.)

Swim today Wait
Swim today −πc + 2(1− π) −πc + 2(1− π)

Wait 1− π max{−πc + 1− π, 0}

Figure 53.2 Player 1’s payoffs in the (symmetric) game of swimming with sharks.

To find the mixed strategy Nash equilibria, first note that if −πc + 1− π > 0,
or c < (1− π)/π, then Swim today is the unique best response to both Swim today
and Wait. Thus in this case there is a unique mixed strategy Nash equilibrium, in
which both players choose Swim today.

At the other extreme, if −πc + 2(1− π) < 0, or c > 2(1− π)/π, then Wait is
the unique best response to both Swim today and Wait. Thus in this case there is
a unique mixed strategy Nash equilibrium, in which neither of you swims today,
and consequently neither of you swims tomorrow.

In the intermediate case in which 0 < −πc + 2(1−π) < 1−π, or (1−π)/π <
c < 2(1−π)/π, the unique best response to Swim today is Wait and the unique best
response to Wait is Swim today. Thus (Swim today, Wait) and (Wait, Swim today)
are both mixed strategy Nash equilibria. In this case the game has also a mixed
strategy Nash equilibrium in which the probability that each player assigns to each
action is positive.

Denote by q the probability that player 2 chooses Swim today. Then player 1’s
expected payoff to Swim today is −πc + 2(1− π) and her expected payoff to Wait
is q(1− π). (Because −πc + 2(1− π) < 1− π, we have −πc + 1− π < 0, so that
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each player’s payoff if both players Wait is 0.) Thus player 1’s expected payoffs to
her two actions are equal if and only if

−πc + 2(1− π) = q(1− π),

or q = [−πc + 2(1 − π)]/(1 − π). The same calculation implies that player 2’s
expected payoffs to her two actions are equal if and only if the probability that
player 1 assigns to Swim today is [−πc + 2(1− π)]/(1− π) = 2− πc/(1− π).

We conclude that if (1 − π)/π < c < 2(1 − π)/π then the game has three
mixed strategy Nash equilibria: (Swim today, Wait), (Wait, Swim today), and the
mixed strategy pair in which each person swims today with probability 2−πc/(1−
π).

If c = (1− π)/π the payoffs simplify to those given in the left panel of Fig-
ure 54.1. The set of mixed strategy Nash equilibria in this case is the set of all
mixed strategy pairs ((p, 1 − p), (q, 1 − q)) for which either p = 1 or q = 1. If
c = 2(1−π)/π the payoffs simplify to those given in the right panel of Figure 54.1.
The set of mixed strategy Nash equilibria in this case is the set of all mixed strategy
pairs ((p, 1− p), (q, 1− q)) for which either p = 0 or q = 0.

Swim Wait
Swim 1− π, 1− π 1− π, 1− π
Wait 1− π, 1− π 0, 0

Swim Wait
Swim 0, 0 0, 1− π
Wait 1− π, 0 0, 0

Figure 54.1 The game if Figure 53.2 for c = (1− π)/π (left panel) and c = 2(1− π)/π (right panel).

If you were alone your expected payoff to swimming on the first day would be
−πc + 2(1− π); your expected payoff to staying out of the water on the first day
and acting optimally on the second day would be max{−πc + 1− π, 0}. Thus if
−πc + 2(1− π) > 0, or c < 2(1− π)/π, you would swim on the first day (and
stay out of the water on the second day if you get attacked on the first day), and if
c > 2(1− π)/π you would stay out of the water on both days.

In the presence of your friend, you swim on the first day if c < (1− π)/π and
stay out of the water if c > 2(1−π)/π. Thus for c < (1−π)/π or c > 2(1−π)/π

each person acts in the same way as she would if she were alone.
If (1−π)/π < c < 2(1−π)/π, then the game has an equilibrium in which you

swim on the first day (and your friend does not), one in which you do not (but your
friend does), and one in which you both swim with probability 2 − πc/(1 − π)
(which decreases from 1 to 0 as c increases from (1− π)/π to 2(1− π)/π).

Thus for (1− π)/π < c < 2(1− π)/π the presence of your friend either de-
creases the probability of your swimming on the first day or has no effect on this
probability.

117.2 Choosing numbers

a. To show that the pair of mixed strategies in the question is a mixed strategy
equilibrium, it suffices to verify the conditions in Proposition 116.2. Thus,
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given that each player’s strategy specifies a positive probability for every
action, it suffices to show that each action of each player yields the same
expected payoff. Player 1’s expected payoff to each pure strategy is 1/K,
because with probability 1/K player 2 chooses the same number, and with
probability 1− 1/K player 2 chooses a different number. Similarly, player 2’s
expected payoff to each pure strategy is −1/K, because with probability 1/K
player 1 chooses the same number, and with probability 1 − 1/K player 2
chooses a different number. Thus the pair of strategies is a mixed strategy
Nash equilibrium.

b. Let (p∗, q∗) be a mixed strategy equilibrium, where p∗j and q∗j are the proba-
bilities assigned by players 1 and 2 to the integer j, for j = 1, . . . , K.

Step 1 If p∗k > 0 then q∗k ≥ q∗j for all j.

Proof. Player 1’s expected payoff to any action j is q∗j (her payoff is 1 if
player 2 chooses j and is otherwise 0). So by Proposition 116.2, if p∗k > 0
then q∗k ≥ q∗j for all j.

Step 2 If p∗k > 0 then q∗k > 0.

Proof. From Step 1, we must have q∗j > 0 for some j (not every q∗j can be
0!), so q∗k > 0.

Step 3 If p∗k > 0 then p∗k ≤ 1/K.

Proof. By Step 2, q∗k > 0. Thus by Proposition 116.2, player 2’s expected
payoff to the action k is at least her expected payoff to any other action.
Her expected payoff to the action j is −p∗j , so −p∗k ≥ −p∗j for any j, or
p∗k ≤ p∗j for any j. Thus we have p∗k ≤ 1/K (p∗j cannot exceed 1/K for
all j!).

Step 4 p∗j = 1/K for all j.

Proof. The sum of the p∗j ’s equals 1, so the result follows from Step 3.

Step 5 q∗j = 1/K for all j.

Proof. By Step 4, every p∗j > 0, so the result follows from Step 1 and the
fact that the sum of q∗j ’s equals 1.

118.1 Silverman’s game

The game has no pure strategy Nash equilibrium in which the players’ integers are
the same because either player can increase her payoff from 0 to 1 by naming the
next higher integer. It has no Nash equilibrium in which the players’ integers are
different because the losing player (the player whose payoff is −1) can increase her
payoff to 1 by changing her integer to be one more than the other player’s integer.
Thus the game has no pure strategy Nash equilibrium.

To show that the pair of mixed strategies in the question is a mixed strat-
egy equilibrium, consider player i’s expected payoff to each of her actions when
player j uses the mixed strategy in the question:
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1: 1
3 · 0 + 1

3 · (−1) + 1
3 · 1 = 0.

2: 1
3 · 1 + 1

3 · 0 + 1
3 · (−1) = 0.

3 or 4: 1
3 · (−1) + 1

3 · 1 + 1
3 · (−1) = − 1

3 .

5: 1
3 · (−1) + 1

3 · 1 + 1
3 · 0 = 0.

6–14: 1
3 · (−1) + 1

3 · (−1) + 1
3 · 1 = − 1

3 .

15 or more: 1
3 · (−1) + 1

3 · (−1) + 1
3 · (−1) = −1.

Given these payoffs, player i’s expected payoff to any mixed strategy that as-
signs positive probability to an action other than 1, 2, and 5 is negative, and no
mixed strategy of player i yields a positive expected payoff. Thus the pair of
strategies is a mixed strategy Nash equilibrium.

118.2 Voter participation

I verify that the conditions in Proposition 116.2 are satisfied.
First consider a supporter of candidate A. If she votes then candidate A ties

if all k − 1 of her comrades vote, an event with probability pk−1, and otherwise
candidate A loses. Thus her expected payoff is

pk−1 − c.

If she abstains, then candidate A surely loses, so her payoff is 0. Thus in an equi-
librium in which 0 < p < 1 the first condition in Proposition 116.2 implies that
pk−1 = c, or

p = c1/(k−1).

Given k ≥ 2 and 0 < c < 1, we have 0 < p < 1.
Now consider a supporter of candidate B who votes. With probability pk all of

the supporters of candidate A vote, in which case the election is a tie; with proba-
bility 1− pk at least one of the supporters of candidate A does not vote, in which
case candidate B wins. Thus the expected payoff of a supporter of candidate B
who votes is

pk + 2(1− pk)− c.

If the supporter of candidate B switches to abstaining, then

• candidate B loses if all supporters of candidate A vote, an event with proba-
bility pk

• candidate B ties if exactly k− 1 supporters of candidate A vote, an event with
probability kpk−1(1− p)

• candidate B wins if fewer than k− 1 supporters of candidate A vote, an event
with probability 1− pk − kpk−1(1− p).
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Thus a supporter of candidate B who switches from voting to abstaining obtains
an expected payoff of

kpk−1(1− p) + 2(1− pk − kpk−1(1− p)) = 2− (2− k)pk − kpk−1.

Hence in order for it to be optimal for such a citizen to vote (i.e. in order for the
second condition in Proposition 116.2 to be satisfied), we need

pk + 2(1− pk)− c ≥ 2− (2− k)pk − kpk−1,

or
kpk−1(1− p) + pk ≥ c.

Finally, consider a supporter of candidate B who abstains. With probability pk

all the supporters of candidate A vote, in which case the candidates tie; with prob-
ability 1− pk at least one of the supporters of candidate A does not vote, in which
case candidate B wins. Thus the expected payoff of a supporter of candidate B
who abstains is

pk + 2(1− pk).

If this citizen instead votes, candidate B surely wins (she gets k + 1 votes, while
candidate A gets at most k). Thus the citizen’s expected payoff is

2− c.

Hence in order for the citizen to wish to abstain, we need

pk + 2(1− pk) ≥ 2− c

or
c ≥ pk.

In summary, for equilibrium we need p = c1/(k−1) and

pk ≤ c ≤ kpk−1(1− p) + pk.

Given p = c1/(k−1), c = pk−1, so that the two inequalities are satisfied. Thus
p = c1/(k−1) defines an equilibrium.

As c increases, the probability p, and hence the expected number of voters,
increases.

118.3 Defending territory

(The solution to this problem, which corrects an error in Shubik (1982, 226), is due
to Nick Vriend.) The game is shown in Figure 58.1, where each action (x, y) gives
the number x of divisions allocated to the first pass and the number y allocated to
the second pass.
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General A

General B
(2, 0) (1, 1) (0, 2)

(3, 0) 1,−1 −1, 1 −1, 1
(2, 1) 1,−1 1,−1 −1, 1
(1, 2) −1, 1 1,−1 1,−1
(0, 3) −1, 1 −1, 1 1,−1

Figure 58.1 The game in Exercise 118.3.

Denote a mixed strategy of A by (p1, p2, p3, p4) and a mixed strategy of B by
(q1, q2, q3).

First I argue that in every equilibrium q2 = 0. If q2 > 0 then A’s expected
payoff to (3, 0) is less than her expected payoff to (2, 1), and her expected payoff
to (0, 3) is less than her expected payoff to (1, 2), so that p1 = p4 = 0. But then B’s
expected payoff to at least one of her actions (2, 0) and (0, 2) exceeds her expected
payoff to (1, 1), contradicting q2 > 0.

Now I argue that in every equilibrium q1 = q3 = 1
2 . Given q2 = 0 we have

q3 = 1− q1, and A’s payoffs are 2q1 − 1 to (3, 0) and to (2, 1), and 1− 2q1 to (1, 2)
and (0, 3). Thus if q1 <

1
2 then in any equilibrium we have p1 = p2 = 0. Then B’s

action (2, 0) yields her a higher payoff than does (0, 2), so that in any equilibrium
q1 = 1. But then A’s actions (3, 0) and (2, 1) both yield higher payoffs than do
(1, 2) and (0, 3), contradicting p1 = p2 = 0. Similarly, q1 >

1
2 is inconsistent with

equilibrium. Hence in any equilibrium q1 = q3 = 1
2 .

Now, given q1 = q3 = 1
2 , A’s payoffs to her four actions are all equal. Thus

((p1, p2, p3, p4), (q1, q2, q3)) is a Nash equilibrium if and only if B’s payoff to (2, 0)
is the same as her payoff to (0, 2), and this payoff is at least her payoff to (1, 1).
The first condition is −p1 − p2 + p3 + p4 = p1 + p2 − p3 − p4, or p1 + p2 = p3 +
p4 = 1

2 . Thus B’s payoff to (2, 0) and to (0, 2) is zero, and the second condition is
p1 − p2 − p3 + p4 ≤ 0, or p1 + p4 ≤ 1

2 (using p1 + p2 + p3 + p4 = 1).
We conclude that the set of mixed strategy Nash equilibria of the game is the

set of strategy pairs ((p1, 1
2 − p1, 1

2 − p4, p4), ( 1
2 , 0, 1

2 )) with p1 + p4 ≤ 1
2 .

In this equilibrium General A splits her resources between the two passes with
probability at least 1

2 (p2 + p3 = 1
2 − p1 + 1

2 − p4 = 1 − (p1 + p4) ≥ 1
2 ) while

General B concentrates all of her resources in one or other of the passes (with equal
probability).

120.2 Strictly dominating mixed strategies

Denote the probability that player 1 assigns to T by p and the probability she as-
signs to M by r (so that the probability she assigns to B is 1 − p − r). A mixed
strategy of player 1 strictly dominates T if and only if

p + 4r > 1 and p + 3(1− p− r) > 1,
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or if and only if 1− 4r < p < 1− 3
2 r. For example, the mixed strategies ( 1

4 , 1
4 , 1

2 )
and (0, 1

3 , 2
3 ) both strictly dominate T.

120.3 Strict domination for mixed strategies

(a) True. Suppose that the mixed strategy α′i assigns positive probability to the
action a′i, which is strictly dominated by the action ai. Then ui(ai, a−i) > ui(a′i, a−i)
for all a−i. Let αi be the mixed strategy that differs from α′i only in the weight that α′i
assigns to a′i is transferred to ai. That is, αi is defined by αi(a′i) = 0, αi(ai) = α′i(a′i) +
α′i(ai), and αi(bi) = α′i(bi) for every other action bi. Then αi strictly dominates α′i:
for any a−i we have U(αi, a−i)−U(α′i, a−i) = α′i(a′i)(u(ai, a−i)− ui(a′i, a−i)) > 0.

(b) False. Consider a variant of the game in Figure 120.1 in the text in which
player 1’s payoffs to (T, L) and to (T, R) are both 5

2 instead of 1. Then player 1’s
mixed strategy that assigns probability 1

2 to M and probability 1
2 to B is strictly

dominated by T, even though neither M nor B is strictly dominated.

121.2 Eliminating dominated actions when finding equilibria

Player 2’s action L is strictly dominated by the mixed strategy that assigns proba-
bility 1

4 to M and probability 3
4 to R (for example), so that we can ignore the action

L. The players’ best response functions in the reduced game in which player 2’s
actions are M and R are shown in Figure 59.1. We see that the game has a single
mixed strategy Nash equilibrium, namely (( 2

3 , 1
3 ), (0, 1

2 , 1
2 )).

0 2
3

1
p→

1
2

1↑
q

B1

B2

Figure 59.1 The players’ best response functions in the game in Figure 122.1 after player 2’s action L
has been eliminated. The probability assigned by player 1 to T is p and the probability assigned by
player 2 to M is q. The best response function of player 1 is black and that of player 2 is gray. The disk
indicates the unique Nash equilibrium.
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127.1 Equilibrium in the expert diagnosis game

When E = rE′ + (1 − r)I′ the consumer is indifferent between her two actions
when p = 0, so that her best response function has a vertical segment at p = 0.
Referring to Figure 126.1 in the text, we see that the set of mixed strategy Nash
equilibria correspond to p = 0 and π/π′ ≤ q ≤ 1.

127.2 Incompetent experts

The payoffs are given in Figure 60.1. (The actions are the same as those in the game
in which every expert is fully competent.)

A R
H π,−rE− (1− r)[sI + (1− s)E] (1− r)sπ,−rE′ − (1− r)[sI + (1− s)I′]
D rπ + (1− r)[sπ′ + (1− s)π],−E 0,−rE′ − (1− r)I′

Figure 60.1 A game between a consumer with a problem and a not-fully-competent expert.

The players’ best response functions are shown in Figure 60.2. The consumer’s
best response function depends on the value of s. The left panel of the figure shows
a case in which s is large and the right panel shows the case in which s is small.

We see that when s is large the game has a unique mixed strategy Nash equi-
librium, in which the probability the expert’s strategy assigns to H is

p∗ =
E− [rE′ + (1− r)I′]

(1− r)s(E− I′)

and the probability the consumer’s strategy assigns to A is

q∗ =
π

π′
.

0 E−[rE′+(1−r)I′ ]
s(1−r)(E−I′)

1
p→

π/π′

1↑
q

Expert

Consumer

s > E−[rE′+(1−r)I′ ]
(1−r)(E−I′)

0 1
p→

π/π′

1↑
q

Expert

Consumer

s ≤ E−[rE′+(1−r)I′ ]
(1−r)(E−I′)

Figure 60.2 The players’ best response functions in the game in Exercise 127.2. The probability assigned
by the expert to H is p and the probability assigned by the consumer to A is q.



Chapter 4. Mixed Strategy Equilibrium 61

We see that q∗ is independent of s. That is, the degree of competence has no
effect on consumer behavior: consumers do not become more, or less, wary. The
fraction of experts who are honest is a decreasing function of s, so that greater
incompetence (smaller s) leads to a higher fraction of honest experts: incompetence
breeds honesty! The intuition is that when experts become less competent, the
potential gain from ignoring their advice increases (since I′ < E), so that they need
to be more honest to attract business.

When s is small the game has a continuum of mixed strategy Nash equilibria. In
all equilibria the expert is always honest; the probability that the consumer accepts
her advice ranges from 0 to π/π′. The value of s has no effect on these equilibria.

128.1 Choosing a seller

The game is given in Figure 61.1.

Buyer 1

Buyer 2
Seller 1 Seller 2

Seller 1 1
2 (1− p1), 1

2 (1− p1) 1− p1, 1− p2

Seller 2 1− p2, 1− p1
1
2 (1− p2), 1

2 (1− p2)

Figure 61.1 The game in Exercise 128.1.

The character of its equilibria depend on the value of (p1, p2). If p1 = p2 = 1
every pair ((π1, 1− π1), ((π2, 1− π2)) is a mixed strategy equilibrium (where πi

is the probability of buyer i’s choosing seller 1) is a equilibrium. Now suppose that
at least one price is less than 1.

• If 1
2 (1− p2) > 1− p1 (i.e. p2 < 2p1 − 1), each buyer’s action of approaching

seller 2 strictly dominates her action of approaching seller 1. Thus the game
has a unique mixed strategy equilibrium, in which both buyers use a pure
strategy: each approaches seller 2.

• If 1
2 (1− p2) = 1− p1 (i.e. p2 = 2p1 − 1), every mixed strategy is a best re-

sponse of a buyer to the other buyer’s approaching seller 2, and the pure
strategy of approaching seller 2 is the unique best response to the other
buyer’s using any other strategy. Thus ((π1, 1−π1), ((π2, 1−π2)) is a mixed
strategy equilibrium if and only if either π1 = 0 or π2 = 0.

• If 1
2 (1− p1) > 1− p2 (i.e. p2 >

1
2 (1 + p1)), each buyer’s action of approaching

seller 1 strictly dominates her action of approaching seller 2. Thus the game
has a unique mixed strategy equilibrium, in which both buyers use a pure
strategy: each approaches seller 1.

• If 1
2 (1 − p1) = 1 − p2 (i.e. p2 = 1

2 (1 + p1)), every mixed strategy is a best
response of a buyer to the other buyer’s strategy of approaching seller 1, and
the pure strategy of approaching seller 1 is the unique best response to any



62 Chapter 4. Mixed Strategy Equilibrium

other strategy of the other buyer. Thus ((π1, 1−π1), ((π2, 1−π2)) is a mixed
strategy equilibrium if and only if either π1 = 1 or π2 = 1.

• For the case 2p1− 1 < p2 <
1
2 (1 + p1), a buyer’s expected payoff to choosing

each seller is the same when

1
2 (1− p1)π + (1− p1)(1− π) = (1− p2)π + 1

2 (1− p2)(1− π),

where π is the probability that the other buyer chooses seller 1, or when

π =
1− 2p1 + p2

2− p1 − p2
.

The players’ best response functions are shown in Figure 62.1. We see that
the game has three mixed strategy equilibria: two pure equilibria in which
the buyers approach different sellers, and one mixed strategy equilibrium in
which each buyer approaches seller 1 with probability (1− 2p1 + p2)/(2−
p1 − p2).

0 1−2p1+p2
2−p1−p2

1
π1 →

1−2p1+p2
2−p1−p2

1↑
π2

Buyer 1

Buyer 2

Figure 62.1 The players’ best response functions in the game in Exercise 128.1. The probability with
which buyer i approaches seller 1 is πi .

The three main cases are illustrated in Figure 63.1. If the prices are relatively
close, there are two pure strategy equilibria, in which the buyers choose differ-
ent sellers, and a symmetric mixed strategy equilibrium in which both buyers
approach seller 1 with the same probability. If seller 2’s price is high relative to
seller 1’s, there is a unique equilibrium, in which both buyers approach seller 1. If
seller 1’s price is high relative to seller 2’s, there is a unique equilibrium, in which
both buyers approach seller 2.
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0

1

1p1 →

↑
p2

Pure equilibrium:
both buyers approach

seller 1

Pure equilibrium:
both buyers approach

seller 2

Two pure equilibria
(buyers approach different sellers)

and one symmetric
mixed equilibrium

2p
1
−

1

1
2
(1 + p1)

Figure 63.1 Equilibria of the game in Exercise 128.1 as a function of the sellers’ prices.

130.2 Approaching cars

The game has three Nash equilibria: (Stop, Continue), (Continue, Stop), and a mixed
strategy equilibrium in which each player chooses Stop with probability

1− ε

2− ε
.

Only the mixed strategy equilibrium is symmetric; the expected payoff of each
player in this equilibrium is 2(1− ε)/(2− ε).

The modified game also has a unique symmetric equilibrium. In this equilib-
rium each player chooses Stop with probability

1− ε + δ

2− ε

if δ ≤ 1 and chooses Stop with probability 1 if δ ≥ 1. The expected payoff of each
player in this equilibrium is (2(1− ε) + εδ)/(2− ε) if δ ≤ 1 and 1 if δ ≥ 1, both of
which are larger than her payoff in the original game (given δ > 0).

After reeducation, each driver’s payoffs to stopping stay the same, while those
to continuing fall. Thus if the behavioral norm (the probability of stopping) were
to remain the same, every driver would find it beneficial to stop. Equilibrium is
restored only if enough drivers switch to Stop, raising everyone’s expected pay-
off. (Each player’s expected payoff in a mixed strategy Nash equilibrium is her
expected payoff to choosing Stop, which is p + (1 − ε)(1 − p), where p is the
probability of a player’s choosing Stop.)
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130.3 Bargaining

The game is given in Figure 64.1.

0 2 4 6 8 10
0 5, 5 4, 6 3, 7 2, 8 1, 9 0, 10
2 6, 4 5, 5 4, 6 3, 7 2, 8 0, 0
4 7, 3 6, 4 5, 5 4, 6 0, 0 0, 0
6 8, 2 7, 3 6, 4 0, 0 0, 0 0, 0
8 9, 1 8, 2 0, 0 0, 0 0, 0 0, 0

10 10, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Figure 64.1 A bargaining game.

By inspection it has a single symmetric pure strategy Nash equilibrium,
(10, 10).

Now consider situations in which the common mixed strategy assigns positive
probability to two actions. Suppose that player 2 assigns positive probability only
to 0 and 2. Then player 1’s payoff to her action 4 exceeds her payoff to either 0 or
2. Thus there is no symmetric equilibrium in which the actions assigned positive
probability are 0 and 2. By a similar argument we can rule out equilibria in which
the actions assigned positive probability are any pair except 2 and 8, or 4 and 6.

If the actions to which player 2 assigns positive probability are 2 and 8 then
player 1’s expected payoffs to 2 and 8 are the same if the probability player 2 as-
signs to 2 is 2

5 (and the probability she assigns to 8 is 3
5 ). Given these probabilities,

player 1’s expected payoff to her actions 2 and 8 is 16
5 , and her expected payoff to

every other action is less than 16
5 . Thus the pair of mixed strategies in which every

player assigns probability 2
5 to 2 and 3

5 to 8 is a symmetric mixed strategy Nash
equilibrium.

Similarly, the game has a symmetric mixed strategy equilibrium (α∗, α∗) in
which α∗ assigns probability 4

5 to the demand of 4 and probability 1
5 to the demand

of 6.
In summary, the game has three symmetric mixed strategy Nash equilibria in

which each player’s strategy assigns positive probability to at most two actions:
one in which probability 1 is assigned to 10, one in which probability 2

5 is assigned
to 2 and probability 3

5 is assigned to 8, and one in which probability 4
5 is assigned

to 4 and probability 1
5 is assigned to 6.

132.2 Reporting a crime when the witnesses are heterogeneous

Denote by pi the probability with which each witness with cost ci reports the crime,
for i = 1, 2. For each witness with cost c1 to report with positive probability less
than one, we need

v− c1 = v · Pr{at least one other person calls}
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= v
(

1− (1− p1)n1−1(1− p2)n2

)
,

or
c1 = v(1− p1)n1−1(1− p2)n2 . (65.1)

Similarly, for each witness with cost c2 to report with positive probability less than
one, we need

v− c2 = v · Pr{at least one other person calls}

= v
(

1− (1− p1)n1 (1− p2)n2−1
)

,

or
c2 = v(1− p1)n1 (1− p2)n2−1. (65.2)

Dividing (65.1) by (65.2) we obtain

1− p2 = c1(1− p1)/c2.

Substituting this expression for 1− p2 into (65.1) we get

p1 = 1−
(

c1

v
·
(

c2

c1

)n2
)1/(n−1)

.

Similarly,

p2 = 1−
(

c2

v
·
(

c1

c2

)n1
)1/(n−1)

.

For these two numbers to be probabilities, we need each of them to be nonnegative
and at most one, which requires

(
cn2

2

v

)1/(n2−1)

< c1 <
(

vcn1−1
2

)1/n1
.

132.3 Contributing to a public good

In a mixed strategy equilibrium each player obtains the same expected payoff
whether or not she contributes. A player’s contribution makes a difference to the
outcome only if exactly k − 1 of the other players contribute. Thus the difference
between the expected benefit of contributing and that of not contributing is

vQn−1,k−1(p)− c,

which must be 0 in a mixed strategy equilibrium.
For v = 1, n = 4, k = 2, and c = 3

8 this equilibrium condition is

Q3,1(p) = 3
8 .
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Now, Q3,1(p) = 3p(1− p)2, so an equilibrium value of p satisfies

3p(1− p)2 = 3
8 ,

or
p3 − 2p2 + p− 1

8 = 0,

or
(p− 1

2 )(p2 − 3
2 p + 1

4 ) = 0.

Thus p = 1
2 or p = 3

4 −
1
2

√
5
4 ≈ 0.19. (The other root of the quadratic is greater

than one, and thus not meaningful as a solution of the problem.)
We conclude that the game has two symmetric mixed strategy Nash equilibria:

one in which the common probability is 1
2 and one in which this probability is

3
4 −

1
2

√
5
4 .

136.1 Best response dynamics in Cournot’s duopoly game

The best response functions of both firms are the same, so if the firms’ outputs are
initially the same, they are the same in every period: qt

1 = qt
2 for every t. For each

period t, we thus have
qt

i = 1
2 (α− c− qt

i ).

Given that q1
i = 0 for i = 1, 2, solving this first-order difference equation we have

qt
i = 1

3 (α− c)[1− (− 1
2 )t−1]

for each period t. When t is large, qt
i is close to 1

3 (α − c), a firm’s equilibrium
output.

In the first few periods, these outputs are 0, 1
2 (α− c), 1

4 (α− c), 3
8 (α− c), 5

16 (α−
c).

136.2 Best response dynamics in Bertrand’s duopoly game

If pi > c + 1 then firm j has a unique best response, equal to the lesser of pi − 1
and the monopoly price. Thus if both prices initially exceed c + 1 then for every
period t in which at least one price exceeds c + 1 the maximal price in period t + 1
is (i) less than the maximal price in period t and (ii) at least c + 1. Thus the process
converges to the Nash equilibrium (c + 1, c + 1).

If pi = c then all prices pj ≥ c are best responses. Thus if the pair of prices is ini-
tially (c, c), many subsequent sequences of prices are consistent with best response
dynamics. We can divide the sequences into three cases.

• Both prices are equal to c in every subsequent period.

• In some period both prices are at least c + 1, in which case eventually the
Nash equilibrium (c + 1, c + 1) is reached (by the analysis for the first part of
the exercise).
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• In every period one of the prices is equal to c, while the other price is greater
than c; the identity of the firm charging c changes from period to period. The
pairs of prices eventually alternate between (c, c + 1) and (c + 1, c) (neither
of which are Nash equilibria).

139.1 Finding all mixed strategy equilibria of two-player games

Left game:

• There is no equilibrium in which each player’s mixed strategy assigns posi-
tive probability to a single action (i.e. there is no pure equilibrium).

• Consider the possibility of an equilibrium in which one player assigns prob-
ability 1 to a single action while the other player assigns positive probability
to both her actions. For neither action of player 1 is player 2’s payoff the same
for both her actions, and for neither action of player 2 is player 1’s payoff the
same for both her actions, so there is no mixed strategy equilibrium of this
type.

• Consider the possibility of a mixed strategy equilibrium in which each player
assigns positive probability to both her actions. Denote by p the probability
player 1 assigns to T and by q the probability player 2 assigns to L. For
player 1’s expected payoff to her two actions to be the same we need

6q = 3q + 6(1− q),

or q = 2
3 . For player 2’s expected payoff to her two actions to be the same we

need
2(1− p) = 6p,

or p = 1
4 . We conclude that the game has a unique mixed strategy equilib-

rium, (( 1
4 , 3

4 ), ( 2
3 , 1

3 )).

Right game:

• By inspection, (T, R) and (B, L) are the pure strategy equilibria.

• Consider the possibility of a mixed strategy equilibrium in which one player
assigns probability 1 to a single action while the other player assigns positive
probability to both her actions.

◦ {T} for player 1, {L, R} for player 2: no equilibrium, because player 2’s
payoffs to (T, L) and (T, R) are not the same.

◦ {B} for player 1, {L, R} for player 2: no equilibrium, because player 2’s
payoffs to (B, L) and (B, R) are not the same.

◦ {T, B} for player 1, {L} for player 2: no equilibrium, because player 1’s
payoffs to (T, L) and (B, L) are not the same.
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◦ {T, B} for player 1, {R} for player 2: player 1’s payoffs to (T, R) and
(B, R) are the same, so there is an equilibrium in which player 1 uses T
with probability p if player 2’s expected payoff to R, which is 2p + 1− p,
is at least her expected payoff to L, which is p + 2(1− p). That is, the
game has equilibria in which player 1’s mixed strategy is (p, 1− p), with
p ≥ 1

2 , and player 2 uses R with probability 1.

• Consider the possibility of an equilibrium in which both players assign posi-
tive probability to both their actions. Denote by q the probability that player 2
assigns to L. For player 1’s expected payoffs to T and B to be the same we
need 0 = 2q, or q = 0, so there is no equilibrium in which both players assign
positive probability to both their actions.

In summary, the mixed strategy equilibria of the game are ((0, 1), (1, 0)) (i.e.
the pure equilibrium (B, L)) and ((p, 1− p), (0, 1)) for 1

2 ≤ p ≤ 1 (of which one
equilibrium is the pure equilibrium (T, R)).

141.1 Finding all mixed strategy equilibria of a two-player game

By inspection, (T, R) and (B, L) are pure strategy equilibria.
Now consider the possibility of an equilibrium in which player 1’s strategy is

pure while player 2’s strategy assigns positive probability to two or more actions.

• If player 1’s strategy is T then player 2’s payoffs to M and R are the same,
and her payoff to L is less, so an equilibrium in which player 2 randomizes
between M and R is possible. In order that T be optimal we need 1− q ≥ q, or
q ≤ 1

2 , where q is the probability player 2’s strategy assigns to M. Thus every
mixed strategy pair ((1, 0), (0, q, 1− q)) in which q ≤ 1

2 is a mixed strategy
equilibrium.

• If player 1’s strategy is B then player 2’s payoffs to L and R are the same,
and her payoff to M is less, so an equilibrium in which player 2 randomizes
between L and R is possible. In order that B be optimal we need 2q + 1− q ≤
3q, or q ≥ 1

2 , where q is the probability player 2’s strategy assigns to L. Thus
every mixed strategy pair ((0, 1), (q, 0, 1 − q)) in which q ≥ 1

2 is a mixed
strategy equilibrium.

Now consider the possibility of an equilibrium in which player 2’s strategy is
pure while player 1’s strategy assigns positive probability to both her actions. For
each action of player 2, player 1’s two actions yield her different payoffs, so there
is no equilibrium of this sort.

Next consider the possibility of an equilibrium in which both player 1’s and
player 2’s strategies assign positive probability to two actions. Denote by p the
probability player 1’s strategy assigns to T. There are three possibilities for the
pair of player 2’s actions that have positive probability.
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L and M: For an equilibrium we need player 2’s expected payoff to L to be
equal to her expected payoff to M and at least her expected payoff to R. That
is, we need

2 = 3p + 1− p ≥ 3p + 2(1− p).

The inequality implies that p = 1, so that player 1’s strategy assigns proba-
bility zero to B. Thus there is no equilibrium of this type.

L and R: For an equilibrium we need player 2’s expected payoff to L to be
equal to her expected payoff to R and at least her expected payoff to M. That
is, we need

2 = 3p + 2(1− p) ≥ 3p + 1− p.

The equation implies that p = 0, so there is no equilibrium of this type.

M and R: For an equilibrium we need player 2’s expected payoff to M to be
equal to her expected payoff to R and at least her expected payoff to L. That
is, we need

3p + 1− p = 3p + 2(1− p) ≥ 2.

The equation implies that p = 1, so there is no equilibrium of this type.

The final possibility is that there is an equilibrium in which player 1’s strat-
egy assigns positive probability to both her actions and player 2’s strategy assigns
positive probability to all three of her actions. Let p be the probability player 1’s
strategy assigns to T. Then for player 2’s expected payoffs to her three actions to
be equal we need

2 = 3p + 1− p = 3p + 2(1− p).

For the first equality we need p = 1
2 , violating the second equality. That is, there is

no value of p for which player 2’s expected payoffs to her three actions are equal,
and thus no equilibrium in which she chooses each action with positive probability.

We conclude that the mixed strategy equilibria of the game are the strategy
pairs of the forms ((1, 0), (0, q, 1− q)) for 0 ≤ q ≤ 1

2 (q = 0 is the pure equilibrium
(T, R)) and ((0, 1), (q, 0, 1− q)) for 1

2 ≤ q ≤ 1 (q = 1 is the pure equilibrium (B, L)).

141.2 Rock, paper, scissors

The game is shown in Figure 69.1.

Rock Paper Scissors
Rock 0, 0 −1, 1 1,−1

Paper 1,−1 0, 0 −1, 1
Scissors −1, 1 1,−1 0, 0

Figure 69.1 Rock, paper, scissors
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By inspection the game has no pure strategy equilibrium, and no mixed strat-
egy equilibrium in which one player’s strategy is pure and the other’s is strictly
mixed.

In the remaining possibilities both players use at least two actions with positive
probability. Suppose that player 1’s mixed strategy assigns positive probability to
Rock and to Paper. Then player 2’s expected payoff to Paper exceeds her expected
payoff to Rock, so in any such equilibrium player 2 must assign positive probability
only to Paper and Scissors. Player 1’s expected payoffs to Rock and Paper are equal
only if player 2 assigns probability 2

3 to Paper and probability 1
3 to Scissors. But

then player 1’s expected payoff to Scissors exceeds her expected payoffs to Rock
and Paper. So there is no mixed strategy equilibrium in which player 1 assigns
positive probability only to Rock and to Paper.

Given the symmetry of the game, the same argument implies that there is no
equilibrium in which player 1 assigns positive probability to only two actions, nor
any equilibrium in which player 2 assigns positive probability to only two actions.

The remaining possibility is that each player assigns positive probability to all
three of her actions. Denote the probabilities player 1 assigns to her three actions by
(p1, p2, p3) and the probabilities player 2 assigns to her three actions by (q1, q2, q3).
Player 1’s actions all yield her the same expected payoff if and only if there is a
value of c for which

−q2 + q3 = c

q1 − q3 = c

−q1 + q2 = c.

