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THE MODEL of a strategic game suppresses the sequential structure of decision-
making. When applying the model to situations in which decision-makers

move sequentially, we assume that each decision-maker chooses her plan of action
once and for all; she is committed to this plan, which she cannot modify as events
unfold. The model of an extensive game, by contrast, describes the sequential
structure of decision-making explicitly, allowing us to study situations in which
each decision-maker is free to change her mind as events unfold.

In this chapter and the next two we study a model in which each decision-
maker is always fully informed about all previous actions. In Chapter 10 we study
a more general model, which allows each decision-maker, when taking an action,
to be imperfectly informed about previous actions.

5.1 Extensive games with perfect information

5.1.1 Definition

To describe an extensive game with perfect information, we need to specify the
set of players and their preferences, as for a strategic game (Definition 13.1). In
addition, we need to specify the order of the players’ moves and the actions each
player may take at each point. We do so by specifying the set of all sequences of
actions that can possibly occur, together with the player who moves at each point
in each sequence. We refer to each possible sequence of actions as a terminal history

and to the function that gives the player who moves at each point in each terminal
history as the player function. That is, an extensive game has four components:

• players

• terminal histories

• player function

• preferences for the players.
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Before giving precise definitions of these components, I give an example that
illustrates them informally.

EXAMPLE 154.1 (Entry game) An incumbent faces the possibility of entry by a
challenger. (The challenger may, for example, be a firm considering entry into
an industry currently occupied by a monopolist, a politician competing for the
leadership of a party, or an animal considering competing for the right to mate
with a congener of the opposite sex.) The challenger may enter or not. If it enters,
the incumbent may either acquiesce or fight.

We may model this situation as an extensive game with perfect information in
which the terminal histories are (In, Acquiesce), (In, Fight), and Out, and the player
function assigns the challenger to the start of the game and the incumbent to the
history In.

At the start of an extensive game, and after any sequence of events, a player
chooses an action. The sets of actions available to the players are not, however,
given explicitly in the description of the game. Instead, the description of the game
specifies the set of terminal histories and the player function, from which we can
deduce the available sets of actions.

In the entry game, for example, the actions available to the challenger at the
start of the game are In and Out, because these actions (and no others) begin ter-
minal histories, and the actions available to the incumbent are Acquiesce and Fight,
because these actions (and no others) follow In in terminal histories. More gener-
ally, suppose that (C, D) and (C, E) are terminal histories and the player function
assigns player 1 to the start of the game and player 2 to the history C. Then two
of the actions available to player 2 after player 1 chooses C at the start of the game
are D and E.

The terminal histories of a game are specified as a set of sequences. But not
every set of sequences is a legitimate set of terminal histories. If (C, D) is a terminal
history, for example, there is no sense in specifying C as a terminal history: the fact
that (C, D) is terminal implies that after C is chosen at the start of the game, some
player may choose D, so that the action C does not end the game. More generally,
a sequence that is a proper subhistory of a terminal history cannot itself be a terminal
history. This restriction is the only one we need to impose on a set of sequences in
order that the set be interpretable as a set of terminal histories.

To state the restriction precisely, define the subhistories of a finite sequence
(a1, a2, . . . , ak) of actions to be the empty sequence consisting of no actions, de-
noted ∅ (the empty history, representing the start of the game), and all sequences
of the form (a1, a2, . . . , am), where 1 ≤ m ≤ k. (In particular, the entire sequence is
a subhistory of itself.) Similarly, define the subhistories of an infinite sequence
(a1, a2, . . .) of actions to be the empty sequence ∅, every sequence of the form
(a1, a2, . . . , am), where m is a positive integer, and the entire sequence (a1, a2, . . .).
A subhistory not equal to the entire sequence is called a proper subhistory. A se-
quence of actions that is a subhistory of some terminal history is called simply a
history.
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In the entry game in Example 154.1, the subhistories of (In, Acquiesce) are the
empty history ∅ and the sequences In and (In, Acquiesce); the proper subhistories
are the empty history and the sequence In.

◮ DEFINITION 155.1 (Extensive game with perfect information) An extensive game

with perfect information consists of

• a set of players

• a set of sequences (terminal histories) with the property that no sequence is
a proper subhistory of any other sequence

• a function (the player function) that assigns a player to every sequence that
is a proper subhistory of some terminal history

• for each player, preferences over the set of terminal histories.

The set of terminal histories is the set of all sequences of actions that may occur;
the player assigned by the player function to any history h is the player who takes
an action after h.

As for a strategic game, we may specify a player’s preferences by giving a pay-

off function that represents them (see Section 1.2.2). In some situations an outcome
is associated with each terminal history, and the players’ preferences are naturally
defined over these outcomes, rather than directly over the terminal histories. For
example, if we are modeling firms choosing prices, then we may think in terms of
each firm’s caring about its profit—the outcome of a profile of prices—rather than
directly about the profile of prices. However, any preferences over outcomes (e.g.
profits) may be translated into preferences over terminal histories (e.g. sequences
of prices). In the general definition, outcomes are conveniently identified with ter-
minal histories and preferences are defined directly over these histories, avoiding
the need for an additional element in the specification of the game.

EXAMPLE 155.2 (Entry game) In the situation described in Example 154.1, suppose
that the best outcome for the challenger is that it enters and the incumbent acqui-
esces, and the worst outcome is that it enters and the incumbent fights, whereas
the best outcome for the incumbent is that the challenger stays out, and the worst
outcome is that it enters and there is a fight. Then the situation may be modeled as
the following extensive game with perfect information.

Players The challenger and the incumbent.

Terminal histories (In, Acquiesce), (In, Fight), and Out.

Player function P(∅) = Challenger and P(In) = Incumbent.

Preferences The challenger’s preferences are represented by the payoff function
u1 for which u1(In, Acquiesce) = 2, u1(Out) = 1, and u1(In, Fight) = 0, and the
incumbent’s preferences are represented by the payoff function u2 for which
u2(Out) = 2, u2(In, Acquiesce) = 1, and u2(In, Fight) = 0.
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Figure 156.1 The entry game of Example 155.2. The challenger’s payoff is the first number in each pair.

This game is readily illustrated in a diagram. The small circle at the top
of Figure 156.1 represents the empty history (the start of the game). The la-
bel above this circle indicates that the challenger chooses an action at the start
of the game (P(∅) = Challenger). The two branches labeled In and Out rep-
resent the challenger’s choices. The branch labeled In leads to a small black
disk, the label beside which indicates that the incumbent takes an action af-
ter the history In (that is, P(In) = Incumbent). The two branches emanating
from the disk represent the incumbent’s choices, Acquiesce and Fight. The pair
of numbers beneath each terminal history gives the players’ payoffs to that his-
tory, with the challenger’s payoff listed first. (The players’ payoffs may be given
in any order. For games like this one, in which the players move in a well-
defined order, I generally list the payoffs in that order. For games in which
the players’ names are 1, 2, 3, and so on, I list the payoffs in the order of their
names.)

Definition 155.1 does not directly specify the sets of actions available to the
players at their various moves. As I discussed briefly before the definition, we
can deduce these sets from the set of terminal histories and the player function.
If, for some nonterminal history h, the sequence (h, a) is a history, then a is one of
the actions available to the player who moves after h. Thus the set of all actions
available to the player who moves after h is

A(h) = {a: (h, a) is a history}. (156.1)

For example, for the game in Figure 156.1, the histories are ∅, In, Out, (In,
Acquiesce), and (In, Fight). Thus the set of actions available to the player who
moves at the start of the game, namely the challenger, is A(∅) = {In, Out}, and
the set of actions available to the player who moves after the history In, namely
the incumbent, is A(In) = {Acquiesce, Fight}.

