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4.1 Introduction

4.1.1 Stochastic steady states

ANASH EQUILIBRIUM of a strategic game is an action profile in which every
player’s action is optimal given every other player’s action (Definition 23.1).

Such an action profile corresponds to a steady state of the idealized situation in
which for each player in the game there is a population of individuals, and when-
ever the game is played, one player is drawn randomly from each population (see
Section 2.6). In a steady state, every player’s behavior is the same whenever she
plays the game, and no player wishes to change her behavior, knowing (from her
experience) the other players’ behavior. In a steady state in which each player’s
“behavior” is simply an action and within each population all players choose the
same action, the outcome of every play of the game is the same Nash equilibrium.

More general notions of a steady state allow the players’ choices to vary, as
long as the pattern of choices remains constant. For example, different members
of a given population may choose different actions, each player choosing the same
action whenever she plays the game. Or each individual may, on each occasion
she plays the game, choose her action probabilistically according to the same, un-
changing distribution. These two more general notions of a steady state are equiv-
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alent: a steady state of the first type in which the fraction p of the population rep-
resenting player i chooses the action a corresponds to a steady state of the second
type in which each member of the population representing player i chooses a with
probability p. In both cases, in each play of the game the probability that the indi-
vidual in the role of player i chooses a is p. Both these notions of steady state are
modeled by a mixed strategy Nash equilibrium, a generalization of the notion of
Nash equilibrium. For expository convenience, in most of this chapter I interpret
such an equilibrium as a model of the second type of steady state, in which each
player chooses her actions probabilistically; such a steady state is called stochastic

(“involving probability”).

4.1.2 Example: Matching Pennies

An analysis of the game Matching Pennies (Example 19.1) illustrates the idea of
a stochastic steady state. My discussion focuses on the outcomes of this game,
given in Figure 100.1, rather than payoffs that represent the players’ preferences,
as before.

Head Tail

Head $1,−$1 −$1, $1
Tail −$1, $1 $1,−$1

Figure 100.1 The outcomes of Matching Pennies.

As we saw previously, this game has no Nash equilibrium: no pair of actions is
compatible with a steady state in which each player’s action is the same whenever
the game is played. I claim, however, that the game has a stochastic steady state in
which each player chooses each of her actions with probability 1

2 . To establish this
result, I need to argue that if player 2 chooses each of her actions with probability 1

2 ,
then player 1 optimally chooses each of her actions with probability 1

2 , and vice
versa.

Suppose that player 2 chooses each of her actions with probability 1
2 . If player 1

chooses Head with probability p and Tail with probability 1 − p, then each out-
come (Head, Head) and (Head, Tail) occurs with probability 1

2 p, and each outcome
(Tail, Head) and (Tail, Tail) occurs with probability 1

2 (1 − p). Thus the probability
that the outcome is either (Head, Head) or (Tail, Tail), in which case player 1 gains
$1, is 1

2 p + 1
2 (1 − p), which is equal to 1

2 . In the other two outcomes, (Head, Tail)
and (Tail, Head), she loses $1, so the probability of her losing $1 is also 1

2 . In par-
ticular, the probability distribution over outcomes is independent of p! Thus every

value of p is optimal. In particular, player 1 can do no better than choose Head with
probability 1

2 and Tail with probability 1
2 . A similar analysis shows that player 2

optimally chooses each action with probability 1
2 when player 1 does so. We con-

clude that the game has a stochastic steady state in which each player chooses each
action with probability 1

2 .
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I further claim that, under a reasonable assumption on the players’ preferences,
the game has no other steady state. This assumption is that each player wants the
probability of her gaining $1 to be as large as possible. More precisely, if p > q, then
each player prefers to gain $1 with probability p and lose $1 with probability 1 − p

than to gain $1 with probability q and lose $1 with probability 1 − q.
To show that under this assumption there is no steady state in which the prob-

ability of each player’s choosing Head is different from 1
2 , denote the probability

with which player 2 chooses Head by q (so that she chooses Tail with probabil-
ity 1 − q). If player 1 chooses Head with probability p, then she gains $1 with prob-
ability pq + (1 − p)(1 − q) (the probability that the outcome is either (Head, Head)
or (Tail, Tail)) and loses $1 with probability (1 − p)q + p(1− q). The first probabil-
ity is equal to 1 − q + p(2q − 1) and the second is equal to q + p(1 − 2q). Thus if
q <

1
2 (player 2 chooses Head with probability less than 1

2 ), the first probability is
decreasing in p and the second is increasing in p, so that the lower is p, the better
is the outcome for player 1; the value of p that induces the best probability distri-
bution over outcomes for player 1 is 0. That is, if player 2 chooses Head with prob-
ability less than 1

2 , then the uniquely best policy for player 1 is to choose Tail with
certainty. A similar argument shows that if player 2 chooses Head with probability
greater than 1

2 , the uniquely best policy for player 1 is to choose Head with certainty.
Now, if player 1 chooses an action with certainty, a similar analysis leads to the

conclusion that the optimal policy of player 2 is to choose an action with certainty
(Head if player 1 chooses Tail and Tail if player 1 chooses Head).

We conclude that there is no steady state in which the probability that player 2
chooses Head differs from 1

2 . A symmetric argument shows that there is no steady
state in which the probability that player 1 chooses Head differs from 1

2 . Thus in
the only stochastic steady state each player chooses each action with probability 1

2 .
As discussed in the opening section (4.1.1), the stable pattern of behavior we

have found can be alternatively interpreted as a steady state in which no player
randomizes. Instead, half the players in the population of individuals who take
the role of player 1 in the game choose Head whenever they play the game and half
of them choose Tail whenever they play the game; similarly half of those who take
the role of player 2 choose Head and half choose Tail. Given that the individuals
involved in any given play of the game are chosen randomly from the populations,
in each play of the game each individual faces with probability 1

2 an opponent who
chooses Head, and with probability 1

2 an opponent who chooses Tail.

? EXERCISE 101.1 (Variant of Matching Pennies) Find the steady state(s) of the game
that differs from Matching Pennies only in that the outcomes of (Head, Head) and of
(Tail, Tail) are that player 1 gains $2 and player 2 loses $1.

4.1.3 Generalizing the analysis: expected payoffs

The fact that Matching Pennies has only two outcomes for each player (gain $1, lose
$1) makes the analysis of a stochastic steady state particularly simple because it
allows us to deduce, under a weak assumption, the players’ preferences regarding
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lotteries (probability distributions) over outcomes from their preferences regarding
deterministic outcomes (outcomes that occur with certainty). If a player prefers
the deterministic outcome a to the deterministic outcome b, it is very plausible that
if p > q, then she prefers the lottery in which a occurs with probability p (and b

occurs with probability 1 − p) to the lottery in which a occurs with probability q

(and b occurs with probability 1 − q).
In a game with more than two outcomes for some player, we cannot extrapo-

late in this way from preferences regarding deterministic outcomes to preferences
regarding lotteries over outcomes. Suppose, for example, that a game has three
possible outcomes, a, b, and c, and that a player prefers a to b to c. Does she prefer
the deterministic outcome b to the lottery in which a and c each occur with prob-
ability 1

2 , or vice versa? The information about her preferences over deterministic
outcomes gives us no clue about the answer to this question. She may prefer b to
the lottery in which a and c each occur with probability 1

2 , or she may prefer this
lottery to b; both preferences are consistent with her preferring a to b to c. To study
her behavior when she is faced with choices between lotteries, we need to add to
the model a description of her preferences regarding lotteries over outcomes.

A standard assumption in game theory restricts attention to preferences regard-
ing lotteries over outcomes that may be represented by the expected value of a pay-
off function over deterministic outcomes. (See Section 17.6.3 if you are unfamiliar
with the notion of “expected value”.) That is, for every player i there is a payoff
function ui with the property that player i prefers one lottery over outcomes to an-
other if and only if, according to ui, the expected value of the first lottery exceeds
the expected value of the second lottery.

For example, suppose that there are three outcomes, a, b, and c, and lot-
tery P yields a with probability pa, b with probability pb, and c with probabil-
ity pc, whereas lottery Q yields these three outcomes with probabilities qa, qb,
and qc. Then the assumption is that for each player i there are numbers ui(a),
ui(b), and ui(c) such that player i prefers lottery P to lottery Q if and only if
paui(a) + pbui(b) + pcui(c) > qaui(a) + qbui(b) + qcui(c). (I discuss the represen-
tation of preferences by the expected value of a payoff function in more detail in
Section 4.12, an appendix to this chapter.)

The first systematic investigation of preferences regarding lotteries represented
by the expected value of a payoff function over deterministic outcomes was un-
dertaken by von Neumann and Morgenstern (1944). Accordingly such preferences
are called vNM preferences. A payoff function over deterministic outcomes (ui

in the previous paragraph) whose expected value represents such preferences is
called a Bernoulli payoff function (in honor of Daniel Bernoulli (1700–1782), who
appears to have been one of the first persons to use such a function to represent
preferences).

The restrictions on preferences regarding deterministic outcomes required for
them to be represented by a payoff function are relatively innocuous (see Sec-
tion 1.2.2). The same is not true of the restrictions on preferences regarding lot-
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teries over outcomes required for them to be represented by the expected value
of a payoff function. (I do not discuss these restrictions, but the box at the end
of this section gives an example of preferences that violate them.) Nevertheless,
we obtain many insights from models that assume that preferences take this form;
following standard game theory (and standard economic theory), I maintain the
assumption throughout the book.

The assumption that a player’s preferences are represented by the expected
value of a payoff function does not restrict her attitudes to risk: a person whose
preferences are represented by such a function may have an arbitrarily strong
liking or dislike for risk.

Suppose, for example, that a, b, and c are three outcomes, and a person prefers
a to b to c. If the person is very averse to risky outcomes, then she prefers to obtain
b for sure rather than to face the lottery in which a occurs with probability p and c

occurs with probability 1− p, even if p is relatively large. Such preferences may be
represented by the expected value of a payoff function u for which u(a) is close to
u(b), which is much larger than u(c). For a case in which a, b, and c are numbers,
such payoffs are illustrated in the left panel of Figure 103.1.

If the person is not at all averse to risky outcomes, then she prefers the lottery
to the certain outcome b, even if p is relatively small. Such preferences are repre-
sented by the expected value of a payoff function u for which u(a) is much larger
than u(b), which is close to u(c). For a case in which a, b, and c are numbers, such
payoffs are illustrated in the right panel of Figure 103.1. If u(a) = 10, u(b) = 9,
and u(c) = 0, for example, then the person prefers the certain outcome b to any
lottery between a and c that yields a with probability less than 9

10 . But if u(a) = 10,
u(b) = 1, and u(c) = 0, she prefers any lottery between a and c that yields a with
probability greater than 1

10 to the certain outcome b.
Suppose that the outcomes are amounts of money, and a person’s preferences

are represented by the expected value of a payoff function in which the payoff of
each outcome is equal to the amount of money involved. Then we say the person is
risk neutral. Such a person compares lotteries according to the expected amount of

c

u(c)

b

u(b)

a

u(a)

c

u(c)

b

u(b)

a

u(a)

Figure 103.1 The Bernoulli payoffs for the outcomes a, b, and c for persons who prefer a to b to c and
are very averse to risk (left panel) and not at all averse to risk (right panel).
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money involved. (For example, she is indifferent between receiving $100 for sure
and the lottery that yields $0 with probability 9

10 and $1000 with probability 1
10 .)

On the one hand, the fact that people buy insurance suggests that in some circum-
stances preferences are risk averse: people prefer to obtain $z with certainty than
to receive the outcome of a lottery that yields $z on average. On the other hand,
the fact that people buy lottery tickets that pay, on average, much less than their
purchase price, suggests that in other circumstances preferences are risk preferring.
In both cases, preferences over lotteries are not represented by expected monetary

values, though they still may be represented by the expected value of a payoff func-
tion (in which the payoffs to outcome are different from the monetary values of the
outcomes).

Any given preferences over deterministic outcomes are represented by many
different payoff functions (see Section 1.2.2). The same is true of preferences over
lotteries; the relation between payoff functions whose expected values represent
the same preferences is discussed in Section 4.12.2 in the appendix to this chapter.
In particular, we may choose arbitrary payoffs for the outcomes that are best and
worst according to the preferences, as long as the payoff to the best outcome ex-
ceeds the payoff to the worst outcome. Suppose, for example, that there are three
outcomes, a, b, and c, and a person prefers a to b to c, and is indifferent between
b and the lottery that yields a with probability 1

2 and c with probability 1
2 . Then

we may choose u(a) = 3 and u(c) = 1, in which case u(b) = 2; or, for example,
we may choose u(a) = 10 and u(c) = 0, in which case u(b) = 5, or u(a) = 1 and
u(c) = −1, in which case u(b) = 0.

SOME EVIDENCE ON EXPECTED PAYOFF FUNCTIONS

Consider the following two lotteries (the first of which is, in fact, deterministic):

Lottery 1 You receive $2 million with certainty.

Lottery 2 You receive $10 million with probability 0.1, $2 million with probabil-
ity 0.89, and nothing with probability 0.01.

Which do you prefer? Now consider two more lotteries:

Lottery 3 You receive $2 million with probability 0.11 and nothing with probabil-
ity 0.89.

Lottery 4 You receive $10 million with probability 0.1 and nothing with probabil-
ity 0.9.

Which do you prefer? A significant fraction of experimental subjects say they pre-
fer lottery 1 to lottery 2, and lottery 4 to lottery 3. (See, for example, Conlisk 1989
and Camerer 1995, 622–623.)

These preferences cannot be represented by an expected payoff function! If
they could be, there would exist a payoff function u for which the expected payoff
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of lottery 1 exceeds that of lottery 2:

u(2) > 0.1u(10) + 0.89u(2) + 0.01u(0),

where the amounts of money are expressed in millions. Subtracting 0.89u(2) and
adding 0.89u(0) to each side we obtain

0.11u(2) + 0.89u(0) > 0.1u(10) + 0.9u(0).

But this inequality says that the expected payoff of lottery 3 exceeds that of lot-
tery 4! Thus preferences represented by an expected payoff function that yield a
preference for lottery 1 over lottery 2 must also yield a preference for lottery 3 over
lottery 4.

Preferences represented by the expected value of a payoff function are, how-
ever, consistent with a person’s being indifferent between lotteries 1 and 2, and
between lotteries 3 and 4. Suppose we assume that when a person is almost in-
different between two lotteries, she may make a “mistake”. Then a person’s ex-
pressed preference for lottery 1 over lottery 2 and for lottery 4 over lottery 3 is not
directly inconsistent with her preferences’ being represented by the expected value
of a payoff function in which she is almost indifferent between lotteries 1 and 2 and
between lotteries 3 and 4. If, however, we add the assumption that mistakes are
distributed symmetrically, then the frequency with which people express a prefer-
ence for lottery 2 over lottery 1 and for lottery 4 over lottery 3 (also inconsistent
with preferences represented by the expected value of a payoff function) should be
similar to that with which people express a preference for lottery 1 over lottery 2
and for lottery 3 over lottery 4. In fact, however, the second pattern is significantly
more common than the first (Conlisk 1989), so that a more significant modification
of the theory is needed to explain the observations.

A limitation of the evidence is that it is based on the preferences expressed
by people faced with hypothetical choices; understandably (given the amounts of
money involved), no experiment has been run in which subjects were paid accord-
ing to the lotteries they chose! Experiments with stakes consistent with normal
research budgets show few choices inconsistent with preferences represented by
the expected value of a payoff function (Conlisk 1989). This evidence, however,
does not contradict the evidence based on hypothetical choices with large stakes:
with larger stakes subjects might make choices in line with the preferences they
express when asked about hypothetical choices.

In summary, the evidence for an inconsistency with preferences compatible
with an expected payoff function is, at a minimum, suggestive. It has spurred
the development of alternative theories. Nevertheless, the vast majority of mod-
els in game theory (and also in economics) that involve choice under uncertainty
currently assume that each decision-maker’s preferences are represented by the
expected value of a payoff function. I maintain this assumption throughout the
book, although many of the ideas I discuss appear not to depend on it.
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4.2 Strategic games in which players may randomize

To study stochastic steady states, we extend the notion of a strategic game given
in Definition 13.1 by endowing each player with vNM preferences about lotteries
over the set of action profiles.

