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THE first three sections of this chapter illustrate the notion of subgame perfect
equilibrium in games in which the longest history has length two or three.

The last section studies a game with an arbitrary finite horizon. Some games with
infinite horizons are studied in Chapters 14, 15, and 16.

6.1 The ultimatum game, the holdup game, and agenda control

6.1.1 The ultimatum game

Bargaining over the division of a pie may naturally be modeled as an extensive
game. Here I analyze a very simple game that is the basis of a richer model studied
in Chapter 16. The game is so simple, in fact, that you may not initially think of it
as a model of “bargaining”.

Two people use the following procedure to split $c. Person 1 offers person 2
an amount of money up to $c. If 2 accepts this offer, then 1 receives the remainder
of the $c. If 2 rejects the offer, then neither person receives any payoff. Each per-
son cares only about the amount of money she receives, and (naturally!) prefers to
receive as much as possible.

Assume that the amount person 1 offers can be any number, not necessarily
an integral number of cents. Then the following extensive game, known as the
ultimatum game, models the procedure.

Players The two people.

Terminal histories The set of sequences (x, Z), where x is a number with 0 ≤
x ≤ c (the amount of money that person 1 offers to person 2) and Z is either
Y (“yes, I accept”) or N (“no, I reject”).

Player function P(∅) = 1 and P(x) = 2 for all x.
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Figure 182.1 An illustration of the ultimatum game. The gray triangle represents the continuum of
possible offers of player 1; the black lines indicate the terminal histories that start with the offer x.

Preferences Each person’s preferences are represented by payoffs equal to the
amounts of money she receives. For the terminal history (x, Y) person 1 re-
ceives c − x and person 2 receives x; for the terminal history (x, N) each
person receives 0.

This game is illustrated in Figure 182.1, in which the continuum of offers of
player 1 is represented by the gray triangle, and the black lines indicate the termi-
nal histories that start with the offer x. The game has a finite horizon, so we can
use backward induction to find its subgame perfect equilibria. First consider the
subgames of length 1, in which person 2 either accepts or rejects an offer of per-
son 1. For every possible offer of person 1, there is such a subgame. In the subgame
that follows an offer x of person 1 for which x > 0, person 2’s optimal action is to
accept (if she rejects, she gets nothing). In the subgame that follows the offer x = 0,
person 2 is indifferent between accepting and rejecting. Thus in a subgame perfect
equilibrium person 2’s strategy either accepts all offers (including 0), or accepts all
offers x > 0 and rejects the offer x = 0.

Now consider the whole game. For each possible subgame perfect equilibrium
strategy of person 2, we need to find the optimal strategy of person 1.

• If person 2 accepts all offers (including 0), then person 1’s optimal offer is 0
(which yields her the payoff $c).

• If person 2 accepts all offers except zero, then no offer of person 1 is optimal!
No offer x > 0 is optimal, because the offer x/2 (for example) is better, given
that person 2 accept both offers. And an offer of 0 is not optimal because
person 2 rejects it, leading to a payoff of 0 for person 1, who is thus better off
offering any positive amount less than $c.

We conclude that the only subgame perfect equilibrium of the game is the
strategy pair in which person 1 offers 0 and person 2 accepts all offers. In this
equilibrium, person 1’s payoff is $c and person 2’s payoff is zero.

This one-sided outcome is a consequence of the one-sided structure of the
game. If we allow person 2 to make a counteroffer after rejecting person 1’s open-
ing offer (and possibly allow further responses by both players), so that the model
corresponds more closely to a “bargaining” situation, then under some circum-
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stances the outcome is less one-sided. (An extension of this type is explored in
Chapter 16.)

? EXERCISE 183.1 (Nash equilibria of the ultimatum game) Find the values of x

for which there is a Nash equilibrium of the ultimatum game in which person 1
offers x.

? EXERCISE 183.2 (Subgame perfect equilibria of the ultimatum game with indivis-
ible units) Find the subgame perfect equilibria of the variant of the ultimatum
game in which the amount of money is available only in multiples of a cent.

? EXERCISE 183.3 (Dictator game and impunity game) The “dictator game” differs
from the ultimatum game only in that person 2 does not have the option to reject
person 1’s offer (and thus has no strategic role in the game). The “impunity game”
differs from the ultimatum game only in that person 1’s payoff when person 2
rejects any offer x is c − x, rather than 0. (The game is named for the fact that
person 2 is unable to “punish” person 1 for making a low offer.) Find the subgame
perfect equilibria of each game.

?? EXERCISE 183.4 (Variants of ultimatum game and impunity game with equity-
conscious players) Consider variants of the ultimatum game and impunity game
in which each person cares not only about the amount of money she receives, but
also about the equity of the allocation. Specifically, suppose that person i’s prefer-
ences are represented by the payoff function given by ui(x1, x2) = xi − βi|x1 − x2|,
where xi is the amount of money person i receives, βi > 0, and, for any number z,
|z| denotes the absolute value of z (i.e. |z| = z if z > 0 and |z| = −z if z < 0). As-
sume c = 1. Find the set of subgame perfect equilibria of each game and compare
them. Are there any values of β1 and β2 for which an offer is rejected in equilib-
rium? (An interesting further variant of the ultimatum game in which person 1 is
uncertain about the value of β2 is considered in Exercise 227.1.)

EXPERIMENTS ON THE ULTIMATUM GAME

The sharp prediction of the notion of subgame perfect equilibrium in the ultima-
tum game lends itself to experimental testing. The first test was conducted in the
late 1970s among graduate students of economics in a class at the University of
Cologne (in what was then West Germany). The amount c available varied among
the games played; it ranged from 4 DM to 10 DM (around U.S.$2 to U.S.$5 at the
time). A group of 42 students was split into two groups and seated on different
sides of a room. Each member of one subgroup played the role of player 1 in an
ultimatum game. She wrote down on a form the amount (up to c) that she de-
manded. Her form was then given to a randomly determined member of the other
group, who, playing the role of player 2, either accepted what remained of the
amount c or rejected it (in which case neither player received any payoff). Each
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player had 10 minutes to make her decision. The entire experiment was repeated
a week later. (Güth, Schmittberger, and Schwarze 1982.)

In the first experiment the average demand by people playing the role of
player 1 was 0.65c, and in the second experiment it was 0.69c, much less than
the amount c or c − 0.01 predicted by the notion of subgame perfect equilibrium
(0.01 DM was the smallest monetary unit; see Exercise 183.2). Almost 20% of offers
were rejected over the two experiments, including one of 3 DM (out of a pie of
7 DM) and five of around 1 DM (out of pies of between 4 DM and 6 DM). Many
other experiments, including one in which the amount of money to be divided was
much larger (Hoffman, McCabe, and Smith 1996), have produced similar results.
In brief, the results do not accord well with the predictions of subgame perfect
equilibrium.