? EXERCISE 156.2 (Examples of extensive games with perfect information)

a. Represent in a diagram like Figure 156.1 the two-player extensive game with
perfect information in which the terminal histories are (C, E), (C, F), (D, G),
and (D, H), the player function is given by P(∅) = 1 and P(C) = P(D) =
2, player 1 prefers (C, F) to (D, G) to (C, E) to (D, H), and player 2 prefers
(D, G) to (C, F) to (D, H) to (C, E).
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b. Write down the set of players, set of terminal histories, player function, and
players’ preferences for the game in Figure 160.1.

c. The political figures Rosa and Ernesto have to choose either Berlin (B) or Ha-
vana (H) as the location for a party congress. They choose sequentially. A
third person, Karl, determines who chooses first. Both Rosa and Ernesto care
only about the actions they choose, not about who chooses first. Rosa prefers
the outcome in which both she and Ernesto choose B to that in which they
both choose H, and prefers this outcome to either of the ones in which she
and Ernesto choose different actions; she is indifferent between these last two
outcomes. Ernesto’s preferences differ from Rosa’s in that the roles of B and
H are reversed. Karl’s preferences are the same as Ernesto’s. Model this situa-
tion as an extensive game with perfect information. (Specify the components
of the game and represent the game in a diagram.)

Definition 155.1 allows terminal histories to be infinitely long. Thus we can use
the model of an extensive game to study situations in which the participants do
not consider any particular fixed horizon when making decisions. If the length
of the longest terminal history is in fact finite, we say that the game has a finite

horizon.
Even a game with a finite horizon may have infinitely many terminal histories,

because some player has infinitely many actions after some history. If a game has
a finite horizon and finitely many terminal histories we say it is finite. Note that a
game that is not finite cannot be represented in a diagram like Figure 156.1, because
such a figure allows for only finitely many branches.

An extensive game with perfect information models a situation in which each
player, when choosing an action, knows all actions chosen previously (has per-

fect information) and always moves alone (rather than simultaneously with other
players). Some economic and political situations that the model encompasses are
discussed in the next chapter. The competition between interest groups courting
legislators is one example. This situation may be modeled as an extensive game
in which the groups sequentially offer payments to induce the legislators to vote
for their favorite version of a bill (Section 6.3). A race (between firms developing
a new technology, or between directors making competing movies, for instance),
is another example. This situation is modeled as an extensive game in which the
parties alternately decide how much effort to expend (Section 6.4). Parlor games
such as chess, ticktacktoe, and go, in which there are no random events, the play-
ers move sequentially, and each player always knows all actions taken previously,
may also be modeled as extensive games with perfect information (see the box on
page 178).

In Section 7.1 I discuss a more general notion of an extensive game in which
players may move simultaneously, though each player, when choosing an action,
still knows all previous actions. In Chapter 10 I discuss a much more general no-
tion that allows arbitrary patterns of information. In each case I sometimes refer to
the object under consideration simply as an “extensive game”.
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5.1.2 Solutions

In the entry game in Figure 156.1, it seems clear that the challenger will enter and
the incumbent will subsequently acquiesce. The challenger can reason that if it
enters then the incumbent will acquiesce, because doing so is better for the incum-
bent than fighting. Given that the incumbent will respond to entry in this way, the
challenger is better off entering.

This line of argument is called backward induction. Whenever a player has to
move, she deduces, for each of her possible actions, the actions that the players
(including herself) will subsequently rationally take, and chooses the action that
yields the terminal history she most prefers.

While backward induction may be applied to the game in Figure 156.1, it can-
not be applied to every extensive game with perfect information. Consider, for
example, the variant of this game shown in Figure 158.1, in which the incumbent’s
payoff to the terminal history (In, Fight) is 1 rather than 0. If, in the modified game,
the challenger enters, the incumbent is indifferent between acquiescing and fight-
ing. Backward induction does not tell the challenger what the incumbent will do in
this case, and thus leaves open the question of which action the challenger should
choose. Games with infinitely long histories present another difficulty for back-
ward induction: they have no end from which to start the induction. The gener-
alization of an extensive game with perfect information that allows for simultane-
ous moves (studied in Chapter 7) poses yet another problem: when players move
simultaneously we cannot in general straightforwardly deduce each player’s opti-
mal action. (As in a strategic game, each player’s best action depends on the other
players’ actions.)

Another approach to defining equilibrium takes off from the notion of Nash
equilibrium. It seeks to model patterns of behavior that can persist in a steady
state. The resulting notion of equilibrium applies to all extensive games with per-
fect information. Because the idea of backward induction is more limited, and
the principles behind the notion of Nash equilibrium have been established in
previous chapters, I begin by discussing the steady state approach. In games
in which backward induction is well-defined, this approach turns out to lead to
the backward induction outcome, so that there is no conflict between the two
ideas.

Out

1, 2

In

Challenger

Fight

0, 1

Acquiesce

2, 1

Incumbent

Figure 158.1 A variant of the entry game of Figure 156.1. The challenger’s payoff is the first number in
each pair.
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5.2 Strategies and outcomes

5.2.1 Strategies

A key concept in the study of extensive games is that of a strategy. A player’s
strategy specifies the action the player chooses for every history after which it is
her turn to move.

◮ DEFINITION 159.1 (Strategy) A strategy of player i in an extensive game with
perfect information is a function that assigns to each history h after which it is
player i’s turn to move (i.e. P(h) = i, where P is the player function) an action in
A(h) (the set of actions available after h).

Consider the game in the top panel of Figure 159.1.

• Player 1 moves only at the start of the game (i.e. after the empty history),
when the actions available to her are C and D. Thus she has two strategies:
one that assigns C to the empty history, and one that assigns D to the empty
history.

• Player 2 moves after both the history C and the history D. After the history C

the actions available to her are E and F, and after the history D the actions
available to her are G and H. Thus a strategy of player 2 is a function that
assigns either E or F to the history C, and either G or H to the history D.
That is, player 2 has four strategies, which are shown in the bottom panel of
Figure 159.1.

I refer to the strategies of player 1 in this game simply as C and D, and to the
strategies of player 2 simply as EG, EH, FG, and FH. For many other finite games I
use a similar shorthand: I write a player’s strategy as a list of actions, one for each

DC

1

F

3, 0

E

2, 1

2

H

1, 3

G

0, 2

2

Action assigned
to history C

Action assigned
to history D

Strategy 1 E G

Strategy 2 E H
Strategy 3 F G

Strategy 4 F H

Figure 159.1 An extensive game with perfect information (top panel) and the four strategies of player 2
in this game (bottom panel).



160 Chapter 5. Extensive Games with Perfect Information: Theory

D

2, 0

C

1

F

3, 1

E

2

H

0, 0

G

1, 2

1

Figure 160.1 An extensive game in which player 1 moves both before and after player 2.

history after which it is the player’s turn to move. In general I write the actions in
the order in which they occur in the game, and, if they are available at the same
“stage”, from left to right as they appear in the diagram of the game. When the
meaning of a list of actions is unclear, I explicitly give the history after which each
action is taken.

Each of player 2’s strategies in the game in the top panel of Figure 159.1 may be
interpreted as a plan of action or contingency plan: it specifies what player 2 does
if player 1 chooses C, and what she does if player 1 chooses D. In every game,
a player’s strategy provides sufficient information to determine her plan of action:
the actions she intends to take, whatever the other players do. In particular, if a
player appoints an agent to play the game for her, and tells the agent her strategy,
then the agent has enough information to carry out her wishes, whatever actions
the other players take.

In some games some players’ strategies are more than plans of action. Consider
the game in Figure 160.1. Player 1 moves both at the start of the game and after
the history (C, E). In each case she has two actions, so she has four strategies: CG

(i.e. choose C at the start of the game and G after the history (C, E)), CH, DG, and
DH. In particular, each strategy specifies an action after the history (C, E) even if

it specifies the action D at the beginning of the game, in which case the history (C, E)
does not occur! The point is that Definition 159.1 requires that a strategy of any
player i specify an action for every history after which it is player i’s turn to move,
even for histories that, if the strategy is followed, do not occur.