◮ DEFINITION 106.1 (Strategic game with vNM preferences) A strategic game (with
vNM preferences) consists of

• a set of players

• for each player, a set of actions

• for each player, preferences regarding lotteries over action profiles that may
be represented by the expected value of a (“Bernoulli”) payoff function over
action profiles.

A two-player strategic game with vNM preferences in which each player has
finitely many actions may be presented in a table like those in Chapter 2. Such
a table looks exactly the same as it did before, though the interpretation of the
numbers in the boxes is different. In Chapter 2 these numbers are values of payoff
functions that represent the players’ preferences over deterministic outcomes; here
they are the values of (Bernoulli) payoff functions whose expected values represent
the players’ preferences over lotteries.

Given the change in the interpretation of the payoffs, two tables that represent
the same strategic game with ordinal preferences no longer necessarily represent
the same strategic game with vNM preferences. For example, the two tables in
Figure 107.1 represent the same game with ordinal preferences—namely the Pris-

oner’s Dilemma (Section 2.2). In both cases the best outcome for each player is that
in which she chooses F and the other player chooses Q, the next best outcome is
(Q, Q), then comes (F, F), and the worst outcome is that in which she chooses Q

and the other player chooses F. However, the tables represent different strategic
games with vNM preferences. For example, in the table on the left, player 1’s pay-
off to (Q, Q) is the same as her expected payoff to the lottery that yields (F, Q) with
probability 1

2 and (F, F) with probability 1
2 ( 1

2 u1(F, Q) + 1
2 u1(F, F) = 1

2 · 3 + 1
2 · 1 =

2 = u1(Q, Q)), whereas in the table on the right, her payoff to (Q, Q) is greater than

her expected payoff to this lottery (3 > 1
2 · 4+ 1

2 · 1). Thus the left-hand table repre-
sents a situation in which player 1 is indifferent between the deterministic outcome
(Q, Q) and the lottery in which (F, Q) occurs with probability 1

2 and (F, F) occurs
with probability 1

2 . In the right-hand table, however, she prefers the deterministic
outcome (Q, Q) to the lottery.

To show, as in this example, that two tables represent different strategic games
with vNM preferences, we need only find a pair of lotteries whose expected pay-
offs are ordered differently by the two tables. To show that they represent the same

strategic game with vNM preferences is more difficult; see Section 4.12.2.

? EXERCISE 106.2 (Extensions of BoS with vNM preferences) Construct a table of
payoffs for a strategic game with vNM preferences in which the players’ prefer-
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Q F

Q 2, 2 0, 3
F 3, 0 1, 1

Q F

Q 3, 3 0, 4
F 4, 0 1, 1

Figure 107.1 Two tables that represent the same strategic game with ordinal preferences but different
strategic games with vNM preferences.

ences over deterministic outcomes are the same as they are in BoS (Example 18.2),
and their preferences over lotteries satisfy the following condition. Each player
is indifferent between (i) going to her less preferred concert in the company of
the other player, and (ii) the lottery in which with probability 1

2 she and the other
player go to different concerts and with probability 1

2 they both go to her more
preferred concert. Do the same in the case that each player is indifferent between
(i) going to her less preferred concert in the company of the other player and (ii) the
lottery in which with probability 3

4 she and the other player go to different concerts
and with probability 1

4 they both go to her more preferred concert. (In each case set
each player’s payoff to the outcome that she least prefers equal to 0 and her payoff
to the outcome that she most prefers equal to 2.)

Despite the importance of saying how the numbers in a payoff table should be
interpreted, users of game theory sometimes fail to make the interpretation clear.
When one interprets discussions of Nash equilibrium in the literature, a reason-
ably safe assumption is that if the players are not allowed to choose their actions
randomly, then the numbers in payoff tables are payoffs that represent the play-
ers’ ordinal preferences, whereas if the players are allowed to randomize, then
the numbers are payoffs whose expected values represent the players’ preferences
regarding lotteries over outcomes.

4.3 Mixed strategy Nash equilibrium

4.3.1 Mixed strategies

In the generalization of the notion of Nash equilibrium that models a stochastic
steady state of a strategic game with vNM preferences, we allow each player to
choose a probability distribution over her set of actions rather than restricting her
to choose a single deterministic action. We refer to such a probability distribution
as a mixed strategy.

◮ DEFINITION 107.1 (Mixed strategy) A mixed strategy of a player in a strategic game
is a probability distribution over the player’s actions.

I usually use α to denote a profile of mixed strategies; αi(ai) is the probability
assigned by player i’s mixed strategy αi to her action ai. To specify a mixed strategy
of player i we need to give the probability it assigns to each of player i’s actions.
For example, the strategy of player 1 in Matching Pennies that assigns probability 1

2
to each action is the strategy α1 for which α1(Head) = 1

2 and α1(Tail) = 1
2 . Because
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this way of describing a mixed strategy is cumbersome, I often use a shorthand
for a game that is presented in a table like those in Figure 107.1: I write a mixed
strategy as a list of probabilities, one for each action, in the order the actions are given

in the table. For example, the mixed strategy ( 1
3 , 2

3 ) for player 1 in either of the
games in Figure 107.1 assigns probability 1

3 to Q and probability 2
3 to F.

A mixed strategy may assign probability 1 to a single action: by allowing a
player to choose probability distributions, we do not prohibit her from choos-
ing deterministic actions. We refer to such a mixed strategy as a pure strategy.
Player i’s choosing the pure strategy that assigns probability 1 to the action ai is
equivalent to her simply choosing the action ai, and I denote this strategy simply
by ai.

4.3.2 Equilibrium

The notion of equilibrium that we study is called “mixed strategy Nash equilib-
rium”. The idea behind it is the same as the idea behind the notion of Nash equi-
librium for a game with ordinal preferences: a mixed strategy Nash equilibrium is
a mixed strategy profile α∗ with the property that no player i has a mixed strategy
αi such that she prefers the lottery over outcomes generated by the strategy pro-
file (αi, α∗−i) to the lottery over outcomes generated by the strategy profile α∗. The
following definition states this condition using payoff functions whose expected
values represent the players’ preferences.

◮ DEFINITION 108.1 (Mixed strategy Nash equilibrium of strategic game with vNM pref-

erences) The mixed strategy profile α∗ in a strategic game with vNM preferences is
a (mixed strategy) Nash equilibrium if, for each player i and every mixed strategy
αi of player i, the expected payoff to player i of α∗ is at least as large as the expected
payoff to player i of (αi, α∗−i) according to a payoff function whose expected value
represents player i’s preferences over lotteries. Equivalently, for each player i,

Ui(α
∗) ≥ Ui(αi, α∗−i) for every mixed strategy αi of player i, (108.2)

where Ui(α) is player i’s expected payoff to the mixed strategy profile α.

The technique of constructing the players’ best response functions (Section 2.8),
useful in finding Nash equilibria of some strategic games with ordinal preferences,
is useful too in finding mixed strategy Nash equilibria of some strategic games
with vNM preferences, especially very simple ones. I discuss this technique in the
next section. In Section 4.3.4 I discuss a characterization of mixed strategy Nash
equilibrium that is an invaluable tool for studying the equilibria of any game.

4.3.3 Best response functions

General definition As before, I denote player i’s best response function by Bi. For a
strategic game with ordinal preferences, Bi(a−i) is the set of player i’s best actions
when the list of the other players’ actions is a−i. For a strategic game with vNM
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preferences, Bi(α−i) is the set of player i’s best mixed strategies when the list of
the other players’ mixed strategies is α−i. From the definition of a mixed strategy
equilibrium, a profile α∗ of mixed strategies is a mixed strategy Nash equilibrium
if and only if every player’s mixed strategy is a best response to the other players’
mixed strategies (cf. Proposition 36.1):

the mixed strategy profile α∗ is a mixed strategy Nash equilibrium if and

only if α∗i is in Bi(α
∗
−i) for every player i.

Two-player two-action games The analysis of Matching Pennies in Section 4.1.2 shows
that each player’s set of best responses to a mixed strategy of the other player is
either a single pure strategy or the set of all mixed strategies. (For example, if
player 2’s mixed strategy assigns probability less than 1

2 to Head, then player 1’s
unique best response is the pure strategy Tail, if player 2’s mixed strategy assigns
probability greater than 1

2 to Head, then player 1’s unique best response is the pure
strategy Head, and if player 2’s mixed strategy assigns probability 1

2 to Head, then
all of player 1’s mixed strategies are best responses.)

The character of each player’s set of best responses in any two-player game in
which each player has two actions is similar to the character of each player’s set of
best responses in Matching Pennies: it consists either of a single pure strategy or of
all mixed strategies. The reason lies in the form of the payoff functions.

Consider a two-player game in which each player has two actions, T and B for
player 1 and L and R for player 2. Denote by ui, for i = 1, 2, a Bernoulli payoff
function for player i. (That is, ui is a payoff function over action pairs whose ex-
pected value represents player i’s preferences regarding lotteries over action pairs.)
Player 1’s mixed strategy α1 assigns probability α1(T) to her action T and probabil-
ity α1(B) to her action B (with α1(T) + α1(B) = 1). For convenience, let p = α1(T),
so that α1(B) = 1− p. Similarly, denote the probability α2(L) that player 2’s mixed
strategy assigns to L by q, so that α2(R) = 1 − q.

We take the players’ choices to be independent, so that when the players use
the mixed strategies α1 and α2, the probability of any action pair (a1, a2) is the
product of the probability player 1’s mixed strategy assigns to a1 and the prob-
ability player 2’s mixed strategy assigns to a2. (See Section 17.6.2 in the mathe-
matical appendix if you are not familiar with the idea of independence.) Thus
the probability distribution generated by the mixed strategy pair (α1, α2) over the
four possible outcomes of the game has the form given in Figure 109.1: (T, L) oc-
curs with probability pq, (T, R) occurs with probability p(1− q), (B, L) occurs with
probability (1 − p)q, and (B, R) occurs with probability (1 − p)(1− q).

L (q) R (1 − q)
T (p) pq p(1− q)

B (1 − p) (1 − p)q (1 − p)(1− q)

Figure 109.1 The probabilities of the four outcomes in a two-player two-action strategic game when
player 1’s mixed strategy is (p, 1 − p) and player 2’s mixed strategy is (q, 1 − q).
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From this probability distribution we see that player 1’s expected payoff to the
mixed strategy pair (α1, α2) is

pq · u1(T, L) + p(1− q) · u1(T, R) + (1 − p)q · u1(B, L) + (1 − p)(1− q) · u1(B, R),

which we can alternatively write as

p[q · u1(T, L) + (1 − q) · u1(T, R)] + (1 − p)[q · u1(B, L) + (1 − q) · u1(B, R)].

The first term in square brackets is player 1’s expected payoff when she uses a pure

strategy that assigns probability 1 to T and player 2 uses her mixed strategy α2; the
second term in square brackets is player 1’s expected payoff when she uses a pure

strategy that assigns probability 1 to B and player 2 uses her mixed strategy α2. De-
note these two expected payoffs E1(T, α2) and E1(B, α2). Then player 1’s expected
payoff to the mixed strategy pair (α1, α2) is

pE1(T, α2) + (1 − p)E1(B, α2).

That is, player 1’s expected payoff to the mixed strategy pair (α1, α2) is a weighted
average of her expected payoffs to T and B when player 2 uses the mixed strat-
egy α2, with weights equal to the probabilities assigned to T and B by α1.

In particular, player 1’s expected payoff, given player 2’s mixed strategy, is a
linear function of p—when plotted in a graph, it is a straight line.1 A case in which
E1(T, α2) > E1(B, α2) is illustrated in Figure 110.1.

? EXERCISE 110.1 (Expected payoffs) Construct diagrams like Figure 110.1 for BoS

(Figure 19.1) and the game in the right panel of Figure 21.1 (in each case treating
the numbers in the tables as Bernoulli payoffs). In each diagram, plot player 1’s
expected payoff as a function of the probability p that she assigns to her top action
in three cases: when the probability q that player 2 assigns to her left action is 0, 1

2 ,
and 1.

↑
Player 1’s

expected payoff

E1(B, α2)

E1(T, α2)

0 1p →

pE1(T, α2) + (1 − p)E1(B, α2)

p

Figure 110.1 Player 1’s expected payoff as a function of the probability p she assigns to T in the game
in which her actions are T and B, when player 2’s mixed strategy is α2 and E1(T, α2) > E1(B, α2).

1See Section 17.3 (in particular Figure 496.2) for my usage of the term “linear”.
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A significant implication of the linearity of player 1’s expected payoff is that
there are three possibilities for her best response to a given mixed strategy of
player 2:

• player 1’s unique best response is the pure strategy T (if E1(T, α2) > E1(B, α2),
as in Figure 110.1)

• player 1’s unique best response is the pure strategy B (if E1(B, α2) > E1(T, α2),
in which case the line representing player 1’s expected payoff as a function
of p in the analogue of Figure 110.1 slopes down)

• all mixed strategies of player 1 yield the same expected payoff, and hence
all are best responses (if E1(T, α2) = E1(B, α2), in which case the line rep-
resenting player 1’s expected payoff as a function of p in the analogue of
Figure 110.1 is horizontal).

In particular, a mixed strategy (p, 1 − p) for which 0 < p < 1 is never the unique

best response; either it is not a best response or all mixed strategies are best re-
sponses.

? EXERCISE 111.1 (Best responses) For each game and each value of q in Exercise
110.1, use the graphs you drew in that exercise to find player 1’s set of best re-
sponses.

Example: Matching Pennies The argument in Section 4.1.2 establishes that Match-

ing Pennies has a unique mixed strategy Nash equilibrium, in which each player’s
mixed strategy assigns probability 1

2 to Head and probability 1
2 to Tail. I now

describe an alternative route to this conclusion that uses the method described
in Section 2.8.3, which involves explicitly constructing the players’ best response
functions; this method may be used in other games.

Represent each player’s preferences by the expected value of a payoff function
that assigns the payoff 1 to a gain of $1 and the payoff −1 to a loss of $1. The
resulting strategic game with vNM preferences is shown in Figure 111.1.

Head Tail

Head 1,−1 −1, 1
Tail −1, 1 1,−1

Figure 111.1 Matching Pennies.

Denote by p the probability that player 1’s mixed strategy assigns to Head, and
by q the probability that player 2’s mixed strategy assigns to Head. Then, given
player 2’s mixed strategy, player 1’s expected payoff to the pure strategy Head is

q · 1 + (1 − q) · (−1) = 2q − 1

and her expected payoff to Tail is

q · (−1) + (1 − q) · 1 = 1 − 2q.
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0 1
2

1
p →

1
2

1↑
q

B1

B2

Figure 112.1 The players’ best response functions in Matching Pennies (Figure 111.1) when randomiza-
tion is allowed. The probabilities assigned by players 1 and 2 to Head are p and q, respectively. The best
response function of player 1 is black and that of player 2 is gray. The disk indicates the unique Nash
equilibrium.

Thus if q < 1
2 , then player 1’s expected payoff to Tail exceeds her expected payoff to

Head, and hence exceeds also her expected payoff to every mixed strategy that as-
signs a positive probability to Head. (Recall the discussion in the previous section.)
Similarly, if q > 1

2 , then her expected payoff to Head exceeds her expected payoff
to Tail, and hence exceeds her expected payoff to every mixed strategy that assigns
a positive probability to Tail. If q = 1

2 , then both Head and Tail, and hence all her
mixed strategies, yield the same expected payoff. We conclude that player 1’s best
responses to player 2’s strategy are her mixed strategy that assigns probability 0 to
Head if q <

1
2 , her mixed strategy that assigns probability 1 to Head if q >

1
2 , and

all her mixed strategies if q = 1
2 . That is, denoting by B1(q) the set of probabilities

player 1 assigns to Head in best responses to q, we have

B1(q) =







{0} if q <
1
2

{p: 0 ≤ p ≤ 1} if q = 1
2

{1} if q >
1
2 .