Or do they? Each player in the ultimatum game cares only about the amount of
money she receives. But an experimental subject may care also about the amount of
money her opponent receives. Further, a variant of the ultimatum game in which
the players are equity conscious has subgame perfect equilibria in which offers are
significant (as you will have discovered if you did Exercise 183.4).

However, if people are equity conscious in the strategic environment of the
ultimatum game, they are presumably equity conscious also in related environ-
ments; an explanation of the experimental results in the ultimatum game based on
the players’ preferences’ exhibiting equity conscience is not convincing if it applies
only to that environment. Several related games have been studied, among them
the dictator game and the impunity game (Exercise 183.3). In the subgame per-
fect equilibria of these games, player 1 offers 0; in a variant in which the players
are equity conscious, player 1’s offers are no higher than they are in the analogous
variant of the ultimatum game, and, for moderate degrees of equity conscience, are
lower (see Exercise 183.4). These features of the equilibria are broadly consistent
with the experimental evidence on dictator, impunity, and ultimatum games (see,
for example, Forsythe, Horowitz, Savin, and Sefton 1994, Bolton and Zwick 1995,
and Güth and Huck 1997).

One feature of the experimental results is inconsistent with subgame perfect
equilibrium even when players are equity conscious (at least given the form of
the payoff functions in Exercise 183.4): positive offers are sometimes rejected. The
equilibrium strategy of an equity-conscious player 2 in the ultimatum game re-
jects inequitable offers, but, knowing this, player 1 does not, in equilibrium, make
such an offer. To generate rejections in equilibrium we need to further modify
the model by assuming that people differ in their degree of equity conscience,
and that player 1 does not know the degree of equity conscience of player 2 (see
Exercise 227.1).

An alternative explanation of the experimental results focuses on player 2’s
behavior. The evidence is consistent with player 1’s significant offers in the ulti-
matum game being driven by a fear that player 2 will reject small offers—a fear
that is rational, because small offers are often rejected. Why does player 2 behave
in this way? One argument is that in our daily lives, we use “rules of thumb”
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that work well in the situations in which we are typically involved; we do not
calculate our rational actions in each situation. Further, we are not typically in-
volved in one-shot situations with the structure of the ultimatum game. Instead,
we usually engage in repeated interactions, where it is advantageous to “punish”
a player who makes a paltry offer, and to build a reputation for not accepting
such offers. Experimental subjects may apply such rules of thumb rather than
carefully thinking through the logic of the game, and thus reject low offers in an
ultimatum game but accept them in an impunity game, where rejection does not
affect the proposer. The experimental evidence so far collected is broadly consis-
tent with both this explanation and the explanation based on the nature of players’
preferences.

? EXERCISE 185.1 (Bargaining over two indivisible objects) Consider a variant of the
ultimatum game, with indivisible units. Two people use the following procedure
to allocate two desirable identical indivisible objects. One person proposes an al-
location (both objects go to person 1, both go to person 2, one goes to each person),
which the other person then either accepts or rejects. In the event of rejection,
neither person receives either object. Each person cares only about the number
of objects she obtains. Construct an extensive game that models this situation and
find its subgame perfect equilibria. Does the game have any Nash equilibrium that
is not a subgame perfect equilibrium? Is there any outcome that is generated by a
Nash equilibrium but not by any subgame perfect equilibrium?

?? EXERCISE 185.2 (Dividing a cake fairly) Two players use the following procedure
to divide a cake. Player 1 divides the cake into two pieces, and then player 2
chooses one of the pieces; player 1 obtains the remaining piece. The cake is contin-
uously divisible (no lumps!), and each player likes all parts of it.

a. Suppose that the cake is perfectly homogeneous, so that each player cares
only about the size of the piece of cake she obtains. How is the cake divided
in a subgame perfect equilibrium?

b. Suppose that the cake is not homogeneous: the players evaluate different
parts of it differently. Represent the cake by the set C, so that a piece of
the cake is a subset P of C. Assume that if P is a subset of P′ not equal to
P′ (smaller than P′), then each player prefers P′ to P. Assume also that the
players’ preferences are continuous: if a player prefers P to its complement
(the remainder of the cake), then there is a subset P′ of P not equal to P such
that the player prefers P′ to its complement. Let (P1, P2) (where P1 and P2
together constitute the whole cake C) be the division chosen by player 1 in a
subgame perfect equilibrium of the divide-and-choose game, where P2 is the
piece chosen by player 2. Show that player 2 is indifferent between P1 and
P2, and player 1 likes P1 at least as much as P2. Give an example in which
player 1 prefers P1 to P2.
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6.1.2 The holdup game

Before engaging in an ultimatum game in which she may accept or reject an offer of
person 1, person 2 takes an action that affects the size c of the pie to be divided. She
may exert little effort, resulting in a small pie, of size cL, or great effort, resulting
in a large pie, of size cH. She dislikes exerting effort. Specifically, assume that her
payoff is x − E if her share of the pie is x, where E = L if she exerts little effort and
E = H > L if she exerts great effort. The extensive game that models this situation
is known as the holdup game.

? EXERCISE 186.1 (Holdup game) Formulate the holdup game precisely. (Write
down the set of players, the set of terminal histories, the player function, and the
players’ preferences.)

What is the subgame perfect equilibrium of the holdup game? Each subgame
that follows person 2’s choice of effort is an ultimatum game, and thus has a unique
subgame perfect equilibrium, in which person 1 offers 0 and person 2 accepts all
offers. Now consider person 2’s choice of effort at the start of the game. If she
chooses L, then her payoff, given the outcome in the following subgame, is −L,
whereas if she chooses H, then her payoff is −H. Consequently she chooses L.
Thus the game has a unique subgame perfect equilibrium, in which person 2 exerts
little effort and person 1 obtains all of the resulting small pie.

This equilibrium does not depend on the values of cL, cH , L, and H (given that
H > L). In particular, even if cH is much larger than cL, but H is only slightly larger
than L, person 2 exerts little effort in the equilibrium, although both players could
be much better off if person 2 were to exert great effort (which, in this case, is not
very great) and person 2 were to obtain some of the extra pie. No such superior
outcome is sustainable in an equilibrium because person 2, having exerted great
effort, may be “held up” for the entire pie by person 1.

This result does not depend sensitively on the extreme subgame perfect equi-
librium outcome of the ultimatum game. A similar result emerges when the bar-
gaining following person 2’s choice of effort generates a more equal division of the
pie. By exerting great effort, player 2 increases the size of the pie. The point is
that if the negotiation results in some (not necessarily all) of this extra pie going to
player 1, then for some values of player 2’s cost of exerting great effort less than the
value of the extra pie, player 2 prefers to exert little effort. In these circumstances,
player 2’s exerting great effort generates outcomes in which both players are better
off than they are when player 2 exerts little effort, but because the bargaining puts
some of the extra pie in the hands of player 1, player 2’s incentive is to exert little
effort.