In view of this point and the fact that “strategy” is a synonym for “plan of ac-
tion” in everyday language, you may regard the word “strategy” as inappropriate
for the concept in Definition 159.1. You are right. You may also wonder why we
cannot restrict attention to plans of action.

For the purposes of the notion of Nash equilibrium (discussed in the next sec-
tion), we could in fact work with plans of action rather than strategies. But, as we
shall see, the notion of Nash equilibrium for an extensive game is not satisfactory;
the concept we adopt depends on the players’ full strategies. When discussing
this concept (in Section 5.4.4) I elaborate on the interpretation of a strategy. At the
moment, you may think of a player’s strategy as a plan of what to do, whatever
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the other players do, both if the player carries out her intended actions and also if
she makes mistakes. For example, we can interpret the strategy DG of player 1 in
the game in Figure 160.1 to mean “I intend to choose D, but if I make a mistake
and choose C instead, then I will subsequently choose G”. (Because the notion of
Nash equilibrium depends only on plans of action, I could delay the definition of a
strategy to the start of Section 5.4. I do not do so because the notion of a strategy is
central to the study of extensive games, and its precise definition is much simpler
than that of a plan of action.)

? EXERCISE 161.1 (Strategies in extensive games) What are the strategies of the play-
ers in the entry game (Example 155.2)? What are Rosa’s strategies in the game in
Exercise 156.2c?

5.2.2 Outcomes

A strategy profile determines the terminal history that occurs. Denote the strategy
profile by s and the player function by P. At the start of the game player P(∅)
moves. Her strategy is sP(∅), and she chooses the action sP(∅)(∅). Denote this ac-
tion by a1. If the history a1 is not terminal, player P(a1) moves next. Her strategy
is sP(a1), and she chooses the action sP(a1)(a1). Denote this action by a2. If the his-
tory (a1, a2) is not terminal, then again the player function specifies whose turn it
is to move, and that player’s strategy specifies the action she chooses. The process
continues until a terminal history is constructed. We refer to this terminal history
as the outcome of s, and denote it O(s).

In the game in Figure 160.1, for example, the outcome of the strategy pair
(DG, E) is the terminal history D, and the outcome of (CH, E) is the terminal
history (C, E, H).

Note that the outcome O(s) of the strategy profile s depends only on the play-
ers’ plans of action, not their full strategies. That is, to determine O(s) we do not

need to refer to any component of any player’s strategy that specifies her actions
after histories precluded by that strategy.

5.3 Nash equilibrium

As for strategic games, we are interested in notions of equilibrium that model the
players’ behavior in a steady state. That is, we look for patterns of behavior with
the property that if every player knows every other player’s behavior, she has no
reason to change her own behavior. I start by defining a Nash equilibrium: a strat-
egy profile from which no player wishes to deviate, given the other players’ strate-
gies. The definition is an adaptation of that of a Nash equilibrium in a strategic
game (23.1).

◮ DEFINITION 161.2 (Nash equilibrium of extensive game with perfect information) The
strategy profile s∗ in an extensive game with perfect information is a Nash equi-

librium if, for every player i and every strategy ri of player i, the terminal history
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O(s∗) generated by s∗ is at least as good according to player i’s preferences as
the terminal history O(ri, s∗−i) generated by the strategy profile (ri, s∗−i) in which
player i chooses ri while every other player j chooses s∗j . Equivalently, for each
player i,

ui(O(s∗)) ≥ ui(O(ri, s∗−i)) for every strategy ri of player i,

where ui is a payoff function that represents player i’s preferences and O is the
outcome function of the game.

One way to find the Nash equilibria of an extensive game in which each player
has finitely many strategies is to list each player’s strategies, find the outcome of
each strategy profile, and analyze this information as for a strategic game. That
is, we construct the following strategic game, known as the strategic form of the
extensive game.

Players The set of players in the extensive game.

Actions Each player’s set of actions is her set of strategies in the extensive
game.

Preferences Each player’s payoff to each action profile is her payoff to the
terminal history generated by that action profile in the extensive game.

From Definition 161.2 we see that

the set of Nash equilibria of any extensive game with perfect informa-
tion is the set of Nash equilibria of its strategic form.

EXAMPLE 162.1 (Nash equilibria of the entry game) In the entry game in Fig-
ure 156.1, the challenger has two strategies, In and Out, and the incumbent has
two strategies, Acquiesce and Fight. The strategic form of the game is shown in Fig-
ure 162.1. We see that it has two Nash equilibria: (In, Acquiesce) and (Out, Fight).
The first equilibrium is the pattern of behavior isolated by backward induction,
discussed at the start of Section 5.1.2.

In the second equilibrium the challenger always chooses Out. This strategy
is optimal given the incumbent’s strategy to fight in the event of entry. Further,
the incumbent’s strategy Fight is optimal given the challenger’s strategy: the chal-
lenger chooses Out, so whether the incumbent plans to choose Acquiesce or Fight

makes no difference to its payoff. Thus neither player can increase its payoff by
choosing a different strategy, given the other player’s strategy.

Challenger

Incumbent
Acquiesce Fight

In 2, 1 0, 0
Out 1, 2 1, 2

Figure 162.1 The strategic form of the entry game in Figure 156.1.
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Thinking about the extensive game in this example raises a question about the
Nash equilibrium (Out, Fight) that does not arise in the strategic form: How does
the challenger know that the incumbent will choose Fight if it enters? We interpret
the strategic game to model a situation in which, whenever the challenger plays
the game, it observes the incumbent’s action, even if it chooses Out. By contrast,
we interpret the extensive game to model a situation in which a challenger that
always chooses Out never observes the incumbent’s action, because the incumbent
never moves. In a strategic game, the rationale for the Nash equilibrium condition
that each player’s strategy be optimal given the other players’ strategies is that in
a steady state, each player’s experience playing the game leads her belief about
the other players’ actions to be correct. This rationale does not apply to the Nash
equilibrium (Out, Fight) of the (extensive) entry game, because a challenger who
always chooses Out never observes the incumbent’s action after the history In.

We can escape from this difficulty in interpreting a Nash equilibrium of an
extensive game by considering a slightly perturbed steady state in which, on rare
occasions, nonequilibrium actions are taken (perhaps players make mistakes, or
deliberately experiment), and the perturbations allow each player eventually to
observe every other player’s action after every history. Given such perturbations,
each player eventually learns the other players’ entire strategies.

Interpreting the Nash equilibrium (Out, Fight) as such a perturbed steady state,
however, we run into another problem. On those (rare) occasions when the chal-
lenger enters, the subsequent behavior of the incumbent to fight is not a steady
state in the remainder of the game: if the challenger enters, the incumbent is better
off acquiescing than fighting. That is, the Nash equilibrium (Out, Fight) does not
correspond to a robust steady state of the extensive game.

Note that the extensive game embodies the assumption that the incumbent can-
not commit, at the beginning of the game, to fight if the challenger enters; it is free
to choose either Acquiesce or Fight in this event. If the incumbent could commit
to fight in the event of entry, then the analysis would be different. Such a com-
mitment would induce the challenger to stay out, an outcome that the incumbent
prefers. In the absence of the possibility of the incumbent’s making a commitment,
we might think of its announcing at the start of the game that it intends to fight; but
such a threat is not credible, because after the challenger enters the incumbent’s
only incentive is to acquiesce.

? EXERCISE 163.1 (Nash equilibria of extensive games) Find the Nash equilibria of
the games in Exercise 156.2a and Figure 160.1. (When constructing the strategic
form of each game, be sure to include all the strategies of each player.)