The best response function of player 2 is similar: B2(p) = {1} if p < 1
2 , B2(p) =

{q: 0 ≤ q ≤ 1} if p = 1
2 , and B2(p) = {0} if p > 1

2 . Both players’ best response
functions are illustrated in Figure 112.1 (the best response function of player 1 is
black and that of player 2 is gray).

The set of mixed strategy Nash equilibria of the game corresponds (as before)
to the set of intersections of the best response functions in this figure; we see that
there is one intersection, corresponding to the equilibrium we found previously, in
which each player assigns probability 1

2 to Head.
Matching Pennies has no Nash equilibrium if the players are not allowed to

randomize. If a game has a Nash equilibrium when randomization is not allowed,
is it possible that it has additional equilibria when randomization is allowed? The
following example shows that the answer is positive.
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B S

B 2, 1 0, 0
S 0, 0 1, 2

Figure 113.1 A version of the game BoS with vNM preferences.

Example: BoS Consider the two-player game with vNM preferences in which the
players’ preferences over deterministic action profiles are the same as in BoS and
their preferences over lotteries are represented by the expected value of the payoff
functions specified in Figure 113.1. What are the mixed strategy equilibria of this
game?

First construct player 1’s best response function. Suppose that player 2 assigns
probability q to B. Then player 1’s expected payoff to B is 2 · q + 0 · (1 − q) = 2q

and her expected payoff to S is 0 · q + 1 · (1 − q) = 1 − q. Thus if 2q > 1 − q,
or q >

1
3 , then her unique best response is B, while if q <

1
3 , then her unique best

response is S. If q = 1
3 , then both B and S, and hence all player 1’s mixed strategies,

yield the same expected payoffs, so that every mixed strategy is a best response.
In summary, player 1’s best response function is

B1(q) =







{0} if q <
1
3

{p : 0 ≤ p ≤ 1} if q = 1
3

{1} if q >
1
3 .

Similarly we can find player 2’s best response function. The best response func-
tions of both players are shown in Figure 113.2.

We see that the game has three mixed strategy Nash equilibria, in which (p, q) =
(0, 0), ( 2

3 , 1
3 ), and (1, 1). The first and third equilibria correspond to the Nash equi-

libria of the ordinal version of the game when the players were not allowed to
randomize (Section 2.7.2). The second equilibrium is new. In this equilibrium each

0 2
3

1
p →

1
3

1↑
q

B1

B2

Figure 113.2 The players’ best response functions in BoS (Figure 113.1) when randomization is allowed.
The probabilities assigned by players 1 and 2 to B are p and q, respectively. The best response function
of player 1 is black and that of player 2 is gray. The disks indicate the Nash equilibria (two pure, one
mixed).
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player chooses both B and S with positive probability (so that each of the four
outcomes (B, B), (B, S), (S, B), and (S, S) occurs with positive probability).

? EXERCISE 114.1 (Mixed strategy equilibria of Hawk–Dove) Consider the two-player
game with vNM preferences in which the players’ preferences over deterministic
action profiles are the same as in Hawk–Dove (Exercise 31.2) and their preferences
over lotteries satisfy the following two conditions. Each player is indifferent be-
tween (i) the outcome (Passive, Passive) and (ii) the lottery that assigns probability 1

2
to (Aggressive, Aggressive) and probability 1

2 to the outcome in which she is aggres-
sive and the other player is passive; each player is indifferent also between (i) the
outcome in which she is passive and the other player is aggressive and (ii) the
lottery that assigns probability 2

3 to the outcome (Aggressive, Aggressive) and prob-
ability 1

3 to the outcome (Passive, Passive). Find payoffs whose expected values
represent these preferences (take each player’s payoff to (Aggressive, Aggressive)
to be 0 and each player’s payoff to the outcome in which she is passive and the
other player is aggressive to be 1). Find the mixed strategy Nash equilibrium of
the resulting strategic game.

Both Matching Pennies and BoS have finitely many mixed strategy Nash equi-
libria: the players’ best response functions intersect at a finite number of points
(one for Matching Pennies, three for BoS). One of the games in the next exercise has
a continuum of mixed strategy Nash equilibria because segments of the players’
best response functions coincide.

? EXERCISE 114.2 (Games with mixed strategy equilibria) Find all the mixed strategy
Nash equilibria of the strategic games in Figure 114.1.

? EXERCISE 114.3 (A coordination game) Two people can perform a task if, and only
if, they both exert effort. They are both better off if they both exert effort and
perform the task than if neither exerts effort (and nothing is accomplished); the
worst outcome for each person is that she exerts effort and the other person does
not (in which case again nothing is accomplished). Specifically, the players’ prefer-
ences are represented by the expected value of the payoff functions in Figure 115.1,
where c is a positive number less than 1 that can be interpreted as the cost of ex-
erting effort. Find all the mixed strategy Nash equilibria of this game. How do the
equilibria change as c increases? Explain the reasons for the changes.

?? EXERCISE 114.4 (Swimming with sharks) You and a friend are spending two days
at the beach; you both enjoy swimming. Each of you believes that with probabil-

L R
T 6, 0 0, 6
B 3, 2 6, 0

L R
T 0, 1 0, 2
B 2, 2 0, 1

Figure 114.1 Two strategic games with vNM preferences.
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No effort Effort

No effort 0, 0 0,−c

Effort −c, 0 1 − c, 1 − c

Figure 115.1 The coordination game in Exercise 114.3.

ity π the water is infested with sharks. If sharks are present, any swimmer will
surely be attacked. Each of you has preferences represented by the expected value
of a payoff function that assigns −c to being attacked by a shark, 0 to sitting on the
beach, and 1 to a day’s worth of undisturbed swimming (where c > 0!). If a swim-
mer is attacked by sharks on the first day, then you both deduce that a swimmer
will surely be attacked the next day, and hence do not go swimming the next day. If
at least one of you swims on the first day and is not attacked, then you both know
that the water is shark-free. If neither of you swims on the first day, each of you re-
tains the belief that the probability of the water’s being infested is π, and hence on
the second day swims if −πc+ 1−π > 0 and sits on the beach if −πc+ 1−π < 0,
thus receiving an expected payoff of max{−πc + 1− π, 0}. Model this situation as
a strategic game in which you and your friend each decide whether to go swim-
ming on your first day at the beach. If, for example, you go swimming on the first
day, you (and your friend, if she goes swimming) are attacked with probability π,
in which case you stay out of the water on the second day; you (and your friend, if
she goes swimming) swim undisturbed with probability 1 − π, in which case you
swim on the second day. Thus your expected payoff if you swim on the first day
is π(−c + 0) + (1 − π)(1 + 1) = −πc + 2(1 − π), independent of your friend’s
action. Find the mixed strategy Nash equilibria of the game (depending on c and
π). Does the existence of a friend make it more or less likely that you decide to go
swimming on the first day? (Penguins diving into water where seals may lurk are
sometimes said to face the same dilemma; Court (1996) argues that they do not.)

4.3.4 A useful characterization of mixed strategy Nash equilibrium

The method we have used so far to study the set of mixed strategy Nash equi-
libria of a game involves constructing the players’ best response functions. This
method is useful in simple games, but is of limited use in more complicated ones.
I now present a characterization of mixed strategy Nash equilibrium that is invalu-
able in the study of general games. The characterization gives us an easy way to
check whether a mixed strategy profile is an equilibrium; it is also the basis of a
procedure (described in Section 4.10) for finding all equilibria of a game.

The key point is an observation made in Section 4.3.3 for two-player two-action
games: a player’s expected payoff to a mixed strategy profile is a weighted average
of her expected payoffs to her pure strategies, where the weight attached to each
pure strategy is the probability assigned to that strategy by the player’s mixed
strategy. This property holds for any game (with any number of players) in which
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each player has finitely many actions. We can state it more precisely as follows.

A player’s expected payoff to the mixed strategy profile α is a weighted aver-

age of her expected payoffs to all mixed strategy profiles of the type (ai, α−i),
where the weight attached to (ai, α−i) is the probability αi(ai) assigned to

ai by player i’s mixed strategy αi.

(116.1)

Symbolically we have

Ui(α) = ∑
ai∈Ai

αi(ai)Ei(ai, α−i),

where Ai is player i’s set of actions (pure strategies) and Ei(ai, α−i) is (as before)
her expected payoff when she uses the pure strategy that assigns probability 1 to
ai and every other player j uses her mixed strategy αj. (See the end of Section 17.2
in the appendix on mathematics for an explanation of the ∑ notation.)

This property leads to a useful characterization of mixed strategy Nash equi-
librium. Let α∗ be a mixed strategy Nash equilibrium and denote by E∗

i player i’s
expected payoff in the equilibrium (i.e. E∗

i = Ui(α
∗)). Because α∗ is an equilibrium,

player i’s expected payoff, given α∗−i, to all her strategies, including all her pure
strategies, is at most E∗

i . Now, by (116.1), E∗
i is a weighted average of player i’s ex-

pected payoffs to the pure strategies to which α∗i assigns positive probability. Thus
player i’s expected payoffs to these pure strategies are all equal to E∗

i . (If any were
smaller, then the weighted average would be smaller.) We conclude that the ex-
pected payoff to each action to which α∗i assigns positive probability is E∗

i , and the
expected payoff to every other action is at most E∗

i . Conversely, if these conditions
are satisfied for every player i, then α∗ is a mixed strategy Nash equilibrium: the
expected payoff to α∗i is E∗

i , and the expected payoff to any other mixed strategy is
at most E∗

i , because by (116.1) it is a weighted average of E∗
i and numbers that are

at most E∗
i .

This argument establishes the following result.

PROPOSITION 116.2 (Characterization of mixed strategy Nash equilibrium of finite
game) A mixed strategy profile α∗ in a strategic game with vNM preferences in which

each player has finitely many actions is a mixed strategy Nash equilibrium if and only if,

for each player i,

• the expected payoff, given α∗−i, to every action to which α∗i assigns positive probability

is the same

• the expected payoff, given α∗−i, to every action to which α∗i assigns zero probability is

at most the expected payoff to any action to which α∗i assigns positive probability.

Each player’s expected payoff in an equilibrium is her expected payoff to any of her actions

that she uses with positive probability.

The significance of this result is that it gives conditions for a mixed strategy
Nash equilibrium in terms of each player’s expected payoffs only to her pure strate-
gies. For games in which each player has finitely many actions, it allows us easily
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L (0) C ( 1
3 ) R ( 2

3 )
T ( 3

4 ) ·, 2 3, 3 1, 1
M (0) ·, · 0, · 2, ·
B ( 1

4 ) ·, 4 5, 1 0, 7

Figure 117.1 A partially specified strategic game, illustrating a method of checking whether a mixed
strategy profile is a mixed strategy Nash equilibrium. The dots indicate irrelevant payoffs.

to check whether a mixed strategy profile is an equilibrium. For example, in BoS

(Section 4.3.3) the strategy pair (( 2
3 , 1

3 ), (
1
3 , 2

3 )) is a mixed strategy Nash equilibrium
because given player 2’s strategy ( 1

3 , 2
3 ), player 1’s expected payoffs to B and S are

both equal to 2
3 , and given player 1’s strategy ( 2

3 , 1
3 ), player 2’s expected payoffs to

B and S are both equal to 2
3 .

The next example is slightly more complicated.

EXAMPLE 117.1 (Checking whether a mixed strategy profile is a mixed strategy
Nash equilibrium) I claim that for the game in Figure 117.1 (in which the dots
indicate irrelevant payoffs), the indicated pair of strategies, ( 3

4 , 0, 1
4 ) for player 1

and (0, 1
3 , 2

3 ) for player 2, is a mixed strategy Nash equilibrium. To verify this
claim, it suffices, by Proposition 116.2, to study each player’s expected payoffs to
her three pure strategies. For player 1 these payoffs are

T : 1
3 · 3 + 2

3 · 1 = 5
3

M : 1
3 · 0 + 2

3 · 2 = 4
3

B : 1
3 · 5 + 2

3 · 0 = 5
3 .

Player 1’s mixed strategy assigns positive probability to T and B and probability
zero to M, so the two conditions in Proposition 116.2 are satisfied for player 1. The
expected payoff to each of player 2’s pure strategies is 5

2 ( 3
4 · 2 + 1

4 · 4 = 3
4 · 3 + 1

4 ·
1 = 3

4 · 1 + 1
4 · 7 = 5

2 ), so the two conditions in Proposition 116.2 are satisfied also
for her.

Note that the expected payoff to player 2’s action L, which she uses with prob-
ability zero, is the same as the expected payoff to her other two actions. This equal-
ity is consistent with Proposition 116.2, the second part of which requires only that
the expected payoffs to actions used with probability zero be no greater than the ex-
pected payoffs to actions used with positive probability (not that they necessarily
be less). Note also that the fact that player 2’s expected payoff to L is the same as
her expected payoffs to C and R does not imply that the game has a mixed strategy
Nash equilibrium in which player 2 uses L with positive probability—it may, or it
may not, depending on the unspecified payoffs.

? EXERCISE 117.2 (Choosing numbers) Players 1 and 2 each choose a positive integer
up to K. If the players choose the same number, then player 2 pays $1 to player 1;
otherwise no payment is made. Each player’s preferences are represented by her
expected monetary payoff.
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a. Show that the game has a mixed strategy Nash equilibrium in which each
player chooses each positive integer up to K with probability 1/K.

b. (More difficult.) Show that the game has no other mixed strategy Nash equi-
libria. (Deduce from the fact that player 1 assigns positive probability to
some action k that player 2 must do so; then look at the implied restriction
on player 1’s equilibrium strategy.)

? EXERCISE 118.1 (Silverman’s game) Each of two players chooses a positive inte-
ger. If player i’s integer is greater than player j’s integer and less than three times
this integer, then player j pays $1 to player i. If player i’s integer is at least three
times player j’s integer, then player i pays $1 to player j. If the integers are equal,
no payment is made. Each player’s preferences are represented by her expected
monetary payoff. Show that the game has no Nash equilibrium in pure strate-
gies and that the pair of mixed strategies in which each player chooses 1, 2, and 5
each with probability 1

3 is a mixed strategy Nash equilibrium. (In fact, this pair of
mixed strategies is the unique mixed strategy Nash equilibrium.) (You cannot ap-
peal to Proposition 116.2 because the number of actions of each player is not finite.
However, you can use the argument for the “if” part of this result.)

?? EXERCISE 118.2 (Voter participation) Consider the game of voter participation in
Exercise 34.2. Assume that 2 ≤ k ≤ m and that each player’s preferences are
represented by the expectation of her payoffs given in Exercise 34.2. Show that
there is a value of p between 0 and 1 such that the game has a mixed strategy Nash
equilibrium in which every supporter of candidate A votes with probability p, k

supporters of candidate B vote with certainty, and the remaining m − k supporters
of candidate B abstain. How do the probability p that a supporter of candidate A

votes and the expected number of voters (“turnout”) depend upon c? (Note that if
every supporter of candidate A votes with probability p, then the probability that
exactly k − 1 of them vote is kpk−1(1 − p).)

?? EXERCISE 118.3 (Defending territory) General A is defending territory accessible
by two mountain passes against an attack by General B. General A has three di-
visions at her disposal, and general B has two divisions. Each general allocates
her divisions between the two passes. General A wins the battle at a pass if and
only if she assigns at least as many divisions to the pass as does General B; she
successfully defends her territory if and only if she wins the battle at both passes.
Formulate this situation as a strategic game and find all its mixed strategy equilib-
ria. (First argue that in every equilibrium B assigns probability zero to the action
of allocating one division to each pass. Then argue that in any equilibrium she
assigns probability 1

2 to each of her other actions. Finally, find A’s equilibrium
strategies.) In an equilibrium, do the generals concentrate all their forces at one
pass, or spread them out?

An implication of Proposition 116.2 is that a nondegenerate mixed strategy
equilibrium (a mixed strategy equilibrium that is not also a pure strategy equi-
librium) is never a strict Nash equilibrium: every player whose mixed strategy



4.3 Mixed strategy Nash equilibrium 119

assigns positive probability to more than one action is indifferent between her
equilibrium mixed strategy and every action to which this mixed strategy assigns
positive probability.