Adding the three equations we deduce c = 0, and hence q1 = q2 = q3 = 1
3 . A

similar calculation for player 2 yields p1 = p2 = p3 = 1
3 .

In conclusion, the game has a unique mixed strategy equilibrium, in which
each player uses the strategy ( 1

3 , 1
3 , 1

3 ). Each player’s equilibrium payoff is 0.
In the modified game in which player 1 is prohibited from using the action Scis-

sors, player 2’s action Rock is strictly dominated. The remaining game has a unique
mixed strategy equilibrium, in which player 1 chooses Rock with probability 1

3 and
Paper with probability 2

3 , and player 2 chooses Paper with probability 2
3 and Scissors

with probability 1
3 . The equilibrium payoff of player 1 is − 1

3 and that of player 2
is 1

3 .

141.3 Election campaigns

A strategic game that models the situation is shown in Figure 71.1, where action k
means devote resources to locality k.

By inspection the game has no pure strategy equilibrium and no equilibrium in
which one player’s strategy is pure and the other is strictly mixed. (For each action
of each player, the other player has a single best action.)
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Party A

Party B
1 2 3

1 0, 0 a1,−a1 a1,−a1

2 a2,−a2 0, 0 a2,−a2

3 a3,−a3 a3,−a3 0, 0

Figure 71.1 The game in Exercise 141.3.

Now consider the possibility of an equilibrium in which party A assigns pos-
itive probability to exactly two actions. There are three possible pairs of actions.
Throughout the argument I denote the probability party A’s strategy assigns to her
action i by pi, and the probability party B’s strategy assigns to her action i by qi.

1 and 2: Party B’s action 3 is strictly dominated by her mixed strategy that as-
signs probability 1

2 to each of her actions 1 and 2, so that we can eliminate it
from consideration. For party A’s actions 1 and 2 to yield the same expected
payoff we need q2a1 = q1a2, or, given q2 = 1− q1, q1 = a1/(a1 + a2). For
party B’s actions 1 and 2 to yield the same expected payoff we similarly need
p1 = a2/(a1 + a2). Finally, for party A’s expected payoff to her action 3 to be
no more than her expected payoff to her other two actions, we need

a3 ≤
a1a2

a1 + a2
.

We conclude that if a3 ≤ a1a2/(a1 + a2) (or equivalently a1a3 + a2a3 ≤ a1a2)
then the game has a mixed strategy equilibrium

((
a2

a1 + a2
,

a1

a1 + a2
, 0

)

,

(
a1

a1 + a2
,

a2

a1 + a2
, 0

))

. (71.1)

1 and 3: Party B’s action 2 is strictly dominated her mixed strategy that assigns
probability 1

2 to each of her actions 1 and 3, so that we can eliminate it from
consideration. But then party A’s action 2 strictly dominates her action 3, so
there is no equilibrium in which she assigns positive probability to action 3.
Thus there is no equilibrium of this type.

2 and 3: For similar reasons, there is no equilibrium of this type.

The remaining possibility is that there is an equilibrium in which each player
assigns positive probability to all three of her actions. In order that party A’s
actions yield the same expected payoff we need

a1(q2 + q3) = a2(q1 + q3) = a3(q1 + q2),

or, using q1 + q2 + q3 = 1,

q1 =
a1a2 + a1a3 − a2a3

a1a2 + a1a3 + a2a3
, q2 =

a1a2 − a1a3 + a2a3

a1a2 + a1a3 + a2a3
, q3 =

−a1a2 + a1a3 + a2a3

a1a2 + a1a3 + a2a3
.

(71.2)
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For these three numbers to be positive we need

a1a2 + a1a3 − a2a3 > 0, a1a2 − a1a3 + a2a3 > 0, −a1a2 + a1a3 + a2a3 > 0.

Since a1 > a2 > a3, these inequalities are satisfied if and only if a1a3 + a2a3 > a1a2.
Similarly, in order that party B’s actions yield the same expected payoff we

need

p1 =
a2a3

a1a2 + a1a3 + a2a3
, p2 =

a1a3

a1a2 + a1a3 + a2a3
, p3 =

a1a2

a1a2 + a1a3 + a2a3
.

(72.1)
These three numbers are positive, given ai > 0 for all i.

Thus if a1a3 + a2a3 > a1a2 there is an equilibrium in which player 1’s mixed
strategy is (p1, p2, p3) and player 2’s mixed strategy is (q1, q2, q3).

In summary,

• if (a1 + a2)a3 ≤ a1a2 then the game has a unique mixed strategy equilibrium
given by (71.1)

• if (a1 + a2)a3 > a1a2 then the game has a unique mixed strategy equilibrium
given by (71.2) and (72.1).

That is, if the first two localities are sufficiently more valuable than the third
then both parties concentrate all their efforts on these two localities, while other-
wise they both randomize between all three localities.

142.1 A three-player game

By inspection the game has two pure strategy equilibria, namely (A, A, A) and
(B, B, B).

Now consider the possibility of an equilibrium in which one or more of the
players’ strategies is pure, and at least one is strictly mixed. If player 1 uses the
action A and player 2 uses a strictly mixed strategy then player 3’s uniquely best
action is A, in which case player 2’s uniquely best action is A. Thus there is no
equilibrium in which player 1 uses the action A and at least one of the other play-
ers randomizes. By similar arguments, there is no equilibrium in which player 1
uses the action B and at least one of the other players randomizes, or indeed any
equilibrium in which some player’s strategy is pure while some other player’s
strategy is mixed.

The remaining possibility is that there is an equilibrium in which each player’s
strategy assigns positive probability to each of her actions. Denote the probabili-
ties that players 1, 2, and 3 assign to A by p, q, and r respectively. In order that
player 1’s expected payoffs to her two actions be the same we need

qr = 4(1− q)(1− r).

Similarly, for player 2’s and player 3’s expected payoffs to their two actions to be
the same we need

pr = 4(1− p)(1− r) and pq = 4(1− p)(1− q).
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The unique solution of these three equations is p = q = r = 2
3 (isolate r in the

second equation and q in the third equation, and substitute into the first equation).
We conclude that the game has three mixed strategy equilibria: ((1, 0), (1, 0),

(1, 0)) (i.e. the pure strategy equilibrium (A, A, A)), ((0, 1), (0, 1), (0, 1)) (i.e. the
pure strategy equilibrium (B, B, B)), and (( 2

3 , 1
3 ), ( 2

3 , 1
3 ), ( 2

3 , 1
3 )).

146.1 All-pay auction with many bidders

Denote the common mixed strategy by F. Look for an equilibrium in which the
largest value of z for which F(z) = 0 is 0 and the smallest value of z for which
F(z) = 1 is z = K.

A player who bids ai wins if and only if the other n− 1 players all bid less than
she does, an event with probability (F(ai))n−1. Thus, given that the probability
that she ties for the highest bid is zero, her expected payoff is

(K− ai)(F(ai))
n−1 + (−ai)(1− (F(ai))

n−1).

Given the form of F, for an equilibrium this expected payoff must be constant
for all values of ai with 0 ≤ ai ≤ K. That is, for some value of c we have

K(F(ai))
n−1 − ai = c for all 0 ≤ ai ≤ K.

For F(0) = 0 we need c = 0, so that F(ai) = (ai/K)1/(n−1) is the only candidate
for an equilibrium strategy.

The function F is a cumulative probability distribution on the interval from 0 to
K because F(0) = 0, F(K) = 1, and F is increasing. Thus F is indeed an equilibrium
strategy.

We conclude that the game has a mixed strategy Nash equilibrium in which
each player randomizes over all her actions according to the probability distribu-
tion F(ai) = (ai/K)1/(n−1); each player’s equilibrium expected payoff is 0.

Each player’s mean bid is K/n.

146.2 Bertrand’s duopoly game

Denote the common mixed strategy by F. If firm 1 charges p it earns a profit only
if the price charged by firm 2 exceeds p, an event with probability 1− F(p). Thus
firm 1’s expected profit is

(1− F(p))(p− c)D(p).

This profit is constant, equal to B, over some range of prices, if F(p) = 1− B/((p−
c)D(p)) over this range of prices. Because (p− c)D(p) increases without bound as
p increases without bound, for any value of B the number F(p) approaches 1 as p
increases without bound. Further, for any B > 0, there exists some p > c such that
(p− c)D(p) = B, so that F(p) = 0. Finally, because (p− c)D(p) is an increasing
function, so is F. Thus F is a cumulative probability distribution function.
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We conclude that for any p > c, the game has a mixed strategy equilibrium in
which each firm’s mixed strategy is given by

F(p) =






0 if p < p

1−
(p− c)D(p)
(p− c)D(p)

if p ≥ p.

147.2 Preferences over lotteries

The first piece of information about the decision-maker’s preferences among lot-
teries is consistent with her preferences being represented by the expected value
of a payoff function: set u(a1) = 0, u(a2) equal to any number between 1

2 and 1
4 ,

and u(a3) = 1.
The second piece of information about the decision-maker’s preferences is not

consistent with these preferences being represented by the expected value of a pay-
off function, by the following argument. For consistency with the information
about the decision-maker’s preferences among the four lotteries, we need

0.4u(a1) + 0.6u(a3) > 0.5u(a2) + 0.5u(a3) >

0.3u(a1) + 0.2u(a2) + 0.5u(a3) > 0.45u(a1) + 0.55u(a3).

The first inequality implies u(a2) < 0.8u(a1) + 0.2u(a3) and the last inequality im-
plies u(a2) > 0.75u(a1) + 0.25u(a3). Because u(a1) < u(a3), we have 0.75u(a1) +
0.25u(a3) > 0.8u(a1) + 0.2u(a3), so that the two inequalities are incompatible.

149.2 Normalized vNM payoff functions

Let a be the best outcome according to her preferences and let a be the worse out-
come. Let η = −u(a)/(u(a)− u(a)) and θ = 1/(u(a)− u(a)) > 0. Lemma 148.1
implies that the function v defined by v(x) = η + θu(x) represents the same
preferences as does u; we have v(a) = 0 and v(a) = 1.

150.1 Games equivalent to the Prisoner’s Dilemma

The left-hand game is not equivalent, by the following argument. Using either
player’s payoffs, for equivalence we need η and θ > 0 such that

0 = η + θ · 0, 2 = η + θ · 1, 3 = η + θ · 2, and 4 = η + θ · 3.

From the first equation we have η = 0 and hence from the second we have θ = 2.
But these values do not satisfy the last two equations. (Alternatively, note that in
the game in the left panel of Figure 107.1, player 1 is indifferent between (D, D)
and the lottery in which (C, D) occurs with probability 1

2 and (D, C) occurs with
probability 1

2 , while in the left-hand game in Figure 150.2 she is not.)
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The right-hand game is equivalent, by the following argument. For the equiv-
alence of player 1’s payoffs, we need η and θ > 0 such that

0 = η + θ · 0, 3 = η + θ · 1, 6 = η + θ · 2, and 9 = η + θ · 3.

The first two equations yield η = 0 and θ = 3; these values satisfy the second two
equations. A similar argument for player 2’s payoffs yields η = −4 and θ = 2.





5 Extensive Games with Perfect Information:
Theory

156.2 Examples of extensive games with perfect information

a. The game is given in Figure 77.2.

DC

1

F

3, 2

E

1, 0

2

H

0, 1

G

2, 3

2

Figure 77.2 The game in Exercise 156.2a.

b. The game is specified as follows.

Players 1 and 2.

Terminal histories (C, E, G), (C, E, H), (C, F), D.

Player function P(∅) = 1, P(C) = 2, P(C, E) = 1.

Preferences Player 1 prefers (C, F) to D to (C, E, G) to (C, E, H); player 2
prefers (C, E, G) to (C, F) to (C, E, H), and is indifferent between this
outcome and D.

c. The game is specified as follows.

Players Rosa, Ernesto, and Karl.

Terminal histories All sequences (R, X, Y) and (E, X, Y) where X and Y are
either B or H.

Player function P(∅) = Karl, P(R) = Rosa, P(E) = Ernesto, and P(R, X) =
Ernesto and P(E, X) = Rosa for X = B and X = H.

Preferences For any value of X, Karl and Ernesto prefer (X, H, H) to (X, B, B)
to (X, B, H) and (X, H, B), between which they are both indifferent. For
any value of X, Rosa prefers (X, B, B) to (X, H, H) to (X, B, H) and
(X, H, B), between which she is indifferent.

The game in shown in Figure 78.1, where the order of the payoffs is Karl,
Rosa, Ernesto.

77
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K
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R

H

0, 0, 0

B

1, 2, 1

E
H

2, 1, 2

B

0, 0, 0

E
HB

E

H

0, 0, 0

B

1, 2, 1

R
H

2, 1, 2

B

0, 0, 0

R

Figure 78.1 The game in Exercise 156.2c.

161.1 Strategies in extensive games

In the entry game, the challenger moves only at the start of the game, where it has
two actions, In and Out. Thus it has two strategies, In and Out. The incumbent
moves only after the history In, when it has two actions, Acquiesce and Fight. Thus
it also has two strategies, Acquiesce and Fight.

In the game in Exercise 156.2c, Rosa moves after the histories R (Karl chooses
her to move first), (E, B) (Karl chooses Ernesto to move first, and Ernesto chooses
B), and (E, H) (Karl chooses Ernesto to move first, and Ernesto chooses H). In each
case Rosa has two actions, B and H. Thus she has eight strategies. Each strategy
takes the form (x, y, z), where each of x, y, and z are either B or H; the strategy
(x, y, z) means that she chooses x after the history R, y after the history (E, B), and
z after the history (E, H).

163.1 Nash equilibria of extensive games

The strategic form of the game in Exercise 156.2a is given in Figure 78.2.

EG EH FG FH
C 1, 0 1, 0 3, 2 3, 2
D 2, 3 0, 1 2, 3 0, 1

Figure 78.2 The strategic form of the game in Exercise 156.2a.

The Nash equilibria of the game are (C, FG), (C, FH), and (D, EG).
The strategic form of the game in Figure 160.1 is given in Figure 78.3.

E F
CG 1, 2 3, 1
CH 0, 0 3, 1
DG 2, 0 2, 0
DH 2, 0 2, 0

Figure 78.3 The strategic form of the game in Figure 160.1.

The Nash equilibria of the game are (CH, F), (DG, E), and (DH, E).
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163.2 Voting by alternating veto

The following extensive game models the situation.

Players The two people.

Terminal histories (X/ , Y/ ), (X/ , Z/ ), (Y/ , X/ ), (Y/ , Z/ ), (Z/ , X/ ), and (Z/ , Y/ ) (where A/ means
veto A).

Player function P(∅) = 1 and P(X/ ) = P(Y/ ) = P(Z/ ) = 2.

Preferences Person 1’s preferences are represented by the payoff function u1

for which u1(Y/ , Z/ ) = u1(Z/ , Y/ ) = 2 (both of these terminal histories result in
X’s being chosen), u1(X/ , Z/ ) = u1(Z/ , X/ ) = 1, and u1(X/ , Y/ ) = u1(Y/ , X/ ) = 0.
Person 2’s preferences are represented by the payoff function u2 for which
u2(X/ , Y/ ) = u2(Y/ , X/ ) = 2, u2(X/ , Z/ ) = u2(Z/ , X/ ) = 1, and u2(Y/ , Z/ ) = u2(Z/ , Y/ ) =
0.

This game is shown in Figure 79.1.

Z/X/
Y/

1

Z/

1, 1

Y/

0, 2

2

Z/

2, 0

X/

0, 2

2

Y/

2, 0

X/

1, 1

2

Figure 79.1 An extensive game that models the alternate strikeoff method of selecting an arbitrator, as
specified in Exercise 163.2.

The strategic form of the game is given in Figure 79.2 (where A/ B/ C/ is person 2’s
strategy in which it vetoes A if person 1 vetoes X, B if person 1 vetoes Y, and C if
person 1 vetoes Z). Its Nash equilibria are (Z/ , Y/ X/ X/ ) and (Z/ , Z/ X/ X/ ).

Y/ X/ X/ Y/ X/ Y/ Y/ Z/ X/ Y/ Z/ Y/ Z/ X/ X/ Z/ X/ Y/ Z/ Z/ X/ Z/ Z/ Y/
X/ 0, 2 0, 2 0, 2 0, 2 1, 1 1, 1 1, 1 1, 1
Y/ 0, 2 0, 2 2, 0 2, 0 0, 2 0, 2 2, 0 2, 0
Z/ 1, 1 2, 0 1, 1 2, 0 1, 1 2, 0 1, 1 2, 0

Figure 79.2 The strategic form of the game in Figure 79.1.

164.2 Subgames

The subgames of the game in Exercise 156.2c are the whole game and the six games
in Figure 80.1.
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Figure 80.1 The proper subgames of the game in Exercise 156.2c.

168.1 Checking for subgame perfect equilibria

The Nash equilibria (CH, F) and (DH, E) are not subgame perfect equilibria: in the
subgame following the history (C, E), player 1’s strategies CH and DH induce the
strategy H, which is not optimal.

The Nash equilibrium (DG, E) is a subgame perfect equilibrium: (a) it is a
Nash equilibrium, so player 1’s strategy is optimal at the start of the game, given
player 2’s strategy, (b) in the subgame following the history C, player 2’s strategy
E induces the strategy E, which is optimal given player 1’s strategy, and (c) in the
subgame following the history (C, E), player 1’s strategy DG induces the strategy
G, which is optimal.

173.2 Finding subgame perfect equilibria

The game in Exercise 156.2a has a unique subgame perfect equilibrium, (C, FG).
The game in Exercise 156.2c has a unique subgame perfect equilibrium in which

Karl’s strategy is E, Rosa’s strategy is to choose B after the history R, B after the
history (E, B), and H after the history (E, H), and Ernesto’s strategy is to chooses B
after the history (R, B), H after the history (R, H), and H after the history E. (The
outcome is that Karl chooses Ernesto to move first, he chooses H, and then Rosa
chooses H.)

The game in Figure 173.1 has six subgame perfect equilibria: (C, EG), (D, EG),
(C, EH), (D, FG), (C, FH), (D, FH).

173.3 Voting by alternating veto

The game has a unique subgame perfect equilibrium (Z/ , Y/ X/ X/ ). The outcome is that
action Y is taken.
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Thus the Nash equilibrium (Z/ , Z/ X/ X/ ) (see Exercise 163.2) is not a subgame per-
fect equilibrium. However, this equilibrium generates the same outcome as the
unique subgame perfect equilibrium.

If player 2 prefers Y to X to Z then in the unique subgame perfect equilibrium
of the game in which player 1 moves first the outcome is that X is chosen, while
in the unique subgame perfect equilibrium of the game in which player 2 moves
first the outcome is that Y is chosen. (For all other strict preferences of player 2 (i.e.
preferences in which player 2 is not indifferent between any pair of policies) the
outcome of the subgame perfect equilibria of the two games are the same.)

173.4 Burning a bridge

An extensive game that models the situation has the same structure as the en-
try game in Figure 156.1 in the book. The challenger is army 1, the incumbent
army 2. The action In corresponds to attacking; Acquiesce corresponds to retreat-
ing. The game has a single subgame perfect equilibrium, in which army 1 attacks,
and army 2 retreats.

If army 2 burns the bridge, the game has a single subgame perfect equilibrium
in which army 1 does not attack.

174.1 Sharing heterogeneous objects

Let n = 2 and k = 3, and call the objects a, b, and c. Suppose that the values
person 1 attaches to the objects are 3, 2, and 1 respectively, while the values player 2
attaches are 1, 3, 2. If player 1 chooses a on the first round, then in any subgame
perfect equilibrium player 2 chooses b, leaving player 1 with c on the second round.
If instead player 1 chooses b on the first round, in any subgame perfect equilibrium
player 2 chooses c, leaving player 1 with a on the second round. Thus in every
subgame perfect equilibrium player 1 chooses b on the first round (though she
values a more highly.)

Now I argue that for any preferences of the players, G(2, 3) has a subgame
perfect equilibrium of the type described in the exercise. For any object chosen
by player 1 in round 1, in any subgame perfect equilibrium player 2 chooses her
favorite among the two objects remaining in round 2. Thus player 2 never obtains
the object she least prefers; in any subgame perfect equilibrium, player 1 obtains
that object. Player 1 can ensure she obtains her more preferred object of the two
remaining by choosing that object on the first round. That is, there is a subgame
perfect equilibrium in which on the first round player 1 chooses her more preferred
object out of the set of objects excluding the object player 2 least prefers, and on
the last round she obtains x3. In this equilibrium, player 2 obtains the object less
preferred by player 1 out of the set of objects excluding the object player 2 least
prefers. That is, player 2 obtains x2. (Depending on the players’ preferences, the
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game also may have a subgame perfect equilibrium in which player 1 chooses x3

on the first round.)

174.2 An entry game with a financially-constrained firm

a. Consider the last period, after any history. If the incumbent chooses to fight,
the challenger’s best action is to exit, in which case both firms obtain the
profit zero. If the incumbent chooses to cooperate, the challenger’s best ac-
tion is to stay in, in which case both firms obtain the profit C > 0. Thus the
incumbent’s best action at the start of the period is to cooperate.

Now consider period T− 1. Regardless of the outcome in this period, the in-
cumbent will cooperate in the last period, and the challenger will stay in (as
we have just argued). Thus each player’s action in the period affects its pay-
off only because it affects its profit in the period. Thus by the same argument
as for the last period, in period T − 1 the incumbent optimally cooperates,
and the challenger optimally stays in if the incumbent cooperates. If, in pe-
riod T − 1, the incumbent fights, then the challenger also optimally stays in,
because in the last period it obtains C > F.

Working back to the start of the game, using the same argument in each pe-
riod, we conclude that in every period before the last the incumbent cooper-
ates and the challenger stays in regardless of the incumbent’s action. Given
C > f , the challenger optimally enters at the start of the game.

That is, the game has a unique subgame perfect equilibrium, in which

• the challenger enters at the start of the game, exits in the last period if
the challenger fights in that period, and stays in after every other history
after which it moves

• the incumbent cooperates after every history after which it moves.

The incumbent’s payoff in this equilibrium is TC and the challenger’s payoff
is TC− f .

b. First consider the incumbent’s action after the history in which the challenger
enters, the incumbent fights in the first T − 2 periods, and in each of these
periods the challenger stays in. Denote this history hT−2. If the incumbent
fights after hT−2, the challenger exits (it has no alternative), and the incum-
bent’s total profit in the last two periods is M. If the incumbent cooperates
after hT−2 then by the argument for the game in part a, the challenger stays
in, and in the last period the incumbent also cooperates and the challenger
stays in. Thus the incumbent’s payoff in the last two periods if it cooper-
ates after the history hT−2 is 2C. Because M > 2C, we conclude that the
incumbent fights after the history hT−2.

Now consider the incumbent’s action after the history in which the chal-
lenger enters, the incumbent fights in the first T − 3 periods, and in each
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period the challenger stays in. Denote this history hT−3. If the incumbent
fights after hT−3, we know, by the previous paragraph, that if the challenger
stays in then the incumbent will fight in the next period, driving the chal-
lenger out. Thus the challenger will obtain an additional profit of −F if it
stays in and 0 if it exits. Consequently the challenger exits if the incum-
bent fights after hT−3, making a fight by the incumbent optimal (it yields the
incumbent the additional profit 2M).

Working back to the first period we conclude that the incumbent fights and
the challenger exits. Thus the challenger’s optimal action at the start of the
game is to stay out.

In summary, the game has a unique subgame perfect equilibrium, in which

• the challenger stays out at the start of the game, exits after any history
in which the incumbent fought in every period, exits in the last period
if the incumbent fights in that period, and stays in after every other
history.

• the incumbent fights after the challenger enters and after any history in
which it has fought in every period, and cooperates after every other
history.

The incumbent’s payoff in this equilibrium is TM and the challenger’s payoff
is 0.

176.1 Dollar auction

The game is shown in Figure 84.1. It has four subgame perfect equilibria. In all the
equilibria player 2 passes after player 1 bids $2. After other histories the actions in
the equilibria are as follows.

• Player 1 bids $3 after the history ($1, $2), player 2 passes after the history $1,
and player 1 bids $1 at the start of the game.

• Player 1 passes after the history ($1, $2), player 2 passes after the history $1,
and player 1 bids $1 at the start of the game.

• Player 1 passes after the history ($1, $2), player 2 bids $2 after the history $1,
and player 1 passes at the start of the game.

• Player 1 passes after the history ($1, $2), player 2 bids $2 after the history $1,
and player 1 bids $2 at the start of the game.

There are three subgame perfect equilibrium outcomes: player 1 passes at the
start of the game (player 2 gets the object without making any payment), player 1
bids $1 and then player 2 passes (player 1 gets the object for $1), and player 1 bids
$2 and then player 2 passes (player 1 gets the object for $2).
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−1,−1
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Figure 84.1 The extensive form of the dollar auction for w = 3 and v = 2. A pass is denoted p.

177.1 Firm–union bargaining

a. The following extensive game models the situation.

Players The firm and the union.

Terminal histories All sequences of the form (w, Y, L) and (w, N) for nonneg-
ative numbers w and L (where w is a wage, Y means accept, N means
reject, and L is the number of workers hired).

Player function P(∅) is the union, and, for any nonnegative number w, P(w)
and P(w, Y) are the firm.

Preferences The firm’s preferences are represented by its profit, and the
union’s preferences are represented by the value of wL (which is zero
after any history (w, N)).

b. First consider the subgame following a history (w, Y), in which the firm
accepts the wage demand w. In a subgame perfect equilibrium, the firm
chooses L to maximize its profit, given w. For L ≤ 50 this profit is L(100−
L) − wL, or L(100 − w − L). This function is a quadratic in L that is zero
when L = 0 and when L = 100− w and reaches a maximum in between.
Thus the value of L that maximizes the firm’s profit is 1

2 (100−w) if w ≤ 100,
and 0 if w > 100.

Given the firm’s optimal action in such a subgame, consider the subgame
following a history w, in which the firm has to decide whether to accept or
reject w. For any w the firm’s profit, given its subsequent optimal choice of L,
is nonnegative; if w < 100 this profit is positive, while if w ≥ 100 it is 0. Thus
in a subgame perfect equilibrium, the firm accepts any demand w < 100 and
either accepts or rejects any demand w ≥ 100.

Finally consider the union’s choice at the beginning of the game. If it chooses
w < 100 then the firm accepts and chooses L = (100− w)/2, yielding the
union a payoff of w(100− w)/2. If it chooses w > 100 then the firm either
accepts and chooses L = 0 or rejects; in both cases the union’s payoff is 0.
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Thus the best value of w for the union is the number that maximizes w(100−
w)/2. This function is a quadratic that is zero when w = 0 and when w = 100
and reaches a maximum in between; thus its maximizer is w = 50.

In summary, in a subgame perfect equilibrium the union’s strategy is w = 50,
and the firm’s strategy accepts any demand w < 100 and chooses L = (100−
w)/2, and either rejects a demand w ≥ 100 or accepts such a demand and
chooses L = 0. The outcome of any equilibrium is that the union demands
w = 50 and the firm chooses L = 25.

c. Yes. In any subgame perfect equilibrium the union’s payoff is (50)(25) =
1250 and the firm’s payoff is (25)(75) − (50)(25) = 625. Thus both parties
are better off at the outcome (w, L) than they are in the unique subgame
perfect equilibrium if and only if L ≤ 50 and

wL > 1250

L(100− L)− wL > 625

or L ≥ 50 and

wL > 1250

2500− wL > 625.

These conditions are satisfied for a nonempty set of pairs (w, L). For exam-
ple, if L = 50 the conditions are satisfied by 25 < w < 37.5; if L = 100 they
are satisfied by 12.5 < w < 18.75.

d. There are many Nash equilibria in which the firm “threatens” to reject high
wage demands. In one such Nash equilibrium the firm threatens to reject
any positive wage demand. In this equilibrium the union’s strategy is w = 0,
and the firm’s strategy rejects any demand w > 0, and accepts the demand
w = 0 and chooses L = 50. (The union’s payoff is 0 no matter what demand
it makes; given w = 0, the firm’s optimal action is L = 50.)

177.2 The “rotten kid theorem”

The situation is modeled by the following extensive game.

Players The parents and the child.

Terminal histories The set of sequences (a, t), where a (an action of the child)
and t (a transfer from the parents to the child) are numbers.

Player function P(∅) is the child, P(a) is the parents for every value of a.

Preferences The child’s preferences are represented by the payoff function
c(a) + t and the parents’ preferences are represented by the payoff function
min{p(a)− t, c(a) + t}.
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To find the subgame perfect equilibria of this game, first consider the parents’
optimal actions in the subgames of length 1. Consider the subgame following the
choice of a by the child. We have p(a) > c(a) (by assumption), so if the parents
makes no transfer her payoff is c(a). If she transfers $1 to the child then her payoff
increases to c(a) + 1. As she increases the transfer her payoff increases until p(a)−
t = c(a) + t; that is, until t = 1

2 (p(a) − c(a)). (If she increases the transfer any
more, she has less money than her child.) Thus the parents’ optimal action in the
subgame following the choice of a by the child is t = 1

2 (p(a)− c(a)).
Now consider the whole game. Given the parents’ optimal action in each sub-

game, a child who chooses a receives the payoff c(a) + 1
2 (p(a)− c(a)) = 1

2 (p(a) +
c(a)). Thus in a subgame perfect equilibrium the child chooses the action that max-
imizes p(a) + c(a), the sum of her own private income and her parents’ income.

177.3 Comparing simultaneous and sequential games

a. Denote by (a∗1, a∗2) a Nash equilibrium of the strategic game in which player
1’s payoff is maximal in the set of Nash equilibria. Because (a∗1, a∗2) is a Nash
equilibrium, a∗2 is a best response to a∗1. By assumption, it is the only best
response to a∗1. Thus if player 1 chooses a∗1 in the extensive game, player 2
must choose a∗2 in any subgame perfect equilibrium of the extensive game.
That is, by choosing a∗1, player 1 is assured of a payoff of at least u1(a∗1, a∗2).
Thus in any subgame perfect equilibrium player 1’s payoff must be at least
u1(a∗1, a∗2).

b. Suppose that A1 = {T, B}, A2 = {L, R}, and the payoffs are those given
in Figure 86.1. The strategic game has a unique Nash equilibrium, (T, L),
in which player 2’s payoff is 1. The extensive game has a unique subgame
perfect equilibrium, (B, LR) (where the first component of player 2’s strategy
is her action after the history T and the second component is her action after
the history B). In this subgame perfect equilibrium player 2’s payoff is 2.

L R
T 1, 1 3, 0
B 0, 0 2, 2

Figure 86.1 The payoffs for the example in Exercise 177.3b.

c. Suppose that A1 = {T, B}, A2 = {L, R}, and the payoffs are those given in
Figure 87.1. The strategic game has a unique Nash equilibrium, (T, L), in
which player 2’s payoff is 2. A subgame perfect equilibrium of the exten-
sive game is (B, RL) (where the first component of player 2’s strategy is her
action after the history T and the second component is her action after the
history B). In this subgame perfect equilibrium player 1’s payoff is 1. (If you
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read Chapter 4, you can find the mixed strategy Nash equilibria of the strate-
gic game; in all these equilibria, as in the pure strategy Nash equilibrium,
player 1’s expected payoff exceeds 1.)

L R
T 2, 2 0, 2
B 1, 1 3, 0

Figure 87.1 The payoffs for the example in Exercise 177.3c.

179.1 Subgame perfect equilibria of ticktacktoe

Player 2 puts her O in the center. If she does so, each player has a strategy that
guarantees at least a draw in the subgame. Player 1 guarantees at least a draw by
next marking one of the two squares adjacent to her first X and then subsequently
completing a line of X’s, if possible, or, if not possible, blocking a line of O’s, if
necessary, or, if not necessary, moving arbitrarily. Player 2 guarantees at least a
draw as follows.

• If player 1’s second X is adjacent to her first X or is in a corner not diagonally
opposite player 1’s first X, player 2 should, on each move, either complete a
line of O’s, if possible, or, if not possible, block a line of X’s, if necessary, or, if
not necessary, move arbitrarily.

• If player 1’s second X is in some other square then player 2 should, on her
second move, mark one of the corners not diagonally opposite player 1’s first
X, and then, on each move, either complete a line of O’s, if possible, or, if not
possible, block a line of X’s, if necessary, or, if not necessary, move arbitrarily.

For each of player 2’s other opening moves, player 1 has a strategy in the
subgame that wins, as follows.

• Suppose player 2 marks the corner diagonally opposite player 1’s first X.
If player 1 next marks another corner, player 2 must next mark the square
between player 1’s two X’s; by marking the remaining corner, player 1 wins
on her next move.

• Suppose player 2 marks one of the other corners. If player 1 next marks the
corner diagonally opposite her first X, player 2 must mark the center, then
player 1 must mark the remaining corner, leading her to win on her next
move.

• Suppose player 2 marks one of the two squares adjacent to player 1’s X.
If player 1 next marks the center, player 2 must mark the corner opposite
player 1’s first X, in which case player 1 can mark the other square adjacent
to her first X, leading her to win on her next move.
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• Suppose player 2 marks one of the other squares, other than the center. If
player 1 next marks the center, player 2 must mark the corner opposite player
1’s first X, in which case player 1 can mark the corner that blocks a row of O’s,
leading her to win on her next move.

179.2 Toetacktick

The following strategy leads to either a draw or a win for player 1: mark the cen-
tral square initially, and on each subsequent move mark the square symmetrically
opposite the one just marked by the second player.

179.3 Three Men’s Morris, or Mill

Number the squares 1 through 9, starting at the top left, working across each row.
The following strategy of player 1 guarantees she wins, so that the subgame perfect
equilibrium outcome is that she wins. First player 1 chooses the central square (5).

• Suppose player 2 then chooses a corner; take it to be square 1. Then player 1
chooses square 6. Now player 2 must choose square 4 to avoid defeat; player
1 must choose square 7 to avoid defeat; and then player 2 must choose square
3 to avoid defeat (otherwise player 1 can move from square 6 to square 3
on her next turn). If player 1 now moves from square 6 to square 9, then
whatever player 2 does she can subsequently move her counter from square
5 to square 8 and win.

• Suppose player 2 then chooses a noncorner; take it to be square 2. Then
player 1 chooses square 7. Now player 2 must choose square 3 to avoid
defeat; player 1 must choose square 1 to avoid defeat; and then player 2 must
choose square 4 to avoid defeat (otherwise player 1 can move from square 5
to square 4 on her next turn). If player 1 now moves from square 7 to square
8, then whatever player 2 does she can subsequently move from square 8 to
square 9 and win.



6 Extensive Games with Perfect Information:
Illustrations

183.1 Nash equilibria of the ultimatum game

For every amount x there are Nash equilibria in which person 1 offers x. For exam-
ple, for any value of x there is a Nash equilibrium in which person 1’s strategy is
to offer x and person 2’s strategy is to accept x and any offer more favorable, and
reject every other offer. (Given person 2’s strategy, person 1 can do no better than
offer x. Given person 1’s strategy, person 2 should accept x; whether person 2 ac-
cepts or rejects any other offer makes no difference to her payoff, so that rejecting
all less favorable offers is, in particular, optimal.)

183.2 Subgame perfect equilibria of the ultimatum game with indivisible units

In this case each player has finitely many actions, and for both possible subgame
perfect equilibrium strategies of player 2 there is an optimal strategy for player 1.

If player 2 accepts all offers then player 1’s best strategy is to offer 0, as before.
If player 2 accepts all offers except 0 then player 1’s best strategy is to offer one

cent (which player 2 accepts).
Thus the game has two subgame perfect equilibria: one in which player 1 offers

0 and player 2 accepts all offers, and one in which player 1 offers one cent and
player 2 accepts all offers except 0.

183.3 Dictator game and impunity game

Dictator game Person 2 has no choice; person 1 optimally chooses the offer 0.
Impunity game The analysis of the subgames of length one is the same as it is in
the ultimatum game. That is, in any subgame perfect equilibrium person 2 either
accepts all offers, or accepts all positive offers and rejects 0. Now consider the
whole game. Regardless of person 2’s behavior in the subgames, person 1’s best
action is to offer 0.

Thus the game has two subgame perfect equilibria. In both equilibria person 1
offers 0. In one equilibrium person 2 accepts all offers, and in the other equilibrium
she accepts all positive offers and rejects 0. The outcome of the first equilibrium is
that person 1 offers 0, which person 2 accepts; the outcome of the second equilib-
rium is that person 1 offers 0, which person 2 rejects. In both equilibria person 1’s
payoff is c and person 2’s payoff is 0.

89
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183.4 Variants of ultimatum game and impunity game with equity-conscious players

Ultimatum game First consider the optimal response of person 2 to each possible
offer. If person 2 accepts an offer x her payoff is x − β2|(1− x)− x|, while if she
rejects an offer her payoff is 0. Thus she accepts an offer x if x− β2|(1− x)− x| > 0,
or

x− β2|1− 2x| > 0, (90.1)

rejects an offer x if x − β2|1− 2x| < 0, and is indifferent between accepting and
rejecting if x− β2|1− 2x| = 0.