6.1.3 Agenda control

In some legislatures, proposals for modifications of the law are formulated by
committees. Under a “closed rule”, the legislature may either accept or reject a
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proposed modification, but may not propose an alternative; in the event of rejec-
tion, the existing law is unchanged. That is, the committee controls the “agenda”.
(In Section 10.9 I consider a reason why a legislature might cede such power to a
committee.)

Model an outcome as a number y. Assume that the legislature and commit-
tee have favorite outcomes that may differ, and that the preferences of each body
are represented by a single-peaked payoff function symmetric about its favorite
outcome, like the voters’ preferences in Hotelling’s model of electoral competition
(see Figure 71.1). Assign numbers to outcomes so that the legislature’s favorite
outcome is 0; denote the committee’s favorite outcome by yc > 0. Then the fol-
lowing variant of the ultimatum game models the procedure. The players are the
committee and the legislature. The committee proposes an outcome y, which the
legislature either accepts or rejects. In the event of rejection the outcome is y0, the
“status quo”. Note that the main respect in which this game differs from the ulti-
matum game is that the players’ preferences are diametrically opposed only with
regard to outcomes between 0 and yc; if y′ < y′′ < 0 or yc < y′′ < y′, then both
players prefer y′′ to y′.

? EXERCISE 187.1 (Agenda control) Find the subgame perfect equilibrium of this
game as a function of the status quo outcome y0. Show, in particular, that for a
range of values of y0, an increase in the value of y0 leads to a decrease in the value
of the equilibrium outcome.

6.2 Stackelberg’s model of duopoly

6.2.1 General model

In the models of oligopoly in Sections 3.1 and 3.2, each firm chooses its action not
knowing the other firms’ actions. How do the conclusions change when the firms
move sequentially? Is a firm better off moving before or after the other firms?

In this section I consider a market in which there are two firms, both producing
the same good. Firm i’s cost of producing qi units of the good is Ci(qi); the price at
which output is sold when the total output is Q is Pd(Q). (In Section 3.1 I denote
this function P; here I add a d subscript to avoid a conflict with the player function
of the extensive game.) Each firm’s strategic variable is output, as in Cournot’s
model (Section 3.1), but the firms make their decisions sequentially, rather than
simultaneously: one firm chooses its output, then the other firm does so, knowing
the output chosen by the first firm.

We can model this situation by the following extensive game, known as Stack-

elberg’s duopoly game (after an early analyst of duopoly with asynchronous
actions).

Players The two firms.

Terminal histories The set of all sequences (q1, q2) of outputs for the firms
(where each qi, the output of firm i, is a nonnegative number).
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Player function P(∅) = 1 and P(q1) = 2 for all q1.

Preferences The payoff of firm i to the terminal history (q1, q2) is its profit
qiPd(q1 + q2)− Ci(qi), for i = 1, 2.

Firm 1 moves at the start of the game. Thus a strategy of firm 1 is simply an
output. Firm 2 moves after every history in which firm 1 chooses an output. Thus a
strategy of firm 2 is a function that associates an output for firm 2 with each possible
output of firm 1.

The game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria.

• First, for any output of firm 1, we find the outputs of firm 2 that maximize
its profit. Suppose that for each output q1 of firm 1 there is one such output
of firm 2; denote it b2(q1). Then in any subgame perfect equilibrium, firm 2’s
strategy is b2.

• Next, we find the outputs of firm 1 that maximize its profit, given the strategy

of firm 2. When firm 1 chooses the output q1, firm 2 chooses the output b2(q1),
resulting in a total output of q1 + b2(q1), and hence a price of Pd(q1 + b2(q1)).
Thus firm 1’s output in a subgame perfect equilibrium is a value of q1 that
maximizes

q1Pd(q1 + b2(q1))− C1(q1). (188.1)

Suppose that there is one such value of q1; denote it q∗1 .

We conclude that if firm 2 has a unique best response b2(q1) to each output q1 of
firm 1, and firm 1 has a unique best action q∗1 , given firm 2’s best responses, then the
subgame perfect equilibrium of the game is (q∗1 , b2): firm 1’s equilibrium strategy
is q∗1 and firm 2’s equilibrium strategy is the function b2. The output chosen by
firm 2, given firm 1’s equilibrium strategy, is b2(q

∗
1); denote this output q∗2 .

When firm 1 chooses any output q1, the outcome, given that firm 2 uses its
equilibrium strategy, is the pair of outputs (q1, b2(q1)). That is, as firm 1 varies
its output, the outcome varies along firm 2’s best response function b2. Thus we
can characterize the subgame perfect equilibrium outcome (q∗1 , q∗2) as the point on
firm 2’s best response function that maximizes firm 1’s profit.

6.2.2 Example: constant unit cost and linear inverse demand

Suppose that Ci(qi) = cqi for i = 1, 2, and

Pd(Q) =

{
α − Q if Q ≤ α

0 if Q > α,
(188.2)

where c > 0 and c < α (as in the example of Cournot’s duopoly game in Sec-
tion 3.1.3). We found that under these assumptions firm 2 has a unique best re-
sponse to each output q1 of firm 1, given by

b2(q1) =

{ 1
2 (α − c − q1) if q1 ≤ α − c

0 if q1 > α − c.
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Thus in a subgame perfect equilibrium of Stackelberg’s game firm 2’s strategy is
this function b2 and firm 1’s strategy is the output q1 that maximizes

q1(α − c − (q1 +
1
2 (α − c − q1))) =

1
2 q1(α − c − q1)

(refer to (188.1)). This function is a quadratic in q1 that is zero when q1 = 0 and
when q1 = α − c. Thus its maximizer is q1 = 1

2 (α − c).
We conclude that the game has a unique subgame perfect equilibrium, in which

firm 1’s strategy is the output 1
2 (α − c) and firm 2’s strategy is b2. The outcome

of the equilibrium is that firm 1 produces the output q∗1 = 1
2 (α − c) and firm 2

produces the output q∗2 = b2(q
∗
1) = b2(

1
2 (α − c)) = 1

2 (α − c − 1
2 (α − c)) =

1
4 (α − c). Firm 1’s profit is q∗1(Pd(q

∗
1 + q∗2) − c) = 1

8 (α − c)2, and firm 2’s profit
is q∗2(Pd(q

∗
1 + q∗2) − c) = 1

16 (α − c)2. By contrast, in the unique Nash equilibrium
of Cournot’s (simultaneous-move) game under the same assumptions, each firm
produces 1

3 (α − c) units of output and obtains the profit 1
9 (α − c)2. Thus under

our assumptions firm 1 produces more output and obtains more profit in the sub-
game perfect equilibrium of the sequential game in which it moves first than it
does in the Nash equilibrium of Cournot’s game, and firm 2 produces less output
and obtains less profit.

? EXERCISE 189.1 (Stackelberg’s duopoly game with quadratic costs) Find the sub-
game perfect equilibrium of Stackelberg’s duopoly game when Ci(qi) = q2

i for
i = 1, 2, and Pd(Q) = α − Q for all Q ≤ α (with Pd(Q) = 0 for Q > α). Compare
the equilibrium outcome with the Nash equilibrium of Cournot’s game under the
same assumptions (Exercise 59.1).