? EXERCISE 163.2 (Voting by alternating veto) Two people select a policy that affects
them both by alternately vetoing policies until only one remains. First person 1
vetoes a policy. If more than one policy remains, person 2 then vetoes a policy.
If more than one policy still remains, person 1 then vetoes another policy. The
process continues until a single policy remains unvetoed. Suppose there are three
possible policies, X, Y, and Z, person 1 prefers X to Y to Z, and person 2 prefers Z

to Y to X. Model this situation as an extensive game and find its Nash equilibria.
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5.4 Subgame perfect equilibrium

5.4.1 Definition

The notion of Nash equilibrium ignores the sequential structure of an extensive
game; it treats strategies as choices made once and for all before play begins. Con-
sequently, as we saw in the previous section, the steady state to which a Nash
equilibrium corresponds may not be robust.

I now define a notion of equilibrium that models a robust steady state. This
notion requires each player’s strategy to be optimal, given the other players’
strategies, not only at the start of the game but after every possible history.

To define this concept, I first define the notion of a subgame. For any nontermi-
nal history h, the subgame following h is the part of the game that remains after h

has occurred. For example, the subgame following the history In in the entry game
(Example 154.1) is the game in which the incumbent is the only player, and there
are two terminal histories, Acquiesce and Fight.

◮ DEFINITION 164.1 (Subgame of extensive game with perfect information) Let Γ be an
extensive game with perfect information, with player function P. For any nonter-
minal history h of Γ, the subgame Γ(h) following the history h is the following
extensive game.

Players The players in Γ.

Terminal histories The set of all sequences h′ of actions such that (h, h′) is a
terminal history of Γ.

Player function The player P(h, h′) is assigned to each proper subhistory h′ of a
terminal history.

Preferences Each player prefers h′ to h′′ if and only if she prefers (h, h′) to (h, h′′)
in Γ.

Note that the subgame following the empty history ∅ is the entire game. Every
other subgame is called a proper subgame. Because there is a subgame for every non-
terminal history, the number of subgames is equal to the number of nonterminal
histories.

As an example, the game in the top panel of Figure 159.1 has three nontermi-
nal histories (the empty history, C, and D), and hence three subgames: the whole
game (the part of the game following the empty history), the game following the
history C, and the game following the history D. The two proper subgames are
shown in Figure 165.1.

The game in Figure 160.1 also has three nonterminal histories, and hence three
subgames: the whole game, the game following the history C, and the game
following the history (C, E). The two proper subgames are shown in Figure 165.2.

? EXERCISE 164.2 (Subgames) Find all the subgames of the game in Exercise 156.2c.
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Figure 165.1 The two proper subgames of the extensive game in the top panel of Figure 159.1.
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Figure 165.2 The two proper subgames of the extensive game in Figure 160.1.

In an equilibrium that corresponds to a perturbed steady state in which every

history sometimes occurs, the players’ behavior must correspond to a steady state
in every subgame, not only in the whole game. Interpreting the actions specified
by a player’s strategy in a subgame to give the player’s behavior if, possibly after
a series of mistakes, that subgame is reached, this condition is embodied in the
following informal definition.

A subgame perfect equilibrium is a strategy profile s∗ with the property
that in no subgame can any player i do better by choosing a strategy
different from s∗i , given that every other player j adheres to s∗j .

(Compare this definition with that of a Nash equilibrium of a strategic game given
on page 22.)

For example, the Nash equilibrium (Out, Fight) of the entry game (Example
154.1) is not a subgame perfect equilibrium because in the subgame following the
history In, the strategy Fight is not optimal for the incumbent: in this subgame,
the incumbent is better off choosing Acquiesce than it is choosing Fight. The Nash
equilibrium (In, Acquiesce) is a subgame perfect equilibrium: each player’s strategy
is optimal, given the other player’s strategy, both in the whole game and in the
subgame following the history In.

To define the notion of subgame perfect equilibrium precisely, we need a new
piece of notation. Let h be a history and s a strategy profile. Suppose that h oc-
curs (even though it is not necessarily consistent with s), and afterward the players
adhere to the strategy profile s. The resulting terminal history (consisting of h fol-
lowed by the outcome generated in the subgame following h by the strategy profile
induced by s in the subgame) is denoted Oh(s). Note that for any strategy profile
s, we have O∅(s) = O(s) (where ∅, as always, denotes the empty history).

As an example, consider again the entry game. Let s be the strategy profile
(Out, Fight) and let h be the history In. If h occurs, and afterward the players adhere
to s, the resulting terminal history is Oh(s) = (In, Fight).
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◮ DEFINITION 166.1 (Subgame perfect equilibrium of extensive game with perfect infor-

mation) The strategy profile s∗ in an extensive game with perfect information is a
subgame perfect equilibrium if, for every player i, every history h after which it is
player i’s turn to move (i.e. P(h) = i), and every strategy ri of player i, the terminal
history Oh(s

∗) generated by s∗ after the history h is at least as good according to
player i’s preferences as the terminal history Oh(ri, s∗−i) generated by the strategy
profile (ri, s∗−i) in which player i chooses ri while every other player j chooses s∗j .
Equivalently, for every player i and every history h after which it is player i’s turn
to move,

ui(Oh(s
∗)) ≥ ui(Oh(ri, s∗−i)) for every strategy ri of player i,

where ui is a payoff function that represents player i’s preferences and Oh(s) is the
terminal history consisting of h followed by the sequence of actions generated by
s after h.

The important point in this definition is that each player’s strategy is required
to be optimal for every history after which it is the player’s turn to move, not only
at the start of the game as in the definition of a Nash equilibrium (161.2).

5.4.2 Subgame perfect equilibrium and Nash equilibrium

In a subgame perfect equilibrium every player’s strategy is optimal, in particular,
after the empty history (put h = ∅ in the definition, and remember that O∅(s) =
O(s)). Thus

every subgame perfect equilibrium is a Nash equilibrium.

In fact, a subgame perfect equilibrium generates a Nash equilibrium in ev-
ery subgame: if s∗ is a subgame perfect equilibrium, then, for any history h and
player i, the strategy induced by s∗i in the subgame following h is optimal given
the strategies induced by s∗−i in the subgame. Further, any strategy profile that
generates a Nash equilibrium in every subgame is a subgame perfect equilibrium,
so that we can give the following alternative definition.

A subgame perfect equilibrium is a strategy profile that induces a Nash
equilibrium in every subgame.

In a Nash equilibrium every player’s strategy is optimal, given the other play-
ers’ strategies, in the whole game. As we have seen, it may not be optimal in some
subgames. I claim, however, that it is optimal in any subgame that is reached
when the players follow their strategies. Given this claim, the significance of the
requirement in the definition of a subgame perfect equilibrium that each player’s
strategy be optimal after every history, relative to the requirement in the defini-
tion of a Nash equilibrium, is that each player’s strategy be optimal after histories
that do not occur if the players follow their strategies (like the history In when the
challenger’s action is Out at the beginning of the entry game).
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To show my claim, suppose that s∗ is a Nash equilibrium of a game in which
you are player i. Then your strategy s∗i is optimal given the other players’ strategies
s∗−i. When the other players follow their strategies, there comes a point (possibly
the start of the game) when you have to move for the first time. Suppose that at
this point you follow your strategy s∗i ; denote the action you choose by C. Now,
after choosing C, should you change your strategy in the rest of the game, given
that the other players will continue to adhere to their strategies? No! If you could
do better by changing your strategy after choosing C—say by switching to the
strategy s′i in the subgame—then you could have done better at the start of the
game by choosing the strategy that chooses C and then follows s′i. That is, if your
plan is optimal, given the other players’ strategies, at the start of the game, and
you stick to it, then you never want to change your mind after play begins, as long
as the other players stick to their strategies. (The general principle is known as the
principle of optimality in dynamic programming.)