Which values of x satisfy (90.1)? Because of the absolute value in the expres-
sion, we can conveniently consider the cases x ≤ 1

2 and x > 1
2 separately.

• For x ≤ 1
2 the condition is x− β2(1− 2x) > 0, or x > β2/(1 + 2β2).

• For x ≥ 1
2 the condition is x + β2(1− 2x) > 0, or x(1− 2β2) + β2 > 0. The

values of x that satisfy this inequality depend on whether β2 is greater than
or less than 1

2 .

β2 ≤ 1
2 : All values of x satisfy the inequality.

β2 >
1
2 : The inequality is x < β2/(2β2 − 1) (the right-hand side of which is

less than 1 only if β2 > 1).

In summary, person 2 accepts any offer x with β2/(1 + 2β2) < x < β2/(2β2 −
1), may accept or reject the offers β2/(1 + 2β2) and β2/(2β2 − 1), and rejects any
offer x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1). The shaded region of Fig-
ure 90.1 shows, for each value of β2, the set of offers that person 2 accepts. Note,
in particular, that, for every value of β2, person 2 accepts the offer 1

2 .

1

0 1 2β2 →

↑
x

Offers accepted by person 2

β2/(1 + 2β2)

β2/(2β2 − 1)

Figure 90.1 The set of offers x that person 2 accepts for each value of β2 ≤ 2 in the variant of the
ultimatum game with equity-conscious players studied in Exercise 183.4.
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Now consider person 1’s decision. Her payoff is 0 if her offer is rejected and
1− x− β1|(1− x)− x| = 1− x− β1|1− 2x| if it is accepted. We can conveniently
separate the analysis into three cases.

β1 <
1
2 : Person 1’s payoff when her offer x is accepted is positive for 0 ≤ x < 1

and is decreasing in x. Thus person 1’s optimal offer is the smallest one that
person 2 accepts. If person 2’s strategy rejects the offer β2/(1 + 2β2), then
as in the analysis of the original game when person 2’s strategy rejects 0,
person 1 has no optimal response. Thus in any subgame perfect equilibrium
person 2 accepts β2/(1 + 2β2), and person 1 offers this amount.

β1 = 1
2 : Person 1’s payoff to an offer that is accepted is positive and constant

from x = 0 to x = 1
2 , then decreasing. Thus if person 2 accepts the offer

β2/(1 + 2β2) then every offer x with β2/(1 + 2β2) ≤ x ≤ 1
2 is optimal, while

if person 2 rejects the offer β2/(1 + 2β2) then every offer x with β2/(1 +
2β2) < x ≤ 1

2 is optimal.

β1 >
1
2 : Person 1’s payoff to an offer that is accepted is increasing up to x = 1

2
and then decreasing, and is positive at x = 1

2 , so that her optimal offer is 1
2

(which person 2 accepts).

We conclude that the set of subgame perfect equilibria depends on the values
of β1 and β2, as follows.

β1 <
1
2 : the set of subgame perfect equilibria is the set of all strategy pairs for

which

• person 1 offers β2/(1 + 2β2)

• person 2 accepts all offers x with β2/(1 + 2β2) ≤ x < β2/(2β2 − 1),
rejects all offers x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1), and
either accepts or rejects the offer β2/(2β2 − 1).

β1 = 1
2 : the set of subgame perfect equilibria is the set of all strategy pairs for

which

• person 1’s offer x satisfies β2/(1 + 2β2) ≤ x ≤ 1
2

• person 2 accepts all offers x with β2/(1 + 2β2) < x < β2/(2β2 − 1),
rejects all offers x with x < β2/(1 + 2β2) or x > β2/(2β2 − 1), either
accepts or rejects the offer β2/(2β2 − 1), and either accepts or rejects
the offer β2/(1 + 2β2) unless person 1 makes this offer, in which case
person 2 definitely accepts it.

β1 >
1
2 : the set of subgame perfect equilibria is the set of all strategy pairs for

which

• person 1 offers 1
2
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• person 2 accepts all offers x with β2/(1 + 2β2) < x < β2/(2β2 − 1),
rejects all offers x with x < β2/(1 + 2β2) or x > β2/(2β2− 1), and either
accepts or rejects the offer β2/(2β2 − 1) and the offer β2/(1 + 2β2).

The subgame perfect equilibrium outcomes are:

β1 <
1
2 : person 1 offers β2/(1 + 2β2), which person 2 accepts

β1 = 1
2 : person 1 makes an offer x that satisfies β2/(1 + 2β2) ≤ x ≤ 1

2 , and
person 2 accepts this offer

β1 >
1
2 : person 1 offers 1

2 , which person 2 accepts.

In particular, in all cases the offer made by person 1 in equilibrium is accepted by
person 2.
Impunity game First consider the optimal response of person 2 to each possible
offer. If person 2 accepts an offer x her payoff is x − β2|(1− x)− x|, while if she
rejects an offer her payoff is −β2(1− x). Thus she accepts an offer x if x− β2|(1−
x)− x| > −β2(1− x), or

x(1− β2) + β2(1− |1− 2x|) > 0, (92.1)

rejects an offer x if x(1− β2) + β2(1− |1− 2x|) < 0, and is indifferent between
accepting and rejecting if x(1− β2) + β2(1− |1− 2x|) = 0.

As before, we can conveniently consider the cases x ≤ 1
2 and x > 1

2 separately.

• For x ≤ 1
2 the condition is x(1 + β2) > 0, or x > 0.

• For x ≥ 1
2 the condition is x(1 − 3β2) + 2β2 > 0, which is satisfied by all

values of x if β2 ≤ 1
3 , and for all x with x < 2β2/(3β2 − 1) if β2 >

1
3 .

In summary, person 2 accepts any offer x with 0 < x < 2β2/(3β2 − 1), may
accept or reject the offers 0 and 2β2/(3β2 − 1), and rejects any offer x with x >
2β2/(3β2 − 1).

Now consider person 1. If she offers x, her payoff is

{
1− x− β1|1− 2x| if person 1 accepts x
1− x− β1(1− x) if person 1 rejects x.

If β1 <
1
2 then in both cases person 1’s payoff is decreasing in x; for x = 0 the

payoffs are equal. Thus, given person 2’s optimal strategy, in any subgame perfect
equilibrium person 1’s optimal offer is 0, which person 2 may accept or reject.

If β1 = 1
2 then person 1’s payoff when person 2 accepts x is constant from 0 to

1
2 , then decreases. Her payoff when person 2 rejects x is decreasing in x, and the
two payoffs are equal when x = 0. Thus the optimal offers of person 1 are 0, which
person 2 may accept or reject, and any x with 0 < x ≤ 1

2 , which person 2 accepts.
If β1 > 1

2 then person 1’s highest payoff is obtained when x = 1
2 , which

person 2 accepts. Thus x = 1
2 is her optimal offer.
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In summary, in all subgame perfect equilibria the strategy of person 2 accepts
all offers x with 0 < x < 2β2/(3β2− 1), rejects all offers x with x > 2β2/(3β2− 1),
and either accepts or rejects the offer 0 and the offer 2β2/(3β2− 1). Person 1’s offer
depends on the value of β1 and β2, as follows.

β1 <
1
2 : person 1 offers 0

β1 = 1
2 : person 1’s offer x satisfies 0 ≤ x ≤ 1

2

β1 >
1
2 : person 1 offers x = 1

2 .

The subgame perfect equilibrium outcomes are:

β1 <
1
2 : person 1 offers 0, which person 2 may accept or reject

β1 = 1
2 : person 1 either offers 0, which person 2 either accepts or rejects, or

makes an offer x that satisfies 0 < x ≤ 1
2 , which person 2 accepts

β1 >
1
2 : person 1 offers 1

2 , which person 2 accepts.

In particular, if β1 ≤ 1
2 there are equilibria in which person 1 offers 0, and person 2

rejects this offer.
Comparison of subgame perfect equilibria of ultimatum and impunity games
The equilibrium outcomes of the two games are the same unless 0 < β1 ≤ 1

2 , or
β1 = 0 and β2 > 0, in which case person 1’s offer in the ultimatum game is higher
than her offer in the impunity game.

185.1 Bargaining over two indivisible objects

An extensive game that models the situation is shown in Figure 93.1, where the
action (x, 2− x) of player 1 means that she keeps x objects and offers 2− x objects
to player 2.

(0, 2)(2, 0)
(1, 1)

1

no

0, 0

yes

2, 0

2
no

0, 0

yes

1, 1

2
no

0, 0

yes

0, 2

2

Figure 93.1 An extensive game that models the procedure described in Exercise 185.1 for allocating
two identical indivisible objects between two people.

Denote a strategy of player 2 by a triple abc, where a is the action (y or n, for yes
or no) taken after the offer (2, 0), b is the action taken after the offer (1, 1), and c is
the action taken after the offer (0, 2).

The subgame perfect equilibria of the game are ((2, 0), yyy) (resulting in the
division (2, 0)), and ((1, 1), nyy) (resulting in the division (1, 1)).
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The strategic form of the game is given in Figure 94.1. Its Nash equilibria
are ((2, 0), yyy), ((2, 0), yyn), ((2, 0), yny), ((2, 0), ynn), ((2, 0), nny), ((1, 1), nyy),
((1, 1), nyn), ((0, 2), nny), and ((2, 0), nnn). The first four equilibria result in the
division (2, 0), the next two result in the division (1, 1), and the last two result in
the divisions (0, 2) and (0, 0) respectively.

yyy yyn yny ynn nyy nyn nny nnn
(2, 0) 2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0
(1, 1) 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0
(0, 2) 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

Figure 94.1 The strategic form of the game in Figure 93.1

The outcomes (0, 2) and (0, 0) are generated by Nash equilibria but not by any
subgame perfect equilibria.

185.2 Dividing a cake fairly

a. If player 1 divides the cake unequally then player 2 chooses the larger piece.
Thus in any subgame perfect equilibrium player 1 divides the cake into two
pieces of equal size.

b. In a subgame perfect equilibrium player 2 chooses P2 over P1, so she likes P2

at least as much as P1.

To show that in fact player 2 is indifferent between P1 and P2, suppose to
the contrary that she prefers P2 to P1. I argue that in this case player 1 can
slightly increase the size of P1 in such a way that player 2 still prefers the
now-slightly-smaller P2. Precisely, by the continuity of player 2’s preferences,
there is a subset P of P2, not equal to P2, that player 2 prefers to its comple-
ment C \ P (the remainder of the cake). Thus if player 1 makes the division
(C \ P, P), player 2 chooses P. The piece P1 is a subset of C \ P not equal to
C \ P, so player 1 prefers C \ P to P1. Thus player 1 is better off making the
division (C \ P, P) than she is making the division (P1, P2), contradicting the
fact that (P1, P2) is a subgame perfect equilibrium division. We conclude that
in any subgame perfect equilibrium player 2 is indifferent between the two
pieces into which player 1 divides the cake.

I now argue that player 1 likes P1 as least as much as P2. Suppose, to the
contrary, that she prefers P2 to P1. Then by the continuity assumption there
is a subset P of P2 that she prefers to C \ P. Player 2 is indifferent between
P1 and P2, so player 2 prefers C \ P (which is larger than P1) to P (which is
smaller than P2). Thus if player 1 makes the division (P, C \ P) then player 2
chooses C \ P, leaving P for player 1, which player 1 prefers to C \ P, and
hence to P1 (which is smaller than C \ P). That is, player 1 has a deviation that
leads to an outcome she prefers, contradicting the assumption that (P1, P2) is
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a subgame perfect equilibrium division. Hence player 1 likes P1 at least as
much as P2 in any subgame perfect equilibrium.

To show that player 1 may strictly prefer P1 to P2, consider a cake that is
perfectly homogeneous except for the presence of a single cherry. Assume
that player 2 values a piece of the cherry in exactly the same way that she
values a piece of the cake of the same size, while player 1 prefers a piece of
the cherry to a piece of the cake of the same size. Then there is a subgame
perfect equilibrium in which player 1 divides the cake equally, with one piece
containing all of the cherry, and player 2 chooses the piece without the cherry.
(In this equilibrium, as in all equilibria, player 2 is indifferent between the
two pieces—but note that there is no subgame perfect equilibrium in which
she chooses the piece with the cherry in it. A strategy pair in which she acts
in this way is not an equilibrium, because player 1 can deviate and increase
slightly the size of the cherryless piece of cake, inducing player 2 to choose
that piece.)

186.1 Holdup game

The game is defined as follows.

Players Two people, person 1 and person 2.

Terminal histories The set of all sequences (low, x, Z), where x is a number with
0 ≤ x ≤ cL (the amount of money that person 1 offers to person 2 when the
pie is small), and (high, x, Z), where x is a number with 0 ≤ x ≤ cH (the
amount of money that person 1 offers to person 2 when the pie is large) and
Z is either Y (“yes, I accept”) or N (“no, I reject”).

Player function P(∅) = 2, P(low) = P(high) = 1, and P(low, x) = P(high, x) =
2 for all x.

Preferences Person 1’s preferences are represented by payoffs equal to the
amounts of money she receives, equal to cL − x for any terminal history
(low, x, Y) with 0 ≤ x ≤ cL, equal to cH − x for any terminal history
(high, x, Y) with 0 ≤ x ≤ cH , and equal to 0 for any terminal history
(low, x, N) with 0 ≤ x ≤ cL and for any terminal history (high, x, N) with
0 ≤ x ≤ cH . Person 2’s preferences are represented by payoffs equal to x− L
for the terminal history (low, x, Y), x− H for the terminal history (high, x, Y),
−L for the terminal history (low, x, N), and −H for the terminal history
(high, x, N).

187.1 Agenda control

First consider the optimal strategies of the legislature. Denote the committee’s
proposal by y. If y > y0 or y < −y0 then the legislature optimally rejects y, while
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if −y0 < y < y0 it optimally accepts y; if y = y0 or y = −y0 then both acceptance
and rejection are optimal. Thus the legislature has four optimal strategies, which
differ in their response to the proposals y0 and −y0.

The optimal action of the committee, given the legislature’s optimal strategies,
depends on the relation between y0 and yc.

• If y0 > yc or y0 < −yc then for any optimal strategy of the legislature, the
committee optimally proposes yc, which the legislature accepts. Thus in a
subgame perfect equilibrium the committee proposes yc and the legislature
uses one of its optimal strategies.

• If 0 ≤ y0 ≤ yc then for any optimal strategy of the legislature, the committee
optimally proposes y0, which the legislature may accept or reject. Thus in a
subgame perfect equilibrium the committee proposes y0 and the legislature
uses one of its optimal strategies. (Note that the outcome is the same whether
the legislature accepts the proposal or rejects it.)

• If −yc ≤ y0 < 0 then if the legislature uses a strategy that accepts −y0, the
committee optimally proposes −y0, while if the legislature uses a strategy
that rejects −y0, the committee has no optimal strategy. Thus in a subgame
perfect equilibrium the committee proposes −y0 and the legislature uses an
optimal strategy that accepts −y0.

The outcome y∗ proposed by the committee in a subgame perfect equilibrium
is shown as a function of the status quo y0 in Figure 96.1. For −yc < y0 < 0,
an increase in the value of y0 leads to a decrease in the value of the equilibrium
outcome.

−yc 0 yc y0 →

↑
y∗ yc

Figure 96.1 The outcome y∗ proposed by the committee in a subgame perfect equilibrium of the game
in Exercise 187.1, as a function of the status quo y0.

189.1 Stackelberg’s duopoly game with quadratic costs

From Exercise 59.1, the best response function of firm 2 is the function b2 defined
by

b2(q1) =
{

1
4 (α− q1) if q1 ≤ α

0 if q1 > α.
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Firm 1’s subgame perfect equilibrium strategy is the value of q1 that maximizes
q1(α − q1 − b2(q1)) − q2

1, or q1(α − q1 − 1
4 (α − q1)) − q2

1, or 1
4 q1(3α − 7q1). The

maximizer is q1 = 3
14 α.

We conclude that the game has a unique subgame perfect equilibrium, in which
firm 1’s strategy is the output 3

14 α and firm 2’s strategy is its best response func-
tion b2.

The outcome of the subgame perfect equilibrium is that firm 1 produces q∗1 =
3

14 α units of output and firm 2 produces q∗2 = b2( 3
14 α) = 11

56 α units. In a Nash
equilibrium of Cournot’s (simultaneous-move) game each firm produces 1

5 α (see
Exercise 59.1). Thus firm 1 produces more in the subgame perfect equilibrium of
the sequential game than it does in the Nash equilibrium of Cournot’s game, and
firm 2 produces less.

191.1 Stackelberg’s duopoly game with fixed costs

We have f < (α− c)2/16 ( f = 4; (α− c)2/16 = 9), so the best response function of
firm 2 takes the form shown in Figure 24.1 (in the solution to Exercise 59.2). To de-
termine the subgame perfect equilibrium we need to compare firm 1’s profit when
it produces q = 8 units of output, so that firm 2 produces 0, with its profit when it
produces the output that maximizes its profit on the positive part of firm 2’s best
response function.

If firm 1 produces 8 units of output and firm 2 produces 0, firm 1’s profit is
8(12− 8) = 32. Firm 1’s best output on the positive part of firm 2’s best response
function is 1

2 (α− c) = 6. If it produces this output then firm 2 produces 1
2 (α− c−

q1) = 1
2 (12− 6) = 3, and firm 1’s profit is 6(12− 9) = 18. Thus firm 1’s profit is

higher when it produces enough to induce firm 2 to produce zero. We conclude
that the game has a unique subgame perfect equilibrium, in which firm 1’s strategy
is to produce 8 units, and firm 2’s strategy is to produce 1

2 (α− c− q1) = 1
2 (12− q1)

units if firm 1 produces q1 < 8 and 0 if firm 1 produces q1 ≥ 8 units.

192.1 Sequential variant of Bertrand’s duopoly game

a. Players The two firms.

Terminal histories The set of all sequences (p1, p2) of prices (where each pi is
a nonnegative number).

Player function P(∅) = 1 and P(p1) = 2 for all p1.

Preferences The payoff of each firm i to the terminal history (p1, p2) is its
profit






(pi − c)D(pi) if pi < pj
1
2 (pi − c)D(pi) if pi = pj

0 if pi > pj,

where j is the other firm.
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b. A strategy of firm 1 is a price (e.g. the price c). A strategy of firm 2 is
a function that associates a price with every price chosen by firm 1 (e.g.
s2(p1) = p1 − 1, the strategy in which firm 2 always charges 1 cent less than
firm 1).

c. First consider firm 2’s best responses to each price p1 chosen by firm 1.

• If p1 < c, any price greater than p1 is a best response for firm 2.

• If p1 = c, any price at least equal to c is a best response for firm 2.

• If p1 = c + 1, firm 2’s unique best response is to set the same price.

• If p1 > c + 1, firm 2’s unique best response is to set the price
min{pm, p1 − 1} (where pm is the monopoly price).

Now consider the optimal action of firm 1. Given firm 2’s best responses,

• if p1 < c, firm 1’s profit is positive

• if p1 = c, firm 1’s profit is zero

• if p1 = c + 1, firm 1’s profit is positive

• if p1 > c + 1, firm 1’s profit is zero.

Thus the only price p1 for which there is a best response of firm 2 that leads
to a positive profit for firm 1 is c + 1.

We conclude that in every subgame perfect equilibrium firm 1’s strategy is
p1 = c + 1, and firm 2’s strategy assigns to each price chosen by firm 1 one
of its best responses, so that firm 2’s strategy takes the form

s2(p1) =






k(p1) if p1 < c
k′ if p1 = c
c + 1 if p1 = c + 1
min{pm, p1 − 1} if p1 > c + 1

where k(p1) > p1 for all p1 and k′ ≥ c.

The outcome of every subgame perfect equilibrium is that both firms choose
the price c + 1.

196.1 Three interest groups buying votes

a. Consider the possibility of a subgame perfect equilibrium in which bill X
passes. In any such equilibrium, groups Y and Z make no payments. But
now given that Y makes no payments and that VX = VZ, group Z can match
X’s payments to the two legislators to whom X’s payments are smallest,
spend at most 200, and gain the passage of bill Z. Thus there is no subgame
perfect equilibrium in which bill X passes. Similarly there is no subgame
perfect equilibrium in which bill Y passes. Thus in every subgame perfect
equilibrium bill Z passes.
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b. By making payments of more than 50 to each legislator, group X ensures that
neither group Y nor group Z can profitably buy the passage of its favorite bill.
(In any subgame perfect equilibrium, group X’s payments to each legislator
are exactly 50.) Thus in every subgame perfect equilibrium the outcome is
that bill X is passed.

c. For any payments of group X that sum to at most 300, group Y can make
payments that are (i) at least as high to at least two legislators and (ii) high
enough that group Z cannot profitably buy off more than one legislator.
Specifically, consider the subgame following group X’s action. Denote group X’s
payment to legislator i by xi, and assume that x1 ≤ x2 ≤ x3. If group Y pays
max{51, x1 + 1} to legislator 1, max{51, x2 + 1} to legislator 2, and 51 to leg-
islator 3, then group Z cannot profitably buy off more than one legislator.
Hence in a subgame perfect equilibrium of the subgame group Z makes no
payments; group Y buys off legislators 1 and 2, and bill Y is passed.

196.2 Interest groups buying votes under supermajority rule

a. However group X allocates payments summing to 700, group Y can buy off
five legislators for at most 500. Thus in any subgame perfect equilibrium
neither group makes any payment, and bill Y is passed.

b. If group X pays each legislator 80 then group Y is indifferent between buying
off five legislators, in which case bill Y is passed, and in making no payments,
in which case bill X is passed. If group Y makes no payments then X is se-
lected, and group X is better off than it is if it makes no payments. There is
no subgame perfect equilibrium in which group Y buys off five legislators,
because if it were to do so group X could pay each legislator slightly more
than 80 to ensure the passage of bill X. Thus in every subgame perfect equi-
librium group X pays each legislator 80, group Y makes no payments, and
bill X is passed.

c. If only a simple majority is required to pass a bill, in case a the outcome under
majority rule is the same as it is when five votes are required.

In case b, group X needs to pay each legislator 100 in order to prevent group Y
from winning. If it does so, its total payments are less than VX , so doing so
is optimal. Thus in this case the payment to each legislator is higher under
majority rule.

196.3 Sequential positioning by two political candidates

The following extensive game models the situation.

Players The candidates.
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Terminal histories The set of all sequences (x1, . . . , xn), where xi is a position of
candidate i (a number) for i = 1, . . . , n.

Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, x2) = 3 for all (x1, x2), . . . ,
P(x1, . . . , xn−1) = n for all (x1, . . . , xn−1).

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins outright, k to ev-
ery terminal history in which she ties for first place with n− k other candi-
dates, for 1 ≤ k ≤ n− 1, and 0 to every terminal history in which she loses,
where positions attract votes as in Hotelling’s model of electoral competition
(Section 3.3).

This game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria. Suppose there are two candidates. First consider can-
didate 2’s best response to each strategy of candidate 1. Suppose candidate 1’s
strategy is m. Then candidate 2 loses if she chooses any position different from m
and ties with candidate 1 if she chooses m. Thus candidate 2’s best response to m
is m. Now suppose candidate 1’s strategy is x1 6= m. Then candidate 2 wins if she
chooses any position between x1 and 2m − x1; thus every such position is a best
response.

Given candidate 2’s best responses, the best strategy for candidate 1 is m, lead-
ing to a tie. (Every other strategy of candidate 1 leads her to lose.)

We conclude that in every subgame perfect equilibrium candidate 1’s strat-
egy is m; candidate 2’s strategy chooses m after the history m and some position
between x1 and 2m− x1 after any other history x1.

196.4 Sequential positioning by three political candidates

The following extensive game models the situation.

Players The candidates.

Terminal histories The set of all sequences (x1, . . . , xn), where xi is either Out or
a position of candidate i (a number) for i = 1, . . . , n.

Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, x2) = 3 for all (x1, x2), . . . ,
P(x1, . . . , xn−1) = n for all (x1, . . . , xn−1).

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins, k to every terminal
history in which she ties for first place with n− k other candidates, for 1 ≤
k ≤ n − 1, 0 to every terminal history in which she stays out, and −1 to
every terminal history in which she loses, where positions attract votes as in
Hotelling’s model of electoral competition (Section 3.3).
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When there are two candidates the analysis of the subgame perfect equilibria
is similar to that in the previous exercise. In every subgame perfect equilibrium
candidate 1’s strategy is m; candidate 2’s strategy chooses m after the history m,
some position between x1 and 2m− x1 after the history x1 for any position x1, and
any position after the history Out.

Now consider the case of three candidates when the voters’ favorite positions
are distributed uniformly from 0 to 1. I claim that every subgame perfect equilib-
rium results in the first candidate’s entering at 1

2 , the second candidate’s staying
out, and the third candidate’s entering at 1

2 .
To show this, first consider the best response of candidate 3 to each possible pair

of actions of candidates 1 and 2. Figure 101.1 illustrates these optimal actions in
every case that candidate 1 enters. (If candidate 1 does not enter then the subgame
is exactly the two-candidate game.)

2
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3 wins
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3 wins
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2 ); 3 wins
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↑
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Figure 101.1 The outcome of a best response of candidate 3 to each pair of actions by candidates 1 and
2. The best response for any point in the gray shaded area (including the black boundaries of this area,
but excluding the other boundaries) is Out. The outcome at each of the four small disks at the outer
corners of the shaded area is that all three candidates tie. The value of z is 1− 1

2 (x1 + x2).
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Now consider the optimal action of candidate 2, given x1 and the outcome of
candidate 3’s best response, as given in Figure 101.1. In the figure, take a value
of x1 and look at the outcomes as x2 varies; find the value of x2 that induces the
best outcome for candidate 2. For example, for x1 = 0 the only value of x2 for
which candidate 2 does not lose is 2

3 , at which point she ties with the other two
candidates. Thus when candidate 1’s strategy is x1 = 0, candidate 2’s best action,
given candidate 3’s best response, is x2 = 2

3 , which leads to a three-way tie. We
find that the outcome of the optimal value of x2, for each value of x1, is given as
follows. 





1, 2, and 3 tie (x2 = 2
3 ) if x1 = 0

2 wins if 0 < x1 <
1
2

1 and 3 tie (2 stays out) if x1 = 1
2

2 wins if 1
2 < x1 < 1

1, 2, and 3 tie (x2 = 1
3 ) if x1 = 1.

Finally, consider candidate 1’s best strategy, given the responses of candidates 2
and 3. If she stays out then candidates 2 and 3 enter at m and tie. If she enters then
the best position at which to do so is x1 = 1

2 , where she ties with candidate 3. (For
every other position she either loses or ties with both of the other candidates.)

We conclude that in every subgame perfect equilibrium the outcome is that
candidate 1 enters at 1

2 , candidate 2 stays out, and candidate 3 enters at 1
2 . (There

are many subgame perfect equilibria, because after many histories candidate 3’s
optimal action is not unique.)

(The case in which there are many potential candidates, is discussed on the
page http://www.economics.utoronto.ca/osborne/research/CONJECT.HTM.)

198.1 The race G1(2, 2)

The consequences of player 1’s actions at the start of the game are as follows.

Take two steps: Player 1 wins.

Take one step: Go to the game G2(1, 2), in which player 2 initially takes two
steps and wins.

Do not move: If player 2 does not move, the game ends. If she takes one step
we go to the game G1(2, 1), in which player 1 takes two steps and wins. If she
takes two steps, she wins. Thus in a subgame perfect equilibrium player 2
takes two steps, and wins.

We conclude that in a subgame perfect equilibrium of G1(2, 2) player 1 initially
takes two steps, and wins.

201.1 A race in which the players’ valuations of the prize differ

By the arguments in the text for the case in which both players’ valuations of the
prize are between 6 and 7, the subgame perfect equilibrium outcomes of all games
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in which k1 ≤ 2 or k2 ≤ 3 are the same as they are when both players’ valuations of
the prize are between 6 and 7. If k2 ≥ 5 then player 1 is the winner in all subgame
perfect equilibria, because even if player 2 reaches the finish line after taking one
step at a time, her payoff is negative.

The games Gi(3, 4), Gi(4, 4), Gi(5, 4), and Gi(6, 4) remain. If, in the games
G2(3, 4) and G2(4, 4), player 2 takes a single step then play moves to a game that
player 1 wins. Thus player 2 is better off not moving; the subgame perfect equi-
librium outcome is that player 1 takes one step at a time, and wins. In the game
Gi(5, 4), the player who moves first can, by taking a single step, reach a game in
which she wins regardless of the identity of the first-mover. Thus in this game the
winner is the first-mover. Finally, in the game G1(6, 4) it is not worth player 1’s
while taking two steps, to reach a game in which she wins, because her payoff
would ultimately be negative. And if she takes one step, play moves to a game
in which player 2 is the first-mover, and wins. Thus in this game player 2 wins.
Figure 103.1 shows the subgame perfect equilibrium outcomes.
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Figure 103.1 The subgame perfect equilibrium outcomes for the race in Exercise 201.1. Player 1 moves
to the left, and player 2 moves down. The labels on the values of (k1, k2) indicate the subgame perfect
equilibrium outcomes, as in the text.

201.2 Removing stones

For n = 1 the game has a unique subgame perfect equilibrium, in which player 1
takes one stone. The outcome is that player 1 wins.

For n = 2 the game has a unique subgame perfect equilibrium in which

• player 1 takes two stones

• after a history in which player 1 takes one stone, player 2 takes one stone.

The outcome is that player 1 wins.
For n = 3, the subgame following the history in which player 1 takes one stone

is the game for n = 2 in which player 2 is the first mover, so player 2 wins. The
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subgame following the history in which player 1 takes two stones is the game for
n = 1 in which player 2 is the first mover, so player 2 wins. Thus there is a subgame
perfect equilibrium in which player 1 takes one stone initially, and one in which
she takes two stones initially. In both subgame perfect equilibria player 2 wins.

For n = 4, the subgame following the history in which player 1 takes one stone
is the game for n = 3 in which player 2 is the first-mover, so player 1 wins. The
subgame following the history in which player 1 takes two stones is the game for
n = 2 in which player 2 is the first-mover, so player 2 wins. Thus in every subgame
perfect equilibrium player 1 takes one stone initially, and wins.

Continuing this argument for larger values of n, we see that if n is a multiple
of 3 then in every subgame perfect equilibrium player 2 wins, while if n is not a
multiple of 3 then in every subgame perfect equilibrium player 1 wins. We can
prove this claim by induction on n. The claim is correct for n = 1, 2, and 3, by the
arguments above. Now suppose it is correct for all integers through n− 1. I will
argue that it is correct for n.

First suppose that n is divisible by 3. The subgames following player 1’s re-
moval of one or two stones are the games for n− 1 and n− 2 in which player 2 is
the first-mover. Neither n− 1 nor n− 2 is divisible by 3, so by hypothesis player 2
is the winner in every subgame perfect equilibrium of both of these subgames.
Thus player 2 is the winner in every subgame perfect equilibrium of the whole
game.

Now suppose that n is not divisible by 3. As before, the subgames following
player 1’s removal of one or two stones are the games for n− 1 and n− 2 in which
player 2 is the first-mover. Either n − 1 or n − 2 is divisible by 3, so in one of
these subgames player 1 is the winner in every subgame perfect equilibrium. Thus
player 1 is the winner in every subgame perfect equilibrium of the whole game.

202.1 Hungry lions

Denote by G(n) the game in which there are n lions.
The game G(1) has a unique subgame perfect equilibrium, in which the single

lion eats the prey.
Consider the game G(2). If lion 1 does not eat, it remains hungry. If it eats, we

reach a subgame identical to G(1), which we know has a unique subgame perfect
equilibrium, in which lion 2 eats lion 1. Thus G(2) has a unique subgame perfect
equilibrium, in which lion 1 does not eat the prey.

In G(3), lion 1’s eating the prey leads to G(2), in which we have just concluded
that the first mover (lion 2) does not eat the prey (lion 1). Thus G(3) has a unique
subgame perfect equilibrium, in which lion 1 eats the prey.

For an arbitrary value of n, lion 1’s eating the prey in G(n) leads to G(n− 1).
If G(n− 1) has a unique subgame perfect equilibrium, in which the prey is eaten,
then G(n) has a unique subgame perfect equilibrium, in which the prey is not
eaten; if G(n− 1) has a unique subgame perfect equilibrium, in which the prey is
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not eaten, then G(n) has a unique subgame perfect equilibrium, in which the prey
is eaten. Given that G(1) has a unique subgame perfect equilibrium, in which the
prey is eaten, we conclude that if n is odd then G(n) has a unique subgame perfect
equilibrium, in which lion 1 eats the prey, and if n is even it has a unique subgame
perfect equilibrium, in which lion 1 does not eat the prey.

203.1 A race with a liquidity constraint

In the absence of the constraint, player 1 initially takes one step. Suppose she does
so in the game with the constraint. Consider player 2’s options after player 1’s
move.

Player 2 takes two steps: Because of the liquidity constraint, player 1 can take
at most one step. If she takes one step, player 2’s optimal action is to take one
step, and win. Thus player 1’s best action is not to move; player 2’s payoff
exceeds 1 (her steps cost 5, and the prize is worth more than 6).

Player 2 moves one step: Again because of the liquidity constraint, player 1
can take at most one step. If she takes one step, player 2 can take two steps
and win, obtaining a payoff of more than 1 (as in the previous case).

Player 2 does not move: Player 1, as before, can take one step on each turn, and
win; player 2’s payoff is 0.

We conclude that after player 1 moves one step, player 2 should take either
one or two steps, and ultimately win; player 1’s payoff is −1. A better option for
player 1 is not to move, in which case player 2 can move one step at a time, and
win; player 1’s payoff is zero.

Thus the subgame perfect equilibrium outcome is that player 1 does not move,
and player 2 takes one step at a time and wins.





7 Extensive Games with Perfect Information:
Extensions and Discussion

210.2 Extensive game with simultaneous moves

The game is shown in Figure 107.2.

BA

1

C D
C 4, 2 0, 0
D 0, 0 2, 4

E F
E 3, 1 0, 0
F 0, 0 1, 3

Figure 107.2 The game in Exercise 210.2.

The subgame following player 1’s choice of A has two Nash equilibria, (C, C)
and (D, D); the subgame following player 1’s choice of B also has two Nash equi-
libria, (E, E) and (F, F). If the equilibrium reached after player 1 chooses A is
(C, C), then regardless of the equilibrium reached after she chooses (E, E), she
chooses A at the beginning of the game. If the equilibrium reached after player 1
chooses A is (D, D) and the equilibrium reached after she chooses B is (F, F), she
chooses A at the beginning of the game. If the equilibrium reached after player 1
chooses A is (D, D) and the equilibrium reached after she chooses B is (E, E), she
chooses B at the beginning of the game.

Thus the game has four subgame perfect equilibria: (ACE, CE), (ACF, CF),
(ADF, DF), and (BDE, DE) (where the first component of player 1’s strategy is
her choice at the start of the game, the second component is her action after she
chooses A, and the third component is her action after she chooses B, and the first
component of player 2’s strategy is her action after player 1 chooses A at the start
of the game and the second component is her action after player 1 chooses B at the
start of the game).

In the first two equilibria the outcome is that player 1 chooses A and then both
players choose C, in the third equilibrium the outcome is that player 1 chooses A
and then both players choose D, and in the last equilibrium the outcome is that
player 1 chooses B and then both players choose E.

210.3 Two-period Prisoner’s Dilemma

The extensive game is specified as follows.

Players The two people.

107
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Terminal histories The set of pairs ((W, X), (Y, Z)), where each component is
either Q or F.

Player function P(∅) = {1, 2} and P(W, X) = {1, 2} for any pair (W, X) in
which both W and X are either Q or F.

Actions The set Ai(∅) of player i’s actions at the initial history is {Q, F}, for
i = 1, 2; the set Ai(W, X) of player i’s actions after any history (W, X) in
which both W and X are either Q or F is {Q, F}, for i = 1, 2.

Preferences Each player’s preferences are represented by the payoffs described
in the problem.

Consider the subgame following some history (W, X) (where W and X are both
either Q or F). In this subgame each player chooses either Q or F, and her payoff to
each resulting terminal history is the sum of her payoff to (W, X) in the Prisoner’s
Dilemma given in Figure 15.1 and her payoff to the pair of actions chosen in the
subgame, again as in the Prisoner’s Dilemma. Thus the subgame differs from the
Prisoner’s Dilemma given in Figure 15.1 only in that every payoff to a given player
is increased by her payoff to the pair of actions (W, X). Thus the subgame has a
unique Nash equilibrium, in which both players choose F.