Any equilibrium (in mixed strategies or not) that is not strict has less appeal
than a strict equilibrium because some (or all) of the players lack a positive in-
centive to choose their equilibrium strategies, given the other players’ behavior.
There is no reason for them not to choose their equilibrium strategies, but at the
same time there is no reason for them not to choose another strategy that is equally
good. Many pure strategy equilibria—especially in complex games—are also not
strict, but among mixed strategy equilibria the problem is pervasive.

Given that in a mixed strategy equilibrium no player has a positive incentive to
choose her equilibrium strategy, what determines how she randomizes in equilib-
rium? From the examples studied in Section 4.3.3 (e.g. Matching Pennies and BoS)
we see that a player’s equilibrium mixed strategy in a two-player game keeps the
other player indifferent between a set of her actions, so that she is willing to ran-
domize. In the mixed strategy equilibrium of BoS, for example, player 1 chooses
B with probability 2

3 so that player 2 is indifferent between B and S, and hence is
willing to choose each with positive probability. Note, however, that the theory
is not that the players consciously choose their strategies with this goal in mind!
Rather, the conditions for equilibrium are designed to ensure that it is consistent
with a steady state. In BoS, for example, if player 1 chooses B with probability 2

3
and player 2 chooses B with probability 1

3 , then neither player has any reason to
change her action. We have not yet studied how a steady state might come about,
but have rather simply looked for strategy profiles consistent with steady states. In
Section 4.9 I briefly discuss some theories of how a steady state might be reached.

4.3.5 Existence of equilibrium in finite games

Every game we have examined has at least one mixed strategy Nash equilibrium.
In fact, every game in which each player has finitely many actions has at least one
such equilibrium.

PROPOSITION 119.1 (Existence of mixed strategy Nash equilibrium in finite games)
Every strategic game with vNM preferences in which each player has finitely many actions

has a mixed strategy Nash equilibrium.

This result is of no help in finding equilibria. But it is a useful fact: your quest
for an equilibrium of a game in which each player has finitely many actions in prin-
ciple may succeed! Note that the finiteness of the number of actions of each player
is only sufficient for the existence of an equilibrium, not necessary; many games in
which the players have infinitely many actions possess mixed strategy Nash equi-
libria. Note also that a player’s strategy in a mixed strategy Nash equilibrium may
assign probability 1 to a single action; if every player’s strategy does so, then the
equilibrium corresponds to a (“pure strategy”) equilibrium of the associated game
with ordinal preferences. Relatively advanced mathematical tools are needed to
prove the result; see, for example, Osborne and Rubinstein (1994, 19–20).
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4.4 Dominated actions

In a strategic game with ordinal preferences, one action of a player strictly domi-
nates another action if it is superior, no matter what the other players do (see Def-
inition 45.1). In a game with vNM preferences in which players may randomize,
we extend this definition to allow an action to be dominated by a mixed strategy.

◮ DEFINITION 120.1 (Strict domination) In a strategic game with vNM preferences,
player i’s mixed strategy αi strictly dominates her action a′i if

Ui(αi, a−i) > ui(a′i, a−i) for every list a−i of the other players’ actions,

where ui is a payoff function whose expected value represents player i’s prefer-
ences over lotteries and Ui(αi, a−i) is player i’s expected payoff under ui when she
uses the mixed strategy αi and the actions chosen by the other players are given by
a−i. We say that the action a′i is strictly dominated.

Figure 120.1 (in which only player 1’s payoffs are given) shows that an action
not strictly dominated by any pure strategy (i.e. is not strictly dominated in the
sense of Definition 45.1) may be strictly dominated by a mixed strategy. The action
T of player 1 is not strictly (or weakly) dominated by either M or B, but it is strictly
dominated by the mixed strategy that assigns probability 1

2 to M and probability 1
2

to B, because if player 2 chooses L, then the mixed strategy yields player 1 the
payoff of 2, whereas the action T yields her the payoff of 1, and if player 2 chooses
R, then the mixed strategy yields player 1 the payoff of 3

2 , whereas the action T

yields her the payoff of 1.

? EXERCISE 120.2 (Strictly dominating mixed strategies) In Figure 120.1, the mixed
strategy that assigns probability 1

2 to M and probability 1
2 to B is not the only mixed

strategy that strictly dominates T. Find all the mixed strategies that do so.

? EXERCISE 120.3 (Strict domination for mixed strategies) Determine whether each
of the following statements is true or false. (a) A mixed strategy that assigns
positive probability to a strictly dominated action is strictly dominated. (b) A
mixed strategy that assigns positive probability only to actions that are not strictly
dominated is not strictly dominated.

In a Nash equilibrium of a strategic game with ordinal preferences, no player
uses a strictly dominated action (Section 2.9.1). I now argue that the same is true of

L R
T 1 1

M 4 0
B 0 3

Figure 120.1 Player 1’s payoffs in a strategic game with vNM preferences. The action T of player 1 is
strictly dominated by the mixed strategy that assigns probability 1

2 to M and probability 1
2 to B.
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a mixed strategy Nash equilibrium of a strategic game with vNM preferences. In
fact, I argue that a strictly dominated action is not a best response to any collection
of mixed strategies of the other players.

Suppose that player i’s action a′i is strictly dominated by her mixed strategy αi.
Player i’s expected payoff Ui(αi, α−i) when she uses the mixed strategy αi and
the other players use the mixed strategies α−i is a weighted average of her payoffs
Ui(αi, a−i) as a−i varies over all the collections of actions for the other players, with
the weight on each a−i equal to the probability with which it occurs when the other
players’ mixed strategies are α−i. Player i’s expected payoff when she uses the
action a′i and the other players use the mixed strategies α−i is a similar weighted
average; the weights are the same, but the terms take the form ui(a′i, a−i) rather
than Ui(αi, a−i). The fact that a′i is strictly dominated by αi means that Ui(αi, a−i) >
ui(a′i, a−i) for every collection a−i of the other players’ actions. Hence player i’s
expected payoff when she uses the mixed strategy αi exceeds her expected payoff
when she uses the action a′i, given α−i. Consequently,

a strictly dominated action is not used with positive probability in any mixed

strategy Nash equilibrium.

Thus when looking for mixed strategy equilibria we can eliminate from consider-
ation every strictly dominated action.

As before, we can define the notion of weak domination (see Definition 46.1).

◮ DEFINITION 121.1 (Weak domination) In a strategic game with vNM preferences,
player i’s mixed strategy αi weakly dominates her action a′i if

Ui(αi, a−i) ≥ ui(a′i, a−i) for every list a−i of the other players’ actions

and

Ui(αi, a−i) > ui(a′i, a−i) for some list a−i of the other players’ actions,

where ui is a payoff function whose expected value represents player i’s prefer-
ences over lotteries and Ui(αi, a−i) is player i’s expected payoff under ui when she
uses the mixed strategy αi and the actions chosen by the other players are given by
a−i. We say that the action a′i is weakly dominated.

We saw that a weakly dominated action may be used in a Nash equilibrium
(see Figure 47.2). Thus a weakly dominated action may be used with positive
probability in a mixed strategy equilibrium, so that we cannot eliminate weakly

dominated actions from consideration when finding mixed strategy equilibria.

? EXERCISE 121.2 (Eliminating dominated actions when finding equilibria) Find all
the mixed strategy Nash equilibria of the game in Figure 122.1 by first eliminating
any strictly dominated actions and then constructing the players’ best response
functions.
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L M R

T 2, 2 0, 3 1, 2
B 3, 1 1, 0 0, 2

Figure 122.1 The strategic game with vNM preferences in Exercise 121.2.

The fact that a player’s strategy in a mixed strategy Nash equilibrium may be
weakly dominated raises the question of whether a game necessarily has a mixed
strategy Nash equilibrium in which no player’s strategy is weakly dominated. The
following result (which is not easy to prove) shows that the answer is affirmative
for a finite game.

PROPOSITION 122.1 (Existence of mixed strategy Nash equilibrium with no weak-
ly dominated strategies in finite games) Every strategic game with vNM preferences

in which each player has finitely many actions has a mixed strategy Nash equilibrium in

which no player’s strategy is weakly dominated.

4.5 Pure equilibria when randomization is allowed

The analysis in Section 4.3.3 shows that the mixed strategy Nash equilibria of BoS

in which each player’s strategy is pure correspond precisely to the Nash equilibria
of the version of the game (considered in Section 2.3) in which the players are not
allowed to randomize. The same is true for a general game: equilibria when the
players are not allowed to randomize remain equilibria when they are allowed
to randomize, and any pure equilibria that exist when the players are allowed to
randomize are equilibria when they are not allowed to randomize.

To establish this claim, let N be a set of players and let Ai, for each player i, be
a set of actions. Consider the following two games.

G: the strategic game with ordinal preferences in which the set of players is N,
the set of actions of each player i is Ai, and the preferences of each player i

are represented by the payoff function ui

G′: the strategic game with vNM preferences in which the set of players is N, the
set of actions of each player i is Ai, and the preferences of each player i are
represented by the expected value of ui.

First I argue that any Nash equilibrium of G corresponds to a mixed strategy
Nash equilibrium (in which each player’s strategy is pure) of G′. Let a∗ be a Nash
equilibrium of G, and for each player i let α∗i be the mixed strategy that assigns
probability 1 to a∗i . Since a∗ is a Nash equilibrium of G, we know that in G′ no
player i has an action that yields her a payoff higher than does a∗i when all the other
players adhere to α∗−i. Thus α∗ satisfies the two conditions in Proposition 116.2, so
that it is a mixed strategy equilibrium of G′, establishing the following result.

PROPOSITION 122.2 (Pure strategy equilibria survive when randomization is al-
lowed) Let a∗ be a Nash equilibrium of G and for each player i let α∗i be the mixed strategy



4.6 Illustration: expert diagnosis 123

of player i that assigns probability one to the action a∗i . Then α∗ is a mixed strategy Nash

equilibrium of G′.

Next I argue that any mixed strategy Nash equilibrium of G′ in which each
player’s strategy is pure corresponds to a Nash equilibrium of G. Let α∗ be a
mixed strategy Nash equilibrium of G′ in which every player’s mixed strategy
is pure; for each player i, denote by a∗i the action to which αi assigns probability
one. Then no mixed strategy of player i yields her a payoff higher than does α∗i
when the other players’ mixed strategies are given by α∗−i. Hence, in particular,
no pure strategy of player i yields her a payoff higher than does α∗i . Thus a∗ is a
Nash equilibrium of G. In words, if a pure strategy is optimal for a player when
she is allowed to randomize, then it remains optimal when she is prohibited from
randomizing. (More generally, prohibiting a decision-maker from taking an action
that is not optimal does not change the set of actions that are optimal.)

PROPOSITION 123.1 (Pure strategy equilibria survive when randomization is pro-
hibited) Let α∗ be a mixed strategy Nash equilibrium of G′ in which the mixed strategy of

each player i assigns probability one to the single action a∗i . Then a∗ is a Nash equilibrium

of G.

4.6 Illustration: expert diagnosis

I seem to confront the following predicament all too frequently. Something about
which I am relatively ill informed (my car, my computer, my body) stops working
properly. I consult an expert, who makes a diagnosis and recommends an action.
I am not sure that the diagnosis is correct—the expert, after all, has an interest in
selling her services. I have to decide whether to follow the expert’s advice or to try
to fix the problem myself, put up with it, or consult another expert.

4.6.1 Model

A simple model that captures the main features of this situation starts with the as-
sumption that there are two types of problem, major and minor. Denote the fraction
of problems that are major by r, and assume that 0 < r < 1. An expert knows, on
seeing a problem, whether it is major or minor; a consumer knows only the prob-
ability r. (The diagnosis is costly neither to the expert nor to the consumer.) An
expert may recommend either a major or a minor repair (regardless of the true
nature of the problem), and a consumer may either accept the expert’s recommen-
dation or seek another remedy. A major repair fixes both a major problem and a
minor one.

Assume that a consumer always accepts an expert’s advice to obtain a minor
repair—there is no reason for her to doubt such a diagnosis—but may either ac-
cept or reject advice to obtain a major repair. Further assume that an expert always
recommends a major repair for a major problem—a minor repair does not fix a
major problem, so there is no point in an expert’s recommending one for a major
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problem—but may recommend either repair for a minor problem. Suppose that an
expert obtains the same profit π > 0 (per unit of time) from selling a minor repair
to a consumer with a minor problem as she does from selling a major repair to a
consumer with a major problem, but obtains the profit π′ > π from selling a major
repair to a consumer with a minor problem. (The rationale is that in the last case
the expert does not in fact perform a major repair, at least not in its entirety.) A
consumer pays an expert E for a major repair and I < E for a minor one; the cost
she effectively bears if she chooses some other remedy is E′ > E if her problem
is major and I′ > I if it is minor. (Perhaps she consults other experts before pro-
ceeding, or works on the problem herself, in either case spending valuable time.) I
assume throughout that E > I′.

Under these assumptions we can model the situation as a strategic game in
which the expert has two actions (recommend a minor repair for a minor problem;
recommend a major repair for a minor problem), and the consumer has two ac-
tions (accept the recommendation of a major repair; reject the recommendation of
a major repair). I name the actions as follows.

Expert Honest (recommend a minor repair for a minor problem and a major repair
for a major problem) and Dishonest (recommend a major repair for both types
of problem).

Consumer Accept (buy whatever repair the expert recommends) and Reject (buy
a minor repair but seek some other remedy if a major repair is recommended)

Assume that each player’s preferences are represented by the player’s expected
monetary payoff. Then the players’ payoffs to the four action pairs are as follows
(the strategic game is given in Figure 125.1).

(H, A): With probability r the consumer’s problem is major, so she pays E, and
with probability 1 − r it is minor, so she pays I. Thus her expected payoff is
−rE − (1 − r)I. The expert’s profit is π.

(D, A): The consumer’s payoff is −E. The consumer’s problem is major with
probability r, yielding the expert π, and minor with probability 1 − r, yield-
ing the expert π′, so that the expert’s expected payoff is rπ + (1 − r)π′.

(H, R): The consumer’s cost is E′ if her problem is major (in which case she rejects
the expert’s advice to get a major repair) and I if her problem is minor, so that
her expected payoff is −rE′ − (1− r)I. The expert obtains a payoff only if the
consumer’s problem is minor, in which case she gets π; thus her expected
payoff is (1 − r)π.

(D, R): The consumer never accepts the expert’s advice, and thus obtains the ex-
pected payoff −rE′ − (1 − r)I′. The expert does not get any business, and
thus obtains the payoff of 0.
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Expert

Consumer
Accept (q) Reject (1 − q)

Honest (p) π,−rE − (1 − r)I (1 − r)π,−rE′ − (1 − r)I

Dishonest (1 − p) rπ + (1 − r)π′,−E 0,−rE′ − (1 − r)I′

Figure 125.1 A game between an expert and a consumer with a problem.

4.6.2 Nash equilibrium

To find the Nash equilibria of the game we can construct the best response func-
tions, as before. Denote by p the probability the expert assigns to H and by q the
probability the consumer assigns to A.

Expert’s best response function If q = 0 (i.e. the consumer chooses R with proba-
bility one), then the expert’s best response is p = 1 (since (1 − r)π > 0). If q = 1
(i.e. the consumer chooses A with probability one), then the expert’s best response
is p = 0 (since π′ > π, so that rπ + (1 − r)π′ > π). For what value of q is the
expert indifferent between H and D? Given q, the expert’s expected payoff to H is
qπ + (1 − q)(1 − r)π and her expected payoff to D is q[rπ + (1 − r)π′], so she is
indifferent between the two actions if

qπ + (1 − q)(1 − r)π = q[rπ + (1 − r)π′].

Upon simplification, this yields q = π/π′. We conclude that the expert’s best
response function takes the form shown in both panels of Figure 126.1.