6.2.3 Properties of subgame perfect equilibrium

First-mover’s equilibrium profit In the example just studied, the first-mover is bet-
ter off in the subgame perfect equilibrium of Stackelberg’s game than it is in the
Nash equilibrium of Cournot’s game. A weak version of this result holds under
very general conditions: for any cost and inverse demand functions for which
firm 2 has a unique best response to each output of firm 1, firm 1 is at least as
well off in any subgame perfect equilibrium of Stackelberg’s game as it is in any
Nash equilibrium of Cournot’s game. This result follows from the general result
in Exercise 177.3a. The argument is simple. One of firm 1’s options in Stackel-
berg’s game is to choose its output in some Nash equilibrium of Cournot’s game.
If it chooses such an output, then firm 2’s best action is to choose its output in the
same Nash equilibrium, given the assumption that it has a unique best response
to each output of firm 1. Thus by choosing such an output, firm 1 obtains its profit
at a Nash equilibrium of Cournot’s game; by choosing a different output it may
possibly obtain a higher payoff.

Equilibrium outputs In the example in the previous section (6.2.2), firm 1 produces
more output in the subgame perfect equilibrium of Stackelberg’s game than it does
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q1 →

↑
q2

q∗1q10

q∗2

q2

b1

b2

Gray curves:
constant-profit curves

of firm 1
(lower curve ⇒

higher profit)

Figure 190.1 The subgame perfect equilibrium outcome (q∗1 , q∗2) of Stackelberg’s game and the Nash
equilibrium (q1, q2) of Cournot’s game. Along each gray curve, firm 1’s profit is constant; the lower
curve corresponds to higher profit than does the upper curve. Each curve has a slope of zero where it
crosses firm 1’s best response function b1.

in the Nash equilibrium of Cournot’s game, and firm 2 produces less. A weak form
of this result holds whenever firm 2’s best response function is decreasing where it
is positive (i.e. a higher output for firm 1 implies a lower optimal output for firm 2).

The argument is illustrated in Figure 190.1. The firms’ best response functions
are the curves labeled b1 (dashed) and b2. The Nash equilibrium of Cournot’s
game is the intersection (q1, q2) of these curves. Along each gray curve, firm 1’s
profit is constant; the lower curve corresponds to a higher profit. (For any given
value of firm 1’s output, a reduction in the output of firm 2 increases the price
and thus increases firm 1’s profit.) Each constant-profit curve of firm 1 is horizon-
tal where it crosses firm 1’s best response function, because the best response is
precisely the output that maximizes firm 1’s profit, given firm 2’s output. (Cf. Fig-
ure 61.1.) Thus the subgame perfect equilibrium outcome—the point on firm 2’s
best response function that yields the highest profit for firm 1—is the point (q∗1 , q∗2)
in Figure 190.1. In particular, given that the best response function of firm 2 is
downward sloping, firm 1 produces at least as much, and firm 2 produces at most
as much, in the subgame perfect equilibrium of Stackelberg’s game as in the Nash
equilibrium of Cournot’s game.

For some cost and demand functions, firm 2’s output in a subgame perfect
equilibrium of Stackelberg’s game is zero. An example is shown in Figure 191.1.
The discontinuity in firm 2’s best response function at q∗1 in this example may arise
because firm 2 incurs a “fixed” cost—a cost independent of its output—when it
produces a positive output (see Exercise 59.2). When firm 1’s output is q∗1 , firm 2’s
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q1 →

↑
q2

q̂2

q∗1q̂10

b2

b1

Gray curves:
constant-profit curves

of firm 1

Figure 191.1 The subgame perfect equilibrium output q∗1 of firm 1 in Stackelberg’s sequential game
when firm 2 incurs a fixed cost. Along each gray curve, firm 1’s profit is constant; the lower curve
corresponds to higher profit than does the upper curve.

maximal profit is zero, which it obtains both when it produces no output (and does
not pay the fixed cost) and when it produces the output q̂2. When firm 1 produces
less than q∗1 , firm 2’s maximal profit is positive, and firm 2 optimally produces a
positive output; when firm 1 produces more than q∗1 , firm 2 optimally produces no
output. Given this form of firm 2’s best response function and the form of firm 1’s
constant-profit curves in Figure 190.1, the point on firm 2’s best response function
that yields firm 1 the highest profit is (q∗1 , 0).

I claim that this example has a unique subgame perfect equilibrium, in which
firm 1 produces q∗1 and firm 2’s strategy coincides with its best response function
except at q∗1 , where the strategy specifies the output 0. The output firm 2’s equilib-
rium strategy specifies after each history must be a best response to firm 1’s output,
so the only question regarding firm 2’s strategy is whether it specifies an output
of 0 or q̂2 when firm 1’s output is q∗1 . The argument that there is no subgame per-
fect equilibrium in which firm 2’s strategy specifies the output q̂2 is similar to the
argument that there is no subgame perfect equilibrium in the ultimatum game in
which person 2 rejects the offer 0. If firm 2 produces the output q̂2 in response to
firm 1’s output q∗1 , then firm 1 has no optimal output: it would like to produce a
little more than q∗1 , inducing firm 2 to produce zero, but is better off the closer its
output is to q∗1 . Because there is no smallest output greater than q∗1 , no output is
optimal for firm 1 in this case. Thus the game has no subgame perfect equilibrium
in which firm 2’s strategy specifies the output q̂2 in response to firm 1’s output q∗1 .

Note that if firm 2 were entirely absent from the market, firm 1 would pro-
duce q̂1, less than q∗1 . Thus firm 2’s presence affects the outcome, even though it
produces no output.

? EXERCISE 191.1 (Stackelberg’s duopoly game with fixed costs) Suppose that the
inverse demand function is given by (188.2) and the cost function of each firm i is
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given by

Ci(qi) =

{
0 if qi = 0
f + cqi if qi > 0,

where c ≥ 0, f > 0, and c < α, as in Exercise 59.2. Show that if c = 0, α =
12, and f = 4, Stackelberg’s game has a unique subgame perfect equilibrium, in
which firm 1’s output is 8 and firm 2’s output is zero. (Use your results from
Exercise 59.2).

The value of commitment Firm 1’s output in a subgame perfect equilibrium of
Stackelberg’s game is not in general a best response to firm 2’s output: if firm 1
could adjust its output after firm 2 has chosen its output, then it would do so! (In
the case shown in Figure 190.1, it would reduce its output.) However, if firm 1 had
this opportunity, and firm 2 knew that it had the opportunity, then firm 2 would
choose a different output. Indeed, if we simply add a third stage to the game, in
which firm 1 chooses an output, then the first stage is irrelevant, and firm 2 is effec-
tively the first-mover; in the subgame perfect equilibrium firm 1 is worse off than
it is in the Nash equilibrium of the simultaneous-move game. (In the example in
Section 6.2.2, the unique subgame perfect equilibrium has firm 2 choose the output
(α− c)/2 and firm 1 choose the output (α− c)/4.) In summary, even though firm 1
can increase its profit by changing its output after firm 2 has chosen its output, in
the game in which it has this opportunity it is worse off than it is in the game in
which it must choose its output before firm 2 and cannot subsequently modify this
output. That is, firm 1 prefers to be committed not to change its mind.