Now consider the whole game. Regardless of the actions chosen at the start
of the game, the outcome in the second period is (F, F). Thus the payoffs to the
pairs of actions chosen in the first period are the payoffs in the Prisoner’s Dilemma
plus the payoff to (F, F). We conclude that the game has a unique subgame perfect
equilibrium, in which each player chooses F after every history.

211.1 Timing claims on an investment

The following extensive game models the situation.

Players The two people.

Terminal histories The sequences of the form ((N, N), (N, N), . . . , (N, N), xt),
where 1 ≤ t ≤ T, xt is (C, C), (C, N), or (N, C) if t ≤ T − 1 and (C, C),
(C, N), (N, C), or (N, N) if t = T, C means “claim”, and N means “do not
claim”.

Player function The set of players assigned to every nonterminal history is
{1, 2} (the two people).

Actions The set of actions of each player after every nonterminal history is
{C, N}.

Preferences Each player’s preferences are represented by a payoff equal to the
amount of money she obtains.
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The consequences of the players’ actions in period T are given in Figure 109.1.
We see that the subgame starting in period T has a unique Nash equilibrium,
(C, C), in which each player’s payoff is T.

C N
C T, T 2T, 0
N 0, 2T T, T

Figure 109.1 The consequences of the players’ actions in period T of the game in Exercise 211.1.

Thus if T = 1 the game has a unique subgame perfect equilibrium, in which
both players claim.

Now suppose that T ≥ 2, and consider period T − 1. The consequences of the
players’ actions in this period, given the equilibrium in the subgame starting in
period T, are shown in Figure 109.2. (The entry in the bottom right box, (T, T),
is the pair of equilibrium payoffs in the subgame in period T.) If T > 2 then
2(T − 1) > T, so that the subgame starting in period T − 1 has a unique subgame
perfect equilibrium, (C, C), in which each player’s payoff is T − 1. If T = 2 then
the whole game has two subgame perfect equilibria, in one of which both players
claim in both periods, and another in which neither claims in period 1 and both
claim in period 2.

C N
C T − 1, T − 1 2(T − 1), 0
N 0, 2(T − 1) T, T

Figure 109.2 The consequences of the players’ actions in period T − 1 of the game in Exercise 211.1,
given the equilibrium actions in period T.

For T > 2, working back to period 1 we see that the game has two subgame
perfect equilibria: one in which each player claims in every period, and one in
which neither player claims in period 1 but both players claim in every subsequent
period.

211.2 A market game

The following extensive game models the situation.

Players The seller and m buyers.

Terminal histories The set of sequences of the form ((p1, . . . , pm), j), where each
pi is a price (nonnegative number) and j is either 0 or one of the sellers (an
integer from 1 to m), with the interpretation that pi is the offer of buyer i,
j = 0 means that the seller accepts no offer, and j ≥ 1 means that the seller
accepts buyer j’s offer.
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Player function P(∅) is the set of buyers and P(p1, . . . , pm) is the seller for every
history (p1, . . . , pm).

Actions The set Ai(∅) of actions of buyer i at the start of the game is the set of
prices (nonnegative numbers). The set As(p1, . . . , pm) of actions of the seller
after the buyers have made offers is the set of integers from 0 to m.

Preferences Each player’s preferences are represented by the payoffs given in
the question.

To find the subgame perfect equilibria of the game, first consider the subgame
following a history (p1, . . . , pm) of offers. The seller’s best action is to accept the
highest price, or one of the highest prices in the case of a tie.

I claim that a strategy profile is a subgame perfect equilibrium of the whole
game if and only if the seller’s strategy is the one just described, and among the
buyers’ strategies (p1, . . . , pm), every offer pi is at most v and at least two offers are
equal to v.

Such a strategy profile is a subgame perfect equilibrium by the following ar-
gument. If the buyer with whom the seller trades raises her offer then her payoff
becomes negative, while if she lowers her offer she no longer trades and her payoff
remains zero. If any other buyer raises her offer then either she still does not trade,
or she trades at a price greater than v and hence receives a negative payoff.

No other profile of actions for the buyers at the start of the game is part of a
subgame perfect equilibrium by the following argument.

• If some offer exceeds v then the buyer who submits the highest offer can
induce a better outcome by reducing her offer to a value below v, so that
either the seller does not trade with her, or, if the seller does trade with her,
she trades at a lower price.

• If all offers are at most v and only one is equal to v, the buyer who offers v
can increase her payoff by reducing her offer a little.

• If all offers are less than v then one of the buyers whose offer is not accepted
can increase her offer to some value between the winning offer and v, induce
the seller to trade with her, and obtain a positive payoff.

In any equilibrium the buyer who trades with the seller does so at the price v.
Thus her payoff is zero. The other buyers do not trade, and hence also obtain the
payoff of zero.

212.1 Price competition

The following game models the situation.

Players The two sellers and the two buyers.
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Terminal histories All sequences ((p1, p2), (x1, x2)) where pi (for i = 1, 2) is the
price posted by seller i and xi (for i = 1, 2) is the seller chosen by buyer i
(either seller 1 or seller 2).

Player function P(∅) is the set consisting of the two sellers; P(p1, p2) for any
pair (p1, p2) of prices is the set consisting of the two buyers.

Actions The set of actions of each seller at the start of the game is the set of
prices (nonnegative numbers), and the set of actions of each buyer after any
history (p1, p2) is the set consisting of seller 1 and seller 2.

Preferences Each seller’s preferences on lotteries over the terminal histories are
represented by the expected value of a Bernoulli payoff function that assigns
the payoff p to a sale at the price p. Each buyers’ preferences on lotteries over
the terminal histories are represented by the expected value of a Bernoulli
payoff function that assigns the payoff 1− p to a purchase at the price p. The
payoff of a player who does not trade is 0.

In any subgame perfect equilibrium, the buyers’ strategies in the subgame
following any history (p1, p2) must be a Nash equilibrium of the game in Exer-
cise 128.1. This game has a unique Nash equilibrium unless 1

2 (1 + p1) ≤ p2 ≤
2p1 − 1. If 1

2 (1 + p1) < p2 < 2p1 − 1 the game has three Nash equilibria, two pure
and one mixed.

I claim that for any price p ≥ 1
2 the extensive game in this exercise has a sub-

game perfect equilibrium in which if 1
2 (1 + p1) < p2 < 2p1− 1 then if either p1 ≤ p

or p2 ≤ p, the equilibrium in the subgame is the pure Nash equilibrium in which
buyer 1 approaches seller 1 and buyer 2 approaches seller 2, while if p1 > p and
p2 > p, the equilibrium in the subgame is the mixed strategy equilibrium.

Precisely, I claim that for any p ≥ 1
2 the following strategy pair is a subgame

perfect equilibrium of the game.

Sellers’ strategies Each seller announces the price p.

Buyers’ strategies

• After a history (p1, p2) in which 2p1 − 1 < p2 <
1
2 (1 + p1) and either

p1 ≤ p or p2 ≤ p (or both), buyer 1 approaches seller 1 and buyer 2
approaches seller 2.

• After a history (p1, p2) in which 2p1 − 1 < p2 < 1
2 (1 + p1), p1 > p,

and p2 > p, each buyer approaches seller 1 with probability (1− 2p1 +
p2)/(2− p1 − p2).

• After a history (p1, p2) in which p2 ≤ 2p1 − 1, both buyers approach
seller 2.

• After a history (p1, p2) in which p2 ≥ 1
2 (1 + p1), both buyers approach

seller 1.
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By Exercise 128.1, the buyers’ strategy pair is a Nash equilibrium in every
subgame. The sellers’ payoffs in the pure equilibrium in which one buyer ap-
proaches each seller are (p1, p2); their payoffs in the pure equilibrium in which
both buyers approach seller 1 is (p1, 0); and their payoffs in the pure equilibrium
in which both buyers approach seller 1 is (0, p2). Their payoffs in the mixed strat-
egy equilibrium are more difficult to calculate. They are (π∗1 (p1, p2), π∗2 (p1, p2)) =
((1 − (1 − π)2)p1, (1 − π2)p2), where π = (1 − 2p1 + p2)/(2 − p1 − p2). After
some algebra we obtain

(π∗1 (p1, p2), π∗2 (p1, p2)) =
(

3p1(1− p2)(1− 2p1 + p2)
(2− p1 − p2)2 ,

3p2(1− p1)(1− 2p2 + p1)
(2− p1 − p2)2

)

.

These equilibrium payoffs are illustrated in Figure 112.1.

p

p

0

1

1p1 →

↑
p2

(p1, 0)

(0, p2)

(π∗1 (p1, p2),

π∗2 (p1, p2))

(p1, p2)

p 2
=

2p
1
−

1

p 2
=

1
2
(1 + p 1)

Figure 112.1 The sellers’ payoffs in the game in Exercise 212.1 as a function of their prices, given the
buyers’ equilibrium strategies.

Now consider the sellers’ choices of prices. Given that p2 = p ≥ 1
2 and the

buyers’ strategies are those defined above, seller 1’s payoff when she sets the price
p1 is 





p1 if p1 ≤ p
π∗1 (p1, p) if p < p1 ≤ 1

2 (1 + p)
0 if p > 1

2 (1 + p).

By the claim in the question (verified at the end of this solution), π∗1 (p1, p2) is
decreasing in p1 for p1 ≥ p2, so that seller 1’s best response to p is p. An analogous
argument shows that seller 2’s best response to p is p.
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We conclude that the strategy pair defined above is a subgame perfect equilib-
rium.

The verification of the last claim of the question (not required as part of an
answer) follows. We have

π∗1 (p1, p2) =
3p1(1− p2)(1− 2p1 + p2)

(2− p1 − p2)2 .

The derivative of this function with respect to p1 is

3(1− p2)
[
(2− p1 − p2)2(1− 2p1 + p2 − 2p1) + 2(2− p1 − p2)p1(1− 2p1 + p2)

]

(2− p1 − p2)4

or

3(1− p2)(2− p1 − p2) [(2− p1 − p2)(1− 4p1 + p2) + 2p1(1− 2p1 + p2)]
(2− p1 − p2)4 .

This expression is negative if

(2− p1 − p2)(1− 4p1 + p2) + 2p1(1− 2p1 + p2) < 0,

or

p1 >
(2− p2)(1 + p2)

7− 5p2
.

The right-hand side is less than p2 if

(2p2 − 1)(p2 − 1) < 0,

which is true if 1
2 < p2 < 1, so that seller 1’s equilibrium payoff is decreasing in p1

whenever p1 > p2 >
1
2 .

214.1 Bertrand’s duopoly game with entry

The unique Nash equilibrium of the subgame that follows the challenger’s entry
is (c, c), as we found in Section 3.2.2. The challenger’s profit is − f < 0 in this
equilibrium. By choosing to stay out the challenger obtains the profit of 0, so in
any subgame perfect equilibrium the challenger stays out. After the history in
which the challenger stays out, the incumbent chooses its price p1 to maximize its
profit (p1 − c)(α− p1).

Thus for any value of f > 0 the whole game has a unique subgame perfect
equilibrium, in which the strategies are:

Challenger

• at the start of the game: stay out

• after the history in which the challenger enters: choose the price c

Incumbent

• after the history in which the challenger enters: choose the price c

• after the history in which the challenger stays out: choose the price p1

that maximizes (p1 − c)(α− p1).



114 Chapter 7. Extensive Games with Perfect Information: Extensions and Discussion

216.1 Electoral competition with strategic voters

Consider a strategy profile in which each candidate chooses the median m of the
citizens’ favorite positions and the citizens’ strategies are defined as follows.

• After a history in which every candidate chooses m, each citizen i votes for
candidate j, where j is the smallest integer greater than or equal to in/q. (That
is, the citizens split their votes equally among the n candidates. If there are 3
candidates and 15 citizens, for example, citizens 1 through 5 vote for candi-
date 1, citizens 6 through 10 vote for candidate 2, and citizens 11 through 15
vote for candidate 3.)

• After a history in which all candidates enter and every candidate except j
chooses m, each citizen votes for candidate j if her favorite position is closer
to j’s position than it is to m, and for some candidate ` whose position is m
otherwise. (All citizens who do not vote for j vote for the same candidate `.)

• After any other history, the citizens’ action profile is any Nash equilibrium of
the voting subgame in which no citizen’s action is weakly dominated.

Every such strategy profile induces the outcome in which all candidates enter
and choose the median of the citizens’ favorite positions, and tie for first place.
After every history of one of the first two types, every citizen votes for one of
the candidates who is closest to her favorite position, so no citizen’s strategy is
weakly dominated. After a history of the third type, no citizen’s strategy is weakly
dominated by construction.

Every such strategy profile is a subgame perfect equilibrium by the following
argument.

In each voting subgame the citizens’ strategy profile is a Nash equilibrium:

• after the history in which the candidates’ positions are the same, equal to m,
no citizen’s vote affects the outcome

• after a history in which all candidates enter and every candidate but j chooses
m, a change in any citizen’s vote either has no effect on the outcome or makes
it worse for her

• after any other history the citizens’ strategy profile is a Nash equilibrium by
construction.

Now consider the candidates’ choices at the start of the game. If any candidate
deviates by choosing a position different from that of the other candidates, she
loses, rather than tying for first place. If any candidate deviates by staying out of
the race, the outcome is worse for her than adhering to the equilibrium, and tying
for first place. Thus each candidate’s strategy is optimal given the other players’
strategies.

[The claim that every voting subgame has a (pure) Nash equilibrium in which
no citizen’s action is weakly dominated, which you are not asked to prove, may be
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demonstrated as follows. Given the candidates’ positions, choose the candidate,
say j, ranked last by the smallest number of citizens. Suppose that all citizens
except those who rank j last vote for j; distribute the votes of the citizens who
rank j last as equally as possible among the other candidates. Each citizen’s action
is not weakly dominated (no citizen votes for the candidate she ranks last) and,
given q ≥ 2n, no change in any citizen’s vote affects the outcome, so that the list of
citizens’ actions is a Nash equilibrium of the voting subgame.]

217.1 Electoral competition with strategic voters

I first argue that in any equilibrium each candidate that enters is in the set of win-
ners. If some candidate that enters is not a winner, she can increase her payoff by
deviating to Out.

Now consider the voting subgame in which there are more than two candidates
and not all candidates’ positions are the same. Suppose that the citizens’ votes are
equally divided among the candidates. I argue that this list of citizens’ strategies
is not a Nash equilibrium of the voting subgame.

For either the citizen whose favorite position is 0 or the citizen whose favorite
position is 1 (or both), at least two candidates’ positions are better than the position
of the candidate furthest from the citizen’s favorite position. Denote a citizen for
whom this condition holds by i. (The claim that citizen i exists is immediate if the
candidates occupy at least three distinct positions, or they occupy two distinct po-
sitions and at least two candidates occupy each position. If the candidates occupy
only two positions and one position is occupied by a single candidate, then take
the citizen whose favorite position is 0 if the lone candidate’s position exceeds the
other candidates’ position; otherwise take the citizen whose favorite position is 1.)

Now, given that each candidate obtains the same number of votes, if citizen i
switches her vote to one of the candidates whose position is better for her than
that of the candidate whose position is furthest from her favorite position, then
this candidate wins outright. (If citizen i originally votes for one of these superior
candidates, she can switch her vote to the other superior candidate; if she originally
votes for neither of the superior candidates, she can switch her vote to either one
of them.) Citizen i’s payoff increases when she thus switches her vote, so that the
list of citizens’ strategies is not a Nash equilibrium of the voting subgame.

We conclude that in every Nash equilibrium of every voting subgame in which
there are more than two candidates and not all candidates’ positions are the same
at least one candidate loses. Because no candidate loses in a subgame perfect equi-
librium (by the first argument in the proof), in any subgame perfect equilibrium
either only two candidates enter, or all candidates’ positions are the same.

If only two candidates enter, then by the argument in the text for the case n = 2,
each candidate’s position is m (the median of the citizens’ favorite positions).

Now suppose that more than two candidates enter, and their common position
is not equal to m. If a candidate deviates to m then in the resulting voting subgame
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only two positions are occupied, so that for every citizen, any strategy that is not
weakly dominated votes for a candidate at the position closest to her favorite po-
sition. Thus a candidate who deviates to m wins outright. We conclude that in
any subgame perfect equilibrium in which more than two candidates enter, they
all choose the position m.

220.1 Top cycle set

a. The top cycle set is the set {x, y, z} of all three alternatives because x beats y
beats z beats x.

b. The top cycle set is the set {w, x, y, z} of all four alternatives. As in the
previous case, x beats y beats z beats x; also y beats w.

221.1 Designing agendas

We have: x beats y beats z beats x; x, y, and z all beat v; v beats w; and w does not
beat any alternative. Thus the top cycle set is {x, y, z}.

An agenda that yields x is shown in Figure 116.1. A similar agenda, with y and
x interchanged, yields y, and one with x and z interchanged yields z.

vote

vote

x vote

wv

vote

zy

Figure 116.1 A binary agenda for which the alternative x is the outcome of sophisticated voting for the
committee in Exercise 221.1.

No binary agenda yields w because for every other alternative a, a majority of
committee members prefer a to w. No binary agenda yields v because the only
alternative that v beats is w, which itself is beaten by every other alternative.

221.2 An agenda that yields an undesirable outcome

An agenda for which the outcome of sophisticated voting is z is given in Fig-
ure 117.1.
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vote

z vote

x vote

wy

Figure 117.1 A binary agenda for which the alternative z is the outcome of sophisticated voting for the
committee in Exercise 221.2.

224.1 Exit from a declining industry

Period t1 is the largest value of t for which Pt(k1) ≥ c, or 60− t ≥ 10. Thus t1 = 50.
Similarly, t2 = 70.

If both firms are active in period t1, then firm 2’s profit in this period is −ck2 =
−10(20) = −200. (Note that the price is zero, because k1 + k2 > 50.) Its profit in
any period t in which it is alone in the market is (100− t− c− k2)k2 = (70− t)(20).
Thus its profit from period t1 + 1 through period t2 is

(19 + 18 + . . . + 1)(20) = 3800.

Hence firm 2’s loss in period t1 when both firms are active is (much) less than the
sum of its profits in periods t1 + 1 through t2 when it alone is active.

225.1 Effect of borrowing constraint in declining industry

Period t0 is the largest value of t for which Pt(k1 + k2) ≥ c, or 100− t− 60 ≥ 10, or
t ≤ 30. Thus t0 = 30. From Exercise 224.1 we have t1 = 50 and t2 = 70.

Suppose that firm 2 stays in the market for k periods after t0, then exits in period
t0 + k + 1. Firm 1’s total profit from period t0 + 1 on if it stays until period t1 is

(Pt0+1(k1 + k2)− c)k1 + . . . + (Pt0+k(k1 + k2) − c)k1 +

(Pt0+k+1(k1) − c)k1 + . . . + (Pt1 (k1)− c)k1,

or

40[(100− 30− 1− 60− 10) + . . . + (100− 30− k− 60− 10) +

(100− 30− k− 1− 40 − 10) + . . . + (100− 50− 40− 10)],

or
40[−1− . . .− k + (19− k) + . . . + 0],
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or
40[− 1

2 k(k + 1) + 1
2 (19− k)(20− k)]

(using the fact that the sum of the first n positive integers is 1
2 n(n + 1)), or

20(380− 40k).

In order that this profit be nonpositive we need 40k ≥ 380, or k ≥ 9.5. Thus firm 2
needs to survive until at least period 40 (30 + 10) in order to make firm 1’s exit in
period t0 + 1 optimal.

Firm 2’s total loss from period 31 through period 40 when both firms are in the
market is

(P31(k1 + k2)− c)k2 + . . . + (P40(k1 + k2)− c)k2,

or
20[(100− 31− 60− 10) + . . . + (100− 40− 60− 10)],

or
20(−1 + . . . +−10),

or 1100.
Thus firm 2 needs to be able to bear a debt of at least 1100 in order for there to

be a subgame perfect equilibrium in which firm 1 exits in period t0 + 1.

227.1 Variant of ultimatum game with equity-conscious players

The game is defined as follows.

Players The two people.

Terminal histories The set of sequences (x, β2, Z), where x is a number with 0 ≤
x ≤ c (the amount of money that person 1 offers to person 2), β2 is 0 or 1 (the
value of β2 selected by chance), and Z is either Y (“yes, I accept”) or N (“no,
I reject”).

Player function P(∅) = 1, P(x) = c for all x, and P(x, β2) = 2 for all x and all
β2.

Chance probabilities For every history x, chance chooses 0 with probability p
and 1 with probability 1− p.

Preferences Each person’s preferences are represented by the expected value of
a payoff equal to the amount of money she receives. For any terminal history
(x, β2, Y) person 1 receives c − x and person 2 receives x; for any terminal
history (x, β2, N) each person receives 0.

Given the result from Exercise 183.4 stated in the question, an offer x of player 1
is accepted with probability either 0 or p if x = 0, is accepted with probability p if
0 < x < 1

3 , is accepted with probability either p or 1 if x = 1
3 , and is accepted with
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probability 1 if x > 1
3 . By an argument like that for the original ultimatum game,

in any equilibrium in which player 1 makes an offer of 0, player 2 certainly accepts
the offer if β2 = 0, and in any equilibrium in which player 1 makes an offer of 1

3 ,
player 2 certainly accepts the offer if β2 = 1. Thus player 1’s expected payoff to
making the offer x is {

p(1− x) if 0 ≤ x < 1
3

1− x if 1
3 ≤ x < 1.

The maximizer of this function is x = 1
3 if p < 2

3 and x = 0 if p > 2
3 ; if p = 2

3 then
both offers are optimal. (If you do not see that the maximizer takes this form, plot
the expected payoff as a function of x.)

We conclude that if p 6= 2
3 , the subgame perfect equilibria of the game are given

as follows.

p < 2
3 Player 1 offers 1

3 . After a history in which β2 = 0, player 2 accepts an
offer x with x > 0 and either accepts or rejects the offer 0. After a history in
which β2 = 1, player 2 accepts an offer x with x ≥ 1

3 and rejects an offer x
with x < 1

3 .

p > 2
3 Player 1 offers 0. After a history in which β2 = 0, player 2 accepts all offers.
After a history in which β2 = 1, player 2 accepts an offer x with x > 1

3 , rejects
an offer x with x < 1

3 , and either accepts or rejects the offer 1
3 .

If p = 2
3 , both these strategy pairs are subgame perfect equilibria.

We see that if p > 2
3 then in a subgame perfect equilibrium player 1’s offers are

rejected by every player 2 with for whom β2 = 1 (that is, with probability 1− p).

227.2 Firm–union bargaining

First consider the firm’s responses to the union’s demand of x. If the surplus is H
then the firm rejects x > H, accepts x < H, and either accepts or rejects x = H.
Similarly, if the surplus is L then the firm rejects x > L, accepts x < L, and either
accepts or rejects x = L.

First suppose that the firm accepts x = H when the surplus is H and x = L
when the surplus is L. Then the union’s expected payoff is






x if x ≤ L
px if L < x ≤ H
0 if H < x.

Thus the union’s best demand is L if L > pH, and H if L < pH; if L = pH the union
is indifferent between these two demands. (If you do not see that the union’s best
demand takes this form, plot its expected payoff as a function of x.)

By the same argument as in the ultimatum game, if the firm rejects x = H
when the surplus is H then the union has no optimal demand if L < pH, and if the
firm rejects x = L when the surplus is L then the union has no optimal demand if
L > pH.
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We conclude that if p < L/H the game has two subgame perfect equilibria, in
which the union demands L and the firm accepts a demand of x when the surplus
is L if and only if x ≤ L, accepts a demand of x when the surplus is H if x < H,
rejects a demand of x when the surplus is H and x > H, and either accepts or
rejects a demand of H when the surplus is H. In these equilibria the probability of
a strike is 0.

Similarly, if p > L/H the game has two subgame perfect equilibria, in which
the union demands H and the firm accepts a demand of x when the surplus is H
if and only if x ≤ H, accepts a demand of x when the surplus is L if x < L, rejects
a demand of x when the surplus is L and x > L, and either accepts or rejects a
demand of L when the surplus is L. In these equilibria the probability of a strike is
1− p (the probability the surplus is L).

Finally, if p = L/H all of these strategy pairs are subgame perfect equilibria.

227.3 Sequential duel

The following game models the situation.

Players The two people.

Terminal histories All sequences of the form (X1, X2, . . . , Xk, S, H), where each
Xi is either N (“don’t shoot”) or (S, M) (“shoot”, “miss”), and H means “hit”,
together with the infinite sequence (S, M, S, M, S, M, . . .).

Player function P(h) = 1 for any history h that ends in M or N and in which
the total number of S’s and N’s is even, P(h) = 2 for any history h that ends
in M or N and in which the total number of S’s and N’s is odd, and P(h) = c
for any history h that ends in S.

Chance probabilities Whenever chance moves after a move of player 1 it chooses
H with probability p1 and M with probability 1− p1; whenever it moves af-
ter a move of player 2 it chooses H with probability p2 and M with probabil-
ity 1− p2;

Preferences Each player’s preferences are represented by the expected value of
a Bernoulli payoff function that assigns 1 to any history in which she survives
and 0 to any history in which she is killed.

First consider the strategy pair in which neither player ever shoots. The out-
come of this strategy pair is that both players survive. No outcome is better for
either player, so in particular neither player has a strategy that leads to a better
outcome for her in any subgame, given the other player’s strategy.

Now consider the strategy pair in which each player always shoots. Sup-
pose that player 2 always shoots. Consider any subgame. Suppose that player 1
switches to not shooting after some histories. If none of the histories after which
she changes her action is reached when player 2 follows her strategy, the change
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in player 1’s strategy has no effect on her payoff in the subgame. But if some of
these histories are reached with positive probability when player 2 follows her
strategy, then player 1’s probability of being killed increases. That is, any change
in player 1’s strategy either has no effect on her payoff in the subgame or decreases
that payoff. A symmetric argument applies to player 2. Thus the strategy pair in
which each player always shoots is a subgame perfect equilibrium.

(If you are not convinced that player 1’s probability of being killed increases
when she switches from shooting to not shooting after some histories that are
reached if player 2 follows her strategy, consider a subgame that starts with an
action of player 1. If player 1 always shoots in this subgame, the probability she is
killed (in the subgame) is

(1− p1)[p2 + (1− p2)(1− p1)[p2 + (1− p2)(1− p1)[p2 + · · ·

If player 1 deviates to not shooting after some histories, the expression for the
probability she is killed differs only in that some of the terms 1− p1 are replaced by
1. Every such substitution increases the value of the expression, and thus reduces
player 1’s payoff.)

227.4 Sequential truel

The games are shown in Figure 122.1. (The action marked “0” is that of shooting
into the air, which is available only in the second version of the game.)

First consider the game in which a player must shoot at another player.
To find the subgame perfect equilibria of this game, first consider the subgame

Γ′ in Figure 122.1. Whomever player C aims at, if she misses then she survives in
the company of both A and B. If she aims at B and hits her, then she survives in
the company of A; if she aims at A and hits her then she survives in the company
of B. Thus C aims at B if pA < pB and at A if pA > pB.

Now consider the subgame Γ. Whomever B aims at, the outcome is the same
if she misses (because Γ′ has a unique subgame perfect equilibrium). If B aims at
A and hits her, then she survives with probability 1 − pC; if she aims at C and hits
her, then she survives with probability 1. Thus (given pC > 0), the subgame Γ thus
has a unique subgame perfect equilibrium, in which B aims at C.

Finally, consider the whole game. Whomever A aims at, the outcome is the
same if she misses (because Γ has a unique subgame perfect equilibrium). If she
aims at B and hits her, then she survives with probability 1 − pC; if she aims at C
and hits her, then she survives with probability 1− pB. Thus A aims at C if pB < pC

and at B if pB > pC.
In summary, the game in which no player has the option of shooting into the

air has the following unique subgame perfect equilibrium.

• At the start of the game, A aims at C if pB < pC and at B if pB > pC.

• After a history in which A misses, B aims at C.
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• After a history in which both A and B miss, C aims at B if pA < pB and at A
if pA > pB.

Player A aims the player who is her more dangerous opponent; she is better off
if she eliminates this opponent than if she eliminates her weaker opponent.

Player C’s survival probability is (1− pA)(1− pB) = 1− pA − pB(1− pA) if

0

Γ

CB

A

1− pA

Γ

pA

c

A

C

1− pC

{A, C}

pC

{C}

c

1− pA

Γ

pA

c

A

B

1− pB

{A, B}

pB

{B}

c

where the game Γ is

0

Γ′

CA

B

1− pB

Γ′

pB

c

B

C

1− pC

{B, C}

pC

{C}

c

1− pB

Γ′

pB

{A, B}

c

and the game Γ′ is

0

{A, B, C}

BA

C

1− pC

{A, B, C}

pC

{B, C}

c
1− pC

{A, B, C}

pC

{A, C}

c

Figure 122.1 The games in Exercise 227.4. Only the actions indicated by black lines are available when
players do not have the option of shooting into the air (the action “0”). The labels beside the actions of
chance are the probabilities with which the actions are chosen; in each case the left action is “hit” and
the right action is “miss”.
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pC > pB, and 1− pB(1− pA) if pC < pB. Thus she is better off if pC < pB than if
pC > pB.

Now consider the game in which each player has the option of shooting into
the air. In the subgame Γ′, player C’s best action is to aim at B (given pA < pB). (If
she shoots into the air then the set of survivors is {A, B, C}; if she aims at B she has
some chance of eliminating her.)

In the subgame Γ we know that if B shoots, her target should be C. If she
does so her probability of survival is 1 − (1− pB)pC. If she shoots into the air her
probability of survival is 1− pC. The former exceeds the latter, so in the subgame Γ
player B aims at C.

Finally, given the equilibrium actions in the subgames, at the start of the game
we know that if A fires she aims at C if pB < pC and at B if pB > pC. Given
pA < pB, her shooting into the air results in her certain survival, while her aiming
at B or C results in her surviving with probability less than 1. Thus she shoots into
the air.

We conclude that if pA < pB then the game in which each player has the option
of shooting into the air has a unique subgame perfect equilibrium, which differs
from the subgame perfect equilibrium in which this option is absent only in that A
shoots into the air at the beginning of the game.

Player A fires into the air because when she does so B and C fight between
themselves; if she shoots at one of them she may eliminate her from the game,
giving the remaining player an incentive to shoot at her.

228.1 Cohesion in legislatures

Let the initial governing coalition consist of legislators 1 and 2. The US game is
defined as follows.

Players The three legislators.

Terminal histories All sequences

(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3), (A′, B′, C′)),

where i and j are members of the governing coalition (possibly with i = j),
(x1, x2, x3) and (y1, y2, y3) are partitions of one unit of payoff (x1 + x2 + x3 =
y1 + y2 + y3 = 1, xi ≥ 0, and yi ≥ 0 for i = 1, 2, 3), and A, B, C, A′, B′, and
C′ are either yes (vote for bill) or no (vote against bill).

Player function

• P(∅) = c (chance)

• P(i) = i

• P(i, (x1, x2, x3)) = {1, 2, 3}

• P(i, (x1, x2, x3), (A, B, C)) = c
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• P(i, (x1, x2, x3), (A, B, C), j) = j

• P(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {1, 2, 3}.

Chance probabilities Chance assigns probability 1
2 to 1 and probability 1

2 to 2
whenever it moves.

Actions

• A(∅) = {1, 2}

• A(i) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥ 0 for all i} for i = 1, 2

• Ak(i, (x1, x2, x3)) = {yes, no} for all k, i = 1, 2, and all (x1, x2, x3)

• A(i, (x1, x2, x3), (A, B, C)) = {1, 2} for all i, all (x1, x2, x3), and all triples
(A, B, C) in which A, B, and C are all either yes or no

• A(i, (x1, x2, x3), (A, B, C), j) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥
0 for all i} for i = 1, 2, all (x1, x2, x3), all triples (A, B, C) in which A,
B, and C are all either yes or no, and j = 1, 2

• Ak(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {yes, no} for all k, i = 1, 2, all
(x1, x2, x3), all triples (A, B, C) in which A, B, and C are all either yes or
no, j = 1, 2, and all (y1, y2, y3).

Preferences Each legislator i ranks the terminal histories according to the
amount of money she receives: xi + yi if both bills are passed, xi + d2

i if only
the first bill is passed, d1

i + yi if only the second bill is passed, and d1
i + d2

i if
neither bill is passed.

We find a subgame perfect equilibrium as follows. Refer to dt
i as legislator i’s

reservation value in period t. In the second period, denote by k the legislator whose
reservation value is lower between the two who do not propose a bill. Each leg-
islator i gets dt

i if a bill does not pass, and hence, under the assumption that her
vote is not weakly dominated, votes for a bill only if it gives her a payoff of at
least dt

i . The proposer needs one vote in addition to her own to pass a bill, and
can obtain it most cheaply by proposing a bill that gives k the payoff d2

k and gives
herself the remaining payoff 1− d2

k (which exceeds her reservation value, because
all reservation values are less than 1

2 ). Legislator k and the proposer vote for the
bill, which thus passes. (Legislator k is indifferent between voting for or against
the bill, but there is no subgame perfect equilibrium in which she votes against the
bill, because if she uses such a strategy the proposer can increase her offer to k a
little, leading k to strictly prefer voting for the bill.) The third player may vote for
or against the bill (her vote has no effect on the outcome).

In the first period, the pattern of behavior is the same: the bill proposed gives
the non-proposer with the lower reservation value that value.

In summary, in every subgame perfect equilibrium of the US game the strategy
of each member i of the governing coalition has the following properties:
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• after the move of chance in either period, propose the bill that gives the legis-
lator with the smallest reservation value in that period her reservation value
and gives i the remaining payoff

• after a bill is proposed in either period, vote for the bill if it assigns i a positive
amount.

The equilibrium strategy of the other legislator j satisfies the condition:

• after a bill is proposed in either period, vote for the bill if it assigns j a positive
amount.

(Each legislator’s equilibrium strategy may either vote for or vote against a bill
that gives her a payoff of zero.)

Thus in the US game there is no cohesion: the supporters of a bill may change
from period to period, depending on the values of the reservation values.

The UK game is defined as follows.

Players The three legislators.

Terminal histories All sequences

(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3), (A′, B′, C′)),

where i is a member of the governing coalition and j is any legislator,
(x1, x2, x3) and (y1, y2, y3) are partitions of one unit of payoff (x1 + x2 + x3 =
y1 + y2 + y3 = 1, xi ≥ 0, and yi ≥ 0 for i = 1, 2, 3), and A, B, C, A′, B′, and
C′ are either yes (vote for bill) or no (vote against bill).

Player function

• P(∅) = c (chance)

• P(i) = i

• P(i, (x1, x2, x3)) = {1, 2, 3}

• P(i, (x1, x2, x3), (A, B, C)) = c

• P(i, (x1, x2, x3), (A, B, C), j) = j

• P(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {1, 2, 3}.

Chance probabilities Chance assigns probability 1
2 to 1 and probability 1

2 to 2 at
the start of the game and after a history (i, (x1, x2, x3), (A, B, C)) in which at
least two of the votes A, B, and C are yes. Chance assigns probability 1

3 to
each legislator after a history (i, (x1, x2, x3), (A, B, C)) in which at least two
of the votes A, B, and C are no.

Actions

• A(∅) = {1, 2}
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• A(i) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥ 0 for all i} for i = 1, 2

• Ak(i, (x1, x2, x3)) = {yes, no} for all k, i = 1, 2, and all (x1, x2, x3)

• A(i, (x1, x2, x3), (A, B, C)) = {1, 2} for all i, all (x1, x2, x3), and all triples
(A, B, C) in which A, B, and C are all either yes or no and at least two
are yes, and A(i, (x1, x2, x3), (A, B, C)) = {1, 2, 3} for all i, all (x1, x2, x3),
and all triples (A, B, C) in which A, B, and C are all either yes or no and
at most one is yes

• A(i, (x1, x2, x3), (A, B, C), j) = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥
0 for all i} for i = 1, 2, all (x1, x2, x3), all triples (A, B, C) in which A,
B, and C are all either yes or no, and j = 1, 2, 3

• Ak(i, (x1, x2, x3), (A, B, C), j, (y1, y2, y3)) = {yes, no} for all k, i = 1, 2, all
(x1, x2, x3), all triples (A, B, C) in which A, B, and C are all either yes or
no, j = 1, 2, 3, and all (y1, y2, y3).

Preferences Each legislator i ranks the terminal histories according to the
amount of money she receives: xi + yi if both bills are passed, xi if only the
first bill is passed, yi if only the second bill is passed, and 0 if neither bill is
passed.

To find the subgame perfect equilibria, start with the second period. The defeat
of a bill leads each legislator to obtain the payoff of 0, so each legislator optimally
votes for every bill (given that votes are restricted to be weakly undominated).
Thus in any subgame perfect equilibrium the proposer’s bill gives the proposer all
the pie, and at least one of the other legislators votes for the bill. (As before, each
of the other legislators is indifferent between voting for and voting against the bill,
but there is no subgame perfect equilibrium in which the bill is voted down.)