Consumer’s best response function If p = 0 (i.e. the expert chooses D with probabil-
ity one), then the consumer’s best response depends on the relative sizes of E and
rE′ + (1 − r)I′. If E < rE′ + (1 − r)I′, then the consumer’s best response is q = 1,
whereas if E > rE′+(1− r)I′, then her best response is q = 0; if E = rE′+(1− r)I′,
then she is indifferent between R and A.

If p = 1 (i.e. the expert chooses H with probability one), then the consumer’s
best response is q = 1 (given E < E′).

We conclude that if E < rE′ + (1 − r)I′, then the consumer’s best response
to every value of p is q = 1, as shown in the left panel of Figure 126.1. If E >

rE′ + (1 − r)I′, then the consumer is indifferent between A and R if

p[rE + (1 − r)I] + (1 − p)E = p[rE′ + (1 − r)I] + (1 − p)[rE′ + (1 − r)I′],

which reduces to

p =
E − [rE′ + (1 − r)I′]

(1 − r)(E − I′)
.

In this case the consumer’s best response function takes the form shown in the
right panel of Figure 126.1.
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0 1
p →

π/π′

1↑
q

Expert

Consumer

E < rE′ + (1 − r)I′

0 E−[rE′+(1−r)I′]
(1−r)(E−I′)

1
p →

π/π′

1↑
q

Expert

Consumer

E > rE′ + (1 − r)I′

Figure 126.1 The players’ best response functions in the game of expert diagnosis. The probability
assigned by the expert to H is p and the probability assigned by the consumer to A is q.

Equilibrium Given the best response functions, if E < rE′+(1− r)I′, then the pair
of pure strategies (D, A) is the unique Nash equilibrium. The condition E < rE′ +
(1 − r)I′ says that the cost of a major repair by an expert is less than the expected

cost of an alternative remedy; the only equilibrium yields the dismal outcome for
the consumer in which the expert is always dishonest and the consumer always
accepts her advice.

If E > rE′ + (1 − r)I′, then the unique equilibrium of the game is in mixed
strategies, with (p, q) = (p∗, q∗), where

p∗ =
E − [rE′ + (1 − r)I′]

(1 − r)(E − I′)
and q∗ =

π

π′ .

In this equilibrium the expert is sometimes honest, sometimes dishonest, and the
consumer sometimes accepts her advice to obtain a major repair and sometimes
ignores such advice.

As discussed in the introduction to the chapter, a mixed strategy equilibrium
can be given more than one interpretation as a steady state. In the game we are
studying, and the games studied earlier in the chapter, I have focused on the in-
terpretation in which each player chooses her action randomly, with probabilities
given by her equilibrium mixed strategy, every time she plays the game. In the
game of expert diagnosis a different interpretation fits well: among the popula-
tion of individuals who may play the role of each given player, every individual
chooses the same action whenever she plays the game, but different individuals
choose different actions; the fraction of individuals who choose each action is equal
to the equilibrium probability that that action is used in a mixed strategy equilib-
rium. Specifically, if E > rE′ + (1 − r)I′, then the fraction p∗ of experts is honest
(recommending minor repairs for minor problems) and the fraction 1 − p∗ is dis-
honest (recommending major repairs for minor problems), while the fraction q∗ of
consumers is credulous (accepting any recommendation) and the fraction 1 − q∗ is
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wary (accepting only a recommendation of a minor repair). Honest and dishonest
experts obtain the same expected payoff, as do credulous and wary consumers.

? EXERCISE 127.1 (Equilibrium in the expert diagnosis game) Find the set of mixed
strategy Nash equilibria of the game when E = rE′ + (1 − r)I′.

4.6.3 Properties of the mixed strategy Nash equilibrium

Studying how the equilibrium is affected by changes in the parameters of the
model helps us understand the nature of the strategic interaction between the
players. I consider the effects of three changes.

Suppose that major problems become less common (cars become more reli-
able, more resources are devoted to preventive health care). If we rearrange the
expression for p∗ to

p∗ = 1 − r(E′ − E)

(1 − r)(E − I′)
,

we see that p∗ increases as r decreases (the numerator of the fraction decreases and
the denominator increases). Thus in a mixed strategy equilibrium, the experts are
more honest when major problems are less common. Intuitively, if a major prob-
lem is less likely, a consumer has less to lose from ignoring an expert’s advice, so
the probability of an expert’s being honest has to rise for her advice to be heeded.
The value of q∗ is not affected by the change in r: the probability of a consumer’s
accepting an expert’s advice remains the same when major problems become less
common. Given the expert’s behavior, a decrease in r increases the consumer’s
payoff to rejecting the expert’s advice more than it increases her payoff to accept-
ing this advice, so that she prefers to reject the advice. But this partial analysis is
misleading: in the equilibrium that exists after r decreases, the consumer is exactly
as likely to accept the expert’s advice as she was before the change.

Now suppose that major repairs become less expensive relative to minor ones
(technological advances reduce the cost of complex equipment). We see that p∗

decreases as E decreases (with E′ and I′ constant): when major repairs are less
costly, experts are less honest. As major repairs become less costly, a consumer has
more potentially to lose from ignoring an expert’s advice, so that she heeds the
advice even if experts are less likely to be honest.

Finally, suppose that the profit π′ from an expert’s fixing a minor problem with
an alleged major repair falls (the government requires experts to return replaced
parts to the consumer, making it more difficult for an expert to fraudulently claim
to have performed a major repair). Then q∗ increases—consumers become less
wary. Experts have less to gain from acting dishonestly, so that consumers can be
more confident of their advice.

? EXERCISE 127.2 (Incompetent experts) Consider a (realistic?) variant of the model,
in which the experts are not entirely competent. Assume that each expert always
correctly recognizes a major problem but correctly recognizes a minor problem
with probability s < 1: with probability 1 − s she mistakenly thinks that a minor
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problem is major, and, if the consumer accepts her advice, performs a major repair
and obtains the profit π. Maintain the assumption that each consumer believes
(correctly) that the probability her problem is major is r, and assume that a con-
sumer who does not give the job of fixing her problem to an expert bears the cost
E′ if it is major and I′ if it is minor.

Suppose, for example, that an expert is honest and a consumer rejects advice to
obtain a major repair. With probability r the consumer’s problem is major, so that
the expert recommends a major repair, which the consumer rejects; the consumer
bears the cost E′. With probability 1 − r the consumer’s problem is minor. In this
case with probability s the expert correctly diagnoses it as minor, and the consumer
accepts her advice and pays I; with probability 1− s the expert diagnoses it as ma-
jor, and the consumer rejects her advice and bears the cost I′. Thus the consumer’s
expected payoff in this case is −rE′ − (1 − r)[sI + (1 − s)I′].

Construct the payoffs for every pair of actions and find the mixed strategy
equilibrium (equilibria?) when E > rE′ + (1 − r)I′. Does incompetence breed
dishonesty? More wary consumers?

? EXERCISE 128.1 (Choosing a seller) Each of two sellers has available one indivisible
unit of a good. Seller 1 posts the price p1 and seller 2 posts the price p2. Each of
two buyers would like to obtain one unit of the good; they simultaneously decide
which seller to approach. If both buyers approach the same seller, each trades with
probability 1

2 ; the disappointed buyer does not subsequently have the option to
trade with the other seller. (This assumption models the risk faced by a buyer that
a good is sold out when she patronizes a seller with a low price.) Each buyer’s
preferences are represented by the expected value of a payoff function that assigns
the payoff 0 to not trading and the payoff 1 − p to purchasing one unit of the good
at the price p. (Neither buyer values more than one unit.) For any pair (p1, p2) of
prices with 0 ≤ pi ≤ 1 for i = 1, 2, find the Nash equilibria (in pure and in mixed
strategies) of the strategic game that models this situation. (There are three main
cases: p2 < 2p1 − 1, 2p1 − 1 < p2 <

1
2 (1 + p1), and p2 >

1
2 (1 + p1).)

4.7 Equilibrium in a single population

In Section 2.10 I discussed deterministic steady states in situations in which the
members of a single population interact. I now discuss stochastic steady states in
such situations.

First extend the definitions of a symmetric strategic game and a symmetric
Nash equilibrium (Definitions 51.1 and 52.1) to a game with vNM preferences. Re-
call that a two-player strategic game with ordinal preferences is symmetric if each
player has the same set of actions and each player’s evaluation of an outcome de-
pends only on her action and that of her opponent, not on whether she is player 1
or player 2. A symmetric game with vNM preferences satisfies the same condi-
tions; its definition differs from Definition 51.1 only because a player’s evaluation
of an outcome is given by her expected payoff rather than her ordinal preferences.
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Left Right

Left 1, 1 0, 0
Right 0, 0 1, 1

Figure 129.1 Approaching pedestrians.

◮ DEFINITION 129.1 (Symmetric two-player strategic game with vNM preferences) A
two-player strategic game with vNM preferences is symmetric if the players’ sets
of actions are the same and the players’ preferences are represented by the ex-
pected values of payoff functions u1 and u2 for which u1(a1, a2) = u2(a2, a1) for
every action pair (a1, a2).

A Nash equilibrium of a strategic game with ordinal preferences in which ev-
ery player’s set of actions is the same is symmetric if all players take the same
action. This notion of equilibrium extends naturally to strategic games with vNM
preferences. (As before, it does not depend on the game’s having only two players,
so I define it for a game with any number of players.)

◮ DEFINITION 129.2 (Symmetric mixed strategy Nash equilibrium) A profile α∗ of mixed
strategies in a strategic game with vNM preferences in which each player has the
same set of actions is a symmetric mixed strategy Nash equilibrium if it is a mixed
strategy Nash equilibrium and α∗i is the same for every player i.

Now consider again the game of approaching pedestrians (Figure 52.1, repro-
duced in Figure 129.1), interpreting the payoff numbers as Bernoulli payoffs whose
expected values represent the players’ preferences over lotteries. We found that
this game has two deterministic steady states, corresponding to the two symmet-
ric Nash equilibria in pure strategies, (Left, Left) and (Right, Right). The game also
has a symmetric mixed strategy Nash equilibrium, in which each player assigns
probability 1

2 to Left and probability 1
2 to Right. This equilibrium corresponds to a

steady state in which half of all encounters result in collisions! (Player 1 chooses
Left and player 2 chooses Right with probability 1

4 , and player 1 chooses Right and
player 2 chooses Left with probability 1

4 .)
In this example not only is the game symmetric, but the players’ interests coin-

cide. The game in Figure 129.2 is symmetric, but the players prefer to take differ-
ent actions rather than the same actions. This game has no pure symmetric equi-
librium, but has a symmetric mixed strategy equilibrium, in which each player
chooses each action with probability 1

2 .
These examples show that a symmetric game may have no symmetric pure

strategy equilibrium. But both games have a symmetric mixed strategy Nash

X Y

X 0, 0 1, 1
Y 1, 1 0, 0

Figure 129.2 A symmetric game.
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Stop Continue

Stop 1, 1 1 − ǫ, 2
Continue 2, 1 − ǫ 0, 0

Figure 130.1 The game in Exercise 130.2.

equilibrium, as does any symmetric game in which each player has finitely many
actions, by the following result (the proof of which requires relatively advanced
mathematical tools).

PROPOSITION 130.1 (Existence of symmetric mixed strategy Nash equilibrium in
symmetric finite games) Every symmetric strategic game with vNM preferences in

which each player’s set of actions is finite has a symmetric mixed strategy Nash equi-

librium.

? EXERCISE 130.2 (Approaching cars) Members of a single population of car drivers
are randomly matched in pairs when they simultaneously approach intersections
from different directions. In each interaction, each driver can either stop or con-
tinue. The drivers’ preferences are represented by the expected value of the payoff
functions given in Figure 130.1; the parameter ǫ, with 0 < ǫ < 1, reflects the fact
that each driver dislikes being the only one to stop. Find the symmetric Nash
equilibrium (equilibria?) of the game (find both the equilibrium strategies and the
equilibrium payoffs).

Now suppose that drivers are (re)educated to feel guilty about choosing Con-

tinue. Assume that their payoffs when choosing Continue fall by δ > 0, so that the
entry (2, 1 − ǫ) in Figure 130.1 is replaced by (2 − δ, 1 − ǫ), the entry (1 − ǫ, 2) is
replaced by (1 − ǫ, 2 − δ), and the entry (0, 0) is replaced by (−δ,−δ). Show that
all drivers are better off in the symmetric equilibrium of this game than they are
in the symmetric equilibrium of the original game. Why is the society better off if
everyone feels guilty about being aggressive? (The equilibrium of this game, like
that of the game of expert diagnosis in Section 4.6, may attractively be interpreted
as representing a steady state in which some members of the population always
choose one action and other members always choose the other action.)

? EXERCISE 130.3 (Bargaining) Pairs of players from a single population bargain
over the division of a pie of size 10. The members of a pair simultaneously make
demands; the possible demands are the nonnegative even integers up to 10. If the
demands sum to 10, then each player receives her demand; if the demands sum
to less than 10, then each player receives her demand plus half of the pie that re-
mains after both demands have been satisfied; if the demands sum to more than
10, then neither player receives any payoff. Find all the symmetric mixed strategy
Nash equilibria in which each player assigns positive probability to at most two
demands. (Many situations in which each player assigns positive probability to
two actions, say a′ and a′′, can be ruled out as equilibria because when one player
uses such a strategy, some action yields the other player a payoff higher than does
one or both of the actions a′ and a′′.)
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4.8 Illustration: reporting a crime

A crime is observed by a group of n people. Each person would like the police to be
informed but prefers that someone else make the phone call. Specifically, suppose
that each person attaches the value v to the police being informed and bears the
cost c if she makes the phone call, where v > c > 0. Then the situation is modeled
by the following strategic game with vNM preferences.

Players The n people.

Actions Each player’s set of actions is {Call, Don’t call}.

Preferences Each player’s preferences are represented by the expected value of
a payoff function that assigns 0 to the profile in which no one calls, v − c

to any profile in which she calls, and v to any profile in which at least one
person calls, but she does not.

This game is a variant of the one in Exercise 33.1, with k = 1. It has n pure Nash
equilibria, in each of which exactly one person calls. (If that person switches to not
calling, her payoff falls from v − c to 0; if any other person switches to calling, her
payoff falls from v to v− c.) If the members of the group differ in some respect, then
these asymmetric equilibria may be compelling as steady states. For example, the
social norm in which the oldest person in the group makes the phone call is stable.

If the members of the group either do not differ significantly or are not aware
of any differences among themselves—if they are drawn from a single homoge-
neous population—then there is no way for them to coordinate, and a symmetric
equilibrium, in which every player uses the same strategy, is more compelling.

The game has no symmetric pure Nash equilibrium. (If everyone calls, then
any person is better off switching to not calling. If no one calls, then any person is
better off switching to calling.)

However, it has a symmetric mixed strategy equilibrium in which each person
calls with positive probability less than one. In any such equilibrium, each per-
son’s expected payoff to calling is equal to her expected payoff to not calling. Each
person’s payoff to calling is v − c, and her payoff to not calling is 0 if no one else
calls and v if at least one other person calls, so the equilibrium condition is

v − c = 0 · Pr{no one else calls}+ v · Pr{at least one other person calls},

or
v − c = v · (1 − Pr{no one else calls}),

or
c/v = Pr{no one else calls}. (131.1)

Denote by p the probability with which each person calls. The probability that
no one else calls is the probability that every one of the other n− 1 people does not
call, namely (1 − p)n−1. Thus the equilibrium condition is c/v = (1 − p)n−1, or

p = 1 − (c/v)1/(n−1).
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This number p is between 0 and 1, so we conclude that the game has a unique
symmetric mixed strategy equilibrium, in which each person calls with probability
1 − (c/v)1/(n−1). That is, there is a steady state in which whenever a person is
in a group of n people facing the situation modeled by the game, she calls with
probability 1 − (c/v)1/(n−1).