5.4.3 Examples

EXAMPLE 167.1 (Entry game) Consider again the entry game of Example 154.1,
which has two Nash equilibria, (In, Acquiesce) and (Out, Fight). The fact that
the Nash equilibrium (Out, Fight) is not a subgame perfect equilibrium follows
from the formal definition as follows. For s∗ = (Out, Fight), i = Incumbent,
ri = Acquiesce, and h = In, we have Oh(s

∗) = (In, Fight) and Oh(ri, s∗−i) =
(In, Acquiesce), so that the inequality in the definition is violated: ui(Oh(s

∗)) = 0
and ui(Oh(ri, s∗−i)) = 1.

The Nash equilibrium (In, Acquiesce) is a subgame perfect equilibrium because
(a) it is a Nash equilibrium, so that at the start of the game the challenger’s strategy
In is optimal, given the incumbent’s strategy Acquiesce, and (b) after the history In,
the incumbent’s strategy Acquiesce in the subgame is optimal. In the language of
the formal definition, let s∗ = (In, Acquiesce).

• The challenger moves after one history, namely h = ∅. We have Oh(s
∗) =

(In, Acquiesce), and hence for i = challenger we have ui(Oh(s
∗)) = 2,

whereas for the only other strategy of the challenger, ri = Out, we have
ui(Oh(ri, s∗−i)) = 1.

• The incumbent moves after one history, namely h = In. We have Oh(s
∗) =

(In, Acquiesce), and hence for i = incumbent we have ui(Oh(s
∗)) = 1,

whereas for the only other strategy of the incumbent, ri = Fight, we have
ui(Oh(ri, s∗−i)) = 0.

Every subgame perfect equilibrium is a Nash equilibrium, so we conclude that
the game has a unique subgame perfect equilibrium, (In, Acquiesce).

EXAMPLE 167.2 (Variant of entry game) Consider the variant of the entry game in
which the incumbent is indifferent between fighting and acquiescing if the chal-
lenger enters (see Figure 158.1). This game, like the original game, has two Nash
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equilibria, (In, Acquiesce) and (Out, Fight). But now both of these equilibria are sub-
game perfect equilibria, because after the history In, both Fight and Acquiesce are
optimal for the incumbent.

In particular, the game has a steady state in which every challenger always
chooses In and every incumbent always chooses Acquiesce. If you, as the chal-
lenger, were playing the game for the first time, you would probably regard the
action In as “risky” because after the history In the incumbent is indifferent be-
tween Acquiesce and Fight, and you prefer the terminal history Out to the termi-
nal history (In, Fight). Indeed, as discussed in Section 5.1.2, backward induction
does not yield a clear solution of this game. But the subgame perfect equilibrium
(In, Acquiesce) corresponds to a perfectly reasonable steady state. If you had played
the game hundreds of times against opponents drawn from the same population,
and on every occasion your opponent had chosen Acquiesce, you could reasonably
expect your next opponent to choose Acquiesce, and thus optimally choose In.

? EXERCISE 168.1 (Checking for subgame perfect equilibria) Which of the Nash
equilibria of the game in Figure 160.1 are subgame perfect?

5.4.4 Interpretation

A Nash equilibrium of a strategic game corresponds to a steady state in an ide-
alized setting in which the participants in each play of the game are drawn ran-
domly from a collection of populations (see Section 2.6). The idea is that each
player’s long experience playing the game leads her to correct beliefs about the
other players’ actions; given these beliefs, her equilibrium action is optimal.

A subgame perfect equilibrium of an extensive game corresponds to a slightly
perturbed steady state in which all players, on rare occasions, take nonequilib-
rium actions, so that after long experience each player forms correct beliefs about
the other players’ entire strategies and thus knows how the other players will be-
have in every subgame. Given these beliefs, no player wishes to deviate from her
strategy either at the start of the game or after any history.

This interpretation of a subgame perfect equilibrium, like the interpretation
of a Nash equilibrium as a steady state, does not require a player to know the
other players’ preferences, or to think about the other players’ rationality. It en-
tails interpreting a strategy as a plan specifying a player’s actions not only after
histories consistent with the strategy, but also after histories that result when the
player chooses arbitrary alternative actions, perhaps because she makes mistakes
or deliberately experiments.

The subgame perfect equilibria of some extensive game can be given other in-
terpretations. In some cases, one alternative interpretation is particularly attrac-
tive. Consider an extensive game with perfect information in which each player
has a unique best action at every history after which it is her turn to move, and the
horizon is finite. In such a game, a player who knows the other players’ prefer-
ences and knows that the other players are rational may use backward induction
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to deduce her optimal strategy, as discussed in Section 5.1.2. Thus we can interpret
a subgame perfect equilibrium as the outcome of the players’ rational calculations
about each other’s strategies.

This interpretation of a subgame perfect equilibrium entails an interpretation of
a strategy different from the one that fits the steady state interpretation. Consider,
for example, the game in Figure 160.1. When analyzing this game, player 1 must
consider the consequences of choosing C. Thus she must think about player 2’s
action after the history C, and hence must form a belief about what player 2 thinks
she (player 1) will do after the history (C, E). The component of her strategy that
specifies her action after this history reflects this belief. For instance, the strategy
DG means that player 1 chooses D at the start of the game and believes that were
she to choose C, player 2 would believe that after the history (C, E) she would
choose G. In an arbitrary game, the interpretation of a subgame perfect equilib-
rium as the outcome of the players’ rational calculations about each other’s strate-
gies entails interpreting the components of a player’s strategy that assign actions
to histories inconsistent with other parts of the strategy as specifying the player’s
belief about the other players’ beliefs about what the player will do if one of these
histories occurs.

This interpretation of a subgame perfect equilibrium is not free of difficulties,
which are discussed in Section 7.7. Further, the interpretation is not tenable in
games in which some player has more than one optimal action after some history,
or in the more general extensive games considered in Section 7.1 and Chapter 10.
Nevertheless, in some of the games studied in this chapter and the next it is an
appealing alternative to the steady state interpretation. Further, an extension of the
procedure of backward induction can be used to find all subgame perfect equilibria
of finite horizon games, as we shall see in the next section. (This extension cannot
be given an appealing behavioral interpretation in games in which some player
has more than one optimal action after some history.)

5.5 Finding subgame perfect equilibria of finite horizon games:

backward induction

We found the subgame perfect equilibria of the games in Examples 167.1 and 167.2
by finding the Nash equilibria of the games and checking whether each of these
equilibria is subgame perfect. In a game with a finite horizon the set of sub-
game perfect equilibria may be found more directly by using an extension of the
procedure of backward induction discussed briefly in Section 5.1.2.

Define the length of a subgame to be the length of the longest history in the sub-
game. (The lengths of the subgames in Figure 165.2, for example, are 2 and 1.)
The procedure of backward induction works as follows. We start by finding the
optimal actions of the players who move in the subgames of length 1 (the “last”
subgames). Then, taking these actions as given, we find the optimal actions of the
players who move first in the subgames of length 2. We continue working back to
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Figure 170.1 A game illustrating the procedure of backward induction. The actions selected by back-
ward induction are indicated in black.

the beginning of the game, at each stage k finding the optimal actions of the play-
ers who move at the start of the subgames of length k, given the optimal actions
we have found in all shorter subgames.

At each stage k of this procedure, the optimal actions of the players who move
at the start of the subgames of length k are easy to determine: they are simply the
actions that yield the players the highest payoffs, given the optimal actions in all
shorter subgames.

Consider, for example, the game in Figure 170.1.

• First consider subgames of length 1. The game has two such subgames,
in both of which player 2 moves. In the subgame following the history C,
player 2’s optimal action is E, and in the subgame following the history D,
her optimal action is H.

• Now consider subgames of length 2. The game has one such subgame,
namely the entire game, at the start of which player 1 moves. Given the opti-
mal actions in the subgames of length 1, player 1’s choosing C at the start of
the game yields her a payoff of 2, whereas her choosing D yields her a payoff
of 1. Thus player 1’s optimal action at the start of the game is C.

The game has no subgame of length greater than 2, so the procedure of backward
induction yields the strategy pair (C, EH).