In the first period, the same argument shows that the proposer’s bill gives the
proposer all the pie and that this bill passes. Further, in this period the other mem-
ber of the governing coalition definitely votes for the bill. The reason is that if she
does so, then her chance of being the proposer in the next period is 1

2 , so that her
expected payoff is 1

2 . If she votes against, then the bill fails, so that she obtains a
payoff of 0 in the first period and has a probability of 2

3 of being in the governing
coalition in the second period, so that her expected payoff is 1

3 . Thus she is better
off voting for her comrade’s bill than against it.

In summary, in every subgame perfect equilibrium of the UK game the strategy
of each legislator i has the following properties:

• after the move of chance in either period, propose the bill that gives legisla-
tor i the payoff 1

• after a bill is proposed in the first period, vote for the bill if i is a member of
the governing coalition.

Thus in the UK game the governing coalition is entirely cohesive.
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230.1 Nash equilibria when players may make mistakes

The players’ best response functions are indicated in Figure 127.1. We see that the
game has two Nash equilibria, (A, A, A) and (B, A, A).

A B
A 1∗, 1∗, 1∗ 0, 0, 1∗

B 1∗, 1∗, 1∗ 1∗, 0, 1∗

A

A B
A 0, 1∗, 0 1∗, 0, 0
B 1∗, 1∗, 0 0, 0, 0

B

Figure 127.1 The player’s best response functions in the game in Exercise 230.1.

The action A is not weakly dominated for any player. For player 1, A is better
than B if players 2 and 3 both choose B; for players 2 and 3, A is better than B for
all actions of the other players.

If players 2 and 3 choose A in the modified game, player 1’s expected payoffs
to A and B are

A: (1− p2)(1− p3) + p1 p2(1− p3) + p1(1− p2)p3 + (1− p1)p2 p3

B: (1− p2)(1− p3) + (1− p1)p2(1− p3) + (1− p1)(1− p2)p3 + p1 p2 p3.

The difference between the expected payoff to B and the expected payoff to A is

(1− 2p1)[p2 + p3 − 3p2 p3].

If 0 < pi <
1
2 for i = 1, 2, 3, this difference is positive, so that (A, A, A) is not a

Nash equilibrium of the modified game.

233.1 Nash equilibria of the chain-store game

Any terminal history in which the event in each period is either Out or (In, A) is
the outcome of a Nash equilibrium. In any period in which challenger chooses
Out, the strategy of the chain-store specifies that it choose F in the event that the
challenger chooses In.

233.2 Subgame perfect equilibrium of the chain-store game

The outcome of the strategy pair is that the only the last 10 challengers enter, and
the chain-store acquiesces to their entry. The payoff of each of the first 90 chal-
lengers is 1 and the payoff to the remaining 10 is 2. The chain-store’s payoff is
90× 2 + 10× 1 = 190.

No challenger can profitably deviate in any subgame (if one of the first 90 en-
ters it is fought). However, I claim that the chain-store can increase its payoff by
deviating after a history in which the first 89 challengers enter and are fought,
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and then challenger 90 enters. The chain-store’s strategy calls for it to fight chal-
lenger 90 and then subsequently acquiesce to any entry, and the remaining chal-
lengers’ strategies call for them to enter. But if instead the chain-store acquiesces to
challenger 90, keeping the rest of its strategy the same, it increases its payoff by 1.

(Note that the chain-store cannot profitably deviate after a history in which
fewer than 89 challengers enter and each of them is fought. Suppose, for example,
that each of the first 88 challengers enters and is fought, and then challenger 89
enters. The chain-store’s strategy calls for it to fight challenger 89, which induces
challenger 90 to stay out; the remaining challengers enter, and the chain-store ac-
quiesces. Its best deviation is to acquiesce to challenger 89’s entry and that of
all subsequent entrants, in which case all remaining challengers, including chal-
lenger 90, enter. The outcomes of the two strategies differ in periods 89 and 90.
If the challenger sticks to its original strategy it obtains 0 in period 89 and 2 in
period 90; if it deviates it obtains 1 in each period.)

234.1 Nash equilibria of the centipede game

Consider a strategy pair that results in an outcome in which player 1 stops the
game in period k ≥ 2. (That is, each player chooses C through period k− 1 and the
player who moves in period k chooses S.) Such a pair is not a Nash equilibrium
because the player who moves in period k− 1 can do better (in the whole game, not
only the subgame) by choosing S rather than C, given the other player’s strategy.
Similarly the strategy pair in which each player always chooses C is not a Nash
equilibrium. Thus in every Nash equilibrium player 1 chooses S at the start of the
game.
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241.2 Stag Hunt

The following coalitional game models the situation.

Players The hunters.

Actions The set of actions of every coalition with k < n members is the set of all
profiles (x1, . . . , xk) of nonnegative numbers in which each xi is an amount
of hare and x1 + · · ·+ xk = k. The set of actions of the grand coalition is the
union of the set of all profiles (x1, . . . , xk) of nonnegative numbers in which
each xi is an amount of hare and x1 + · · ·+ xk = n, and the set of all profiles
(y1, . . . , yn) of nonnegative numbers in which each yi is an amount of a stag
and y1 + · · ·+ yn = 1.

Preferences The preferences of each player are represented by the payoff func-
tion αx + y, where x is the amount of hares and y the amount of a stag she
obtains.

A coalition with k < n members catches k hares and thus can achieve any pay-
off distribution (z1, . . . , zk) among its members for which z1 + · · ·+ zk = αk. The
grand coalition can either catch n hares or a stag. All its members prefer the frac-
tion 1/n of a stag to a hare, so every payoff distribution it can achieve by catching
hares is dominated by a payoff distribution it can achieve by catching a stag. Thus
it can achieve any payoff distribution (z1, . . . , zn) for which z1 + · · ·+ zk = 1.

We conclude that the game has transferable payoff, and the worth function is
given by

v(S) =
{

αk if S contains k < n members
1 if S contains n members.

243.1 Cohesive games

Landowner–worker game: For any partition {S1, . . . , Sk} of the players, v(S1) +
· · ·+ v(Sk) is at most f (`), where ` is the number of members of the largest mem-
ber of the partition, and hence at most v(N).
Three-player majority game: For any partition {S1, . . . , Sk} of the players we have
v(S1) + · · ·+ v(Sk) ≤ 1 = v(N).
Stag Hunt: For any partition {S1, . . . , Sk} of the players we have v(S1) + · · · +
v(Sk) = αn < 1 = v(N).

129
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Marriage market: The matching of the members of the grand coalition induced by
any collection of actions of the coalitions in a partition can be achieved by some
action of the grand coalition.

245.1 Three-player majority game

Let (x1, x2, x3) be an action of the grand coalition. Every coalition consisting of two
players can obtain one unit of output, so for (x1, x2, x3) to be in the core we need

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1 + x2 + x3 = 1.

Adding the first three conditions we conclude that

2x1 + 2x2 + 2x3 ≥ 3,

or x1 + x2 + x3 ≥ 3
2 , contradicting the last condition. Thus no action of the grand

coalition satisfies all the conditions, so that the core of the game is empty.

245.2 Variant of three-player majority game

A coalition can obtain one unit of output if and only if it contains player 1. (Note
that players 2 and 3 together do not have a majority of the votes.) Thus for an
action (x1, x2, x3) of the grand coalition to be in the core we need

x1 ≥ 1

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x1 + x2 + x3 = 1.

The first and last conditions (and the restriction that amounts of output must be
nonnegative) imply that (x1, x2, x3) = (1, 0, 0), which satisfies the other two condi-
tions. Thus the core consists of the single action (1, 0, 0) in which player 1 obtains
all the output.

245.3 Stag Hunt

Let (x1, . . . , xn) be a distribution of payoff achievable by the grand coalition, so
that

x1 + · · ·+ xn = 1.

For (x1, . . . , xn) to be in the core we need xi ≥ α for every i, because the worth
of a coalition containing a single player is α. I claim that if this condition is satis-
fied, no coalition of more than one player can improve upon (x1, . . . , xn), so that
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(x1, . . . , xn) is in the core. The reason is that if xi ≥ α for each player i, then the
total payoff under (x1, . . . , xn) of any coalition with k < n members is at least αk,
which is the worth of the coalition.

In summary, the core of the game is the set of divisions of the stag in which
each player receives at least α.

The coalitional game assumes that any coalition may divide its spoils in any
way it wishes, while the strategic game in Section 2.5 restricts a group to split its
spoils equally. The solution concept of Nash equilibrium considers only devia-
tions by single players, whereas the concept of the core considers deviations by
groups of players, and assumes that any player will participate in a deviation that
increases her payoff even if there are other deviations that yield her an even higher
payoff.

245.4 Variant of Stag Hunt

The coalitional form of the game is given by

v(S) =
{

αk if S contains k < m members
1 if S contains at least m members.

The core is empty: for an allocation to be in the core, the total payoff of the
members of each coalition of m players must be at least 1, which is incompatible
with the requirement that the total payoff of all n players is 1. That is, the conflict
over how to share the stag precludes a stable outcome. (Cf. the argument that the
core of the three-player majority game is empty, in Exercise 245.1.)

246.1 Market with one owner and two heterogeneous buyers

By the arguments in Example 245.5, in any action in the core the owner does not
keep the good, the buyer who obtains the good pays at most her valuation, and
the other buyer makes no payment. Let aN be an action of the grand coalition
in which buyer 2 obtains the good and pays the owner p, and buyer 1 makes no
payment. Then p ≤ v < 1, so that the coalition consisting of the owner and buyer 1
can improve upon aN : if the owner transfers the good to buyer 1 in exchange for
1
2 (1 + p) units of money, both the owner and buyer 1 are better off than they are
in aN . Thus in any action in the core, buyer 1 obtains the good. The price she
pays is at least v (otherwise the coalition consisting of the owner and buyer 2 can
improve upon the action). No coalition can improve upon any action in which
buyer 1 obtains the good and pays the owner at least v and at most 1 (and buyer 2
makes no payment), so the core consists of all such actions.

247.1 Vote trading

a. The core consists of the single action in which all three bills pass, yielding
each legislator a payoff of 2. This action cannot be improved upon by any
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coalition because no single bill or pair of bills gives every member of any
majority coalition a payoff of more than 2.

No other action is in the core, by the following argument.

• The action in which no bill passes (so that each legislator’s payoff is 0)
can be improved upon by the coalition of all three legislators, which by
passing all three bills raises the payoff of each legislator to 2.

• The action in which only A passes can be improved upon by the coali-
tion of legislators 2 and 3, who by passing bills A and B raise both of
their payoffs.

• Similarly the action in which only B passes can be improved upon by
the coalition of legislators 1 and 3, and the action in which only C passes
can be improved upon by the coalition of legislators 1 and 2.

• The action in which bills A and B pass can be improved upon by the
coalition of legislators 1 and 3, who by passing all three bills raise both
their payoffs.

• Similarly the action in which bills A and C pass can be improved upon
by the coalition of legislators 2 and 3, and the action in which bills B and
C pass can be improved upon by the coalition of legislators 1 and 2.

b. The core consists of two actions: all three bills pass, and bills A and B pass.
As in part a, the action in which all three bills pass cannot be improved upon
by any coalition. The action in which bills A and B cannot be improved upon
either: for no other set of bills are at least two legislators better off.

No other action is in the core, by the following argument.

• The action in which A passes can be improved upon by the coalition
consisting of legislators 2 and 3, who can pass B instead.

• The action in which B passes can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass A and B instead.

• The action in which C passes can be improved upon by the coalition
consisting of legislators 2 and 3, who can pass B instead.

• The action in which A and C pass can be improved upon by the coalition
consisting of legislators 2 and 3, who can pass A and B instead.

• The action in which B and C pass can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass A and B instead.

c. The core is empty.

• The action in which no bill passes can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass A and B instead.
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• The action in which any single bill passes can be improved upon by the
coalition consisting of the two legislators whose payoffs are −1 if this
bill passes; this coalition can do better by passing the other two bills.

• The action in which bills A and B pass can be improved upon by the
coalition consisting of legislators 2 and 3, who can pass B instead.

• Similarly the action in which A and C pass can be improved upon by the
coalition consisting of legislators 1 and 2, who can pass A instead, and
the action in which B and C pass can be improved upon by the coalition
consisting of legislators 1 and 2, who can pass B instead.

• The action in which all three bills pass can be improved upon by the
coalition consisting of legislators 1 and 2, who can pass A and B instead.

248.1 Core of landowner–worker game

Let aN be an action of the grand coalition in which the output received by each
worker is at most f (n) − f (n − 1). No coalition consisting solely of workers can
obtain any output, so no such coalition can improve upon aN . Let S be a coalition
of the landowner and k− 1 workers. The total output received by the members of
S in aN is at least

f (n)− (n− k)( f (n)− f (n− 1))

(because the total output is f (n), and every other worker receives at most f (n)−
f (n− 1)). Now, the output that S can obtain is f (k), so for S to improve upon aN

we need
f (k) > f (n)− (n− k)( f (n)− f (n− 1)),

which contradicts the inequality given in the exercise.

249.1 Unionized workers in landowner–worker game

The following game models the situation.

Players The landowner and the workers.

Actions The set of actions of the grand coalition is the set of all allocations of
the output f (n). Every other coalition has a single action, which yields the
output 0.

Preferences Each player’s preferences are represented by the amount of output
she obtains.

The core of this game consists of every allocation of the output f (n) among
the players. The grand coalition cannot improve upon any allocation x because
for every other allocation x′ there is at least one player whose payoff is lower in
x′ than it is in x. No other coalition can improve upon any allocation because no
other coalition can obtain any output.
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249.2 Landowner–worker game with increasing marginal products

We need to show that no coalition can improve upon the action aN of the grand
coalition in which every player receives the output f (n)/n. No coalition of work-
ers can obtain any output, so we need to consider only coalitions containing the
landowner. Consider a coalition consisting of the landowner and k workers, which
can obtain f (k + 1) units of output by itself. Under aN this coalition obtains the
output (k + 1) f (n)/n, and we have f (k + 1)/(k + 1) < f (n)/n because k < n.
Thus no coalition can improve upon aN .

254.1 Range of prices in horse market

The equality of the number of owners who sell their horses and the number of
nonowners who buy horses implies that the common trading price p∗

• is not less than σk∗ , otherwise at most k∗ − 1 owners’ valuations would be
less than p∗ and at least k∗ nonowners’ valuations would be greater than p∗,
so that the number of buyers would exceed the number of sellers

• is not less than βk∗+1, otherwise at most k∗ owners’ valuations would be less
than p∗ and at least k∗ + 1 nonowners’ valuations would be greater than p∗,
so that the number of buyers would exceed the number of sellers

• is not greater than βk∗ , otherwise at least k∗ owners’ valuations would be less
than p∗ and at most k∗ − 1 nonowners’ valuations would be greater than p∗,
so that the number of sellers would exceed the number of buyers

• is not greater than σk∗+1, otherwise at least k∗ + 1 owners’ valuations would
be less than p∗ and at most k∗ nonowners’ valuations would be greater than
p∗, so that the number of sellers would exceed the number of buyers.

That is, p∗ ≥ max{σk∗ , βk∗+1} and p∗ ≤ min{βk∗ , σk∗+1}.

256.1 Horse trading game with single seller

The core consists of the set of actions of the grand coalition in which the owner sells
her horse to the nonowner with the highest valuation (nonowner 1) at a price p∗

for which max{β2, σ1} ≤ p∗ ≤ β1. (The coalition consisting of the owner and non-
woner 2 can improve any action in which the price is less than β2, the owner alone
can improve upon any action in which the price is less than σ1, and nonowner 1
alone can improve upon any action in which the price is greater than β1.)

256.2 Horse trading game with large seller

In every action in the core, the owner sells one horse to buyer 1 and one horse to
buyer 2. The prices at which the trades occur are not necessarily the same. The
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price p1 paid by buyer 1 satisfies max{β3, σ1} ≤ p1 ≤ β1 and the price p2 paid by
buyer 2 satisfies max{β3, σ1} ≤ p1 ≤ β2.

258.1 House assignment with identical preferences

Because the players rank the houses in the same way, we can refer to the “best
house”, the “second best house”, and so on. In any assignment in the core, the
player who owns the best house is assigned this house (because she has the option
of keeping it). Among the remaining players, the one who owns the second best
house must be assigned this house (again, because she has the option of keeping
it). Continuing to argue in the same way, we see that there is a single assignment
in the core, in which every player is assigned the house she owns initially.

260.1 Emptiness of the strong core when preferences are not strict

Of the six possible assignments, h1h2h3 (i.e. every player keeps the house she owns)
and h3h2h1 can both be improved upon by {1, 2} (and by {2, 3}). All four of the
other assignments are in the core.

None of the assignments in the core is in the strong core. The assignments
h1h3h2 and h3h1h2 can both be weakly improved upon by {1, 2}, and h2h1h3 and
h2h3h1 can both be weakly improved upon by {2, 3}.

261.1 Median voter theorem

Denote the median favorite position by m. If x < m then every player whose fa-
vorite position is m or greater—a majority of the players—prefers m to x. Similarly,
if x > m then every player whose favorite position is m or less—a majority of the
players—prefers m to x.

262.1 Cores of q-rule games

a. Denote the favorite policy of player i by x∗i and number the players so that
x∗1 ≤ · · · ≤ x∗n. The q-core is the set of all policies x for which

x∗n−q+1 ≤ x ≤ x∗q .

Any such policy x is in the core because every coalition of q players contains
at least one player whose favorite position is less than x and at least one
player whose favorite position is greater than x, so that there is no position
y 6= x that all members of the coalition prefer to x.

Any policy x < x∗n−q+1 is not in the core because the coalition of players
n − q + 1 through n can improve upon x: this coalition contains q players,
all of whom prefer x∗n−q+1 to x. Similarly, no policy greater than x∗q is in the
core.
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b. The core is the set of policies in the triangle defined by x∗1 , x∗2 , and x∗3.

Every policy x in this set is in the core because for every other policy y 6= x
at least one player is worse off than she is at x.

No policy x outside the set is in the core because the policy y 6= x closest to x
in the set is preferred by all three players.

265.1 Deferred acceptance procedure with proposals by Y’s

For the preferences given in Figure 263.1, the progress of the procedure when pro-
posals are made by Y’s is given in Figure 136.1. The matching produced is the
same as that produced by the procedure when proposals are made by X’s, namely
(x1, y1), (x2, y2), x3 (alone), and y3 (alone).

Stage 1 Stage 2 Stage 3

y1: → x1

y2: → x2

y3: → x1 reject → x3 reject → x2 reject

Figure 136.1 The progress of the deferred acceptance procedure with proposals by Y’s when the
players’ preferences are those given in Figure 263.1. Each row gives the proposals of one X.

266.1 Example of deferred acceptance procedure

For the preferences in Figure 266.1, the procedure when proposals are made by
X’s yields the matching (x1, y1), (x2, y2), (x3, y3); the procedure when proposals
are made by Y’s yields the matching (x1, y1), (x2, y3), (x3, y2).

In any matching in the core, x1 and y1 are matched, because each is the other’s
top-ranked partner. Thus the only two possible matchings are those generated by
the two procedures. Player x2 prefers y2 to y3 and player x3 prefers y3 to y2, so
the matching generated by the procedure when proposals are made by X’s yields
each X a better partner than does the matching generated by the procedure when
proposals are made by Y’s. Similarly, player y2 prefers x3 to x2 and player y3

prefers x2 to x3, so the matching generated by the procedure when proposals are
made by Y’s yields each Y a better partner than does the matching generated by
the procedure when proposals are made by X’s.

267.1 Strategic behavior under the deferred acceptance procedure

The matching produced by the deferred acceptance procedure with proposals by
X’s is (x1, y2), (x2, y3), (x3, y1). The matching produced by the deferred accep-
tance procedure with proposals by Y’s is (x1, y1), (x2, y3), (x3, y2). Of the four
other matchings, the coalition {x3, y2} can improve upon (x1, y1), (x2, y2), (x3, y3)
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and (x1, y2), (x2, y1), (x3, y3), and the coalition {x1, y1} can improve upon (x1, y3),
(x2, y1), (x3, y2) and (x1, y3), (x2, y2), (x3, y1). Thus the core consists of the two
matchings produced by the deferred acceptance procedures.

If y1 names the ranking (x1, x2, x3) and every other player names her true rank-
ing, the deferred acceptance procedure with proposals by X’s yields the match-
ing (x1, y1), (x2, y3), (x3, y2), as illustrated in Figure 137.1. Players y1 and y2 are
matched with their favorite partners, so cannot profitably deviate by submitting
any other ranking. Player y3’s ranking does not affect the outcome of the proce-
dure. Thus, given that submitting her true ranking is a dominant strategy for every
X, the game thus has a Nash equilibrium in which player y1 submits the ranking
(x1, x2, x3) and every other player submits her true ranking.

Stage 1 Stage 2 Stage 3 Stage 4

x1: → y2 reject → y1

x2: → y1 reject → y3

x3: → y1 reject → y2

Figure 137.1 The progress of the deferred acceptance procedure with proposals by X’s when the play-
ers’ preferences differ from those in Exercise 267.1 only in that y1’s ranking is (x1, x2, x3). Each row
gives the proposals of one X.

267.2 Empty core in roommate problem

Notice that ` is at the bottom of each of the other players’ preferences. Suppose
that she is matched with i. Then j and k are matched, and {i, k} can improve upon
the matching. Similarly, if ` is matched with j then {i, j} can improve upon the
matching, and if ` is matched with k then {j, k} can improve upon the matching.
Thus the core is empty (` has to be matched with someone!).

267.3 Spatial preferences in roommate problem

The core consists of the single matching µ∗ defined as follows. First match the
pair of players whose characteristics are closest. Then match the pair of players in
the remaining set whose characteristics are closest. Continue until all players are
matched.

Number the matches in the order they are made according to this procedure. If
a coalition can improve upon µ∗, then a coalition consisting of two players can do
so. Now, neither member of match k is better off being matched with a member of
match ` for any ` > k, so no two-player coalition can improve upon the matching.
Thus µ∗ is in the core.

For any other matching µ′, at least one of the members of some match k defined
by the procedure is matched with a different partner. If she is matched with a
member of some match ` < k then the coalition consisting of the two members of
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match ` can improve µ′; if she is matched with a member of some match ` > k
then the coalition consisting of the two member of match k can improve upon µ′.
Thus no matching µ′ 6= µ∗ is in the core.
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276.1 Equilibria of a variant of BoS with imperfect information

If player 1 chooses S then type 1 of player 2 chooses S and type 2 chooses B. But
if the two types of player 2 make these choices then player 1 is better off choosing
B (which yields her an expected payoff of 1) than choosing S (which yields her an
expected payoff of 1

2 ). Thus there is no Nash equilibrium in which player 1 chooses
S.

Now consider the mixed strategy Nash equilibria. If both types of player 2 use
a pure strategy then player 1’s two actions yield her different payoffs. Thus there
is no equilibrium in which both types of player 2 use pure strategies and player 1
randomizes.

Now consider an equilibrium in which type 1 of player 2 randomizes. Denote
by p the probability that player 1’s mixed strategy assigns to B. In order for type 1
of player 2 to obtain the same expected payoff to B and S we need p = 2

3 . For this
value of p the best action of type 2 of player 2 is S. Denote by q the probability that
type 1 of player 2 assigns to B. Given these strategies for the two types of player 2,
player 1’s expected payoff if she chooses B is

1
2 · 2q = q

and her expected payoff if she chooses S is

1
2 · (1− q) + 1

2 · 1 = 1− 1
2 q.

These expected payoffs are equal if and only if q = 2
3 . Thus the game has a mixed

strategy equilibrium in which the mixed strategy of player 1 is ( 2
3 , 1

3 ), that of type 1
of player 2 is ( 2

3 , 1
3 ), and that of type 2 of player 2 is (0, 1) (that is, type 2 of player 2

uses the pure strategy that assigns probability 1 to S).
Similarly the game has a mixed strategy equilibrium in which the strategy of

player 1 is ( 1
3 , 2

3 ), that of type 1 of player 2 is (0, 1), and that of type 2 of player 2 is
( 2

3 , 1
3 ).
For no mixed strategy of player 1 are both types of player 2 indifferent between

their two actions, so there is no equilibrium in which both types randomize.

277.1 Expected payoffs in a variant of BoS with imperfect information

The expected payoffs are given in Figure 140.1.

139
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(B, B) (B, S) (S, B) (S, S)

B 0 1 1 2

S 1 1
2

1
2 0

Type n1 of player 1

(B, B) (B, S) (S, B) (S, S)

B 1 2
3

1
3 0

S 0 2
3

4
3 2

Type y2 of player 2

(B, B) (B, S) (S, B) (S, S)

B 0 1
3

2
3 1

S 2 4
3

2
3 0

Type n2 of player 2

Figure 140.1 The expected payoffs of type n1 of player 1 and types y2 and n2 of player 2 in Exam-
ple 276.2.

282.1 Fighting an opponent of unknown strength

The following Bayesian game models the situation.

Players The two people.

States The set of states is {strong, weak}.

Actions The set of actions of each player is {fight, yield}.

Signals Player 1 receives the same signal in each state, whereas player 2 re-
ceives different signals in the two states.

Beliefs The single type of player 1 assigns probability α to the state strong and
probability 1− α to the state weak. Each type of player 2 assigns probability 1
to the single state consistent with her signal.

Payoffs The players’ Bernoulli payoffs are shown in Figure 140.2.

F Y
F −1, 1∗ 1, 0
Y 0, 1∗ 0, 0

State: strong

F Y
F 1,−1 1, 0∗

Y 0, 1∗ 0, 0

State: weak

Figure 140.2 The player’s Bernoulli payoff functions in Exercise 282.1. The asterisks indicate the best
responses of each type of player 2.
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The best responses of each type of player 2 are indicated by asterisks in Fig-
ure 140.2. Thus if α < 1

2 then player 1’s best action is fight, whereas if α > 1
2 her

best action is yield. Thus for α < 1
2 the game has a unique Nash equilibrium, in

which player 1 chooses fight and player 2 chooses fight if she is strong and yield
if she is weak, and if α > 1

2 the game has a unique Nash equilibrium, in which
player 1 chooses yield and player 2 chooses fight whether she is strong or weak.

282.2 An exchange game

The following Bayesian game models the situation.

Players The two individuals.

States The set of all pairs (s1, s2), where si is the number on player i’s ticket
(an integer from 1 to m).

Actions The set of actions of each player is {Exchange, Don’t exchange}.

Signals The signal function of each player i is defined by τi(s1, s2) = si (each
player observes her own ticket, but not that of the other player)

Beliefs Type si of player i assigns the probability Prj(sj) to the state (s1, s2),
where j is the other player and Prj(sj) is the probability with which player j
receives a ticket with the prize sj on it.

Payoffs Player i’s Bernoulli payoff function is given by ui((X, Y), ω) = ωj if
X = Y = Exchange and ui((X, Y), ω) = ωi otherwise.

Let Mi be the highest type of player i that chooses Exchange. If Mi > 1 then
type 1 of player j optimally chooses Exchange: by exchanging her ticket, she cannot
obtain a smaller prize, and may receive a bigger one. Thus if Mi ≥ Mj and Mi > 1,
type Mi of player i optimally chooses Don’t exchange, because the expected value of
the prizes of the types of player j that choose Exchange is less than Mi. Thus in any
possible Nash equilibrium Mi = Mj = 1: the only prizes that may be exchanged
are the smallest.

282.3 Adverse selection

The game is defined as follows.

Players Firms A and T.

States The set of possible values of firm T (the integers from 0 to 100).

Actions Firm A’s set of actions is its set of possible bids (nonnegative numbers),
and firm T’s set of actions is the set of possible cutoffs (nonnegative numbers)
above which it will accept A’s offer.
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Signals Firm A receives the same signal in every state; firm T receives a differ-
ent signal in every state.

Beliefs The single type of firm A assigns an equal probability to each state;
each type of firm T assigns probability 1 to the single state consistent with its
signal.

Payoff functions If firm A bids y, firm T’s cutoff is at most y, and the state is x,
then A’s payoff is 3

2 x− y and T’s payoff is y. If firm A bids y, firm T’s cutoff
is greater than y, and the state is x, then A’s payoff is 0 and T’s payoff is x.

To find the Nash equilibria of this game, first consider the behavior of each type
x of firm T. Type x is at least as well off accepting the offer y than it is rejecting it if
and only if y ≥ x. Thus any best response of type x to an offer y has a cutoff of at
most y if y > x and a cutoff of greater than y if y < x.

Now consider firm A. If it bids y then each type x of T with x < y accepts its
offer, and each type x of T with x > y rejects the offer. Thus the expected value of
the types that accept an offer y ≤ 100 is 1

2 q(y), where q(y) is the largest integer at
most equal to y, and the expected value of the types that accept an offer y > 100 is
50. If the offer y is accepted then A’s payoff is 3

2 x − y, so that its expected payoff
is 3

2 ( 1
2 q(y)) − y if y ≤ 100 and 3

2 (50) − y = 75− y if y > 100. In both cases this
expected payoff is negative. (In the first case it is approximately 1

4 y.) Thus firm A’s
optimal bid is 0!

We conclude that a strategy pair is a Nash equilibrium of the game if and only
if firm A bids 0 and the cutoff for accepting an offer for each type x of firm T is
greater than 0 if x > 0 and at least 0 if x = 0.

Even though firm A can increase firm T’s value, it is not willing to make a
positive bid in equilibrium because firm T’s interest is in accepting only offers that
exceed its value, so that the average type that accepts an offer has a value of only
half the offer. As A decreases its offer, the value of the average firm that accepts the
offer decreases: the selection of firms that accept the offer is adverse to A’s interest.

284.1 Infection argument

In any Nash equilibrium, the action of player 1 when she receives the signal τ1(α)
is R, because R strictly dominates L.

Now suppose that player 2’s signal is τ2(α) = τ2(β). I claim that her best action
is R, regardless of player 1’s action in state β. If player 1 chooses L in state β then
player 2’s expected payoff to L is 3

4 · 0 + 1
4 · 2 = 1

2 , and her expected payoff to R is
3
4 · 1 + 1

4 · 0 = 3
4 . If player 1 chooses R in state β then player 2’s expected payoff to

L is 0, and her expected payoff to R is 1. Thus in any Nash equilibrium player 2’s
action when her signal is τ2(α) = τ2(β) is R.

Now suppose that player 1’s signal is τ1(β) = τ1(γ). By the same argument
as in the previous paragraph, player 1’s best action is R, regardless of player 2’s
action in state γ. Thus in any Nash equilibrium player 1’s action in this case is R.
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Finally, given that player 1’s action in state γ is R, player 2’s best action in this
state is also R.

287.1 Cournot’s duopoly game with imperfect information

We have

b1(qL, qH) =
{

1
2 (α− c− (θqL + (1− θ)qH)) if θqL + (1− θ)qH ≤ α− c
0 otherwise.

The best response function of each type of player 2 is similar:

bI(q1) =
{

1
2 (α− cI − q1) if q1 ≤ α− cI

0 otherwise

for I = L, H.
The three equations that define a Nash equilibrium are

q∗1 = b1(q∗L, q∗H), q∗L = bL(q∗1), and q∗H = bH(q∗1).

Solving these equations under the assumption that they have a solution in which
all three outputs are positive, we obtain

q∗1 = 1
3 (α− 2c + θcL + (1− θ)cH)

q∗L = 1
3 (α− 2cL + c)− 1

6 (1− θ)(cH − cL)

q∗H = 1
3 (α− 2cH + c) + 1

6 θ(cH − cL)

If both firms know that the unit costs of the two firms are c1 and c2 then in
a Nash equilibrium the output of firm i is 1

3 (α − 2ci + cj) (see Exercise 58.1). In
the case of imperfect information considered here, firm 2’s output is less than
1
3 (α − 2cL + c) if its cost is cL and is greater than 1

3 (α − 2cH + c) if its cost is cH .
Intuitively, the reason is as follows. If firm 1 knew that firm 2’s cost were high
then it would produce a relatively large output; if it knew this cost were low then
it would produce a relatively small output. Given that it does not know whether
the cost is high or low it produces a moderate output, less than it would if it knew
firm 2’s cost were high. Thus if firm 2’s cost is in fact high, firm 2 benefits from
firm 1’s lack of knowledge and optimally produces more than it would if firm 1
knew its cost.

288.1 Cournot’s duopoly game with imperfect information

The best response b0(qL, qH) of type 0 of firm 1 is the solution of

max
q0

[θ(P(q0 + qL)− c)q0 + (1− θ)(P(q0 + qH)− c)q0].

The best response b`(qL, qH) of type L of firm 1 is the solution of

max
q`

(P(q` + qL)− c)q`
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and the best response bh(qL, qH) of type H of firm 1 is the solution of

max
qh

(P(qh + qH)− c)qh.

The best response bL(q0, q`, qh) of type L of firm 2 is the solution of

max
qL

[(1− π)(P(q0 + qL)− cL)qL + π(P(q` + qL)− cL)qL]

and the best response bH(q0, q`, qh) of type H of firm 2 is the solution of

max
qH

[(1− π)(P(q0 + qH)− cH)qH + π(P(qh + qH)− cH)qH ].

A Nash equilibrium is a profile (q∗0, q∗` , q∗h, q∗L, q∗H) for which q∗0, q∗` , and q∗h are
best responses to q∗L and q∗H , and q∗L and q∗H are best responses to q∗0, q∗` , and q∗h.
When P(Q) = α − Q for Q ≤ α and P(Q) = 0 for Q > α we find, after some
exciting algebra, that

q∗0 =
1
3

(α− 2c + cH − θ (cH − cL))

q∗` =
1
3

(

α− 2c + cL +
(1− θ)(1− π)(cH − cL)

4− π

)

q∗h =
1
3

(

α− 2c + cH −
θ(1− π)(cH − cL)

4− π

)

q∗L =
1
3

(

α− 2cL + c−
2(1− θ)(1− π)(cH − cL)

4− π

)

q∗H =
1
3

(

α− 2cH + c +
2θ(1− π)(cH − cL)

4− π

)

.

When π = 0 we have

q∗0 =
1
3

(α− 2c + cH − θ (cH − cL))

q∗` =
1
3

(

α− 2c + cL +
(1− θ)(cH − cL)

4

)

q∗h =
1
3

(

α− 2c + cH −
θ(cH − cL)

4

)

q∗L =
1
3

(

α− 2cL + c−
(1− θ)(cH − cL)

2

)

q∗H =
1
3

(

α− 2cH + c +
θ(cH − cL)

2

)

,

so that q∗0 is equal to the equilibrium output of firm 1 in Exercise 287.1, and q∗L
and q∗H are the same as the equilibrium outputs of the two types of firm 2 in that
exercise.
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When π = 1 we have

q∗0 =
1
3

(α− 2c + cH − θ (cH − cL))

q∗` =
1
3

(α− 2c + cL)

q∗h =
1
3

(α− 2c + cH)

q∗L =
1
3

(α− 2cL + c)

q∗H =
1
3

(α− 2cH + c) ,

so that q∗` and q∗L are the same as the equilibrium outputs when there is perfect
information and the costs are c and cL (see Exercise 58.1), and q∗h and q∗H are the
same as the equilibrium outputs when there is perfect information and the costs
are c and cH .

Now, for an arbitrary value of π we have

q∗L =
1
3

(

α− 2cL + c−
2(1− θ)(1− π)(cH − cL)

4− π

)

q∗H =
1
3

(

α− 2cH + c +
2θ(1− π)(cH − cL)

4− π

)

.

To show that for 0 < π < 1 the values of these variables lie between their values
when π = 0 and when π = 1, we need to show that

0 ≤
2(1− θ)(1− π)(cH − cL)

4− π
≤

(1− θ)(cL − cH)
2

and

0 ≤
2θ(1− π)(cH − cL)

4− π
≤

θ(cL − cH)
2

.

These inequalities follow from cH ≥ cL, θ ≥ 0, and 0 ≤ π ≤ 1.

290.1 Nash equilibria of game of contributing to a public good

Any type vj of any player j with vj < c obtains a negative payoff if she contributes
and 0 if she does not. Thus she optimally does not contribute.

Any type vi ≥ c of player i obtains the payoff vi − c ≥ 0 if she contributes, and
the payoff 0 if she does not, so she optimally contributes.

Any type vj ≥ c of any player j 6= i obtains the payoff vj − c if she contributes,
and the payoff (1− F(c))vj if she does not. (If she does not contribute, the prob-
ability that player i does so is 1 − F(c), the probability that player i’s valuation
is at least c.) Thus she optimally does not contribute if (1− F(c))vj ≥ vj − c, or
F(c) ≤ c/vj. This condition must hold for all types of every player j 6= i, so we
need F(c) ≤ c/v for the strategy profile to be a Nash equilibrium.
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291.1 Reporting a crime with an unknown number of witnesses

The following Bayesian game models the situation.

Players The two potential witnesses.