How does this equilibrium change as the size of the group increases? We see
that as n increases, the probability p that any given person calls decreases. (As
n increases, 1/(n − 1) decreases, so that (c/v)1/(n−1) increases.) What about the
probability that at least one person calls? Fix any player i. Then the event “no one
calls” is the same as the event “i does not call and no one other than i calls”. Thus

Pr{no one calls} = Pr{i does not call} · Pr{no one else calls}. (132.1)

Now, the probability that any given person calls decreases as n increases, or equiv-
alently the probability that she does not call increases as n increases. Further, from
the equilibrium condition (131.1), Pr{no one else calls} is equal to c/v, independent

of n. We conclude that the probability that no one calls increases as n increases.
That is, the larger the group, the less likely the police are informed of the crime!

The condition defining a mixed strategy equilibrium is responsible for this re-
sult. For any given person to be indifferent between calling and not calling, this
condition requires that the probability that no one else calls be independent of the
size of the group. Thus each person’s probability of not calling is larger in a larger
group, and hence, by the laws of probability reflected in (132.1), the probability
that no one calls is larger in a larger group.

The result that the larger the group, the less likely any given person calls is not
surprising. The result that the larger the group, the less likely at least one person
calls is a more subtle implication of the notion of equilibrium. In a larger group no
individual is any less concerned that the police should be called, but in a steady
state the behavior of the group drives down the chance that the police are notified
of the crime.

? EXERCISE 132.2 (Reporting a crime when the witnesses are heterogeneous) Con-
sider a variant of the model studied in this section in which n1 witnesses incur the
cost c1 to report the crime, and n2 witnesses incur the cost c2, where 0 < c1 < v,
0 < c2 < v, and n1 + n2 = n. Show that if c1 and c2 are sufficiently close, then
the game has a mixed strategy Nash equilibrium in which every witness’s strategy
assigns positive probabilities to both reporting and not reporting.

? EXERCISE 132.3 (Contributing to a public good) Consider an extension of the anal-
ysis in this section to the game in Exercise 33.1 for k ≥ 2. (In this case a player
may contribute even though the good is not provided; the player’s payoff in this
case is −c.) Denote by Qn−1,m(p) the probability that exactly m of a group of
n − 1 players contribute when each player contributes with probability p. What
condition must be satisfied by Qn−1,k−1(p) in a symmetric mixed strategy equilib-
rium (in which each player contributes with the same probability)? (When does
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a player’s contribution make a difference to the outcome?) For the case v = 1,
n = 4, k = 2, and c = 3

8 , find the equilibria explicitly. (You need to use the fact that
Q3,1(p) = 3p(1− p)2, and do a bit of algebra.)

REPORTING A CRIME: SOCIAL PSYCHOLOGY AND GAME THEORY

Thirty-eight people witnessed the brutal murder of Catherine (“Kitty”) Genovese
over a period of half an hour in New York City in March 1964. During this period,
no one significantly responded to her screams for help; no one even called the
police. Journalists, psychiatrists, sociologists, and others subsequently struggled
to understand the witnesses’ inaction. Some ascribed it to apathy engendered by
life in a large city: “Indifference to one’s neighbor and his troubles is a conditioned
reflex of life in New York as it is in other big cities” (Rosenthal 1964, 81–82).

The event particularly interested social psychologists. It led them to try to un-
derstand the circumstances under which a bystander would help someone in trou-
ble. Experiments quickly suggested that, contrary to the popular theory, people—
even those living in large cities—are not in general apathetic to others’ plights. An
experimental subject who is the lone witness of a person in distress is very likely
to try to help. But as the size of the group of witnesses increases, there is a decline
not only in the probability that any given one of them offers assistance, but also
in the probability that at least one of them offers assistance. Social psychologists
hypothesize that three factors explain these experimental findings. First, “diffu-
sion of responsibility”: the larger the group, the lower the psychological cost of
not helping. Second, “audience inhibition”: the larger the group, the greater the
embarrassment suffered by a helper in case the event turns out to be one in which
help is inappropriate (because, for example, it is not in fact an emergency). Third,
“social influence”: a person infers the appropriateness of helping from others’ be-
havior, so that in a large group everyone else’s lack of intervention leads any given
person to think intervention is less likely to be appropriate.

In terms of the model in Section 4.8, these three factors raise the expected
cost and/or reduce the expected benefit of a person’s intervening. They all seem
plausible. However, they are not needed to explain the phenomenon: our game-
theoretic analysis shows that even if the cost and benefit are independent of group
size, a decrease in the probability that at least one person intervenes is an implica-
tion of equilibrium. This game-theoretic analysis has an advantage over the socio-
psychological one: it derives the conclusion from the same principles that underlie
all the other models studied so far (oligopoly, auctions, voting, and elections, for
example), rather than positing special features of the specific environment in which
a group of bystanders may come to the aid of a person in distress.

The critical element missing from the socio-psychological analysis is the notion
of an equilibrium. Whether any given person intervenes depends on the probability
she assigns to some other person’s intervening. In an equilibrium each person
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must be indifferent between intervening and not intervening, and as we have seen
this condition leads inexorably to the conclusion that an increase in group size
reduces the probability that at least one person intervenes.

4.9 The formation of players’ beliefs

In a Nash equilibrium, each player chooses a strategy that maximizes her expected
payoff, knowing the other players’ strategies. So far we have not considered how
players may acquire such information. Informally, the idea underlying the pre-
vious analysis is that the players have learned each other’s strategies from their
experience playing the game. In the idealized situation to which the analysis cor-
responds, for each player in the game there is a large population of individuals
who may take the role of that player; in any play of the game, one participant is
drawn randomly from each population. In this situation, a new individual who
joins a population that is in a steady state (i.e. is using a Nash equilibrium strategy
profile) can learn the other players’ strategies by observing their actions over many
plays of the game. As long as the turnover in players is small enough, existing
players’ encounters with neophytes (who may use nonequilibrium strategies) will
be sufficiently rare that their beliefs about the steady state will not be disturbed, so
that a new player’s problem is simply to learn the other players’ actions.

This analysis leaves open the question of what might happen if new players
simultaneously join more than one population in sufficient numbers that they have
a significant chance of facing opponents who are themselves new. In particular,
can we expect a steady state to be reached when no one has experience playing the
game?

4.9.1 Eliminating dominated actions

In some games the players may reasonably be expected to choose their Nash equi-
librium actions from an introspective analysis of the game. At an extreme, each
player’s best action may be independent of the other players’ actions, as in the
Prisoner’s Dilemma (Example 14.1). In such a game no player needs to worry about
the other players’ actions. In a less extreme case, some player’s best action may
depend on the other players’ actions, but the actions the other players will choose
may be clear because each of these players has an action that strictly dominates
all others. For example, in the game in Figure 135.1, player 2’s action R strictly
dominates L, so that no matter what player 2 thinks player 1 will do, she should
choose R. Consequently, player 1, who can deduce by this argument that player 2
will choose R, may reason that she should choose B. That is, even inexperienced
players may be led to the unique Nash equilibrium (B, R) in this game.

This line of argument may be extended. For example, in the game in Fig-
ure 135.2, player 1’s action T is strictly dominated, so player 1 may reason that
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L R

T 1, 2 0, 3
B 0, 0 1, 1

Figure 135.1 A game in which player 2 has a strictly dominant action and player 1 does not.

L R
T 0, 2 0, 0

M 2, 1 1, 2
B 1, 1 2, 2

Figure 135.2 A game in which player 1 may reason that she should choose B because player 2 will
reason that player 1 will not choose T, so that player 2 will choose R.

player 2 will deduce that player 1 will not choose T. Consequently player 1 may
deduce that player 2 will choose R, making B a better action for her than M.

The set of action profiles that remain at the end of such a reasoning process
contains all Nash equilibria; for many games (unlike these examples) the set con-
tains many other action profiles as well. In fact, in many games no action pro-
files are eliminated, because no player has a strictly dominated action. Neverthe-
less, in some classes of games the process is powerful; its logical consequences are
explored in Chapter 12.

4.9.2 Learning

Another approach to the question of how a steady state might be reached assumes
that each player starts with an unexplained “prior” belief about the other players’
actions, and changes these beliefs—“learns”—in response to information she re-
ceives. She may learn, for example, from observing the fortunes of other players
like herself, from discussing the game with such players, or from her own experi-
ence playing the game. Here I briefly discuss two theories in which the same set of
participants repeatedly play a game, each participant changing her beliefs about
the others’ strategies in response to her observations of their actions.

Best response dynamics A particularly simple theory assumes that in each period
after the first, each player believes that the other players will choose the actions
they chose in the previous period. In the first period, each player chooses a best
response to an arbitrary deterministic belief about the other players’ actions. In
every subsequent period, each player chooses a best response to the other players’
actions in the previous period. This process is known as best response dynamics. An
action profile that remains the same from period to period is a pure Nash equi-
librium of the game. Further, a pure Nash equilibrium in which each player’s
action is her only best response to the other players’ actions is an action profile
that remains the same from period to period.
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In some games the sequence of action profiles generated best response dy-
namics converges to a pure Nash equilibrium, regardless of the players’ initial
beliefs. The example of Cournot’s duopoly game studied in Section 3.1.3 is such
a game. Looking at the best response functions in Figure 59.1, you can convince
yourself that from arbitrary initial actions, the players’ actions approach the Nash
equilibrium (q∗1 , q∗2).

? EXERCISE 136.1 (Best response dynamics in Cournot’s duopoly game) Find the
sequence of pairs of outputs chosen by the firms in Cournot’s duopoly game under
the assumptions of Section 3.1.3 if both firms initially choose 0. (If you know how
to solve a first-order difference equation, find a formula for the outputs in each
period; if not, find the outputs in the first few periods.)

? EXERCISE 136.2 (Best response dynamics in Bertrand’s duopoly game) Consider
Bertrand’s duopoly game in which the set of possible prices is discrete, under the
assumptions of Exercise 67.2. Does the sequences of prices under best response
dynamics converge to a Nash equilibrium when both prices initially exceed c + 1?
What happens when both prices are initially equal to c?

For other games there are initial beliefs for which the sequence of action profiles
generated by the process does not converge. In BoS (Example 18.2), for example, if
player 1 initially believes that player 2 will choose Stravinsky and player 2 initially
believes that player 1 will choose Bach, then the players’ choices will subsequently
alternate indefinitely between the action pairs (Bach, Stravinsky) and (Stravinsky,
Bach). This example highlights the limited extent to which a player is assumed to
reason in the model, which does not consider the possibility that she cottons on to
the fact that her opponent’s action is always a best response to her own previous
action.

Fictitious play Under best response dynamics, the players’ beliefs are continually
revealed to be incorrect unless the starting point is a Nash equilibrium: the players’
actions change from period to period. Further, each player believes that every
other player is using a pure strategy: a player’s belief does not admit the possibility
that her opponents’ actions are realizations of mixed strategies.

Another theory, known as fictitious play, assumes that players consider actions
in all the previous periods when forming a belief about their opponents’ strategies.
They treat these actions as realizations of mixed strategies. Consider a two-player
game. Each player begins with an arbitrary probabilistic belief about the other
player’s action. In the first play of the game she chooses a best response to this
belief and observes the other player’s action, say A. She then changes her belief
to one that assigns probability 1 to A; in the second period, she chooses a best
response to this belief and observes the other player’s action, say B. She then
changes her belief to one that assigns probability 1

2 to both A and B, and chooses
a best response to this belief. She continues to change her belief each period; in
any period she adopts the belief that her opponent is using a mixed strategy in
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Head Tail

Head 1,−1 −1, 1
Tail −1, 1 1,−1

Figure 137.1 Matching Pennies.

which the probability of each action is proportional to the frequency with which
her opponent chose that action in the previous periods. (If, for example, in the first
six periods player 2 chooses A twice, B three times, and C once, player 1’s belief in
period 7 assigns probability 1

3 to A, probability 1
2 to B, and probability 1

6 to C.)
In the game Matching Pennies (Example 19.1), reproduced in Figure 137.1, this

process works as follows. Suppose that player 1 begins with the belief that player
2’s action will be Tail, and player 2 begins with the belief that player 1’s action will
be Head. Then in period 1 both players choose Tail. Thus in period 2 both play-
ers believe that their opponent will choose Tail, so that player 1 chooses Tail and
player 2 chooses Head. Consequently in period 3, player 1’s belief is that player 2
will choose Head with probability 1

2 and Tail with probability 1
2 , and player 2’s be-

lief is that player 1 will definitely choose Tail. Thus in period 3, both Head and
Tail are best responses of player 1 to her belief, so that she may take either action;
the unique best response of player 2 is Head. The process continues similarly in
subsequent periods.

In two-player games like Matching Pennies, in which the players’ interests are
directly opposed, and in any two-player game in which each player has two ac-
tions, this process converges to a mixed strategy Nash equilibrium from any initial
beliefs. That is, after a sufficiently large number of periods, the frequencies with
which each player chooses her actions are close to the frequencies induced by her
mixed strategy in the Nash equilibrium. For other games there are initial beliefs
for which the process does not converge. (The simplest example is too complicated
to present compactly.)

The people involved in an interaction that we model as a game may form beliefs
about their opponents’ strategies from an analysis of the structure of the players’
payoffs, from their observations of their opponents’ actions, and from information
they obtain from other people involved in similar interactions. The models I have
outlined in this section explore the logical implications of two ways in which play-
ers may draw inferences from their opponents’ actions. Models that assume the
players to be more sophisticated may give more insights into the circumstances
in which a Nash equilibrium is likely to be attained; this topic is an active area of
current research.

4.10 Extension: finding all mixed strategy Nash equilibria

We can find all the mixed strategy Nash equilibria of a two-player game in which
each player has two actions by constructing the players’ best response functions,
as we have seen. In more complicated games, this method is usually not practical.
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The following systematic method of finding all mixed strategy Nash equilib-
ria of a game is suggested by the characterization of an equilibrium in Proposi-
tion 116.2.

• For each player i, choose a subset Si of her set Ai of actions.

• Check whether there exists a mixed strategy profile α such that (i) the set of
actions to which each strategy αi assigns positive probability is Si and (ii) α

satisfies the conditions in Proposition 116.2.

• Repeat the analysis for every collection of subsets of the players’ sets of
actions.

The following example illustrates this method for a two-player game in which
each player has two actions.

EXAMPLE 138.1 (Finding all mixed strategy equilibria of a two-player game in
which each player has two actions) Consider a two-player game in which each
player has two actions. Denote the actions and payoffs as in Figure 139.1. Each
player’s set of actions has three nonempty subsets: two each consisting of a sin-
gle action, and one consisting of both actions. Thus there are nine (3 × 3) pairs of
subsets of the players’ action sets. For each pair (S1, S2), we check if there is a pair
(α1, α2) of mixed strategies such that each strategy αi assigns positive probability
only to actions in Si and the conditions in Proposition 116.2 are satisfied.

• Checking the four pairs of subsets in which each player’s subset consists of
a single action amounts to checking whether any of the four pairs of actions
is a pure strategy equilibrium. (For each player, the first condition in Propo-
sition 116.2 is automatically satisfied because there is only one action in each
subset.)

• Consider the pair of subsets {T, B} for player 1 and {L} for player 2. The
second condition in Proposition 116.2 is automatically satisfied for player 1,
who has no actions to which she assigns probability 0, and the first condition
is automatically satisfied for player 2, because she assigns positive probability
to only one action. Thus for there to be a mixed strategy equilibrium in which
player 1’s probability of using T is p we need u11 = u21 (player 1’s payoffs to
her two actions must be equal) and

pv11 + (1 − p)v21 ≥ pv12 + (1 − p)v22

(L must be at least as good as R, given player 1’s mixed strategy). If u11 6=
u21, or if there is no probability p satisfying the inequality, then there is no
equilibrium of this type. A similar argument applies to the three other pairs
of subsets in which one player’s subset consists of both her actions and the
other player’s subset consists of a single action.

• To check whether there is a mixed strategy equilibrium in which the sub-
sets are {T, B} for player 1 and {L, R} for player 2, we need to find a pair of
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L R

T u11, v11 u12, v12
B u21, v21 u22, v22

Figure 139.1 A two-player strategic game.

mixed strategies that satisfies the first condition in Proposition 116.2 (the sec-
ond condition is automatically satisfied because both players assign positive
probability to both their actions). That is, we need to find probabilities p and
q (if any such exist) for which

qu11 + (1 − q)u12 = qu21 + (1 − q)u22

pv11 + (1 − p)v21 = pv12 + (1 − p)v22.