? EXERCISE 192.1 (Sequential variant of Bertrand’s duopoly game) Consider the
variant of Bertrand’s duopoly game (Section 3.2) in which first firm 1 chooses a
price, then firm 2 chooses a price. Assume that each firm is restricted to choose a
price that is an integral number of cents (as in Exercise 67.2), that each firm’s unit
cost is constant and equal to c (an integral number of cents), and that the monopoly
profit is positive.

a. Specify an extensive game with perfect information that models this situation.

b. Give an example of a strategy of firm 1 and an example of a strategy of firm 2.

c. Find the subgame perfect equilibria of the game.

6.3 Buying votes

A legislature has k members, where k is an odd number. Two rival bills, X and
Y, are being considered. The bill that attracts the votes of a majority of legislators
will pass. Interest group X favors bill X, whereas interest group Y favors bill Y.
Each group wishes to entice a majority of legislators to vote for its favorite bill.
First interest group X gives an amount of money (possibly zero) to each legislator,
then interest group Y does so. Each interest group wishes to spend as little as
possible. Group X values the passing of bill X at $VX > 0 and the passing of bill Y
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at zero, and group Y values the passing of bill Y at $VY > 0 and the passing of
bill X at zero. (For example, group X is indifferent between an outcome in which
it spends VX and bill X is passed and one in which it spends nothing and bill Y is
passed.) Each legislator votes for the favored bill of the interest group that offers
her the most money; a legislator to whom both groups offer the same amount of
money votes for bill Y (an arbitrary assumption that simplifies the analysis without
qualitatively changing the outcome). For example, if k = 3, the amounts offered to
the legislators by group X are x = (100, 50, 0), and the amounts offered by group Y

are y = (100, 0, 50), then legislators 1 and 3 vote for Y and legislator 2 votes for X,
so that Y passes. (In some actual legislatures the inducements offered to legislators
are more subtle than cash transfers.)

We can model this situation as the following extensive game.

Players The two interest groups, X and Y.

Terminal histories The set of all sequences (x, y), where x is a list of payments to
legislators made by interest group X and y is a list of payments to legislators
made by interest group Y. (That is, both x and y are lists of k nonnegative
integers.)

Player function P(∅) = X and P(x) = Y for all x.

Preferences The preferences of interest group X are represented by the payoff
function {

VX − (x1 + · · ·+ xk) if bill X passes
−(x1 + · · ·+ xk) if bill Y passes,

where bill Y passes after the terminal history (x, y) if and only if the number
of components of y that are at least equal to the corresponding components
of x is at least 1

2 (k + 1) (a bare majority of the k legislators). The prefer-
ences of interest group Y are represented by the analogous function (where
VY replaces VX , y replaces x, and Y replaces X).

Before studying the subgame perfect equilibria of this game for arbitrary values
of the parameters, consider two examples. First suppose that k = 3 and VX =
VY = 300. Under these assumptions, the most group X is willing to pay to get
bill X passed is 300. For any payments it makes to the three legislators that sum to
at most 300, two of the payments sum to at most 200, so that if group Y matches
these payments it spends less than VY (= 300) and gets bill Y passed. Thus in
any subgame perfect equilibrium group X makes no payments, group Y makes no
payments, and (given the tie-breaking rule) bill Y is passed.

Now suppose that k = 3, VX = 300, and VY = 100. In this case by paying
each legislator more than 50, group X makes matching payments by group Y un-
profitable: only by spending more than VY (= 100) can group Y cause bill Y to
be passed. However, there is no subgame perfect equilibrium in which group X

pays each legislator more than 50 because it can always pay a little less (as long
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as the payments still exceed 50) and still prevent group Y from profitably match-
ing. In the only subgame perfect equilibrium group X pays each legislator ex-
actly 50 and group Y makes no payments. Given group X’s action, group Y is
indifferent between matching X’s payments (so that bill Y is passed) and mak-
ing no payments. However, there is no subgame perfect equilibrium in which
group Y matches group X’s payments because if this were group Y’s response,
then group X could increase its payments a little, making matching payments by
group Y unprofitable.

For arbitrary values of the parameters, the subgame perfect equilibrium out-
come takes one of the forms in these two examples: either no payments are made
and bill Y is passed, or group X makes payments that group Y does not wish to
match, group Y makes no payments, and bill X is passed.

To find the subgame perfect equilibria in general, we may use backward induc-
tion. First consider group Y’s best response to an arbitrary strategy x of group X.
Let µ = 1

2 (k + 1), a bare majority of k legislators, and denote by mx the sum of the
smallest µ components of x—the total payments Y needs to make to buy off a bare
majority of legislators.

• If mx < VY, then group Y can buy off a bare majority of legislators for less
than VY, so that its best response to x is to match group X’s payments to the
µ legislators to whom group X’s payments are smallest; the outcome is that
bill Y is passed.

• If mx > VY, then the cost to group Y of buying off any majority of legislators
exceeds VY , so that group Y’s best response to x is to make no payments; the
outcome is that bill X is passed.

• If mx = VY, then both the actions in the previous two cases are best responses
by group Y to x.

We conclude that group Y’s strategy in a subgame perfect equilibrium has the
following properties.

• After a history x for which mx < VY, group Y matches group X’s payments
to the µ legislators to whom X’s payments are smallest.

• After a history x for which mx > VY, group Y makes no payments.

• After a history x for which mx = VY, group Y either makes no payments or
matches group X’s payments to the µ legislators to whom X’s payments are
smallest.

Given that group Y’s subgame perfect equilibrium strategy has these proper-
ties, what should group X do? If it chooses a list of payments x for which mx < VY,
then group Y matches its payments to a bare majority of legislators, and bill Y

passes. If it reduces all its payments, the same bill is passed. Thus the only list of
payments x with mx < VY that may be optimal is (0, . . . , 0). If it chooses a list of
payments x with mx > VY, then group Y makes no payments, and bill X passes.
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If it reduces all its payments a little (keeping the payments to every bare majority
greater than VY), the outcome is the same. Thus no list of payments x for which
mx > VY is optimal.

We conclude that in any subgame perfect equilibrium we have either x =
(0, . . . , 0) (group X makes no payments) or mx = VY (the smallest sum of group X’s
payments to a bare majority of legislators is VY). Under what conditions does each
case occur? If group X needs to spend more than VX to deter group Y from match-
ing its payments to a bare majority of legislators, then its best strategy is to make
no payments (x = (0, . . . , 0)). How much does it need to spend to deter group Y?
It needs to pay more than VY to every bare majority of µ legislators, so that its total
payment is more than kVY/µ. Thus if VX < kVY/µ, group X is better off making
no payments than getting bill X passed by making payments large enough to deter
group Y from matching its payments to a bare majority of legislators.