States 1 (player 1 is the only witness), 2 (player 2 is the only witness), and 12
(both players are witnesses).

Actions Each player’s set of actions is {Call, Don’t call}.

Signals Each player receives one of the signals witness or not witness. Player 1’s
signal function τ1 satisfies τ1(1) = τ1(12) = witness and τ1(2) = not witness;
player 2’s signal function τ2 satisfies τ2(2) = τ2(12) = witness and τ2(1) =
not witness.

Beliefs For i = 1, 2, when player i receives the signal witness she assigns prob-
ability π to the state i and probability 1 − π to the state 12, and when she
receives the signal not witness she assigns probability 1 to the state j (where j
is the other player).

Preferences In state 12, each player’s payoff to an action pair in which at least
one player calls is v− c if she calls and v if she does not call; her payoff to the
action pair in which neither player calls is 0. In the other states, the payoff
of the player who is the witness is v− c if she calls and 0 if she does not; the
payoff of the player who is not the witness is v if the witness calls and 0 if the
witness does not call.

Note that the concept of a Bayesian game requires us to specify actions for each
player independent of the state, so that in this game each player has actions even
in the state in which she is not a witness. The payoffs of a player in a state in which
she is not a witness reflect the fact that the action Call in that case has no effect on
the outcome.

This game is shown in Figure 146.1.

C N
C v− c, v v− c, v
N 0, 0 0, 0

State 1

C N
C v− c, v− c v− c, v
N v, v− c 0, 0

State 12

C N
C v, v− c 0, 0
N v, v− c 0, 0

State 2

1

2

π 1− π

1− π π
1

2

Figure 146.1 A Bayesian game that models the situation in Exercise 291.1. The action Call is denoted
C, and the action Don’t call is denoted N. In state 1, only player 1 is a witness, in state 2, only player 2
is a witness, and in state 12, both players are witnesses.

A player obtains the payoff v − c if she chooses C and the payoff (1− π)v if
she chooses N. Thus the game has a pure strategy Nash equilibrium in which each
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player chooses C in the state in which she is active if and only if v− c ≥ (1− π)v,
or π ≥ c/v. (The action each player chooses in the state in which she is inactive is
irrelevant.)

For a mixed strategy Nash equilibrium in which each player chooses C (if she
is active) with probability p, where 0 < p < 1, we need each player’s expected
payoffs to C and N to be the same, given that the other player chooses C with
probability p. Thus we need v− c = (1− π)pv, or

p =
v− c

(1− π)v
.

If π < c/v, this number is less than 1, so that the game indeed has a mixed strategy
Nash equilibrium in which each player calls with probability p.

When π = 0 we have p = 1− c/v, as found in Section 4.8.

294.1 Weak domination in second-price sealed-bid action

Fix player i, and choose a bid for every type of every other player. Player i, who
does not know the other players’ types, is uncertain of the highest bid of the other
players. Denote by b this highest bid. Consider a bid bi of type vi of player i for
which bi < vi. The dependence of the payoff of type vi of player i on b is shown in
Figure 147.1.

i’s bid

Highest of other players’ bids

b < bi
bi = b

(m-way tie) bi < b < vi b ≥ vi

bi < vi vi − b (vi − b)/m 0 0

vi vi − b vi − b vi − b 0

Figure 147.1 Player i’s payoffs to her bids bi < vi and vi in a second-price sealed-bid auction as a
function of the highest of the other player’s bids, denoted b.

Player i’s expected payoffs to the bids bi and vi are weighted averages of the
payoffs in the columns; each value of b gets the same weight when calculating the
expected payoff to bi as it does when calculating the expected payoff to vi. The
payoffs in the two rows are the same except when bi ≤ b < vi, in which case vi

yields a payoff higher than does bi. Thus the expected payoff to vi is at least as high
as the expected payoff to bi, and is greater than the expected payoff to bi unless the
other players’ bids lead this range of values of b to get probability 0.

Now consider a bid bi of type vi of player i for which bi > vi. The dependence
of the payoff of type vi of player i on b is shown in Figure 148.1.

As before, player i’s expected payoffs to the bids bi and vi are weighted av-
erages of the payoffs in the columns; each value of b gets the same weight when
calculating the expected payoff to vi as it does when calculating the expected pay-
off to bi. The payoffs in the two rows are the same except when vi < b ≤ bi, in
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i’s bid

Highest of other players’ bids

b ≤ vi vi < b < bi
bi = b

(m-way tie) b > bi

vi vi − b 0 0 0

bi > vi vi − b vi − b (vi − b)/m 0

Figure 148.1 Player i’s payoffs to her bids vi and bi > vi in a second-price sealed-bid auction as a
function of the highest of the other player’s bids, denoted b.

which case vi yields a payoff higher than does bi. (Note that vi − b < 0 for b in this
range.) Thus the expected payoff to vi is at least as high as the expected payoff to
bi, and is greater than the expected payoff to bi unless the other players’ bids lead
this range of values of b to get probability 0.

We conclude that for type vi of player i, every bid bi 6= vi is weakly dominated
by the bid vi.

294.2 Nash equilibria of a second-price sealed-bid auction

For any player i, the game has a Nash equilibrium in which player i bids v (the
highest possible valuation) regardless of her valuation and every other player bids
v regardless of her valuation. The outcome is that player i wins and pays v. Player i
can do no better by bidding less; no other player can do better by bidding more,
because unless she bids at least v she does not win, and if she makes such a bid her
payoff is at best zero. (It is zero if her valuation is v, negative otherwise.)

296.1 Auctions with risk-averse bidders

Consider player i. Suppose that the bid of each type vj of player j is given by
β j(vj) = (1− 1/[m(n− 1) + 1])vj. Then as far as player i is concerned, the bids of
every other player are distributed uniformly between 0 and 1 − 1/[m(n− 1) + 1].
Thus for 0 ≤ x ≤ 1− 1/[m(n − 1) + 1], the probability that any given player’s
bid is less than x is (1 + 1/[m(n− 1)])x (1 + 1/[m(n− 1)] is the reciprocal of 1−
1/[m(n − 1) + 1]), and hence the probability that all the bids of the other n − 1
players are less than x is [(1 + 1/[m(n− 1)])x]n−1. Consequently, if player i bids
more than 1 − 1/[m(n − 1) + 1] then she surely wins, whereas if she bids bi ≤
1 − 1/[m(n − 1) + 1] she wins with probability [(1 + 1/[m(n − 1)])bi]n−1. Thus
player i’s payoff as a function of her bid bi is






(vi − bi)
1/m

{(

1 +
1

m(n− 1)

)

bi

}n−1

if 0 ≤ bi ≤ 1−
1

m(n− 1) + 1

(vi − bi)1/m if bi > 1−
1

m(n− 1) + 1
.

(148.1)
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Now, the value of bi that maximizes the function

(vi − bi)
1/m

{(

1 +
1

m(n− 1)

)

bi

}n−1

is the same as the value of bi that maximizes the function

(vi − bi)
1/m(bi)

n−1,

which is (n− 1)vi/(n− 1 + 1/m) (by the mathematical fact stated in the exercise),
or (

1−
1

m(n− 1) + 1

)

vi.

We have (

1−
1

m(n− 1) + 1

)

vi ≤ 1−
1

m(n− 1) + 1

(because vi ≤ 1), and the function in (148.1) is decreasing in bi for bi > 1 −
1/[m(n− 1) + 1], so 1− 1/[m(n− 1) + 1] is the bid that maximizes player i’s ex-
pected payoff, given that the bid of each type vj of player j is (1− 1/[m(n− 1) +
1])vj.

We conclude that, as claimed, the game has a Nash equilibrium in which each
type vi of each player i bids (1− 1/[m(n− 1) + 1])vi.

In this equilibrium, the price paid by a bidder with valuation v who wins is
(1− 1/[m(n− 1) + 1])v (the amount she bids). The expected price paid by a bidder
in a second-price auction does not depend on the players’ payoff functions. Thus
this payoff is equal, by the revenue equivalence result, to the expected price paid
by a bidder with valuation v who wins in a first-price auction in which each bidder
is risk-neutral, namely (1− 1/n)v. We have

(

1−
1

m(n− 1) + 1

)

−
(

1−
1
n

)

=
(m− 1)(n− 1)

n(m(n− 1) + 1)
,

which is positive because m > 1. Thus the expected price paid by a bidder with
valuation v who wins is greater in a first-price auction than it is in a second-price
auction. The probability that a bidder with any given valuation wins is the same
in both auctions, so the auctioneer’s expected revenue is greater in a first-price
auction than it is in a second-price auction.

299.1 Asymmetric Nash equilibria of second-price sealed-bid common value auctions

Suppose that each type t2 of player 2 bids (1 + 1/λ)t2 and that type t1 of player 1
bids b1. Then by the calculations in the text, with α = 1 and γ = 1/λ,

• a bid of b1 by player 1 wins with probability b1/(1 + 1/λ)

• the expected value of player 2’s bid, given that it is less than b1, is 1
2 b1
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• the expected value of signals that yield a bid of less than b1 is 1
2 b1/(1 + 1/λ)

(because of the uniformity of the distribution of t2).

Thus player 1’s expected payoff if she bids b1 is

(t1 + 1
2 b1/(1 + 1/λ)− 1

2 b1) ·
b1

1 + 1/λ
,

or
λ

2(1 + λ)2 · (2(1 + λ)t1 − b1)b1.

This function is maximized at b1 = (1 + λ)t1. That is, if each type t2 of player 2
bids (1 + 1/λ)t2, any type t1 of player 1 optimally bids (1 + λ)t1. Symmetrically,
if each type t1 of player 1 bids (1 + λ)t1, any type t2 of player 2 optimally bids
(1 + 1/λ)t2. Hence the game has the claimed Nash equilibrium.

299.2 First-price sealed-bid auction with common valuations

Suppose that each type t2 of player 2 bids 1
2 (α + γ)t2 and type t1 of player 1 bids

b1. To determine the expected payoff of type t1 of player 1, we need to find the
probability with which she wins, and the expected value of player 2’s signal if
player 1 wins. (The price she pays is her bid, b1.)

Probability of player 1’s winning: Given that player 2’s bidding function is
1
2 (α + γ)t2, player 1’s bid of b1 wins only if b1 ≥ 1

2 (α + γ)t2, or if t2 ≤ 2b1/(α + γ).
Now, t2 is distributed uniformly from 0 to 1, so the probability that it is at most
2b1/(α + γ) is 2b1/(α + γ). Thus a bid of b1 by player 1 wins with probabil-
ity 2b1/(α + γ).

Expected value of player 2’s signal if player 1 wins: Player 2’s bid, given her
signal t2, is 1

2 (α + γ)t2, so that the expected value of signals that yield a bid of less
than b1 is b1/(α + γ) (because of the uniformity of the distribution of t2).

Thus player 1’s expected payoff if she bids b1 is

2(αt1 + γb1/(α + γ)− b1) ·
b1

α + γ
,

or
2α

(α + γ)2 ((α + γ)t1 − b1)b1.

This function is maximized at b1 = 1
2 (α + γ)t1. That is, if each type t2 of player 2

bids 1
2 (α + γ)t2, any type t1 of player 1 optimally bids 1

2 (α + γ)t1. Hence, as
claimed, the game has a Nash equilibrium in which each type ti of player i bids
1
2 (α + γ)ti.

306.1 Signal-independent equilibria in a model of a jury

If every juror votes for acquittal regardless of her signal then the action of any
single juror has no effect on the outcome. Thus the strategy profile in which every
juror votes for acquittal regardless of her signal is always a Nash equilibrium.
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Now consider the possibility of a Nash equilibrium in which every juror votes
for conviction regardless of her signal. Suppose that every juror other than juror 1
votes for conviction independently of her signal. Then juror 1’s vote determines
the outcome, exactly as in the case in which there is a single juror. Thus from the
calculations in Section 9.7.2, type b of juror 1 optimally votes for conviction if and
only if

z ≤
(1− p)π

(1− p)π + q(1− π)

and type g of juror 1 optimally votes for conviction if and only if

z ≤
pπ

pπ + (1− q)(1− π)
.

The assumption that p > 1− q implies that the term on the right side of the second
inequality is greater than the term on the right side of the first inequality, so that we
conclude that there is a Nash equilibrium in which every juror votes for conviction
regardless of her signal if and only if

z ≤
(1− p)π

(1− p)π + q(1− π)
.

307.1 Swing voter’s curse

a. The Bayesian game is defined as follows.

Players Citizens 1 and 2.

States {A, B}.

Actions The set of actions of each player is {0, 1, 2} (where 0 means do not
vote).

Signals Citizen 1 receives different signals in states A and B, whereas citi-
zen 2 receives the same signal in both states.

Beliefs Each type of citizen 1 assigns probability 1 to the single state consis-
tent with her signal. The single type of citizen 2 assigns probability 0.9
to state A and probability 0.1 to state B.

Payoffs Both citizens’ Bernoulli payoffs are 1 if either the state is A and can-
didate 1 receives the most votes or the state is B and candidate 2 receives
the most votes; their payoffs are 0 if either the state is B and candidate 1
receives the most votes or the state is A and candidate 2 receives the
most votes; and otherwise their payoffs are 1

2 . (These payoffs are shown
in Figure 152.1.)

b. Type A of player 1’s best action depends only on the action of player 2; it is
to vote for 1 if player 2 votes for 2 or does not vote, and either to vote for 1
or not vote if player 2 votes for 1. Similarly, type B of player 1’s best action is
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0 1 2

0 1
2 , 1

2 1, 1 0, 0

1 1, 1 1, 1 1
2 , 1

2

2 0, 0 1
2 , 1

2 0, 0

State A

0 1 2

0 1
2 , 1

2 0, 0 1, 1

1 0, 0 0, 0 1
2 , 1

2

2 1, 1 1
2 , 1

2 1, 1

State B

Figure 152.1 The payoffs in the Bayesian game for Exercise 307.1.

to vote for 2 if player 2 votes for 1 or does not vote, and either to vote for 2
or not vote if player 2 votes for 2.

Player 2’s best action is to vote for 1 if type A of player 1 either does not
vote or votes for 2 (regardless of how type B of player 1 votes), not to vote if
type A of player 1 votes for 1 and type B of player 1 either votes for 2 or does
not vote, and either to vote for 1 or not to vote if both types of player 1 vote
for 1.

Given the best responses of the two types of player 1, their only possible
equilibrium actions are (0, 0) (i.e. both do not vote), (0, 2), (1, 0), and (1, 2).
Checking player 2’s best responses we see that the only equilibria are

• (1, 2, 0) (player 1 votes for 1 in state A and for 2 in state B; player 2 does
not vote).

• (0, 2, 1) (player 1 does not vote in state A and votes for 2 in state B;
player 2 votes for 1)

c. In the equilibrium (0, 2, 1), type A of player 1’s action is weakly dominated
by the action of voting for 1: voting for 1 instead of not voting never makes
her worse off, and makes her better off in the event that player 2 does not
vote.

d. In the equilibrium (1, 2, 0), player 2 does not vote because if she does then
in the only case in which her vote affects the outcome (i.e. the only case in
which she is a “swing voter”), it affects it adversely: if she votes for 1 then
her vote makes no difference in state A, whereas it causes a tie instead of a
win for candidate 2 in state B, and if she votes for 2, then her vote causes
a tie instead of a win for candidate 1 in state A, and makes no difference in
state B.

309.2 Property of the bidding function in a first-price sealed-bid auction

We have

β∗′(v) = 1−
(F(v))n−1(F(v))n−1 − (n− 1)(F(v))n−2F′(v)

∫ v
v (F(x))n−1 dx

(F(v))2n−2
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= 1−
(F(v))n − (n− 1)F′(v)

∫ v
v (F(x))n−1 dx

(F(v))n

=
(n− 1)F′(v)

∫ v
v (F(x))n−1 dx

(F(v))n

> 0 if v > v

because F′(v) > 0 (F is increasing). (The first line uses the quotient rule for deriva-
tives and the fact that the derivative of

∫ v f (x)dx with respect to v is f (v) for any
function f .)

[In the first printing of the book, this exercise asked also for a proof that a bid-
der with valuation v bids v and that a bidder with any other valuation bids less
than her valuation. An argument for the latter is that for v > v the integral in
(309.1) is positive; this argument is now included in the text. Regarding the for-
mer, the expression for β∗(v) in (309.1) is not defined for v = v (the numerator and
denominator of the quotient are both zero), though one can show that the limit of
β∗(v) as v → v is v: by L’Hôpital’s rule, this limit is the ratio of the derivatives of
the numerator and the denominator, namely

(F(v))n−1

(n− 1)(F(v))n−2F′(v)
=

F(v)
(n− 1)F′(v)

,

which is zero at v = v (because the numerator is zero and the denominator is
positive).]

309.3 Example of Nash equilibrium in a first-price auction

From (309.1) we have

β∗(v) = v−

∫ v
0 xn−1 dx

vn−1

= v−

∫ v
0 xn−1 dx

vn−1

= v− v/n = (n− 1)v/n.

310.2 Reserve prices in second-price sealed-bid auction

The argument that for each player a bid equal to her valuation weakly dominates
all other bids is the same as the one in the absence of a reserve price.

Now consider the expected price at which the object is sold when the reserve
price is r and each bidder submits her valuation. If both valuations are less than r,
the object is not sold. If one valuation is less than r and the other is at least r, an
event with probability 2r(1− r), the object is sold at the price r. If both valuations
are at least r, the object is sold at a price equal to the smaller of the valuations.
To deal with this last case, denote by F(x) the probability that the smaller of the
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valuations is at most x. We have F(x) = 1− (1− x)2. (The probability that the
smaller of the valuations is at least x is the probability that both valuations are at
least x, which is (1− x)2.) Thus the probability density of the smaller of the two
valuations is 2(1− x) (the derivative of F). We conclude that the expected price at
which the object is sold is

r · 2r(1− r) +
∫ 1

r
x · 2(1− x) dx

= 2r2(1− r) + 1
3 − r2 + 2

3 r3

= 1
3 + r2 − 4

3 r3.

This function is maximized at r = 1
2 . (Differentiate and set the derivative equal to

zero. Note that r = 0 is a minimizer.)
Thus the expected price is maximized by a reserve price of 1

2 . For this reserve
price the expected price is 5

12 , while for a reserve price of 0 it is 1
3 .



10 Extensive Games with Imperfect Information

316.1 Variant of card game

An extensive game that models the game is shown in Figure 155.1.

HL ( 1
4 )

HH ( 1
4 )

Chance

LL ( 1
4 )

LH ( 1
4 )

1 1

Raise
See

0, 0
Raise

See
−1, 1

Meet

0, 0

Pass

1,−1

Meet

−1− k, 1 + k

Pass

1,−1

2

Raise

See
1,−1

Raise

See
0, 0

Meet

1 + k,−1− k

Pass

1,−1

Meet

0, 0

Pass

1,−1

2

Figure 155.1 An extensive game that models the situation in Exercise 316.1.

318.2 Strategies in variants of card game and entry game

Card game: Each player has two information sets, and has two actions at each
information set. Thus each player has four strategies: SS, SR, RS, and RR for
player 1 (where S stands for See and R for Raise, the first letter of each strategy is
player 1’s action if her card is High, and the second letter if her action is her card is
Low), and PP, PM, MP, and MM for player 2 (where P stands for Pass and M for
Meet).
Entry game: The challenger has a single information set (the empty history) and
has three actions after this history, so it has three strategies—Ready, Unready, and
Out. The incumbent also has a single information set, at which two actions are
available, so it has two strategies—Acquiesce and Fight.

155
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319.3 Nash equilibrium of card game

The strategic form of the game is given in Figure 156.1. By arguments like those
in Example 319.2, we find that the game has a unique Nash equilibrium, in which
player 1 assigns probability k/(k + 2) to (Raise, Raise) and probability 2/(k + 2)
to (Raise, See), and player 2 assigns probability k/(k + 2) to Pass and probabil-
ity 2/(k + 2) to Meet. Thus in the equilibrium player 1 bluffs with probability
k/(k + 2). As k increases, this probability increases, and the probability with which
player 2 calls player 1’s bluff (i.e. chooses Meet) decreases.

Pass Meet

Raise, Raise 1,−1 0, 0

Raise, See 0, 0 1
2 k,− 1

2 k

See, Raise 1,−1 − 1
2 k, 1

2 k

See, See 0, 0 0, 0

Figure 156.1 The strategic form of the card game in Exercise 319.3.

320.1 Nash equilibria of variant of card game

The strategic form of the game is given in Figure 156.2, where R stands for Raise,
S for See, P for Pass, and M for Meet, the first component of each player’s strategy
is her action if her card is High, and the second component of her strategy is her
action if her card is Low.

PP PM MP MM

RR 1,−1 3
4 + 1

4 k,− 3
4 −

1
4 k 1

4 −
1
4 k,− 1

4 + 1
4 k 0, 0

RS 1
4 ,− 1

4
1
4 + 1

4 k,− 1
4 −

1
4 k 0, 0 1

4 k,− 1
4 k

SR 3
4 ,− 3

4
1
2 ,− 1

2
1
4 −

1
4 k,− 1

4 + 1
4 k − 1

4 k, 1
4 k

SS 0, 0 0, 0 0, 0 0, 0

Figure 156.2 The strategic form of the game in Exercise 316.1.

First suppose that 0 < k < 1. Player 1’s strategy SS is strictly dominated by
a mixed strategy that assigns probability 1

2 to RR and to RS, so is not used with
positive probability in any Nash equilibrium. In the reduced game, player 2’s
strategies PP and PM are strictly dominated by MM, and so can be eliminated
from consideration.

I now argue that the resulting game has no Nash equilibrium in which player 1
assigns positive probability to SR. Player 1 is willing to assign positive probability
to SR only if player 2 assigns probability 1 to MP, in which case player 1 wants to
assign probability 0 to RS, making MM rather than MP optimal for player 2.
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We are left with the game in Figure 157.1. This game has a unique Nash equi-
librium, in which player 1 assigns probability k to RR and player 2 assigns proba-
bility k to MP.

MP MM

RR 1
4 −

1
4 k,− 1

4 + 1
4 k 0, 0

RS 0, 0 1
4 k,− 1

4 k

Figure 157.1 The strategies of the players in the game in Exercise 316.1 that may be assigned positive
probability in a Nash equilibrium.

In conclusion, if 0 < k < 1 the game has a unique Nash equilibrium, in which
player 1 assigns probability k to RR and probability 1 − k to RS, and player 2
assigns probability k to MP and probability 1 − k to MM. In this equilibrium,
player 1 bluffs (raises when her card is Low) with probability k, so that the larger is
k, the more likely she is to bluff.

Now suppose that k > 1. By inspection the game has two pure strategy Nash
equilibria in this case: (RS, MP) and (SS, MP). Any strategy pair in which player 1
assigns positive probability only to RS and SS and player 2 assigns probability 1
to MP is also a Nash equilibrium. In none of these equilibria does player 1 bluff.

The game has no other Nash equilibria, by the following argument.

• Player 1 assigns positive probability to SS only if player 2 assigns probabil-
ity 1 to MP, to which player 1’s best responses are RS and SS. Thus the only
Nash equilibria in which player 1 assigns positive probability to SS are the
equilibria in which player 1 assigns positive probability only to RS and SS
and player 2 assigns probability 1 to MP.

• Now consider Nash equilibria in which player 1 assigns probability 0 to SS.
In the game in which player 1’s strategy SS is not used, player 2’s strate-
gies PP and PM are strictly dominated, and, when these strategies are elimi-
nated, player 1’s strategies RR and SR are strictly dominated. Thus the only
Nash equilibrium in which player 1 assigns probability 0 to SS is the pure
equilibrium (RS, MP).

331.1 Selten’s horse

The strategic form of the game is shown in Figure 158.1. The players’ best re-
sponses are indicated by asterisks. We see that the game has two pure strategy
Nash equilibria, (D, c, L) and (C, c, R).

Consider the equilibrium (D, c, L). Player 2’s action c is not sequentially ratio-
nal (her action d yields her the payoff 4, given player 3’s strategy), so there is no
weak sequential equilibrium in which (D, c, L) is the strategy profile.

Now consider the equilibrium (C, c, R). The actions of players 1 and 2 are
both optimal, given the other players’ strategies. Player 3’s information set is not
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c d
C 1 , 1 , 1∗ 4∗, 4∗, 0
D 3∗, 3∗, 2∗ 3 , 3∗, 2∗

L

c d
C 1∗, 1∗, 1∗ 0∗, 0 , 1∗

D 0 , 0∗, 0 0∗, 0∗, 0

R

Figure 158.1 The strategic form of the game in Exercise 331.1.

reached, so we are free to specify any belief there. If player 3 believes that the his-
tory is D with probability at most 1

3 , her action R is optimal. Thus the game has
weak sequential equilibria in which the strategy profile is (C, c, R), and player 3’s
belief assigns probability of at most 1

3 to D.

331.2 Weak sequential equilibrium and Nash equilibrium in subgames

Consider the assessment in which the Challenger’s strategy is (Out, R), the In-
cumbent’s strategy is F, and the Incumbent’s belief assigns probability 1 to the
history (In, U) at her information set. Each player’s strategy is sequentially ratio-
nal. The Incumbent’s belief satisfies the condition of weak consistency because her
information set is not reached when the Challenger follows her strategy. Thus the
assessment is a weak sequential equilibrium.

The players’ actions in the subgame following the history In do not constitute a
Nash equilibrium of the subgame because the Incumbent’s action F is not optimal
when the Challenger chooses R. (The Incumbent’s action F is optimal given her
belief that the history is (In, U), as it is in the weak sequential equilibrium. In a
Nash equilibrium she acts as if she has a belief that coincides with the Challenger’s
action in the subgame.)

335.1 Pooling and separating equilibria in a signaling game

Note: In the first three printings of the book, the exercise asks for conditions under
which the game has only a separating equilibrium of a particular type and only
a pooling equilibrium of a particular type. Finding these conditions is difficult;
starting in the fourth printing, the question asks only for conditions under which
the game has equilibria of these types. (The following answer gives only these
latter conditions.)

Label the payoffs as in Figure 159.1.
In a weak sequential (“separating”) equilibrium in which a strong challenger

chooses Ready and a weak one chooses Unready, the incumbent’s belief assigns
probability 1 to the history (Strong, Ready) at her top information set and prob-
ability 1 to the history (Weak, Unready) at her bottom information set. Thus the
incumbent chooses A at the top information set and F at the bottom one. Given
these actions of the incumbent, the challenger’s payoff decreases if she switches
from R to U after the history Strong. For her payoff not to increase if she switches
from U to R after the history Weak we need a1 ≤ 3. We conclude that the game
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1− pp Chance

WeakStrong
Unready

Ready

Challenger

Unready

Ready

Challenger

Incumbent

Incumbent

F

2,−1

A

4, 2

F

b1, b2

A

a1, a2

F

3,−1

A

5, 2

F

3, 1

A

5, 0

Figure 159.1 The game in Exercise 335.1.

has a weak sequential equilibrium in which the challenger chooses Ready after the
history Strong and Unready after the history Weak if and only if a1 ≤ 3.

If an assessment in which both types of challenger choose U is a weak sequen-
tial equilibrium then at the incumbent’s bottom information set she believes that
the history is (Strong, Unready) with probability p and (Weak, Unready) with prob-
ability 1 − p. Thus the incumbent’s action at her bottom information set is F if
p < 1

4 , A if p > 1
4 , and any mixture of A and F if p = 1

4 .
Now consider the incumbent’s action at her top information set. In a weak se-

quential equilibrium in which the challenger chooses U after both the history Strong
and the history Weak, the incumbent’s belief at her top information set is not re-
stricted, because this information set is not reached with positive probability. If
a2 > b2 then A is the unique optimal action regardless of the incumbent’s belief,
whereas if a2 ≤ b2 then F is optimal if the probability the incumbent assigns to
(Strong, Ready) is small enough.

Consider each case in turn.

p < 1
4 For the challenger not to be able to profitably deviate after the history
Strong, we need the incumbent to assign probability of at least 1

2 to F at her
top information set, which requires a2 ≤ b2. Denote the probability that the
incumbent assigns to A at her top information set by π. Then for the assess-
ment to be a weak sequential equilibrium we need πa1 + (1−π)b1 ≤ 3. Thus
for the game to have a weak sequential equilibrium in which both types of
challenger choose U, we need a2 ≤ b2 and πa1 + (1 − π)b1 ≤ 3 for some
π ≤ 1

2 . (If a2 ≤ b2 then the incumbent’s belief at her top information set may
be chosen to induce any value of π.)

Now, if a1 ≥ b1 then the value of π ≤ 1
2 for which πa1 + (1−π)b1 is minimal

is π = 0, so that πa1 + (1− π)b1 ≤ 3 for some π ≤ 1
2 if and only if b1 ≤ 3. If

a1 ≤ b1 then the value of π ≤ 1
2 for which πa1 + (1− π)b1 is minimal is π =

1
2 , so that πa1 + (1− π)b1 ≤ 3 for some π ≤ 1

2 if and only if 1
2 a1 + 1

2 b1 ≤ 3.

We conclude that if p < 1
4 then the game has a weak sequential equilibrium
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in which both types of challenger choose U if and only if a2 ≤ b2 and either
(a) a1 ≥ b1 and b1 ≤ 3 or (b) a1 ≤ b1 and 1

2 (a1 + b1) ≤ 3.

p > 1
4 In this case the challenger cannot profitably deviate after the history Strong,
regardless of the incumbent’s action at her top information set.

a2 > b2 The incumbent chooses A at her top information set regardless of
her belief, so the challenger cannot profitably deviate after the history
Weak if and only if a1 ≤ 5.

a2 ≤ b2 In this case there are beliefs under which any mixture of A and
F is optimal for the incumbent at her top information set. Thus the
challenger cannot profitably deviate after the history Weak if and only if
min{a1, b1} ≤ 5.

We conclude that if p > 1
4 , then the game has a weak sequential equilibrium

in which both types of challenger choose U if and only if either (a) a2 > b2

and a1 ≤ 5, or (b) a2 ≤ b2 and min{a1, b1} ≤ 5.

p = 1
4 In this case both A and F (and any mixture of them) are optimal for the
incumbent at bottom information set. The action A yields the challenger
more than F does, so the game has a weak sequential equilibrium in which
both types of challenger choose U if and only if the conditions for the case
p > 1

4 are satisfied.

335.2 Sir Philip Sydney game

Consider the strategy pair in which the offspring squawks if and only if it is hun-
gry, and the parent gives it the food if and only if it squawks. The consistency
condition requires the parent to believe that her offspring is hungry if and only if
it squawks, so for the parent’s strategy to be sequentially rational we need

1 + rV ≥ S + r and S + r(1− t) ≥ 1.

For the offspring’s strategy to be sequentially rational we need

1− t + rS ≥ r and V + r ≥ 1− t + rS.

Combining these two conditions yields the requirements

1− S
1− t

≤ r ≤
1− S
1−V

and
1−V − t

1− S
≤ r ≤

1− t
1− S

.

The condition r < (1− V)/(1− S) is consistent with the left-hand side of the
second inequality only if t > 0.

Now consider the strategy pair in which the offspring is quiet whether or not it
is hungry, and the parent keeps the food whether or not the offspring squawks. The
consistency condition requires the parent to believe that the offspring is hungry
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with probability p if it is quiet. The condition does not restrict the parent’s belief if
the offspring squawks; suppose that in this case the parent believes the offspring
is not hungry. Then for the parent’s strategy to be sequentially rational we need

p + (1− p)(1 + rV) ≥ S + r and 1 + rV(1− t) ≥ S + r(1− t). (161.1)

The parent’s behavior does not depend on the offspring’s action, so given that
squawking is costly, the offspring’s payoff when it is quiet is at least as high as its
payoff when it squawks. Thus the strategy pair is a weak sequential equilibrium if
the conditions in (161.1) are satisfied. These conditions are equivalent to

r ≤
1− S

1− (1− p)V
and r ≤

1− S
(1− t)(1−V)

.

If r < (1 − S)/(1 − (1 − p)V) then both these conditions are satisfied (because
1− (1− p)V > (1− t)(1−V) given V < 1).

340.1 Pooling equilibria of game in which expenditure signals quality

We know that in the second period the high-quality firm charges the price H and
the low-quality firm charges any nonnegative price, and the consumer buys the
good from a high-quality firm, does not buy the good from a low-quality firm that
charges a positive price, and may or may not buy from a low-quality firm that
charges a price of 0.

Consider an assessment in which each type of firm chooses (p∗, E∗) in the first
period, the consumer believes the firm is high-quality with probability π if it ob-
serves (p∗, E∗) and low quality if it observes any other (price, expenditure) pair,
and buys the good if and only if it observes (p∗, E∗).

The payoff of a high-quality firm under this assessment is p∗ + H − E∗ − 2cH ,
that of a low-quality firm is p∗ − E∗, and that of the consumer is π(H− p∗) + (1−
π)(−p∗) = πH − p∗.

This assessment is consistent—the only first-period action of the firm observed
in equilibrium is (p∗, E∗), and after observing this pair the consumer believes,
correctly, that the firm is high-quality with probability π.

Under what conditions is the assessment sequentially rational?

Firm If the firm chooses a (price, expenditure) pair different from (p∗, E∗) then
the consumer does not buy the good, and the firm’s profit is 0. Thus for the
assessment to be an equilibrium we need p∗ + H − E∗ − 2cH ≥ 0 (for the
high-quality firm) and p∗ − E∗ ≥ 0 (for the low-quality firm).

Consumer If the consumer does not buy the good after observing (p∗, E∗) then its
payoff is 0, so for the assessment to be an equilibrium we need πH− p∗ ≥ 0.

In summary, the assessment is a weak sequential equilibrium if and only if

max{E∗, E∗ − H + 2cH} ≤ p∗ ≤ πH.
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342.1 Pooling equilibria of game in which education signals ability

Consider an assessment in which both types of worker choose the education level
e∗. The consistency condition requires that a firm that observes e∗ believe that the
worker is type H with probability π and type L with probability 1− π. Thus the
firms’ equilibrium wage offers after observing e∗ are both equal to πH + (1−π)L,
yielding a worker of ability K the payoff πH + (1− π)L− e∗/K.

For the assessment to be a weak sequential equilibrium, neither type of worker
must be able to increase her payoff by choosing a different value of e. The wage
optimally offered by the firms to such a worker of course depends on the firms’
beliefs. The belief that makes a profitable deviation by a worker least likely (and
hence supports the widest range of equilibrium values of e∗) is that in which each
firm believes that a worker who chooses e 6= e∗ has ability L. In response to this
belief, each firm offers the wage L, yielding a worker of ability K the payoff L −
e/K. If e∗ = 0 then certainly neither type of worker can gain by deviating. If e∗ > 0
then, given that the value of e that maximizes this payoff is 0, for equilibrium we
need

πH + (1− π)L− e∗/K ≥ L for K = L, H.

The value of the left-hand side is lower for K = L than it is for K = H, so we need

πH + (1− π)L− e∗/L ≥ L,

or

e∗ ≤ πL(H − L).

In summary, for any e∗ ≤ πL(H − L) the game has a pooling equilibrium in
which both types of worker obtain the education level e∗.

Given π ≤ 1, the education levels possible in a pooling equilibrium are all less
than those possible in any separating equilibrium.

346.1 Comparing the receiver’s expected payoff in two equilibria

The receiver’s payoff as a function of the state t in each equilibrium is shown in
Figure 163.1. The area above the black curve is smaller than the area above the
gray curve: if you shift the black curve 1

2 t1 to the left and move the section from
0 to 1

2 t1 to the interval from 1 − 1
2 t1 to 1 then the area above the black curve is a

subset of the area above the gray curve.

350.1 Variant of model with piecewise linear payoff functions

The equilibria of the variant are exactly the same as the equilibria of the original
model.
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Figure 163.1 The gray curve gives the receiver’s payoff in each state in the equilibrium in which no
information is transferred. The black curve gives her payoff in each state in the two-report equilibrium.

350.2 Pooling equilibrium in a general model

Choose an arbitrary report r∗. I claim that the following assessment is a weak
sequential equilibrium.

Sender’s strategy Choose r∗ in every state.

Receiver’s belief For every report r, the distribution of the state is the same,
equal to the initial distribution.

Receiver’s strategy Choose the action y∗ regardless of the sender’s report.

This assessment is a weak sequential equilibrium by the following argument.

Sequential rationality of sender’s strategy The sender’s report has no effect on
the outcome, so the choice of r∗ in every state is optimal.

Consistency of receiver’s belief The sender’s report conveys no information
about the state. If it is r∗ then consistency requires that the receiver believe
that the distribution of the state is equal to the initial distribution; if it is
different from r∗ then consistency imposes no restriction on the receiver’s
belief.

Sequential rationality of receiver’s strategy By definition, the action y∗ maxi-
mizes the receiver’s expected payoff given her belief.