For example, in BoS we find the two pure equilibria when we check pairs of
subsets in which each subset consists of a single action, we find no equilibria when
we check pairs in which one subset consists of a single action and the other consists
of both actions, and we find the mixed strategy equilibrium when we check the
pair ({B, S}, {B, S}).

? EXERCISE 139.1 (Finding all mixed strategy equilibria of two-player games) Use
the method described in Example 138.1 to find all of the mixed strategy equilibria
of the games in Figure 114.1.

In a game in which each player has two actions, for any subset of any player’s
set of actions at most one of the two conditions in Proposition 116.2 is relevant
(the first if the subset contains both actions and the second if it contains only one
action). When a player has three or more actions and we consider a subset of her
set of actions that contains two actions, both conditions are relevant, as the next
example illustrates.

EXAMPLE 139.2 (Finding all mixed strategy equilibria of a variant of BoS) Consider
the variant of BoS given in Figure 139.2. First, by inspection we see that the game
has two pure strategy Nash equilibria, namely (B, B) and (S, S).

Now consider the possibility of an equilibrium in which player 1’s strategy is
pure whereas player 2’s strategy assigns positive probability to two or more ac-
tions. If player 1’s strategy is B, then player 2’s payoffs to her three actions (2, 0,
and 1) are all different, so the first condition in Proposition 116.2 is not satisfied.
Thus there is no equilibrium of this type. Similar reasoning rules out an equi-
librium in which player 1’s strategy is S and player 2’s strategy assigns positive

B S X
B 4, 2 0, 0 0, 1
S 0, 0 2, 4 1, 3

Figure 139.2 A variant of the game BoS.



140 Chapter 4. Mixed Strategy Equilibrium

probability to more than one action, and also an equilibrium in which player 2’s
strategy is pure and player 1’s strategy assigns positive probability to both of her
actions.

Next consider the possibility of an equilibrium in which player 1’s strategy
assigns positive probability to both her actions and player 2’s strategy assigns pos-
itive probability to two of her three actions. Denote by p the probability player 1’s
strategy assigns to B. There are three possibilities for the pair of player 2’s actions
that have positive probability.

B and S: For the conditions in Proposition 116.2 to be satisfied we need player 2’s
expected payoff to B to be equal to her expected payoff to S and at least her
expected payoff to X. That is, we need

2p = 4(1 − p) ≥ p + 3(1 − p).

The equation implies that p = 2
3 , which does not satisfy the inequality. (That

is, if p is such that B and S yield the same expected payoff, then X yields a
higher expected payoff.) Thus there is no equilibrium of this type.

B and X: For the conditions in Proposition 116.2 to be satisfied we need player 2’s
expected payoff to B to be equal to her expected payoff to X and at least her
expected payoff to S. That is, we need

2p = p + 3(1− p) ≥ 4(1 − p).

The equation implies that p = 3
4 , which satisfies the inequality. For the first

condition in Proposition 116.2 to be satisfied for player 1 we need player 1’s
expected payoffs to B and S to be equal: 4q = 1 − q, where q is the prob-
ability player 2 assigns to B, or q = 1

5 . Thus the pair of mixed strategies
(( 3

4 , 1
4 ), (

1
5 , 0, 4

5 )) is a mixed strategy equilibrium.

S and X: For every strategy of player 2 that assigns positive probability only to S

and X, player 1’s expected payoff to S exceeds her expected payoff to B. Thus
there is no equilibrium of this sort.

The final possibility is that there is an equilibrium in which player 1’s strat-
egy assigns positive probability to both her actions and player 2’s strategy assigns
positive probability to all three of her actions. Let p be the probability player 1’s
strategy assigns to B. Then for player 2’s expected payoffs to her three actions to
be equal we need

2p = 4(1− p) = p + 3(1 − p).

For the first equality we need p = 2
3 , violating the second equality. That is, there is

no value of p for which player 2’s expected payoffs to her three actions are equal,
and thus no equilibrium in which she chooses each action with positive probability.

We conclude that the game has three mixed strategy equilibria: ((1, 0), (1, 0, 0))
(i.e. the pure strategy equilibrium (B, B)), ((0, 1), (0, 1, 0)) (i.e. the pure strategy
equilibrium (S, S)), and (( 3

4 , 1
4 ), (

1
5 , 0, 4

5 )).
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L M R

T 2, 2 0, 3 1, 3
B 3, 2 1, 1 0, 2

Figure 141.1 The strategic game with vNM preferences in Exercise 141.1.

? EXERCISE 141.1 (Finding all mixed strategy equilibria of a two-player game) Use
the method described in Example 139.2 to find all the mixed strategy Nash equi-
libria of the strategic game in Figure 141.1.

As you can see from the examples, this method has the disadvantage that for
games in which each player has several strategies, or in which there are several
players, the number of possibilities to examine is huge. Even in a two-player
game in which each player has three actions, each player’s set of actions has seven
nonempty subsets (three each consisting of a single action, three consisting of two
actions, and the entire set of actions), so that there are 49 (7 × 7) possible collec-
tions of subsets to check. In a symmetric game, like the one in the next exercise,
many cases involve the same argument, reducing the number of distinct cases to
be checked.

? EXERCISE 141.2 (Rock, Paper, Scissors) Each of two players simultaneously an-
nounces either Rock, or Paper, or Scissors. Paper beats (wraps) Rock, Rock beats
(blunts) Scissors, and Scissors beats (cuts) Paper. The player who names the win-
ning object receives $1 from her opponent; if both players make the same choice,
then no payment is made. Each player’s preferences are represented by the ex-
pected amount of money she receives. (An example of the variant of Hotelling’s
model of electoral competition considered in Exercise 75.3 has the same payoff
structure. Suppose there are three possible positions, A, B, and C, and three citi-
zens, one of whom prefers A to B to C, one of whom prefers B to C to A, and one of
whom prefers C to A to B. Two candidates simultaneously choose positions. If the
candidates choose different positions, each citizen votes for the candidate whose
position she prefers; if both candidates choose the same position, they tie for first
place.)

a. Formulate this situation as a strategic game and find all its mixed strategy
equilibria (give both the equilibrium strategies and the equilibrium payoffs).

b. Find all the mixed strategy equilibria of the modified game in which player 1
is prohibited from announcing Scissors.

?? EXERCISE 141.3 (Election campaigns) A new political party, A, is challenging an
established party, B. The race involves three localities of different sizes. Party A

can wage a strong campaign in only one locality; B must commit resources to de-
fend its position in one of the localities, without knowing which locality A has
targeted. If A targets district i and B devotes its resources to some other district,
then A gains ai votes at the expense of B; let a1 > a2 > a3 > 0. If B devotes
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A B

A 1, 1, 1 0, 0, 0
B 0, 0, 0 0, 0, 0

A

A B

A 0, 0, 0 0, 0, 0
B 0, 0, 0 4, 4, 4

B

Figure 142.1 The three-player game in Exercise 142.1.

resources to the district that A targets, then A gains no votes. Each party’s prefer-
ences are represented by the expected number of votes it gains. (Perhaps seats in a
legislature are allocated proportionally to vote shares.) Formulate this situation as
a strategic game and find its mixed strategy equilibria.

Although games with many players cannot in general be conveniently repre-
sented in tables like those we use for two-player games, three-player games can
be accommodated. We construct one table for each of player 3’s actions; player 1
chooses a row, player 2 chooses a column, and player 3 chooses a table. The next
exercise is an example of such a game.

? EXERCISE 142.1 (A three-player game) Find the mixed strategy Nash equilibria of
the three-player game in Figure 142.1, in which each player has two actions.

4.11 Extension: games in which each player has a continuum of actions

In all the games studied so far in this chapter each player has finitely many ac-
tions. In Chapter 3 we saw that many situations may conveniently be modeled as
games in which each player has a continuum of actions. (For example, in Cournot’s
model the set of possible outputs for a firm is the set of nonnegative numbers, and
in Hotelling’s model the set of possible positions for a candidate is the set of non-
negative numbers.) The principles involved in finding mixed strategy equilibria of
such games are the same as those involved in finding mixed strategy equilibria of
games in which each player has finitely many actions, though the techniques are
different.

Proposition 116.2 says that a strategy profile in a game in which each player has
finitely many actions is a mixed strategy Nash equilibrium if and only if, for each
player, (a) every action to which her strategy assigns positive probability yields the
same expected payoff, and (b) no action yields a higher expected payoff. Now, a
mixed strategy of a player who has a continuum of actions is determined by the
probabilities it assigns to sets of actions, not by the probabilities it assigns to single
actions (all of which may be zero, for example). Thus (a) does not fit such a game.
However, the following restatement of the result, equivalent to Proposition 116.2
for a game in which each player has finitely many actions, does fit.

PROPOSITION 142.2 (Characterization of mixed strategy Nash equilibrium) A

mixed strategy profile α∗ in a strategic game with vNM preferences is a mixed strategy

Nash equilibrium if and only if, for each player i,
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• α∗i assigns probability zero to the set of actions ai for which the action profile (ai, α∗−i)
yields player i an expected payoff less than her expected payoff to α∗

• for no action ai does the action profile (ai, α∗−i) yield player i an expected payoff

greater than her expected payoff to α∗.

A significant class of games in which each player has a continuum of actions
consists of games in which each player’s set of actions is a one-dimensional inter-
val of numbers. Consider such a game with two players; let player i’s set of actions
be the interval from ai to ai, for i = 1, 2. Identify each player’s mixed strategy with
a cumulative probability distribution on this interval. (See Section 17.6.4 in the ap-
pendix on mathematics if you are not familiar with this notion.) That is, the mixed
strategy of each player i is a nondecreasing function Fi for which 0 ≤ Fi(ai) ≤ 1
for every action ai; the number Fi(ai) is the probability that player i’s action is at
most ai.

The form of a mixed strategy Nash equilibrium in such a game may be very
complex. Some such games, however, have equilibria of a particularly simple
form, in which each player’s equilibrium mixed strategy assigns probability zero
except in an interval. Specifically, consider a pair (F1, F2) of mixed strategies that
satisfies the following conditions for i = 1, 2.

• There are numbers xi and yi such that player i’s mixed strategy Fi assigns
probability zero except in the interval from xi to yi: Fi(z) = 0 for z < xi, and
Fi(z) = 1 for z ≥ yi.

• Player i’s expected payoff when her action is ai and the other player uses her
mixed strategy Fj takes the form

{
= ci for xi ≤ ai ≤ yi

≤ ci for ai < xi and ai > yi,

where ci is a constant.

(The second condition is illustrated in Figure 144.1.) By Proposition 142.2, such a
pair of mixed strategies, if it exists, is a mixed strategy Nash equilibrium of the
game, in which player i’s expected payoff is ci, for i = 1, 2.

The next example illustrates how a mixed strategy equilibrium of such a game
may be found. The example is designed to be very simple; be warned that in
most such games an analysis of the equilibria is, at a minimum, somewhat more
complex. Further, my analysis is not complete: I merely find an equilibrium, rather
than studying all equilibria. (In fact, the game has no other equilibria.)

EXAMPLE 143.1 (All-pay auction) Two people submit sealed bids for an object
worth $K to each of them. Each person’s bid may be any nonnegative number
up to $K. The winner is the person whose bid is higher; in the event of a tie each
person receives half of the object, which she values at $K/2. (Note that this tie-
breaking rule differs from the one considered in Section 3.5.) Each person pays her
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a1 x1 y1 a1
a1 →

c1

Player 1’s expected payoff given F2

a2 x2 y2 a2
a2 →

c2

Player 2’s expected payoff given F1

Figure 144.1 If (i) F1 assigns positive probability only to actions in the interval from x1 to y1, (ii) F2
assigns positive probability only to actions in the interval from x2 to y2, (iii) given player 2’s mixed
strategy F2, player 1’s expected payoff takes the form shown in the left panel, and (iv) given player 1’s
mixed strategy F1, player 2’s expected payoff takes the form shown in the right panel, then (F1, F2) is a
mixed strategy equilibrium.

bid, regardless of whether she wins, and has preferences represented by the expected
amount of money she receives.

This situation may be modeled by the following strategic game, known as an
all-pay auction. (Variants of this game are considered in Exercise 89.1.)

Players The two bidders.

Actions Each player’s set of actions is the set of possible bids (nonnegative
numbers up to K).

Payoff functions Each player i’s preferences are represented by the expected
value of the payoff function given by

ui(a1, a2) =







−ai if ai < aj

K/2 − ai if ai = aj

K − ai if ai > aj,

where j is the other player.

One situation that may be modeled as such an auction is a lobbying process in
which each of two interest groups spends resources to persuade a government to
carry out the policy it prefers, and the group that spends the most wins. Another
situation that may be modeled as such an auction is the competition between two
firms to develop a new product by some deadline, where the firm that spends the
most develops a better product, which captures the entire market.

An all-pay auction has no pure strategy Nash equilibrium, by the following
argument.

• No pair of actions (x, x) with x < K is a Nash equilibrium because either
player can increase her payoff by slightly increasing her bid.

• (K, K) is not a Nash equilibrium because either player can increase her payoff
from −K/2 to 0 by reducing her bid to 0.

• No pair of actions (a1, a2) with a1 6= a2 is a Nash equilibrium because the
player whose bid is higher can increase her payoff by reducing her bid (and



4.11 Extension: games in which each player has a continuum of actions 145

the player whose bid is lower can, if her bid is positive, increase her payoff by
reducing her bid to 0).

Consider the possibility that the game has a mixed strategy Nash equilibrium.
Denote by Fi the mixed strategy (i.e. cumulative probability distribution over the
interval of possible bids) of player i. I look for an equilibrium in which neither
mixed strategy assigns positive probability to any single bid. (Remember that there
are infinitely many possible bids.) In this case Fi(ai) is both the probability that
player i bids at most ai and the probability that she bids less than ai. I further
restrict attention to strategy pairs (F1, F2) for which, for i = 1, 2, there are numbers
xi and yi such that Fi assigns positive probability only to the interval from xi to yi.

To investigate the possibility of such an equilibrium, consider player 1’s ex-
pected payoff when she uses the action a1, given player 2’s mixed strategy F2.

• If a1 < x2, then a1 is less than player 2’s bid with probability one, so that
player 1’s payoff is −a1.

• If a1 > y2, then a1 exceeds player 2’s bid with probability one, so that
player 1’s payoff is K − a1.

• If x2 ≤ a1 ≤ y2, then player 1’s expected payoff is calculated as follows. With
probability F2(a1) player 2’s bid is less than a1, in which case player 1’s payoff
is K − a1; with probability 1 − F2(a1) player 2’s bid exceeds a1, in which case
player 1’s payoff is −a1; and, by assumption, the probability that player 2’s
bid is exactly equal to a1 is zero. Thus player 1’s expected payoff is

(K − a1)F2(a1) + (−a1)(1 − F2(a1)) = KF2(a1)− a1.

We need to find values of x1 and y1 and a strategy F2 such that player 1’s ex-
pected payoff satisfies the condition illustrated in the left panel of Figure 144.1: it
is constant on the interval from x1 to y1, and less than this constant for a1 < x1
and a1 > y1. The constancy of the payoff on the interval from x1 to y1 requires that
KF2(a1)− a1 = c1 for x1 ≤ a1 ≤ y1, for some constant c1. We also need F2(x2) = 0
and F2(y2) = 1 (because I am restricting attention to equilibria in which neither
player’s strategy assigns positive probability to any single action), and F2 must
be nondecreasing (so that it is a cumulative probability distribution). Analogous
conditions must be satisfied by x2, y2, and F1.

We see that if x1 = x2 = 0, y1 = y2 = K, and F1(z) = F2(z) = z/K for all z with
0 ≤ z ≤ K, then all these conditions are satisfied. Each player’s expected payoff is
constant, equal to 0 for all her actions.