As another example, consider again the game in Figure 160.1. We first deduce
that in the subgame of length 1 following the history (C, E), player 1 chooses G;
then that at the start of the subgame of length 2 following the history C, player 2
chooses E; then that at the start of the whole game, player 1 chooses D. Thus the
procedure of backward induction in this game yields the strategy pair (DG, E).

In any game in which this procedure selects a single action for the player who
moves at the start of each subgame, the strategy profile thus selected is the unique
subgame perfect equilibrium of the game. (You should find this result very plau-
sible, though a complete proof is not trivial.)

What happens in a game in which at the start of some subgames more than
one action is optimal? In such a game an extension of the procedure of backward
induction locates all subgame perfect equilibria. This extension traces back sepa-

rately the implications for behavior in the longer subgames of every combination of
optimal actions in the shorter subgames.
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Consider, for example, the game in Figure 172.1.

• The game has three subgames of length 1, in each of which player 2 moves. In
the subgames following the histories C and D, player 2 is indifferent between
her two actions. In the subgame following the history E, player 2’s unique
optimal action is K. Thus there are four combinations of player 2’s optimal
actions in the subgames of length 1: FHK, FIK, GHK, and GIK (where the first
component in each case is player 2’s action after the history C, the second
component is her action after the history D, and the third component is her
action after the history E).

• The game has a single subgame of length 2, namely the whole game, in which
player 1 moves first. We now consider player 1’s optimal action in this game
for every combination of the optimal actions of player 2 in the subgames of
length 1.

◦ For the combinations FHK and FIK of optimal actions of player 2,
player 1’s optimal action at the start of the game is C.

◦ For the combination GHK of optimal actions of player 2, the actions C,
D, and E are all optimal for player 1.

◦ For the combination GIK of optimal actions of player 2, player 1’s opti-
mal action at the start of the game is D.

Thus the strategy pairs isolated by the procedure are (C, FHK), (C, FIK), (C, GHK),
(D, GHK), (E, GHK), and (D, GIK).

The procedure, which for simplicity I refer to simply as backward induction,
may be described compactly for an arbitrary game as follows.

• Find, for each subgame of length 1, the set of optimal actions of the player
who moves first. Index the subgames by j, and denote by S∗

j (1) the set of
optimal actions in subgame j. (If the player who moves first in subgame j

has a unique optimal action, then S∗
j (1) contains a single action.)

• For each combination of actions consisting of one from each set S∗
j (1), find,

for each subgame of length 2, the set of optimal actions of the player who
moves first. The result is a set of strategy profiles for each subgame of
length 2. Denote by S∗

ℓ
(2) the set of strategy profiles in subgame ℓ.

• Continue by examining successively longer subgames until you reach the
start of the game. At each stage k, for each combination of strategy profiles
consisting of one from each set S∗

p(k − 1) constructed in the previous stage,
find, for each subgame of length k, the set of optimal actions of the player
who moves first, and hence a set of strategy profiles for each subgame of
length k.

The set of strategy profiles that this procedure yields for the whole game is the
set of subgame perfect equilibria of the game.
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Figure 172.1 A game in which the first-mover in some subgames has multiple optimal actions. The
top diagram shows the full game. The six small diagrams illustrate the six subgame perfect equilibria;
in each case, the actions specified by the equilibrium strategies are indicated by black lines, and the
remaining actions are indicated by gray lines.

PROPOSITION 172.1 (Subgame perfect equilibrium of finite horizon games and
backward induction) The set of subgame perfect equilibria of a finite horizon exten-

sive game with perfect information is equal to the set of strategy profiles isolated by the

procedure of backward induction.

You should find this result, like my claim for games in which the player who moves
at the start of every subgame has a single optimal action, very plausible, though
again a complete proof is not trivial.

In the terminology of my description of the general procedure, the analysis for
the game in Figure 172.1 is as follows. Number the subgames of length 1 from left
to right. Then we have S∗

1(1) = {F, G}, S∗
2(1) = {H, I}, and S∗

3(1) = {K}. There
are four lists of actions consisting of one action from each set: FHK, FIK, GHK,
and GIK. For FHK and FIK, the action C of player 1 is optimal at the start of the
game; for GHK the actions C, D, and E are all optimal; and for GIK the action D

is optimal. Thus the set S∗(2) of strategy profiles consists of (C, FHK), (C, FIK),
(C, GHK), (D, GHK), (E, GHK), and (D, GIK). There are no longer subgames, so
this set of strategy profiles is the set of subgame perfect equilibria of the game.

Each example I have presented so far in this section is a finite game—that is,
a game that has not only a finite horizon but also a finite number of terminal his-
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tories. In such a game, the player who moves first in any subgame has finitely
many actions; at least one action is optimal. Thus in such a game the procedure of
backward induction isolates at least one strategy profile. Using Proposition 172.1,
we conclude that every finite game has a subgame perfect equilibrium.

PROPOSITION 173.1 (Existence of subgame perfect equilibrium) Every finite exten-

sive game with perfect information has a subgame perfect equilibrium.

Note that this result does not claim that a finite extensive game has a single

subgame perfect equilibrium. (As we have seen, the game in Figure 172.1, for
example, has more than one subgame perfect equilibrium.)

A finite horizon game in which some player does not have finitely many ac-
tions after some history may or may not possess a subgame perfect equilibrium.
A simple example of a game that does not have a subgame perfect equilibrium is
the trivial game in which a single player chooses a number less than 1 and receives
a payoff equal to the number she chooses. There is no greatest number less than
one, so the single player has no optimal action, and thus the game has no subgame
perfect equilibrium.

? EXERCISE 173.2 (Finding subgame perfect equilibria) Find the subgame perfect
equilibria of the games in parts a and c of Exercise 156.2, and in Figure 173.1.
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Figure 173.1 One of the games for Exercise 173.2.

? EXERCISE 173.3 (Voting by alternating veto) Find the subgame perfect equilibria of
the game in Exercise 163.2. Does the game have any Nash equilibrium that is not
a subgame perfect equilibrium? Is any outcome generated by a Nash equilibrium
not generated by any subgame perfect equilibrium? Consider variants of the game
in which player 2’s preferences may differ from those specified in Exercise 163.2.
Are there any preferences for which the outcome in a subgame perfect equilibrium
of the game in which player 1 moves first differs from the outcome in a subgame
perfect equilibrium of the game in which player 2 moves first?

? EXERCISE 173.4 (Burning a bridge) Army 1, of country 1, must decide whether to
attack army 2, of country 2, which is occupying an island between the two coun-
tries. In the event of an attack, army 2 may fight, or retreat over a bridge to its
mainland. Each army prefers to occupy the island than not to occupy it; a fight is
the worst outcome for both armies. Model this situation as an extensive game with
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perfect information and show that army 2 can increase its subgame perfect equi-
librium payoff (and reduce army 1’s payoff) by burning the bridge to its mainland
(assume this act entails no cost), eliminating its option to retreat if attacked.

? EXERCISE 174.1 (Sharing heterogeneous objects) A group of n people have to share
k objects that they value differently. Each person assigns values to the objects; no
one assigns the same value to two different objects. Each person evaluates a set
of objects according to the sum of the values she assigns to the objects in the set.
The following procedure is used to share the objects. The players are ordered 1
through n. Person 1 chooses an object, then person 2 does so, and so on; if k > n,
then after person n chooses an object, person 1 chooses a second object, then per-
son 2 chooses a second object, and so on. Objects are chosen until none remain.
(Canadian and U.S. professional sports teams use a similar procedure to choose
new players.) Denote by G(n, k) the extensive game that models this procedure.
If k ≤ n, then obviously G(n, k) has a subgame perfect equilibrium in which each
player’s strategy is to choose her favorite object among those remaining when her
turn comes. Show that if k > n, then G(n, k) may have no subgame perfect equi-
librium in which person 1 chooses her favorite object on the first round. (You can
give an example in which n = 2 and k = 3.) Now fix n = 2. Define xk to be the
object least preferred by the person who does not choose at stage k (i.e. who does
not choose the last object); define xk−1 to be the object, among all those except xk,
least preferred by the person who does not choose at stage k − 1. Similarly, for any
j with 2 ≤ j ≤ k, given xj, . . . , xk, define xj−1 to be the object, among all those
excluding {xj, . . . , xk}, least preferred by the person who does not choose at stage
j − 1. Show that the game G(2, 3) has a subgame perfect equilibrium in which for
every j = 1, . . . , k the object xj is chosen at stage j. (This result is true for G(2, k)
for all values of k.) If n ≥ 3, then interestingly a person may be better off in all
subgame perfect equilibria of G(n, k) when she comes later in the ordering of play-
ers. (An example, however, is difficult to construct; one is given in Brams and
Straffin 1979.)