11 Strictly Competitive Games and
Maxminimization

363.1 Maxminimizers in a bargaining game

If a player demands any amount x up to $5 then her payoff is x regardless of the
other player’s action. If she demands $6 then she may get as little as $5 (if the
other player demands $5 or $6). If she demands x ≥ $7 then she may get as little
as $(11− x) (if the other player demands x − 1). For each amount that a player
demands, the smallest amount that you may get is given in Figure 165.2. We see
that each player’s maxminimizing pure strategies are $5 and $6 (for both of which
the worst possible outcome is that the player receives $5).

Amount demanded 0 1 2 3 4 5 6 7 8 9 10

Smallest amount obtained 0 1 2 3 4 5 5 4 3 2 1

Figure 165.2 The lowest payoffs that a player receives in the game in Exercise 38.2 for each of her
possible actions, as the other player’s action varies.

363.3 Finding a maxminimizer

The analog of Figure 364.1 in the text is Figure 165.3. From this figure we see
that the maxminimizer for player 2 is the strategy that assigns probability 2

5 to L.
Player 2’s maxminimized payoff is − 1

5 .

↑
payoff of
player 2

0
− 1

5

1

−1

1

1

−2

q→

2
5

T B

Figure 165.3 The expected payoff of player 2 in the game in Figure 363.1 for each of player 1’s actions,
as a function of the probability q that player 2 assigns to L.

165
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364.2 Nash equilibrium payoffs and maxminimized payoffs

In the game in Figure 166.1 each player’s maxminimized payoff is 1, while her
payoff in the unique Nash equilibrium is 2.

L R
T 2, 2 1, 0
B 0, 1 0, 0

Figure 166.1 A game in which each player’s Nash equilibrium payoff exceeds her maxminimized
payoff.

365.1 Nash equilibrium payoffs and maxminimized payoffs

The game has a unique mixed strategy Nash equilibrium, in which player 1’s strat-
egy is ( 1

4 , 3
4 ) and player 2’s strategy is ( 2

3 , 1
3 ). In this equilibrium player 1’s payoff

is 4.
Now consider the maxminimizer for player 1. Player 1’s payoff as a function

of the probability that she assigns to T is shown in Figure 166.2. We see that the
maxminimizer for player 1 is ( 1

3 , 2
3 ), and this strategy guarantees player 1 a payoff

of 4.

↑
payoff of
player 1

0 1
4

1
3

3

4

6

1p→

R L

Figure 166.2 The expected payoff of player 1 in the game in Exercise 365.1 for each of player 2’s actions,
as a function of the probability p that player 1 assigns to T.

Player 1’s payoffs, as a function of the probability q that player 2’s strategy as-
signs to L, when she uses her Nash equilibrium strategy and her maxminimizer,
are shown in Figure 167.1. Notice that her maxminimizer guarantees that she
obtains her equilibrium payoff, while her equilibrium strategy does not.

366.2 Determining strictly competitiveness

Game in Exercise 365.1: Strictly competitive in pure strategies (because player 1’s
ranking of the four outcomes is the reverse of player 2’s ranking). Not strictly
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↑
payoff of
player 1

0 2
3

4

9
2

15
4

1q→

Nash equilibrium

Maxminimizer

Figure 167.1 The expected payoff of player 1 in the game in Exercise 365.1 as a function of the prob-
ability q that player 2’s mixed strategy assigns to L when player 1 uses her Nash equilibrium strategy
(gray line) and her maxminimizer (black line).

competitive in mixed strategies (there exist no values of π and θ > 0 such that
−u1(a) = π + θu2(a) for every outcome a; or, alternatively, player 1 is indifferent
between (B, L) and the lottery that yields (T, L) with probability 1

2 and (T, R) with
probability 1

2 , whereas player 2 is not indifferent between these two outcomes).
Game in Figure 367.1: Strictly competitive both in pure and in mixed strate-

gies. (Player 2’s preferences are represented by the expected value of the Bernoulli
payoff function −u1 because −u1(a) = − 1

2 + 1
2 u2(a) for every pure outcome a.)

369.2 Equilibrium payoffs in symmetric game

Let (α∗1, α∗2) be a mixed strategy Nash equilibrium of the game. Denote player 1’s
payoff in this equilibrium by v∗. By the symmetry of the game, (α∗2, α∗1) is also
a mixed strategy Nash equilibrium; in this equilibrium player 2’s payoff is v∗, so
that player 1’s payoff is−v∗. But by Corollary 369.1, the equilibrium payoff of each
player in a strictly competitive game is unique, so v∗ = −v∗, and hence v∗ = 0.

370.2 Maxminimizing in BoS

Player 1’s maxminimizer is ( 1
3 , 2

3 ) while player 2’s is ( 2
3 , 1

3 ). Clearly neither pure
equilibrium strategy of either player guarantees her equilibrium payoff. In the
mixed strategy equilibrium, player 1’s expected payoff is 2

3 . But if, for example,
player 2 choose S instead of her equilibrium strategy, then player 1’s expected
payoff is 1

3 . Similarly for player 2.

372.1 Increasing payoffs and eliminating actions

a. Let Ui be player i’s expected payoff function in the game G, let Wi be her
expected payoff function in G′, and let (α∗1, α∗2) be a mixed strategy Nash equilib-
rium of G′. We have W1(α1, α2) ≥ U1(α1, α2) for all every pair (α1, α2), so that
maxα1 W1(α1, α2) ≥ maxα1 U1(α1, α2) for every strategy α2, and hence

min
α2

max
α1

W1(α1, α2) ≥ min
α2

max
α1

U1(α1, α2).
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Thus by part a of Proposition 368.1, player 1’s payoff in every mixed strategy Nash
equilibrium of the game G′ is at least as high as her payoff in every mixed strategy
Nash equilibrium of G.

b. By part a of Proposition 368.1, player 1’s payoff in any equilibrium of G is
minα2 maxα1 U1(α1, α2), where U1 is player 1’s expected payoff function. In G′, for
each value of α2 the value of maxα1 U1(α1, α2) is no larger than it is in G, because
player 1’s set of strategies is smaller. Thus player 1’s payoff in any equilibrium of
G′ is no larger than it is in any equilibrium of G.

c. In the unique equilibrium of the game on the left of Figure 168.1 player 1
receives a payoff of 3, while in the unique equilibrium of the game on the right
she receives a payoff of 2. If she is prohibited from using her second action in this
second game then she obtains an equilibrium payoff of 3, however.

3, 3 1, 1
1, 0 0, 1

3, 3 1, 1
4, 0 2, 1

Figure 168.1 The games for part c of Exercise 372.1.

372.2 Equilibrium in strictly competitive game

The claim is false. In the strictly competitive game in Figure 168.2 the action pair
(T, L) is a Nash equilibrium, so that player 1’s unique equilibrium payoff in the
game is 0. But (B, R), which also yields player 1 a payoff of 0, is not a Nash
equilibrium.

L R
T 0, 0 1,−1
B −1, 1 0, 0

Figure 168.2 The game in Exercise 372.2.

372.3 Morra

a. In the strategic game there are two players, each of whom has four (relevant)
actions, S1G2, S1G3, S2G3, and S2G4, where SiGj denotes the strategy (Show i,
Guess j). The payoffs in the game are shown in Figure 169.1. b. Let (p1, p2, p3, p4)
be the probabilities that player 1 assigns to her four actions. In order that she obtain
a payoff of at least 0 for each pure strategy of player 2, we need

− 2p2 + 3p3 ≥ 0

2p1 − 3p4 ≥ 0

−3p1 + 4p4 ≥ 0

3p2 − 4p3 ≥ 0.



Chapter 11. Strictly Competitive Games and Maxminimization 169

S1G2 S1G3 S2G3 S2G4
S1G2 0, 0 2,−2 −3, 3 0, 0
S1G3 −2, 2 0, 0 0, 0 3,−3
S2G3 3,−3 0, 0 0, 0 −4, 4
S2G4 0, 0 −3, 3 4,−4 0, 0

Figure 169.1 The game in Exercise 372.3.

The second and third inequalities imply that p1 ≥ 3
2 p4 and p1 ≤ 4

3 p4, so that
p1 = p4 = 0, and hence p3 = 1− p2. The first and fourth inequalities imply that
p2 ≤ 3

2 p3 and p2 ≥ 4
3 p3, or p2 ≤ 3

5 and p2 ≥ 4
7 . Thus any strategy (0, p2, 1− p2, 0)

with 4
7 ≤ p2 ≤ 3

5 is a maxminimizer for player 1, and hence, given the symmetry
of the game, also for player 2.

We conclude that the set of mixed strategy Nash equilibria of the game is the
set of pairs of mixed strategies ((0, p2, 1− p2, 0), (0, q2, 1− q2, 0)) with 4

7 ≤ p2 ≤ 3
5

and 4
7 ≤ q2 ≤ 3

5 .

372.4 O’Neill’s game

a. Denote the probability with which player 1 chooses each of her actions 1,
2, and 3, by p, and the probability with which player 2 chooses each of
these actions by q. Then all four of player 1’s actions yield the same ex-
pected payoff if and only if 4q − 1 = 1 − 6q, or q = 1

5 , and similarly all
four of player 2’s actions yield the same expected payoff if and only if p = 1

5 .
Thus (( 1

5 , 1
5 , 1

5 , 2
5 ), ( 1

5 , 1
5 , 1

5 , 2
5 )) is a Nash equilibrium of the game. The players’

payoffs in this equilibrium are (− 1
5 , 1

5 ).

b. Let (p1, p2, p3, p4) be an equilibrium strategy of player 1. In order that it
guarantee her the payoff of − 1

5 , we need

−p1 + p2 + p3 − p4 ≥ − 1
5

p1 − p2 + p3 − p4 ≥ − 1
5

p1 + p2 − p3 − p4 ≥ − 1
5

−p1 − p2 − p3 + p4 ≥ − 1
5 .

Adding these four inequalities, we deduce that p4 ≤ 2
5 . Adding each pair of

the first three inequalities, we deduce that p1 ≤ 1
5 , p2 ≤ 1

5 , and p3 ≤ 1
5 . We

have p1 + p2 + p3 + p4 = 1, so we deduce that (p1, p2, p3, p4) = ( 1
5 , 1

5 , 1
5 , 2

5 ).
A similar analysis of the conditions for player 2’s strategy to guarantee her
the payoff of 1

5 leads to the conclusion that (q1, q2, q3, q4) = ( 1
5 , 1

5 , 1
5 , 2

5 ).





12 Rationalizability

379.2 Best responses to beliefs

Consider a two-player game in which player 1’s payoffs are given in Figure 171.2.
The action B of player 1 is a best response to the belief that assigns probability 1

2 to
both L and R, but is not a best response to any belief that assigns probability 1 to
either action.

L R
T 3 0

M 0 3
B 2 2

Figure 171.2 The action B is a best response to a belief that assigns probability 1
2 to L and to R, but is

not a best response to any belief that assigns probability 1 to either L or R.

384.1 Mixed strategy equilibria of game in Figure 384.1

The game has no equilibrium in which player 2 assigns positive probability only
to L and C, because if she does so then only M and B are possible best responses
for player 1, but if player 1 assigns positive probability only to these actions then
L is not optimal for player 2.

Similarly, the game has no equilibrium in which player 2 assigns positive prob-
ability only to C and R, because if she does so then only T and M are possible best
responses for player 1, but if player 1 assigns positive probability only to these
actions then R is not optimal for player 2.

Now assume that player 2 assigns positive probability only to L and R. There
are no probabilities for L and R under which player 1 is indifferent between all
three of her actions, so player 1 must assign positive probability to at most two
actions. If these two actions are T and M then player 2 prefers L to R, while if
the two actions are M and B then player 2 prefers R to L. The only possibility
is thus that the two actions are T and B. In this case we need player 2 to assign
probability 1

2 to L and R (in order that player 1 be indifferent between T and B);
but then M is better for player 1. Thus there is no equilibrium in which player 2
assigns positive probability only to L and R.

Finally, if player 2 assigns positive probability to all three of her actions then
player 1’s mixed strategy must be such that each of these three actions yields the

171
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same payoff. A calculation shows that there is no mixed strategy of player 1 with
this property.

We conclude that the game has no mixed strategy equilibrium in which either
player assigns positive probability to more than one action.

387.2 Finding rationalizable actions

I claim that the action R of player 2 is strictly dominated. Consider a mixed strat-
egy of player 2 that assigns probability p to L and probability 1− p to C. Such a
mixed strategy strictly dominates R if p + 4(1− p) > 3 and 8p + 2(1− p) > 3, or if
1
6 < p < 1

3 . Now eliminate R from the game. In the reduced game, B is dominated
by T. In the game obtained by eliminating B, L is dominated by C. Thus the only
rationalizable action of player 1 is T and the only rationalizable action of player 2
is C.

387.3 Morra

The action S1G2 is a best response to a belief that assigns probability 1 to S1G3, the
action S1G3 is a best response to the belief that assigns probability one to S2G4,
the action S2G3 is a best response to the belief that assigns probability one to S1G2,
and the action S2G4 is a best response to the belief that assigns probability one to
S2G3. Thus no action of either player is strictly dominated, so that every action
of each player is rationalizable. (In Definition 383.1 we can set Zi equal to the set
consisting of all the actions of player i, for i = 1, 2.)

387.4 Guessing two-thirds of the average

For any player, announcing K is a never-best response by the following argument.

• If the other two players announce (K, K) then announcing K yields the payoff
of 1

3 whereas announcing K− 1 yields the payoff of 1.

• If the other two players make any other announcements then announcing
K yields the payoff of 0 whereas announcing the smaller of the numbers
announced by the other players yields at least 1

3 .

By Lemma 385.3, announcing K is thus strictly dominated.
Now eliminate the action K for each player. In the reduced game announcing

K− 1 is strictly dominated by the same argument. Thus we can eliminate K− 1 for
each player. Continuing similarly we can eliminate all announcements but 1. Thus
each player’s only rationalizable action is 1.

387.5 Hotelling’s model of electoral competition

The positions 0 and ` are strictly dominated by the position m:
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• if her opponent chooses m, a player who chooses m ties whereas a player
who chooses 0 loses

• if her opponent chooses 0 or `, a player who chooses m wins whereas a player
who chooses 0 or ` either loses or ties

• if her opponent chooses any other position, a player who chooses m wins
whereas a player who chooses 0 or ` loses.

In the game obtained by eliminating the two positions 0 and `, the positions 1
and `− 1 are similarly strictly dominated. Continuing in the same way, we are left
with the position m.

388.1 Contributing to a public good

Denote by c−i the sum of the contributions of the players other than i.

a. We have ui(ci, c−i) = wi + c−i + (wi − ci)(ci + c−i) and ui(
1
2 wi, c−i) = wi +

c−i + 1
2 wi(

1
2 wi + c−i). Thus

ui(
1
2 wi, c−i)− ui(ci, c−i) = 1

2 wi(
1
2 wi + c−i) + (wi − ci)(ci + c−i).

This function is a quadratic in ci that is equal to 1
2 wi(

1
2 wi + c−i) when ci =

−c−i and when ci = wi. The coefficient of c2
i is positive, so the function at-

tains a minimum at 1
2 (−c−i + wi) <

1
2 wi (given cj ≥ 0 for all j). The function

is zero at 1
2 wi, so for all values of c−i it is positive whenever ci >

1
2 wi. Thus

every contribution of more than 1
2 wi is strictly dominated by the contribution

1
2 wi.

b. The best response of player i to c−i is one of the feasible contribution levels
close to

max{0, 1
2 (w− c−i)}

(see the solution to Exercise 44.1). Let c ≤ w/2 and suppose that each of
the other players contributes 1

2 w− c (which is nonnegative). Then the other
players’ total contribution is w− 2c, so that player i’s best response is to con-
tribute c. That is, any contribution c of at most w/2 is a best response to the
belief that assigns probability one to each of the other player’s contributing
1
2 w− c ≤ 1

2 w. Thus if we set Zi = [0, w/2] for all i in Definition 383.1 we see
that any action of player i in [0, w/2] is rationalizable. [Note: This argument
does not show that actions outside [0, w/2] are not rationalizable.]

c. Denote w1 = w2 = w. First eliminate contributions of more than wi/2 by
each player i.

In the reduced game the most that players 1 and 2 together contribute is w
(because each contributes at most w/2). Now consider player 3. Her payoff
function is

u3(c3, c−3) = w3 + c−3 + (w3 − c3)(c3 + c−3).



174 Chapter 12. Rationalizability

This function is a quadratic that is zero at c3 = −c−3 and at w3 and has
a maximum at c3 = 1

2 (w3 − c−3). Because c−3 ≤ w and w < 1
3 w3, this

maximizer exceeds w. Thus player 3’s payoff is increasing in her contribution
for every remaining possible value of c−3. We conclude that in the reduced
game every contribution of player 3 of less than w is strictly dominated by a
contribution of w. Eliminate all such actions of player 3.

In the newly reduced game every contribution of player 3 is in the interval
[w, w3/2]. Now consider player 1. Her payoff is decreasing in her contribu-
tion if c1 >

1
2 (w − c−1). We have c2 ≥ 0 and c3 ≥ w, so that c−1 ≥ w and

hence player 1’s payoff is decreasing if c1 > 0. Thus every action of player 1
is strictly dominated by a contribution of 0. The same analysis applies to
player 2. Eliminate all such actions of player 1 and player 2.

Finally, in the game we now have, players 1 and 2 both contribute 0; it follows
that all actions of player 3 are dominated except for a contribution of w3/2,
which is her best response to a total contribution of 0 by players 1 and 2.

We conclude that the unique action profile that survives iterated elimination
of strictly dominated actions is (0, 0, w3/2).

388.2 Cournot’s duopoly game

From Figure 58.1 we see that firm 1’s payoff to any output greater than 1
2 (α − c)

is less than its payoff to the output 1
2 (α− c) for any output q2 of firm 2. Thus any

output greater than 1
2 (α− c) is strictly dominated by the output 1

2 (α− c) for firm 1;
the same argument applies to firm 2.

Now eliminate all outputs greater than 1
2 (α− c) for each firm. The maximizer

of firm 1’s payoff function for q2 = 1
2 (α− c) is 1

4 (α− c), so from Figure 58.1 we see
that firm 1’s payoff to any output less than 1

4 (α − c) is less than its payoff to the
output 1

4 (α− c) for any output q2 ≤ 1
2 (α− c) of firm 2. Thus any output less than

1
4 (α− c) is strictly dominated by the output 1

4 (α− c) for firm 1; the same argument
applies to firm 2.

Now eliminate all outputs less than 1
4 (α − c) for each firm. Then by another

similar argument, any output greater than 3
8 (α− c) is strictly dominated by 3

8 (α−
c). Continuing in this way, we see from Figure 59.1 that in a finite number of
rounds (given the finite number of possible outputs for each firm) we reach the
Nash equilibrium output 1

3 (α− c).

391.1 Example of dominance-solvable game

The Nash equilibria of the game are (T, L), any ((0, 0, 1), (0, q, 1− q)) with 0 ≤ q ≤
1, and any ((0, p, 1− p), (0, 0, 1)) with 0 ≤ p ≤ 1.

The game is dominance solvable, because T and L are the only weakly domi-
nated actions, and when they are eliminated the only weakly dominated actions
are M and C, leaving (B, R), with payoffs (0, 0).
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If T is eliminated, then L and C, no remaining action is weakly dominated;
(M, R) and (B, R) both remain.

391.2 Dividing money

In the first round every action ai ≤ 5 of each player i is weakly dominated by 6.
No other action is weakly dominated, because 100 is a strict best response to 0 and
every other action ai ≥ 6 is a strict best response to ai + 1. In the second round,
10 is weakly dominated by 6 for each player, and each other remaining action ai of
player i is a strict best response to a1 + 1, so no other action is weakly dominated.
Similarly, in the third round, 9 is weakly dominated by 6, and no other action is
weakly dominated. In the fourth and fifth rounds 8 and 7 are eliminated, leaving
the single action pair (6, 6), with payoffs (5, 5).

391.3 Voting

Suppose that more than two-thirds of the citizens rank candidate C below A and
B. By the result of Exercise 49.1, each citizen’s only weakly dominated action is a
vote for her least preferred candidate. After eliminating this action for each citizen,
every remaining action profile leads to a win by either A or B, because fewer than
one-third of the citizens vote for C. Thus each citizen’s voting for whomever of
A and B she prefers weakly dominates her other remaining action, by the same
argument as in the two-candidate game. We are left with the action profile in
which every citizen votes for her favorite among the candidates A and B.

392.1 Bertrand’s duopoly game

In the first round every price in excess of the monopoly price is weakly dominated
by the monopoly price, and every price equal to at most c is weakly dominated by
the price c + 1. Every other price p is a strict best response to p + 1, so no other
price is weakly dominated. At each subsequent round the highest remaining price
is weakly dominated by the next highest price. (Note that for any p ≥ c + 1 it is
better to obtain all the demand at the price p than to obtain half of the demand at
the price p + 1.) The pair of prices that remains is (c + 1, c + 1).

392.2 Strictly competitive extensive games with perfect information

Every finite extensive game with perfect information has a (pure strategy) sub-
game perfect equilibrium (Proposition 173.1). This equilibrium is a pure strategy
Nash equilibrium of the strategic form of the game. Because the game has only
two possible outcomes, one of the players prefers the Nash equilibrium outcome
to the other possible outcome. By Proposition 368.1, this player’s equilibrium strat-
egy guarantees her equilibrium payoff, so this strategy weakly dominates all her



176 Chapter 12. Rationalizability

nonequilibrium strategies. After all dominated strategies are eliminated, every
remaining pair of strategies generates the same outcome.



13 Evolutionary Equilibrium

400.1 Evolutionary stability and weak domination

The ESS a∗ does not necessarily weakly dominate every other action in the game.
For example, in the game in Figure 395.1 of the text, X is an ESS but does not
weakly dominate Y.

No action can weakly dominate an ESS. To see why, let a∗ be an ESS and let
b be another action. Because a∗ is an ESS, (a∗, a∗) is a Nash equilibrium, so that
u(b, a∗) ≤ u(a∗, a∗). Now, if u(b, a∗) < u(a∗, a∗), certainly b does not weakly dom-
inate a∗, so suppose that u(b, a∗) = u(a∗, a∗). Then by the second condition for an
ESS we have u(b, b) < u(a∗, b). We conclude that b does not weakly dominate a∗.

400.2 Example of evolutionarily stable actions

The payoff matrix of the game is given in Figure 177.1. The pure strategy symmet-
ric Nash equilibria are (1, 1), (2, 2), and (3, 3). The only pure evolutionarily stable
strategy is 1, by the following argument. The action 1 is evolutionarily stable be-
cause (1, 1) is a strict Nash equilibrium. The action 2 is not evolutionarily stable,
because 1 is a best response to 2 and

u(1, 1) = 1 > 2δ = u(2, 1).

The action 3 is not evolutionarily stable, because 2 is a best response to 3 and

u(2, 2) = 2 > 3δ = u(3, 2).

In the case that each player has n actions, every pair (i, i) is a Nash equilibrium;
only the action 1 is an ESS.

1 2 3
1 1, 1 2, 2δ 3, 3δ
2 2δ, 2 2, 2 3, 3δ
3 3δ, 3 3δ, 3 3, 3

Figure 177.1 The game in Exercise 400.2.

402.1 Mixed strategy ESSs

By the first condition for an ESS, (α∗, α∗) is a Nash equilibrium. Thus a is a best
response to α∗ by Proposition 116.2. Now by the second condition for an ESS,

177
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U(α, α) < U(α∗, α), where α is the mixed strategy that assigns probability 1 to a, so
that (a, a) is not a Nash equilibrium.

405.1 Hawk–Dove–Retaliator

First suppose that v ≥ c. In this case the game has two pure symmetric Nash
equilibria, (A, A) and (R, R). However, A is not an ESS, because R is a best re-
sponse to A and u(R, R) > u(A, R). The action pair (R, R) is a strict equilibrium,
so R is an ESS. Now consider the possibility that the game has a mixed strategy
equilibrium (α, α). If α assigns positive probability to either P or R (or both) then
R yields a payoff higher than does P, so only A and R may be assigned positive
probability in a mixed strategy equilibrium. But if a strategy α assigns positive
probability to A and R and probability 0 to P, then R yields a payoff higher than
does A against an opponent who uses α. Thus the game has no symmetric mixed
strategy equilibrium in this case.

Now suppose that v < c. Then the only symmetric pure strategy equilibrium is
(R, R). This equilibrium is strict, so that R is an ESS. Now consider the possibility
that the game has a mixed strategy equilibrium (α, α). If α assigns probability 0 to
A then R yields a payoff higher than does P against an opponent who uses α; if
α assigns probability 0 to P then R yields a payoff higher than does A against an
opponent who uses α. Thus in any mixed strategy equilibrium (α, α), the strategy α

must assign positive probability to both A and P. If α assigns probability 0 to R
then we need α = (v/c, 1− v/c) (the calculation is the same as for Hawk–Dove).
Because R yields a lower payoff against this strategy than do A and P, and the
strategy is an ESS in Hawk–Dove, it is an ESS in the present game. The remaining
possibility is that the game has a mixed strategy equilibrium (α, α) in which α

assigns positive probability to all three actions. If so, then the expected payoff to
this strategy is less than 1

2 v, because the pure strategy P yields an expected payoff
less than 1

2 v against any such strategy. But then U(R, R) = 1
2 v > U(α, R), violating

the second condition in the definition of an ESS.
In summary:

• If v ≥ c then R is the unique ESS of the game.

• If v < c then both R and the mixed strategy that assigns probability v/c to A
and 1− v/c to P are ESSs.

405.2 Variant of BoS

The action pair (C, C) is a strict Nash equilibrium, so C is an ESS.
The game has also a symmetric mixed strategy equilibrium in which each

player’s mixed strategy is α∗ = ( 3
4 , 1

4 , 0). Every mixed strategy β = (p, 1− p, 0) is
a best response to α∗, so in order that α∗ be an ESS we need

U(β, β) < U(α∗, β).
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We have U(β, β) = 4p(1− p) and U(α∗, β) = 9
4 (1− p) + 1

4 p, so the inequality is
equivalent to

(p− 3
4 )2 > 0,

which is true for all p 6= 3
4 . Thus α∗ is an ESS.

The only other symmetric mixed strategy equilibrium is one in which each
player’s strategy is α∗∗ = ( 3

7 , 1
7 , 3

7 ). This strategy is not an ESS, because u(C, C) =
1, whereas u(α∗∗, C) = 3

7 < 1.

405.3 Bargaining

The game is given in Figure 64.1.
The pure strategy of demanding 10 is not an ESS because 2 is a best response to

10 and u(2, 2) > u(10, 2).
Now let α be the mixed strategy that assigns probability 2

5 to 2 and 3
5 to 8. Each

player’s payoff at the strategy pair (α, α) is 16
5 . Thus the only actions a that are best

responses to α are 2 and 8, so that the only mixed strategies that are best responses
to α assign positive probability only to the actions 2 and 8. Let β be the mixed
strategy that assigns probability p to 2 and probability 1− p to 8. We have

U(β, β) = 5p(2− p)

and
U(α, β) = 6p + 4

5 .

We find that U(α, β)−U(β, β) = 5(p− 2
5 )2, which is positive if p 6= 2

5 . Hence α is
an ESS.

Finally let α be the mixed strategy that assigns probability 4
5 to 4 and 1

5 to 6.
Each player’s payoff at the strategy pair (α, α) is 24

5 . Thus the only actions a that
are best responses to α are 4 and 6, so that the only mixed strategies that are best
responses assign positive probability only to the actions 4 and 6. Let β be the mixed
strategy that assigns probability p to 4 and probability 1− p to 6. We have

U(β, β) = 5p(2− p)

and
U(α∗, β) = 2p + 16

5 .

We find that U(α, β)−U(β, β) = 5(p− 4
5 )2, which is positive if p 6= 4

5 . Hence α∗ is
an ESS.

408.1 Equilibria of C and of G

First suppose that (α1, α2) is a mixed strategy Nash equilibrium of C. Then for all
mixed strategies β1 of player 1 and all mixed strategies β2 of player 2 we have

U1(α1, α2) ≥ U1(β1, α2) and U2(α1, α2) ≥ U2(α1, β2).
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Thus

u((α1, α2), (α1, α2)) = 1
2 U1(α1, α2) + 1

2 U2(α1, α2)

≥ 1
2 U1(β1, α2) + 1

2 U2(α1, β2)

= u((β1, β2), (α1, α2)),

so that ((α1, α2), (α1, α2)) is a Nash equilibrium of G. If (α1, α2) is a strict Nash
equilibrium of C then the inequalities are strict, and ((α1, α2), (α1, α2)) is a strict
Nash equilibrium of G.

Now assume that ((α1, α2), (α1, α2)) is a Nash equilibrium of G. Then

u((α1, α2), (α1, α2)) ≥ u((β1, β2), (α1, α2)),

or
1
2 U1(α1, α2) + 1

2 U2(α1, α2) ≥ 1
2 U1(β1, α2) + 1

2 U2(α1, β2),

for all conditional strategies (β1, β2). Taking β2 = α2 we see that α1 is a best re-
sponse to α2 in C, and taking β1 = α1 we see that α2 is a best response to α1 in C.
Thus (α1, α2) is a Nash equilibrium of G.

409.2 Variant of BoS

The game has two evolutionarily stable conditional strategies, LD and DL, corre-
sponding to the strict Nash equilibria of the contest game.

414.1 A coordination game between siblings

The game with payoff function v is shown in Figure 180.1. If x < 2 then (Y, Y) is
a strict Nash equilibrium of the games, so Y is an evolutionarily stable action in
the game between siblings. If x > 2 then the only Nash equilibrium of the game is
(X, X), and this equilibrium is strict. Thus the range of values of x for which the
only evolutionarily stable action is X is x > 2.

X Y

X x, x 1
2 x, 1

2

Y 1
2 , 1

2 x 1, 1

v

Figure 180.1 The game with payoff function v derived from the game in Exercise 414.1.

414.2 Assortative mating

Under assortative mating, all siblings take the same action, so the analysis is the
same as that for asexual reproduction. (A difficulty with the assumption of assor-
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tative mating is that a rare mutant will have to go to great lengths to find a mate
that is also a mutant.)

416.1 Darwin’s theory of the sex ratio

A normal organism produces pn male offspring and (1 − p)n female offspring
(ignoring the small probability that the partner of a normal organism is a mutant).
Thus it has pn · ((1− p)/p)n + (1− p)n · n = 2(1− p)n2 grandchildren.

A mutant has 1
2 n male offspring and 1

2 n female offspring, and hence 1
2 n · ((1−

p)/p)n + 1
2 n · n = 1

2 n2/p grandchildren.
Thus the difference between the number of grandchildren produced by mutant

and normal organisms is

1
2 n2/p− 2(1− p)n2 = n2

(
1

2p

)

(1− 2p)2,

which is positive if p 6= 1
2 . (The point is that if p > 1

2 then the fraction of a mutant’s
offspring that are males is higher than the fraction of a normal organism’s offspring
that are males, and males each bear more offspring than females. Similarly, if p < 1

2
then the fraction of a mutant’s offspring that are females is higher than the fraction
of a normal organism’s offspring that are females, and females each bear more
offspring than males.)

Thus any mutant with p 6= 1
2 invades the population; only p = 1

2 is evolution-
arily stable.





14 Repeated Games: The Prisoner’s Dilemma

423.1 Equivalence of payoff functions

Suppose that a person’s preferences are represented by the discounted sum of pay-
offs with payoff function u and discount factor δ. Then if the two sequences of
outcomes (x1, x2, . . .) and (y1, y2, . . .) are indifferent, we have

∞

∑
t=0

δt−1u(xt) =
∞

∑
t=0

δt−1u(yt).

Now let v(x) = α + βu(x) for all x, with β > 0. Then

∞

∑
t=0

δt−1v(xt) =
∞

∑
t=0

δt−1[α + βu(xt)] =
∞

∑
t=0

δt−1α + β
∞

∑
t=0

δt−1u(xt)

and similarly

∞

∑
t=0

δt−1v(yt) =
∞

∑
t=0

δt−1[α + βu(yt)] =
∞

∑
t=0

δt−1α + β
∞

∑
t=0

δt−1u(yt),

so that
∞

∑
t=0

δt−1v(xt) =
∞

∑
t=0

δt−1v(yt).

Thus the person’s preferences are represented also by the discounted sum of pay-
offs with payoff function v and discount factor δ.

425.1 Subgame perfect equilibrium of finitely repeated Prisoner’s Dilemma

Use backward induction. In the last period, the action C is strictly dominated for
each player, so each player chooses D, regardless of history. Now consider pe-
riod T − 1. Each player’s action in this period affects only the outcome in this
period—it has no effect on the outcome in period T, which is (D, D). Thus in
choosing her action in period T − 1, a player considers only her payoff in that pe-
riod. As in period T, her action D strictly dominates her action C, so that in any
subgame perfect equilibrium she chooses D. A similar argument applies to all pre-
vious periods, leading to the conclusion that in every subgame perfect equilibrium
each player chooses D in every period, regardless of history.

183
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P0: C -
(·, D)

P1: C -
all

outcomes

D: D

Figure 184.2 The strategy in Exercise 428.1a.

428.1 Strategies in an infinitely repeated Prisoner’s Dilemma

a. The strategy is shown in Figure 184.2.

b. The strategy is shown in Figure 184.3.

P0: C -
(·, D)

P1: C -
(·, D)

D: D

Figure 184.3 The strategy in Exercise 428.1b.

c. The strategy is shown in Figure 184.4.

C: C D: D-
(D, C) or (C, D)

?

� �
(C, C) or (D, D)

Figure 184.4 The strategy in Exercise 428.1c.

429.1 Grim trigger strategies in a general Prisoner’s Dilemma

Suppose that player 1 uses the grim trigger strategy. If player 2 does too then her
payoff is x in every period, so her discounted average payoff is x.

If player 2 chooses D in any period she obtains y in that period and 1 subse-
quently, so that her discounted average payoff is (1− δ)y + δ.

Thus the strategy pair in which both players use the grim trigger strategy is a
Nash equilibrium if and only if x ≥ (1− δ)y + δ, or

δ ≥
y− x
y− 1

.

430.1 Limited punishment strategies in an infinitely repeated Prisoner’s Dilemma

Following the logic of Section 14.7.2, we find that the strategy pair in which each
player uses k-period punishment is a Nash equilibrium if and only if

x(1− δk+1) ≥ y(1− δ) + δ(1− δk),

or
(x− 1)δk+1 + (1− y)δ + y− x ≤ 0.
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431.1 Tit-for-tat in an infinitely repeated Prisoner’s Dilemma

Following the logic of Section 14.7.3, the strategy pair in which each player uses
tit-for-tat is a Nash equilibrium if and only if

x ≥
y

1 + δ
and x ≥ y(1− δ) + δ,

or

δ ≥
y− x

x
and δ ≥

y− x
y− 1

.

If y ≥ 2x then (y− x)/x ≥ 1, so that the first inequality is not satisfied for any
δ < 1.

431.2 Nash equilibria of an infinitely repeated Prisoner’s Dilemma

a. A player who adheres to the strategy obtains the discounted average payoff
of 2. A player who deviates obtains the stream of payoffs (3, 3, 1, 1, . . .), with
a discounted average of (1 − δ)(3 + 3δ) + δ2. Thus for an equilibrium we
require (1− δ)(3 + 3δ) + δ2 ≤ 2, or δ ≥ 1

2

√
2.

b. A player who adheres to the strategy obtains the payoff of 2 in every period.
A player who chooses D in the first period and C in every subsequent period
obtains the stream of payoffs (3, 2, 2, . . .). Thus for any value of δ a player can
increase her payoff by deviating, so that the strategy pair is not a Nash equi-
librium. Further, whatever the one-shot payoffs, a player can increase her
payoff by deviating to D in a single period, so that for no payoffs is there any
δ such that the strategy pair is a Nash equilibrium of the infinitely repeated
game with discount factor δ.

c. A player who adheres to the strategy obtains the discounted average payoff
of 2 (the outcome is (C, C) in every period). If player 2 deviates to D in every
period then she induces the outcome to alternate between (C, D) and (D, D),
yielding her a discounted average payoff of (1− δ) · (3 + 3δ2 + 3δ4 + . . .) +
(1− δ)(δ + δ3 + δ5 + . . .) = (1− δ)[3/(1− δ2) + δ/(1− δ2)] = (3 + δ)/(1 +
δ). For all δ < 1 this payoff exceeds 2, so that the strategy pair is not a Nash
equilibrium of the infinitely repeated game.