If VX > kVY/µ, on the other hand, group X can afford to make payments large
enough to deter group Y from matching. In this case its best strategy is to pay
each legislator VY/µ, so that its total payment to every bare majority of legislators
is VY . Given this strategy, group Y is indifferent between matching group X’s
payments to a bare majority of legislators and making no payments. I claim that
the game has no subgame perfect equilibrium in which group Y matches. The
argument is similar to the argument that the ultimatum game has no subgame
perfect equilibrium in which person 2 rejects the offer 0. Suppose that group Y

matches. Then group X can increase its payoff by increasing its payments a little
(keeping the total less than VX), thereby deterring group Y from matching, and
ensuring that bill X passes. Thus in any subgame perfect equilibrium group Y

makes no payments in response to group X’s strategy.
In conclusion, if VX 6= kVY/µ, then the game has a unique subgame perfect

equilibrium, in which group Y’s strategy is to

• match group X’s payments to the µ legislators to whom X’s payments are
smallest after a history x for which mx < VY, and

• make no payments after a history x for which mx ≥ VY

and group X’s strategy depends on the relative sizes of VX and VY:

• if VX < kVY/µ, then group X makes no payments;

• if VX > kVY/µ, then group X pays each legislator VY/µ.

If VX < kVY/µ, then the outcome is that neither group makes any payment, and
bill Y is passed; if VX > kVY/µ, then the outcome is that group X pays each leg-
islator VY/µ, group Y makes no payments, and bill X is passed. (If VX = kVY/µ,
then the analysis is more complex.)

Three features of the subgame perfect equilibrium are significant. First, the out-
come favors the second-mover in the game (group Y): only if VX > kVY/µ, which
is close to 2VY when k is large, does group X manage to get bill X passed. Second,
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group Y never makes any payments! According to its equilibrium strategy it is
prepared to make payments in response to certain strategies of group X, but given
group X’s equilibrium strategy, it spends not a cent. Third, if group X makes any
payments (as it does in the equilibrium for VX > kVY/µ), then it makes a payment
to every legislator. If there were no competing interest group but nonetheless each
legislator would vote for bill X only if she were paid at least some amount, then
group X would make payments to only a bare majority of legislators; if it were to
act in this way in the presence of group Y, it would supply group Y with almost a
majority of legislators who could be induced to vote for bill Y at no cost.

? EXERCISE 196.1 (Three interest groups buying votes) Consider a variant of the
model in which there are three bills, X, Y, and Z, and three interest groups, X, Y,
and Z, who choose lists of payments sequentially. Ties are broken in favor of the
group moving later. Assume that if each bill obtains the vote of one legislator, then
bill X passes. Find the bill passed in any subgame perfect equilibrium when k = 3
and (a) VX = VY = VZ = 300, (b) VX = 300, VY = VZ = 100, and (c) VX = 300,
VY = 202, VZ = 100. (You may assume that in each case a subgame perfect equi-
librium exists; note that you are not asked to find the subgame perfect equilibria
themselves.)

? EXERCISE 196.2 (Interest groups buying votes under supermajority rule) Consider
another variant of the model in which a supermajority is required to pass a bill.
There are two bills, X and Y, and a “default outcome”. A bill passes if and only if
it receives at least k∗ > 1

2 (k + 1) votes; if neither bill passes, the default outcome
occurs. There are two interest groups. Both groups attach value 0 to the default
outcome. Find the bill that is passed in any subgame perfect equilibrium when
k = 7, k∗ = 5, and (a) VX = VY = 700 and (b) VX = 750, VY = 400. In each case,
would the legislators be better off or worse off if a simple majority of votes were
required to pass a bill?

? EXERCISE 196.3 (Sequential positioning by two political candidates) Consider the
variant of Hotelling’s model of electoral competition in Section 3.3 in which the n

candidates choose their positions sequentially, rather than simultaneously. Model
this situation as an extensive game. Find the subgame perfect equilibrium (equi-
libria?) when n = 2.

?? EXERCISE 196.4 (Sequential positioning by three political candidates) Consider a
further variant of Hotelling’s model of electoral competition in which the n can-
didates choose their positions sequentially and each candidate has the option of
staying out of the race. Assume that each candidate prefers to stay out than to
enter and lose, prefers to enter and tie with any number of candidates than to stay
out, and prefers to tie with as few other candidates as possible. Model the situ-
ation as an extensive game and find the subgame perfect equilibrium outcomes
when n = 2 (easy) and when n = 3 and the voters’ favorite positions are dis-
tributed uniformly from 0 to 1 (i.e. the fraction of the voters’ favorite positions less
than x is x) (hard).
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6.4 A race

6.4.1 General model

Firms compete with each other to develop new technologies; authors compete with
each other to write books and film scripts about momentous current events; scien-
tists compete with each other to make discoveries. In each case the winner enjoys
a significant advantage over the losers, and each competitor can, at a cost, increase
her pace of activity. How do the presence of competitors and size of the prize affect
the pace of activity? How does the identity of the winner of the race depend on
each competitor’s initial distance from the finish line?

We can model a race as an extensive game with perfect information in which
the players alternately choose how many “steps” to take. Here I study a simple
example of such a game, with two players.

Player i is initially ki > 0 steps from the finish line, for i = 1, 2. On each of her
turns, a player can either not take any steps (at a cost of 0), or can take one step, at
a cost of c(1), or two steps, at a cost of c(2). The first player to reach the finish line
wins a prize, worth vi > 0 to player i; the losing player’s payoff is 0. To make the
game finite, I assume that if, on successive turns, neither player takes any step, the
game ends and neither player obtains the prize.

I denote the game in which player i moves first by Gi(k1, k2). The game
G1(k1, k2) is defined precisely as follows.

Players The two parties.

Terminal histories The set of sequences of the form (x1, y1, x2, y2, . . . , xT) or (x1,
y1, x2, y2, . . . , yT) for some integer T, where each xt (the number of steps
taken by player 1 on her tth turn) and each yt (the number of steps taken
by player 2 on her tth turn) is 0, 1, or 2, there are never two successive 0’s
except possibly at the end of a sequence, and either y1 + · · ·+ yT−1 < k2 and
x1 + · · ·+ xT = k1 (player 1 reaches the finish line first), or x1 + · · ·+ xT < k1
and y1 + · · ·+ yT = k2 (player 2 reaches the finish line first).

Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, y1) = 1 for all (x1, y1),
P(x1, y1, x2) = 2 for all (x1, y1, x2), and so on.

Preferences For a terminal history in which player i loses, her payoff is the neg-
ative of the sum of the costs of all her moves; for a terminal history in which
she wins it is vi minus the sum of these costs.