The next exercise shows how backward induction can cause a relatively minor
change in the way in which a game ends to reverberate to the start of the game,
leading to a very different action for the first-mover.

?? EXERCISE 174.2 (An entry game with a financially constrained firm) An incumbent
in an industry faces the possibility of entry by a challenger. First the challenger
chooses whether to enter. If it does not enter, neither firm has any further action;
the incumbent’s payoff is TM (it obtains the profit M in each of the following T ≥ 1
periods) and the challenger’s payoff is 0. If the challenger enters, it pays the entry
cost f > 0, and in each of T periods the incumbent first commits to fight or cooper-
ate with the challenger in that period, then the challenger chooses whether to stay
in the industry or to exit. (Note that the order of the firms’ moves within a period
differs from that in the game in Example 154.1.) If, in any period, the challenger
stays in, each firm obtains in that period the profit −F < 0 if the incumbent fights
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and C > max{F, f} if it cooperates. If, in any period, the challenger exits, both
firms obtain the profit zero in that period (regardless of the incumbent’s action);
the incumbent obtains the profit M > 2C and the challenger the profit 0 in every
subsequent period. Once the challenger exits, it cannot subsequently reenter. Each
firm cares about the sum of its profits.

a. Find the subgame perfect equilibria of the extensive game that models this
situation.

b. Consider a variant of the situation in which the challenger is constrained by
its financial war chest, which allows it to survive at most T − 2 fights. Specif-
ically, consider the game that differs from the one in part a in one respect: the
histories in which (i) at the start of the game the challenger enters and (ii) the
incumbent fights in T − 1 periods are terminal histories (the challenger has to
exit). For the terminal history in which the incumbent fights in the first T − 1
periods, the incumbent’s payoff is M − (T − 2)F and the challenger’s payoff
is − f − (T − 2)F (in period T − 1 the incumbent’s payoff is 0, and in the last
period its payoff is M). For the terminal history in which the incumbent co-
operates in one of the first T − 1 periods and fights in the remainder of these
periods and in the last period, the incumbent’s payoff is C − (T − 2)F and the
challenger’s payoff is − f +C − (T − 2)F. Find the subgame perfect equilibria
of this game.

EXAMPLE 175.1 (Dollar auction) Consider an auction in which an object is sold to
the highest bidder, but both the highest bidder and the second-highest bidder pay
their bids to the auctioneer. When such an auction is conducted and the object is
a dollar, the outcome is sometimes that the object is sold at a price greater than a
dollar. (Shubik writes: “A total of payments between three and five dollars is not
uncommon” (1971, 110).) Obviously such an outcome is inconsistent with a sub-
game perfect equilibrium of an extensive game that models the auction: every par-
ticipant has the option of not bidding, so that in no subgame perfect equilibrium
can anyone’s payoff be negative.

Why, then, do such outcomes occur? Suppose that there are two participants,
and both start bidding. If the player making the lower bid thinks that making a bid
above the other player’s bid will induce the other player to quit, she may be better
off doing so than stopping bidding. For example, if the bids are currently $0.50
and $0.51, the player bidding $0.50 is better off bidding $0.52 if doing so induces
the other bidder to quit, because she then wins the dollar and obtains a payoff of
$0.48, rather than losing $0.50. The same logic applies even if the bids are greater
than $1.00, as long as they do not differ by more than $1.00. If, for example, they
are currently $2.00 and $2.01, then the player bidding $2.00 loses only $1.02 if a bid
of $2.02 induces her opponent to quit, whereas she loses $2.00 if she herself quits.
That is, in subgames in which bids have been made, the player making the second-
highest bid may optimally beat a bid that exceeds $1.00, depending on the other
players’ strategies and the difference between the top two bids. (When discussing
outcomes in which the total payment to the auctioneer exceeds $1, Shubik remarks
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that “In playing this game, a large crowd is desirable . . . the best time is during a
party when spirits are high and the propensity to calculate does not settle in until
at least two bids have been made” (1971, 109).)

In the next exercise you are asked to find the subgame perfect equilibria of an
extensive game that models a simple example of such an auction.

? EXERCISE 176.1 (Dollar auction) An object that two people each value at v, a pos-
itive integer, is sold in an auction. In the auction, the people take turns bidding; a
bid must be a positive integer greater than the previous bid. (In the situation that
gives the game its name, v is 100 cents.) On her turn, a player may pass rather
than bid, in which case the game ends and the other player receives the object; both

players pay their last bids (if any). (If player 1 passes initially, for example, player 2
receives the object and makes no payment; if player 1 bids 1, player 2 bids 3, and
then player 1 passes, player 2 obtains the object and pays 3, and player 1 pays 1.)
Each person’s wealth is w, which exceeds v; neither player may bid more than her
wealth. For v = 2 and w = 3, model the auction as an extensive game and find its
subgame perfect equilibria. (A much more ambitious project is to find all subgame
perfect equilibria for arbitrary values of v and w.)

In all the extensive games studied so far in this chapter, each player has avail-
able finitely many actions whenever she moves. The next examples show how the
procedure of backward induction may be used to find the subgame perfect equi-
libria of games in which a continuum of actions is available after some histories.

EXAMPLE 176.2 (A synergistic relationship) Consider a variant of the situation in
Example 39.1, in which two individuals are involved in a synergistic relationship.
Suppose that the players choose their effort levels sequentially, rather than simul-
taneously. First individual 1 chooses her effort level a1, then individual 2 chooses
her effort level a2. An effort level is a nonnegative number, and individual i’s pref-
erences (for i = 1, 2) are represented by the payoff function ai(c + aj − ai), where j

is the other individual and c > 0 is a constant.
To find the subgame perfect equilibria, we first consider the subgames of length

1, in which individual 2 chooses a value of a2. Individual 2’s optimal action after
the history a1 is her best response to a1, which we found to be 1

2 (c + a1) in Exam-
ple 39.1. Thus individual 2’s strategy in any subgame perfect equilibrium is the
function that associates with each history a1 the action 1

2 (c + a1).
Now consider individual 1’s action at the start of the game. Given individ-

ual 2’s strategy, individual 1’s payoff if she chooses a1 is a1(c +
1
2 (c + a1) − a1),

or 1
2 a1(3c − a1). This function is a quadratic that is zero when a1 = 0 and when

a1 = 3c, and reaches a maximum in between. Thus individual 1’s optimal action
at the start of the game is a1 = 3

2 c.
We conclude that the game has a unique subgame perfect equilibrium, in which

individual 1’s strategy is a1 = 3
2 c and individual 2’s strategy is the function that

associates with each history a1 the action 1
2 (c+ a1). The outcome of the equilibrium

is that individual 1 chooses a1 = 3
2 c and individual 2 chooses a2 = 5

4 c.
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? EXERCISE 177.1 (Firm–union bargaining) A firm’s output is L(100 − L) when it
uses L ≤ 50 units of labor, and 2500 when it uses L > 50 units of labor. The
price of output is 1. A union that represents workers presents a wage demand (a
nonnegative number w), which the firm either accepts or rejects. If the firm accepts
the demand, it chooses the number L of workers to employ (which you should take
to be a continuous variable, not an integer); if it rejects the demand, no production
takes place (L = 0). The firm’s preferences are represented by its profit; the union’s
preferences are represented by the value of wL.

a. Formulate this situation as an extensive game with perfect information.

b. Find the subgame perfect equilibrium (equilibria?) of the game.

c. Is there an outcome of the game that both parties prefer to any subgame
perfect equilibrium outcome?

d. Find a Nash equilibrium for which the outcome differs from any subgame
perfect equilibrium outcome.