Thus the game has a mixed strategy Nash equilibrium in which each player
randomizes “uniformly” over all her actions. In this equilibrium each player’s
expected payoff is 0: on average, the amount a player spends is exactly equal to
the value of the object. (A more involved argument shows that this equilibrium is
the only mixed strategy Nash equilibrium of the game.)

?? EXERCISE 145.1 (All-pay auction with many bidders) Consider the generalization
of the game considered in the previous example in which there are n ≥ 2 bidders.
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Find a mixed strategy Nash equilibrium in which each player uses the same mixed
strategy. (If you know how, find each player’s mean bid in the equilibrium.)

?? EXERCISE 146.1 (Bertrand’s duopoly game) Consider Bertrand’s oligopoly game
(Section 3.2) when there are two firms. Assume that each firm’s preferences are
represented by its expected profit. Show that if the function (p− c)D(p) is increas-
ing in p, and increases without bound as p increases without bound, then for every
p > c, the game has a mixed strategy Nash equilibrium in which each firm uses
the same mixed strategy F, with F(p) = 0 and F(p) > 0 for p > p.

In the games in the example and exercises, each player’s payoff depends only
on her action and whether this action is greater than, equal to, or less than the other
players’ actions. The limited dependence of each player’s payoff on the other play-
ers’ actions makes the calculation of a player’s expected payoff straightforward.
In many games, each player’s payoff is affected more substantially by the other
players’ actions, making the calculation of expected payoff more complex; more
sophisticated mathematical tools are required to analyze such games.

4.12 Appendix: representing preferences by expected payoffs

4.12.1 Expected payoffs

Suppose that a decision-maker has preferences over a set of deterministic out-
comes, and that each of her actions results in a lottery (probability distribution) over
these outcomes. To determine the action she chooses, we need to know her prefer-
ences over these lotteries. As argued in Section 4.1.3, we cannot derive these pref-
erences from her preferences over deterministic outcomes; rather, we must specify
them as part of the model.

So assume that we are given the decision-maker’s preferences over lotteries.
As in the case of preferences over deterministic outcomes, under some fairly weak
assumptions we can represent these preferences by a payoff function. (Refer to
Section 1.2.2.) That is, when there are K deterministic outcomes we can find a
function, say U, over lotteries such that

U(p1, . . . , pK) > U(p′1, . . . , p′K)

if and only if the decision-maker prefers the lottery (p1, . . . , pK) to the lottery
(p′1, . . . , p′K) (where (p1, . . . , pK) is the lottery in which outcome 1 occurs with
probability p1, outcome 2 occurs with probability p2, and so on).

For many purposes, however, we need more structure: we cannot get very
far without restricting ourselves to preferences for which there is a more spe-
cific representation. The standard approach, developed by von Neumann and
Morgenstern (1944), is to impose an additional assumption—the “independence
axiom”—that allows us to conclude that the decision-maker’s preferences can be
represented by an expected payoff function. More precisely, the independence ax-
iom (which I do not describe) allows us to conclude that there is a payoff function
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u over deterministic outcomes such that the decision-maker’s preference relation
over lotteries is represented by the function U(p1, . . . , pK) = ∑

K
k=1 pku(ak), where

ak is the kth outcome of the lottery:

K

∑
k=1

pku(ak) >
K

∑
k=1

p′ku(ak) (147.1)

if and only if the decision-maker prefers the lottery (p1, . . . , pK) to the lottery
(p′1, . . . , p′K). That is, the decision-maker evaluates a lottery by its expected pay-

off according to the function u, which is known as the decision-maker’s Bernoulli

payoff function.
Suppose, for example, that there are three possible deterministic outcomes: the

decision-maker may receive $0, $1, or $5, and naturally she prefers $5 to $1 to $0.
Suppose that she prefers the lottery ( 1

2 , 0, 1
2 ) to the lottery (0, 3

4 , 1
4 ) (where the first

number in each list is the probability of $0, the second number is the probability of
$1, and the third number is the probability of $5). This preference is consistent with
preferences represented by the expected value of a payoff function u for which
u(0) = 0, u(1) = 1, and u(5) = 4 because

1
2 · 0 + 1

2 · 4 > 3
4 · 1 + 1

4 · 4.

(Many other payoff functions are consistent with a preference for ( 1
2 , 0, 1

2 ) over
(0, 3

4 , 1
4 ). Among those in which u(0) = 0 and u(5) = 4, for example, any function

for which u(1) <
4
3 does the job.) Suppose, on the other hand, that the decision-

maker prefers the lottery (0, 3
4 , 1

4 ) to the lottery ( 1
2 , 0, 1

2 ). This preference is consis-
tent with preferences represented by the expected value of a payoff function u for
which u(0) = 0, u(1) = 3, and u(5) = 4 because

1
2 · 0 + 1

2 · 4 <
3
4 · 3 + 1

4 · 4.

? EXERCISE 147.2 (Preferences over lotteries) There are three possible outcomes; in
the outcome ai a decision-maker gains $ai, where a1 < a2 < a3. The decision-
maker prefers a3 to a2 to a1 and she prefers the lottery (0.3, 0, 0.7) to (0.1, 0.4, 0.5)
to (0.3, 0.2, 0.5) to (0.45, 0, 0.55). Is this information consistent with the decision-
maker’s preferences’ being represented by the expected value of a payoff function?
If so, find a payoff function consistent with the information. If not, show why not.
Answer the same questions when, alternatively, the decision-maker prefers the
lottery (0.4, 0, 0.6) to (0, 0.5, 0.5) to (0.3, 0.2, 0.5) to (0.45, 0, 0.55).

Preferences represented by the expected value of a (Bernoulli) payoff function
have the great advantage that they are completely specified by that payoff func-
tion. Once we know u(ak) for each possible outcome ak we know the decision-
maker’s preferences among all lotteries. This significant advantage does, how-
ever, carry with it a small price: it is very easy to confuse a Bernoulli payoff func-
tion with a payoff function that represents the decision-maker’s preferences over
deterministic outcomes.
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To describe the relation between the two, suppose that a decision-maker’s pref-
erences over lotteries are represented by the expected value of the Bernoulli pay-
off function u. Then certainly u is a payoff function that represents the decision-
maker’s preferences over deterministic outcomes (which are special cases of lotter-
ies, in which a single outcome is assigned probability 1). However, the converse is
not true: if the decision-maker’s preferences over deterministic outcomes are repre-
sented by the payoff function u (i.e. the decision-maker prefers a to a′ if and only if
u(a) > u(a′)), then u is not necessarily a Bernoulli payoff function whose expected
value represents the decision-maker’s preferences over lotteries. For instance, sup-
pose that the decision-maker prefers $5 to $1 to $0 and prefers the lottery ( 1

2 , 0, 1
2 )

to the lottery (0, 3
4 , 1

4 ). Then her preferences over deterministic outcomes are con-
sistent with the payoff function u for which u(0) = 0, u(1) = 3, and u(5) = 4.
However, her preferences over lotteries are not consistent with the expected value
of this function (since 1

2 · 0 + 1
2 · 4 <

3
4 · 3 + 1

4 · 4). The moral is that you should be
careful to determine the type of payoff function with which you are dealing.

4.12.2 Equivalent Bernoulli payoff functions

If a decision-maker’s preferences in a deterministic environment are represented
by the payoff function u, then they are represented also by any payoff function that
is an increasing function of u (see Section 1.2.2). The analogous property is not
satisfied by Bernoulli payoff functions. Consider the example discussed above.
A Bernoulli payoff function u for which u(0) = 0, u(1) = 1, and u(5) = 4 is
consistent with a preference for the lottery ( 1

2 , 0, 1
2 ) over (0, 3

4 , 1
4 ), but the function

v defined by v(x) =
√

u(x) for all x, for which v(0) = 0, v(1) = 1, and v(5) = 2,
is not consistent with such a preference ( 1

2 · 0 + 1
2 · 2 < 3

4 · 1 + 1
4 · 2), though the

square root function is increasing (larger numbers have larger square roots).
Under what circumstances do the expected values of two Bernoulli payoff func-

tions represent the same preferences? The next result shows that they do so if and
only if one payoff function is an increasing linear function of the other.

LEMMA 148.1 (Equivalence of Bernoulli payoff functions) Suppose there are at least

three possible outcomes. The expected values of the Bernoulli payoff functions u and v

represent the same preferences over lotteries if and only if there exist numbers η and θ with

θ > 0 such that u(x) = η + θv(x) for all x.

If the expected value of u represents a decision-maker’s preferences over lot-
teries, then so, for example, do the expected values of 2u, 1 + u, and −1 + 4u; but
the expected values of u2 and of

√
u do not.

Part of the lemma is easy to establish. Let u be a Bernoulli payoff function
whose expected value represents a decision-maker’s preferences, and let v(x) =
η + θu(x) for all x, where η and θ are constants with θ > 0. I argue that the
expected values of u and of v represent the same preferences. Suppose that the
decision-maker prefers the lottery (p1, . . . , pK) to the lottery (p′1, . . . , p′K). Then her
expected payoff to (p1, . . . , pK) exceeds her expected payoff to (p′1, . . . , p′K), or, as
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given in (147.1),
K

∑
k=1

pku(ak) >
K

∑
k=1

p′ku(ak). (149.1)

Now,
K

∑
k=1

pkv(ak) =
K

∑
k=1

pkη +
K

∑
k=1

pkθu(ak) = η + θ
K

∑
k=1

pku(ak),

using the fact that the sum of the probabilities pk is 1. Similarly,

K

∑
k=1

p′kv(ak) = η + θ
K

∑
k=1

p′ku(ak).

Substituting for u in (149.1) we obtain

1
θ

(
K

∑
k=1

pkv(ak)− η

)

>
1
θ

(
K

∑
k=1

p′kv(ak)− η

)

,

which, given θ > 0, is equivalent to

K

∑
k=1

pkv(ak) >
K

∑
k=1

p′kv(ak) :

according to v, the expected payoff of (p1, . . . , pK) exceeds the expected payoff of
(p′1, . . . , p′K). We conclude that if u represents the decision-maker’s preferences,
then so does the function v defined by v(x) = η + θu(x).

I omit the more difficult argument that if the expected values of the Bernoulli
payoff functions u and v represent the same preferences over lotteries, then v(x) =
η + θu(x) for some constants η and θ > 0.

? EXERCISE 149.2 (Normalized Bernoulli payoff functions) Suppose that a decision-
maker’s preferences can be represented by the expected value of the Bernoulli pay-
off function u. Find a Bernoulli payoff function whose expected value represents
the decision-maker’s preferences and assigns a payoff of 1 to the best outcome and
a payoff of 0 to the worst outcome.

4.12.3 Equivalent strategic games with vNM preferences

Turning to games, consider the three payoff tables in Figure 150.1. All three tables
represent the same strategic game with deterministic preferences: in each case,
player 1 prefers (B, B) to (S, S) to (B, S), which she regards as indifferent to (S, B),
and player 2 prefers (S, S) to (B, B) to (B, S), which she regards as indifferent to
(S, B). However, only the left and middle tables represent the same strategic game
with vNM preferences. The reason is that the payoff functions in the middle ta-
ble are linear functions of the payoff functions in the left table, whereas the pay-
off functions in the right table are not. Specifically, denote the Bernoulli payoff
functions of player i in the three games by ui, vi, and wi. Then

v1(a) = 2u1(a) and v2(a) = −3 + 3u2(a),
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B S

B 2, 1 0, 0
S 0, 0 1, 2

B S

B 4, 0 0,−3
S 0,−3 2, 3

B S

B 3, 2 0, 1
S 0, 1 1, 4

Figure 150.1 All three tables represent the same strategic game with ordinal preferences, but only the
left and middle games, not the right one, represent the same strategic game with vNM preferences.

so that the left and middle tables represent the same strategic game with vNM
preferences. However, w1 is not a linear function of u1. If it were, there would
exist constants η and θ > 0 such that w1(a) = η + θu1(a) for each action pair a, or
equivalently

0 = η + θ · 0

1 = η + θ · 1

3 = η + θ · 2.

However, these three equations have no solution. Thus the left and right tables
represent different strategic games with vNM preferences. (As you can check, w2
is not a linear function of u2 either; but for the games not to be equivalent it is suffi-
cient that one player’s preferences be different.) Another way to see that player 1’s
vNM preferences in the left and right games are different is to note that in the left
table player 1 is indifferent between the certain outcome (S, S) and the lottery in
which (B, B) occurs with probability 1

2 and (S, B) occurs with probability 1
2 (each

yields an expected payoff of 1), whereas in the right table she prefers the latter
(since it yields an expected payoff of 1.5).

? EXERCISE 150.1 (Games equivalent to the Prisoner’s Dilemma) Which of the tables
in Figure 150.2 represents the same strategic game with vNM preferences as the
Prisoner’s Dilemma as specified in the left panel of Figure 107.1, when the numbers
are interpreted as Bernoulli payoffs?

C D
C 3, 3 0, 4
D 4, 0 2, 2

C D
C 6, 0 0, 2
D 9,−4 3,−2

Figure 150.2 The payoff tables for Exercise 150.1.

Notes

The ideas behind mixed strategies and preferences represented by expected pay-
offs date back in Western thought at least to the eighteenth century (see Guil-
baud (1961) and Kuhn (1968), and Bernoulli (1738), respectively). The modern
formulation of a mixed strategy is due to Borel (1921; 1924, 204–221; 1927); the
model of the representation of preferences by an expected payoff function is due
to von Neumann and Morgenstern (1944, 15–31; 1947, 617–632). The model of
a mixed strategy Nash equilibrium and Proposition 119.1 on the existence of a
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mixed strategy Nash equilibrium in a finite game are due to Nash (1950a, 1951).
Proposition 122.1 is an implication of the existence of a “trembling hand perfect
equilibrium”, due to Selten (1975, Theorem 5).

The example in the box on page 104 is taken from Allais (1953). Conlisk (1989)
discusses some of the evidence on the theory of expected payoffs; Machina (1987)
and Hey (1997) survey the subject. (The purchasing power of the largest prize
in Allais’ example was roughly U.S.$6.6 million in 1989 (the date of Conlisk’s
paper, in which the prize is U.S.$5 million) and roughly U.S.$8 million in 1999.)
The model in Section 4.6 is due to Pitchik and Schotter (1987). The model in Sec-
tion 4.8 is a special case of the one in Palfrey and Rosenthal (1984); the interpre-
tation and analysis that I describe is taken from an unpublished 1984 paper of
William F. Samuelson. The box on page 133 draws upon Rosenthal (1964), Latané
and Nida (1981), Brown (1986), and Aronson (1995). Best response dynamics were
first studied by Cournot (1838, Chapter VII), in the context of his duopoly game.
Fictitious play was suggested by Brown (1951). Robinson (1951) shows that the
process converges to a mixed strategy Nash equilibrium in any two-player game
in which the players’ interests are opposed; Shapley (1964, Section 5) exhibits a
game outside this class in which the process does not converge. Recent work on
learning in games is surveyed by Fudenberg and Levine (1998).

The game in Exercise 118.1 is due to David L. Silverman (see Silverman 1981–
82 and Heuer 1995). Exercise 118.2 is based on Palfrey and Rosenthal (1983). Exer-
cise 118.3 is taken from Shubik (1982, 226) (who finds only one of the continuum
of equilibria of the game).

The model in Exercise 128.1 is taken from Peters (1984). Exercise 130.2 is a vari-
ant of an exercise of Moulin (1986b, 167, 185). Exercise 132.3 is based on Palfrey and
Rosenthal (1984). The game Rock, Paper, Scissors (Exercise 141.2) was first studied
by Borel (1924) and von Neumann (1928). Exercise 141.3 is based on Karlin (1959a,
92–94), who attributes the game to an unpublished paper by Dresher.

Exercise 145.1 is based on a result in Baye, Kovenock, and de Vries (1996). The
mixed strategy Nash equilibria of Bertrand’s model of duopoly (Exercise 146.1) are
studied in detail by Baye and Morgan (1999).

The method of finding all mixed strategy equilibrium described in Section 4.10
is computationally very intense in all but the simplest games. Some computa-
tionally more efficient methods are implemented in the freely available computer
program GAMBIT.