6.4.2 Subgame perfect equilibria of an example

A simple example illustrates the features of the subgame perfect equilibria of this
game. Suppose that both v1 and v2 are between 6 and 7 (their exact values do not
affect the equilibria), the cost c(1) of a single step is 1, and the cost c(2) of two steps
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is 4. (Given that c(2) > 2c(1), each player, in the absence of a competitor, would
like to take one step at a time.)

The game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria. Each of its subgames is either a game Gi(m1, m2) with
i = 1 or i = 2 and 0 < m1 ≤ k1 and 0 < m2 ≤ k2, or, if the last player to move
before the subgame took no steps, a game that differs from Gi(m1, m2) only in that
it ends if player i initially takes no steps (i.e. the only terminal history starting with
0 consists only of 0).

First consider the very simplest game, G1(1, 1), in which each player is initially
one step from the finish line. If player 1 takes one step, she wins; if she does not
move, then player 2 optimally takes one step (if she does not, the game ends) and
wins. We conclude that the game has a unique subgame perfect equilibrium, in
which player 1 initially takes one step and wins.

A similar argument applies to the game G1(1, 2). If player 1 does not move,
then player 2 has the option of taking one or two steps. If she takes one step, then
play moves to a subgame identical G1(1, 1), in which we have just concluded that
player 1 wins. Thus player 2 takes two steps, and wins, if player 1 does not move
at the start of G1(1, 2). We conclude that the game has a unique subgame perfect
equilibrium, in which player 1 initially takes one step and wins.

Now consider player 1’s options in the game G1(2, 1).

• Player 1 takes two steps: she wins, and obtains a payoff of at least 6 − 4 = 2
(her valuation is more than 6, and the cost of two steps is 4).

• Player 1 takes one step: play moves to a subgame identical to G2(1, 1); we
know that in the equilibrium of this subgame player 2 initially takes one step
and wins.

• Player 1 does not move: play moves to a subgame in which player 2 is the
first-mover and is one step from the finish line, and, if player 2 does not
move, the game ends. In an equilibrium of this subgame, player 2 takes one
step and wins.

We conclude that the game G1(2, 1) has a unique subgame perfect equilibrium, in
which player 1 initially takes two steps and wins.

I have spelled out the details of the analysis of these cases to show how we
use the result for the game G1(1, 1) to find the equilibria of the games G1(1, 2) and
G1(2, 1). In general, the equilibria of the games Gi(k1, k2) for all values of k1 and k2
up to k tell us the consequences of player 1’s taking one or two steps in the game
G1(k + 1, k).

? EXERCISE 198.1 (The race G1(2, 2)) Show that the game G1(2, 2) has a unique sub-
game perfect equilibrium outcome, in which player 1 initially takes two steps, and
wins.
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So far we have concluded that in any game in which each player is initially at
most two steps from the finish line, the first-mover takes enough steps to reach the
finish line, and wins.

Now suppose that player 1 is at most two steps from the finish line, but player 2
is three steps away. Suppose that player 1 takes only one step (even if she is initially
two steps from the finish line). Then if player 2 takes either one or two steps, play
moves to a subgame in which player 1 (the first-mover) wins. Thus player 2 is
better off not moving (and not incurring any cost), in which case player 1 takes
one step on her next turn, and wins. (Player 1 prefers to move one step at a time
than to move two steps initially because the former costs her 2 whereas the latter
costs her 4.) We conclude that the outcome of a subgame perfect equilibrium in the
game G1(2, 3) is that player 1 takes one step on her first turn, then player 2 does
not move, and then player 1 takes another step, and wins.

By a similar argument, in a subgame perfect equilibrium of any game in which
player 1 is at most two steps from the finish line and player 2 is three or more steps
away, player 1 moves one step at a time, and player 2 does not move; player 1 wins.
Symmetrically, in a subgame perfect equilibrium of any game in which player 1 is
three or more steps from the finish line and player 2 is at most two steps away,
player 1 does not move, and player 2 moves one step at a time, and wins.

Our conclusions so far are illustrated in Figure 200.1, where player 1 moves to
the left and player 2 moves down. The values of (k1, k2) for which the subgame
perfect equilibrium outcome has been determined so far are labeled. The label
“1” means that, regardless of who moves first, in a subgame perfect equilibrium
player 1 moves one step on each turn, and player 2 does not move; player 1 wins.
Similarly, the label “2” means that, regardless of who moves first, player 2 moves
one step on each turn, and player 1 does not move; player 2 wins. The label “f”
means that the first player to move takes enough steps to reach the finish line, and
wins.

Now consider the game G1(3, 3). If player 1 takes one step, we reach the game
G2(2, 3). From Figure 200.1 we see that in the subgame perfect equilibrium of this
game player 1 wins, and does so by taking one step at a time (the point (2, 3) is
labeled “1”). If player 1 takes two steps, we reach the game G2(1, 3), in which
player 1 also wins. Player 1 prefers not to take two steps unless she has to, so
in the subgame perfect equilibrium of G1(3, 3) she takes one step at a time, and
wins, and player 2 does not move. Similarly, in a subgame perfect equilibrium of
G2(3, 3), player 2 takes one step at a time, and wins, and player 1 does not move.

A similar argument applies to each of the games Gi(3, 4), Gi(4, 3), and Gi(4, 4)
for i = 1, 2. The argument differs only if the first-mover is four steps from the
finish line, in which case she initially takes two steps to reach a game in which she
wins. (If she initially takes only one step, the other player wins.)

Now consider the game Gi(3, 5) for i = 1, 2. By taking one step in G1(3, 5),
player 1 reaches a game in which she wins by taking one step at a time. The cost of
her taking three steps is less than v1, so in a subgame perfect equilibrium of G1(3, 5)
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Figure 200.1 The subgame perfect equilibrium outcomes of the race Gi(k1, k2). Player 1 moves to
the left, and player 2 moves down. The values of (k1, k2) for which the subgame perfect equilibrium
outcome has been determined so far are labeled; dots represent cases that have not yet been studied.
The labels are explained in the text.

she takes one step at a time, and wins, and player 2 does not move. If player 2 takes
either one or two steps in G2(3, 5), she reaches a game (either G1(3, 4) or G1(3, 3))
in which player 1 wins. Thus whatever she does, she loses, so that in a subgame
perfect equilibrium she does not move and player 1 moves one step at a time.
We conclude that in a subgame perfect equilibrium of both G1(3, 5) and G2(3, 5),
player 1 takes one step on each turn and player 2 does not move; player 1 wins.

A similar argument applies to any game in which one player is initially three
or four steps from the finish line and the other player is five or more steps from the
finish line. We have now made arguments to justify the labeling in Figure 201.1,
where the labels have the same meaning as in Figure 200.1, except that “f” means
that the first player to move takes enough steps to reach the finish line or to reach
the closest point labeled with her name, whichever is closer.