? EXERCISE 177.2 (The “rotten kid theorem”) A child’s action a (a number) affects
both her own private income c(a) and her parents’ income p(a); for all values of
a we have c(a) < p(a). The child is selfish: she cares only about the amount of
money she has. Her loving parents care both about how much money they have
and how much their child has. Specifically, model the parents as a single individual
whose preferences are represented by a payoff equal to the smaller of the amount
of money they have and the amount of money the child has. The parents may
transfer money to the child. First the child takes an action, then the parents decide
how much money to transfer. Model this situation as an extensive game and show
that in a subgame perfect equilibrium the child takes an action that maximizes
the sum of her private income and her parents’ income. (In particular, the child’s
action does not maximize her own private income. The result is not limited to the
specific form of the parents’ preferences, but holds for any preferences with the
property that the amount of money the child receives in the optimal allocation of
a fixed amount x on money between the parents and the child increases with x.)

? EXERCISE 177.3 (Comparing simultaneous and sequential games) The set of ac-
tions available to player 1 is A1; the set available to player 2 is A2. Player 1’s pref-
erences over pairs (a1, a2) are represented by the payoff u1(a1, a2), and player 2’s
preferences are represented by the payoff u2(a1, a2). Compare the Nash equilibria
(in pure strategies) of the strategic game in which the players choose actions si-
multaneously with the subgame perfect equilibria of the extensive game in which
player 1 chooses an action, then player 2 does so. (For each history a1 in the
extensive game, the set of actions available to player 2 is A2.)

a. Show that if, for every value of a1, a unique member of A2 maximizes
u2(a1, a2), then in every subgame perfect equilibrium of the extensive game,
player 1’s payoff is at least equal to her highest payoff in any Nash equilib-
rium of the strategic game.
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b. Show that player 2’s payoff in every subgame perfect equilibrium of the ex-
tensive game may be higher than her highest payoff in any Nash equilibrium
of the strategic game.

c. Show that if for some values of a1 more than one member of A2 maximizes
u2(a1, a2), then the extensive game may have a subgame perfect equilibrium
in which player 1’s payoff is less than her payoff in all Nash equilibria of the
strategic game.

(For parts b and c you can give examples in which both A1 and A2 contain two
actions. See Example 320.2 for further discussion of the implication of the order of
play.)

TICKTACKTOE, CHESS, AND RELATED GAMES

Ticktacktoe, chess, and related games may be modeled as extensive games with
perfect information. (A history is a sequence of moves and each player prefers
to win than to tie than to lose.) Both ticktacktoe and chess may be modeled as
finite games, so by Proposition 173.1 each game has a subgame perfect equilibrium.
(The official rules of chess allow indefinitely long sequences of moves, but the
game seems to be well modeled by an extensive game in which a draw is declared
automatically if a position is repeated three times, rather than a player having the
option of declaring a draw in this case, as in the official rules.) The subgame perfect
equilibria of ticktacktoe are of course known, whereas those of chess are not (yet).

Ticktacktoe and chess are “strictly competitive” games (Definition 365.2): in
every outcome, either one player loses and the other wins, or the players draw.
A result in a later chapter implies that for such a game all Nash equilibria yield
the same outcome (Corollary 369.1). Further, a player’s Nash equilibrium strategy
yields at least her equilibrium payoff, regardless of the other players’ strategies
(Proposition 368.1a). (The same is definitely not true for an arbitrary game that is
not strictly competitive: look, for example, at the game in Figure 31.1.) Because any
subgame perfect equilibrium is a Nash equilibrium, the same is true for subgame
perfect equilibrium strategies.

We conclude that in ticktacktoe and chess, either (a) one of the players has a
strategy that guarantees she wins, or (b) each player has a strategy that guarantees
at worst a draw.

In ticktacktoe, of course, we know that (b) is true. Chess is more subtle. In
particular, it is not known whether White has a strategy that guarantees it wins,
or Black has a strategy that guarantees it wins, or each player has a strategy that
guarantees at worst a draw. The empirical evidence suggests that Black does not
have a winning strategy, but this result has not been proved. When will a sub-
game perfect equilibrium of chess be found? (The answer “never” underestimates
human ingenuity!)
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? EXERCISE 179.1 (Subgame perfect equilibria of ticktacktoe) Ticktacktoe has sub-
game perfect equilibria in which the first player puts her first X in a corner. The
second player’s move is the same in all these equilibria. What is it?

? EXERCISE 179.2 (Toetacktick) Toetacktick is a variant of ticktacktoe in which a
player who puts three marks in a line loses (rather than wins). Find a strategy
of the first-mover that guarantees that she does not lose. (If fact, in all subgame
perfect equilibria the game is a draw.)

? EXERCISE 179.3 (Three Men’s Morris, or Mill) The ancient game of Three Men’s
Morris is played on a ticktacktoe board. Each player has three counters. The play-
ers move alternately. On each of her first three turns, a player places a counter
on an unoccupied square. On each subsequent move, a player may move one of
her counters to an adjacent square (vertically or horizontally, but not diagonally).
The first player whose counters are in a row (vertically, horizontally, or diagonally)
wins. Find a subgame perfect equilibrium strategy of player 1, and the equilibrium
outcome.

Notes

The notion of an extensive game is due to von Neumann and Morgenstern (1944).
Kuhn (1950b, 1953) suggested the formulation described in this chapter. The de-
scription of an extensive game in terms of histories was suggested by Ariel Rubin-
stein. The notion of subgame perfect equilibrium is due to Selten (1965). Propo-
sition 173.1 is due to Kuhn (1953). The interpretation of a strategy when a sub-
game perfect equilibrium is interpreted as the outcome of the players’ reason-
ing about each other’s rational actions is due to Rubinstein (1991). The princi-
ple of optimality in dynamic programming is discussed by Bellman (1957, 83), for
example.

The procedure in Exercises 163.2 and 173.3 was first studied by Mueller (1978)
and Moulin (1981). The idea in Exercise 173.4 goes back at least to Sun-tzu, who,
in The art of warfare (probably written between 500 and 300 B.C.), advises “in sur-
rounding the enemy, leave him a way out; do not press an enemy that is cor-
nered” (end of Chapter 7; see, for example, Sun-tzu (1993, 132)). (That is, if no
bridge exists in the situation described in the exercise, army 1 should build one.)
Schelling (1966, 45) quotes Sun-tzu and gives examples of the strategy’s being
used in antiquity. My formulation of the exercise comes from Tirole (1988, 316).
The model in Exercise 174.1 is studied by Kohler and Chandrasekaran (1971) and
Brams and Straffin (1979). The game in Exercise 174.2 is based on Benoît (1984,
Section 1). The dollar auction (Exercise 176.1) was introduced into the literature by
Shubik (1971). Some of its subgame perfect equilibria, for arbitrary values of v and
w, are studied by O’Neill (1986) and Leininger (1989); see also Taylor (1995, Chap-
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ters 1 and 6). Poundstone (1992, 257–272) writes informally about the game and its
possible applications. The result in Exercise 177.2 is due to Becker (1974); see also
Bergstrom (1989). The first formal study of chess is Zermelo (1913); see Schwalbe
and Walker (2000) for a discussion of this paper and related work. Exercises 179.1,
179.2, and 179.3 are taken from Gardner (1959, Chapter 4), which includes several
other intriguing examples.