However, for different payoffs for the one-shot Prisoner’s Dilemma, the strat-
egy pair is a Nash equilibrium of the infinitely repeated game. The point is
that the best deviation for player 2 leads to the sequence of outcomes that al-
ternates between (C, D) and (D, D). If the average payoff of player 2 in these
two outcomes is less than her payoff to the outcome (C, C) then the strat-
egy pair is a Nash equilibrium for some values of δ. (For the payoffs in Fig-
ure 419.2 the average payoff of the two outcomes (C, D) and (D, D) is exactly
equal to the payoff to (C, C).) Consider the general payoffs in Figure 186.1.
The discounted average payoff of the sequence of outcomes that alternates
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C D
C x, x 0, y
D y, 0 1, 1

Figure 186.1 A Prisoner’s Dilemma.

between (C, D) and (D, D) is (y + δ)/(1 + δ), while the discounted average
of the constant sequence containing only (C, C) is x. Thus for the strategy
pair to be a Nash equilibrium we need

y + δ

1 + δ
≤ x,

or

δ ≥
y− x
x− 1

,

an inequality that is compatible with δ < 1 if x > 1
2 (y + 1)—that is, if x

exceeds the average of 1 and y.

433.1 Feasible payoff pairs in a Prisoner’s Dilemma

The set of feasible payoff pairs is given in Figure 186.2.

0 1 2 3 4 5

1

2

3

4

5
(0, 5)

(1, 1)

(2, 2)

(5, 0)

1’s payoff→

↑
2’s

payoff

Figure 186.2 The set of feasible payoff pairs in the Prisoner’s Dilemma with payoffs as in Figure 429.1
for y = 5 and x = 2.

439.1 Finitely repeated Prisoner’s Dilemma with switching cost

a. Consider deviations by player 1, given that player 2 adheres to her strategy,
in each subgame.
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Subgame following initial history: If player 1 adheres to her strategy, her pay-
off is 3 in every period. If she deviates in the first period but otherwise
follows her strategy, her payoff is 4 in the first period and 2 in every
subsequent period. Given T ≥ 3, player 1’s deviation is not profitable.

Subgame following history ending in (C, C): If player 1 adheres to her strat-
egy, her payoff is 3 in every period. If she deviates in the first period
of the subgame but otherwise follows her strategy, her payoff is 4 − ε

in the first period of the subgame, and 2 in every subsequent period.
Given ε > 1, player 1’s deviation is not profitable, even if it occurs in
the last period of the game.

Subgame following history ending in (D, C) or (D, D): If player 1 adheres to
her strategy, her payoff is 2 in every period. If she deviates in the first
period of the subgame but otherwise follows her strategy, her payoff is
−ε in the first period of the subgame, 2 − ε in the next period, and 2
subsequently. Thus adhering to her strategy is optimal for player 1.

Subgame following history ending in (C, D): If player 1 adheres to her strat-
egy, her payoff is 2− ε in the first period of the subgame, and 2 subse-
quently. If she deviates in the first period of the subgame but otherwise
follows her strategy, her payoff is 0 in the first period of the subgame,
2− ε in the next period, and 2 subsequently. Given ε < 2, player 1’s
deviation is not optimal even if it occurs in the last period of the game.

b. Given ε > 2, a player does not gain from deviating from (C, C) in the next-
to-last or last periods, even if she is not punished, and does not optimally
punish a deviation by her opponent in the next-to-last period. Consider the
strategy that chooses C at the start of the game and after any history that
ends with (C, C), chooses D after any other history that has length at most
T − 2, and chooses the action it chose in period T − 1 after any history of
length T − 1 (where T is the length of the game). I claim that the strategy
pair in which both players use this strategy is a subgame perfect equilibrium
if 2 < ε < 4. Consider deviations by player 1, given that player 2 adheres to
her strategy, in the subgames following the various possible histories.

Empty history: If player 1 adheres to her strategy, her payoff is 3 in every
period. If she deviates in the first period but otherwise follows her strat-
egy, her payoff is 4 in the first period and 2 in every subsequent period
(her opponent switches to D). Given T ≥ 3, player 1’s deviation is not
profitable.

History ending in (C, C), length ≤ T − 3: If player 1 adheres to her strategy,
her payoff is 3 in every period of the subgame. If she deviates in the first
period of the subgame but otherwise follows her strategy, her payoff
is 4− ε in the first period of the subgame, and 2 in every subsequent
period (her opponent switches to D). Thus player 1’s deviation is not
profitable.
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History ending in (C, C), length ≥ T − 2: If player 1 adheres to her strategy,
her payoff is 3 in each period of the subgame. If she deviates to D in the
first period of the subgame, her payoff is 4− ε in that period, and 4 sub-
sequently (her deviation is not punished). The length of the subgame is
at most 2, so given ε > 2, her deviation is not profitable.

History ending in (D, C) or (D, D): If player 1 adheres to her strategy, her
payoff is 2 in every period. If she deviates in the first period of the
subgame but otherwise follows her strategy, her payoff is −ε in the first
period of the subgame, 2 − ε in the next period, and 2 subsequently.
Thus adhering to her strategy is optimal for player 1.

History ending in (C, D), length ≤ T − 3: If player 1 adheres to her strategy,
her payoff is 2− ε in the first period of the subgame (she switches to D),
and 2 subsequently. If she deviates in the first period of the subgame but
otherwise follows her strategy, her payoff is 0 in the first period of the
subgame, 2− ε in the next period, and 2 subsequently, so the deviation
is not profitable.

History ending in (C, D), length T − 2: If player 1 adheres to her strategy,
her payoff is 2 − ε in period T − 1 (she switches to D), and 2 in pe-
riod T. If she deviates to C in the first period of the subgame but oth-
erwise follows her strategy, she chooses C in period T, so her payoff is
0 in both period T − 1 and period T. Thus given ε < 4 her deviation is
not profitable.

History ending in (C, D), length T − 1: If player 1 adheres to her strategy,
her payoff is 0 in period T (the outcome is (C, D)). If she deviates to
D, her payoff is 2− ε in period T. Given ε > 2, adhering to her strategy
is thus optimal.

442.1 Deviations from grim trigger strategy

• If player 1 adheres to the strategy, she subsequently chooses D (because
player 2 chose D in the first period). Player 2 chooses C in the first pe-
riod of the subgame (player 1 chose C in the first period of the game), and
then chooses D (because player 1 chooses D in the first period of the sub-
game). Thus the sequence of outcomes in the subgame is ((D, C), (D, D),
(D, D), . . .), yielding player 1 a discounted average payoff in the subgame of

(1− δ)(3 + δ + δ2 + δ3 + · · ·) = (1− δ)
(

3 +
δ

1− δ

)

= 3− 2δ.

• If player 1 refrains from punishing player 2 for her lapse, and simply chooses
C in every subsequent period, then the outcome in period 2 and subsequently
is (C, C), so that the sequence of outcomes in the subgame yields player 1 a
discounted average payoff of 2.
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If δ > 1
2 then 2 > 3− 2δ, so that player 1 prefers to ignore player 2’s deviation

rather than to adhere to her strategy and punish player 2 by choosing D. (Note
that the theory does not consider the possibility that player 1 takes player 2’s play
of D as a signal that she is using a strategy different from the grim trigger strategy.)

443.1 Delayed modified grim trigger strategies

Any deviation to C at the start of a subgame following a history of length k− 1 or
less reduces a player’s payoff and has no impact on the subsequent outcomes. No
deviation in the first period of a later subgame is profitable if and only if δ ≥ 1

2 , by
the argument in the text for the modified grim trigger strategy. Thus the strategy
pair is a subgame perfect equilibrium if and only if δ ≥ 1

2 .

443.2 Different punishment lengths in subgame perfect equilibrium

Yes, an infinitely repeated Prisoner’s Dilemma has such subgame perfect equilibria.
As for the modified grim trigger strategy, each player’s strategy has to switch to
D not only if the other player chooses D but also if the player herself chooses
D. The only subtlety is that the number of periods for which a player chooses
D after a history in which not all the outcomes were (C, C) must depend on the
identity of the player who first deviated. If, for example, player 1 punishes for
two periods while player 2 punishes for three periods, then the outcome (C, D)
induces player 1 to choose D for two periods (to punish player 2 for her deviation)
whereas the outcome (D, C) induces her to choose D for three periods (while she
is being punished by player 2). The strategy of each player in this case is shown
in Figure 189.1. Viewed as a strategy of player 1, the top part of the figure entails
punishment of player 2 and the bottom part entails player 1’s reaction to her own
deviation. Viewed as a strategy of player 2, the bottom part entails punishment of
player 1 and the top part entails player 2’s reaction to her own deviation.

P0: C �
��

��*(·, D) P1: D -
all

outcomes

P2: D
?

� �
all outcomes

HHHHHj(D, ·) P′1: D -
all

outcomes

P′2: D -
all

outcomes

P′3: D6


 	all outcomes

Figure 189.1 A strategy in an infinitely repeated Prisoner’s Dilemma that punishes deviations for two
periods and reacts to punishment by choosing D for three periods.
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To find the values of δ for which the strategy pair in which each player uses
the strategy in Figure 189.1 is a subgame perfect equilibrium, consider the result
of each player’s deviating at the start of a subgame.

First consider player 1. If she deviates when both players are in state P0, she
induces the outcome (D, C) followed by three periods of (D, D), and then (C, C)
subsequently. This outcome path is worse for her than (C, C) in every period if
and only if δ3− 2δ + 1 ≤ 0, or if and only if δ is at least around 0.62 (as we found in
Section 14.7.2). If she deviates when both players are in one of the other states then
she is worse off in the period of her deviation and her deviation does not affect the
subsequent outcomes. Thus player 1 cannot profitably deviate in the first period
of any subgame if δ is at least around 0.62.

The same argument applies to player 2, except that a deviation when both play-
ers are in state P0 induces (C, D) followed by three, rather than two periods of
(D, D). This outcome path is worse for player 2 than (C, C) in every period if and
only if δ4 − 2δ + 1 ≤ 0, or if and only if δ is at least around 0.55 (as we found in
Section 14.7.2).

We conclude that the strategy pair in which each player uses the strategy in
Figure 189.1 is a subgame perfect equilibrium if and only if δ3 − 2δ + 1 ≤ 0, or if
and only if δ is at least around 0.62.

445.1 Tit-for-tat as a subgame perfect equilibrium

Suppose that player 2 adheres to tit-for-tat. Consider player 1’s behavior in each
subgame.

Whole game or subgame following history ending in (C, C) If player 1 adheres
to tit-for-tat the outcome is (C, C) in every period, so that her discounted
average payoff in the subgame is x. If she chooses D in the first period of the
subgame, then adheres to tit-for-tat, the outcome alternates between (D, C)
and (C, D), and her discounted average payoff is y/(1 + δ). Thus we need
x ≥ y/(1 + δ), or δ ≥ (y− x)/x, for a one-period deviation from tit-for-tat
not to be profitable for player 1.

Subgame following history ending in (C, D) If player 1 adheres to tit-for-tat the
outcome alternates between (D, C) and (C, D), so that her discounted aver-
age payoff is y/(1 + δ). If she deviates to C in the first period of the subgame,
then adheres to tit-for-tat, the outcome is (C, C) in every period, and her dis-
counted average payoff is x. Thus we need y/(1 + δ) ≥ x, or δ ≤ (y− x)/x,
for a one-period deviation from tit-for-tat not to be profitable for player 1.

Subgame following history ending in (D, C) If player 1 adheres to tit-for-tat the
outcome alternates between (C, D) and (D, C), so that her discounted av-
erage payoff is δy/(1 + δ). If she deviates to D in the first period of the
subgame, then adheres to tit-for-tat, the outcome is (D, D) in every period,
and her discounted average payoff is 1. Thus we need δy/(1 + δ) ≥ 1, or
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δ ≥ 1/(y− 1), for a one-period deviation from tit-for-tat not to be profitable
for player 1.

Subgame following history ending in (D, D) If player 1 adheres to tit-for-tat the
outcome is (D, D) in every period, so that her discounted average payoff is
1. If she deviates to C in the first period of the subgame, then adheres to tit-
for-tat, the outcome alternates between (C, D) and (D, C), and her discounted
average payoff is δy/(1 + δ). Thus we need 1 ≥ δy/(1 + δ), or δ ≤ 1/(y− 1),
for a one-period deviation from tit-for-tat not to be profitable for player 1.

The same arguments apply to deviations by player 2, so we conclude that
(tit-for-tat, tit-for-tat) is a subgame perfect equilibrium if and only if δ = (y− x)/x
and δ = 1/(y− 1), or y− x = 1 and δ = 1/x.





15 Repeated Games: General Results

452.3 Minmax payoffs of some games

a. If a player names x < 5 then her opponent can obtain more than 5 by naming
10− x. If she names 5 then the most her opponent can obtain is 5, by naming
5 or more. If she names 6 then the most her opponent can obtain is 5, by
naming 5 or 6. If she names 7 or more her opponent can obtain 6 by naming
6. Thus each player’s minmax payoff is 5.

b. Each firm’s minmax payoff is at least 0, because a firm can ensure a payoff
of zero by producing no output. By producing enough output to make the
price zero, even if firm i produces nothing, the other firms can ensure that
the price is zero whatever firm i does. Thus each firm’s minmax payoff is
exactly 0.

c. i. Whatever position one candidate chooses, the other can ensure, by lo-
cating at the same position, that the outcome is a tie. If one candidate’s
position is the voters’ median favorite position, then the other candidate
can do no better than a tie (by choosing the same position). Thus each
candidate’s minmax payoff is 1

2 .

ii. Two candidates can ensure that the third loses by choosing positions
sufficiently close to each other on either side of the median. Thus each
candidate’s minmax payoff is 0.

454.2 Examples of application of Nash folk theorem

a. When the discount factor is close to 1, the approximate set of discounted
average payoffs that can be obtained is shown in Figure 194.1.

b. The only possible pairs of payoffs in the game are (1, 0) (candidate 1 wins
outright), ( 1

2 , 1
2 ) (the candidates tie), and (0, 1) (candidate 2 wins outright).

The minmax payoff of each player is 1
2 (see Exercise 452.3c), and the strategic

game has a Nash equilibrium in which each candidate’s payoff is 1
2 , so the

set of discounted average payoff pairs to Nash equilibria of the infinitely
repeated game consists of the single pair ( 1

2 , 1
2 ), regardless of the discount

factor.

193
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0 1 2

1

2

Figure 194.1 The light gray triangle is the set of feasible payoffs in BoS. The dark gray triangle is the
approximate set of Nash equilibrium payoffs of the infinitely repeated game when the discount factor
is close to 1.

454.3 Repeated Bertrand duopoly

a. Suppose that firm i uses the strategy si. If the other firm, j, uses sj, then its
discounted average payoff is

(1− δ)
(

1
2 π(pm) + 1

2 δπ(pm) + · · ·
)

= 1
2 π(pm).

If, on the other hand, firm j deviates to a price p then the closer this price
is to pm, the higher is j’s profit, because the punishment does not depend
on p. Thus by choosing p close enough to pm the firm can obtain a profit as
close as it wishes to π(pm) in the period of its deviation. Its profit during
its punishment in the following k periods is zero. Once its punishment is
complete, it can either revert to pm or deviate once again. If it can profit
from deviating initially then it can profit by deviating once its punishment is
complete, so its maximal profit from deviating is

(1− δ)
(

π(pm) + δk+1π(pm) + δ2k+2π(pm) + · · ·
)

=
(1− δ)π(pm)

1− δk+1
.

Thus for (s1, s2) to be a Nash equilibrium we need

1− δ

1− δk+1
≤ 1

2 ,

or

δk+1 − 2δ + 1 ≤ 0.
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(This condition is the same as the one we found for a pair of k-period pun-
ishment strategies to be a Nash equilibrium in the Prisoner’s Dilemma (Sec-
tion 14.7.2).)

b. Suppose that firm i uses the strategy si. If the other firm does so then its
discounted average payoff is 1

2 π(pm), as in part a. If the other firm deviates
to some price p with c < p < pm in the first period, and maintains this price
subsequently, then it obtains π(p) in the first period and shares π(p) in each
subsequent period, so that its discounted average payoff is

(1− δ)
(

π(p) + 1
2 δπ(p) + 1

2 δ2π(p) + · · ·
)

= 1
2 (2− δ)π(p).

If p is close to pm then π(p) is close to π(pm) (because π is continuous). In
fact, for any δ < 1 we have 2− δ > 1, so that we can find p < pm such that
(2− δ)π(p) > π(pm). Hence the strategy pair is not a Nash equilibrium of
the infinitely repeated game for any value of δ.

459.1 Costly price changing

a. Suppose firm 2 adheres to s. If firm 1 does so, its discounted average payoff
is 1

2 π(pm). If it deviates, the best period in which to do so is the first period,
because a deviation in this period incurs no cost. Any deviation yields the
profit of 0 in every subsequent period, so the best deviations are prices just
below pm. Such a deviation yields a discounted average payoff close to (1−
δ)π(pm). Thus the strategy pair is a Nash equilibrium if and only if

1
2 π(pm) ≥ (1− δ)π(pm),

or δ ≥ 1
2 .

b. The strategy pair is not a subgame perfect equilibrium. Consider a history
in which firm 1 charged a price less than pm in period 0 and firm 2 charged
the price pm. The strategy requires each firm to charge c in every subsequent
period. But doing so is not a Nash equilibrium of the subgame: firm 2 obtains
a profit of −ε if it does so, and is better off keeping its price the same as it
was in the first period and obtaining a profit of at least zero.

459.2 Detection lags

a. The best deviations involve prices slightly less than p∗. Such a deviation by
firm i yields a discounted average payoff close to

(1− δ)
(

π(p∗) + δπ(p∗) + · · ·+ δki−1π(p∗)
)

= (1− δki )π(p∗),

whereas compliance with the strategy yields the discounted average payoff
1
2 π(p∗). Thus the strategy pair is a subgame perfect equilibrium for any
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value of p∗ if δk1 ≥ 1
2 and δk2 ≥ 1

2 , and is not a subgame perfect equilibrium
for any value of p∗ if δk1 < 1

2 or δk2 < 1
2 . That is, the most profitable price for

which the strategy pair is a subgame perfect equilibrium is pm if δk1 ≥ 1
2 and

δk2 ≥ 1
2 and is c if δk1 < 1

2 or δk2 < 1
2 .

b. Denote by k∗i the critical value of ki found in part a. (That is, δk∗i ≥ 1
2 and

δk∗i +1 < 1
2 .)

If ki > k∗i then no change in kj affects the outcome of the price-setting sub-
game, so j’s best action at the start of the game is θ, in which case i’s best ac-
tion is the same. Thus in one subgame perfect equilibrium both firms choose
θ at the start of the game, and c regardless of history in the rest of the game.

If ki ≤ k∗i then j’s best action is k∗j if the cost of choosing k∗j is at most 1
2 π(pm).

Thus if the cost of choosing k∗i is at most 1
2 π(pm) for each firm then the game

has another subgame perfect equilibrium, in which each firm i chooses k∗i at
the start of the game and the strategy si in the price-setting subgame.

A promise by firm i to beat another firm’s price is an inducement for con-
sumers to inform firm i of deviations by other firms, and thus reduce its
detection time. To this extent, such a promise tends to promote collusion.

459.3 Alternating moves

The strategy pair is a Nash equilibrium. If a player deviates she obtains 0 in the
period of her deviation and the following period, and does not affect the following
path.

The strategy pair is not a subgame perfect equilibrium. Consider a subgame
following a history in which the last outcome is (Y, X) and it is player 1’s turn to
choose an action. If player 1 follows her strategy then in the first period of the
subgame she chooses Y and obtains the payoff 0, and in the second period player 2
chooses Y, so that player 1’s payoff is 1. If player 1 deviates from her strategy and
chooses X in the first period of the subgame she obtains 2 in the first period and 0
in the second period (when player 2 returns to Y). In both cases player 1’s payoff
in every subsequent period is 1. Thus player 1 obtains the stream of payoffs 0, 1, 1,
1, . . . if she adheres to her strategy and 2, 0, 1, 1, . . . if she deviates. For any value
of δ, she prefers the second stream.



16 Bargaining

468.1 Two-period bargaining with constant cost of delay

In the second period, player 1 accepts any proposal that gives a positive amount
of the pie. Thus in any subgame perfect equilibrium player 2 proposes (0, 1) in
period 2, which player 1 accepts, obtaining the payoff −c1.

Now consider the first period. Given the second period outcome of any sub-
game perfect equilibrium, player 2 accepts any proposal that gives her more than
1− c2 and rejects any proposal that gives her less than 1− c2. Thus in any subgame
perfect equilibrium player 1 proposes (c2, 1− c2), which player 2 accepts.

In summary, the game has a unique subgame perfect equilibrium, in which

• player 1 proposes (c2, 1− c2) in period 1, and accepts all proposals in period 2

• player 2 accepts a proposal in period 1 if and only if it gives her at least 1− c2,
and proposes (0, 1) in period 2 after any history.

The outcome of the equilibrium is that the proposal (c2, 1− c2) is made by player 1
and immediately accepted by player 2.

468.2 Three-period bargaining with constant cost of delay

The subgame following a rejection by player 2 in period 1 is a two-period game in
which player 2 makes the first proposal. Thus by the result of Exercise 468.1, the
subgame has a unique subgame perfect equilibrium, in which player 2 proposes
(1− c1, c1), which player 1 immediately accepts.

Now consider the first period.

• If c1 ≥ c2, player 2 rejects any offer of less than c1 − c2 (which she obtains if
she rejects an offer), and accepts any offer of more than c1 − c2. Thus in an
equilibrium player 1 offers her c1 − c2, which she accepts.

• If c1 < c2, player 2 accepts all offers, so that player 1 proposes (1, 0), which
player 2 accepts.

In summary, the game has a unique subgame perfect equilibrium, in which

• player 1 proposes (1− (c1 − c2), c1 − c2) if c1 ≥ c2 and (1, 0) otherwise in
period 1, accepts any proposal that gives her at least 1 − c1 in period 2, and
proposes (1, 0) in period 3

197
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• player 2 accepts any proposal that gives her at least c1 − c2 if c1 ≥ c2 and
accepts all proposals otherwise in period 1, proposes (1− c1, c1) in period 2,
and accepts all proposals in period 3.

473.1 One-sided offers

The game has two distinct subgames—one in which the first move is a proposal
by player 1 and one in which the first move is a response by player 2.

Subgame starting with proposal of player 1 If player 1 follows her strategy, she
obtains x1. If she offers player 2 more than 1− x1, player 2 accepts the offer,
making player 1 worse off. If she offers player 2 less than 1 − x1, player 2
rejects the offer, and player 1 obtains x1 with one period of delay.

Subgame starting with response of player 2 Denote by (y1, y2) the proposal to
which player 2 is responding. Her strategy calls for her to accept the proposal
if and only if y2 ≥ 1− x1. If she rejects a proposal, she obtains x2 with one
period of delay, which is worth δ2(1− x1) to her. Thus she should accept all
proposals that give her at least δ2(1− x1). Thus for her strategy to be optimal,
given player 1’s strategy, we need δ2(1− x1) = 1− x1, or x1 = 1.

We conclude that the strategy pair is a subgame perfect equilibrium if and only
if x1 = 1. (The strategy pair in which x1 = 1 is in fact the only subgame perfect
equilibrium of the game.)

473.2 Alternating offer bargaining with constant cost of delay

First suppose that c1 < c2. A reasonable guess is that in a subgame perfect equilib-
rium in which player 1 always proposes (1, 0), player 2 always accepts all propos-
als. Another reasonable guess is that the game has such an equilibrium in which
player 2 always makes the same offer, say (z1, z2), and player 1 always uses the
criterion “accept a proposal (x1, x2) if and only if x1 ≥ z1” to respond to a proposal.

Is there a value of (z1, z2) such that this strategy pair is a subgame perfect equi-
librium? A strategy pair is a subgame perfect equilibrium if and only if it satisfies
the one-deviation property, so consider the conditions imposed on (z1, z2) by the
one-deviation property. Examine each type of subgame in turn.

Subgame starting with proposal by player 1 If player 1 follows her strategy she
obtains all the pie, so she cannot profitably deviate.

Subgame starting with response by player 2 Denote by (x1, x2) the proposal to
which player 2 is responding. Her strategy calls for her to accept the pro-
posal, yielding her the payoff x2. If she rejects the proposal, she proposes
(z1, z2), which player 1 accepts, yielding her the payoff z2 − c2. Thus for
equilibrium we need x2 ≥ z2 − c2 for all x2, which means that 0 ≥ z2 − c2, or
z2 ≤ c2.
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Subgame starting with proposal by player 2 If player 2 follows her strategy she
obtains the payoff z2. If she offers player 1 more than z1, player 1 accepts,
and player 2 is worse off. If she offers player 1 less than z1, player 1 rejects
her offer and proposes (1, 0), which she accepts, yielding her the payoff −c2.
Thus for equilibrium we need z2 ≥ −c2.

Subgame starting with response by player 1 Denote by (y1, y2) the proposal to
which player 1 is responding. If y1 ≥ z1 her strategy calls for her to accept
the proposal, yielding her the payoff y1. If instead she rejects the proposal,
she proposes (1, 0), which player 2 accepts, yielding her the payoff 1 − c1.
Thus for equilibrium we need y1 ≥ 1 − c1 whenever y1 ≥ z1, and hence
z1 ≥ 1 − c1. If y1 < z1 her strategy calls for her to reject the proposal, in
which case she proposes (1, 0), which player 2 accepts, yielding player 1 the
payoff 1 − c1. If instead she accepts the proposal she obtains y1. Thus for
equilibrium we need 1− c1 ≥ y1 whenever y1 < z1, and hence 1− c1 ≥ z1.

From the analysis of the last subgame, we have z1 = 1− c1, so that z2 = c1.
Given c1 < c2, the one-deviation property is satisfied in every subgame, so that
the strategy pair is a subgame perfect equilibrium.

In summary, the following pair of strategies is a subgame perfect equilibrium:

• player 1 always proposes (1, 0) and accepts a proposal (y1, y2) if and only if
y1 ≥ 1− c1

• player 2 always proposes (1− c1, c1) and accepts all proposals.

Now suppose that c1 = c2 = c. Let c ≤ z1 ≤ 1 and consider the pair of
strategies in which

• player 1 always proposes (z1, 1− z1) and accepts a proposal (y1, y2) if and
only if y1 ≥ z1 − c

• player 2 always proposes (z1 − c, 1− z1 + c) and accepts a proposal (x1, x2)
if and only if x2 ≥ 1− z1.

I argue that this strategy pair is a subgame perfect equilibrium, by showing that
it satisfies the one-deviation property. I consider each of the four distinct subgames
in turn.

Subgame starting with proposal by player 1 If player 1 follows her strategy she
obtains the payoff z1. If she increases her offer to player 2, her offer is ac-
cepted and she is worse off. If she reduces her offer to player 2, her offer is
rejected, and player 2 proposes (z1 − c, 1− z1 + c), which she accepts. Thus
no deviation increases her payoff.

Subgame starting with response by player 2 Denote by (x1, x2) the proposal to
which player 2 is responding. Her strategy calls for her to accept this pro-
posal if and only if x2 ≥ 1 − z1. If she rejects a proposal, she proposes
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(z1 − c1, 1− z1 + c), which player 1 accepts, yielding her the payoff 1 − z1.
Thus no deviation increases her payoff.

Subgame starting with proposal by player 2 If player 2 follows her strategy she
obtains the payoff 1− z1 + c. If she offers player 1 more than z1 − c, player 1
accepts, and player 2 is worse off. If she offers player 1 less than z1 − c,
player 1 rejects her offer and proposes (z1, 1− z1), which she accepts, yield-
ing her the payoff 1− z1 − c. Thus no deviation increases her payoff.

Subgame starting with response by player 1 Denote by (y1, y2) the proposal to
which player 1 is responding. Her strategy calls for her to accept this pro-
posal if and only if y1 ≥ z1 − c. If she rejects a proposal, she proposes
(z1, 1− z1), which player 2 accepts, yielding her the payoff z1 − c. Thus no
deviation increases her payoff.

479.1 One seller–two buyer game with random matching

The buyers are identical, and propose the same price, say b. Denote the price
proposed by the seller by s. The condition for the seller to be indifferent between
accepting and rejecting the proposal b of a buyer is

b = 1
2 δs + 1

2 δb,

as in the case that there is a single buyer. The condition for a buyer to be indifferent
between accepting and rejecting the proposal s of the seller is

v− s = 1
4 δ(v− s) + 1

4 δ(v− b).

Solving these two equations we obtain

b =
δ(2− δ)v

4− 3δ
and s =

(2− δ)2v
4− 3δ

.

When δ is close to 1, both of these prices are close to v.

479.2 One seller–two buyer game with choice of partner

First consider the seller.

Offers If she offers a lower price, it is accepted and she is worse off. If she offers
a higher price, it is rejected. If her partner has valuation H, the partner coun-
terproposes the price δH/(1 + δ), which the seller accepts. If her partner has
valuation L, the partner counterproposes either this price, which the seller
accepts, or a lower price, which the seller rejects, leading the seller to choose
the buyer with valuation H and propose H/(1 + δ) in the next period, which
the buyer accepts. Thus in no case is the seller better off proposing a price
different from H/(1 + δ).
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Responses If she rejects an offer, she selects the buyer with valuation H, who
accepts her proposed price of H/(1 + δ). Thus she optimally rejects any price
less than δH/(1 + δ) and accepts any price greater than δH/(1 + δ).

Choice of partner The buyer with valuation L neither proposes nor accepts any
price greater than those proposed and accepted by the buyer with valuation
H, so the seller optimally selects the buyer with valuation H.

Now consider the buyer with valuation H.

Offers If she proposes δH/(1 + δ), the seller accepts it, and her payoff is H −
δH/(1 + δ). If she proposes a higher price, the seller accepts it, and she
is worse off. If she proposes a lower price, the seller rejects it, continues
bargaining with her, and proposes the price H/(1 + δ), which she accepts,
yielding her the payoff δ(H − H/(1 + δ) = δH − δH/(1 + δ), so that she is
worse off than she is when she proposes the price δH/(1 + δ).

Responses If she rejects an offer, she proposes the price δH/(1 + δ), which the
seller accepts, yielding her the payoff δ(H − δH/(1 + δ)) = δH/(1 + δ).
If she accepts the price H/(1 + δ) she obtains the same payoff (H − H/(1 +
δ) = δH/(1 + δ)). Thus she optimally accepts any price of at most H/(1 + δ).

Finally, consider the buyer with valuation L. First consider the case in which
L ≥ δH/(1 + δ).

Offers If she proposes δH/(1 + δ), the seller accepts it, and her payoff is L −
δH/(1 + δ) ≥ 0. If she proposes a higher price, the seller accepts it, and she
is worse off. If she proposes a lower price, the seller rejects it and switches to
the other buyer; her payoff is 0.

Responses If she rejects an offer, she proposes the price δH/(1 + δ), which the
seller accepts, yielding her the payoff δ(H − δH/(1 + δ)) = δH/(1 + δ).
If she accepts the price H/(1 + δ) she obtains the same payoff (H − H/(1 +
δ) = δH/(1 + δ)). Thus she optimally accepts any price of at most H/(1 + δ).

Now consider the case in which L < δH/(1 + δ).

Offers If she proposes L, the seller rejects it and switches to the other buyer, who
accepts her offer; thus her payoff is 0. If she proposes a higher price, her
payoff is negative if the offer is accepted, so proposing L is optimal.

Responses If she accepts a price greater than L, her payoff is negative. If she
rejects an offer, she proposes L, which the seller rejects; the seller switches to
the other buyer, and her payoff is zero. Thus she optimally accepts any price
of L or less.
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480.1 One seller–two buyer game with public price announcements

First consider the seller.

Offers Her proposed price p∗ is accepted by BH , yielding her the payoff p∗. If
she proposes a higher price, both buyers reject it, and propose the price L;
the seller accepts BH’s proposal, and obtains the payoff δL < p∗.

Responses If she rejects both buyers’ proposals, she proposes p∗, which BH ac-
cepts, yielding her the payoff δp∗, so she should reject prices less than δp∗

and accept prices higher than δp∗.

Now consider buyer BH .

Offers Given δH/(1 + δ) < L, we have δp∗ = δ2L + δ(1 − δ)H < δ2L + (1 −
δ)(1 + δ)L = L, so the seller accepts BH’s proposed price of L, yielding BH

the payoff H− L. If she proposes a lower price, then given the strategy of BL

to offer L, the seller trades with BL, and BH obtains the payoff of 0.

Responses If she rejects a price of at most L, buyer BL subsequently accepts it,
and her payoff is 0.

If she rejects a price from L to δL + (1 − δ)H, buyer BL also rejects it, and
both buyers propose the price L in the next period. The seller accepts BH’s
proposal, yielding BH the payoff δ(H − L). If BH accepts such a price, her
payoff is at least H− δL− (1− δ)H = δ(H− L). Thus her decision to accept
such a price is optimal.

If she rejects a higher price, she obtains δ(H − L), as in the previous case. If
she accepts such a price her payoff is less than δ(H − L). Thus rejection is
optimal.

Finally consider buyer BL.

Offers Her proposed price of L is rejected by the seller (given that BH proposes
the same price), yielding her the payoff 0. If she proposes a higher price, the
seller accepts it, and her payoff is negative.

Responses If she accepts a price greater than L (at the start of a subgame fol-
lowing a rejection of the price by BH), her payoff is negative. If she rejects a
lower price, her payoff is 0, whereas if she accepts such a price her payoff is
positive.

486.1 Implications of PAR, SYM, and IIA

Consider the bargaining problem (U′, d) in which U′ is the triangle with corners
at (0, 0), (0, 2), and (2, 0), and d = (0, 0). This problem is symmetric; the only
agreement compatible with PAR and SYM is (1, 1). Now, U is a subset of U′ that
contains (1, 1), so the only agreement compatible with PAR, SYM, and IIA is (1, 1).
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488.1 Bargaining solutions

a. Suppose that d = (0, 0) and U is the triangle with corners at (0, 0), (0, 1) and
(1, 0). The solution assigns to this problem the point ( 1

2 , 1
2 ). Now suppose

that d′ = (0, 0) and U′ is the triangle with corners at (0, 0), (0, 1) and (2, 0).
The solution assigns to this problem the point ( 2

3 , 2
3 ). But U′ = {(2u1, u2) :

(u1, u2) ∈ U} and d′ = (2d1, d2), so INV requires, given the bargaining
solution of (U, d), that the bargaining solution of (U′, d′) be (1, 1

2 ).

b. Suppose that d = (0, 0) and U is the triangle with corners at (0, 0), (0, 1) and
(1, 0). The solution assigns to this problem the point ( 1

2 , 1
2 ). Now suppose

that d′ = (0, 0) and U′ is the quadrilateral with corners at (0, 0), (0, 1
2 ), ( 1

2 , 1
2 ),

and (1, 0). The solution assigns to this problem the point ( 2
3 , 1

3 ). But d = d′,
U′ ⊂ U, and the solution of (U, d) is in U′, so IIA requires that the solution
of (U′, d) be the same as the solution of (U, d).

488.2 Wage bargaining

The Nash bargaining solution of (U, d) maximizes

( f (`∗)− `∗w)(`∗w + (L− `∗)w0 − Lw0),

or
( f (`∗)− `∗w)`∗(w− w0).

This function is a quadratic in w that is equal to zero when w = f (`∗)/`∗ and when
w = w0. Thus the value of w that maximizes it is

1
2 ( f (`∗)/`∗ + w0),

the average of the average output of a worker and the “outside wage” w0.





17 Appendix: Mathematics

497.1 Maximizer of quadratic function

We have x(α− x) = x(−x + α) = x(ax + b) + c with a = −1, b = α, and c = 0.
Thus its maximizer is − 1

2 b/a = 1
2 α.

499.3 Sums of sequences

In the first case set r = δ2 to transform the sum into 1 + r + r2 + · · ·, which is equal
to 1/(1− r) = 1/(1− δ2).

In the second case split the sum into (1 + δ2 + δ4 + · · ·) + (2δ + 2δ3 + 2δ5 + · · ·);
the first part is equal to 1/(1− δ2) and the second part is equal to 2δ(1 + δ2 + δ4 +
· · ·), or 2δ/(1− δ2). Thus the complete sum is

1 + 2δ

1− δ2 .

504.2 Bayes’ law

Your posterior probability of carrying X given that you test positive is

Pr(positive test|X) Pr(X)
Pr(positive test|X) Pr(X) + Pr(positive test|¬X) Pr(¬X)

where ¬X means “not X”. This probability is equal to 0.9p/(0.9p + 0.2(1− p)) =
0.9p/(0.2 + 0.7p), which is increasing in p (i.e. a smaller value of p gives a smaller
value of the probability). If p = 0.001 then the probability is approximately 0.004.
(That is, if 1 in 1,000 people carry the gene then if you test positive on a test that
is 90% accurate for people who carry the gene and 80% accurate for people who
do not carry the gene, then you should assign probability 0.004 to your carrying
the gene.) If the test is 99% accurate in both cases then the posterior probability is
(0.99 · 0.001)/[0.99 · 0.001 + 0.01 · 0.999] ≈ 0.09.
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