A feature of the subgame perfect equilibrium of the game G1(4, 4) is notewor-
thy. Suppose that, as planned, player 1 takes two steps, but then player 2 de-
viates from her equilibrium strategy and takes two steps (rather than not mov-
ing). According to our analysis, player 1 should take two steps, to reach the finish
line. If she does so, her payoff is negative (less than 7 − 4 − 4 = −1). Neverthe-
less she should definitely take the two steps: if she does not, her payoff is even
smaller (−4), because player 2 wins. The point is that the cost of her first move
is “sunk”; her decision after player 2 deviates must be based on her options from
that point on.

The analysis of the games in which each player is initially either five or six steps
from the finish line involves arguments similar to those used in the previous cases,
with one amendment. A player who is initially six steps from the finish line is
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Figure 201.1 The subgame perfect equilibrium outcomes of the race Gi(k1, k2). Player 1 moves to
the left, and player 2 moves down. The values of (k1, k2) for which the subgame perfect equilibrium
outcome has been determined so far are labeled; dots represent cases that have not yet been studied.
The labels are explained in the text.

better off not moving at all (and obtaining the payoff 0) than she is moving two
steps on any turn (and obtaining a negative payoff). An implication is that in the
game G1(6, 5), for example, player 1 does not move: if she takes only one step, then
player 2 becomes the first-mover and, by taking a single step, moves the play to a
game that she wins. We conclude that the first-mover wins in the games Gi(5, 5)
and Gi(6, 6), whereas player 2 wins in Gi(6, 5) and player 1 wins in Gi(5, 6), for
i = 1, 2.

A player who is initially more than six steps from the finish line obtains a neg-
ative payoff if she moves, even if she wins, so in any subgame perfect equilibrium
she does not move. Thus our analysis of the game is complete. The subgame
perfect equilibrium outcomes are indicated in Figure 202.1, which shows also the
steps taken in the equilibrium of each game when player 1 is the first-mover.

? EXERCISE 201.1 (A race in which the players’ valuations of the prize differ) Find
the subgame perfect equilibrium outcome of the game in which player 1’s val-
uation of the prize is between 6 and 7, and player 2’s valuation is between 4
and 5.

In both of the following exercises, inductive arguments on the length of the
game, like the one for Gi(k1, k2), can be used.

? EXERCISE 201.2 (Removing stones) Two people take turns removing stones from a
pile of n stones. Each person may, on each of her turns, remove either one or two
stones. The person who takes the last stone is the winner; she gets $1 from her op-
ponent. Find the subgame perfect equilibria of the games that model this situation
for n = 1 and n = 2. Find the winner in each subgame perfect equilibrium for
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Figure 202.1 The subgame perfect equilibrium outcomes of the race Gi(k1, k2). Player 1 moves to the
left, and player 2 moves down. The arrows indicate the steps taken in the subgame perfect equilibrium
outcome of the games in which player 1 moves first. The labels are explained in the text.

n = 3, using the fact that the subgame following player 1’s removal of one stone is
the game for n = 2 in which player 2 is the first-mover, and the subgame follow-
ing player 1’s removal of two stones is the game for n = 1 in which player 2 is the
first-mover. Use the same technique to find the winner in each subgame perfect
equilibrium for n = 4, and, if you can, for an arbitrary value of n.

?? EXERCISE 202.1 (Hungry lions) The members of a hierarchical group of hungry
lions face a piece of prey. If lion 1 does not eat the prey, the prey escapes and the
game ends. If it eats the prey, it becomes fat and slow, and lion 2 can eat it. If lion 2
does not eat lion 1, the game ends; if it eats lion 1, then it may be eaten by lion 3,
and so on. Each lion prefers to eat than to be hungry, but prefers to be hungry than
to be eaten. Find the subgame perfect equilibrium (equilibria?) of the extensive
game that models this situation for any number n of lions.

6.4.3 General lessons

Each player’s equilibrium strategy involves a “threat” to speed up if the other
player deviates. Consider, for example, the game G1(3, 3). Player 1’s equilibrium
strategy calls for her to take one step at a time, and player 2’s equilibrium strategy
calls for her not to move. Thus in the equilibrium outcome, player 1’s debt climbs
to 3 (the cost of her three single steps) before she reaches the finish line.

Now suppose that after player 1 takes her first step, player 2 deviates and takes
a step. Then player 1’s strategy calls for her to take two steps, raising her debt to
5. If at no stage can her debt exceed 3 (its maximal level if both players adhere to
their equilibrium strategies), then her strategy cannot embody such threats.
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The general point is that a limit on the debt a player can accumulate may affect
the outcome even if it exceeds the player’s debt in the equilibrium outcome in the
absence of any limits. You are asked to study an example in the next exercise.

? EXERCISE 203.1 (A race with a liquidity constraint) Find the subgame perfect equi-
librium of the variant of the game G1(3, 3) in which player 1’s debt may never
exceed 3.

In the subgame perfect equilibrium of every game Gi(k1, k2), only one player
moves; her opponent “gives up”. This property of equilibrium holds in more gen-
eral games. What added ingredient might lead to an equilibrium in which both
players are active? A player’s uncertainty about the other’s characteristics would
seem to be such an ingredient: if a player does not know the cost of its opponent’s
moves, it may assign a positive probability less than one to its winning, at least
until it has accumulated some evidence of its opponent’s behavior, and while it is
optimistic it may be active even though its rival is also active. To build such con-
siderations into the model we need to generalize the model of an extensive game
to encompass imperfect information, as we do in Chapter 10.

Another robust feature of the subgame perfect equilibrium of Gi(k1, k2) is that
the presence of a competitor has little effect on the speed of the player who moves.
A lone player would move one step at a time. When there are two players, for most
starting points the one that moves does so at the same leisurely pace. Only for a
small number of starting points, in all of which the players’ initial distances from
the starting line are similar, does the presence of a competitor induce the active
player to hasten its progress, and then only in the first period.

Notes

The first experiment on the ultimatum game is reported in Güth, Schmittberger,
and Schwarze (1982). Grout (1984) is an early analysis of a holdup game. The
model of agenda control in legislatures is based on Denzau and Mackay (1983);
Romer and Rosenthal (1978) earlier explored a similar idea. The model in Sec-
tion 6.2 derives its name from the analysis in von Stackelberg (1934, Chapter 4).
The vote-buying game in Section 6.3 is taken from Groseclose and Snyder (1996).
The model of a race in Section 6.4 is a simplification suggested by Vijay Krishna of
a model of Harris and Vickers (1985).

For more discussion of the experimental evidence on the ultimatum game (dis-
cussed in the box on page 183), see Roth (1995). Bolton and Ockenfels (2000) study
the implications of assuming that players are equity conscious, and relate these
implications to the experimental outcomes in various games. The explanation of
the experimental results in terms of rules of thumb is discussed by Aumann (1997,
7–8). The problem of fair division, an example of which is given in Exercise 185.2,
is studied in detail by Brams and Taylor (1996), who trace the idea of divide-and-
choose back to antiquity (p. 10). I have been unable to find the origin of the idea in
Exercise 202.1; Barton Lipman suggested the formulation in the exercise.




